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Abstract

This paper describes heuristics for partitioning a general M x N matrix into doubly-
bordered, block-diagonal form. Such heuristics are useful for decomposing large, con-
strained, optimization problems into forms that are amenable to parallel processing.
The heuristics presented are all O((M + N)?log(M + N)) and are easily implemented.
The application of such techniques for solving large linear programs is described. Ex-
tensive computational results on the effectiveness of our partitioning procedures and
their usefulness for parallel optimization are presented.

1 Introduction

This paper describes several heuristics for partitioning a. general M x N matrix into a doubly-
bordered, block-diagonal form. Such a partitioning is important in many areas of numerical
analysis where several partitioning heuristics exist for the special case of N x N symmetric
matrices [5, 9]. We use our partitioning heuristics to decompose large, constrained optimiza-
tion problems into forms amenable to parallel processing. This is done by partitioning the
large sets of constraints arising in such optimization problems into a manageable number of
independent blocks of constraints, linked together by relatively few coupling variables and
coupling constraints.

First, the doubly-bordered, block-diagonal form is described. Basic results on the corre-
spondence between an M x N matrix and its associated graph are presented. This corre-
spondence is then used to present heuristics for partitioning a matrix in terms of partitioning
the graph of the matrix. The heuristics essentially have one degree of freedom associated
with them which relates to the number of dummy nodes that are added to the associated
graph. These dummy nodes enable the resulting blocks to have uneven sizes, and perhaps
some blocks to be empty. Thus, by adding enough dummy nodes to the graph, we are able
to accommodate problems that naturally split into less than the requested number of blocks.

*This material is based on research supported by National Science Foundation Grants CCR-9157632 and
CDA-9024618, the Air Force Office of Scientific Research Grant F49620-94-1-0036 and the AT&T Foundation.
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In Section 3, we present some computational results to demonstrate the effectiveness of
our heuristics. We give three sets of results to show well our partitioning algorithms perform
as partitioning algorithms. That is, how close do they come to producing a doubly-bordered,
block-diagonal matrix with the desired number of blocks. In the first set, we show the effect of
changing the number of dummy nodes in the problem for the complete set of problems in the
NETLIB test suite. We detail the percentages of linking constraints and variables, and the
ratio of the largest block size to the average, in addition to an overall measure that indicates
how well our heuristic performs. This analysis is used to fix this percentage of dummy nodes
for the remainder of our computation. In the second set of results, we show how well our
heuristic performs by taking a problem that is naturally doubly-bordered block-diagonal and
randomly permuting its rows and columns. Our algorithm effectively reconstructs a doubly-
bordered block diagonal form. These results should be useful in determining what class of
problems is amenable to such partitioning and what the relative costs of treating the linking
variables and constraints will be, as well as how balanced the computational load for each
of the parallel processors will be.

The remainder of the paper shows one way to use the results of this algorithm in the
solution of linear programs. Our approach is to remove the linking variables by replacing
them with linking constraints and applying a dual method to these linking constraints. The
dual problem is essentially a nonsmooth optimization problem which can be solved by an
application of the bundle-level method. Using this approach, we illustrate the utility of
partitioning matrices by decomposing the large constraint set of several linear programs
from the NETLIB test suite into a reasonable number of independent constraint blocks
and a relatively small number of coupling variables and constraints. We show how the
objective function of such a linear program can be suitably modified so as to take advantage
of the partitioning. Essentially, the resulting problem may be solved in parallel on as many
processors as there are independent constraint blocks. The computational results that we
give in Section 5 measures the wtility of our partitioning algorithms in the efficient solution
of large-scale, linear programs.

We note however, that the analysis of this paper does not rely on the linearity of the
constraints. Nonlinear programs can use the same technique to exploit underlying structure
in the constraint set and enable the efficient solution of such problems using decomposition
techniques such as those found in [6, 7, 26].

2 Matrix Partitioning Algorithms

Definition 1 We shall call a matriz doubly-bordered, block-diagonal if it is of the following
form:

B, Cy
By Cy

Bx Ck

R, Ry ... Ry D

Here B; € R™*%, C; € R™*?, R, € R”™ and D € RI*P. We call each B; a block and
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note that in the matrix above there are K such blocks. We let M = S/ m; + ¢ and
N = Zf’:l n; + p be the row and column dimensions of the matrix respectively.

Definition 2 We call each row of the ¢ x N submatriz
(R, Ry ... Rx D)
a column-linking or column-coupling constraint.

In general, these rows link together or restrict the column spaces of blocks, resulting in the
column space for the entire matrix. Such a row may restrict the column space of one block
B; based on the column space of another block B;. In this event, the blocks B; and B;
are said to be linked or coupled by such a row. The reader should note that column-linking
constraints appear as rows in a doubly-bordered, block-diagonal matrix.

Definition 3 We call each column of the submatriz

Ch
Cy

Ck
D

a row-linking or row-coupling constraint.

In general, these columns link together or restrict the row spaces of blocks, resulting in the
row space for the entire matrix. Such a column may restrict the row space of one block B;
based on the row space of another block B;. In this event, the blocks B; and B; are also said
to be linked or coupled by such a column. Again, the reader should note that row-linking
constraints appear as columns in a doubly-bordered, block-diagonal matrix.

We note that p and ¢ may take the value 0, in which case either the row-linking constraints
or the column-linking constraints will be missing. If p = 0,q # O orp # 0,¢ =0, the resulting
matrix is called a singly-bordered, block-diagonal matrix. If both p and ¢ are equal to 0, then
we will simply call the matrix block-diagonal.

We will later give a procedure whereby all of the row-linking constraints can be removed
by adding some columns to various blocks and extra column-linking constraints.

An important concept in what follows is that of the associated graph of a matrix [10].

Definition 4 Given a matriz Ay, the associated graph of A, denoted by G(A) is the pair
(V, E) satisfying:

1. V=RUC, R={ri,rs...,tu}, C={c1,c2,...,cn}
2. (Ti,Cj) c K Zf?“z € R, cj € C; and Q;, j 7é 0.



@

Figure 1: The associated bipartite graph G(A)

Note that the G(A) is a bipartite graph, with (R, C) being a bipartition. That is, there
are no edges joining elements of R to R, or C to C. The set R is the set of row vertices of
G(A) and C is the set of column vertices of G(A).

For example, given the following 5 x 7 matrix

T T
T T
A= T T T
T
x T

where z denotes a non-zero entry, we have G(A) given in Figure 1.

The following definition is key to the algorithm that we use to form the doubly-bordered
block-diagonal matrix. It relates to a general graph; in our work, we use it for the associated
graph of a matrix.

Definition 5 Given a graph G = (V, E), and an integer K, a partition of G 1s a partition
of the set V of vertices of G into K subsets. The cost of such a partition is the number of
edges in E that connect vertices in different subsets of the partition of V.

Kernighan and Lin give a highly effective heuristic for partitioning graphs so as to mini-
mize the cost of the resulting partition [13]. We briefly describe their heuristics.
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2.1 Two-Way Uniform Partitions

We first consider the problem of partitioning a graph with 2n vertices into two equally sized
subsets. Heuristics for solving this problem are the building blocks for heuristics that solve
more general graph partitioning problems.

Let V be a set of 2n vertices of the graph G = (V, E). We wish to partition V" into two
sets A and B, each containing n vertices, such that the number of edges joining vertices in
A to vertices in B is minimized.

An arbitrary partition A, B of V' is chosen. Attempts are made to decrease the number
of edges joining A to B by interchanging subsets of A and B. For each a € A, define the
external cost B, as the number of edges in G joining a to vertices in B. Define an internal
cost I, as the number of edges joining a to other vertices in A. For each b € B define Fj, and
I, similarly. For every v € V define D, as the difference between external and internal costs,
that is D, = E, — I,. It can be shown that the gain from interchanging a vertex a € A with
o vertex b € B is D, + D, if there is no edge joining a and b and D, + Dy — 2 if there is an
edge joining a and b.

2.2 Optimization Heuristic
First, D, is calculated for all v € V. We define

|2 if(ab)eF
¥(a,b) = { 0 otherwise.

Second, we choose a € A, b € B such that

a1 = D, + Db - 'l/}((l, b)

is maximized. We set this a and b aside for the time being and call them a; and b; respectively.
Next, the D, are recalculated using the following formulae:

D, + Dy +(z,a1) —(z,by), e A\{a}
D, « Dy+9(y,b) —¥(y,a1), y€ B\{b}

Here, we are recalculating the differences D, as if a; and b; have been removed from the
graph. Next, we repeat the process by choosing as € A\{a;} and by € B\ {1} to maximize

g2 = Daz + -Dbg - Q/)(a% b2)

The quantity go is the additional gain that can be made by exchanging vertices as and by
in addition to a; and b;. We continue this procedure until all of the vertices in the sets A
and B have been exhausted. Each time a pair of vertices ay and by is identified, that pair is
removed from consideration in future rounds. The size of the sets being considered decreases
by one after each round, so that the procedure is performed a total of n rounds.

Finally, we choose k to maximize the sum 5 = vk g;. If S > 0 we can reduce the value
of S by interchanging ai, az, ...,k with by, ba, ..., b,. Once, this is done, we can treat the



resulting partition as the initial partition and start the heuristic again from the beginning.
If § = 0 then the current partition is a locally optimum partition.

If at each round, the difference values D, for z € A and D, for y € B are kept in sorted
order, then only a few contenders for pairs that maximize g need to be evaluated. When
this is done, the heuristic runs in time proportional to n?logn. Note that this is much more
reasonable than enumerating all of the partitions of G.

2.3 Multiway Partitions

Once the basic two-way partitioning heuristic is well understood, we can easily extend it
to partitioning a set of n = km vertices in k vertex sets in such a way that the number of
edges between distinct vertex sets is minimized. We start with an arbitrary partition of the
vertices into k equally sized subsets. The two-way partitioning heuristic is then applied to
pairs of subsets until all subsets are pairwise optimal. There are (’5) pairs of subsets that
must be considered. Note that more than one pass through the pairs of subsets may be
necessary since, when two subsets are made optimal with respect to each other by means
of interchanging vertices, this may change their optimality with respect to other subsets.
Clearly, this can be effectively implemented in parallel.

2.4 TUnequally Sized Partitions

Suppose that we wish to partition a set of vertices into k subsets, but that we do not care
whether or not each of the subsets has exactly the same number of vertices. We can then
add enough dummy vertices to the problem, so that there will be a total of km' vertices in
the problem. These dummy vertices have no edges incident on them. When the resulting
problem is solved and the dummy vertices are removed from the subsets in the resulting
partition, the resulting partition will consist of k subsets each containing between 0 and m'
of the original n vertices.

Notice, that if one of the k subsets is empty, then we have essentially partitioned the n
vertices into k — 1 subsets. This indicates that we can also introduce slack into the number of
subsets in the partitions. To generate a partition of between j and k subsets each containing
possibly unequal numbers of vertices, simply introduce enough dummy vertices so that there
is a total of k[n/j] vertices in the resulting problem. We remove the dummy vertices from
each of the subsets in the resulting locally optimal solution and then discard any subsets in
the partition that are empty.

2.5 Matrix Partitioning

We now discuss how the graph partitioning heuristics outlined above can be used to partition
a matrix into doubly-bordered block diagonal form. First, the graph of the matrix is formed
and enough dummy vertices are added to reflect the amount of slack we desire in both the
number of blocks and the uniformity of size for the blocks. The Kernighan-Lin procedure is
applied to the resulting graph and a locally optimal graph partition is produced.



We are then left with a partition of vertices. We examine the edges that join vertices in
distinet subsets of the partition. For each vertex v we count the number of edges connecting
the vertex to vertices outside of the subset in the partition containing v. Call this number
E,, the external cost of the vertex v. We apply a greedy algorithm that looks for the largest
E, and removes that vertex from the graph. The E, are then recalculated for the resulting
graph. Actually, this recalculation is easy, since we only need decrement E,, for all vertices
w coincident on an edge with the vertex v. We continue this procedure until all E, in the
remaining graph are zero. In a tie breaking procedure we favor removing rows to columns.

The column vertices removed during this procedure correspond to columns in the right-
hand border in our matrix partition. The row vertices removed during this procedure cor-
respond to rows in the lower border in our matrix partition. The subsets in the original
graph partition are now completely disconnected from each other, for all edges connecting
one subset to another have been removed. Each of these subsets forms a block in the matrix
partition. This completes the transformation to doubly-bordered block-diagonal form.

It is relatively easy to transform a doubly-bordered block-diagonal form into a singly-
bordered block-diagonal form. To accomplish this, we consider the variables corresponding

to the row-coupling constraints
Ch
Co

Ck

D
For each column j of this matrix, we introduce multiple copies of the corresponding variable,
one copy for each block C; (or D) that has at least one nonzero in column j. These multiple
copies are used to decouple the corresponding Cj’s. We then add column-linking constraints
that force these variables all to be equal. This technique is the same as one used in stochastic
programming to treat non-anticipativity (see [20]). Other techniques are described in [16].
For example,

T T x
T T T
T T T
T T
x x
gets transformed into
T T T
T T x
T T x
T T
x x
1 -1



or with a single column permutation that makes the 5th column the 3rd column

T T T
T T T
T T T
Tz T
x z
1 -1

Note that at most p x K constraints are added if C' is completely dense, many fewer is C' is
sparse.

3 Partitioning Results

In this section, we present some computational results to demonstrate the effectiveness of
the heuristics we have outlined above. We give three sets of results to show how well our
partitioning algorithms perform as partitioning algorithms. That is, how close do they come
to producing a doubly-bordered, block-diagonal matrix with the desired number of blocks.
We have run the above matrix partitioning procedure on all the sample linear programs that
are publicly available via anonymous ftp from netlib.att.com (see [8]). We have attempted
to partition each problem into 2, 4, 8, 16, 32, 64, 128, and 256 blocks.

Let m; denote the number of rows and n; the number of columns in the i block. Let
M and N denote the number of rows and columns in the original matrix. Throughout this
section we use the following measure to determine the effectiveness of our partition into K
blocks:

[ip,g = P+ qf
where p+ ¢ =1 and
m’ = max m;
1<i<K
n' ;= max n;
1<K

K K
pim =S T
K2 m* ot

8= {{zl mzZJIil 75
) MN

We note that o is equal to one if each of the blocks have an equal number of rows and
an equal number of columns and diminishes to zero as the numbers of rows and columns
become increasingly variable. The value of § simply measures the percentage of the partition
that is not part of the lower or right hand border. That means that 1 — 3 is the percentage
of the partition that is made up of blocks. Thus, if we manage to split the matrix into K
blocks of equal area, then p,q = 1. If the blocks are of unequal area, then p decreases. We
may control the extent to which linking constraints and variables are penalized by adjusting
the parameters p and ¢. Values of g near one (p near zero) will penalize linking constraints




rather heavily, while values of ¢ near zero (p near one) will tend to penalize unevenly sized
blocks. The values p = 0.1, ¢ = 0.9 were chosen to try to reflect how the partitioning
would enable parallel solution of the underlying linear program. Unequal sized blocks would
probably lead to load balancing problems, while linking constraints are usually treated by
some synchronization procedure, leading to loss of parallel efficiency. In both of these cases,
the resulting y, , becomes closer to 0. Our experience indicates that loss of parallel efficiency
is a much more critical problem than load balancing, so we penalized the number of linking
constraints rather severely.

In the first set of computational results, we show the effect of changing the number of
dummy nodes in the problem and use this analysis to fix this parameter for the remainder of
our computation. We fix the number of requested blocks at 8 and vary the number of dummy
nodes to be 0, 20, and 40 percent of the number of nodes in the original problem. The results
are given in Table 1, Table 2 and Table 3. On a large subset of the problems, the resulting
values of p are greater than 0.6. Figure 2 through Figure 5 show the original matrix, the
resulting permuted matrices and corresponding values of p for a particular problem. We
believe this shows that our heuristic performs very well.

In most of the problems adding dummy nodes does not seem to help. The number of
linking constraints is not significantly reduced by adding dummy nodes for many of the
problems. That is to say,  does not increase very much as the number of dummy nodes
is increased. In some cases, 8 actually decreases. This is because our heuristic only gives
locally optimal partitions and adding dummy nodes to a problem can make the heuristic
spend a good deal of its time shuffling dummy nodes, which can cause it to fall into a dif-
ferent (and less satisfactory) locally optimal partition. We also note that «, which measures
the variability of block sizes, seems to be quite sensitive to increases in dummy nodes. There
are cases however, where increasing the number of dummy nodes does seem to be beneficial.
A good example of this is the problem named ‘sharelb’. We present some graphical repre-
sentations of this problem in Figure 2 through Figure 5 as the number of dummy variables is
increased. Notice how there is a tradeoff between making the number of linking constraints
and variables small and keeping a fairly regular block size. In many cases, one can see exactly
where linking variables were inserted into blocks as the percent of dummy nodes is increased.

In the second set of results, we show how well our heuristic identifies hidden structure in
a problem. To do this, we consider the Patient Distribution System problem [1] which has a
natural 11 block structure (see Figure 6) and was obtained from the United States Air Force.
The problem we consider here is of size 1,386 by 3,729, with 11 blocks all approximately 125
by 340 with 90 column-coupling constraints. This structure is then hidden by randomly
permuting its rows and columns (see Figure 7). Our algorithm is then applied to this matrix
and the resulting matrix is shown in Figure 8. Note that although 16 blocks were requested,
our algorithm returned the natural 11 block structure since we gave the graph partitioning
algorithm approximately 2,500 dummy nodes. This has a p value of 0.94. The easier problem
of finding 11 blocks results also finds a similar form without any difficulties. These results
show that our algorithm effectively detects doubly-bordered block-diagonal form when it
exists. We note that for this problem, our heuristic takes 1.7 seconds of CPU time on a
Sparc 2 for the 16 block request. As we shall see in Section 5, this is a very small fraction
of the time needed for solving the underlying linear program on the parallel machine. This



Problem | % Density || 0 % dummy nodes || 20 % dummy nodes || 40 % dummy nodes

a | P p a | P p a | B p

25fv47 0.90 06110641 064 || 050|046 | 046 | 0.30|0.57| 0.55
80bau3b 0.10 046 | 0.57 | 056 || 0.39|0.58 | 0.56 | 0.28|0.58 | 0.55
adlittle 8.40 0521047 | 047 || 034|040 | 0.39 | 0.24]0.48| 045
afiro 9.80 0411047 046 || 0.29 050 | 048 |/ 0.30]0.51| 0.49

agg 3.20 044 | 0.65| 0.63 || 0.38]0.73| 0.69 | 0.28]0.55| 0.52

agg?2 2.90 0421 069! 066 || 026|055 052 | 0.29]0.69| 0.65

agg3 2.90 042 1070 | 0.67 || 0.29]0.58| 055 | 0.25|0.71| 0.66

bandm 1.80 0811065!| 067 ||043]060]| 059 | 0.36|0.57| 0.55
beaconfd 7.60 0311042 041 ||0.31]049| 047 ||0.25|043| 0.41
blend 8.40 0551056 | 056 || 0.33]0.54] 052 ||0.34]0.59]| 0.56
bnll 0.80 0641069 069 ||052]0.71] 069 || 046]0.71| 0.68

bnl2 0.20 0641078 | 076 || 0.54]0.78 | 0.75 | 0.35|0.59 | 0.57

boeingl 2.90 0.48 | 057 | 0.56 || 0.35]0.51| 0.50 |/ 0.26 0.51 | 0.48
boeing?2 6.60 0.3110.37| 0.37 | 0281042 | 041 0.29 | 0.51 | 0.48

bore3d 2.10 056|062 062 | 0.4110.60| 0.58 | 0.34|061| 0.58
brandy 4.70 0.45 | 0.50 | 0.50 | 0.4110.50| 0.49 | 0.22]043] 0.41
capri 1.90 0.49 | 0.58 | 0.57 || 0.50 | 0.61| 0.60 || 0.32]0.54| 0.51
cycle 0.40 0.66 | 0.75 | 0.74 || 0.49 | 0.68 | 0.66 || 0.44|0.66 | 0.64
czprob 0.40 0.24 | 0.49 | 0.46 || 0.22|0.42| 040 | 0.20]0.33 | 0.32
d2q06¢ 0.30 0681072 072 || 0.44 | 0.61] 059 |/ 0.32]0.56 | 0.54
d6cube 1.80 0.2110.02| 0.04 ||0.13]0.01| 002 |0.09]0.00]| 0.0
degen2 1.90 0.55 | 0.48 | 0.49 || 0.41]0.46| 046 | 0.31]0.48| 0.46
degen3 1.00 0.56 | 049 | 0.49 || 0.39]0.50| 049 || 0.25)0.46 | 0.44
dfioo1 0.10 0811058 0.60 | 056]|042]| 043 | 043|042 0.42
e226 4.40 0.47 | 0.63| 0.62 | 0.40|0.62| 0.60 | 0.29]0.56]| 0.53
etamacro 0.90 0.7110.53 | 0.55 || 0.60 | 0.50 | 0.51 0.41 1054 0.53
{Htt800 1.40 034|046 | 0.45 | 0.30|0.41| 040 | 023|047 | 0.44
finnis 0.90 0.74 | 0.66 | 0.67 | 0.42|0.61| 059 | 0.35]0.62| 0.59
fitld 56.30 0.00 | 0.00 | 0.00 || 0.00|0.00| 0.00 | 0.00]0.00| 0.00
fitlp 1.00 0.17 | 0.11| 0.12 | 0.07 | 0.00 | 0.01 0.00 | 0.00 | 0.00
fit2d 50.60 0.00 | 0.00 | 0.00 || 0.00]0.00| 0.00 | 0.00j0.00 0.00
fit2p 0.10 0.10 | 0.01 | 0.02 | 0.09 | 0.00| 0.01 0.08 1 0.00 | 0.01
forplan 27.70 0.30 | 0.83 | 0.78 | 0.26 | 0.92 | 0.85 0.20 | 0.92 | 0.84
ganges 0.30 0751 0.84 | 0.84 |/ 0.59|0.70 | 0.69 | 0.39|0.66 | 0.64

gfrd-pnc 0.50 0.72 1 0.83 | 0.82 || 0.57 | 0.81| 0.78 | 0.39|0.81| 0.77
greenbea 0.20 0741072 0.72 | 0.48 | 0.50 | 0.50 | 0.36 | 0.50 | 0.48
greenbeb 0.20 074 | 072 | 0.72 | 0.48 | 0.50 | 0.50 | 0.36 | 0.50 | 0.48

Table 1: 8 block partitions with varying percentages of dummy nodes
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Problem | % Density || 0 % dummy nodes || 20 % dummy nodes || 40 % dummy nodes

a | B p a | P 7 a | B 1

growld 2.90 0.77 1 0.65 | 0.66 | 0.47 | 0.52| 0.52 | 0.29]052| 0.5
grow22 2.00 0.54 | 0.56 | 0.56 || 0.51]0.59| 0.58 || 0.39|0.47 | 0.46

grow? 6.20 050 | 0.46 | 0.47 | 0.42|0.47| 047 | 021035| 0.33
israel 9.50 049 | 0.43 | 0.44 | 0.31]0.41| 040 | 026037 | 0.36
kh2 16.10 0271034 033 ||032]048| 046 || 0.26|0.51] 0.49
lotfi 2.30 0.59 | 0.56 | 0.56 || 0.35|0.54| 052 || 025053 0.50
maros 0.80 06210711 070 || 0.45|0.68| 0.65 || 0.38]0.68 | 0.65
nesm 0.70 0671059 | 0.60 | 042046 | 045 | 0.34]0.51 | 0.50
perold 0.70 0.74 | 0.60 | 0.61 || 0.45|0.52 | 052 | 0.37]0.52| 0.51
pilot 0.80 0.42 | 0.47 | 0.47 | 0.54]0.49| 0.50 | 0.25]0.49 | 047

pilot.ja 0.80 068|061 | 061 ||0.40]0.53| 052 | 0.31|0.57| 0.54
pilot.we 0.50 0.60 | 0.72 | 0.71 || 0.40 | 0.62 | 0.60 || 0.27 | 0.59 | 0.56
pilot4 1.30 0.74 | 0.61 | 0.62 || 0.48 | 0.57 | 0.56 || 0.43|0.63| 0.61
pilot87 0.70 049 | 0.48 | 0.48 | 0.39 | 044 | 044 | 0.36|0.48 | 0.47
pilotnov 0.60 0611062 062 || 044|058 | 057 |0.38]0.62| 0.60

recipe 4.50 0711079 | 0.78 || 0.48 |0.73 | 0.70 | 0.31]0.66 | 0.62
sc105 2.60 065075 | 0.74 || 0.58 |0.77 | 0.75 | 0.43]0.68| 0.66
sc205 1.30 08510821 0.82 || 0.57]0.84| 081 ||046)0.79| 0.76
scdla 5.50 0.58 | 0.65| 0.64 || 0.53|0.70 | 0.68 | 0.50|0.65| 0.63
sc50b 5.10 0.46 | 0.61| 0.60 || 0.43]0.66| 064 | 0.35]0.68) 0.65
scagr2o 0.90 0791 0.84 | 0.84 || 0.66|0.73| 0.72 | 0.41]0.73 | 0.70
scagr’ 3.00 0.66 1 0.70 | 0.70 || 0.61|0.63| 063 | 0.39]0.69| 0.66
scfxm1 1.70 0.6310.70 | 0.69 || 0.47 |0.62| 061 | 0.36]0.70 | 0.67

scfxm?2 0.90 0721082 0.81 ||054|075] 0.73 |/ 0.39]0.70 | 0.67
scfxm3 0.60 0831086 0.86 || 0.48|0.74| 0.72 || 0.46|0.76 | 0.73
scorpion 1.20 0.85 | 0.86 | 0.86 || 0.58 |0.80 | 0.77 || 0.49|0.78 | 0.75

scrsd 0.70 0511080 0.77 |0.32]0.78 | 0.73 10.25]0.79| 0.73
scsdl 5.30 0.00 | 0.00 | 0.00 || 0.130.10| 0.11 0.00 | 0.00 | 0.00
scsd6 2.80 0.17 1 0.16 | 0.16 || 0.21 |0.08 | 0.09 | 0.10|0.16 | 0.15
scsd8 1.00 078 1 071 | 0.72 || 0.45 | 0.58 | 0.57 || 0.40 | 0.45 | 0.45
sctapl 1.40 0840711 0.72 || 0.61]0.76 | 0.74 | 0.37|0.65 | 0.62
sctap?2 0.40 0.88]0.80| 0.81 || 061|078} 076 | 0.39|0.67| 0.64
sctap3 0.30 0891082 0.83 |0.63|0.78| 0.77 | 043|081 | 0.77
seba, 0.90 0.17 | 0.20 | 0.20 | 0.20|0.32 | 0.31 0.14 | 0.35 | 0.33

sharelb 4.50 0.46 | 0.65 | 0.63 || 0.340.71| 068 10.36]0.76 | 0.72
share2b 9.50 071 10711 0.71 ||0.64|0.77 | 0.76 || 0.28]0.55 | 0.52

Table 2: 8 block partitions with varying percentages of dummy nodes (continued)
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Problem | % Density || 0 % dummy nodes || 20 % dummy nodes || 40 % dummy nodes

a | p p a | P p a | p p
shell 0.50 0541059 059 || 0.43(0.60] 058 | 0.30|0.56| 0.53
ship04l 1.10 0311016] 017 ||0.20(0.11| 012 | 0.18]0.13| 013
ship04s 1.10 0321041 040 || 028|041 | 040 | 0.35]0.40 | 0.40
ship08l 0.60 0981097 | 097 ||0.30]013| 015 | 0.41]0.11| 0.14
ship08s 0.60 0531082 079 || 048|056 | 056 | 0.33]0.59| 0.56
ship12l 0.40 0611064 | 064 ||046]029] 031 |031]029| 029
ship12s 0.40 067|074 | 073 || 0.34]0.64| 061 | 0.36|068 | 0.65
sierra 0.40 0711084 ] 083 ||0.51]0.72| 0.70 | 0.44|083| 0.79
stair 2.30 062 1060| 061 ||044|056| 055 || 049|065 0.63

standata 0.80 0381071 ] 0.68 || 0.22]0.70 | 0.65 | 0.17|0.70| 0.64
standgub 0.70 0301 071] 067 ||0.26|067| 063 |0.17]0.72| 0.67
standmps 0.70 0.36 1065 | 0.63 || 029|055 053 | 021]056| 0.52
stocforl 3.60 0471054 053 || 040|051 ] 050 | 0.29]0.51| 049
stocfor2 0.20 0841090 | 0.89 ||0.56(0.75] 0.73 | 0.37]0.75| 0.71
tuff 2.60 0.34 1037 ] 036 || 024]0.37| 035 |0.19]0.39| 037
vtp.base 2.30 058 1058 ] 0.58 ||0.35]0.60| 058 | 0.27|064| 0.60
woodlp 11.00 0.1210.01 | 0.02 |0.10|0.01 | 0.02 | 0.08]0.01| 0.02
woodw 0.40 0.27 1 0.17 ] 0.18 | 0.20]0.02| 0.04 | 0.19]0.11] 0.12

Table 3: 8 block partitions with varying percentages of dummy nodes (continued)

Figure 2: Sharelb — Original Structure
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solution time is typical for most of the problems that we have encountered. There are a few
problems which take longer (the worst is 25 seconds).

For the remainder of the results in this section, we fix the percentage of dummy variables
at 20 percent. The p values for different numbers of blocks for various of the problems from
the NETLIB collection are given in Table 4, Table 5 and Table 6. Note that in all cases, the
p value generally decreases as the number of blocks increase as would be expected. There
can be exceptions to this rule, however, since our heuristic may not always give a globally
optimal solution to the partitioning problem. Certainly different solution techniques for
linear and nonlinear programs will require measures other than p to find what is the best
partitioning. The greedy technique for partitioning can easily be modified to generate other
partitionings if this is necessary (for example, if linking variables are less costly than linking
constraints the tiebreaking could favor variables over constraints, etc).

Figure 9 through Figure 17 gives plots of how the resulting partitioned matrix appears
for 20% of the variables as dummy for the problem ‘stocfor2’. Note how effective the method
appears to be in generating the blocks and the increase in coupling variables and constraints
for more blocks. We note that some of the problems in the NETLIB suite do not split
effectively into more than 8 or 16 blocks due to their relative density. Further, our algorithm
is much more effective on very large and sparse problems, as would be expected.

4 Bundle-Level Decomposition

The remainder of this paper is concerned with the utility of the aforementioned partitioning
algorithm. We apply the matrix partitioning scheme to linear programming problems arising
in the NETLIB collection [8] to form a singly-bordered block-diagonal linear program (see
Section 2). We then apply a variant of the bundle method to an appropriately formed dual
problem and implement the resulting algorithm on the Thinking Machines CM-5 to obtain
an efficient parallel method for general linear programming problems. A detailed description
of the form of the dual problem (due to Robinson [22, 23]) and the bundle method that we
use for its solution (proposed in [14]) is the subject of the remainder of this section. Other
related work on bundle methods can be found in [15, 27, 17, 2]. The final section of the
paper gives some numerical results for our implementation.
After partitioning, the linear programming problem that we solve has the form
K
min cl z;
e=(%1,TK)  oq

subject to  Bjz; = b;, T; € X;
K
Z Rlil,z =T.
i=1

Note that simple bound constraints on the variables have been represented as z; € X;. There
are several known techniques for solving problems of this form in parallel [4, 17, 28, 11, 12].
We now describe the one that we shall use in this paper. For notational simplicity, we let

filzi) = {

CTCCZ' if Byx; = b;, x; € X;

i

+o0 otherwise,
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Problem Number of Blocks Requested
2 4 8 16 | 32 | 64 | 128 | 256
95fv47 | 0.69 | 0.62 | 0.46 | 0.52 | 0.49 | 0.41 | 0.32 | 0.19
f0baulb | 0.73 1 0.58 | 0.56 | 0.55 | 0.52 | 0.49 | 0.40 | 0.38
adlittle | 0.74 | 0.46 | 0.39 | 0.37 | 0.27 | 0.14 | 0.08 | 0.02
afiro 0.88 | 0.66 | 0.48 | 0.44 | 0.28 | 0.14 | 0.00 | 0.00
agg 0.85 | 0.79 | 0.69 | 0.47 | 0.29 | 0.20 | 0.20 | 0.19
agg?2 0.83 | 0.65 | 0.52 | 0.56 | 0.43 | 0.39 | 0.35 | 0.33
agg3 0.81 1 0.69 | 0.55 | 0.52 | 0.44 | 0.38 | 0.35 | 0.33
bandm | 0.76 | 0.64 | 0.59 | 0.55 | 0.48 | 0.36 | 0.28 | 0.28
beaconfd | 0.71 | 0.48 | 0.47 | 0.45 | 0.43 | 0.43 | 0.37 | 0.27
blend 0.63 | 0.631]0.52|0.39|0.24 | 0.15 | 0.00 | 0.00
bnll 0.84 | 0.75 | 0.69 | 0.62 | 0.58 | 0.52 | 0.48 | 0.37
bnl2 0.84 1 0.80 | 0.75 | 0.68 | 0.63 | 0.58 | 0.56 | 0.50
boeingl | 0.84 | 0.53 | 0.50 | 0.48 | 0.45 | 0.41 0.32 | 0.25
boeing2 | 0.68 | 0.55 | 0.41 | 0.36 | 0.34 | 0.26 0.18 | 0.17
boredd | 0.76 | 0.66 | 0.58 | 0.55 | 0.46 | 0.44 | 0.37 | 0.34
brandy | 0.69 | 0.57 | 0.49 | 0.42 | 0.36 | 0.34 0.29 | 0.27
capri 0.8110.63 | 0.60 | 0.51 | 0.43]0.35|0.27 | 0.17
cycle 0.78 1 0.69 | 0.66 | 0.60 | 0.57 | 0.50 | 0.47 | 0.35
czprob | 0.64 | 0.43 | 0.40 | 0.34 | 0.29 | 0.30 0.31 | 0.30
d2q06¢ | 0.69 | 0.66 | 0.59 | 0.58 | 0.55 | 0.49 0.38 | 0.30
d6cube | 0.16 | 0.03 ] 0.02 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00
degen2 | 0.65| 0.56 | 0.46 | 0.41 | 0.34 0.27 1 0.19 | 0.12
degen3 | 0.71 | 0.54 | 0.49 | 0.41 | 0.31 0.27 1 0.23 | 0.18
dfool | 0.6110.47|0.43]0.38|0.34|0.32|0.28 | 0.25
e226 0.77 | 0.68 | 0.60 | 0.56 | 0.44 | 0.37 | 0.33 | 0.32
etamacro | 0.76 | 0.57 | 0.51 | 0.46 | 0.37 | 0.33 | 0.24 | 0.15
FAER00 | 0.74 | 0.48 | 0.40 | 0.30 | 0.29 | 0.25 | 0.25 | 0.24
finnis 0.84 | 0.64 | 0.59 | 0.51 | 0.49 | 0.45 | 0.41 | 0.33
fitld 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
fitlp 0.05 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00
fit2d 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
fit2p 0.07 | 0.02 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00
forplan | 0.97 | 0.89 | 0.85 | 0.69 | 0.63 0.55 | 0.43 | 0.35
ganges | 0.83 | 0.72 | 0.69 | 0.61 | 0.58 0.52 | 0.45 | 0.38
gfrd-pnc | 0.90 | 0.81 | 0.78 | 0.76 0.73 | 0.67 | 0.60 | 0.48
greenbea | 0.66 | 0.57 | 0.50 | 0.42 0.39 | 0.32 ] 0.26 | 0.18
greenbeb | 0.66 | 0.57 | 0.50 | 0.42 0.39 | 0.32 ] 0.26 | 0.18

Table 4: p Values for Partitions into Varying Numbers of Blocks
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Problem Number of Blocks Requested
2 4 8 16 | 32 | 64 | 128 | 256
growlb | 0.74 | 0.55 | 0.52 | 0.46 0.42 | 0.00 | 0.00 | 0.00
grow22 | 0.63 | 0.61 | 0.58 | 0.49 0.37 1 0.17 | 0.00 | 0.00
grow7 | 0.73]0.51 | 0.47 | 0.29 0.00 | 0.00 | 0.00 | 0.00
israel | 0.59 | 0.48 | 0.40 | 0.43 | 0.41 | 0.25 | 0.19 | 0.16
kb2 0.75 1 0.70 | 0.46 | 0.32 | 0.25 | 0.26 | 0.00 | 0.00
lotfi 0.78 |1 0.55 | 0.52 | 0.49 | 0.42 | 0.44 | 0.40 | 0.34
maros | 0.78 1 0.71 | 0.65 | 0.61 | 0.59 | 0.53 | 0.38 | 0.27
nesm | 0.61|0.50 | 0.45 | 0.40 | 0.35 | 0.32 | 0.31 | 0.26
perold | 0.77 | 0.59 | 0.52 | 0.45 0.39 | 0.26 | 0.20 | 0.15
pilot 0.74 1 0.61 | 0.50 | 0.36 | 0.23 | 0.21 | 0.15 | 0.14
pilot.ja | 0.81 | 0.62 | 0.52 | 0.46 0.39 | 0.33 | 0.29 | 0.24
pilot.we | 0.84 | 0.67 | 0.60 | 0.50 0.47 | 0.33 | 0.24 | 0.19
pilot4 | 0.80 | 0.72 | 0.56 | 0.44 0.36 { 0.32 | 0.28 | 0.15
pilot87 | 0.75 | 0.59 | 0.44 | 0.34 | 0.32 0.20 | 0.16 | 0.14
pilotnov | 0.75 | 0.62 | 0.57 | 0.52 0.46 1 0.39 1 0.33 | 0.25
recipe | 0.99 [ 0.72 | 0.70 | 0.59 | 0.36 0.20 | 0.01 | 0.00
sc105 | 0.94 | 0.83]0.75 | 0.60 | 0.44 | 0.32 | 0.24 | 0.17
5205 1 0.97 10.90]0.81|0.69 | 0.59 | 0.45 | 0.35 | 0.23
sc50a | 0.88 | 0.77 1 0.68 | 0.51 | 0.36 | 0.22 | 0.00 | 0.00
sc50b | 0.89 | 0.77 | 0.64 | 0.54 | 0.43 | 0.32 | 0.00 | 0.00
scagr25 | 0.81]0.76 | 0.72 | 0.71 | 0.63 0.58 | 0.2 | 0.46
scagr? | 0.77 | 0.70 | 0.63 | 0.56 0.50 | 0.46 | 0.41 | 0.29
sefxml | 0.8310.71]0.61|0.53|0.48 | 0.39 | 0.31 | 0.26
scfxm?2 | 0.94 | 0.85 | 0.73 | 0.61 | 0.53 | 0.47 | 0.41 | 0.33
sefxm3 | 0.82 1 0.77 | 0.72 1 0.62 | 0.60 | 0.50 | 0.43 | 0.38
scorpion | 0.87 | 0.80 | 0.77 | 0.75 | 0.73 0.69 | 0.52 | 0.36
scrs8 0.8510.75 | 0.73 | 0.65 | 0.58 | 0.47 | 0.43 | 0.40
sesdl | 0.610.18 | 0.11 | 0.07 | 0.04 | 0.00 | 0.00 | 0.00
sesd6 | 0.13 1 0.34 | 0.09 | 0.02 | 0.01 | 0.02 | 0.00 | 0.00
scsd8 | 058 | 0.71 | 0.57 | 0.28 | 0.08 | 0.03 | 0.03 | 0.00
sctapl | 0.88 | 0.79 | 0.74 | 0.60 | 0.54 0.45 | 0.37 | 0.15
sctap2 | 0.87 | 0.810.76 | 0.72 | 0.67 0.60 | 0.49 | 0.37
sctap3 | 0.88 | 0.81 | 0.77 | 0.72 | 0.67 0.61 | 0.53 | 0.46
seba 0.38 10.3210.31 1 0.30 | 0.30 | 0.28 | 0.25 | 0.21
sharelb | 0.82 | 0.74 | 0.68 | 0.55 | 0.38 | 0.13 | 0.14 | 0.09
share2b | 0.94 | 0.79 | 0.76 | 0.34 | 0.22 | 0.17 | 0.20 | 0.20
shell 0.63 1 0.60|0.58|0.51|0.45|0.43|0.40 | 0.35

Table 5: p Values for Partitions into Varying Numbers of Blocks (continued)

17



Problem Number of Blocks Requested
2 4 8 16 | 32 | 64 | 128 | 256
ship0dl [0.72 1 0.29 | 0.12 | 0.13 | 0.10 0.07 | 0.07 | 0.05
ship04s | 0.53 | 0.45 | 0.40 | 0.39 | 0.36 0.34 | 0.33 | 0.32
shipo8l | 0.35 | 0.17 | 0.15 | 0.11 0.08 | 0.07 | 0.06 | 0.05
ship08s | 0.60 | 0.61 | 0.56 | 0.52 | 0.50 0.48 | 0.45 | 0.44
ship12l | 0.46 | 0.32 | 0.31 | 0.27 0.23 | 0.22 | 0.20 | 0.19
ship12s | 0.71 | 0.66 | 0.61 | 0.60 0.58 | 0.57 | 0.53 | 0.53
sierra 0.90 | 0.84 | 0.70 | 0.63 | 0.60 | 0.61 | 0.55 | 0.41
stair 0.75 | 0.66 | 0.55 | 0.37 | 0.26 | 0.18 | 0.14 | 0.12
standata | 0.78 | 0.67 | 0.65 | 0.59 | 0.57 | 0.51 | 0.49 | 0.47
standgub | 0.82 | 0.65 | 0.63 | 0.59 | 0.58 0.55 | 0.50 | 0.49
standmps | 0.72 | 0.64 | 0.53 | 0.47 | 0.44 0.36 | 0.39 | 0.36
stocforl | 0.85 | 0.58 | 0.50 | 0.43 | 0.38 | 0.33 | 0.23 | 0.10
stocfor2 | 0.90 | 0.80 | 0.73 | 0.73 | 0.69 | 0.62 | 0.55 | 0.44
tuff 0.70 1 0.39 | 0.35 | 0.29 | 0.27 | 0.28 | 0.24 | 0.18
vtp.base | 0.82 | 0.69 | 0.58 | 0.54 0.46 | 0.42 | 0.42 | 0.31
woodlp | 0.05 | 0.03|0.02|0.02|0.01 0.01 |1 0.01 | 0.01
woodw | 0.42 | 0.14 | 0.04 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01

Table 6: u Values for Partitions into Varying Numbers of Blocks (continued)
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Figure 9: Stocfor2 — Original Structure
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Figure 12: Stocfor2 — 8 Block Partition (u=0.73)
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and we note that f; is a closed convex function, proper if the ith block is feasible. Our
problem is then rewritten as

K K
min {Z filz:) > Rimi = 7“.}
i=1 =1

z=(T1 B )

Using a standard dualization technique [25], we introduce a perturbation function

K K
i\ &g ifr— RZ:L"I =D,
Plog) = | /00 o e =
~+00 otherwise,

a Lagrangian

K
L(z,y) := ifplf{_yTp + F(z,p)} = y"r + Y {filz:) — y" Rewi},
i=1

and a dual problem

sup g(y), (1)
where
K
gly) = inf L(z,y) = y"r = 3_ 7 (Ry),
g==1
with

fi (R{'y) = sup{y" Razi — filzi)}-

Note that, for a given value of y, [ *(RTy) is easily calculated by solving the following linear

2

program, the dimension of which is the size of the corresponding block B;
max {(yTRi - cﬂ:rz : Byx; = b,z € Xi.} (2)

Under the constraint qualification

K
r € Y Ry(ridomf]),

i=1
the dual problem (1) has a solution and the dual optimal value is equal to the primal
optimal value. Thus we solve the dual problem (1), whose dimension is given by the number
of column-linking constraints ¢.
Note that ¢ is a concave function, but it is not necessarily differentiable. However,

it is possible (under the condition N, (mRY Nridomf;) # @) to determine at least one
subgradient of g using

K
dg(y) =1 — Y RiOff (Riy),
i1
where
af (RTy) = argmin{ fi(z:) — y' Riz;}
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as shown in [24, p. 223]. Thus a subgradient at y of g can be calculated by solving the K
subproblems (2). Therefore, to solve (1) we use the bundle-level algorithm from [14], which
is now discussed in more detail.

Suppose that we wish to

gggf(a?),

where f is a convex function and Q represents some simple convex constraint set. The
algorithm builds a piecewise linear convex “model” function m which underestimates f and
is given by

m(z) == max {f(&) + f'(a")(z — &)},

j=1,.2
where f'(z7) € 8f(z7) and 2 are the points the algorithm has already visited. Note that
superscripts on the x represent different vectors in IR/, whereas subscripts refer to component
vectors of . We can therefore calculate a lower and upper bound on the optimal value of f

by evaluating
f. = minimum value of model m over @,
f* = minimum function value already seen .

Associated with f* is an attaining z*. The algorithm chooses the next point at which to
evaluate the function and a subgradient by projecting z* onto a carefully chosen level set of
the model function m. The “level” L is adjusted depending on how well the algorithm is
progressing. A full description is now given.

Given 2! € @ and X € (0,1), let Aj = oo. Having z', repeat the following steps until
convergence is attained:

1. Calculate f(z?) and f'(z%) € 8f(z").
9. Evaluate f., f* and z* and let A = f* = fa
3. Let L' = Afy + (1 — A)f* and determine the new level by
I { L if A < MAL,
min{L/, L} otherwise,
where

', otherwise.

A,:{ A ifA <AL,

4. Project z* onto the level set of the model My, = {z € Qm(z) < L}, that is

¢ = m(z*|Mg).

Tt can be shown (see [14]) that this technique will generate function values arbitrarily
close to the optimal value under a simple compactness assumption on (. Bach iteration
requires the evaluation of f(z*) and f’ (z!) which can be carried out in parallel in our work
as described above. The synchronization requires the solution of a simple linear program
and projection problem, both over the same feasible set. This can be carried out very easily
using crash techniques and restarts. The key to the success of this approach is a partition

with roughly equal sized blocks and few linking constraints.
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5 Parallel Solution of Linear Programs

The algorithm for solving linear programs given in the previous section has been implemented
in Split-C [3] on the Thinking Machines CM-5 supercomputer and used to solve a variety of
the largest linear programs in the NETLIB collection [8].

Split-C [3] is a parallel extension of the C programming language primarily intended for
distributed memory multiprocessors and designed around two objectives. The first of these
objectives is to capture certain useful elements of shared memory, message passing, and data
parallel programming in a familiar context, while eliminating the primary deficiences of each
paradigm. The second is to provide efficient access to the underlying machine, which in
this work is a Thinking Machines CM-5. In our implementation, shared memory is used
to handle data associated with the synchronization linear and quadratic programs. Split-C
facilitates easy coding of the synchronization problem which obtains its data via message
passing, while allowing the data for all the subproblems to be physically distributed across
the processors. Much of this can also be carried out using CMMD [29], the message passing
library of the CM-5. However, Split-C enables the code to be written in a more readily
portable manner.

The first part of our code partitions the constraints of the problems according to the
algorithm given in Section 9. This code is somewhat parallel in nature, but this has not
been exploited in the work we present here. The output of this phase are two permutations,
one for the constraints and one for the variables, the application of which gives the constraint
matrix a doubly-bordered block-diagonal form. In determining these permutations, we treat
all the constraints as if they were equalities and do not add slack variables. The justification
of this, is that it is very likely that the slack variables would be added to the constraint
blocks that we generate anyway, and the extra preprocessing work is not justified. This
hypothesis could be tested in future work.

Once the partitioning is complete, we apply the bundle-level method to the resulting
Jinear program. For the function and gradient evaluation steps we use an implementation
of the revised simplex method written in C which incorporates the Reid basis updating
technique [21] and other computational enhancements [19]). The synchronization steps solve
the linear programs using the same code as the parallel steps, the quadratic program resulting
from the projection is solved using & method due to Miflin [18].

In Table 7 we report the results on the subset of the NETLIB problems that had very
good p values. We give problem density, the 32 block p value calculated by our algorithm, the
number of steps that the bundle-level method took to solve the problem on 32 processors and
the parallel speedup efficiency. We note that our termination criterion was strict, requiring
that two successive iterations have objective function evaluations within 1072 of each other.

Note that the speedups for all of the problems are rather good. However, 1t should be
noted that as the number of linking constraints grows, the efficiency decreases somewhat
due to the difficulty of treating such constraints. Contrary to popular belief, however, the
bundle-level method would appear to be a promising approach for solving such structured
problems. Further computational comparison is needed between the bundle-level method
and the other methods mentioned elsewhere in this paper, but this is regrettably beyond the
scope of this work.
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Problem | % Density | 32 Block u | Iterations | % Efficiency
sc205 1.30 0.59 8 87.3
scfxm3 0.60 0.60 9 91.1
sierra 0.40 0.60 11 88.9
scagr2d 0.90 0.63 10 81.4
bnl2 0.20 0.63 8 88.1
sctap2 0.40 0.67 13 83.1
sctap3 0.30 0.67 12 83.7
stocfor2 0.22 0.69 12 80.2
scorpion 1.20 0.73 5 85.5
gfrd-pnc 0.50 0.73 8 86.8

Table 7: Parallel Solution Statistics
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