a@aaazﬁaﬁm@E@ﬁmasmmaﬁmmﬁaﬂaﬁﬁaamammﬁmamﬁﬂmn

HEBEEBEEEEE@HEWEEﬁ@ﬁﬁ&mmﬁﬂﬂﬁﬁ

Synchronization Hardware for Networks of
Workstations: Performance vs. Cost

Rahmat Hyder
David Wood

Technical Report #1289

October 1995

UNIVERSITY OF




Synchronization Hardware for Networks of Workstations: Performance vs. Cost

Rahmat S. Hyder and David A. Wood

Computer Sciences Department

University of Wisconsin—Madison
1210 West Dayton Street
Madison, WI 53706

wwt@cs.wisc.edu

Abstract

Networks of workstations (NOWs) are gaining popu-
larity as lower-cost alternatives to massively-parallel pro-
cessors (MPPs) because of their ability to leverage high-
performance commodity workstations and data networks.
However, fast data networks will not suffice if applications
require frequent global synchronization, e.g., barriers,
reductions, and broadcasts. Many MPPs provide hard-
ware support specifically to accelerate these operations.
Separate synchronization networks have also been pro-
posed for NOWs, but such add-on hardware only makes
sense If the performance improvement Is conunensurate
with its cost. In this study, we examine the cost/perfor-
mance tradeoff of add-on synchronization hardware for an
emulated 32-node NOW, running an aggregate workload
of nine shared-memory, message-passing, and data-paral-
lel applications. For low-latency messaging (e.g., ~10 lis),
add-on hardware is cost-effective only if its per-node cost
is less than 8% of the base workstation cost. For higher-
latency messages (e.g., ~100 Ws), add-on hardware is cost-
effective if it costs less than 23% of the base cost. Of
course, individual applications behave differently: four of
the nine applications show no benefit from the extra hard-
ware, while one application improves by over a factor of
three with higher-latency messages.

Keywords: synchronization, networks of worksta-
tions, massively-parallel processors, cost/performance.
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1 Introduction

Networks of workstations (NOWSs) are gaining popu-
larity as lower-cost alternatives to the current generation
of massively-parallel processors (MPPs). NOWs exploit
commodity systems—entire workstations—rather than
individual components. In addition, NOWs leverage com-
modity network technology to further reduce engineering
cost. While current local-area network performance is
poor by MPP standards (latencies in the 100s to 1000s of
microseconds and bandwidths in the 10s to 100s of Mbits/
second), emerging networks promise better performance.
For example, repackaged multicomputer interconnects,
such as Myrinet [4] and Shrimp [3], may yield up to two
orders-of-magnitude performance improvement over pre-
vious-generation local-area networks.

However, high-performance CPUs and data networks
will not be sufficient for NOWs to achieve good speedups
for all existing parallel applications. Some applications
require frequent synchronization to coordinate computa-
tion (e.g. barriers), to compute global results (e.g. reduc-
tions), or update common data structures (e.g. broadcasts).
To address the requirements of these applications, many
MPPs—the Cray T3D [13], the Fujitsu VPP500 [29], and
the Thinking Machines CM-5 [14]—provide explicit hard-
ware support for global synchronization.

NOWs can also employ synchronization hardware in
the form of a separate add-on synchronization network.
For example, Dietz, et al., have developed barrier hard-
ware which connects to the standard Centronics parallel
port of an IBM-compatible PC [9]. Hall and Driscoll have
proposed a synchronization network for Sun workstation
clusters that suppors barriers, 64-bit reductions, and
broadcasts [11]. Shang and Hwang have proposed barrier
hardware for cluster-based multiprocessors, including
workstation clusters [25].

However, whether or not such add-on synchronization
hardware is cost-effective depends upon its cost, the cost
of the base NOW, and the performance improvement
which the synchronization hardware provides. For exam-
ple, if the base NOW costs $20,000 per node (including
the network) and the add-on synchronization hardware



costs $2000 per node, then performance must improve by
at least 10% for the synchronization hardware to be cost-
effective [32]. While individual applications may improve
this much, or more, the add-on hardware is only cost-
effective if the aggregate performance of the NOW’s
entire workload improves by 10%.

In this paper, we examine the cost/performance
tradeoff of add-on synchronization hardware for a NOW.
We focus specifically on global synchronization (e.g., bar-
riers), not pairwise synchronization (e.g., locks). We study
a range of benchmarks to understand which existing appli-
cations will benefit—and by how much—from explicit
hardware synchronization support. We examine the syn-
chronization requirements for three important classes of
applications: shared-memory, message-passing, and data-
parallel. We consider two alternative synchronization net-
works: a low-cost version that supports only simple barri-
ers and single-bit AND operations, called HW-I
(“Hardware-One”); and a higher-cost version which addi-
tionally supports integer reductions and broadcasts, called
HW-All (“Hardware-All”"). For these applications, we cal-
culate the break-even cost—the price at which synchroni-
zation hardware becomes cost-effective.

We use a Thinking Machines CM-5 to model a NOW
both with and without hardware synchronization support
and use the measured performance improvement to calcu-
late the cost/performance break-even point. We study the
effects of two different network latencies: a “fast data net-
work”, modeled by native CM-5 messages (~10 us
latency), and a “slow data network”, modeled by CM-5
messages delayed by 100 pis using a relay-node technique
described in Section 2.3. For our emulated 32-node NOW,
we find the following results.

e For our aggregate workload—a weighted average of
nine shared-memory, message-passing, and data-paral-
lel applications—add-on synchronization hardware for
a NOW with a fast data network is only cost-effective
if it costs less than 8% of the base system cost, or
$1700 per node for a base per-node cost of $20,000.
For a NOW with a slow data network, add-on hard-
ware is cost-effective if it costs less than 23% of the
base system cost, or $4500 per node.

Individual applications may benefit much more from
synchronization hardware. Among our applications,
the HW-1 hardware improves performance by up to
54% on a NOW with the fast data network and up to a
factor of 3 with the slow data network. The HW-AlI
hardware yields further improvement, increasing per-
formance by factors of up to 2.5 and 3.6, for the two
network latencies. Some applications can be restruc-
tured to avoid using global synchronization operations,
decreasing the performance benefit. However, for the

one code we examined in detail, water [26], the barrier
version is 58% faster than the (original) locking ver-
sion even without hardware barrier support.

Other applications cannot be restructured as easily to
avoid global synchronization, such as the Wisconsin
Wind Tunnel (WWT) [21]. While most applications
synchronize to ensure that messages have been deliv-
ered, WWT frequently synchronizes to ensure that no
messages are in flight. For WWT, the HW-1 network
improves performance up to 54% on a NOW with the
fast data network and up to a factor of 3 with the slow
data network; the HW-All network improves perfor-
mance by up to 60% and a factor of 3.56.

Our results show that global synchronization hardware
can be a cost-effective addition to a NOW for some work-
loads. The benefit is relatively greater for slower data net-
works, since for each synchronization operation the
hardware eliminates O(log N) messages latencies from the
critical path. On the other hand, nearly half our applica-
tions received no benefit from synchronization support;
additional hardware is not justified to support workloads
dominated by these applications. A key advantage of add-
on synchronization hardware—as opposed to the inte-
grated synchronization hardware in most MPPs—is that
only those people that can benefit from it need to buy it.

The remainder of the paper is organized as follows.
Section 2 presents the implementation and performance of
the synchronization operations which our applications
require. Section 3 presents our benchmark suite and the
benchmarks’ synchronization requirements. Section 4 pre-
sents our experimental performance results. Section 5 pre-
sents our model for determining the cost/performance
break-even point, estimations of system cost, and the cost/
performance break-even points of our applications. Sec-
tion 6 discusses related work, and Section 7 summarizes
our results and conclusions.

2 Implementation of synchronization
operations

The applications in this study require a variety of glo-
bal synchronization operations of differing complexities.
The simplest operations include simple barriers and sin-
gle-bit AND reductions. The more complex operations
involve many-to-one ADD reductions which deliver the
result to a single node, ADD and MAX reductions which
deliver the result to all nodes, and broadcasts. In this sec-
tion, we discuss the implementation and performance of
these synchronization operations, both with and without
hardware support. Section 2.1 discusses software imple-
mentations, Section 2.2 discusses hardware implementa-
tions, and Section 2.3 examines their performance. We
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FIGURE 1. Tournament barriers of radix-2 (left) and radix-4 (right) for 4 nodes. The I-bars represent
send/receive overhead.

defer the discussion of how our applications use these
operations until Section 3.

2.1 Software synchronization

Synchronization operations can be implemented in
software by using explicit messages. For example, N pro-
cessors can perform a barrier synchronization simply by
designating one node as a master node, and then indicate
barrier arrival by sending messages to that master node.
Once the master receives arrival messages from all proces-
sors, it sends wakeup messages to all processors, inform-
ing each that all have reached the barrier. Intuitively, this
barrier is very inefficient because of the contention at the
master. To quantify its speed, let L be the message latency,
let S be the overhead of sending a message, and let R be
the overhead of receiving a message. Then the barrier
latency is 2L + (N+I)R + (N+1)S. Assuming sufficient
network bandwidth, the message latencies can overlap, but
the overheads which the master incurs must serialize.

The overheads cannot be eliminated, but their impact
can be lessened by distributing them among the proces-
sors. Tournament barriers [12, 15] distribute these over-
heads by having processors perform the arrival phase in
pairs (“radix-2” combining), forming a tree. With suffi-
cient network bandwidth, the wakeup phase can also be
performed in a tree fashion [15]. Since for every message
sent there is exactly one send and one receive overhead
latency incurred, the latency of this barrier is then O(2 X
flogz Nlx (L + S + R)), where the factor of 2 comes from
the two separate trees. However, in the presence of signifi-
cant messaging overhead, radix-2 combining does not hide
enough overhead; higher-radix combining is needed. Con-
sider Figure 1, which depicts radix-2 and radix-4 tourna-
ment barriers for 4 processors, with significant send and
receive overhead. The radix-4 solution hides much more
of the messaging overhead, resulting in lower latency: O(2
x[log,N1X (L + S + R)).

Butterfly barriers [7] eliminate the factor of 2 by effec-
tively performing multiple tournament-arrival binary trees
in parallel, with each processor at the root of a different
arrival tree. Figure 2 illustrates the messaging pattern for
radix-2 and radix-4 butterfly barriers for 4 nodes. Once
again, the radix-4 barrier allows more send/receive over-
head to be hidden than in the radix-2 barrier. The butterfly
barrier has the potential for better latency than the tourna-
ment barrier, but it sends O(N log;N) messages for a fixed
radix k, while the tournament barrier sends only O(2
logiN) messages. The butterfly barrier will then outper-
form the tournament barrier only if there is sufficient net-
work bandwidth. OQur emulated NOW satisfies this
assumption, so we will concentrate on only the butterfly
barrier in the remainder of this paper.

Reductions and broadcasts can also be implemented
via data messages as follows. Reductions which require
delivering the result to all nodes are essentially simple bar-
riers which also send data, and hence we implement them
with a butterfly-style combining pattern. Reductions
which deliver the result to a single node and broadcasts are
implemented via unbalanced trees [8] in which the fanout
of nodes is set according to the latency and overhead of
messages.

2.2 Hardware synchronization

Add-on synchronization hardware for a NOW consists
of two separate components: the workstation interface and
the synchronization network itself. Modern workstations
provide a range of possible interfaces, each with different
latency, bandwidth, and cost considerations. At the low-
end, most workstations provide a parallel port that can be
used for low-bandwidth operations such as simple barri-
ers. Parallel ports typically require system calls for user-
level access, but in some systems can be memory-mapped
directly into user space [9]. Higher performance, at higher
cost, can be obtained by interfacing to the workstation’s 1/



PO P1 P2 P3

time

PO P1 P2 P3

FIGURE 2. Butterfly barriers of radix-2 (left) and radix-4 (right) for 4 nodes. The I-bars represent send/
receive overhead.

O bus. This is a better choice for more complex opera-
tions, such as broadcasts, that require lower latency and/or
higher bandwidth. At the high-end, the synchronization
hardware can interface directly to the memory bus in some
workstations; however, the increase in performance is
unlikely to outweigh the increase in cost. Regardless of
which interface location is chosen, the latencies should be
relatively low: from a few tens of cycles to a few hundreds
of cycles.

The actual combining operation in the switch should
be even faster. For example, since a barrier operation is
simply a logical AND, it could be implemented as a large
AND tree, with delays measured in nanoseconds. More
complex operations such as integer reductions require
more complex logic, but the basic combining operation
will be at most a few processor cycles. Control logic, e.g.
for partitioning or virtualizing the network, will introduce
additional delays. Nonetheless, overheads will be minimal
within the synchronization network.

We consider two possible hardware synchronization
networks, each with different complexity and cost. The
first is lower-complexity and lower-cost, supporting sim-
ple barriers and single-bit AND reductions; we call this
network HW-1 (“Hardware-One”). We include the single-
bit AND because some applications make heavy use of
this reduction operation, and it requires hardware compa-
rable in complexity to the simple barrier. The second is
higher-complexity and higher-cost, supporting the HW-1
features plus the reductions described earlier and broad-
casts; we call this network HW-All (“Hardware-All”). We
assume that the networks connect to the workstation’s
memory bus, which provides a low-latency, high-band-
width interface.

The importance of hardware synchronization is magni-
fied by longer network latencies, because software syn-
chronization requires many (slower) messages. To
illustrate this point, we express parallel-program runtime

as the sum of computation time (7,,,,x), communication
time (7o), and synchronization time (7 y,p00):
T= Twork * Tcomm + Tglobal

In the absence of synchronization hardware, T, and
Tylobal increase linearly with message latency, while T,y
remains constant. As a result, synchronization time
becomes a larger portion of the total runtime. Conversely,
with synchronization hardware, T,,p, remains constant
and becomes a smaller portion of the total runtime. We
expect synchronization hardware to be more important for
NOWs with long message latencies, especially for fine-
grain codes which perform little work and send few mes-
sages between synchronization operations.

2.3 Synchronization performance

We now measure the performance of hardware and
software synchronization operations on the emulated
NOW. We use a Thinking Machines CM-5 to emulate 32-
node NOWs with and without hardware synchronization
support. To approximate the higher-latency messages of a
NOW, we divide a 64-node CM-5 partition into 32 com-
pute nodes and 32 relay nodes, using the relay nodes to
slow down messages as follows: a message destined for
node N is first sent to node N+32—a relay node—where it
is delayed for the appropriate latency and then sent to node
N. Figure 3 illustrates this process for an emulated 4-node
NOW with 4 relay nodes. We do not use the compute
nodes as relay nodes because doing so would perturb the
computation on those nodes. For hardware synchroniza-
tion, the CM-5 conveniently provides hardware support
for all the synchronization operations our benchmarks
need.

In addition to the basic 32-node NOW, some of our
applications require the existence of a separate host node
which connects to the 32 processing nodes. The broadcasts
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FIGURE 3. 4-node NOW with long-latency messages emulated on an 8-node host machine. Node 0 sends a
message to node 2 by sending the message to node 2’s relay, which is node 6. The message is delayed at node 6
and then sent to node 2.

Software

Message delay
Synchronization type Hardware 0 100 us
Simple barrier 2.6 us 60 us 307 us
1-bit AND 2.6 us 67 us 326 ps
32-bit ADD 2.7 us 67 us 326 ps
32-bit ADD (to one node) 32 us 118 us 283 us
64-bit MAX 3.5us 78 ps 339 us
Broadcast 2.5 us 43 us 230 us

TABLE 1. Latency of hardware and software synchronization operations. Message delay is the amount by which
CM-5 messages (typically 3-5 ps) are delayed. ADD reductions to a single node and broadcasts involve data
transmission between a host workstation and a 32-node NOW; all other operations involve only a 32-node NOW.
Note that ADD reductions to a single node are significantly slower than broadcasts because sending a message from
a node to the host on the CM-5 involves a system call. However, these reductions are very infrequent in our
benchmarks, so this is not a concern.

and many-to-one reductions are used in this “extended”
NOW: the host broadcasts data to all 32 nodes and
receives reduction results from all 32 nodes. The CM-5
directly implements this model with a separate worksta-
tion serving as the host.

Table 1 presents the latency, in microseconds, of each
type of synchronization operation. These measurements
were taken in the context of the software runtime environ-
ments for our benchmarks, which are discussed in Section
3. We consider two network latencies: CM-5 base message
latency (approximately 3-5 ps), or “zero-delayed mes-
sages”, and CM-5 messages delayed by 100 ps, or “100
us-delayed messages”. All software operations were opti-
mized with respect to messaging latency and overhead; for
example, the simple barriers for 100 us messages yield the
lowest latency when the butterfly pattern uses two phases,
combining the nodes in groups of eight nodes in the first

phase and then in groups of four nodes in the second
phase.

The individual hardware operations are roughly com-
parable in speed. This result is expected because the bulk
of the latency is spent in the network-interface hardware,
rather than in the actual combining hardware. The soft-
ware operations range from one to two orders of magni-
tude slower than the hardware implementation, depending
on the message latency.

3 Synchronization requirements of
benchmarks

We consider three classes of applications: shared-
memory applications (SM), message-passing applications
(MP), and data-parallel applications (DP). Table 2 lists the
benchmarks we study in each of the three classes, along



Synchronization frequency (events/sec)
Benchmark | Class Input Barriers Integer reductions Broadcasts
barnes SM 16,384 mols 0.28 n/a n/a
dsmc SM | 48,600 mols, 200 iter. 33 n/a n/a
moldyn SM | 2048 mols, 30 iter. 107 n/a n/a
water SM | 512 mols, reg. lattice 2324 n/a n/a
applu MP | 24x24x24, 30 iter 1.01 n/a n/a
dycore MP 64x45 grid, 50 iter. 1319 n/a n/a
Appbt (8x8x8, 30 iter) 2834 2834 n/a
wWwT MP | Tomcatv (128x128) 2404 2405 n/a
Sparse (128x128 dense) 2856 2891 n/a
Water (128 mols, 10 iter) 10221 10227 n/a
metspin DP 128x128 grid, 250 iter 467 101 2565
nbody DP | 4096 bodies 958 839 10009

TABLE 2. Benchmark suite. Synchronization frequencies are as measured on the CM-5, i.e. when run with zero-
delayed messages and hardware support for all synchronization operations.

with their input data sets and frequencies of synchroniza-
tion on the CM-3.

3.1 Shared-memory benchmarks

The shared-memory benchmarks are barnes, DSMC,
moldyn, and water. Barnes uses the Barnes-Hut algorithm
to calculate N-body interactions [26]. To obtain better
speedup from barnes, we used a modified version which
allocates free cells in a processor’s local portion of shared
memory, obviating the original global free cell pooll. Bar-
nes invokes barriers after creation and traveral of octrees,
and after updates are made to global values. DSMC is a
rarefied gas simulation, computing interactions between
molecules in a 3D box [16]. DSMC invokes barriers after
new molecules enter the box, after simulating the collision
of molecules, and after moving molecules into new space
cells. Moldyn calculates the motion of atomic particles
based on forces acting on each particle from particles
within a certain radius [16]. Barriers are invoked after cal-
culating the forces on and velocities of molecules, and
after updating the coordinates of molecules. Water is a
molecular dynamics simulation, computing the interac-
tions among water molecules [26]. For water, we use a
modified version which is restructured to use barriers
instead of locks; this version provides better performance

1. This modification is similar to the newly-released SPLASH-2
version [30].

on our platform. Barriers are invoked after updates to mol-
ecules.

All of these benchmarks were parallelized by hand
using a locally-modified version of the PARMACS macro
package and were run on Blizzard, a software system that
provides fine-grain distributed shared memory on the
Thinking Machines CM-5 [24]. Blizzard uses the user-
level Stache protocol—a COMA-like invalidation proto-
col—to maintain sequentially consistent shared memory
[22]. Barnes and water use Stache to maintain coherence
on 128-byte blocks, and DSMC and moldyn maintain
coherence on 1024-byte blocks.

3.2 Message-passing benchmarks

The message-passing benchmarks are applu, dycore,
and the Wisconsin Wind Tunnel (WWT). Applu is a compu-
tational fluid dynamics code which solves five coupled
parabolic/elliptic partial differential equations [1]. The
computation consists of successive over-relaxation itera-
tions with a barrier after each iteration. Dycore computes
the equations of motion for a grid-point atmospheric glo-
bal climate model [28]. Barriers are invoked between
phases of computation and near-neighbor communication.
We ran applu and dycore on Blizzard, using Blizzard-pro-
vided mechanisms to implement message-passing func-
tions for these applications.

Unlike the above applications, WWT is a native CM-5
program. WWT is a parallel discrete-event simulator which
simulates cache-coherent distributed-shared-memory mul-
tiprocessors [21]. WWT has much more heavy and diverse



Message delay
0 100 ps
Benchmark || No HW | HW-1 | NoHW | HW-1
barnes 12.09 11.99 9.65 9.65
DSMC 13.06 13.07 6.92 7.09
moldyn 8.91 9.13 3.50 3.60
water 5.81 6.66 2.87 4.06

TABLE 3. Speedups for shared-memory benchmarks. “No HW” indicates synchronization was done in software.
Barnes'’s insignificant slowdown with fast messages results from random system perturbations.

synchronization requirements: up to three types of syn-
chronization may occur after every phase. First, after
every quantum (100 cycles) of target-program execution,
WWT must ensure that all messages sent during the cur-
rent quantum have been received prior to the start of the
next quantum. This Network-Done operation involves
halting further network activity until all messages cur-
rently in-flight have been delivered. We can perform Net-
work-Done by either: (i) waiting until the number of
messages received by all nodes equals the number sent by
all nodes; or (ii) sending an explicit acknowledgement
(ACK) for each message and waiting at the end of the
quantum for all ACKs to be collected. Solution (i) requires
repeated ADD reductions!, while solution (ii) requires a
simple barrier. Second, after every quantum, WWT must
determine if all nodes encountered a barrier in the target
program in the last quantum. This can be accomplished
with a single-bit AND reduction. In fact, if option (ii)
above is used, the single-bit AND reduction can double as
the barrier. Third, if all nodes indicate that they have
arrived at a target-program barrier, each target node must
set its local clock to the maximum time of all target nodes’
local clocks, where the clocks are 64-bit values; this
requirement necessitates 64-bit MAX reductions.

3.3 Data-parallel benchmarks

The data-parallel benchmarks are metspin and nbody,
written in CM-Fortran and linked with a modified version
of the CM-Fortran communication library. CM-Fortran
employs a host-node model of computation, where a front-
end host machine coordinates computation on a set of par-
allel nodes by broadcasting parallel functions and data to
the nodes, and by receiving results from the nodes. In
studying these applications, we assume that the 32-node

1. The CM-5 network interface provides hardware support to
automatically repeat the ADD reduction. However, WWT does
not employ this feature.

NOW is connected to an additional workstation which
functions as the host.

Metspin uses the Metropolis Monte Carlo algorithm to
simulate an Ising spin model of a ferromagnet and calcu-
late the energy and magnetization at a particular tempera-
ture [18]. The basic computation is successive over-
relaxation, with red-black iterations performed on a 2-D
grid. Nbody calculates the force between N bodies inter-
acting via long-range forces [10]. Both metspin and nbody
use barriers after cyclic shifts of arrays, broadcasts to dis-
tribute both code pointers and data to nodes, and a Net-
work-Done operation to determine the completion of
cyclic shifts of arrays. Metspin also invokes barriers after
phases of near-neighbor computation, and performs many-
to-one ADD reductions to the host to track the sum of all
cells in the grid whose values have stabilized.

4 Performance results

This section presents the performance for our shared-
memory benchmarks (Section 4.1), our message-passing
benchmarks (Section 4.2), and our data-parallel bench-
marks (Section 4.3) as we vary the synchronization meth-
ods and the network latency.

4.1 Shared-memory benchmarks

We ran each of our shared-memory benchmarks on the
emulated 32-node NOW with zero-delayed and 100 ps-
delayed messages, comparing a system with the HW-1
synchronization network against a system with no syn-
chronization hardware (these benchmarks do not need the
added features of HW-All). Table 3 presents the resultant
speedups: execution time on a single node divided by the
execution time on 32 nodes.

Three of the four benchmarks—barnes, DSMC, and
moldyn—perform little global synchronizationz, thus
using the HW-1 network does not significantly improve

2. Barnes makes extensive use of locks, but not barriers.



Message delay
0 100 ps
Benchmark || NoHW | HW-1 | NoHW | HW-1
applu 15.84 15.90 12.98 13.05
dycore 8.94 9.96 5.85 7.93

TABLE 4. Speedups for message-passing benchmarks applu and dycore

performance regardless of the message latency. On the
other hand, water synchronizes much more frequently, and
thus hardware barrier support improves performance sub-
stantially. Performance improves 15% with fast messages
and 41% with 100 us-delayed messages.

In this study we used a restructured version of water
[26] that uses barriers instead of locks as the primary syn-
chronization operation. Surprisingly, this version runs con-
sistently faster than the (original) locking version, even
without hardware barrier support. Specifically, the barrier
version is 58% faster than the locking version with soft-
ware barriers and fast messages, and 77% faster with soft-
ware barriers and slow messages. With hardware support,
the barrier version is 81% faster than the locking version
with zero-delayed messages, and 2.5 times faster than the
locking version with 100 ps-delayed messages. This result
illustrates that restructuring applications to avoid global
synchronization may not always be easy.

4.2 Message-passing benchmarks

Table 4 presents the speedups for the first two mes-
sage-passing benchmarks, applu and dycore, comparing a
system with the HW-1 synchronization network against a
system with no synchronization hardware. (These two
benchmarks also do not require the added features of HW-
AlL) For applu, its low synchronization frequency implies
minimal potential for improvement, regardless of the mes-
sage latency. For dycore, with its higher degree of syn-
chronization, hardware synchronization support yields a
11% improvement with zero-delayed messages and a 36%
improvement with 100 ps-delayed messages.

In contrast to the above two applications, WWT can
utilize either the HW-1 or HW-All synchronization net-
works. We compare the performance improvement on sys-
tems using these networks to a system without
synchronization hardware. In the system without synchro-
nization hardware, the Network-Done operation is per-
formed using ACKs!, and the quantum barrier and
maximum-target-barrier-time operations are performed
using software reductions. In the system with the HW-1

1. We found that performing Network-Done with ACKs was
faster than performing it with a software reduction.

network, the quantum barrier uses the hardware 1-bit
AND reduction, Network-Done is performed using ACKs,
and the maximum-target-barrier-time operation is per-
formed with a software reduction. Finally, in the system
with the HW-All network, the Network-Done operation
uses the 32-bit ADD reduction, the maximum-time opera-
tion uses the 64-bit MAX reduction, and the quantum bar-
rier uses the 1-bit AND reduction.

Table 5 presents the speedups for WWT for the three
systems. The experiments involve WWT simulating a 32-
node shared-memory multiprocessor, running four shared-
memory programs with the DirlSW+ protocol [31]. We
use four different programs in order to observe how differ-
ent communication patterns affect WWT's performance.

We first examine the HW-1 system. Looking at the per-
formance improvements, we see that with zero-delayed
messages, three of the four inputs exhibit modest improve-
ment (no more than 17%), while Water, the fourth, exhib-
its a 54% improvement. Water has substantially less
communication than the other four inputs, so the bulk of
the time spent in simulating Water is in the quantum bar-
rier, in contrast to the other three inputs. As a result, per-
forming the quantum barrier in hardware for Water has a
greater overall impact than for the other three inputs. With
100 ps-delayed messages, the HW-1 system delivers sig-
nificantly greater performance: three of the four inputs
improve by nearly 50%, and Water improves by a factor of
three. The performance of the software reduction used to
implement the single-bit AND in the system without syn-
chronization hardware degrades significantly with the
higher latency network, and hence the HW-1 system
speeds up more by comparison.

We next examine the HW-All system. We first notice
that with zero-delayed messages for all inputs except
Sparse, the HW-AIl system is actually slower than the
HW-1 system. This slowdown is tied to the method used
for performing Network-Done. At a quantum boundary,
the HW-AIl system repeatedly sums the number of mes-
sages sent and received across all of the nodes, waiting for
this value to reach zero. After that point, it encounters the
quantum barrier, at which the target-barrier flags on all
nodes are AND’ed. However, the HW-1 system skips the
reduction phase, and instead each node waits for all its
ACKs to be received before proceeding to the quantum
barrier, resulting in only one synchronization operation



Message delay Input No HW | HW-1 | HW-All

Appbt 8.55 10.04 9.76

0 Tomcatv 10.82 12.60 12.39
Sparse 7.04 8.07 8.62

Water 6.96 10.72 10.32

Appbt 4.20 6.27 8.12

100 ps Tomcatv 6.00 8.89 10.83
Sparse 3.81 5.74 7.24

Water 248 7.45 8.83

TABLE 5. Speedups for message-passing benchmark WWT

instead of two. The HW-1 system should then outperform
the HW-AIl system if the target application has “low
enough” communication. For all inputs except Sparse, the
communication is in fact low enough; Appbt and Tomcatv
are stencil computations with small data sets, and Water
communicates in only 15% of the quanta. Sparse, on the
other hand, requires multiple broadcasts and a reduction
each iteration. With 100 ps-delayed messages, the HW-All
system consistently outperforms the HW-1 system. This is
because the cost of sending ACKs increases drastically,
and therefore the HW-All system’s repeated hardware
ADD reductions to determine network quiescence is a bet-
ter solution.

4.3 Data-parallel benchmarks

Table 6 presents the speedups for the data-parallel
applications, comparing systems with the HW-1 and HW-
All synchronization networks against a system without
synchronization hardware. In the system without synchro-
nization hardware, the barriers, reductions, and broadcasts
are implemented using messages, and the Network-Done
operation is implemented with ACKs and a message-
based barrier, similar to the implementation in WWT'. In
the HW-1-based system, the barriers are performed in
hardware, with the Network-Done operation implemented
via ACKs and a hardware barrier; all other operations are
implemented as in HW-1. Finally, in the HW-All-based
system, the barriers, reductions, and broadcasts are all
implemented in dedicated hardware, with the Network-
Done operation using a hardware reduction.

For the HW-1 system and the system without synchro-
nization hardware, we additionally “throttle” the software
broadcasts by forcing the host to delay for some amount of
time (200-500 us, depending on the benchmark and the

1. Again, the ACK-based method was found to be faster than
performing software reductions.

network latency) after a number of broadcasts, instead of
letting the host broadcast data to the nodes ad infinitum.
Brewer and Kuszmaul found that inserting barriers
between successive communication operations, such as
cyclic shifts, actually improved performance by up to a
factor of three, because a message destined for a processor
A still working on the first operation could not be delayed
by a message sent to A from a processor B working on the
second operation [5]. We encounter similar conflicts
between sets of messages in our benchmarks, and throt-
tling yields substantial benefit. We determine the delaying
parameters experimentally.

We first examine the HW-1 system. With zero-delayed
messages, the hardware synchronization provides only
modest benefit: 16% for metspin and 4% for nbody. This
result is expected given the low barrier frequencies of
these applications. Nbody benefits less than metspin
because nbody’s increased volume of broadcasts domi-
nates communication and hence its runtime, decreasing
the room for improvement for hardware barriers. With 100
us-delayed messages, HW-1 yields a 28% improvement
for metspin and no noticeable improvement for nbody. The
increased benefit of hardware barriers in metspin with 100
ps-delayed messages occurs simply from having slower
software barriers.

We now examine the HW-AIl system. This system
yields much more performance improvement— 62% for
metspin, and 68% for nbody. For both applications, the
bulk of the improvement relative to HW-1 comes from the
hardware broadcasts: when hardware reductions are used
as well as hardware broadcasts, performance improves by
no more than 1%. Since nbody broadcasts more often than
metspin, we would expect that nbody would benefit much
more from broadcast hardware than metspin. However,
metspin benefits a great deal from the broadcast hardware
because its computation-to-communication ratio is lower,
and hence the separate broadcast network prevents broad-
cast traffic from interfering with data traffic. As evidence
of metspin’s higher degree of data communication, we



Msg delay | Benchmark || No H/W | HW-1 | HW-All
0 Metspin 4.01 4.67 6.53
Nbody 6.39 6.68 10.75
100 ps Metspin 3.28 423 6.12
Nbody 426 426 10.76

TABLE 6. Data-parallel speedups

found that when we throttled broadcasts in the system
without synchronization hardware, metspin’s performance
improved by 44%, while nbody’s performance improved
by only 4%.

With 100 ps-delayed messages, HW-All yields an 87%
improvement for metspin and a factor of 2.5 improvement
for nbody. These improvements are the opposite of those
achieved with zero-delayed messages. In metspin, we see
much less improvement than we saw with zero-delayed
messages; the high degree of data communication limits
the potential speedup. Conversely, for nbody we see much
more improvement than we saw with zero-delayed mes-
sages; broadcasts form the bulk of the communication,
since data communication is minimal, and thus the
speedup improves greatly.

5 Cost/performance

In this section, we examine the cost/performance
tradeoffs for global synchronization hardware. Section 5.1
presents a break-even model for cost/performance. Section
2.2 examines the expected cost of a system with synchro-
nization hardware. Section 5.3 presents the resulting cost/
performance break-even points for our applications and
for the entire workload.

5.1 A cost/performance model

Intuitively, a performance enhancement to a computer
system is cost-effective only if the increase in performance
exceeds the increase in cost. Wood and Hill [32] recently
formalized this intuition by showing that parallel comput-
ing is more cost-effective than uniprocessor computing
whenever the following inequality holds:

speedup(p) > costup(p)

where speedup(p) is the runtime on one processor divided
by the runtime on p processors, and costup(p) is the cost of
a p-processor system divided by the cost of a 1-processor
system. In particular, they show that when memory is a
significant fraction of uniprocessor cost, parallel comput-
ing can be cost-effective even with very low speedups.
This same intuition also applies to add-on synchroni-
zation hardware for a parallel computer. Synchronization

hardware will be cost-effective if the performance
improvement is greater than the increase in cost:

speedup(synchronization hardware) >
costup(synchronization hardware)

To make this result concrete, let the cost of a base
NOW (without hardware synchronization support) be
Cpase and let the cost of the additional synchronization
hardware be Cy,,;; then the cost of a NOW with hardware
synchronization support is Cpgge + Cyynep- Let the runtime
of a workload W on the base NOW be T}, W) and on the
NOW with hardware synchronization support be
T neh(W). Then synchronization hardware is more cost-
effective whenever:

Tbase ) S Cbase +C
Tsynch (W) Cbase

Tpasel W) and Ty (W) assume a fixed workload W
that could either be a single application or the weighted
mean of the runtimes of many different jobs.

To make our results independent of any particular
hardware implementation, we calculate the break-even
cost [19] for add-on synchronization hardware by making
Equation 1 an equality and solving for Cyy,e:

Tbase (W) _ 1)

Tsynch W)
Thus synchronization hardware is cost-effective (for a
particular workload W) if its actual cost is less than the
break-even cost C *,y,w,,.

synch

e

%

~synch = Cbase[ 2

Cc

5.2 System cost

Without loss of generality, we make C *sy,,c,l more con-
crete by choosing reasonable estimates of the base system
cost, Cpayer and synchronization hardware, Cyep In this
section and throughout the rest of the paper, we treat Cpgg,

* .
Copnchr and C gy 28 per-node costs, w1th.the cost of
shared resources (e.g. network routers) amortized over all
nodes.

Cpuse depends heavily on the particular choice of
workstation node. List prices can range from a few thou-

-10-



0 delay 100 s delay
Application HW-1 HW-All HW-1 HW-All
barnes < $100 < $100 <$100 < $100
DSMC < $100 < $100 $482 $482
moldyn $484 $484 $613 $613
water $2908 $2908 § > $5000 | > $5000
applu <$100 < $100 $101 $101
dycore $2287 $2287 § >$5000 | > $5000
WwT >$5000 | >$5000 | > $5000 | > $5000
metspin $3279 | >$5000 § > 3$5000 | > $5000
nbody $899 | > $5000 <$100 | > $5000
AGGREGATE $1694 $4104 $4515 | > $5000

TABLE 7. Break-even cost of synchronization hardware for all applications and for the aggregate workload, for
zero-delayed messages and 100 ps-delayed messages

sand dollars for an IBM-compatible PC to many tens of
thousands of dollars per node for a high-end workstation,
depending on the processor speed, memory capacity, and
I/O configuration. Similarly, fast networks range from
approximately $2000 per node for Myrinet (adapter plus
switches) to over $5000 per node for Fore’s ATM network.
For the purposes of this paper, we assume Cpgy, 1S
$20,000, which is roughly the per-node cost of the Wis-
consin COW, our local network of dual-processor SPARC-
station 20s.

Cyyncn depends on the cost of the synchronization-net-
work switch and workstation interface. For hardware that
only supports simple barriers, the switch cost is a minor
component, since it can be implemented using a few stan-
dard PALs. For example, Dietz, et al., estimate that the
PAPERS add-on hardware—which interfaces to the work-
station’s parallel port and implements simple barriers and
binary reductions—has a parts cost of less than $50 [9].
We assume a commercial implementation of PAPERS
would cost at least $100 per node. More complex func-
tionality—for example, integer or floating-point reduc-
tions—requires more expensive hardware such as FPGAs
or ASICs. Interfacing to the workstation’s I/O or memory
bus can also be expensive, particularly for low-volume
parts like synchronization hardware. Nonetheless, it seems
reasonable that the total per-node cost for synchronization
hardware should not exceed the cost of high-end network
hardware. Thus we assume that synchronization hardware
will always cost less than $5000 per node.

Synchronization hardware is cost-effective when the
actual cost Cyypy, is less than the break-even cost C" synch:
Thus given our estimated costs, add-on synchromzatlon
hardware is always cost-effective when c’ synch 18 greater

than $5000 and is never cost-effective when C*Sy,w,, is less
than $100.

5.3 Results

From the performance results from Section 4, we cal-
culate the weighted means of Tj,, and Ty, for our
entire combined workload, weighting each application by
its fraction of the cumulative runtime of all applications in
the workload. For the WWT application, we used the aver-
age runtime of all four inputs.

Table 7 presents the values of c* synch for the individ-
ual applications and the aggregate workload. For clarity,
values less than $100 are indicated by <$100 (never cost-
effective); values greater than $5000 are indicated by
>$5000 (always cost-effective). For our aggregate work-
load on a system with zero-delayed messages, we find that
synchronization hardware is cost-effective when the hard-
ware costs less than 8% of the system cost, or $1700 given
our cost assumptions. On a system with 100 ps-delayed
messages, synchronization is cost-effective when the hard-
ware costs less than 23% of the system cost, or $4500
given our cost assumptions.

These results indicate that simple synchronization
hardware, i.e., HW-1, is likely to be justifiable for a system
with a fast data network, since such hardware can easily be
built for much less than $1700. More complex hardware
like HW-All is less clearly justifiable, due to its higher
parts cost and greater design requirements. The results for
100 ps-delayed messages accentuate the importance of
synchronization hardware for systems with slow data net-
works: for the aggregate workload, synchronization hard-
ware is nearly always cost-effective with 100 ps-delayed
messages.



Focusing on individual benchmarks, we see that of the
shared-memory benchmarks, only water strongly moti-
vates purchasing synchronization hardware; the cost-
effectiveness of synchronization hardware for the other
three is doubtful. However, shared-memory overheads in
Blizzard are quite high; reducing these overheads, e.g.,
with hardware support for shared memory, will increase
the relative benefit of synchronization hardware.

For our message-passing benchmarks, only dycore and
WWT motivate purchasing synchronization hardware. For
WWT, synchronization hardware makes sense regardless
of message latency. WWT is unique compared to the rest of
our workload in that it must synchronize to ensure that no
messages are in flight (Network-Done).

For our data-parallel benchmarks, the HW-All network
is cost-effective and economically feasible regardless of
message latency, and is arguably necessary in order to gar-
ner acceptable speedups. The parallel function invocations
from the host processor necessitate the HW-AIl network; a
decentralized SPMD-style computational model would
lessen this necessity.

6 Related work

Numerous proposals for add-on synchronization hard-
ware have recently appeared. PAPERS [9] is a low-cost
synchronization network which supports fine-grain execu-
tion on workstation clusters, specifically operations on
data aggregates as in a data-parallel program and VLIW-
style execution. Among other operations, PAPERS sup-
ports a simple barrier and a single-bit AND operation,
both with latencies of 2 us. The design interfaces to a net-
work of PCs running Linux, with connections through
each PC’s parallel port. Hall and Driscoll’s COP network
[11] provides synchronization support equivalent to the
HW-AIl network; they claim that its cost is 2-3% of over-
all system cost, which for our workload is clearly feasible.
Shang and Hwang have designed add-on synchronization
hardware for cluster-based multiprocessors, allowing syn-
chronization to be performed both within and between
clusters [25]. The ALLNODE barrier synchronization
hardware uses the broadcast facility of the Allnode switch
to perform barrier operations; an arbitrary number of
nodes can synchronize in a few microseconds, and the
mechanism consumes less than 5% of network bandwidth
[17].

Other machines besides the T3D, VPP500, and CM-5
have provided synchronization hardware separate from the
data network. PASM, a hybrid SIMD/MIMD machine,
uses its SIMD synchronous instruction-fetch mechanism
as a barrier when in MIMD mode [6]. A MIMD version of
a FFT benchmark with the hardware barrier support was
39% faster than a MIMD version without the hardware
barrier.

S12-

Fast barrier synchronization has been found to speed
up specific patterns of communication and computation.
Brewer and Kuszmaul found that using the hardware bar-
rier on the CM-5 to limit the rate of message injection and
limit congestion improved performance by more than a
factor of three [5]. The direct deposit message-passing
library of Stricker et al. [27] uses hardware barriers, rather
than employing buffering or handshaking, to ensure that
messages have been delivered to their destination. For a 2-
D FFT code, their system runs approximately 2.8 times
faster than an optimized request-response message-pass-
ing library. Ramakrishnan et al. [20] present two methods
for efficiently supporting deep control nesting in data-par-
allel programs by using synchronization hardware. The
first solution employs a pair of single-bit OR and AND
reductions and code transformations, and the second solu-
tion requires a MAX reduction but no code transforma-
tions.

Additional work has looked at synchronization hard-
ware specifically for parallel discrete-event simulators.
Reynolds proposed a separate synchronization network to
compute minimum next-event times, minimum times-
tamps of unacknowledged messages, and to compute Net-
work-Done [23]. Beaumont et al. propose to dynamically
synthesize application-specific hardware synchronization
for a desired simulator by using FPGAs [2]. For synchro-
nous parallel discrete event simulators, they suggest syn-
thesizing a barrier and a MIN reduction to determine the
minimum of all next-event times.

7 Summary and conclusions

This paper examined the cost/performance tradeoffs of
adding a separate synchronization network to a network of
workstations. We studied the synchronization require-
ments of three important classes of applications, shared-
memory, message-passing, and data-parallel, experimen-
tally measured the performance benefit obtained from
hardware synchronization support. We combined these
experimental results with cost estimates to calculate the
cost/performance break-even point where hardware syn-
chronization support becomes cost-effective.

e For our aggregate workload, add-on synchronization
hardware is cost-effective if it costs less than 8% of the
base system cost, for a fast data network, and less than
23% of the base system cost, for a slow data network.

e Individual applications may benefit much more from
synchronization hardware. Among our applications,
the HW-1 hardware improves performance by up to
54% on a NOW with the fast data network and up to a
factor of 3 with the slow data network. The HW-All



hardware yields further improvement, increasing per-
formance by factors of up to 2.5 and 3.6, for the two
network latencies.

Our results show that global synchronization hardware

can be a cost-effective addition to a NOW for some work-
loads. On the other hand, nearly half our applications
received little benefit from synchronization support. A key
advantage of add-on synchronization hardware—as
opposed to the integrated synchronization hardware in
most MPPs—is that only those people that can benefit
from it need to buy it.
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