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Abstract

The generalized transitive closure operator can be used to ask and answer a number of
sophisticated queries on a database which is viewed as a directed graph. These queries cannot
be expressed in SQL or relational algebra and neither can they be answered by commercially
available relational or object-oriented database systems. In this report we describe the design
and implementation of the generalized transitive closure operator in Paradise, an experimental
geographical information system, a domain in which this operator is especially useful. We show
how semi-naive evaluation, a basic technique for evaluating recursive queries, can be extended
to compute aggregates and we also give a formal proof of the correctness of our method. We
also discuss how selections can be used to optimize the evaluation of the query. The report
concludes with a few examples of how these queries can now be expressed in the extended SQL

like query language of Paradise and what the results look like.

1 Introduction

1.1 Generalized Transitive Closure

Transitive Closure is a graph operator which computes the set of all reachable paths in a graph G.
When this set of paths is computed subject to various selection and aggregation conditions, the

computation is referred to as Generalized Transitive Closure.



For example, consider a graph representing the information about the flights in an airline
database. The vertices represent airports while the edges represent flight connections. Simple
transitive closure would give us all the cities (or airports) reachable from an airport through one
or more flights. Assuming that an edge also contains a number of relevant attributes like distance,
flight cost, carrier name, flight departure and arrival times and so on, generalized transitive closure
would allow us to ask more sophisticated questions. For example, we could find the set of all
possible flight paths between two airports, the cheapest of these, the shortest of these with regard
to time, the shortest of these with regard to distance, only the flight paths with less than 3 flight
connections, only the flights where the last connection is through NorthWest, the flights where any
stopover delay does not exceed 2 hours, only the flights which do not go through Bangkok and
so on and so forth. Using this one operator, we can ask essentially all the reachability queries we

would need to ask in practice.

1.2 Applications of Transitive Closure

There are other domains to which generalized transitive closure can be applied. One is the classic
bill of materials or inventory of parts problem. Besides these there are of course some toy problems
regarding finding all the ancestors of a person, but these usually require only simple transitive
closure. What is of most interest to us in this report, however, is the application of generalized
transitive closure in the domain of Geographical Information Systems {GIS). GIS’s are used by
earth, atmospheric and space scientists to store and analyze satellite remote sensed data. Tra-
ditionally GIS’s have used files as the medium of storage, but recently DeWitt and others have
proposed the use of specialized DBMS’s as GIS’s [3].

There are a number of ways in which generalized transitive closure may be used in a GIS. One is
the modelling of irrigation channels as directed graphs to find out the reachability and effectiveness
of the irrigation network. Another is to use a GIS as a sophisticated route finder. We can map the
highway network of a region on to a graph, and then find the shortest paths between cities and so
on. Basically any kind of graph traversal and reachability problem can be reduced to a generalized

transitive closure problem.

Currently, the effectiveness of a DBMS in handling GIS queries is measured in terms of how

well it performs on the Sequoia 2000 storage benchmark introduced by Stonebraker et al[7] . Query



# 11 of the benchmark applies transitive closure in a catastrophic situation where there has been a
chemical spill close to an irrigation channel, and the query tries to find out which irrigation streams

the chemical might flow into.

1.3 The State of the Art

None of the commercially available DBMS’s support transitive closure. Perhaps one of the reasons
for this is the lack of standard query languages which can express transitive closure. It is only
recently that languages like SQL3 [4] and POSTQUEL [5] have been proposed to handle these
queries. Among DBMS’s, POSTGRES and Illustra claim to be close to achieving the goal of imple-
menting transitive closure, but there have not been any published results. There are a number of
experimental systems though, which support general recursive queries. One example is CORALI6]
and there are others like Starburst and LDL. In this respect however, we share the view expressed
by Dar [1] and others that all the heavy machinery required to support general recursion is not
really necessary for this particular class of recursive queries, and yet, most recursive queries which

occur in practice are in fact expressible as generalized transitive closure.

1.4 Overview of the Report

In this report we discuss the major issues which arose during the implementation of generalized
transitive closure in the experimental DBMS/GIS Paradise. Our initial goal was to augment Par-
adise so that it could run Sequoia benchmark query # 11, but finally we were able to go quite
some distance beyond that. Paradise can now perform transitive closures together with general
concatenation (CON) and aggregation (AGG) functions. The SQL like query language used in
Paradise had to be suitably extended for this purpose. Paradise can now answer almost all vari-
eties of general transitive closure queries, including the ones presented in the introductory section

of this report.

In section 2 of the report we formally define the problem and in section 3 we describe the
intended solution and also the reasons behind why we chose our method of implementation. Iﬁ
section 4 we discuss optimization issues regarding transitive closure queries, and in particular about
selection and aggregation. In section 5 we describe the actual implementation in Paradise and finally

we conclude in section 6.



2 Problem Definition

2.1 Graph Transitive Closure

A relation R with two (possibly composite) attributes S and T, defined over the same domain, can
be represented as a directed graph G in which every tuple of R with values s and ¢ for S and T
respectively is represented by an arc (s,¢). We denote the other attributes of R (if any) collectively

as L.

The transitive closure of a graph G is another graph TC(G) such that two vertices s and ¢ in
TC(G) are connected by an edge (s,t) if and only if ¢ is reachable from s in the graph G. In that
case, we also say that ¢ is in the transitive closure of s. Note that this is equivalent to calculating
the transitive closure of the relation R with respect to the equi-join operator on attributes S and

T.

S and T are called the closure attributes of R, and L the label attribute of R as [ € L can be
used to label the edge (s,t) if the tuple (s,¢,{) € R.

2.2 Generalized Transitive Closure

A generalized transitive closure query ¢ has the form :

Q=r6 AGG 0 CON; PATHS, (R[S, T, L))

The following is a description of each of the operators in the above query :

PATHS This is the path enumeration operator.

A The path closure predicate. It contains the equality condition on the closure attributes
(primary closure condition) and any other selection on the arcs of R participating in the

closure.

CON The label concatenation operator. This is a function which takes a set of arc labels

{L1,Ly...L;} and produces a path label Py,.

& The arc selection predicate which determines to which arcs CON should be applied.



o This selects a subset of the final set of paths.

AGG The label aggregation operator. Computes an aggregate function on the path label. Can

also do a group by.
§ The path-set selection operator which selects a path-set based on the value of the AGG operator.

m The projection operator.
Types of transitive closure:

e Complete transitive closure (CTC). Reachability from all nodes of the graph.

e Partial transitive closure (PTC). Reachability from a specified subset S of source nodes. This

can in fact be expressed as part of the selection operator o.

2.3 The Subset which has ‘been Implemented

As part of the implementation we decided to concentrate on a workable subset of the generalized
transitive closure operators. This means that all the above operators were not implemented in their
most general form. But the implementation endeavours to capture the essential functionality of a

general transitive closure query.

In particular, the path closure predicate A can only be an equality condition on two attributes.
C'ON must be a function which has already been implemented in Paradise. [t is not difficult to
implement these functions, but they cannot be specified directly by the user. Most, but not all
instances of o are supported. AGG does not do a group by. The § predicate is not supported. 7

is not currently supported, but should be easy to implement.

3 The Basic Evaluation Algorithm

3.1 Expressing Transitive Closure in Datalog

Let E(X, Y, C) represent the set of edges in a graph, together with an attribute label C and let

T(X, Y, C) be the transitive closure relation.
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T(X, Y, C) :=- EX, Y, ©)
T(X, Y, ¢) :- T(X, Z, C1), E(Z, Y, C2), C = CON(C1, C2)

If we bring in the AGG operator, things become more complicated, and conceptually we have

to think of storing the path between the vertices X and Y as P in the relation path(X, Y, P, C).

agg_path(X, Y, P, C) :- agg.label(X, Y, C), path(X, Y, P, C)
agg_label (X, Y, AGG(<C>)) :- path(X, Y, P, C)
path(X, Y, P1, C1) :- path(X, Z, P, C), edge(Z, Y, EC),
append([edge(Z, Y)], P, P1), C1 = CON(C, EC)
path(X, Y, [edge(X, V)], C) :- edge(X, Y, C)

In the above datalog query, only one path is finally chosen, depending on the value of the
aggregate on the set of paths, represented as AGG(< C >). Of course in the case of aggregate

functions like SUM, the choice of the path is not important.

3.2 The Choice of the Algorithm

A very large number of transitive closure algorithms have been proposed in the literature. Some of
these algorithms have been carried over from graph theory and some have been explicitly designed
with databases in mind. The algorithms in the latter class make efforts to reduce the evaluation
cost in terms of page I/O. The cost of evaluation varies quite a bit with the size of the set of
source nodes, and so it matters whether we are doing complete or partial transitive closure. The
algorithms which do well on CTC have a preprocessing step usually involving a topological sort of
the graph [2]. This orders the nodes in a way such that consecutively accessed nodes are placed

close together on disk.

In our implementation, we assumed PTC. The number of source nodes may be more than one,
but in general the selectivity of this initial selection of source nodes will be high. In that case,
most of the algorithms do not differ much in performance. The four factors which were kept in
mind while choosing the evaluation method were efficiency, generality, ease of implementation and
applicability to the database context. Based on these ideas, we decided to implement generalized

transitive closure using semi-naive evaluation.



Semi-naive evaluation is a general method for evaluating recursive queries. It is an iterative
algorithm which makes sure that a fact is not derived more than once using the same derivation. Its
performance is also stable over wide ranges of source set selectivities. It is a very simple algorithm
which makes good use of existing primitives like joins and selections and makes no assumptions
about when and how tuples are brought into memory. This is especially important in the case of
a practical DBMS like Paradise where algorithms at this level don’t have control over the buffer
manager. In terms of our criteria for the choice of the evaluation algorithm, semi-naive fits the bill

almost perfectly.

3.3 Semi-Naive Rewriting and Evaluation

The original datalog program for expressing transitive closure is given below. It calculates transitive

closure as the set of all vertices in the graph which are reachable from a given vertex.
T(X,)Y): - T(X,Z), e(Z,Y)
Semi-naive rewriting of the above:
ST™Y(X,Y) : — 6T°'%(X, Z), e(Z,Y)

The general algorithm for semi-naive evaluation :

6T = { Initial Set }
while (67° £ ()
{
ST = 6T a1 G
Told — Tald U 5Told
5Told = §Tmew Told
T =TuéT"
5Tnew — @

Notice that in the semi-naive rewritten rule, we did not need to use T°¢ anywhere. Therefore
we can eliminate it from the algorithm and just use T instead. Simplifying the above algorithm

then gives us :



§T°' = { Initial Set }
while (6T°" # )
{

ST = 6T 0 G o (D)
§To! = T — T . (2)
T =TuUsTM . (3)

which is precisely what we are using in this implementation.

There are three major steps in this algorithm. Step (1) is a join. Step (2) is duplicate elimination
and step (3) is insertion into a relation. There are also a couple of steps which are not shown
explicitly here. One is the intermediate selection which is done between steps (1) and (2) and there

is also a final selection which is done after coming out of the while loop.

4 Optimizing Selections and Aggregations

4.1 The Importance of Being Selective

The algorithm which we have used (and which we will describe later in greater detail) has a
complexity O(F * V) where the graph has V vertices and E edges. This is of course the worst case
complexity when we have to look at every vertex and every edge to compute the result. Obviously,
this is rather expensive, specially for large graphs. In practice, however, it might often be possible
to restrict our search to a small part of the graph, and this would bring down the evaluation cost
dramatically. This is the reason why selections are important, and this has been reiterated by

Stonebraker in his analysis of Sequoia benchmark query # 11 [7].

Traditionally, selections in queries are expressed by means of the where clause in SQL. We
will call these ezplicit selections. In addition to these, transitive closure queries can have implicit
selections, where either the graph or the source set or both, have been processed before the query
is issued. In that case when, for example, the source relation has been materialized by a previous
query, we will say that a selection is implicit. In [1] a very elegant formal structure to classify all the

various kinds of selections has been presented, and this we shall discuss in the following subsection.



4.2 Classifying and Utilizing Selections

Classification of constraints (C') which can restrict the result of a transitive closure query:

Monotonically Negative If a path P satisfies C, then every subpath of P satisfles C'. For

example a length bound.
Decomposable P satisfies C' if and only if every subpath of P satisfies C'.

Extension Monotonic P satisfies C if and only if every extension of P satisfies C'. For example

PTC.

Non Monotonic If C' is none of the above.
The places in the semi-naive evaluation algorithm where a selection can be applied are :

Chpreprocess As a preprocessing step on the graph before the algorithm starts.
Chinitial As the first step of the algorithm to restrict the set of source nodes.

Clintermediate DUring recursive enumeration of paths, restrict the set of arcs which are to be included

in the transitive closure.
C'tinai After all paths have been enumerated, apply the selection.
It has been shown in [1] that for certain types of constraints, certain types of selections are

necessary and sufficient and these conclusions are summarised below. It is to be noted that in the

case of a conjunction of constraints, there will be a corresponding superposition of selections.

Constraint Chreprocess | Cinitial | Clintermediate | Cfinal
Monotonically Negative C 0 C 0
Extension Monotonic 0 C 0 0
Decomposable C 0 0 0
Non Monotonic 0 0 0 C

In our implementation, we assume that Cpreprocess and Clinitiar are handled by separate queries

executed prior to the transitive closure query. The transitive closure query itself can handle



Cintermediate aitd Cling. There is one limitation to this approach. The user has to distinguish
what kind of selection a constraint results in, and has to provide this information to the DBMS
through the query language. This will be described in detail in the section on implementation

experiences.

4.3 Aggregate Retaining Evaluation
4.3.1 Path Condensations

Let P(s,t) = {Ex},k=1,...nfrom s tot. Let L; be the label of F;. Then P(s,t) has a path label
L(s,t) where
L{s,t) = CON(Ly, La,...,Ly)

Storing all the paths generated by the transitive closure algorithm is too expensive. Therefore, we
need to have a concise representation of a path which retains only the information necessary to
extend the path using transitive closure and this is done using path condensations. The condensation
of the path P(s,t) is the triple < s,t, L(s,t) >. There are restrictions about when the condensation

of a path is sufficient and these are detailed in [1].

When we are dealing with aggregates, we have to consider a set of paths, and once again, this
can be concisely represented by a path set condensation. Let ¥(s,t) = {Pi(s,t)},k=1,...,m be a
set of paths from s to ¢t. Let L; be the path label of P;. The path set label of ¥(s,t) is defined by

L\I;(S,t) = AGG(Ll, LQ, ey Lm)

Even though conceptually we could think that all the paths between two points are first enu-
merated and then the aggregate is applied, in practice the aggregation can be done incrementally
every time we add a path to the set or add an edge to extend the path. This method depends on

the following theorem.
Theorem 1 If CON and AGG form a path algebra, then AGG can be distributed over CON.

The basic semi-naive evaluation algorithm presented in section 3 has to be modified a bit to calculate
aggregates correctly. This modified algorithm is called Aggregate Retaining Evaluation (ARE) and

is also described in [8]. ARE works as follows :
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DeltaSet = StartSet
ResultSet = Empty // Contains (vertex, aggregate value) pairs

while (DeltaSet is not empty)

{
NewDeltaSet = DeltaSet Join BaseSet
// Make NewDeltaSet duplicate free
If a vertex in NewDeltaSet is already in ResultSet,
Form a new tuple by aggregating the old and new aggregate values
If NewDeltaSet has new tuples,
// Either new vertices or new aggregates
DeltaSet = NewDeltaSet
Add the tuples in DeltaSet to ResultSet
// Eliminate old tuples if duplicates
+

Theorem 2 ARF is correct, complete and irredundant.

Proof :
Define path(X, Y, C)in ARE and path(X, Y) in semi-naive evaluation (SNE) as corresponding
facts, C' being the aggregate value for the path. Obviously, this is not a one-one relation. We

represent a derivation as a list of rules denoted by [D].

ARE is correct :
If a fact is deduced by ARE using a certain derivation [D], the corresponding fact is also deduced
by SNE using the same derivation [D].

Proof : By induction on the number of steps in the derivation.

Basis : In step 1, ARE finds the nodes which are adjacent to the start node(s). So if it deduces
a fact path(X, Y, C), then (X, Y) is an edge, (where C is the weight of the edge) and hence SNE
must deduce the fact path(X, Y). |

Hypothesis : If a fact is deduced by ARE in step k using a certain derivation [D], the corre-

sponding fact must be deduced by SNE in step k using the same derivation [D].

11



Step : Let a fact path(X, Y, C), be deduced by ARE in step & + 1 using derivation [D]. Then a
fact path(X, Z, C1)should have been deduced by ARE in step k, (using derivation [D']) such that
e(Z, Y)is an edge. By the hypothesis, path(X, Z) must have been deduced by SNE in step k using
derivation [D’]. Which means that path(X, Y)is deduced by SNE in step k + 1 using derivation
[D] as the edge e(Z, Y) is the same for both ARE and SNE.

Therefore by induction, ARE is correct.

ARE is complete :

If a fact is deduced by SNE, a corresponding fact is also deduced by ARE.
Proof : By induction on the number of steps in the derivation of a fact.

Basis : In step 1, SNE finds the edges adjacent to the source nodes, and these are also found

by ARE.

Hypothesis : If a fact is deduced by SNE in step k, a corresponding fact is also deduced by ARE
in step k.

Step : Consider a fact path(X,Z) deduced by SNE in step k + 1. This means that a fact
path(X,Y) must have been derived by SNE in step k such that e(Y, Z) is an edge. By the hypothesis,
some fact path(X,Y,C1) must have been deduced by ARE in step k, and in step & + 1, ARE will
deduce a fact path(X, Z,C2) using CON (path(X,Y,C1), AGGpath(Y, Z,C2)]).

Therefore by induction, ARE is complete.

ARE is irredundant :

A fact is never reinferred by ARE using the same derivation.
Proof : By induction on the number of steps taken to derive a fact.
Basis : This is trivially true as the first facts generated could not have been inferred before.

Hypothesis : A fact deduced by ARE in step k cannot have been inferred in step < k using the

same derivation.
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X1

X2
Figure 1:

Step : Suppose a fact path(X, Z,C1) is inferred in step k4 1. Then there must have been a
fact path(X,Y,C') which had been inferred in step k. Now according to the hypothesis, either this
fact is completely new, or has a new derivation. In either case, the fact path(X, Z,C1) has a new

derivation in step k + 1.

So by induction, ARE is irredundant.

Aggregation produced by ARE is correct :

Preliminary :

We will first prove that the number of times AGG is applied to a path fact in ARE is equal to

the number of derivations of the fact in SNE. This is important for aggregates like count and sum.

Basis : For the first derivation of this path in SNE, it must also be the first derivation of
the path in ARE, otherwise we contradict what we have shown before while proving that ARE is
correct. So we could trivially say that the number of times AGG is applied equals the number of

derivations of the fact upto which now equals 1.

Hypothesis : If k be the number of applications of AGG to a path fact in ARE, then there are
k derivations of the fact in SNE.

Step : If this is the k + 1th derivation, then by the ARE algorithm, we apply AGG again, and
by the induction hypothesis, it has been applied k£ times before. So we have applied AGG k + 1

times for the k + 1 derivation.
Final Proof :

Assume that AGG and CON form a path algebra, i.e., CON distributes over AGG. This
means that (Fig. 1) :
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AGG[CON (path(X1,Y,C1),path(Y, Z,C)),CON (path(X2,Y,C2), path(Y, Z,C))]
= CON (AGG[path(X1,Y,C1),path(X2,Y,C2)], path(Y, Z,C))

Using this, it is possible to show by induction, that ARE does calculate the path with the
correct aggregate value. In what follows, path length refers to the number of edges and is distinct

from the path weight which is the CON of the weight of the edges.

Basis : When path length = 1 and there are no parallel edges, AGG is just applied once, and
so the path weight is just given by CON which must be correct. If there are parallel edges, we
apply AGG two at a time on the parallel edges, and so the result must be correct since AGG is

associative.

Hypothesis : At step k, ARE computes the correct AGG value (as known for path lengths < k)

for all vertices reached so far.

Step : Let ARE compute a fact path(X, Z,C) at step £+ 1. We shall show that C is the correct
value when AGG is applied over all paths between X and Z of length < k + 1.

Consider all paths between X and Z (of length < &k + 1) as shown in Fig. 2. Let the vertices
adjacent to Z be called V1, V;,...V,. Now consider all paths from X to Z which go through a
certain vertex V;, 1 < i < n. By the distributive property described above, the AGG over all these

paths is given by

AGG[CON (path(X, V,, C1), edge(Vi, Z,C2))]
= CON(AGG[path(X,V;, C1)], edge(Vi, Z,C'2))

Now that path from X to V; is of length < k and by the induction hypothesis, the correct value
of the aggregate for that path, i.e. path(X,V;, C1), has already been calculated in the previous
iteration. Therefore the distributive property ensures that ARE calculates the correct aggregate

value.

Now if we consider the set of all paths from X to Z, this is equivalent to grouping the paths
by the V; that each of them passes through, first applying the aggregate over each group and then
on all the groups together. We have just proved above that the aggregate value for one group is
correct. Then by this procedure we get the correct overall aggregate value as the AGG function is

assoclative.
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Figure 2:

Finally, the result of all these aggregations will depend upon how many times AGG is applied;
We have proved before that the number of applications of AGG is correct (equal to the number of

derivation of a fact). This means that the aggregate value produced by ARE is correct.

5 Implementation Experiences

5.1 If there is Paradise on Earth, ...

Paradise (Parallel Data Information System) is an experimental system designed to store and
manage large volumes of geographical or satellite remote sensed data [3]. Paradise is object-
relational in design with support for user defined ADTs. Among the different datatypes supported
by Paradise are points, polylines, arrays and raster images in addition to the usual integer, real and
string data types. Each of these types also have methods defined on them to query and manipulate

their data. This allows Paradise to implement operations like overlap and spatial joins.

As discussed before, transitive closure has a special application in the GIS domain. The base
graph for the query is constructed out of a set of edges (stored as polylines) and vertices (stored
as points). In general, these ADT’s can be n-dimensional, but in this implementation we have
concentrated on the 2-dimensional case. Note that this also allows for the existence of self-loops

and parallel edges.

Each vertex therefore, is represented as an ordered pair (z,y) while an edge is represented as a

set of points {(z;,y;)}. We treat as distinguished the begin and end points of an edge, denoted as
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b and e respectively. The schema for the relevant part of the database looks like this :

river ( b Point, e Point, edge PolylLine, ... ) // Base Graph

startpt ( p Point, length Real ) // Start Set

Notice that the base relation river may contain any number of other attributes in addition to
the ones involved in closure. startpt denotes the start set. In addition to the starting point, it

also contains the initial value of the aggregate.

5.2 The Query Language

Paradise supports an extended subset of SQL as the query language. The main extensions to SQL
are in the support of new key words like overlap denoting spatial joins and also the support for
calling methods on an object belonging to an ADT. This latter feature will be extensively used in

formulating transitive closure queries.

Standard SQL cannot express recursive queries like transitive closure, though emerging stan-
dards for SQL3 attempt to rectify this. Therefore for Paradise we had to design a few extensions
to the query language to provide all the information needed to compute the transitive closure of a

relation. The grammar for this new part of the language is as follows :

<transClosureQuery> ::= SELECT* [<aggClause>]
<fromClause>
<startClause>
<closureClause>
<composeClause>
[<whereClause>]
<aggClause> ;1= <aggFunc> <attribute>
<fromClause> ::= FROM <relName>
<startClause> ::= BEGIN FROM <relName>
<closureClause> ::= CLOSE <predicate>
<composeClause> ::= COMPOSE <composeExpr>
<composeExpr> ::= <relName> ’(’ <exprList> ’)’

16



<whereClause> = WHERE <finalPred> AND <intermediatePred>
| WHERE <intermediatePred>
| WHERE <finalPred>

<finalPred> = *[? <predicate> ']’

<intermediatePred> ::= <predicate>

A few words on the new clauses that have been added to the query language. The startClause
specifies the relation which contains the start point(s). The closureClause specifies the transitive
closure predicate which is used for the join in Step 1 of the semi-naive algorithm. The composeClause
specifies how the new tuples for the NewDeltaSet are calculated, and finally the whereClause is used
to specify the Cintermediate and Cingi selections. Note that the user has to distinguish these two

kinds of selections using brackets.

For example, the Sequoia benchmark Query # 11 can be expressed as follows :

select*

from river R

start startpt S

closure S.p = R.b

compose S(R.e, R.length.plus(S.edge.length()))
where S.length < 20

If we compare it to the POSTQUEL version, shown in [7], the queries look remarkably similar :

append* to
temp (GRAPH.identifier, GRAPH.segment, length=temp.length+length(GRAPH.segment))
where end(temp.segment) = begin(GRAPH.segment) and

GRAPH.identifier notin {temp.identifier} and

temp.length < 20

The change in the query language turned out to be a pretty big task. Changes had to be made to
the parser, type-checker and the predicate tree generator. The initial version of the implementation
had all the predicate trees hand-coded, but in the final version, all the predicate trees for joins,
selections and so on were directly generated from the parser. This will allow the system to handle

base relations with arbitrary schemas.
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In addition to an SQL command interface, Paradise also has a graphical front-end browser
built using the Tcl/Tk toolkit. Using this front end, the user can explicitly issue SQL queries.
In addition, the user can also query the database graphically by sketching an area on the screen
and zooming in. This zoom in is accomplished by the front end by appending additional overlap
constraints to the query. Because of the way we designed the extensions to the query language,
these additional constraints appear as intermediate selection predicates in the whereClause and can

be handled transparently by the transitive closure operator.

5.3 Implementing Transitive Closure

After deciding that semi-naive evaluation (actually ARE, but they are rather similar) would be
used, the next question was the choice of the join method to be used in Step 1 of the algorithm.
Currently nested loops join and Grace hash join are the only two join methods available in Paradise.
Since the join was on a spatial attribute (Point) and presently hash joins are not allowed on spatial
attributes, nested loops join turned out to be the automatic choice. There of course exists a spatial
join operator in Paradise but the code is rather complex and is not easily adaptable to modification.
For transitive closure, we could not use the whole of the join operator, but had to pull out releavant
parts of the code and put into a new transitive closure operator. The main reason for that is that
the nested loops join operator assumes that the result relation will be materialized but this is not
the case in transitive closure. In fact the selections and aggregations are done without materializing
the result. As regards the overhead of nested loops join, this is considerably reduced by creating
a clustered index on the inner relation which in this case is a base graph. The index is of course

bulk loaded.

From the very beginning we decided that it was not possible to store all the paths generated by
the algorithm as the size of this set grows exponentially with the size of the graph. Therefore we
decided only to store path (or path-set) condensations. Also, for the time being we would output
only one path per vertex in the result. Or in other words, the result graph generated would be just
a tree. As we will show later, this restriction can eventually be removed with a little additional
work. So for each vertex V', we store its aggregate value L, and also the last edge in the path from
a source node to V. This must be one of the edges incident on V. All the intermediate relations,
8T §T™e¥  etc store these 3 pieces of information. The edge is actually stored as a pointer (rid)

to the actual tuple. So in general we will deal with 3 schemas, the one for the base relation, the
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one for the start relation and the one for the result relation which looks like this (notice the extra

aggregate value at the end):
result ( b Point, e Point, edge PolyLine, ..., length Real )

The next step was deciding how each of the intermediate sets (relations) would be stored in the
database. To answer this, we looked at how each set would be accessed. The outer relation (the
start set) would be accessed sequentially in the join and so is stored as an ordinary relation. The
inner relation, the base graph, is stored as an extent (another name for a Paradise relation) with a
clustered index on the join (closure) attribute. For the set T (the result set) we needed an efficient
way of checking duplicates. Therefore T' was stored as a BT-tree with the point as the key and the
aggregate value and the edge rid making up the element. This enables us to search for a duplicate

vertex in O(log n) time.

While implementing the transitive closure algorithm, we performed one other optimization. An
extent in Paradise is a collection of catalog information plus the file which contains the actual
data. The creation and destruction of extents incurs some overhead because of the contention on
the catalog which must be locked with an exclusive lock. Therefore we made sure that all the
temporary relations shared the same catalog information with the extent for the start relation. So
creation or destruction of the temporary relations just involved creation or destruction of the data

files, without any modifiction of catalog information.

5.4 Implementing Final Selections

Implementing intermediate selections is straight-forward as the selection predicate can be imme-
diately applied to a tuple produced as a result of the join. For final selections we do not know
whether a path satisfies the selection predicate until the whole path has been enumerated. For
example if we want the shortest path from the source to a certain destination city, we know that a
path leads to the destination only after we have reached it. This implies that we must perform the

final selection on the final set generated by transitive closure.

However, it is not simple to retrieve the path from the source to the destination from this final

set. This is because the final set just contains a collection of edges, and the final selection just

gives us the last edge in the path. Therefore we effectively have to do another closure starting from
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this last edge, but going backwards this time. This of course is slightly simpler than the forward
transitive closure because we do not have to calculate aggregates, but it should be noted that the
presence of non-monotonic constraints such as destination selection can considerably increase the

execution time of the algorithm.

5.5 Performance Expectations

As we have mentioned before, the most important performance determinant in transitive closure
is the effectiveness with which the system handles selections. One of the most widely accepted
techniques for propagating selections in recursive queries like this is the use of Magic Sets. In
addition, we can make use of projections using factoring. In our implementation, we have directly
propagated these selections inside the loop which does the semi-naive evaluation so that the se-
lections are automatically done while evaluating the recursive query. Therefore we expect that we
will get a performance similar to what we would have got if we had used Magic Sets to propagate
selections, used factoring and then used semi-naive rewriting to evaluate the query. This is just

about the best that can be done with current technology.

6 Results, Conclusions and Future Work

This work aims to demonstrate the feasibility of implementing generalized transitive closure algo-
rithms in an object-relational database system like Paradise. Paradise is a general purpose system
using SQL as the query language and without any prior support for recursive queries. We have
extended the query language to express transitive closure queries and have modified the query
evaluation engine to processs these queries efficiently using semi-naive evaluation. The algorithms
make no assumptions about the form and placement of data and neither do they assume anything
about how data is transferred to and from the buffer pool. Now Paradise can answer most transitive

closure queries, especially those which occur in the GIS domain.

The primary benchmark for such queries is Query # 11 of the Sequoia 2000. We have been
successful in running the query, but unfortunately, we do not know the starting point of the query
as this is not mentioned in [7]. So the numbers we obtained have not standardized. Part of the

future work involves obtaining the start point and benchmarking our system against this query.
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Semi-naive evaluation (and its cousin ARE) are very general algorithms which are relatively
easy to implement. In this case we are using them to compute transitive closure but it would
be possible to use them to support general recursive queries if desired. We have first proved and
then verified empirically that the path labels and aggregate values calculated by ARE are correct.
Even though we do not know of any other system which handles generalized transitive closure with
aggregates without general recursive query support, we have shown that this is is a perfectly viable
proposition. Performance-wise we have seen that except for the case when we have final selections,
the response time of the system is well within tolerable limits. It might be possible to possible té

optimize final selections further.

Finally there is a broad area in which further work can still be done. There are two kinds of
results which may be generated by a transitive closure query : one is a set of vertices and the other
is a set of edges, the two sets being independent of each other. For example, consider the query
which finds the set of paths between two nodes. Currently we are retrieving only one out of the
(possibly) many paths. This is because right now, the set of edges has a one to one correspondence
with the set of vertices produced by the transitive closure. This however is too restrictive. If we
can produce the set of edges independently of the set of vertices, we would be able to overcome

this restriction.

To summarize, we have succesfully implemented generalized transitive closure in Paradise. Both
the query language and the server have been extended to calculated the closure sets of vertices,
edges, path labels and aggregates. It is expected that this added functionality will significantly

enhance the usefulness of Paradise to users of Geographical Information Systems.
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A Sample Output

We will now illustrate the results produced by running some transitive closure queries on an airline

flights database. The base graph and the result graph (with thickened lines) are shown as displayed

by the Paradise graphical front end. In these queries, the source node is the city "Cal” and all the

flights move in a westerly direction.

The following are the relation schemas :

flights (edge PolyLine, b Point, e Point, src String, dst String, time Real)

F (p Point, dist Real)

22



Fite Viaw D Help ]

Status:  Managing layers. _]

Figure 3: All cities reachable from ”Cal”

Query for Figure 3 :

select*

from flights

start F

closure F.p = flights.b

compose F(flights.e, F.dist.plus(flights.time))
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Figure 4: All cities within 2 hours flying time from ”Cal”

Query for Figure 4 :

select*

from flights

start F

closure F.p = flights.b

compose F(flights.e, F.dist.plus(flights.time))

where F.dist < 2
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Figure 5: A flight plan from "Cal” to ”Ban”

Query for Figure 5 :

select*

from flights

start F

closure F.p = flights.b

compose F(flights.e, F.dist.plus(flights.time))

where [F.dst = "Ban"]
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Figure 6: The shortest time flight plan from ”Cal” to ”Ban”

Query for Figure 6 :

select* min(F.dist)

from flights

start F

closure F.p = flights.b

compose F(flights.e, F.dist.plus(flights.time))

where [F.dst = "Ban"]
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Figure 7: A flight plan from ”"Cal” to "Ban” such that no flight is more than 1.5 hours and it does
not touch "Hyd”

Query for Figure 7 :

select* min(F.dist)

from flights

start F

closure F.p = flights.b

compose F(flights.e, F.dist.plus(flights.time))

where [F.dst = "Ban"] and flights.time <= 1.5 and flights.dst !'= "Hyd"
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Figure 8: An inventory of parts listing the total number of subparts a part is made of

Query for Figure 8 :

select* sum(P.totalParts)
from partsi

start P

closure P.x = partsl.b

compose P(partsl.e, P.totalParts.mult(partsl.numParts))
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