Simulation of the SCI Transport Layer
on the Wisconsin Wind Tunnel

Douglas C. Burger
James R. Goodman

Technical Report #1265

March 1995



Simulation of the SCI Transport Layer on the Wisconsin Wind Tunnel

Douglas C. Burger and James R. Goodman

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, Wisconsin 53706 USA

galileo@cs.wisc.edu

Abstract

Parallel simulation of parallel machines is fast becom-
ing a critical technique for the evaluation of new parallel
architectures and architectural extensions. Fast and accu-
rate simulation of the interconnection network in parallel
simulators is extremely difficult, but also extremely impor-
tant. In this report, we describe an extension to the Wis-
consin Wind Tunnel that simulates the transport layer of
the Scalable Coherent Interface. This module enables an
evaluation of switch designs and network topologies that
uses real parallel codes. It also enables the exploration of
architectural and protocol optimization effects on network
performance. Finally, our extension increases confidence
in SCI-related results that were obtained without detailed
network simulation.

1 Introduction

The evaluation of proposed parallel machines is
increasingly being dominated by software simulation.
Executing such simulations on uniprocessors is prohibi-
tively expensive for target machines of any significant
size. Physical memory is the prime limiting factor, but
even with enough memory, such simulations run
extremely slowly. An increasingly popular solution is to
parallelize the simulations [2, 4, 11], permitting substan-
tially larger simulations to be performed. Parallelizing the
simulation, however, creates at least one significant prob-
lem: the efficient communication of target state between
physical nodes of the host machine.

The Wisconsin Wind Tunnel (WWT) [11] is one such
parallel simulator, which runs on a Thinking Machines
CM-5. WWT uses conservative, discrete-event simulation
[5, 8, 10, 15] to accurately calculate the logical execution

This work is supported in part by NSF Grant CCR-9207971, generous
funding from the Apple Computer Advanced Technology Group, and
donations from Thinking Machines Corporation. Our Thinking Machines
CM-5 was purchased through NSF Institutional Infrastructure Grant No.
CDA-9024618, with matching funding from the University of Wisconsin
Graduate School.

time of the target application. Superior performance is
obtained through direct execution [3] of identical target
and host instructions on the native CM-5 hardware.
WWT’s solution to the problem of communicating simula-
tion state is to guarantee windows of target time during
which a node can perform simulation without requiring
state from other physical nodes. This permits fixed quanta
of execution, alternated with global synchronizations.
WWT implements fixed-time windows by assuming a
fully-connected, point-to-point network, through which
messages travel in a constant number of cycles.

The fundamental problem with simulating a network on
top of a WWT-like simulator is that an inverse relationship
exists between the size of the fixed-time windows and the
performance of the simulator. By assuming a minimum,
constant time for any target node’s message to reach any
other, simulations can progress unimpeded by communi-
cation or synchronization until they have run for the full
quantum latency. When a target interconnection network
is represented in greater detail, state changes at a node can
affect other nodes in a much shorter time, reducing the
simulation lookahead and hence the minimum possible
quantum length. This effect becomes more severe if the
network state is distributed, requiring synchronization
upon execution of each target cycle.

The constant latency model ignores the effects of net-
work contention, finite bandwidth and buffering, hot-
spots, and flow control. These factors can have a signifi-
cant impact on target execution time, particularly when
target applications exhibit heavy communication. Differ-
ent communication protocols and synchronization primi-
tives can drastically affect the load on the network, and
therefore the target program run-time. Consequently, the
network must be considered when parallel systems are
evaluated through simulation.

This report describes a network simulator that extends
WWT with a network based on the Scalable Coherent
Interface {14] transport layer. The simulator is a cycle-by-
cycle event-driven module that runs on one centralized



node, simulating the network in between quanta of target
execution. This centralization is a severe limitation, which
inflates simulation time substantially. The simulator is
nevertheless critical for validating whatever less-expen-
sive network models are used (a detailed discussion of rel-
evant trade-offs appears elsewhere [1]). It also allows
design parameters of SCI-based networks to be evaluated.
Finally, the network simulator enables the measurement
effects produced by architectural and protocol optimiza-
tions that change the network load or contention distribu-
tions.

The rest of this report is structured as follows:
Section 2 presents an overview of the SCI transport layer
protocol. Section 3 describes the design of the router and
queues that our simulator assumes. Section 4 presents the
simulation algorithm. Results from a series of experiments
are provided in Section 5, and this work is summarized in
Section 6.

2 The SCI transport layer

The Scalable Coherent Interface (SCI) is an IEEE stan-
dard that provides fine-grain, cache-coherent shared mem-
ory for multiprocessors. It is targeted toward medium- to
large-scale parallel systems. The standard is composed of
three layers: the optional coherence protocol, the transport
layer, and the physical layer. The coherence layer defines a
list-based cache coherence protocol. The transport layer
defines the protocol for transporting messages in between
processing elements. Although they were designed jointly
with efficient interaction in mind, they are conceptually
separate and can be treated independently.

The transport protocol defines a network topology that
consists of rings constructed with point-to-point links. The
links are 16 bits wide (the width of one symbol, the SCI
unit of transmission), and are ideally clocked at 500 MHz.

When a message (defined as a packet in SCI) is to be
sent over the network, the processor places it into a send
queue, where the message waits until it can be inserted on
the ring. Since a symbol may arrive on the incoming link
at every cycle, a packet can only be inserted by buffering
incoming symbols (in the SCI-defined bypass buffer)
while the send packet is transmitted on the outgoing link.
Figure 1 depicts this organization. Once the packet is com-
pletely sent, the node enters the recovery phase, in which
each incoming symbol is sent to the bypass buffer and
each symbol at the head of the bypass buffer is sent to the
output link. As empty symbols (called idle symbols in SCI
terminology) arrive, they are discarded, and since buffered
symbols are simultaneously being output, the number of
symbols in the bypass buffer shrinks. The recovery phase
ends when the bypass buffer is empty and incoming sym-
bols that are not stripped are sent directly to the outgoing

Processor

Send queue

Bypass buffer

Figure 1. Processor-SCl switch interface

link. Packets are always separated by at least one idle sym-
bol, which is the only idle symbol not absorbed during the
recovery phase. A packet may only be transmitted when
the bypass buffer is empty and an idle symbol is arriving
on the incoming link.

When a packet is sent from a processing element, a
copy of the packet remains in the send queue, in case
retransmission becomes necessary. The sent packet moves
around the ring, until it reaches its destination or must be
transferred to another ring (by a ring-to-ring interface,
called an agenr). The destination (or agent) accepts
responsibility for the packet, and an acknowledgment (an
accept echo in SCI terminology) is sent around the
remainder of the ring to the packet sender.

Should the receive queues at the recipient or agent be
full, a reject echo (e.g., a negative acknowledgment) will
be returned to the sender. The sender, upon receipt of an
echo, discards the saved message or retransmits it,
depending on whether an accept or reject echo was
received. Send packets fall into two classes: requests and
responses. To prevent deadlock, responses and requests
are queued in logically separate queues. Request packets
are only processed when the response queue is empty.

3 Physical model

While the SCI standard defines what types of packets
may be sent, considerable latitude exists in defining the
network topology [6], the physical structure of the
switches, and the processor/network interface. In this sec-
tion we describe the physical assumptions on which our
simulator are based.

The topology simulated is a k-ary n-cube of rings. The
dimensionality of the network is an input parameter, as is
the number of processing elements. Each network switch
acts as an agent, and can transfer a packet from any dimen-
sion to any other. We assume that packets are routed in
dimension-order. Requests are routed in order of increas-
ing dimension, while responses are routed in decreasing
dimension-order.



® Yin

Requast

Processor

-

P -
Response v
Xout Xin

@I Xmux | i Xbypass Py

! | ®
J

e

|

{1 -

Y
| Ybypass |

T~

|
!
|
:

[
{TH

—{{IT =

-
.

'
P
{ Ymux |
i

|

]

e Yout

Figure 2. Datapath of simulated network switch

Figure 2 depicts a high-level view of the proposed net-
work switch. The switch shown is for a two-dimensional
network only, but an extrapolation to higher dimensions is
trivial. Only the datapath and queues are shown; the con-
trol is not.

The processor interface has one send queue and two
receive queues for each dimension. The receive queues are
separated into request and response queues, which are
treated with different priorities: responses are processed
before requests, which helps to prevent deadlocking the
network. There are also two additional queues, which
function as agent queues connecting the X- and Y-rings.
The agent queue organization requires a queue from each

ring onto every other ring, which is n2~n queues for an n-
dimensional network. Including the send and receive

queues, this switch organization requires nZ+2n total
queues. For higher dimensions this is clearly prohibitively
expensive, but the control is much simpler than for merg-
ing multiple physical queues. Such a merger would require
allowing multiple high-speed channels to simultaneously
write variable-sized packets into a single queue.

A previous study [12] assumed that packets sent from a
queue were placed into an active buffer to await the return-
ing echo. The queues assumed here hold a sent packet in
the queue while its transmission is pending. This makes
the queue into more of an associative memory than a FIFO
structure, but has the advantage of permitting more pack-
ets to be queued (should the area taken by the active buffer
be reclaimed as queue slots).

When a processor attempts to send a packet, it is placed
in the first dimension (lowest or highest, depending on the
packet type) in which the packet has any distance to travel.
If the send queue for that dimension is full, the processor
will block until a slot becomes available. Such a slot is
freed only upon the return of an accept echo for a packet
saved in that particular queue. Other queues that are full

(agent and receive queues) merely generate reject echoes
and subsequent retransmissions.

The SCI standard defines several features that have nor
been accounted for in the simulator. The most significant
is the flow control mechanism, which consists of go bits.
A node accumulates go bits during its recovery phase to
throttle other nodes, so that it is never starved for band-
width when ring utilization is high. For a detailed descrip-
tion of the flow control algorithm the reader is referred to
the standard document [14]. The elasticity buffer, which
nodes use to maintain synchronism with adjacent channels
(clocks are synchronized with a phase-lock loop), is also
not represented in the simulator.

4 Implementation of network simulation

In this section we first describe the original WWT net-
work model. We then discuss the changes required to
WWT for the centralized SCI simulator, and finally we
present the actual simulation algorithm.

4.1 Original WWT network implementation

WWT uses a conservative, discrete-event algorithm to
simulate execution and the memory hierarchy. The
assumed target communication paradigm is hardware-
based, cache-coherent shared memory. Using the original
constant latency model, remote messages take a parame-
terized constant number of cycles to cross the network.
The length of the execution quanta is set to be the same as
the network latency, guaranteeing that a synchronization
point would occur between the virtual time a target mes-
sage was sent and the virtual time at which it needed to be
scheduled.

Communication on the CM-5 occurs with messages of
five words. WWT sends messages broken up into such
units, which consist of one header unit followed by [n/47
data units (where n is the size of the message, in words of
data). When all [n/47 + 1 units are received, the recipient
schedules the target message at virtual time T +nl, where
T is the virtual time at which the message was sent, and
nl is the constant latency across the target network. Since
the CM-5 network makes no guarantee of maximum deliv-
ery time, a global barrier is performed after each nl cycles
of target execution. This barrier continually performs sum
reductions on the number of outstanding messages until
the entire network is drained and all target messages slated
to be received in the next quantum have been scheduled.
Figure 3 illustrates this model.

4.2 Centralized network simulator

The SCI network simulator is incorporated into this
communication model as follows. The data units of a CM-



Qi Q;+1 A target message logically sent from
node A to node B at logical time tis
ode scheduled as a receipt event at logica

Node A t_ heduled [ logical

time t+ql.
Q, = i quantum
Node B t+ql § 8; = i synchronization
- L gl = quantum length
Time ” . Scheduling of message receipt

Figure 3. Original WWT message model

S message are still sent to the destination node, as
described in Section 4.1. The header unit, however, is sent
to one specific node designated as the network simulator
node. This node receives the header, and schedules an
event representing the injection of the message into the
simulated network.

At the end of a quantum, a global reduction is per-
formed to drain the network, assuring that all data units
have been received by the destination nodes and that all
headers have been received by the network simulator
node. The network simulation is then performed for the
previously completed quantum. The network simulator
identifies any target packets that will be received in the
next quantum, and forwards their headers to the original
message destinations. Another global reduction is then
performed, to assure that all such “completion headers”
have been received and the target packet receipts sched-
uled. Figure 4 illustrates both the sending of a packet in
quantum i, and the packet receipt and scheduling immedi-

ately before quantum j + 1.

Even without the actual network simulation execution,
the overall simulation speed suffers under this model, due
to the necessarily reduced quantum latency and the extra
barrier reduction in between quanta. The quantum latency
must be no greater than the difference between the virtual
times at which the message receipt time can be calculated

Q; Sit!
Net. sim. node

Sim. Header

Node A

Q; = i" quantum
Sik = k' synchronization for Q;

Simulate

and at which the message is completely received (it is set
to 24 cycles for the SCI network simulator). This is neces-
sary to preserve causality, as with the constant latency
model. If the quantum latency is too large, the network
simulator may not send the header unit to the intended
recipient before the target receipt event was to occur, caus-
ing an error. Smaller quanta can greatly inflate simulation
time, as the number of inter-quanta synchronizations per
target cycle increases [1].

4.3 Resource latencies

The physical times that symbols take to move across
network resources are listed in Table 1. DELAY is a base
factor that accounts for the speed of the hardware. The
relations shown in Table ! were arrived at by estimating
the amount of hardware needed to perform each function,
and normalizing all latencies to DELAY . In the study for
which this simulator was first used [7], DELAY was set to
be 9 cycles.

These delays, however, are measured in network
cycles. As the network is not necessarily clocked at the
same rate as the processor, a scaling factor was introduced
that adjusts network latencies to be converted to the num-
ber of instructions issued in the same amount of time. In a
previous study [7], we introduced two scaling factors. The
first assumed current technology; a network clocked at

S; Qj14

v

Time
Schedule
AN
Node B % §

yl

I

Figure 4. Message model for WWT network simulation



Path Latency

Processor to queue 2-DELAY

Queue to channel (DELAY-3)/3

Channel to channel 1

Channel to bypass buffer (DELAY+1)/2

Bypass buffer to channel (DELAY -2)/2

Agent delay 3.DELAY
Channel to queue (2-DELAY)/3
Queue to processor 2-DELAY

Table 1: Latencies through the network

250 MHz and a processor (sustaining one IPC) clocked at
200 MHz, resulting in a ratio of 1.2 instructions issued per
network cycle. The second assumed technology available
in the near future; specifically, a 250 MHz network (that
utilizes both edges of the clock for transmission) and a 500
MHz processor, sustaining 2 IPC. The future technological
assumptions result in a ratio of 2 instructions issued per
network cycle.

4.4 SCI simulation algorithm

Although all of the network simulation is performed at
one centralized node (Pyg), management of the send

queues is performed locally at each node to minimize
communication between the sending node and Png. When

a send queue for a given dimension is full, and the pro-
cessing element attempts to send another packet beginning
in that same dimension, the packet information is saved in
a special structure. The sending sequence is then put to
sleep, and is reawakened when a send queue slot becomes
available. When a buffered message is cleared due to
receipt of an accept echo, Pyg sends a
free_send_slot message to the sending node,
prompting it to check for any sleeping threads that require
the sending of a message. Conversely, receive queue
buffer management is performed at Pyg. Whenever a mes-
sage is completely consumed by the receiver, a
free_receive_slot message is sent to Pyg, causing
it to decrement the queue counter and free the associated
storage. This organization allows both sending nodes and
Pyg to avoid communication whenever checking for a full
queue, sending a one-way message only upon the freeing
of a queue slot.
Enumerated below are the event types that drive the
simulator and the actions taken therein.
¢+ New_Msg: Initializes the packet structure, and places
the packet in the send queue. If the bypass buffer is

not in recovery mode, it schedules an
Acquire_Channel event for the outgoing channel
in the appropriate dimension.

e Acquire_Channel: This event schedules an
Incoming_Message event for the input port of the
next node in the  ring, schedules a
Relingquish_Channel event for the output port
of the current node, and updates the bypass buffer
length.

*+ Relingquish_Channel: Frees the outgoing chan-
nel and checks the bypass buffer and send queue,
respectively, to find if an Acquire_Channel event
needs to be scheduled.

*+ Incoming_Message: Acts as the stripper and con-
trol specified in the SCI standard. This event deter-
mines whether to queue an arriving packet in the
bypass buffer or to schedule an Acquire_Channel
event for the outgoing link (if the bypass buffer is
empty). If the destination node for the packet’s cur-
rent dimension is the receiving node, the packet is
either discarded or placed in a queue. An accept echo
is scheduled if a slot is available in the appropriate
agent or receive queue, and a reject echo is scheduled
if that queue is full.

+ Fill_Buffer: Simulates decoding, queueing, and
transfer delays. Other events, when moving a packet
across a structure (such as an agent) schedule a
Fill_Buffer for some time in the future, at which
point the packet is actually placed in the queue. The
bypass buffer, receive and agent queues, and the
resending of a rejected packet all use this event to
trigger the appropriate action (usually an
Acquire_Channel event).

¢« Pullout: Removes a message from a queue after a
parameterized delay. This event also frees the mes-
sage structure if all related echoes have completed.

5 Experimental results

This section evaluates the necessity, utility, and cost of
using the centralized simulator instead of a less-expensive
network model. We first measure the error introduced by
WWT’s constant 100 cycle network latency and then eval-
uate a more accurate constant model. We explore three
network design parameters, and finally measure the per-
formance of WWT using the SCI network simulator
instead of a constant network latency model.

All experimental results presented in this section were
obtained by running Ocean, one of the SPLASH [13]
benchmarks, as the target application. Ocean is a hydrody-
namic simulation, which was run for a 98x98 input grid
over two simulated days. All of our experiments used the
base SCI coherence protocol with MCS locks
[9], 64-byte cache blocks, 32 processors, and asynchro-



Errors of constant latency networks running Ocean

Error (% different in virtual time)

32K 32K 32K
2d 3d 4d 2d 3d 4d 2d 3d 4d

Cache size and network dimensionality

Figure 5. Error of constant latency network

nous flushes [7]. Unless otherwise specified, simulated
networks have 4 slots per queue, and the speed of the net-
work switch is DELAY = 9 cycles.

5.1 Network effect on execution time

Figure 5 depicts the percent error of constant network
latency experiments versus the same experiments using
SCI network simulation (henceforth called ns). Two sets
of constant latency experiments were run. The first
assumed a constant latency of 100 cycles for each set of
parameters (we call this model ¢100). The second experi-
ment set, called cmean, ran ns for each set of parameters,
and then reran the simulation using the mean network
latency obtained from the ns run as the constant network
latency.

We varied both the size of each processor cache (using
8KB, 32KB, and 1MB caches) and the number of dimen-
sions in which the network was wired.

The errors were calculated using the virtual times (VTs)
of the pertinent runs. Each error was calculated as follows:

abs(VTSCI ~-VT

)
Err = T SOnst « 100% 4))
SCI

Figure 5 shows errors as high as 20% for ¢100, but
errors up to only 6% for cmean. The constant models
consistently underestimate ns, since they do not account

for contention. The exceptions for which VT _ > VTg

were the 8KB- and 32KB-cache, two dimension runs of
cmean, which had the two highest mean latencies (154

Effect of varying dimensions on performance of Ocean

2D
3D
4-D
5-D

24

mE

Target execution time (millions of cycles)

0 8 8 K 3ZK i
Is/lafly  4sfdalde Is/la/lr  ds/daldr Is/la/lr 4sialdr

Cache size and buffer slots per queue

Figure 6. Effects of topology dimension

and 133 cycles respectively). Adjusting the constant laten-
cies upward to prevent consistent underestimation of the
true execution time would be fruitless, since the range of
errors is so large.

The cmean model generates increasingly large posi-
tive errors as the number of dimensions increases. This is
counterintuitive, as contention in the network decreases
with increasing dimension. We hypothesize that this is
caused by increased interference at agent queues, generat-
ing greater numbers of message rejections. This would
create localized hot-spots in the network that degrade per-
formance at a higher proportion than their contribution to
overall contention.

The magnitude of the errors, however, is still suffi-
ciently small to warrant confidence in cmean. Even
though a preliminary run using ns needs to be performed
to obtain a rough estimate of the network latency for a
class of experiments, using cmean instead of ¢100 per-
mits much greater confidence in the simulation results.

5.2 Exploration of network parameters

The SCI network module is useful for exploring the
design space of SCI networks. Both the large-scale topol-
ogy and the individual switch parameters may be varied
and tested through simulation, using genuine parallel pro-
gram workloads.

5.2.1 Topology - dimensionality

Increasing the dimensionality of an SCI-based k-ary n-
cube network presents an interesting set of trade-offs. A



Effect of changing queue sizes for Ocean, 8K cache

0.8

0.6

044

Ratio of run-time to 10x10x10 queue slots run-time

Agent Receive All

Which queues are limited

Figure 7. Number of slots per queue

higher number of dimensions increases the total network
bandwidth, reducing overall contention. The mean path
length per message is also reduced as the number of
dimensions grows. A greater dimension-switching latency
is incurred in an SCI network than in a more traditional k-
ary n-cube network, however, due to buffering overhead
and the delays of traversing the agent.

Figure 6 depicts the performance effects of varying the
number of dimensions in the network. We selected values
of k that would maximize performance: balanced powers
of two (i.e., a 3-dimensional 32-node network would have
the dimensions 4x4x2). The execution time for Ocean is
plotied against 6 cluster bargraphs, which vary processor
cache size and buffer space in the network. The notation
“xs/ya/zr” represents x buffer slots in each send queue, y
slots per agent queue, and z slots per receive queue.

The effects of the parameters on network utilization are
straightforward: smaller cache sizes will tend to increase
the load on the network, as will fewer agent and receive
queue slots (fewer send slots, conversely, will decrease the
network utilization but will still increase the total execu-
tion time).

The results in Figure 6 show, unsurprisingly, that a 2-
dimensional network performs worse than one with higher
dimensionality, particularly when the network utilization
is higher. Contention becomes less of a problem when the
network is more lightly loaded, causing the performance
of 2-dimensional networks to approach that of higher-
dimension networks.

Three-dimensional networks perform aimost as well as

Effect of network speed on performance of Ocean

24.] i deycles
B 9cycles

M 4cycles

Target execution time (millions of cycles)

Cache size and topology dimension

Figure 8. Network switch speed

higher numbers of dimensions when the network load is
high (i.e., for the 8KB-cache experiments). For the 1IMB-
cache experiments, the three-dimensional network actu-
ally performs berter than higher dimension networks. This
is because the network traffic is sparse enough that the
higher-dimension networks do not significantly reduce
contention. They also do not greatly reduce path length
(for 32 nodes, which is a small system for a 4- or 5-dimen-
sional network). The high-dimension networks do, how-
ever, cause messages to switch rings more frequently,
incurring the latency of moving through multiple agents.
This degradation subsumes the slight performance gains
obtained by reducing contention and path length, causing
total execution time to increase.

Increasing the number of target nodes should not quali-
tatively affect these results; we expect that the optimal
point will merely shift to a higher number of dimensions
as the number of target nodes is progressively increased.

5.2.2 Queue sizes

Queues are quite expensive in terms of real-estate, par-
ticularly when holding something as large as an SCI data
message (80 bytes). Minimizing the size of the queues
without sacrificing too much system performance is an
important goal. We have therefore measured the perfor-
mance effects of constraining the network queue sizes.

Real queues would likely be designed to hold a certain
quantity of data, and would be able to buffer as many mes-
sages as could fit in that quantity. For simplicity, we
ignored this fact and assumed queues that could hold only



Slowdown effects of network simulation running Ocean

Tns/Tci00, QL =24
M Tns/Tci00, QL = 100

Slowdown

Network utilization

Figure 9. Network simulation slowdown

a certain number of packets, not a certain quantity of data.
This will make our results somewhat pessimistic.

Figure 7 shows the slowdowns associated with con-
straining the sizes of various queues in the network. The
three classes of queues are send queues, agent queues, and
receive queues (recall that a receive queue is actually two
queues, one each for requests and responses, and thus has
double the number of specified slots). We measured the
execution of Ocean (assuming a 2-D, 32 node network
with an 8K processor cache, to maximize contention) for a
range of queue sizes.

Each cluster in Figure 7 constrains one type of queue to
either 1, 2, 3, or 4 slots, and assumes 4 slots in the other
two queue types. The last cluster constrains all queue
types to 1, 2, 3, and 4 slots. The execution times of these
experiments were normalized to an execution assuming 10
slots in each type of queue, which for our workloads was
effectively infinite.

The results show virtually no benefit of implementing
more than two slots in any type of queue. Agent and
receive queues show a small benefit from having two slots
instead of one. Execution time is improved by over 15%
when the send queue has two slots rather than one. We
hypothesize that this is primarily due to responses being
blocked in the processing element, which degrades perfor-
mance faster than simply slowing the flow of requests into
the network.

5.2.3 Switching speeds
Figure 8 graphs the effects of varying the network

switch speed. (Altering the network clock in the simula-
tion is one way to accomplish this). We present the target
execution time on the y-axis, in millions of target cycles.
On the x-axis are clusters, one for each experiment, vary-
ing processor cache size and interconnect dimensionality.
The intra-cluster bars each represent a different base value
for the speed of the network switch. This value is equiva-
lent to the DELAY parameter presented in Table 1. The
three values used for DELAY are 4, 9, and 14.

The results of these experiments show that faster or
slower switches do not qualitatively affect relative execu-
tion times when cache sizes or dimensionality are altered.
The target execution times are scaled by a roughly linear
factor as DELAY is raised or lowered. The lack of severe
performance degradation due to slow switches is primarily
due to the flow control imposed by the SCI transport layer;
this prevents network occupancy from skyrocketing as the
switches become slower relative to the processors.

An interesting side-effect of faster (DELAY = 4)
switches is that the slight performance degradation at
higher dimensions disappears, as the relative overhead of
switching rings through an agent diminishes.

5.3 Simulator performance

Figure 9 quantifies the slowdowns incurred by running
the SCI network simulator. The three clusters represent a
range of network utilizations.

The dark grey bars show the slowdown of ns over the
c100 model, with the quantum latency for c100 set at
100 cycles. These slowdowns are reasonably stable across
increasing network load, and vary between 14 and 15.

The lighter grey bars also represent the slowdown of
ns versus ¢100, but with a quantum latency of 24 cycles
for ¢100. These bars thus depict the slowdowns due
solely to the increased computation for ns (a factor of
about 6). The differences between the two sets of bars
quantify the additional slowdowns due to the necessary
disparity in quanta size (since ns must be run with a quan-
tum length of 24 cycles). This difference is roughly a fac-
tor of 2.5, with or without network simulation.

6 Summary

Parallel simulation has become an extremely important
technique for evaluating future systems. The Wisconsin
Wind Tunnel is one such simulator, which enables effi-
cient simulation of large parallel machines.

Unfortunately, simulating an interconnection network
at any level of detail drastically reduces the simulation
efficiency. Ignoring the network for the sake of speed,
however, can lead to large errors and erroneous conclu-
sions.

In this paper we described an extension to WWT that



accurately simulates the Scalable Coherent Interface trans-
port layer and network. When coupled with the SCI cache-
coherence module that runs on WWT, a complete SCI sys-
tem is simulated.

We selected one of the SPLASH benchmarks—one that
generates a higher load on the network than most of the
others—and performed a series of experiments to evaluate
the trade-offs and importance of using this simulator. We
first demonstrated that the error of the original WWT net-
work model can be quite high (~20%), depending on the
target network assumptions. We then showed that using
our simulator to estimate a mean network latency (for
multiple experiments using the faster constant latency
model) can significantly reduce error without sacrificing
speed.

We also demonstrated the utility of our simulator for
evaluating network design parameters: optimal dimension-
ality and buffer space in the network switches. We found
that, for a 32-node system, three dimensions seems to offer
the best cost/performance. We showed that using 2 slots
per send, agent, and receive queue captures most of the
advantages of queueing. We also showed that varying the
speed of the network does not produce any surprising
effects (for these experiments); a decrease in switch speed
(or an increase in network cycle time) slows the target exe-
cution time proportionately.

Finally, we quantified the performance impact of using
this simulator, and showed it to be somewhat substantial.
The network simulator slows WWT down by roughly a
factor of 6, more or less independent of network load. The
necessitated reduction in quantum size more than doubles
the performance hit of the network simulation, increasing
the slowdown to approximately 15.

Although somewhat expensive, we consider this to be
an extremely useful tool that will increase our confidence
in many of our results and permit us to explore a more
sophisticated design space of SCI-based machines.

Acknowledgments

Many thanks go to David Wood, who contributed
greatly to the development of the original WWT network
simulator, Steve Reinhardt and Babak Falsafi, who pro-
vided valuable assistance during the simulator develop-
ment, and Alain Kigi, who developed the SCI cache-
coherence simulator used in these experiments. Alain and
Subbarao Palacharla provided helpful comments that
improved this paper. Finally, we wish to thank Dave James
and Don North of Apple Computer for their generous sup-
port.

References

n

(2]

{3

[4

{51

{61

(7]

(8]

9]

[10]

(1]

[12]

{13]

[14]

[15]

Douglas C. Burger and David A, Wood. Accuracy vs. Perfor-
mance in Parallel Simulation of Interconnection Networks. In Pro-
ceedings of the 9th International Parallel Processing Symposium,
April 1995.

David L. Chaiken and Anant Agarwal. Software-Extended Coher-
ent Shared Memory: Performance and Cost. In Proceedings of the
21th Annual International Symposium on Computer Architecture,
pages 314324, April 1994.

R.C. Covington, S. Madala, V. Mehta, J.R. Jump, and J.B. Sin-
clair. The Rice Parallel Processing Testbed. In Proceedings of the
1988 ACM SIGMETRICS Conference on Measurements and Mod-
eling of Computer Systems, pages 4-11, May 1988.

Helen Davis, Stephen R. Goldschmidt, and John Hennessy. Multi-
processor Simulation and Tracing Using Tango. In Proceedings of
the 1991 International Conference on Parallel Processing, pages
1199107, August 1991.

Richard M. Fujimoto. Parallel Discrete Event Simulation. Com-
munications of the ACM, 33(10):30-53, October 1990.

Ross E. Johnson and James R. Goodman. Interconnect Topologies
with Point-to-Point Rings. Technical Report 1058, Computer Sci-
ences Department, University of Wisconsin-Madison, September
1991.

Alain Kigi, Nagi Aboulenein, Douglas C. Burger, and James R.
Goodman. Techniques for Reducing the Overheads of Shared-
Memory Multiprocessing. Technical Report 1266, Computer Sci-
ences Department, University of Wisconsin-Madison, 1995.

Boris D. Lubachevsky. Efficient Distributed Event-Driven Simu-
lations of Multiple-Loop Networks. Communications of the ACM,
32(2):111-123, January 1989.

John M. Mellor-Crummey and Michael L, Scott. Algorithms for
Scalable Synchronization on Shared-Memory Multiprocessors.
ACM Transactions on Computer Systems, 9(1):21-65, February
1991.

David Nicol. Conservative Parallel Simulation of Priority Class
Queueing Networks. IEEE Transactions on Parallel and Distrib-
uted Systems, 3(3):398-412, May 1992.

Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Leb-
eck, James C. Lewis, and David A. Wood. The Wisconsin Wind
Tunnel: Virtual Prototyping of Parallel Computers. In Proceedings
of the 1993 ACM SIGMETRICS Conference on Measurements and
Modeling of Computer Systems, pages 48-60, May 1993.

Steven L. Scott, James R. Goodman, and Mary K. Vernon. Perfor-
mance of the SCI Ring. In Proceedings of the 19th Annual Inter-
national Symposium on Computer Architecture, pages 403-414,
May 1992.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta.
SPLASH: Stanford Parallel Applications for Shared Memory.
Computer Architecture News, 20(1):5-44, March 1992.

IEEE Computer Society, [EEE Standard for Scalable Coherent
Interface (SCI). IEEE Std 1596-1992, August 1993.

Jeff S. Steinman. Breathing Time Warp. In Proceedings of Paral-
lel and Distributed Simulation, pages 109-118, 1993,



