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Abstract

As disk performance continues to lag behind that of mem-
ory systems and processors, virtual memory management
becomes increasingly important for overall system perfor-
mance. In this paper we study the page reference behavior of
a collection of memory-intensive applications, and propose
a new virtual memory page replacement algorithm, SEQ.
SEQ detects long sequences of page faults and applies most-
recently-used replacement to those sequences. Simulations
show that for a large class of applications, SEQ performs
close to the optimal replacement algorithm, and significantly
better than Least-Recently-Used (LRU). In addition, SEQ
performs similarly to LRU for applications that do not ex-
hibit sequential faulting.

1 Introduction

As the performance gap between memory systems and disks
increases, the impact of memory management on system
performance increases. Although buying more memory would
always alleviate the poor performance of current virtual
memory (VM) systems, operating system designers should
attempt to improve VM design and policies so that users re-
ceive the best attainable performance, regardless of system
configuration and budget.

In this study we collected sixteen memory-intensive ap-
plications and studied their page reference behavior. Seven
applications are from the SPECO5 suite; the rest are “big-
memory” applications including integer-intensive programs
(e.g. databases) and scientific computations. We found that
the applications have very different page reference patterns:
some are truly memory intensive, referencing many pages in
short time intervals, while others have clear reference pat-
terns that can be exploited for better replacement decisions.

We simulated the Least-Recently Used (LRU) page re-
placement algorithm and the optimal offline algorithm (Be-
lady’s OPT algorithm [2]) for these applications under vary-
ing main memory sizes. For the applications that has no vis-
ible, large-scale access patterns, both LRU and OPT show
gradual, continuous reduction in page fault rate as mem-
ory size increases. LRU appears to be a good replacement

A shorter version of this paper appeared in the 1997 ACM
SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, June 1997, Seattle,
‘Washington.

policy for such programs. For applications that have clear
access patterns, however, LRU often performs poorly: it fre-
quently exhibits plateau behavior, where increasing memory
sizes does not reduce fault rate until the whole program fits
into memory. For these programs OPT obtains at least lin-
ear reduction in fault rate as memory size increases.

Based on LRU’s observed poor behavior, we propose a
new replacement algorithm, SEQ. SEQ normally performs
LRU replacement; in addition, it monitors page faults as
they occur, detecting long sequences of faults to contiguous
virtual addresses. When such sequences are found, SEQ per-
forms a pseudo most-recently-used (MRU) replacement on
the sequences, attempting to imitate what OPT would do.
SEQ often corrects the poor performance (plateau behavior)
of LRU for applications that have sequential behavior, yet
it performs the same as LRU for other types of applications.

We also conducted a preliminary study of two global page
replacement algorithms: global LRU replacement, and SEQ
extended to be a global replacement algorithm. We found
that SEQ performs similar to or better than global LRU on
mixes of various application types. Our results suggest that
SEQ may be a good algorithm suitable for implementation
in a real OS kernel VM system.

2 Applications and Traces

The applications we studied are described in Table 1. Shown
for each program is the number of instructions executed by
the traced program and the amount of total memory used by
the program. (Other columns in the table will be described
further below.)

2.1 Trace Methodology

We collected memory reference traces using Shade [8],
an instruction-level trace generator for the SPARC archi-
tecture. All programs ran on machines running the So-
laris 2.4 operating system. Because of the length of our
traces, recording all memory references individually would
result in unmanageably large trace files. Instead, we record
“IN” and “OUT” records. We divide program instruction
time into fixed-length intervals (usually 1,000,000 instruc-
tions). At the end of every interval, for every page that was
referenced in the current interval but was not referenced in
the previous interval, an IN record is generated and time-
stamped with the actual time (in terms of instructions exe-
cuted) of the first reference to that page. Similarly, for every
page that was accessed in the previous interval but was not



Program | Description Length | Memory | Executable Min. simulatable
(millions of used | size (KB) | memory size (KB)

instructions) (KB) LRU OPT

applu Solve 5 coupled parabolic/elliptic PDEs 1068 14524 136 | 2432 972
blizzard Binary rewriting tool for software DSM 2122 15632 1153 | 5332 4772
coral* Deductive database evaluating query 4327 20284 940 | 7084 6780
es* microstructure electrostatics 71003 104488 56 696 316
fgm* finite growth model 35210 121508 112 | 10052 2136
gee Optimizing C compiler 1371 3936 1599 [ 1900 1052
gnuplot PostScript graph generation 4940 62516 602 | 1552 476
ijpeg image conversion into JPEG format 42951 8260 152 | 1112 748
m88ksim* | Microprocessor cycle-level simulator 10020 19352 165 | 1964 328
murphi Protocol verifier 1019 9380 238 | 2132 1472
perl* Interpreted scripting language 18980 39344 569 | 9636 8428
swim Shallow water simulation 438 15016 56 | 6932 6216
trygtsl Tridiagonal matrix calculation 377 69688 26 | 2444 1400
turb3d Turbulence simulation 17989 26052 71| 7720 6360
vortex Main memory database 2507 9676 600 | 3024 2028
waveb Plasma simulation 3774 28700 511 | 3652 1708

Table 1: Benchmark programs measured, with execution duration and memory address space size. * Indicates runs which
were terminated before they completed. Also shown are minimum simulatable memory sizes (discussed in section 2.1) and

the size of the program binary.

accessed in the current interval, an OUT record is gener-
ated with the timestamp of the instruction making the last
reference to the page. IN and OUT records in a trace are
written out sorted by their timestamps. We used a uniform
page size of 4KB throughout this study.

The IN and OUT records associated with a page mark
the beginning and end of a period when the page is ref-
erenced. The page is accessed at least once during each
interval in this period; exactly how many times and exactly
when each reference occurs is unknown. However, a page is
definitely not accessed in the time between an OUT record
until the next IN record for that page.

This trace format not only is compact but also allows ac-
curate simulation of several replacement algorithms for suf-
ficiently large memory sizes. At any point in a trace, define
pages that are between an IN record and an OUT record
as being “ACTIVE", and the pages that are between an
QUT record and an IN record as “IDLE”. Then the OPT
algorithm, which replaces the page that is referenced fur-
thest in the future, can be simulated by replacing the IDLE
page whose next IN record is both furthest in the future and
at least two intervals ahead of the current interval. Such
a page is indeed the furthest referenced page because any
ACTIVE page will be accessed again either in the current
interval or in the next interval. By similar reasoning, LRU
can be simulated by replacing the IDLE page whose previous
OUT record is both the earliest among all IDLE pages, and
whose previous OUT record is either two intervals before the
current interval, or is before the IN records of all ACTIVE
pages. These constraints ensure that the page is indeed the
least-recently-used page (since any ACTIVE page must have
been accessed in the current interval or in the last interval).

A limitation of our method is that it can only simulate
memory sizes above a certain threshold. If the memory size

is too small, the simulation will not be able to find an IDLE
page satisfying the above criteria. The minimum simulat-
able memory sizes for each application are listed in Table 1.
(For SEQ we used the same minimum as LRU since SEQ
defaults to LRU replacement.)

2.2 Application Page Reference Behavior

We can plot space-time graphs of references from the traces
described above. For each execution interval (a point on
the z axis) we plot a point for each page referenced in that
interval. The y axis values are relative page locations within
the program’s address space (since the application’s address
space is usually sparse and contains many unused regions,
we leave out the address space holes and number the used
pages from low addresses to high addresses on the y axis).
On the following pages are space-time plots for each our of
applications.

Observing the space-time graphs, we found that the ap-
plications fall roughly into three categories. The first, which
includes coral, murphi, m88ksim and vortex, are truly mem-
ory intensive—large numbers of pages are accessed during
each execution interval. There are no clearly visible patterns
within the vast dark areas. The second category, which in-
cludes blizzard, gcc, and perl, are also memory intensive,
but have patterns at a small scale (for example, in gce, the
traversal of pages in the 0.5MB-2.25MB range follows a cer-
tain pattern). (These kind of small-scale patterns might be
exploited for techniques such as prefetching, but we have not
investigated prefetching in this paper.) The third applica-
tion category, consisting of the rest of the applications, show
clearly-exploitable, large-scale reference patterns. Ranges of
address space are traversed in the same pattern repeatedly.
The applications seem to be array-based, though some of
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them are written in C (fgm and gnuplot). Some programs
(ijpeg, applu, and trygtsl) traverse ranges of memory in
one direction and then change direction, but most programs
simply go in one direction. The number of sequentially-
traversed regions also varies, with swim doing about sixteen
and other programs (es, gnuplot) covering only one large
region.

These classes of behavior remind us of the following com-
ment by Rob Pike: “The following data structures are a
complete list for almost all practical programs: array, linked
list, hash table, binary tree.” [23] The statement clearly has
some truth to it: most- applications exhibiting regular ref-
erence patterns are array-based; vortex, m88ksim, murphi,
coral, and perl are apparently either making heavy use of
hash tables or are traversing tree structures; gcc and perl
(to some extent) seem to use linked lists heavily. From the
virtual memory system’s point of view, array-based appli-
cation would be the easiest to handle, while hash tables are
the hardest.

One interesting observation from the space-time graphs
is that for the programs we investigated, any given pro-
gram does not change its memory behavior radically—there
are not many distinct phases of behavior. (Some of the
programs repeat various patterns—turb3d for example—but
there is not a clear start-to-finish progression of different
phases.) Program behavior generally varies much more be-
tween different programs than it does between any two phases
of a single program.

2.3 Performance of LRU and OPT

Figures 1 and 2 show page faults per one million instructions
executed for each application as its memory spans the range
from the minimum simulatable size to the total number of
pages the application uses. ! The three curves in the graph
are LRU, OPT, and the new algorithm SEQ that we will
describe in the next section. We do not include startup
faults in the figures, because most of these faults are due
to initialization of processes’ address space, and are usually
serviced by zero-filling a page, not by invoking a disk I/O.
(The number of pages that must be demand-paged from disk
can be estimated by dividing the “program size” column in
Table 1 by the 4KB page size.)

The results show that for the first and second categories
of applications, which are memory intensive and do not have
strong patterns, LRU performs similarly to OPT, though
LRU suffers about twice as many page faults on average.
For these application classes, the fault rate under LRU drops
continuously when more memory is available; the rate of im-
provement is similar to that under OPT. The improvement
appears to be super-linear for memory sizes less than half of
the total memory needed by the program (i.e. doubling the
amount of memory more than halves the number of page
faults), and the improvement slows down after that point.

The situation is completely different for the applications
in the third category (programs with highly regular sequen-
tial access patterns). LRU performs much poorer than OPT,

1We plot page fault rates rather than fault counts because it allows
us to compare fault rates for different programs more easily. To obtain
fault counts, simply multiple the fault rate (at a given memory size)
and the trace length from table 1.
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generating up to five to ten times more page faults. LRU fre-
quently gives no improvement till memory size reaches a cer-
tain threshold, and results in “staircase” graphs. This gives
the appearance that the applications have certain working-
sets that, once in memory, will reduce the fault rate signifi-
cantly. In fact, OPT is always able to reduce the fault rate
continuously, and LRU simply fails to reduce the fault rate
until it reaches certain memory sizes.

The problem is that these applications (gnuplot, for ex-
ample) are looping over large address space ranges; LRU re-
places pages starting at the beginning of the address range
(since those are oldest), replacing pages a constant distance
behind the location where the program is accessing memory.
When the program begins another iteration at the bottom
of the range, LRU pages out the top. All pages in the range
must be paged in on every iteration, resulting in the worst
possible performance. This “LRU flooding” phenomenon is
the primary motivation for our SEQ algorithm, described in
Section 4.

3 Inter-fault Times

In addition to observing fault rate for varying memory sizes,
we also observed mean inter-fault times for varying memory
sizes. Although mean inter-fault time is simply the inverse
the fault rate, we found it instructive to examine both types
of graphs. The mean inter-fault time graphs help illumi-
nate the right end of the fault rate curves, where the curves
approach zero.

Figures 3 and 4 graph mean inter-fault times for varying
memory sizes for the three replacement policies OPT, LRU,
and SEQ. The y-axis is scaled from zero to ten million in-
structions between faults. (On modern computer systems,
a program taking page faults less frequently than one per
ten million instructions will suffer very little slowdown from
paging.)

Denning illustrates Working-Set page replacement and
its rationale by means of mean inter-fault time plots for a
hypothetical program [10]. His plots contain some “knee”
(a global maximum of f(z)/z, i.e., mean inter-fault time di-
vided by memory size). Our plots show little evidence of
knees. The programs whose curves do contain knees per-
form poorly under LRU (e.g. fgm and turb3d). Since the
OPT curves all slope gracefully upwards, as one would ex-
pect from the fault-rate OPT curves, we conclude that knee
behavior in inter-fault-time curves are more likely LRU re-
placement relics than signs of inherent program memory de-
mand.

4 SEQ Replacement Algorithm

The intuition behind the SEQ replacement algorithm is to
detect long sequences of page faults and apply MRU replace-
ment to such sequences. The goal is to avoid LRU flooding,
which occurs when a program accesses a large address space
range sequentially. If a program accesses an address range
once, LRU would page out useful pages that would be ac-
cessed again; if the program accesses the address range mul-
tiple times and the range is larger than physical memory,
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LRU would page out the pages in the order in which they
are accessed and thus perform poorly, as described above.

If no sequences are detected, SEQ performs LRU replace-
ment.

4.1 Design
There are four main components in SEQ’s design:

1. What is a “sequence”? A sequence is a series of page
faults to consecutive virtual addresses, growing in one
direction (increasing addresses or decreasing addresses)
with no other faults to pages in the middle of the se-
ries. (We refer to most recently-added page—the page
at the end of the sequence in the direction of growth—
as the head of the sequence.)

2. When memory is low and a page much be paged out,
which sequence is chosen to replace a page from? SEQ
chooses only sequences of length greater than L (cur-
rently 20 pages); it examines the time of the Nth (cur-
rently N = 5) most recent fault in each sequence, and
chooses the one whose fault is most recent.

3. Which page from the chosen sequence is replaced? SEQ
chooses the first in-memory page that is M (currently
20) or more pages from the head of the sequence.

4. What happens to a sequence if a page fault occurs in
the middle of the address range of the sequence? SEQ
splits the sequence into two sequences, one ranging
from the beginning of the sequence to the page im-
mediately preceeding the faulted page, and the other
consisting of the faulted page alone.

Choices of values for I, N and M is discussed in Section 4.2.

SEQ detects replaceable sequences by observing page faults
(not page references) and associates them based on adjacent
virtual addresses. SEQ maintains a list of sequences, record-
ing (for each sequence) the tuple <low.end, high.end, dir>.
The tuple indicates a sequence ranging from virtual address
low.end to virtual address high.end, faulting (as time in-
creases) in the direction dir (which is either up or down).
When a page fault on page pf occurs, SEQ examines se-
quences adjacent to pf. If the new page fault extends the se-
quence {i.e. pf = high-end +1 and dir = up, or pf = low._end
—1 and dir = down), the sequence’s low_end or high_end is
changed to include the current fault.

If pf falls in the middle of the sequence (i.e. low-end < pf
< high.end), then the sequence is split into two, one being
<low.end, pf —1,dir> if dir = up or <pf +1, high-end, dir>
if dir = down, and the other consisting of the new fault
only (ie. <pf, pf, mil>, nil meaning the direction cannot
be determined for now). If pf does not extend any existing
sequence nor overlap any sequence, then a new sequence is
built, <pf, pf, nil>. If pf can extend two existing sequences,
SEQ deletes the older of the sequences (the one whose last
fault is earlier) and extends the newer sequence. In addition,
if extending a sequence would lead to overlapping with an-
other sequence, then the sequence that would be overlapped
is deleted.

SEQ limits the number of sequences that it tracks. (Cur-
rently the limit is 200). When adding a new sequence would
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exceed the limit, SEQ first deletes the oldest sequence (by
time of the most recent fault to that sequence) of length
less than L. (If all sequences are longer than L, SEQ would
delete the oldest sequence with length < 2+ L, etc.)

‘When a replacement page must be chosen, SEQ examines
all sequences of length > L, and tries to pick the sequence
that faulted most recently. The heuristic we use is to sort
these sequences based on the faulting time of their Nth most
recent fault, and choose the one with the more recent fault
time. Currently N = 5. If no sequence with length > L
exists, the default LRU replacement is used.

Once a sequence is picked, SEQ is constrained not to
replaces pages closer than M pages away from the sequence
head. Starting from the Mth page away from the head, SEQ
skips any on-disk pages, choosing the first in-memory page it
finds. If it cannot find an in-memory pages in this sequence,
SEQ examines the next sequence as determined above. For
efficiency, SEQ keeps track of the range of on-disk pages in
each sequence, so that the search for a replacement page can
skip many on-disk pages in one step.

To illustrate how SEQ works in practice we’ll consider a
simple example. The example corresponds to the simplest
case in which SEQ will be effective; the behavior of our
benchmark es is similar to the behavior in the example, and
graphs of es’s faults, and of SEQ’s chosen replacement pages,
will follow.

Suppose a program makes several sequential passes over
a single, large memory region (larger than memory size),
going from the low end of the region to the high end of
the region as time passes. When the memory region is first
accessed, each page will be faulted into the address space
in turn. A single, large sequence will be created. Midway
through the first pass memory will have filled up (the lower
portion of the address range occupies memory). Because
there is a sequence from which to replace pages, SEQ will
page out the newly-faulted pages behind the head of the se-
quence, which continues to grow upwards as the program
progresses. The result after the program’s first pass over
the address range is that the bottom half of the sequence
remains in memory and the top portion has been paged
out. On the next iteration, the region’s bottom half will
be in memory and hence no faults occur for those pages.
However, as soon as the program reaches the point in space
where memory filled up on the first iteration (and where
SEQ started replacing pages), faulting will again commence.
The very first fault will have the following effect: since the
faunlt is somewhere in the middle of the single, long sequence
that existed up to this time, that fault will split the sequence.
The bottom half of the old sequence will remain, and a new
sequence beginning at the first faulted page will be created.

As the program continues upwards and more pages fault
in, the newer sequence will grow, extending upwards with
each new faulted page. In a short time the new sequence
will have grown to length L and, because its Nth fault is
more recent than the Nth fault of the original (bottom half)
sequence, SEQ will start to replace pages from the new (up-
per) sequence. Again the bottom portion of the address
range remains in memory and the upper part is paged out.
On successive iterations, no faults will occur until the pro-
gram references memory midway through the address range;




as faults do occur, a sequence will be built, and SEQ will
replace pages from the upper memory region once again. 2

Figures 5 and 6 show, respectively, the memory locations
of page faults taken by ES and the pages chosen by SEQ as
replacements. The graphs are for runs simulating 50MB of
memory, about half of ES’s total demand. Recall from Sec-
tion 2 that es’s behavior consists of essentially an iteration
over a single large memory region. Observe how the SEQ
replacements closely mirror the faults taken by ES.

As a more complex example, Figures 7 and 8 show the
faults and replacements for SEQ operating on applu {(10MB
simulated memory size). From applu’s space-time graph we
observe that it iterates over four large areas, first accessing
addresses in increasing order and then accessing them in de-
creasing order. The pattern of sequences that are made can
be observed from Figure 8. The dashed lines in the figures
are due to the fact that applu does not iterate consistently
through its address space. It often touches approximately
30-50 consecutive pages and then skips a few pages, leading
to a fairly large number of medium-size sequences to feed
SEQ. When no sequences of suitable length (longer than
L = 20 here) are found, LRU replacement is done; LRU
accounted for about 70% of page-outs for this run of applu.
The combined result of LRU and SEQ replacement on applu
is that the upper and lower ends of the four large memory
regions remain in memory and the middle regions are the
source of replacement pages.

4.2 Simulation Results

Since our traces contain only IN and OUT records, we can-
not simulate SEQ accurately under all circumstances. In-
stead, we conduct a slightly conservative simulation. That
is, if a chosen-for-replacement page is IDLE (i.e. it is not ac-
cessed until its next IN record), the page is simply replaced;
if the page is ACTIVE (i.e. it is between an IN record and
an OUT record, which means it is accessed actively during
this interval), we replace the page and then immediately
simulate a fault on the page to bring it back into memory.
This results in a simulation that slightly under-estimates
the actual performance of SEQ, because in reality the page
fault would occur sometime later in the current or the next
interval.

Simulation results are shown in Figures 1 and 2. Clearly,
SEQ performs significantly better than LRU, and quite close

2In more detail, at the beginning of each iteration after the second,
there will be two sequences, one for the bottom portion of the address
range and one for the top. When the program reaches the start of the
upper sequence—which is on disk, having been replaced the previous
iteration—the first fault will destroy that sequence. The fault will fall
within that sequence’s <low.end, high_end> range, so the old upper
sequence will split. The result will be that if there are any pages
between low_end and the new fault, then these pages will be put into
a sequence. This sequence will be short, or it may not be created
at all, because typically the entire upper sequence on the previous
iteration will have been paged out {not including pages at the head
of that sequence, but the head is way up at the top of the address
region). After the split of the previous upper sequence, the new one-
page sequence will grow upward to contain the entire upper portion
of the address region. If a small, intermediate sequence had been
created, it will languish between the large, lower sequence (which
remains in memory) and the large, upper sequence (the source of
replacement pages). The intermediate sequence will not grow and
may remain in memory, but its size is insignificant.
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to optimal, for the applications with clear access patterns
(for example, gnuplot and turb3d). For other applications,
SEQ’s performance is quite similar to LRU. For only one
program (perl) does SEQ perform worse than LRU. (We are
investigating why SEQ performs poorly for perl.)

‘We have varied the three SEQ parameters (L, M, and
N) and observed resultant performance changes. Intuitively,
the larger the value of L, the more conservative the algo-
rithm will be, because it is less likely that a run of faults
will be long enough to be considered a sequence. Reducing
L has the opposite effect. Similarly, the parameter M is set
to guard against the case when pages in a sequence are re-
accessed in a short time period. If the pages in the sequence
are accessed only once, then M should be set to 1; however,
if there is reuse of pages near the head of the sequence, then
M should be larger to avoid replacing in-use pages.

We experimented with three different settings of L and
M: (L = 20, M = 20), which are the defaults, (L = 50,
M = 20), and (L = 50, M = 50), and found that SEQ’s
performance is unaffected for most of the applications. The
three applications that show visible differences are applu,
perl, and swim. Figures 9 and 10 shows their fault curves
under the three parameter settings. (These figures shows all
programs for which any noticeable change occurred in SEQ
performance when any parameter(s) changed. SEQ perfor-
mance was unchanged for coral, gcc, murphi—where it re-
flected LRU performance—and for es and gnuplot, which
both had essentially the same near-OPT performance as be-
fore for all parameter combinations.)

For applu, since it has many short sequences that are dis-
qualified for replacement when L = 50, SEQ at L = 50 es-
sentially performs LRU replacement most of the time. Swim
also has many small to medium length sequences, and SEQ
at M = 50 appears to interact poorly with swim’s behav-
ior at small memory sizes. For the rest of the applications,
SEQ’s performance is essentially unaffected by the parame-
ter changes.

The parameter N affects the choice of sequences in situa-
tions when sequences grow at varying rates: as IV increases,
so does the likelihood that SEQ will choose the sequence
that grows fastest. We did not choose N = 1 because we
want to avoid sequences that grow at sporadic rates. Since
the space consumed by SEQ is directly proportional to N (it
must store the times at which the last N faults occurred),
small N is desirable. We varied N from 5 to 20, and found
only negligible differences in SEQ’s performance; varying N
from 5 to 2 has virtually no effect on SEQ’s performance.
Thus, we set N = 5.

To reduce SEQ’s modest runtime space requirements fur-
ther, we experimented with setting X = 50. Compared to
the default X = 200, performance was unchanged for all but
two programs, applu and fgm (where performance changed
only slightly). Graphs for (L = 20, M = 20, X = 50) also
appear in Figure 9. Applu performance degraded slightly
in that SEQ did not drop below LRU until a larger mem-
ory size was used. The change in SEQ’s FGM performance
were very minor, just a slight rise at the very high end of
the memory size range. We conclude tentatively from this
that the number of sequences maintained per program by a
real implementation can likely be lowered well under 200 if
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SEQ’s runtime resource consumption becomes a problem.

To summarize, we found that the performance of the
SEQ algorithm is fairly insensitive to the parameter values,
and our current settings appear appropriate, though we plan
continued testing in this regard. In our current implemen-
tation, SEQ takes roughly 10K bytes to keep track of 200
sequences (each taking roughly 48 bytes). Depending on
applications, SEQ also takes slightly more CPU time than
LRU for each replacement. We are still working on reducing
the SEQ overhead.

5 SEQ as a Global Replacement Algorithm

So far our discussion has focused on the performance of var-
ious replacement policies for single applications. In real sys-
tems, multiple processes run at the same time and com-
pete for memory. There are two general approaches to page
replacement in multi-process environments [12]. Onme ap-
proach involves a memory allocation policy that allocates
memory to different processes, and a page replacement pol-
icy that chooses replacements among each process’ pages
when processes exceed their memory allotments. Another
approach uses a “global” replacement algorithm, where a
replacement page is chosen regardless of which process it be-
longs to. For example, global LRU replaces the page whose
last reference was earliest among all memory pages. Cur-
rently, most time-sharing operating systems use some ap-
proximation of global LRU replacement.

SEQ can be extended fairly easily to function as a global
replacement algorithm. The only modification necessary is
that the sequences must be grouped explicitly on a per-
process basis, i.e. only page faults with the same process
ID are associated for sequence detection.

An obvious question is whether global SEQ would per-
form well in a time-sharing multi-process environment. To
provide a preliminary answer to this question, we constructed
a very simplified simulator of a multi-process system that
captures the dynamic interleaving of process execution. We
use a simple round-robin time slicing policy (simulating ex-
ecution of each program for a certain length of time) and
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a time delay to model the service time for a page fault to
disk. We then compared the performance of global LRU and
global SEQ under concurrent executions of the applications.

Our simulator reads multiple application traces, taking
a record each time from the trace corresponding to the pro-
gram that is currently executing. We schedule processes ac-
cording to round-robin time-sliced scheduling with context
switch at page faults. That is, each trace (process) is run
for a quantum, and when the quantum expires, the sched-
uler puts the trace on the wait queue and picks a different
trace (process). When a page fault happens, the current
process is suspended for the duration of the service time
of the page fault, and the scheduler picks another process
to run. The two parameters, quantum time and page fault
service time, are determined by a simple estimate of CPU
speed—in our experiments the quantum is 1 million instruc-
tions (corresponding to 10ms on a machine capable of exe-
cuting our programs at the uniform rate of 100 MIPS). Page
fault service time is a uniform 400,000 instructions (4ms on
the same 100MIPS machine). This is obviously a simplistic
model, but it suffices for the purpose of creating a reasonable
interleaving of multiple program traces.

We picked four combinations, each of two applications,
and one combination of three applications. The combina-
tions are chosen to have a variety of mixes of application
behavior and relative memory needs. They are: es+fgm,
gectvortex, swim+trygtsl, vortex+gnuplot, and
coral+waveb+trygtsl. For each combination, we measure
the fault rate for the concurrent execution of the applica-
tions, under both global LRU and global SEQ, for a range
of memory sizes. Again, since most of the initial faults are
zero-filled pages rather than disk-read pages, we do not in-
clude them in the figures. The results are shown in Fig-
ure 11.

The results show that in simple multi-process environ-
ments, global SEQ tends to outperform global LRU when
sequential applications are run, and it performs similarly to
global LRU when no sequential application is run. For ex-
ample, global SEQ’s improvements over LRU in the cases
of vortex+gnuplot and coral+waveS+trygtsl are similar



to those in gnuplot and waveb, and global SEQ performs
similarly to global LRU in gcc+votex. Thus, our prelimi-
nary simulation results show that SEQ is also a promising
algorithm for global replacement.

6 Related Work

Operating systems researchers have investigated the mem-
ory management problem for over thirty years, originally to
determine if automatic management of memory (i.e. virtual
memory) could perform as well as programmer-controlled
physical memory allocation. Belady’s paper in 1966 12]
introduced the optimal offline replacement algorithm (the
OPT algorithm). A good survey on early research results on
paging policies can be found in [12]. There have also been
many studies on program behavior modelling and optimal
online algorithms for each model. The models include inde-
pendent reference [1], LRU stack [25], working set [9], access
graphs [4], and the Markov model [16]. For each of these
models, optimal online algorithms are found [12, 14, 16].

The SEQ algorithm is similar to the access-graph algo-
rithms [4] in that it tries to take advantage of patterns found
in reference streams. However, most theoretical studies on
access-graph algorithms assume that the graph is known
ahead of time, rather than being constructed at run-time.
A recent study [11] investigated constructing the graph at
run-time; however the study only looked at references to
program text, not data. Also, the algorithm proposed in
[11] is more complex and more expensive than SEQ.

Although most early experimental studies focused on ef-
ficient approximation of LRU page replacement [3, 2, 7, 19],
one scheme, the Atlas Loop Detector, investigated loop de-
tection and MRU replacement on scientific programs [17].
SEQ differs from the loop detector in that it tries hard to
work well on applications where LRU is appropriate. The
Atlas scheme apparently performed poorly for non-scientific
programs [9].

Recent research projects on application-controlled ker-
nels show the potential of application-specific replacement
policies [27, 13, 20, 18]. These studies focus on mechanisms
by which applications inform the kernel about what pages
would be good candidates for replacements. Our SEQ algo-
rithm is basically the antithesis of such schemes. It will be
interesting to see over time which philosophy prevails. Our
study shows that run-time automatic sequence detection by
the kernel may be a promising way to increase performance,
at essentially no cost to the programmer.

Recently there have been a number of studies of appli-
cations’ memory reference behavior in the context of cache
management. One study regarding processor pin bandwidth
requirements [5] confirmed that there is a significant dif-
ference in cache miss ratios under LRU and under OPT
replacement policies. Another study [22] included space-
time graphs for some SPEC95 benchmarks. Though their
graphs are for a much shorter duration of execution execu-
tion (on the order of one second), the graphs are similar to
our graphs for the SPEC95 benchmarks. Finally, one study
of large-scale multiprocessor architectures investigated the
“working-set” and cache size issues for parallel scientific ap-
plications [24]. The study investigated a number of parallel
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applications, measuring their “working-sets” by simulating
the number of cache misses versus cache sizes under the
LRU replacement. The cache misses versus cache size curves
in [24] are quite similar to our LRU page fault curves for sci-
entific applications. These studies suggest that the reference
behavior at page level might be similar to that at cache line
level. We plan to investigate this correlation.

Sequence detection can be used for prefetching purposes
as well. Indeed there are sequence detectors for prefetch-
ing in hardware cache management [26, 15, 21]. However,
prefetching does not reduce bandwidth consumption; it merely
reduces latency by overlapping /O with computation. Good
replacement policies, on the other hand, reduce both band-
width consumption and latency. In this paper we focused
on replacement algorithms only; how to balance prefetching
and cache management (page replacement) is a complicated
issue that needs further study [6].

7 Conclusions and Future Work

Our study of application reference behavior and space-time
graphs shows that applications’ memory reference behavior
varies significantly. There are at least three categories: no
visible access pattern, minor observable patterns, and reg-
ular patterns. We found that LRU performs similarly to
OPT, though incurring roughly twice as many page faults,
for the memory-intensive and pattern-less applications. How-
ever, LRU performs poorly for regular-pattern applications.

We proposed a new replacement algorithm, SEQ. SEQ
detects linear access patterns (sequential behavior) and per-
forms semi-MRU replacement on sequences associated with
such patterns. SEQ performs similarly to LRU for memory-
intensive applications, and corrects the LRU flooding prob-
lem for many regular-pattern applications. Indeed SEQ’s
performance approaches that of OPT for a number of regular-
pattern applications.

We also found that for multi-process systems, SEQ ap-
pears to be a good algorithm for global replacement. Com-
parison of global LRU and global SEQ show that global
SEQ can effectively improve multi-application performance
just as it improves single application performance.

There are a number of limitations in our work. We
need to experiment SEQ on a wider variety of applications.
Kernel implementation of SEQ is underway to test its per-
formance in real systems. Finally, we plan to incorporate
prefetching in SEQ.
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