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Abstract

This paper describes Tempest, a collection of mechanisms for
communication and synchronization in parallel programs. With
these mechanisms, authors of compilers, libraries, and applica-
tion programs can exploit—across a wide range of hardware
platforms—the best of shared memory, message passing, and
hybrid combinations of the two. Because Tempest provides mech-
anisms, not policies, programmers can tailor communication to a
program’s sharing pattern and semantics, rather than restructur-

ing the program to run with the limited communication options .

offered by existing parallel machines. And since the mechanisms
are easily supported on different machines, Tempest provides a
portable interface across platforms. This paper describes the
Tempest mechanisms, briefly explains how they are used, outlines
several implementations on both custom and stock hardware, and
presents preliminary performance results that demonstrate the
benefits of this approach.

1 Introduction

Uniprocessor computers flourish, in part, because they
share a programming model suitable for programs written
in many styles and high-level languages. The common
model allows programmers to select a language appropri-
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ate for their applications and to transfer most programs
between computers without worrying about the underlying
machine architecture. Computers did not always provide
such a congenial environment. Several decades ago, every
program was crafted for a particular machine in its own,
machine-specific assembly language.

Parallel computers still languish at this stage. They do
not share a commeon programming model or support many
vendor-independent languages. To address this problem,
the Wisconsin Wind Tunnel research project developed the
Tempest interface, which provides a common parallel com-
puter programming model. Figure | summarizes this paper
by showing how Tempest provides a substrate that allows
compilers and programmers to exploit different program-
ming styles across a wide range of parallel systems.

Tempest provides the mechanisms necessary for effi-
cient communication and synchronization: active mes-
sages, bulk data transfer, virtual memory management, and
fine-grain access control. The first two are commonly-used
mechanisms for short, low-overhead messages and effi-
cient data transfer, respectively. The latter two mechanisms
allow a program to control its memory, so it can implement
a shared address space. Fine-grain access control is a novel
mechanism that associates a tag with a small block of
memory (e.g., 32—128 bytes). The system checks this tag at
each LOAD or STORE. Invalid operations—LOADs of
invalid blocks or STORES to invalid or read-only blocks—
transfer control to an application-supplied handler.
Section 2 describes Tempest in more detail.

Because Tempest provides mechanisms, not policies, it
supports many programming styles. Current parallel
machines are designed for a single programming style—
message passing or shared memory—which forces pro-
grammers to fit a program to a machine rather than allow-
ing them to choose the tools appropriate for the task at
hand. Programs written for a particular parallel machine
are rarely portable, which has limited the appeal and use of
these machines. By separating mechanism from policy,
Tempest allows a programmer to tune a program without
restructuring it. In particular, Tempest supports custom
shared-memory coherence protocols that provide an appli-
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FIGURE 1. The Tempest interface. This figure sum-
marizes the paper: Section 2 describes the Tempest
interface, our substrate for parallel programming
on a wide range of platforms. Section 3 discusses
Tempest’s support for different programming styles
(above Tempest). Section 4 describes alternative
Tempest implementations (below Tempest).

cation with both a shared address space and efficient com-
munication. Section 3 discusses how Tempest supports
different programming styles.

Tempest’s success depends on effective implementa-
tions throughout the parallel machine pyramid (Figure 2).
Uniprocessor and multiprocessor workstations and servers
form the base of this pyramid. Most programs are, and will
continue to be, developed on these inexpensive and ubiqui-
tous machines. Larger jobs with low communication
requirements may require a step up to networks of desktop
workstations (NOWSs). Networks of dedicated worksta-
tions, possibly with additional special hardware, can trade
higher cost for increased performance. Finally, at the pyra-

mid’s apex, supercomputers and massively parallel proces- *

sors (MPPs) offer the highest performance for those able to
pay for it.

Section 4 describes several Tempest implementations.
Typhoon is a proposed high-end design. It uses a network
interface chip containing the inter-processor network inter-
face, a processor to run access-fault handlers, and a reverse
translation lookaside buffer to implement fine-grain access
control. The Blizzard system implements Tempest on exist-
ing machines without additional hardware. It currently runs
on a non-shared-memory Thinking Machines CM-5 and
uses one of two techniques to implement fine-grain access
control. Blizzard-E uses virtual memory page protection
and the memory system’s ECC (error correcting code) to
detect access faults. Blizzard-S rewrites an executable pro-
gram to add tests before shared-memory LOAD and STORE
instructions. We are currently porting Blizzard to the Wis-
consin COW (a Cluster Of Workstations).

Networks of
Workstations

Workstations

FIGURE 2. The parallel machine pyramid.

Section 5 presents preliminary performance numbers,
which show that, with adequate hardware support, shared
memory implemented on Tempest is competitive with
hardware shared memory. In addition, Blizzard implemen-
tations on stock hardware offer acceptable shared-memory
performance on current machines. However, the real bene-
fits and large performance improvements come from the
custom coherence protocols made possible by Tempest.

2 Tempest Mechanisms

To form a portable parallel programming substrate,
Tempest must provide mechanisms that suffice to imple-
ment most parallel programming abstractions and that per-
mit efficient implementations across a broad range of
parallel machines.

As a common denominator, Tempest assumes a distrib-
uted memory hardware base constructed from P processing
nodes (see Figure 3) [21]. To simplify the exposition, this
paper assumes a single program multiple data (SPMD)
programming model with one processor per node and one
computation thread per processor. Each thread runs in a
private address space augmented by an optional shared
segment. Shared-memory and hybrid applications can use
Tempest mechanisms (or Tempest shared-memory librar-
ies) to manage the shared address space.

The four types of Tempest mechanism are:

Active messages are short, low-latency messages
[23]. They are useful for sending control, synchronization,
or short data messages. Upon receipt of an active message,
the system invokes the handler specified by the message
and passes two arguments: the sender’s processor number
and the message length. The handler reads the message
body from the incoming message queue.

Bulk data transfer efficiently moves large quantities
of data between nodes, much like conventional DMA. In
most systems, a single transfer is less costly than a
sequence of shorter messages, so Tempest supports both
mechanisms.



Virtual memory management allows an applica-
tion to control its virtual address space. With this mecha-
nisin, Tempest programs can support page-granularity
shared memory similar to distributed shared memory

(DSM) systems [18,1,10]. These systems use virtual mem- -

ory page protection to identify non-local data (by mapping
it out of a processor’s address space). Unfortunately, large
pages (typically, 4-8K) causes expensive false sharing
when an application places writable data for two proces-
sors on the same page.

Fine-grain access control alleviates this problem by
greatly reducing the granularity of access control. It associ-
ates a tag with each small, aligned memory block (e.g., 32—
128 bytes) and atomically checks a referenced block’s tag
at every LOAD or STORE instructions. The tags are Invalid,
Read-Only, and Read-Write. LOADs of Invalid blocks and
STORES to Invalid or Read-Only blocks invoke user-level
handlers. This mechanism enables Tempest to support
coherence at the same granularity as hardware shared-
memory systems [17].

Tempest provides mechanisms to implement program-
ming paradigms, but leaves policy to user-level code [3].
Table | summarizes the Tempest mechanisms that support
different programming paradigms. This code may reside in
unprivileged libraries, be generated by a compiler, or be
written specifically for an application. By separating policy

from mechanism, Tempest avoids the pitfalls inherent in °

system-level policies that are too general and expensive or
too specific and incomplete [24].

Active Bulk Virtual Fine-
Messages | Data Memory | Grain
Transfer | Mgmt. Access
Control
Message X X
Passing
Data Par- X X
allelism
NUMA X
Shared
Memory
Coherent X X X
Shared
Memory
Hybrid X X X X

TABLE 1. Use of Tempest mechanisms.

3 Using Tempest

Perhaps the best way to understand Tempest is to see
how it is used. With its mechanisms, coarse-grain message
passing (e.g., PVM [7]) or NUMA (no caching) shared
memory (e.g., Split-C [4]) are easily implemented.

Mote interesting are cache-coherent shared memory and
hybrid models that exploit program locality by caching
data at processors that reference them. Stache is an applica-
tion-level library that uses Tempest mechanisms to imple-
ment sequentially consistent, transparent shared memory.
A unique feature is that Stache uses a programmable frac-
tion of a node’s physically local memory to cache data
from remote processors (the “stache”). This large, fully-
associative cache reduces memory latency and message
traffic by keeping data that does not fit in the hardware
cache near the processor that accessed it.

Stache is similar to DSM systems in some respects.
Each page in the user-managed shared segment has a
“home” node. When a non-home processor first references
a page, it is not mapped and, consequently, the reference
causes a page fault that invokes a Tempest user-level han-
dler. That handler allocates a local page frame, maps the
page, and obtains the referenced location from its home.

Stache differs from DSM systems because it uses fine-
grain access control to mitigate false sharing. When a new
page is allocated, all its blocks are tagged Invalid. The pro-
tocol then obtains the referenced block from its home node.
Only this block’s tag is changed. A subsequent reference to
another block in the page causes a fine-grain access control
fault, which invokes a handler to obtain the block. Fine-
grain access control permits processors to read and write
different blocks on the same page without false sharing.

Stache, and other sequentially-consistent shared-mem-
ory protocols, send more messages than necessary for
some communication patterns. For example, Stache and
other write-invalidate protocols require four messages to
update a value in a producer and consumer relationship:
consumer request, producer response, producer invalidate,
and consumer acknowledgment. This excess communica-
tion is a consequence of “one-size fits all” coherence poli-
cies, which implement widely-applicable semantics that
can be unnecessarily general in many situations.

Tempest mechanisms enable a compiler or programmer
to retain the advantages of shared memory (a shared
address space and caching [3,14]) but communicate more
efficiently by customizing a coherence protocol to an appli-
cation’s sharing patterns and semantics. To demonstrate
these ideas, we developed custom update protocols for
three applications: NAS Appbt, Berkeley EM3D, and
SPLLASH Barnes [6]. The three protocols differ substan-
tially in how they detect sharing. Appbt’s protocol exploits
the application’s static and predictable sharing pattern to
send updates directly. Barnes’ dynamic and changeable
sharing requires updates to be forwarded through a home
node that maintains a sharing list. Finally, EM3D’s sharing
pattern is static, but unknown until run time. EM3D uses
an augmented version of Stache to record the sharing in the
first iteration and a direct update protocol for subsequent
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FIGURE 3. Base parallel machine hardware.

iterations. Section 5 presents results that demonstrate the

large gains possible from custom coherence protocols.
Custom protocols-can also help support high-level par-
allel programming languages, which offer semantically
attractive constructs that can be difficult to implement effi-
ciently on parallel machines. An example is the copy-in,
copy-out semantics that Fortran 90 provides for some data
structures and built-in functions. The C** data parallel pro-
gramming language [13] offers this semantics for general
routines and data structures. We used Tempest to assist a
compiler in efficiently supporting this language semantics.
Loosely Coherent Memory (LCM) [15] implements fine-
grain copy-on-write operations, which allows C** pro-
grams to run correctly, even when compiler cannot analyze
their sharing pattern because of pointers or function calls.

4 Implementing Tempest

To develop and demonstrate the Tempest interface, we
implemented it on several platforms with different levels of
hardware support. Typhoon is a hardware implementation
that uses a highly-integrated custom chip. Blizzard is a
software-only system that runs on an unmodified CM-5.

Our implementations assume a base architecture of P *

nodes connected by a point-to-point network (see
Figure 3). Each node is similar to a workstation, with one
or more commodity processors with caches, a MOESI
cache-coherent memory bus, memory (DRAM), and mem-
ory controller (not shown). A paraliel machine built from
these nodes connects them with a point-to-point network
that is accessed through a network interface (NI).

Typhoon implements Tempest through the network
interface chip depicted in Figure 4 [21]. Typhoon’s Net-
work Interface (NI) includes a reverse translation lookaside
buffer (RTLB) to implement fine-grain access control, a
processor to run user-level handlers, DMA logic to support
block transfers, and the network interface itself.

MBus Interface

Integer
Processor

FIGURE 4. Typhoon's Network Interface.

Typhoon logically validates access control tags on all
LOADs and STOREs—without modifications to a node’s
processor, cache, or memory controller. Consider the situa-
tion when a processor loads a block that it has not accessed
before. The reference misses in the processor’s hardware
cache(s) and appear on the memory bus. As the memory
processes the request, the NI snoops the physical address
and uses its RTLB to find the block’s tag.l If the tag is
Read-Write, the NI remains inactive and the block is
loaded into hardware cache(s), where it can be subse-
quently accessed at full speed. If the tag is Read-Only, the
NI asserts the “shared” line, so subsequent LOADs succeed
but STORES access the memory bus again for another tag
check. On STOREs to Read-Only blocks or LOADs and
STOREs of Invalid blocks, the NI delays the requesting
processor and runs a user-level handler on its processor. In
all cases, the NI follows the bus’s snooping protocol and
appears to be another processor. In some sense, the NI is
the agent for other nodes in the system that helps achieve
global coherence with only locally-coherent hardware.

Blizzard implements Tempest on a CM-5 [22]. The
CM-5 provides no support for shared memory but does fit
the machine model depicted in Figure 3.2 The CM-5s net-
work interface is mapped into a user program’s address
space and provides fast messages. The Tempest virtual
memory management mechanisms are provided by an
extended CM-5 node kernel [19].

Blizzard implements fine-grain access control through
two alternative methods. First, Blizzard-E uses a CM-5
diagnostic mode to intentionally set double-bit ECC errors
in Invalid blocks. As depicted in Figure 4, a LOAD or
STORE that misses in the CM-5’s hardware cache goes to
memory for a cache-line fill. The fill succeeds for valid
tags, but the ECC error for an [nvalid tag causes a trap,
which Blizzard-E vectors to a user-level handler. The

1. RTLB misses delay the processor while the NI loads the entry from
memory. Special mappings treat private memory as Read-Write {21].

2. Blizzard does not use the CM-5 vector units.
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Read-Only state is synthesized with page-level protection.
No ECC coverage is lost with this approach, because Bliz-
zard-E verifies that ECC errors arise from Invalid blocks,
Invalid blocks do not contain valid data, and Blizzard sets
double-bit errors on multiple doublewords in a memory
block. Blizzard-E, however, will not work on processors
that do not allow restartable exceptions on ECC errors.

To increase portability, we developed the all-software
Blizzard-S. Blizzard-S modifies executable programs
(a.out files) with a tool based on EEL [16] to add an
explicit tag check before all LOADs and STORES that could
access the shared segment. The current version uses sev-
eral optimizations to reduce the frequency of tests and
implement them in five instructions, in the best case. Proto-
col software and application executables (before EEL) are
identical for Blizzard-S and Blizzard-E.

We are currently porting Blizzard to a network of dedi-
cated workstations. The Wisconsin COW (Cluster Of

Workstations) is built from 40 Sun SPARCstation-20 .

workstations, each with two Ross HyperSparc processors.
The nodes will be interconnected with a Myricom Myrinet.
Blizzard/COW will implement fine-grain access control
three ways: with ECC (like Blizzard-E), by executable
editing (like Blizzard-S), and with custom hardware that
snoops the memory bus. Blizzard/COW presents some new
challenges, including longer network latencies, a commod-
ity operating system (Solaris 2.4), and dual processors.

5 Preliminary Performance

We have reported preliminary performance results for
these ideas in several papers. The numbers, unfortunately,
are not directly comparable, because that they come from
different systems (simulation or implementation), different
Tempest implementations, different benchmarks, and dif-
ferent protocols. Reinhardt et al. [21] used simulations on
the Wisconsin Wind Tunnel [20] to compare Typhoon
against a CC-NUMA machine modeled after the Stanford
DASH [17]. The results showed that Typhoon performs
very closely to the all-hardware implementation when both
systems ran their base coherence protocols. Typhoon per-

formed slightly worse when a program’s working set fit in
the CC-NUMA'’s 256KB hardware cache and slightly bet-
ter when it did not. However, Typhoon performed up to
35% better for EM3D when running a custom update pro-
tocol that would be difficult to implement in hardware.

Schoinas et al. [22] present early measurements for
Blizzard running on a 32-node CM-5. The results show
that Blizzard-S is a viable implementation that runs than
two times slower than Blizzard-E, in the worst case. More
recent versions of Blizzard-S closed this gap to 1.5X and
run some programs faster than Blizzard-E—when high
miss rates makes Blizzard-S’s lower miss overhead more
important that its higher lookup overhead at each access.

Finally, Falsafi et al. [6] demonstrate the enormous
potential of custom coherence protocols. They improved
the 32-processor Blizzard-E performance of NAS Appbt,
Berkeley EM3D, and SPLASH Barnes by factors of 5.7,
16.0 and 1.4—over optimized shared memory versions—
by changing the coherence protocols, as described in
Section 3. On the CM-5, the shared-memory EM3D ran as
fast as a native message-passing version.

6 Related Work

Several interfaces share Tempest’s goal of providing
portability among parallel machines. PVM [7] is a widely-
used, coarse-grain message-passing system. Berkeley’s
Active Messages [23] provides a portable interface for
fine-grain messages, but, unlike Tempest, no support for
transparent caching. DSM systems, such as Rice’s Munin
[1] and Treadmarks [10], support shared memory, but since
their coherence is limited to page granularity, they require
more complex semantic models to mitigate the adverse
effects of false sharing. Tempest’s fine-grain access control
avoids page-level false sharing.

Several other systems also support custom protocols,
including MIT Alewife [2], Rice Munin {1], and Stanford
FLASH [12]. We are not aware, however, of another sys-
tem that gives a user complete, protected control over pro-
tocols. Some Tempest protocols have predecessors. In
particular, Stache is similar to a DSM protocol extended to
cache-sized blocks and to a software implementation of the
hardware COMA protocols of the Data Diffusion Machine
[8] and Kendall Square KSR-1 [11].

Several machines share features with Tempest imple-
mentations. The MIT J-Machine shares Tempest’s goal of
providing mechanisms, not policy, but uses a custom pro-
cessor [5]. Stanford FLASH is similar in many respects to
Typhoon. FLASH, however, uses a custom memory con-
troller, rather than a snooping device, runs handlers on all
hardware caches misses, and runs protocols in privileged
mode without address translation. Blizzard’s kernel inter-
face and ECC use come from its ancestor, the Wisconsin
Wind Tunnel [20].



7 Summary

The Tempest mechanisms provide a substrate for porta-
ble and efficient parallel programs. A programmer or com-
piler writer can use these mechanisms to implement an
efficient parallel program through the time-proven process
of successive refinement. Most programmers will start with
a shared memory program that uses a pre-written transpar-
ent shared-memory library such as Stache. As the program
develops, a programmer will find bottlenecks, which can
be eliminated without restructuring the program by choos-
ing another shared-memory protocol, such as the update
protocols discussed in this paper. Of course, programmers
seeking the highest level of performance can both write
their own protocols and use message passing where appro-
priate. Tempest supports all of these approaches across a
wide range of paralle] systems.
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