Analyzing the Behavior and Performance
of Parallel Programs

Vikram S. Adve
Technical Report #1201

December 1993

T R

Analyzing the Behavior and Performance
of Parallel Programs

Vikram S. Adve

Computer Sciences Technical Report #1201
University of Wisconsin-Madison

December 1993

+ A postscript version of this technical report is available via anonymous ftp from ftp.cs.wisc.edu,

ANALYZING THE BEHAVIOR AND PERFORMANCE
OF PARALLEL PROGRAMS

by

VIKRAM SADANAND ADVE

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN-MADISON

1993

© Copyright by Vikram Sadanand Adve 1993
All Rights Reserved

Abstract

An analytical performance model for parallel programs can provide qualitative insight as well
as efficient quantitative evaluation and prediction of parallel program performance. While stochastic
models for parallel programs can represent execution time variance due to communication and
resource contention delays, a qualitative assessment of previous models shows that the stochastic
assumption makes it extremely difficult to compute synchronization costs and overall execution
times.

This thesis first re-evaluates the need for the stochastic assumption by examining the influence
of non-deterministic communication and resource contention delays on execution times in parallel
programs. An analytical model of program behavior, combined with detailed program measure-
ments, provides compelling evidence that in shared-memory programs on current systems as well as
programs with similar granularity on foreseeable future systems, such delays introduce extremely
low variance into the execution time of each process between synchronization points, even with

high communication costs and contention.

Motivated by the above results, the thesis develops a conceptually simple deterministic model
for parallel program performance prediction, using deterministic values to represent mean task
times including communication, and (if necessary) shared-resource contention computed from a
separate, stochastic model. Experiments applying the model to several shared-memory programs
demonstrate the efficiency, accuracy and ability to model programs with large and complex task
graphs. A quantitative assessment of previous stochastic models shows that they have inconsistent
or poor accuracy, as well as prohibitive computational cost in models applicable to complex task
graphs. Furthermore, in comparison with simple, insightful speedup bounds computed using param-
eters such as average parallelism, the deterministic model provides additional qualitative as well as

quantitative information, for comparable effort.

The thesis then uses example programs to demonstrate the insight and predictive power pro-

vided by the deterministic model. The model can be used to quantify and understand nuances of

il

o\

program performance, and to quickly predict the impact of system changes as well as program
design changes that affect load-balancing, such as changes in the partitioning and scheduling of
tasks. This insight and predictive power is due to the particular task-graph-based representation of
program parallelism and scheduling.

In summary, the analytical and experimental results in the thesis contribute towards under-
standing a fundamental principle of parallel program behavior, and towards evaluating, understand-

ing, and predicting parallel program performance.

iii

Acknowledgement

During the course of my Ph.D., many people, far too numerous to mention here, have given
help, advice, suggestions, support, and friendship. A few have made special contributions to my
thesis work, my learning and research experience, or in more personal ways. It is a pleasure to ack-
nowledge them here.

Mary Vernon, my thesis advisor, stimulated my interest in performance modeling and evalua-
tion, and guided my ideas through numerous discussions. Over the years, she has provided invalu-
able guidance, technically and professionally. For her support, criticism, advice and encouragement,
I am truly grateful.

My experience in analytical modeling has been enriched by my interaction with Randy Nel-
son, who gave me a deeper appreciation for the power and elegance of mathematical models. Mark
Hill helped to greatly enhance my long-standing interest in computer architecture. Anne Condon,
Mark Hill, and David Wood provided valuable suggestions and comments on my thesis research.

I would like to thank my fellow students, Amarnath Mukherjee and Rajesh Mansharamani, for
our numerous, stimulating discussions and for their technical advice and encouragement.

It is a special pleasure to thank my parents, and Sarita’s parents, for their immeasurable sup-
port in our work, and their sense of involvement in our failures and successes. I would also like to
thank my grandfather for introducing me to the crossword and to P. G. Wodehouse, unfailing outlets
from the “irksome captivity” of classes and research.

My profound gratitude goes to my father who strongly encouraged me to pursue basic
research, and whose dedication to his work will be a continuing source of inspiration to me.

Finally, my wife, Sarita, has been colleague and companion, best friend and severest critic.
Graduate school has been made so much less tedious by her companionship during many long

working hours, and life outside computer science so much more enjoyable by her company.

iv

Table of Contents

ADSIFACE oot ree st sa st e et e e ses et e bR s e e b e e s a e bR e s s SRttt s b s s s SRSueeResS ii
ACKNOWICAZEMNENE ..ottt iv
Chapter 1. INtroduction ..o 1
1.1. Motivation and Statement of Problems Studied ..coovvenninniinnei 1

1.2. Contributions of the ThESIS ccceeveeercerirminerenenrrses ettt srnsae e 4

1.3. Outling Of the TRESIS .veceveerereeereesesiseisisnessessnsnsesesssessesssssassstssssnsssssenesssssessessess 5
Chapter 2. Preliminaries and Previous Work oot 7
2.1. A Framework for Parallel Program Performance Prediction Models ccovuvenennee 9

2.2. Models Applicable to Arbitrary Task Graphs oo 10

2.3. A Model for Series-Parallel Task Graphs ..o, 12

2.4. Models Restricted to Fork-Join Programs ..ccoccieieninninminnnesiisses 13

2.5. Summary of the State Of the At .o 15

2.6. Bounds on Parallel Program Performance ... 15
Chapter 3. The Influence of Random Delays on Execution Times cccoivnnnincveennnane 17
3.1. Preliminaries and Related WOTK — oeieiiimninenennenenetnnents et snsenens 19

3.2. Renewal Model of the Effect of Random Delays ..o 20
3.2.1. Analysis of the Normalized Variance CVrip eoeriemeimneininninisiencneens 22

3.2.2. Asymptotic Analysis of the Distribution Frip = «coevevnnniinninininscenen 26

3.3. Applications of the MOdEl .ooeeercrmiimnirinirs s 27
3.3.1. Applications and Measurement Methodology ceuovueiinnnernnicsenniinicenenes 27

3.3.2. Measurements for Evaluating Execution Time Variance ...cocoveniiieeniane 29

3.3.3. Measurements of CV7 (and CVr|p) oot 36

3.3.4. Measurements of Execution Time Distribution ...cccoeivinienenienecnninnnnn 37

3.4. Summary and DiSCUSSION woeveireriincncsceienni s 40
Chapter 4. A Deterministic Model for Parallel Program Performance Prediction ... 42
4.1. Motivation for a Deterministic Model — ..oooviiimnrinieiniiinccsecniinnc e 43

4.2. The DeterminiStic MOAEl eooveerveecrtiicnniiniiinnistennsssesnsessesessssnessresssenesnesussssassss 44

4.2.1. The Basic Model Ignoring Communication and Resource Contention .. 45

4.2.2. The Complete Model Including Overhead COStS ovuruvierincrccnsinsissnnenens 47
4.2.3. Extensions to the model for multiple processes per processor o.c.ceeeee 50

4.3. Model Implementation ISSUES cecoviviniriimniemieinesmisnsisssn s 51
4.3.]. OPHIMHZALONS +evveerrerssnesseusesssessesssinsimsisassessss s st cus s s essses 51
4.3.2. Specifying the Task Scheduling Function ...cevcseneencnssinnsnissnissnsneene: 52

4.4, Deriving Model INPULS covvurieerncmiiiitiinininess st sense 52
4.4.1. Deriving Model Inputs for Evaluating an Existing Program c.ccecoveeee. 53
4.42. Deriving Model Inputs for Studying Program Design Changes ..ccoceevennes 55
Chapter 5. Comparative Evaluation of Deterministic and Stochastic Models 57
5.1. Applications and Methodology Used in the STAY wovvverneseeisccscisiminrinsinnenisnines 57
5.1.1. APPHCAONS oeireerienmeseeiseeiscnseen sttt e 57
5.1.2. Methodology For Applying the Deterministic Model .o.ouvenicsernesnsinenn. 61
5.1.3. Methodology for Evaluating and Comparing the Stochastic Models ~ 62

5.2. Evaluation of Deterministic and Stochastic Models for Fork-Join Task Graphs . 66

5.2.1. Results for MP3D coeocieeenrctctnintieniinstssss st s sssesacnsassnenssssnsssonsssns 67
5.22. Results for PSIM oot sss st ssasnsssssoes 70
523, Results for LOCUS ROULE oottt 72

vi

5.2.4. Comments on a Previous Deterministic Model — ..c.coeveeeciinnnnnnnns i
5.2.5. Comments on Previous Stochastic Bounding Techniques —c.ccovvueenneee.
5.3. BEvaluation of Deterministic Model for Programs with Complex Task-Graphs
5.3.1. Results for POIYIOOS oot
5.3.2. Results for DYNPIOg oot aasnes
5.4. Summary of the RESUIS .ovvverveeinreeieireesi s

Chapter 6. Comparison of Deterministic Model and Parametric Bounds

Chapter 7. Example Applications of the Deterministic Model coooviriininiirnens

7.1. Evaluating Possible Changes to POIYTOOIS ..ot
7.2. Evaluating a Possible Design Change to PSIM oo,
7.3. Evaluating Communication Locality and Load Balancing in Locus Route ...

T4, SUIINATY coveveeeerersecsssscsssssnssbesssssssassetasesssssssaasaaa s s s s s

Chapter 8. Further Implications of the Study of Random Delays ..o,

8.1. Implications for General Parallel Processing Models — ..ccovmuervvensieuninsennnisseinennns

8.2. Implications for PrOGIAMINETS ..ocvceeiinminmimmissssssssensetsessssinsst st

Chapter 9. Summary and Directions for Future Research oo

0.1. Contributions of the ThESIS .cccvecrirmrmnrnereneies s

9.2. Directions for Future Research ..ot

Appendix A. Proof that Fr is Asymptotically Normal .o
Appendix B. System-Level Model for the Sequent Symmetry ...

JREFEICIICES oreernciiiiriruiietrrrrenasrerrasesatrasestossaesstnaarissasttaessrsstorarraensiaresnisttasssstnessesennenensransrseone

vii

101
107

109

109
112

113

113
115

121

122

124

3.1
3.2
33
34

4.1
4.2

5.1
52
5.3
54
55

6.1
6.2

7.1
7.2
73
74
1.5
7.6
1.7
7.8
19

List of Figures

Relative error in approximations for [ip, G%l pand CVryip 24
Effect of random delays on relative variability of total delay (CVy|p) oveereiinieninnnns 26
Coefficient of variation of communication costs on a 2-level ring hierarchy ~cccceue. 35
Comparing measured execution time distributions and predicted Normal = ..o 39
The Basic Deterministic MOGEl oveemeiiieinieieenniestnesc sttt s sensssssens 49
The Complete Deterministic Model Including Overheads — o..oooveunvvviscemmsscnssinnissninnnnn: 48
Task Graph Structures of the APpHCAtIONS weevveivniiiecsenscnciss e 59
Errors in the Predicted Running Times for Program MP3D oo 68
Errors in the Predicted Running Times for Program PSIM oo 71
Histogram of Execution Times in Different Runs of Locus Route cccveriviinninenene 74
Comparison of Predicted and Measured Speedups for Locus Route ccoevivrniennne 74
Comparison of deterministic model and parametric speedup bounds ccoonriienneneenens 86
Speedup estimate based on full parallelism Profile e 90
Execution profile showing number of busy processors over time for Polyroots 93
Process timelines showing individual task executions for POIYroots —ccoeueeeisivineenes 94
Effect of reordering tasks in the final phase of program POIYIOOtS ..oveernnierscnsenennss 95
Processor sharing using P pax processes in program POIYroots .ot 97
Sources of inefficiency in PSIM with processor-splitting task scheduling .cooovvenvnees 98
Process timelines showing executions of task groups in PSIM .ccoccunininiiniinniccnnes 99
Tmprovement in speedup of PSIM without splitting processors between loops ... 100
Sources of inefficiency in PSIM without processor-splithing .c.ccveeenseinscsesisennenn: 101
Impact of dynamic, semi-static and static scheduling in Locus Route cevreennn 103

viii

7.10 TImpact of balancing work across task queues with semi-static scheduling

7.11 Predicted impact of reordering tasks with balanced semi-static scheduling

8.1 Comparing predictions from Exponential and Normal Distributions ~

ix

..............

............

................

2.1

3.1
32
3.3
34

3.5.

4.1

5.1
52
53
54

List of Tables

Definitions of Key TEIMS coeocerieieirireieinriieinnnn st sssssssssssassssssessasesess 8
Applications used for the Measurement EXperiments .oocvceereeinininnsininisine: 28
Measurements of Renewal Model Parameters: Sequent Symmetry oveiinieniennennns 30
Measurements of Renewal Model Parameters: Sequent Symmetry with Bus Load ... 33
Measurements of Renewal Model Parameters: CM-5 + Wisconsin Windtunnel — 33
Measured Total CVy and Predicted CVrp v 37
Inputs to the Deterministic MOdel oot 44
Applications Evaluated Using the Analytical Models oocouevevirimmincimmsnsnnsssnisecnccnnens 58
Accuracy of the basic deterministic model for program Polyroots ...t 80
Accuracy of deterministic model for program Polyroots with lock contention 80
Accuracy of the basic deterministic model for program DynProg e 81

Chapter 1

Introduction

Developing programs to extract the available processing power of a parallel computer remains
much more difficult than doing so on a high-performance sequential computer. New techniques to
simplify the task of parallel programming will be necessary before truly general-purpose parallel
computing becomes prevalent. Important among these will be performance evaluation techniques
that can help a programmer to understand the key qualitative aspects of parallel processing and to

obtain quantitative estimates of program performance.

To assist in effective parallel programming, performance evaluation techniques must address
three basic needs. The first is to provide an understanding of the fundamental principles of parallel
program behavior and their impact on program performance. The second is to enable the program-
mer to evaluate the performance of a particular program on a particular system and thus obtain
insights that can suggest potential improvements in the program. The third is to enable the program-
mer to predict the impact (on program performance) of design changes in the program or changes to

the underlying system or system configuration.

Performance evaluation tools in use today for evaluating parallel program performance are
based on measurement or simulation. Measurement-based performance analysis tools such as Pablo
[R{AM92], IPS-2 [MCH90] and numerous others provide the ability to evaluate the performance ofa
given program on an existing system in detail. Simulation-based tools such as the Rice Parallel Pro-
cessing Testbed [CMMB88], the Wisconsin Wind Tunnel [RHL93], and others provide the additional
flexibility of evaluating an existing program on varying system sizes and configurations. Thus,
these techniques collectively achieve at least partial success in addressing the second and third of

the three goals of parallel program performance evaluation stated above.

An underlying thesis of this dissertation is that analytical performance models can make
important new contributions towards meeting each of the above three basic goals. The ability of
analytical models to provide basic principles about various aspects of system behavior and perfor-

mance is well-established; for parallel programming, this ability can be exploited to derive

fundamental principles of program behavior and their impact on performance. (A simple and well-
known example of an analytical model fulfilling such a role is Amdahl’s Law [Amd67].) Further-
more, because analytical models have the ability to view a program and the underlying system at a
higher level of abstraction than measurement or simulation techniques, they can play an important
complementary role to measurement and simulation tools in meeting the second and third of the
goals above. The more abstract representation of a parallel program can help to provide new
insights into, as well as efficient quantitative estimates of, program performance. The abstract
representation of program and system behavior in such models also makes it possible to analyze
hypothetical programs and systems as well as combinations of these, thus providing the predictive
power required to address the third goal above. The research described in this dissertation provides

evidence of the ability of analytical models to fulfill each of these three roles.

The remainder of this chapter motivates and states the specific problems studied in this disser-
tation (Section 1.1), lists the contributions of the work (Section 1.2), and finally gives a detailed out-

line of the remainder of the dissertation (Section 1.3).

1.1. Motivation and Statement of Problems Studied

The principal factors affecting the performance of a parallel program are the computational
work that must be accomplished, the communication required between processes, contention for
shared hardware and software resources during computation and communication, and synchroniza-
tion delays experienced when one process must wait for another process to reach some point in its
execution.

An important influence on analytical models so far has been the non-deterministic nature of
some of the above factors. In particular, inter-process communication events and contention for
shared resources introduce non-deterministic delays into the execution of each process of a parallel
program. Furthermore, some programs also have non-deterministic processing requirements - that
is, the CPU requirements of the program vary significantly across different executions on a particu-
lar input. Performance models of parallel programs and systems have typically used stochastic task
execution times to represent non-determinism due to these various sources. In fact, most previous
analytical models for parallel programs are stochastic models [AIA91, DuB82, HaM92, KMER89,
Krw85, LCB92, MaS91, MaL90, ThB86].

Non-deterministic delays due to communication and resource contention increase the variabil-
ity of process execution times (besides increasing the mean execution times), which in turn affects
synchronization costs. In stochastic models, this is reflected by taking into account the variance or
distribution of execution time of the synchronizing processes in the program when computing the
expected delays at synchronization points. However, estimating average synchronization delays in
stochastic models can be extremely difficult, except for programs with very simple synchronization
behavior. In fact, reviewing the assumptions and solutions techniques of previous analytical models
in Chapter 2, we find that many previous models apply only to programs with extremely simple
synchronization structures [AIA91, Cve87, DuB82, Krw85, LCB92, MaS91, TsV90, VSS83],
while other models require complex and heuristic solution techniques to model programs with more
sophisticated structures [KME89, MaL.90, ThB86]. Furthermore, models in the latter class have to
assume exponentially distributed task execution times to permit tractable solutions. The exponential
assumption, however, implies a high variability in execution time and no data is available showing
the effect of this assumption on the accuracy of the models. (To our knowledge, none of the models

in this class has previously been tested using actual programs.)

The above observations suggest that it is important to re-evaluate the assumption of non-
deterministic task times. In particular, in many parallel programs, the CPU requirements are fixed
or almost fixed for any particular input. (Some evidence for this is provided in the thesis.) For such
programs, does the variability due to random delays justify the stochastic assumptions in these per-
formance models? More generally, how do random delays influence the variance of execution time
of synchronizing processes in parallel programs? To our knowledge, these questions have not previ-
ously been addressed. Furthermore, these are questions about the fundamental behavior of parallel
programs, and as such should yield principles about program behavior that would be useful not only
for performance evaluation, but for programmers as well. As argued above, an analytical modeling
approach could be well-suited to addressing such questions. Thus, one goal of this thesis research is
to develop and use an analytical model of program behavior to study the influence of random delays

on execution times in parallel programs.

For analytical performance techniques to be able to address the second and third of the basic
needs mentioned above, an efficient, accurate and practical analytical model for evaluating program
performance is necessary. The second major goal of this thesis research is to develop an analytical

model for parallel program performance prediction, demonstrate that it meets these criteria, and

provide evidence that it can be used to obtain insight into program performance and to predict the

performance impact of program and/or system design changes.

Although numerous analytical models for parallel program performance prediction have previ-
ously been developed as mentioned above [AIA90, Cve87, DuB82, HaM92, KMES9, Krwas,
LCB92, MaS91, Mal.90, ThB86, TsV90, VSS88], the efficiency, accuracy and practical usefulness
of these models has remained an open question. In fact, in many of these cases, no data has been
provided describing model accuracy or efficiency. Thus, there is no quantitative evidence by which
to evaluate the strengths and limitations of the various models, and by which to understand the state

of the art.

The rationale for the approach we take in developing a model is contained in our qualitative
assessment of previous stochastic models, along with the results of the study of the influence of ran-
dom delays. That is, previous stochastic models have required complex heuristics and the exponen-
tial task assumption to analyze programs with other than the simplest task graph structures, whereas
our study of the influence of random delays indicates that the exponential assumption represents
much higher variance than found in practice in many programs. In fact, a key implication of that
study is that it could be reasonable to ignore the variance of task and process execution times when
computing synchronization costs in a parallel program. (The intuition and specific results leading to
these conclusions will be described in detail in a subsequent chapter.) These results suggest that it is
worthwhile to explore the use of a deterministic model for addressing the second major goal of the
thesis, stated above. In fact, two previous deterministic models have been developed for parallel
program performance prediction, but as discussed in Chapter 2, both have been restricted to pro-
grams with very simple structures and with limited or no ability to represent synchronization costs

or task scheduling.

Motivated by the above arguments, the second half of this thesis develops and validates a
deterministic model for parallel program performance prediction, testing the accuracy, efficiency
and practicality of the model for real parallel programs on realistic input sets. As part of this study,
the model is compared with previous stochastic models, thus obtaining quantitative results on the
accuracy and efficiency of these models to provide some understanding of the state of the art. The
model is also compared with parametric speedup bounding techniques that can be used to obtain
qualitative insight into parallel program performance. Finally, the deterministic model is used to

understand the performance of existing programs, to evaluate program performance on hypothetical

larger systems, and to evaluate the performance impact of hypothetical design changes in these pro-

grams. These experiments, together with the analytical model used to study the influence of random

delays, support our underlying thesis stated at the outset, namely that analytical models can contri-

bute towards meeting each of the three basic requirements of parallel program performance evalua-

tion.

1.2. Contributions of the Thesis

The principal contributions of this thesis are as follows.

We develop an analytical model of process behavior in a parallel program in the presence of ran-
dom delays. The model, based on a simple renewal process representation, yields considerable
insight into the effect of random delays on the variance and distribution of process execution

time over any interval of execution.

Using detailed program measurements to parameterize and apply the model, we provide compel-
ling evidence that in current shared-memory programs, as well as programs with similar granu-
larity on foreseeable future systems, communication delays introduce very little variance into the
execution time of a process between successive synchronization points, even under conditions of

high communication cost and contention.

We use direct measurements of program execution time to show that, for many but not all such
programs, processing requirements also introduce very little variance into the execution time

between synchronization points.

We describe a deterministic model for parallel program performance evaluation. The determinis-
tic assumption enables a conceptually simple, computationally efficient, solution, while the care-
fully defined, abstract task-graph-based representation of program parallelism provides
significant flexibility and predictive power for studying important program design issues. The
model applies to parallel programs with arbitrary task graphs and a wide class of task scheduling
disciplines.

We show that the deterministic model is accurate, with typical errors in the running time esti-
mate of less than 10% in all cases tested, and very often only about 2-3%. The model is also
extremely efficient in practice, and can easily be used for programs with tens of thousands of

tasks. Two programs we studied cannot be evaluated in practice by any previous analytical

model we are aware of.

e We provide data to show that of previous stochastic models, the simplest models, which are res-
tricted to programs with simple (fork-join) synchronization structures, can be accurate for pro-
grams that satisfy further simplifying model assumptions concerning task times and scheduling,
but can have significant errors otherwise. For the more general models, the assumption of
exponentially distributed task times often leads to poor accuracy. The computational requirement
of such models is also extremely high, precluding analysis even of programs with fairly small
task graphs.

o Comparing the deterministic model with the parametric speedup bounds of Eager, Zahorjan and
Lazowska [EZL89], we show that for essentially the same effort as that required to calculate
parameters for the bounds, the deterministic model can be used to obtain estimates of the actual
speedup. Besides being quantitatively much more accurate, these estimates provide important
qualitative information about program performance not available from the bounds. Furthermore,
the deterministic model applies to a large class of programs not covered by the bounds, such as

programs with static task scheduling.

e We provide evidence to demonstrate the insight and predictive power available with the deter-
ministic model, showing examples where the model was used to evaluate the performance of
existing parallel programs on hypothetical larger systems, as well as to evaluate the performance
impact of program design changes that affect load-balancing in a program, such as changes in

the partitioning and scheduling of tasks.

1.3. Outline of the Thesis

This thesis is organized as follows. Chapter 2 first defines key terms and concepts as they will
be used throughout this work. The bulk of the chapter reviews previous analytical models for paral-
lel program performance prediction, describing the previous models in a common hierarchical
framework that is helpful in understanding the important features of the models as well as the prin-
cipal difficulties of the general problem. This chapter also reviews relevant details of the parametric
speedup bounding techniques.(A few previous arguments and conjectures by previous authors that

have bearing on the study of the influence of random delays are described in Chapter 3.)

Chapter 3 describes the analytical model and experimental results of our study of the influence
of random delays on synchronization costs in parallel programs. The implications of these results
for parallel program performance prediction are discussed in the following chapter. Other implica-
tions of the results are discussed and illustrated in Chapter 8.

Motivated by the above results, Chapter 4 develops a conceptually simple deterministic model
for parallel program performance prediction, and discusses issues that arise in implementing and
using the model.

Chapter 5 uses five shared-memory programs to evaluate the accuracy, efficiency and general
applicability of the deterministic model. Three of these programs are used to evaluate the efficiency
and accuracy of representative stochastic models as well, and thus also to compare the deterministic
and stochastic models.

Chapter 6 compares the deterministic model with the parametric speedup bounds of Eager,
Zahorjan and Lazowska [EZL89], in terms of the complexity of applying the two techniques for
specific programs and the qualitative and quantitative information provided by the two techniques.

Chapter 7 discusses the examples where the deterministic model was used to predict and
understand the performance of programs on existing and larger machines, and to evaluate design
trade-offs in the programs.

Chapter 8 briefly discusses other implications of the results obtained from the study of random
delays.

Finally, Chapter 9 summarizes the conclusions of the research reported herein, and explores

several related questions that could be addressed in future research.

Chapter 2

Preliminaries and Previous Work

To ensure consistent terminology as well as to provide a perspective on this work, we begin
by defining several key terms and concepts in Table 2.1. The fundamental concepts are those of task
and task graph. (Our definitions of these terms are similar to the sub-task and the graph model of
parallel software used in [EZL89].)

A set of tasks for a program on a particular input represent inherent units of computation,
because of two properties conferred by the definition: (1) A task is executed sequentially, i.e., by a
single process, in any execution of the program, and (2) A precedence constraint between a pair of
tasks can only occur at a task boundary.1 A task graph describes the parallelism structure of a com-
putation. In many programs, the task graph is the same for all executions on a particular input,
regardless of the number of processes or processors used, and also regardless of the scheduling
function used; in such programs, the task graph is a representation of the inherent parallelism struc-
ture of the program. For example, consider a parallel loop with N independent iterations, where
each iteration is always executed by exactly one process. By our definitions, each iteration forms a
task and the task graph for this loop consists of a single parallel phase with N tasks. Various
scheduling functions are possible for such a loop (e.g., static scheduling in blocked or cyclic order,
dynamic scheduling, guided self-scheduling [PoK87], etc.), but the task graph is the same in all

cases.

In some programs, however, the task graph (or some portion thereof) may necessarily depend
on the number of processes used during program execution. A common and simple example occurs
when the individual processes require significant and unequal computation for initialization, which

must be represented using one task per process in this portion of the graph. Even for such programs,

1. Note, however, that we are not assuming that the set of tasks representing a program on a par-
ticular input is unique. For any program and input, more than one possible set of tasks may meet the
definition and thus possess these properties. For example, some tasks in one such set may be broken
down into tasks with smaller granularities, yielding another set of tasks for the same program and in-

put.

Table 2.1. Definitions of Key Terms.

Task: A unit of work in a parallel program that is always executed by a single process in any execution of
the program, and such that any precedence relationship between a pair of tasks only arises at task boun-
daries.

Task Graph: A directed acyclic graph in which each vertex represents a task and each edge represents a
precedence between a pair of tasks. A task can begin execution only after all its predecessor tasks, if
any, complete execution.

Process: A logical entity that executes tasks of a program. Also the entity that is scheduled onto processors.
Sometimes called a thread.

Task Scheduling Function: For a given set of ready tasks and a given idle process, a function that specifies
which of the tasks will be executed next by that process.

Condensed Task Graph: (For a program where tasks are statically allocated to processes) A directed acy-
clic graph in which each vertex denotes a collection of tasks executed by a single process, and each
edge denotes a precedence between a pair of vertices (i.e. all the tasks in the vertex at the head of the
edge must complete before any task in the vertex at the tail can begin execution).

Fork-join Task Graph: A task graph consisting of alternating sequential and parallel phases, where each
parallel phase consists of a set of independent tasks and ends in a full barrier synchronization [TRS90].

Series-Parallel Task Graph: A task graph that can be reduced to a single vertex by repeated applications of
series reduction or parallel reduction: Series reduction combines two vertices V, and V, into a single
vertex if V, is the only parent of V, and V, is the only child of V,. Parallel reduction combines 2 ver-
tices V, and V, into a single vertex if V, and V, have exactly the same parents, as well as exactly the
same children [HaM92].

This class includes fork-join graphs but excludes, for example, the task graphs in Figures 5.1 (d,e).

the task graph provides a useful (though less elegant) representation of the parallelism structure.

For the above reasons, we believe the task graph provides an appropriate level of abstraction
for an analytical model, and we use it together with a task scheduling function as the basic input to
our performance prediction model developed in Chapter 4. It is a less detailed representation than
those typically used during measurement or simulation of parallel programs, and yet provides
sufficient information for evaluating many important program performance issues. Furthermore,
given some reasonable understanding of a program, we have found (e.g., in the experiments in

Chapters 5-7) that it is often not difficult to construct the task graph.

This choice of input representation has some limitations. First, in some programs, the task
graph or the scheduling function for a particular input depend in complex ways on specific input
values rather than in simple fashion on aggregate parameters such as total input size. In such cases,
constructing the task graph or scheduling function may require somewhat greater effort. A more

serious limitation of the task graph as a model of the parallel structure occurs when the graph G.e.,

10

the tasks executed and the dependences between them) can vary from one execution to another, for
the same input. For example, programs that use branch-and-bound algorithms can exhibit such
behavior. In such cases, the task graph only represents a specific execution. Thus, the results of a
task-graph-based model will be specific to that particular execution, and care is required in inter-

preting or generalizing the results.

A much more compact graph representation of a program is the condensed graph, specifically
a directed acyclic graph whose basic units are the work performed by individual processes between
synchronization points, rather than the individual tasks. It follows from the definition that, for any
program, the condensed task graph depends on the number of processes used to execute the pro-
gram, and on the scheduling function used to allocate tasks to processes. For programs with static
scheduling and homogeneous tasks (at least in intervals between synchronization points), the con-
densed graph can be directly constructed from the original graph. Furthermore, a model that can be
applied using the original task graph will usually also be applicable using the condensed task graph.
This is potentially useful because the condensed graph can be orders-of-magnitude smaller. For
example, in a parallel loop with N iterations (tasks) executing on P processors, if the iterations are
statically and equally divided among P processes, the corresponding condensed graph would have P
vertices, compared to N in the task graph. However, the choice of input graph can strongly affect the

accuracy of a stochastic model, as will be shown in Chapter 5.

The definitions in the table distinguish tasks, processes and processors, whereas most previous
models discussed in this paper only refer to tasks and processors. We use the same terms when
describing those models. Throughout, we use N to denote the number of tasks in a program or pro-

gram phase, and P to denote the number of processors under consideration.

2.1. A Framework for Parallel Program Performance Prediction Models

A number of previous models for parallel program performance prediction have been con-
structed as two-level hierarchical models and, in fact, all the models we discuss can be cast into the
same hierarchical framework. The higher-level component in this hierarchy represents the task-level
behavior of the program, namely task execution and termination, and process synchronization.
Assuming individual task execution times are known, this model component computes the overall
execution time of the program and perhaps other metrics as well. Most of the difficulty in develop-

ing a model usually lies in making this computation tractable, particularly in stochastic models

11

where synchronization costs can be extremely difficult to compute.

Individual task execution times are computed from the lower-level model component. This
component represents system-level effects such as communication costs, interconnection network
contention, etc., and is usually a queueing network model of the system. The solution of this model
component must account for the effect of task precedences and scheduling. In particular, the task
precedences together with the task scheduling function imply that only specific combinations of
tasks can be simultaneously in execution. In some models therefore, the queueing network is solved
for every possible distinct combination of tasks in execution, while in one model task overlap pro-
babilities derived from the solution of the higher level component are used to incorporate the effect

of task precedences. (The latter model thus requires an iterative solution.)

The high-level model component of a model usually plays the primary role in determining the
overall accuracy, efficiency and modeling power. In particular, in almost all models, the high-level
component determines the representation of task scheduling and execution, and process synchroni-
zation. Thus, it determines to which programs (i.e. which classes of task graphs) the model can be
applied and (especially in stochastic models) also how efficiently the model can be solved. Most
important, the stochastic assumptions in a model affect its accuracy chiefly by affecting the accu-
racy of synchronization costs computed in the high-level model. Of course, the accuracy of the
low-level model component also has an effect on the accuracy of the overall model. Nevertheless,
for any particular high-level model and any particular system various choices of low-level model
may be possible, depending on the specific experimental environment as well as the desired accu-
racy of the model results. Thus, the features of the specific low-level model component used in each

model are not of fundamental importance, and will only be discussed where necessary.

2.2. Models Applicable to Arbitrary Task Graphs

We begin our discussion of previous work with three models that apply to arbitrary task
graphs, and which illustrate the above hierarchical framework as well as the principal difficulties of
the general problem.

Thomasian and Bay [ThB86] developed a 2-level hierarchical model in which task residence
times are assumed to be exponentially distributed. This assumption allows the task-level behavior of
the program to be modeled as a Markov chain in which each state represents one possible combina-

tion of tasks in execution, and the state transitions correspond to task completions in the program.

12

Task scheduling can be precisely accounted for when constructing the chain. The Markov chain is
their higher level model component. By adding a transition from the end state back to the start state
in the chain, the resulting Markov chain can be solved for the steady-state probability distribution
and thus the average program completion time. The transition rates between states in the chain are
derived from the lower level model, which is a queueing network model of the shared resources in
the system. The queueing network has to be solved once for each distinct state of the high level
model. The number of states in the state space, and thus the model solution cost, grow combinatori-
ally with the maximum parallelism in the program (i.e. O(2") in the worst case). The authors show
the model to be accurate for a task graph with N = 6 tasks, compared to simulations that also

assume exponential task times.

Mohan [Moh84] earlier described a model equivalent to that of Thomasian and Bay, but used
a stochastic simulation to find the average program completion time by sampling different execu-
tion paths, instead of analytically solving for the steady-state probability distribution of the Markov

chain.

Kapelnikov, Muntz and Ercegovac [KME89] also propose a very similar hierarchical model
for evaluating programs on distributed systems. Their model assumes a computation control graph,
a program representation that is more general than a task graph in that alternative control-flow paths
can be represented in the graph. This representation includes task graphs and condensed graphs as
special cases. They assume that each node in the computation control graph has an exponentially
distributed execution time. In their high-level model, they use a Markov chain solution for specific
segments of the graph, and then use numerous complex heuristics to aggregate the individual solu-
tions for segments in series and parallel. The low-level model is a queueing network representing
system resources as well as certain synchronization constraints, and is solved once for each state of
the Markov chain for each segment. They describe one example evaluating a computation control
graph with 15 vertices and a maximum parallelism of 2, but only compare their results to simula-
tions of the graph that also assume exponential task times. Otherwise, the model accuracy and

efficiency have not been evaluated.

It is important to note that, for a particular input graph, the above three models use a common
underlying Markov chain representation of task-level behavior, principally because of the common
assumption of exponential task times. Thus, the high-level components of the three models differ

only in the solution techniques used. This equivalence implies that the exponential task assumption

13

will have very similar impact on the accuracy of all these models. Furthermore, this effect of the
exponential task assumption will extend to other models with equivalent representations as well.

We will exploit this similarity in our comparison of deterministic and stochastic models described

in Chapter 5.

2.3. A Model for Series-Parallel Task Graphs

All the above models explicitly consider the individual combinations of tasks that can be
simultaneously in execution (i.e., the detailed state space). Mak and Lundstrom develop a heuristic
and fairly complex graph reduction technique as their higher-level model component, to avoid con-
sidering the individual program states [MaL.90]. This heuristic, however, restricts their model to
programs that have series-parallel task graphs. It also requires the assumption that task residence
times are exponentially distributed.® Given the individual mean task residence times, the graph
reduction technique computes the overall program execution time by computing the expected max-
imum of series or parallel groups of tasks. In order to simply use the expected maximum of task
groups, they have to ignore task scheduling and processor contention during the graph reduction.
These are instead included in the mean task residence times computed in the lower-level model. In
the lower-level, individual mean task residence times are calculated using a closed product-form
queueing network in which each task forms a separate customer class and all shared resources
(including processors) are represented as queueing centers. To avoid having to solve this queueing
network for every possible combination of tasks in execution, the calculation of queueing delays
takes into account the average time that the executions of each pair of tasks overlap. These average
overlap times are computed as part of the higher-level graph reduction, and thus an iteration is
required between the two model components. The space and time complexity of the model solution
are O(N2) and O(N?) respectively. The authors test the accuracy of the heuristic approximations
required to solve the model by simulating hypothetical task graphs with exponential task times and

by measuring a synthetic program explicitly written with geometrically distributed task times.

2. In their paper [Mal.90], Mak and Lundstrom mention that instead of assuming exponentially
distributed task times, an Erlang distribution can be used to match the actual variance of task time if
desired. However, they only derive model equations for the exponential task case and it appears ex-
tremely difficult to extend key parts of their model to allow other distributions. Thus, we use their
model exactly as derived in their paper, with exponential task residence times.

14

Note that there is a Markov chain underlying the Mak and Lundstrom model as well, since it
also assumes exponentially distributed task times. In general, however, this Markov chain is not
equivalent to those in the previous three models because the high level model (which determines the
Markov chain) ignores the number of processors and the task scheduling, as explained above. How-
ever, if the number of processors is greater than the maximum parallelism in the input graph, this
Markov Chain would be equivalent to those in the previous three models. For example, all four
models would have equivalent underlying Markov chains when used with the condensed task graph

as input; in this case, the task scheduling is incorporated when creating the condensed graph itself.

2.4. Models Restricted to Fork-Join Programs

A number of previous models are restricted to programs with fork-join task graphs [AIA91,
Cve87, DuB82, HeT83, KrW85, TRS90, TsV90, VSS88], and are all much simpler than models
described so far. Of these, perhaps the most general is the seminal model of Kruskal and Weiss
[KrW85]. They consider a parallel program consisting of N independent parallel tasks executing on
P processors, and make two simplifying assumptions about task behavior. They assume task execu-
tion times to be i.i.d. random variables with an IFR distribution with mean | and variance c.2 They
also assume that tasks wait in a common queue and as a processor becomes available it is allocated
a fixed-size batch of K tasks (incurring a fixed overhead of k time units). This forms their high-level
model, and they do not specify a low-level model component, i.e., they do not specify how p and 6

should be estimated. Under the above assumptions, they derive the following simple estimate for

the total execution time: % B+ Ni + 6 \2K logP. This estimate is asymptotically exact as P—eo

PK

and N/P—oo, but has been shown to be fairly accurate compared to simulations for small values of
P, for a number of task time distributions.

The models of Vrsalovic et al. [VSS88], Cvetanovic [Cve87] and Tsuei and Vernon [TsV90]
are the three deterministic models mentioned in Chapter 1. The models of Vrsalovic et al and

Cvetanovic apply to iterative parallel programs in which the computational work as well as the

3. A distribution F(z) is said to be IFR, or Increasing Failure Rate, if F(0) = 0 and if, for any
1-F (t+414)

1-F ()
ing mean residual life [Wol89]. For example, the Erlang and exponential are both IFR but the hy-

perexponential distribution is not.

tgp > 0, is monotone increasing in ¢ IFR distributions are continuous and have decreas-

15

communication demand in each iteration can be equally divided among (an arbitrary number of)
available processors. These models address the performance impact of two aspects of such pro-
grams: (1) the scaling of communication and communication requirements with the number of pro-
cessors, (represented by deterministic parametric functions), and (2) synchronization costs due to
unequal (deterministic) waiting times incurred by the processors for communication resources
(memory modules and the interconnection network). The models derive lower and upper bounds on
speedup according to whether the processors need or need not synchronize at the end of each itera-

tion.

The model of Tsuei and Vernon represents a program by a parallelism profile, where the
phases of the profile are intervals of fixed parallelism derived from the program text, and the total
computation requirement in each phase is obtained by measuring a sequential execution. (In prac-
tice, this restricts their model to fork-join programs.) In each phase the mean computational require-
ment as well as the mean overhead costs (communication, forking and lock contention) are assumed
to be identical for all active processors. Thus, the model does not represent any synchronization
costs in the program. The program execution time is estimated from the parallelism profile assum-
ing processor-sharing in phases where the parallelism exceeds the number of processors used. This
portion forms the high-level component of their model, while the simple queueing networks used to
separately compute bus contention and lock contention together form the low-level model com-
ponent. The model is shown to be accurate for three fork-join programs with good load balancing

(i.e., in which ignoring synchronization delays at barriers does not introduce significant error).

We will not describe the other, less general, models for fork-join programs here, except to
note that both the models of Heidelberger and Trivedi [HeT83] and Towsley et al [TRS90] apply to
multiprogrammed parallel systems with multiple parallel jobs (each job is assumed to have the
same number of tasks in each parallel phase and each task is exponentially distributed). All other

models to which we refer in this paper only consider systems with a single executing job.

Finally, two previous models [LCB92, MaS91] are restricted to specific task graph structures.
Madala and Sinclair [MaS91] propose a model that applies to divide-and-conquer task-graphs where
tasks at each “level” in the graph have i.i.d. execution times with arbitrary variance, but with the
assumption that the number of processors exceeds the maximum parallelism, i.e., task scheduling
can be ignored. (They also derive models for fork-join programs that are very similar to the results

of Kruskal and Weiss.) Lewandowski, Condon and Bach [LCB92] propose a model applicable to

16
programs with pipelined task graphs and i.i.d. exponential task times.

2.5. Summary of the State of the Art

We can summarize what is known about the state of the art as follows. For fork-join programs,
stochastic models with simplifying assumptions (particularly, i.i.d. task times and simplified task
scheduling) have been developed that are efficient to solve
[AIA90, DuB82, HeT83, Krw85, TRS90]. To our knowledge, these models have not been tested for
accuracy using actual programs. Two efficient deterministic models [TsV90, VSS88] for restricted
types of fork-join programs have also been developed, and shown to be accurate for several pro-
grams each.

Less restrictive analytical models, namely models that apply to non-fork-join programs and
eliminate the above simplifying assumptions, have all assumed exponential task execution times for
analytical tractability [KME89, Mal.90, Moh84, ThB86]. Again, to our knowledge, none of these
models has been tested for accuracy using actual programs, and validations against hypothetical
task graphs have not tested the accuracy of the exponential task assumption. Furthermore, all these
models use complex solution techniques, including state spaces that grow exponentially with the
number of tasks in the models that are applicable to arbitrary task graphs, and no data is available

showing the solution efficiency for actual programs.

2.6. Bounds on Parallel Program Performance

In addition to the models reviewed so far, techniques have been developed for computing
bounds on the speedup of a program from a few key parameters describing the parallelism structure
of the program. Amdahl’s Law, based on the fraction of sequential work, is a well known example
[Amd67]. Another important example is the set of bounds derived by Eager, Zahorjan and
Lazowska, using primarily the average parallelism to characterize program parallelism [EZL89].
One of four equivalent definitions of the average parallelism of a program is the speedup of the pro-

gram on an unlimited number of processors.4 Given the average parallelism, A, they derived the

4. Note that in all references to “the program”, we are specifically referring to the behavior of the
program for a particular input set. Formally, this behavior is represented by a task graph. All their
results require that the task graph be fixed, independent of the number of processors or the task
scheduling algorithm used. Under these conditions, the average parallelism, defined above, is an in-

trinsic property of the task graph [EZL89].

17

following bounds which hold for any work-conserving task scheduling discipline:

PA .
e <
AT S Speedup(P) < min{P,A} 2.1

Furthermore, when these bounds hold, the geometric mean of the bounds lies within 34% of the true
speedup, and thus A provides not only bounds but also an estimate of the speedup. They also
showed that a tighter lower bound is possible for a specific task scheduling discipline, namely pro-

cessor sharing, if the maximum parallelism, Py, is also considered:

. PA .
mm{A Y —(P-—l)(A—l)/(Pmax-l)} < Speedup(P) < min{P,A} 2.2)

(We will refer to these bounds as the (A) and (A +P ,,,,JPS) bounds respectively.) Overhead costs
such as due to communication could be represented by including them in the execution times of the
tasks when computing A. It is important to note, however, that this is only possible for overhead
costs that are fixed, independent of the number of processors. In particular, overhead due to shared
resource contention cannot easily be included in this manner. Nevertheless, these bounds appear to
provide a simple source of insight into program performance, and it is interesting to compare this

insight with those available from a detailed analytical model. We do so in Chapter 6.

A second body of work also derives bounds on the execution time of a parallel program on a
specific number of processors [HaM92, YaV91]. Unlike the bounds described above, these results
are based on detailed inputs similar to those used in the stochastic models reviewed earlier, namely
a full description of the task graph along with the distribution of the individual task execution times.
Both approaches provide tight bounds for small graphs when the variance of task execution times is
low, but the tightness of the bounds can decrease with the size of the input graph, and is also sensi-
tive to the specific task graph structure. Furthermore, in contrast to previous models, both these
techniques only apply to cases where the number of processors available is at least as large as the
maximum parallelism in the input graph. Our discussion earlier in this Chapter shows that these
techniques could still be applied to programs for which a condensed task graph can be derived (i.e.,
programs that use static scheduling of tasks). Within these limitations, however, these techniques
hold the promise of providing useful bounds, especially when variance of task execution times is
low. (Available data on the accuracy and efficiency is confined to small hypothetical task graphs.)
In Chapter 5, we briefly discuss how these two bounding techniques compare with our more

detailed modeling approach.

18

Chapter 3

The Influence of Random Delays on Execution Times
in Parallel Programs

The execution of a parallel program on a multiprocessor system is influenced by a number of
non-deterministic factors. In particular, inter-process communication events and contention for
shared hardware and software resources introduce non-deterministic delays into the execution of a
process in a parallel program. (These delays are non-deterministic not only in the sense that they are
unpredictable, but also because different executions of the same program on the same input can
experience different delays, even if the computation within the program is deterministic.) We refer
to such delays as random delays. Consider an interval of execution of a process between consecu-
tive synchronization points. Any random delays experienced by the process during such an interval
makes the total length of the interval non-deterministic, potentially affecting the length of time
processes must wait for each other at the subsequent synchronization point. Thus, random delays
can affect program performance not only by increasing the mean length of the individual process
execution times, but also by making these execution times variable, which potentially leads to

higher synchronization costs during program execution.

In some programs, the CPU requirements can themselves be non-deterministic, i.e., they can
vary significantly across different executions of the program for the same input. For example, ina
program containing a heuristic search algorithm such as branch-and-bound, the specific sequence of
computation in an execution can affect the subsequent computational work. Since the sequence of
computation in a particular execution can itself be influenced by unpredictable communication and

contention delays, such programs would have non-deterministic CPU requirements.5

Performance models of parallel programs and systems have typically used stochastic task or

process execution times to represent non-determinism due to these various sources, as the

5. Non-deterministic computational behavior can also arise because of algorithms that are intrin-
sically random, e.g., based on a true random-number generator. We do not include this specialized
class when we refer to “programs with non-deterministic CPU requirements.”

19

discussion in Chapters 1 and 2 indicates. In many parallel programs, however, the CPU require-
ments are fixed or almost fixed for any particular input. (Some evidence for this is provided later in
the chapter.) For such programs, does the variability due to random delays justify the stochastic
assumptions in these performance models? More generally, how do random delays influence the

variance of execution time of synchronizing processes in parallel programs?

The answers to these questions should be useful not only for performance evaluation, but for
programmers as well. For example, in current systems, static scheduling of tasks is often con-
sidered adequate when the programmer believes that the processing requirements can be evenly
divided among the available processors. However, if communication and contention delays intro-
duce significant variance into the execution time of a process between synchronization points,
dynamic scheduling of tasks may be necessary to provide adequately balanced execution times
across the processes. Thus, an understanding of the magnitude of variability in execution times due
to random delays could be directly useful during parallel program development as well. To our

knowledge, however, the above questions have not previously been addressed.

In this chapter, we use an analytical model of program behavior parameterized with detailed
program measurements to address these questions, and we briefly explore the implications of the
results for performance evaluation as well as for parallel programming. We first describe a renewal
model of program behavior that can be used to evaluate the variance and distribution of the execu-
tion time of a process between synchronization points, in the presence of random delays (Section
3.2). The model yields a simple estimate for the variance in terms of basic and intuitive parameters.
In Section 3.3, we apply the model to different phases of several shared-memory programs, using
detailed measurements to obtain the necessary parameter values. We also present direct measure-
ments of the variance and distribution of process execution times, which include variability due to
processing requirements as well. We use these to compare the relative influence of the two sources

of non-determinism, as well as to evaluate the overall variance and distribution of execution time.

In subsequent chapters, we discuss what the results of this study imply for parallel program
performance prediction models [KME89, KrW85, Mal.90, Nel90, ThB86] as well as for more gen-
eral stochastic models of parallel systems [BaL.90, ChN91, LeV90, LeN91, LCB92, NTT88, Nel90,
NTT90, SeT91, ZaM90]. In the former case, the results motivate an approach to analytical parallel
program performance prediction that is different from most previous models for this purpose.

Developing, validating and demonstrating the usefulness of this approach form the principal subject

20

of subsequent chapters in this thesis. In the latter case, our work implies that it could be particularly
important to evaluate the effect of stochastic model assumptions on model results. In particular, our
work shows that simplifying assumptions such as that of exponential task or process execution
times do not reflect real program behavior in many programs. Thus, it is important to determine ifa
result of a parallel system performance model is strongly dependent on the exponential task
assumption, since such a result will not be applicable to many parallel programs. We discuss this in
a little more detail in Chapter 8, giving one example each of previous results that are and are not
strongly dependent on such an assumption. In that chapter, we also briefly discuss an implication of

our results for programmers of parallel systems.

3.1. Preliminaries and Related Work

We begin with a discussion of some key terms and concepts, and a review of the few related
results and comments by previous authors. The terms task, process and synchronization point were
defined in Table 2.1; all three definitions are key to the results in this chapter. A process is the logi-
cal entity that executes the tasks of a program. A process will occasionally be required to synchron-
ize with one or more other processes to enforce the precedences between tasks; such a point during
the execution of a process is called a synchronization point. In particular, this excludes accesses to
synchronization objects such as locks or monitors that are made solely for the purpose of mutual
exclusion. (Note that such accesses do not introduce precedences in the task graph.) The delays due
to such accesses will be represented as random delays due to shared resource contention, rather than
as synchronization points.

We emphasize that the focus of this work is the behavior of a parallel program (in particular,
the variance and distribution of execution times) for a single input data set, rather than across dif-
ferent input sets. This is consistent with our goal of understanding the influence of non-determinism

on synchronization costs within a parallel program.

To our knowledge, there has been no previous attempt to study the effect of random delays on
the variance or distribution of execution times. However, one previous paper focuses on estimating
the mean and variance of the processing requirements of tasks in the presence of data-dependent
effects such as conditional branch probabilities and loop frequencies [Sar89]. In that work, Sarkar
describes a framework for determining the mean and variance of task execution times using fre-

quency information from a counter-based execution profile of the program. For example, his

21

method could be applied to a particular loop to estimate the mean and variance of the execution
time of successive iterations of the loop, due to the above data-dependent effects. In contrast, the
goal of our study is to evaluate the variability in total execution time of a particular iteration or set

of iterations due to the various sources of non-determinism described above.

Finally, stochastic models that allow general distributions of task-time have been applied
using different specific distributions, including the normal distribution. [DuB82, Gre89, KrW85].
Dubois and Briggs [DuB82] as well as Greenberg [Gre89] argued that a task could be asymptoti-
cally normally distributed because it is the sum of a large number of (non-deterministic) instruction

execution times. Our proof in Appendix A is essentially a formalization of this argument.

3.2. Renewal Model of the Effect of Random Delays

In this Section, we provide a framework for analyzing the variance and distribution of execu-
tion time attributable to random delays. We first describe a model of process behavior, and the
assumptions in our analysis. In Section 3.2.1, we derive exact and approximate expressions for the
variance, and use the exact expression to validate the approximation. We also use the approximate
expression to study the variance for hypothetical values of the model parameters. In Section 3.2.2,

we use the same model to derive the asymptotic distribution of execution time.

We consider a program executing on a parallel system, and focus on an interval in the execu-
tion of one process. In Section 3.3, we will apply the model to intervals between synchronization
points, but the model and analysis in this section apply to other intervals such as a single task exe-
cution as well. Let D denote the total CPU requirement of the process in this interval, and let the
random variable T denote the length of the interval, i.e., the total time to complete this processing
requirement. In general, the execution of the process in the interval consists of a sequence of alter-
nating processing and delay sub-intervals, where each delay represents a sub-interval in which the
process busy-waits or is suspended (for example, for remote communication, access to a critical sec-
tion, or other accesses to shared resources). Denoting the number of intervals required to complete

the total processing requirement (D) by R, the lengths of successive processing sub-intervals by {P;,
i > 1} and the lengths of delay sub-intervals by {C;, i 2 1} with CZEZ:L C;, the total interval
length is given by:

T=P;+C1+P,+Cy+ - +Pr+Cr+Ppy ¢}

22

We assume (1) that the 2xR random variables {P;:1<i<R} and {C;:1<i<R} are mutually
independent, (2) {P;:1<i<R} have common distribution Fp, (3) {C;:1<i<R} have common
distribution F ¢, and (4) that each of these distributions has finite variance. In practice, in the pres-
ence of resource contention and non-stationary behavior (such as a burst of cache misses as each
new task begins execution) the first three assumptions may be violated. One goal of the measure-
ments in Section 3.3 is to validate the accuracy of the model results. Without these assumptions, the
process behavior becomes much more difficult to analyze, and the solution would require more

complex (and less intuitive) parameter values that would be difficult to measure for real programs.

For our further analysis of the model, we assume that D has zero variance, i.e., that D is con-
stant for this program interval. This assumption is made because the goal of this analysis is to study
the variability due to random delays alone. (The implications of this assumption are discussed

below.) The random variable R and the sequence of processing times {P;:1<i<R+1 } must satisfy

Zf:'ll P; = D. Under these assumptions, denote the distribution, mean, variance and coefficient of
variation of the total execution time T by Frp, lr|p> 0'th p and CVrp, respe:ctive:ly.6 Since D is

Ocz|D
(D + ey ip)

ized) variability in the execution time of the interval due to random delays. This is the principal

assumed to be constant, CVy p=6rip/lrip = Thus, CVyp is a measure of (normal-

measure we will use to understand the influence of random delays on specific programs, when we

apply the model to these programs in Section 3.3.

If the assumption that D is constant is true for a particular program interval, then CVryp is the
coefficient of variation of execution time of that program interval. If the value of D can vary across
different executions (for example, if the instructions executed in a task depend on which tasks have
previously been completed by other processes), D itself can be influenced by the random delays
experienced by this process as well as other processes of the program. However, if the variability of
D is small relative to the average length of the interval, CVyp can still be used to give a qualitative
estimate of the impact of random delays. Thus, for such programs, it will be important to under-

stand to what extent the value of D for this interval can vary across different executions of the

6. In general, we use Jy, 0%, CVy and Fy to denote the mean, variance, coefficient of variation
and distribution function of the random variable X (CVy=0y/l1y). We denote the Laplace transform
of (the distribution of) X as F.

23
program.

3.2.1. Analysis of the Normalized Variance CVy)p

The main goal of this section is to derive an expression for CVrp in terms of five input
parameters: D, Lp, 63, l¢ and 0%, where the latter four terms denote the mean and variance of
{P;:1<i<R} and the mean and variance of {C;:1<i<R} respectively. We first derive pr p and
G2T| p in terms of g and 6%, and then derive i and 0% in terms of the other input parameters.
Note that R is determined only by {P;}, i.e., it is independent of {C;}. Hence, for x=D, we can
write the distribution of T, Fyp(x) =P{T <x}, as

Frip()=P{R=0} + ¥ P{R=k}P {/™ C;<x~D}, x2D
k=1

=P{R=0} + 3 P{R=k}F*)(x-D), x2D
k=1

where F**) denotes the k-fold convolution of F¢ with itself. (Note Fgp(x)=0, x<D.) On taking

transforms, we obtain:

Frip(s) = i P{R=k}e™Ps Fck(s) . 2
k=0

Differentiating (2) and using E[T*] = (—l)kji;k— Fr1(8)|s=0 gives Prp and 6Fp in terms of

1z and 0%:
urip =D +pgic (3a)
6%p = PR OC + Hc” OF (3b)

Although (3) gives exact expressions for iy p and 0%1 D, it would be impractical to directly apply
these to a particular interval of execution of a real program because of the difficulty of measuring
KUg and 0% directly. Specifically, this would require a large number of measured samples of R for
that interval, i.e., it would require repeated detailed measurements of the interval in a number of
executions of the program. Instead, our approach is to obtain analytical estimates of jg and 0% in
terms of D, lp and 6%, and thus use (3) to obtain expressions for lrjp and 0'%, p in terms of D, up,
03, ¢ and 6%. These five parameters can be estimated by measuring the relevant interval in a sin-

gle execution of the program, and repeated detailed measurements would not be necessary. We

24

therefore focus on obtaining exact and approximate expressions for [and c%.

3.2.1.1. Exact derivation for j7;p and O‘ZT| D
The analysis of R is complicated by the dependence between {P;:1<i<R} and Pg, . We can
avoid this difficulty by re-casting R as a function of a sequence of independent, identically distri-

buted RVs {P;":1 <i < e}, each having the same distribution as each of {P;:1<i<R}:
R(@t)=max {r=0: E:::;P,-’St} 4

Then R, as defined earlier, has the same distribution as R(D), and Pgy; =D — Zf__f?)P;. But (4) is
just the definition of a renewal process generated by {P/:1<i < o}; specifically, R(z) is the

number of renewals by time ¢ [Wol89].

The following expressions for pg(t) = E[R(#)] and its ordinary Laplace transform are well-

known [Wol89]:
Hr(t) = F p(t) + Wr(#)*F p(2),

Fp(s)/s

Lpp@®) =~

1- Fp(s)’ ©)

The corresponding expressions for [ig2(7) = E[R?(¢)] and its Laplace transform are also not difficult

to derive [Wol89]:

t
W () = Pr(®) +2 [pp(t—x)dpg(x), £ 20
0

(1+Fp(s)) Fp(s) /s

6
(1-7p(s))? ©

Lug (1) =

where £(uz(t)) and L(Uz2(2)) denote the ordinary Laplace transforms of pg(z) and pge(¢) respec-
tively, and * denotes the convolution operator. Equations (5) and (6) together allow us to compute
Lg(D) and Glzg (D) for a particular distribution F p(t), but this generally requires numerical inversion
of the Laplace transforms. A more practical application of (5) and (6) is to validate simpler approxi-

mations for g and 0%, which we derive next.

25

'%10 ,%10
E s E s
r 0 r O
r 4 r 4 CV, =
? 2 v 2 20
0 0 /—-—"“4‘.0“
) -2
-4 -4
-6 -6
-8 -8
1% Jo 80 120 160 200 1% 20 80 120 160 200
D/yp D/pp
a 10 g 10
8 8
E 6 Es
r 4 CVp = r 4 CV, =
0 2] N\ 02,05 22 2.0
_(2) 7 20,40 ’(2) 4.0
-4 -4
-6 -6
-8 -8
-10 -10
0 40 80 120 160 200 0 40 80 120 160 200
D/pp D/pp
10 10
% 8 CVp = % 8
E . 4.0 E ¢
r T CVp =
I 4 r 4 \kﬂ
ro2f 20 T 2 :
0 0
5 0.2,0.5 5 20
-4 -4
-6 -6
-8 -8
-10 -10
0 40 80 120 160 200 0 40 80 120 160 200

D/pp

D/up

(b) Fp: Hyper-Exponential Distribution (p; = 0.9)

(a) F p: Gamma Distribution

Figure 3.1. Relative error in the approximations for Mean it)p (top), Variance O'%ID (center),
and Coefficient of Variation CVy|p (bottom)
Uc=Up= 05, CVC =2.0

26

3.2.1.2. Approximate expressions for iy p and 0‘% D

Estimates for pig(z) and G%(¢) are given in the Central Limit Theorem for renewal processes
[Wol89], which states that as ¢ — eo, R(¢) is asymptotically normal with mean’ t/up and variance
t6% / up3. Therefore, we estimate 6% by Do / lp> = (D/pp)CV5. Using these estimates for g

and o} in (3) gives us our final approximate expressions for the mean and variance of T:

¥ D
irp =D (1+—=), o}p=-—nuc* (CVE+CV3), (72)
ip Hp
i.e, 1 e 5 5
CV = CVe +CV 7b
TID D/ B +hr NCVE P (7b)

The key terms in this expression for CVr,p include the average number of sub-intervals: D/[p=]ig,
the average fraction of time the process is delayed: |Lc/(lic+HLp), and a term representing the varia-

bility of the individual processing and delay sub-intervals.

The above expressions for Jzp, 0‘%| p and CVpp are only asymptotically exact, but they can
be compared at finite D against exact values calculated using (5) and (6), for specific distributions
F p, and specific values of Wp, f1c, CVp and CV¢. We do so in Figure 3.1 using gamma and 2-stage
hyperexponential distributions for F p, for uc/pp = 1, CV¢ = 2.0 and for a range of values of CVp.
The figure shows that for (Lc/Lp = 1, the error in the approximation is potentially significant when
D/pp < 40 and CVp or CV¢ > 4, but is likely to be acceptably low otherwise. The error increases
when Jio/pp increases (not shown), and ¢ = p is conservative relative to measured parameter

values in Section 3.3.

3.2.1.3. Quantifying the Variance due to Random Delays
A key observation from (7) is that CVyp decreases as 1/ g =1/ \D/pp . Thus, for intervals

containing a very large number of delays, we expect the total delay time to have very little overall
variability relative to T. (Intuitively, the individual fluctuations of a large number of delay times
will tend to cancel each other out in the long run.) We can use (7) to quantify how large D/ptp must
be for this observation to hold, for various values of the other parameters. In Figure 3.2, we again

set [Lc = Up and show CVyyp for a wide range of CVp and CV¢. (Note that CVp and CV are

7. In fact, this expression for the mean is exact for all ¢ > 0 if, and only if, the first interval P has
distribution equal to the distribution of residual life of P;,i 2 2. For example, this holds automatically
for the exponential distribution.

27

1.0 1.0
CVnp CVrp D7y =3
0.8 0.8
D/l.lp =5 1
0.6 0.6
10
04 0.4
1000 —
0.2 /1()00/ 0.2
000722 6 8 10 0072 4 6 8 10
CVe CVe
@CVp =1 (b) CVp = 10

Figure 3.2. Effect of random delays on relative variability of total delay (CVyp).
pp=pc=1

interchangeable as far as their influence on CVrp is concerned.) The graphs show that CVyp can
be high (>0.5) when CVp or CV(is very high (=10) and the interval contains 100 or fewer delays.
For intervals with 1000 or more delays, however, CVrp is low even when CVp and CV are as
large as 10 and pi¢ = Wp. Furthermore, when CVp and CV ¢ are close to 1, even intervals containing

as few as 50 delays have very low CVrp.

The above arguments are inconclusive about whether random delays cause significant varia-
bility in actual programs, since it is unknown what values of the model parameters occur in practice.
One goal of the measurements presented in Section 3.3 is to obtain these parameter values for real

programs, and show where in the parameter space typical programs can be expected to lie.

3.2.2. Asymptotic Analysis of the Distribution Fr|p

We were able to obtain explicit expressions for purp and 6%, p in terms of the Laplace
transforms of iz and 6%. Obtaining general expressions for the distribution of T is difficult. We
can, however, derive the form of the distribution in the special case when D is large. In that case, we
show in Appendix A that it is possible to apply the version of the Central Limit Theorem for cumu-

lative (regenerative) processes [Wol89] to prove:

28

T(D) = Normal(W(D),o(D)) as D— e, where

D
uD)=D + utc , ®)

2
Do% pc*Dod

3 ?
e

o’(D)=

and = denotes convergence in distribution.

Two points are worth noting here. First, the mean, p(D), and variance, o2(D) are the same as
Wrip and CVr)p calculated in (7) using the estimate for ju and 6% . Second, there is an important
difference between the estimates for jLg and 6% and the asymptotic normal distribution of T calcu-
lated in (8): the convergence in (8) depends on o%, whereas the estimates of pz and c% did not.
Thus, high variance of communication delays could make a moderately large task look different
from normal, but the estimate for [z and 6%, and hence the estimate in (7) for piryp and 0'%, D, could

still be accurate.

3.3. Applications of the Model

In this section, we address the questions raised in Section 3.2, using data obtained from meas-
urements of parallel programs. We begin with a description of the applications and measurement
methodology in Section 3.3.1. In Section 3.3.2, we apply the renewal model to study the impact of
random delays on these programs, by using the data to show where in the parameter space of the
model these programs lie. In Section 3.3.3, we examine whether the assumptions of the model intro-
duce significant errors into the qualitative conclusions obtained. While addressing this question, we
measure the overall variance in process execution times, due to both random delays and variation in
processing requirements. This also allows us to comment on the total variance found in practice.
Finally, in Section 3.3.4 we examine whether real programs exhibit normally distributed process

execution times in practice.

3.3.1. Applications and Measurement Methodology

We measured a variety of applications on a 20-processor Sequent Symmetry S-81, as well as a
few shared-memory applications running on the Thinking Machines CM-5. Table 3.1 gives a brief

overview of the applications and inputs. (Small and Large are mainly labels we will use for

29

Table 3.1. Applications used for the Measurement Experiments.

Name Application Phase Structure Dominant Phases Input Data

MP3D Hypersonic flow Five phases with Move : more than Small: 5000 mols.
simulation intervening barriers 90% of total work Large: 20000 mols.

Locus Standard cell Two iterations, parallel - Small: bnrE

Route | wire routing loop per iteration

Water Water molecule One large, several small | Inter-molecular Small; 64 mols.

simulation phases; intervening Jorce evaluation: Large: 343 mols.
barriers (per iteration) almost all the work.

Barnes | Gravitational One large, several Force computation: | Small: 1024 bodies
N-body simulation | small phases 90% of total work Large: 8192 bodies

Bicon Graph More than 50 phases; - Large: 4096 nodes,
Biconnectivity intervening barriers 16384 edges

Hydro Particle motion N parallel loops - Toy: 2 particles
in viscous fluids (N = no. of particles) Small: 8 particles

PSIM Multistage net- Single parallel - Small: 1024 nodes
work simulation phase per iteration Large: 4096 nodes

convenience. The Large input size is a somewhat more realistic data set than the Small size.) Four
of the applications (MP3D, Locus Route, Water and Barnes) are from the Splash suite, which
was developed to provide a realistic set of parallel applications for performance evaluation of paral-
lel systems [SWG92]. The other three are also real applications in the sense that they were written
to solve computationally intensive problems of interest to their authors. Hydro is a parallel simula-
tion of particle motion in viscous fluids, with efficient communication. [FuK92]. PSIM was
developed at Lawrence Livermore Laboratories to simulate the indirect binary n-cube memory
server network in a large parallel vector-processing environment [Bro88b]. Bicon is an implementa-

tion of a parallel algorithm to find the biconnected components of large graphs [TaV85].

We measured each of the programs running stand-alone, allowing us to characterize the non-
determinism intrinsic in the program. This is important because parallel system models (such as
those for parallel program performance prediction or for analysis of scheduling policies) require
parameters that characterize the intrinsic behavior of the program as input. It is also worth noting
that intrinsic random delays are the key unknown for determining synchronization costs in mul-
tiprogrammed systems where the processes of an application are (essentially always) co-scheduled.
The intrinsic random delays in the applications of Table 3.1 are communication delays due to

remote memory accesses. In particular, page faults and lock contention did not cause significant

30

delays in these programs.

For each application, we focused on one to three phases of the program, where a phase is
bounded by barrier synchronizations, and has no intervening synchronization points. We measured
one process in each phase, and the interval length T corresponds to the execution time of the meas-
ured process between the corresponding barriers. D is the total processing requirement in that inter-
val, and the delay sub-intervals {c;} are the remote communication delays. The experiments in
Sections 3.3 and 3.4 require repeated measurements of a particular phase; exactly the same input

data set is used for each such measurement, as explained in Section 3.1.

3.3.2. Measurements for Evaluating Execution Time Variance

Before presenting the results for the evaluation of variance due to random delays, it is impor-
tant to recall that CVryp (the measure of interest) will be estimated for a program phase from a sin-
gle execution of the program, as explained below equation (3). As discussed in Section 3.2, for pro-
gram phases in which the processing requirement (D) does not vary across different runs, CV%| p is
the normalized variance in execution time of the interval, due to random delays. For phases in
which D varies across runs but the variability in D is small relative to the average length of the
interval (see Section 3.3.3), CVyp should still give a qualitative estimate of the influence of ran-

dom delays on the variance of execution time.

3.3.2.1. Measurements on the Sequent Symmetry

Shared-memory on the Sequent Symmetry is supported by an invalidation-based snooping
cache protocol, and the communication delays are due to three types of remote requests (read-
shared, read-invalidate and invalidate). The measurements were made using non-intrusive
hardware probes to record the relevant bus events.® The various parameter values were subsequently

derived from the stored traces.

8. A Tektronix DAS 9200 Logic Analyzer was used for this purpose.

31

“(Spu0oSSOION ()T) $3[0Ad snq QOO Jo swun ur axe L pue (7
*(Spuod2soIoI °() SO[oA0 snq Jo syun ur are y pue I ‘dri L

00000 | O'OTILEE| 1000 | 6866% || €60 | €T | 08 | 6SEL9 | €81L9¢€ | Iews | snapny
00000 | $LSOEOT|l 1000 | 9901 || 950 | Sev | §8 | 87996 | €196201 || 4oL | smapny oipAH
00000 | TS66ETT|| T000 |LOLZL || 920 | TTT | 9L | TELOE | Sevbere || ofmT 20404

10000 | 950991 || 2000 |L9v€ | €0 | TvT | 08 | 9I8Ly | 6LLS9T || mews s0104 souleg
00000 | Y'600ETT|| €000 | 6SSZE || ¥€'0 | ST | 0SOT | SL9LE | 9499721 || ofre | jom-somy
#000°0 1'6TTy || 9000 | TSz || 9¢0 | 1LE | 66 | S¥8ST | 0'€0Ty WS | jow-som] I9EM
L7000 T'vIZE 010 |6S01T || 080 | 2o | OL¥T | 6LET | T'H06T [ews [emoy
91000 | 6'852C P00 | PEE6 | €50 | 8S'E | 0901 | +IET | 865IT [rews zwl snoo
€5000 | ¥S'€00S || $TO |990TS || L90 | T8V | ver | LTL T'S8LE ofmy anoj

$100°0 1'162 v0'0 | L8zl || 10 | st | L8 | viT | 66LT oSy | ySymoq
06000 | €722 vI'0 | 00El || 6L0 | 2T | s€T | st | L6l aBrey Juuo) uodig
80000 | TTSLI Y10 | €LSTT || vP0 | PLO | 801 | 899 6051 afmy -

61000 | 8TLE €10 |TLzy || 050 | 980 | TIT | TOL (943 fews - Wisd
0000 1'S8%C Y00 | L989 || €00 | 9071 | 6TI | O6vE | L'96€T ofmy atol

1900°0 I'sg ¥00 | 921 9TT | €I'T | OSTT | $L9T | L€E afrey | p100-sy
8000 | TLT ¥00 | €8 6V T | $€1 | 0911 | §91€ | €07 a8y | anop-say
71000 | 8629 €00 |€spl || 080 | €01 | 91 | TOIY | T809 fews 200l
0 | vTl $00 | 9 OET | 8€T { 066 | 0781 | LTI ews | 700-s2y
12200 | 08 S00 | €€ 89T | 00Z | 001 | 69€C | LL mews | 2d0p-s2y Qed

Onitdr] || 4

(01x) ahard i | =% PAD (A0 | 2 | M| (o) | mduf || eseqq wreigosg
SJNSOY PPOIA Son[eA JojPWBIL PIINSEIJA uopedddy

. KboEE»m juanbag :s1ajoureIe g [PPOJAl [BAMIUIY JO SJUIUIRINSBIIA] *7°C dqRL

32

Table 3.2 gives the measured parameter values, as well as the model results (Lr)p and
CVy)p), for each of the application phases executing on 16 processors on the Sequent. Values for
1p and ¢ are given in units of bus cycles (equal to 0.1 microseconds), and for D and [ryp in units
of 1000 bus cycles (100 microseconds). The applications are listed in generally increasing order of
processing demand D, although the demand varies from phase to phase in each application. In addi-
tion to the five basic input parameters, we also give the values of R = D/jp (the measured number

of random delays) and pc/(Le+Hip).

Before interpreting the results obtained, two points are worth noting about the measured
parameters in Table 3.2. First, the values fall in the region of the parameter space where the approx-
imate solution of the renewal model is expected to be accurate (Figure 3.1). Second, the measured
application phases vary widely in terms of all five input parameters, as well as the number of ran-
dom delays (D/pp) and communication overhead (Lc/(HcHip)). In particular, the total processing
demand (D) varies by more than 4 orders of magnitude (from 770 microseconds for the Res —Move
phase of MP3D to more than 33 seconds for Hydro), the number of random delays varies (some-
what in proportion to D) from 33 to 72707, CVp and CV are as high as 4.35 and 1.68 respectively,
and communication overhead is as high as 0.24 (Bicon). Thus, the measured applications have

widely varying behavior, and communication requests experience significant variability.

The most striking observation from the table is that in every one of these application phases,
the predicted variability of execution time due to random delays (CVr p) is extremely low. The
highest estimated CVpp on this system is 0.022 (for the Res-Move phase of MP3D) and this was
obtained with a much smaller input size than expected in practice [SWG92]. To analyze these
results further, we compare the measured parameters against regions of the parameter space in Fig-
ure 3.2 (recalling that Figure 3.2 is pessimistic for communication overhead less than or equal to
0.24). In all but a few of the cases D/jLp > 1000 and, as shown in Figure 3.2, this alone explains
why the predicted CVyp is extremely low for those cases. Thus, D/pp has a dominant role in
determining CVyp in most cases on this system. In the few cases where D/Jp is on the order of
100 or less (and in many other cases in the Table), CVp and CV are both less than 2. Thus, again,
CVyyp is extremely low. In fact, for the worst case combination of parameter values across all the
measured application phases (D/pp = 33, ic/(ucHp) = 0.24, CVp = 4.82 and CV¢ = 1.68), the

renewal model predicts that CVy p would be 0.21, which is still low.

33

We next consider how these parameter values could change for applications on highly parallel
shared-memory systems. First, the range of D/jip seen here (more than 4 orders of magnitude)
could be representative of larger systems as well. Large values of D/jip are still likely to occur due
to scaling up problem sizes, yet the fraction of applications that have small D/pp could also
increase if finer granularity of synchronization is supported efficiently in future systems, or if appli-
cations can use new primitives to completely overlap a significant fraction of communication events
with computation. In applications for which D/|p is as large as in most cases seen here, CVrp
should continue to be low, because the effect of pc/(Lc+Hip), CVp and CV would have to be one
to two orders of magnitude higher than observed here to yield even CVyyp 2 0.1. In applications
where D/|p is significantly lower, increases in pc/(cHtp), CVp or CV are important to con-
sider. It is not clear how these parameters would extrapolate to other applications and systems.
Efficiency considerations alone dictate that pc/(fc+ip) will generally be less than about 0.5 Gie.,
50% efﬁciency).9 CVp arises due to the non-uniform intervals between cache misses and there do
not appear to be reasons to believe that this will be significantly different in future systems. We next
discuss two further experiments that were designed with the goal of producing higher values of
CV(and pc/(c+Hip), which could exist in future parallel systems. In any case, the model demon-
strates the need to obtain these parameter values, and provides a framework for estimating the

influence of these parameters as future systems become available.

3.3.2.2. Measurements on the Sequent with External Bus Load

For this experiment, we wrote an artificial parallel program to increase the bus contention. All
tasks of the “bus-loading” program repeatedly read and write a fixed memory location causing that
cache line to bounce from cache to cache. We repeated the measurements with MP3D, PSIM or
Bicon running on 4 processors, and the bus loading program on 14 other processors. (We used the
smaller input size in each case, which gives approximately the same total work per process per
phase as the larger input on 16 processors). The results for these measurements are given in Table
3.3. Comparing with the numbers in Table 3.2, we see that pc/(cHLp) is much higher, yet CV¢ is

not significantly different despite the increased contention. Thus, the highest estimated value of

9. On multithreaded processors, however, [c/(lc+ip) could be somewhat higher and still allow
reasonable efficiencies.

34

*SPUOJASOION (O] JO sHun ut are dliyi pue (7 ‘pu0oasOIOTUI | JO SR UL dxe ¥ pue I1i ‘dnl |

99100 | €9VISOC|| TL90 | 6SSLI || 050 | 9TE | 6TLL | 89LE | LT6TLY || (TIS)BRT | jou-sony
VETIO | §'T19 $8¢'0 |0Sy || SL'T | TI'v | 8¥6L | OIS | 8EST WS | jou-sam] JSJeM
L1900 | OU'ISYS || €L60 |0TSE || 9L0 | 89t | S80SI | OTY | ¥8LYI o8re] adopy
90020 | 98'vSPl || 6960 606 || 880 | 810 | S'ISSI | €6y | 8P lews a0l aediN
Origdd || dnl
(sw) aliri < |G =R A0 | A0 | (| (s dd | Guyq | yndur aseld ureidolq
SIMsay PPOIN sane Jojourered paInseajA uoyeonddy

" PUUTPUIAL UISUOISIA + S-JALD SIPWEIEJ [PPOJA] [EMIUIY JO SYUDUIINSEI 'b°€ AGEL,

“(SPU093SOION ()]) SO[OAd sng QO Jo siun ur are i pue (7
“(SpuodasoIorw 1°Q) $9[0Ad snq Jo syun Ul axe y pue I ‘dyf |

91000 SIVLOT || OV0 | ISY6L || 89°0 | 60 | TS I'18 SEbbo || ews oy
$910°0 TEST 9c'0 | SIST || OL0 | #8°1 | 086y | L'68 8791 || Irews [uuo) uodig
TE00°0 86ETT || 6£0 |PEI8T || T80 | 9L0 | T9¥ | 6L 6'€0¢T || Irews - Wisd
02000 97897 €10 | OELS || L90 | 660 | OV'6S | L8OV | OTYET || WS 200y
£570°0 1°0€ €10 | €8 SLo | 991 | 08'Sy | LSIE | €9C flews | 240p-s3y QEdN
I Ori+-dnl m.a 2 d D d
((o1x) Wil g g =8| A0 || A0 1 i | (1)@ | mday | sseqq wresdolg
SISy PPON SaN[BA JIjoureIed paansedjA woneonddy

" PeoY sng yim K£npurug Juanbag :sivjouIeIeJ [PPOTAl [EMIUIY JO SHUSUIINSBI *€°¢C dqeL

35

CVr,p seen here is still only 0.025.

3.3.2.3. Measurements on the CM-5

We were also able to measure two of the above programs on a 32-processor Thinking
Machines CM-5, a system that is scalable to much larger numbers of processors. Since the CM-5
does not support shared memory, we used the Wisconsin Windtunnel [RHL93] to simulate the exe-
cution of the shared-memory applications. In this simulator, the application program executes most
of the time at full hardware speed on the processing nodes of the CM-5, but traps into software on
memory references to cache blocks that would not be in the target machine’s cache. Explicit mes-
sages are used to obtain remote cache blocks. As on the Sequent, the delays for remote communica-
tion were the delay intervals, {C;:1<i<R}. Since every remote communication event causes a
trap into the software handler on the local node, the measurements are done in software. In measur-
ing the processing intervals, we ensured that the time to service remote memory requests (i.e. inter-
rupts) from other nodes was excluded. Other than these interrupts the application runs at full
hardware speed between traps; hence the measured processing intervals are realistic values for these
applications. The software overhead required to service the traps could not be fully eliminated and
therefore the measured communication costs are higher than on large-scale parallel systems of the

future. These measurements serve to test our conclusions under high communication overhead.

We ran the simulator with a 64 kilobyte, 4-way set associative cache per node, and a full-
directory non-broadcast invalidate cache coherence protocol [ASH88]. One might expect CV¢ to
be high on this system because some but not all remote requests have to be forwarded from the
directory to a third node that will supply the updated copy of the block, and also because there could

be significant queueing delays for the trap handlers on the nodes.

The data for MP3D and Water are given in Table 3.4. The communication overhead for
Water is high (as expected) but perhaps only slightly higher than is likely in communication-bound
applications on future parallel systems. In MP3D however, the overhead is extremely high, because
of very frequent remote communication as well as extremely high cost (1.5 milliseconds) per cache
miss. In practice, applications may have to restructured for less frequent communication, and
MP3D can be considered an extreme case to test the conclusions of the model. Despite the high
overhead, CV is not significantly higher than in the previous experiments for either program, and

CV is still only 0.2 or less. Unless much higher CV¢ is observed when more of the communication

36

©
8
1

Coefficient of Variation
1
g
T

»
8

1.50

1.00

0.50

0.00 1 !] | A
0.0 0.2 04 0.6 0.8 1.0

Probability of using one ring

Figure 3.3. Coefficient of variation of communication costs on a 2-level ring hierarchy.

Assumptions: 1. Accesses that use both rings take 10 times as long as those that use one ring
2. Latencies in either case are exponentially distributed
(i.e., overall distribution is hyper-exponential)

is implemented in hardware, it seems plausible that even in such systems communication costs will

not introduce significant variability in execution times.

Since even in the above experiments, the values of CV obtained were not significantly higher
than on the Sequent, we explore the behavior of CV¢ on another network which might be expected
to have widely varying communication delays, namely the multi-level ring network such as in the
Kendall Square KSR1. On a KSR1 with a 2-level network, i.e., up to 1024 processors, the average
latencies of requests that cross both rings is about a factor of 4 higher than requests that use only
one ring [KSR91]. Assume a higher ratio of 10, and assume requests at each level have exponen-
tially distributed latencies (motivated by the measured values of CV¢ on the Sequent as well as the
CM-5). In Figure 3.3, we plot the overall coefficient of variation of communication latency (i.e,
CV() as a function of the probability that a request uses only 1 ring. The figure shows that even
with this network, the value of CV stays below 2.3. Actually, such values of CV do represent high

variability in absolute terms, and these data again indicate that much higher values of CV may not

occur in practice.

37

3.3.3. Measurements of CVy (and CVr|p)

The measurements we present in this subsection have two goals. First, we estimate CV7, i.e,
the variability in T due to all sources, using direct measurements of a set of the application phases,
to see how much overall variability occurs in practice. Second, we use these measurements of CVr
for two purposes: (1) to qualitatively validate the values of CVyp predicted by the renewal model
in cases where this is possible, and (2) to compare the relative influence of variability in processing

requirement D and variability in total delay Cy in cases where this is relevant.

Table 3.5 gives values of CVy measured in software for several application phases on the
Sequent Symmetry (estimated using samples of T from 100 to 300 runs of each phase).10 The
predicted values of CVyp for these phases are repeated from Tables 3.2 and 3.3 to aid in the com-
parisons below. The measured values of CVy show that in all but one of these programs, the overall
variability due to processing requirements as well as communication delays is very low (less than

0.05), and it is also fairly low in the exceptional case of Locus Route.

For several of the measured phaseé (1e, those in MP3D, Water and Barnes), D is fixed for
different runs on the same input. In these cases, CVy should be equal to CVrp, thus the measured
CV7 can be directly used to validate the predicted values of CVrjp. In each of these cases, the
measured and predicted values agree within the expected accuracy of the software measurements.
For the remaining cases in the table, the measured CVy provides an (approximate) upper bound on
CVyp- Thus, in all cases except Locus Route the measured values of CVr directly indicate that

the very low variability predicted by the renewal model is qualitatively correct.

Bicon, Locus Route and PSIM each have variability in D due to the nature of the computa-
tional algorithm. (For example in Locus Route, a process repeatedly computes the route for the
next wire in a work queue, where the time to compute the route depends on which wires have previ-
ously been routed. Variability in the initial task assignments as well as in the individual task execu-
tion times due to random delays will cause D to vary across different runs.) In these cases, the
values of CVy and CVrp (assuming these are approximately accurate) suggest that the variability

in D dominates that in the total delay (but is still low). In the case of Bicon, we were able to obtain

10. A higher degree of accuracy in the measured CVy could be obtained with increased effort by
increasing the number of samples and/or by using hardware measurement probes. The increased ac-
curacy is not needed here,

38

Table 3.5.. Measured Total CV, and Predicted CVy, DT.

Program Phase Input | Measured | Predicted
MP3D Move Small 0.0076 0.0020
MP3D Move Large 0.0058 0.0005
PSIM - Small 0.0335 0.0019
PSIM - Large 0.0098 0.0008
Bicon Connl Large 0.0108 0.009
Bicon Tour Large 0.0345 0.0053
Bicon Lowhigh | Large 0.0404 0.0014
Locus Route Im. 2 Small 0.0882 0.0016
Locus Route Imn. I Small 0.1396 0.0027
Water Inter-mol | Small 0.0006 0.0004
Barnes Force Small 0.0008 0.0001
Barnes Force Large 0.0005 0.0000

+ First case is for MP3D running on 4 processors, with bus load from 14 processors.
All others are on 16 processors, with no external load.

further evidence for this conjecture, using the following calculation for the Lowhigh phase. Each
task execution time in this phase is determined by a measure of a node in the graph that appears to
vary quite randomly for each task across different runs. Furthermore, the measured variance of exe-
cution times of all tasks of the phase in a single run on one processor agreed very closely with the
measured variance of a subset of the tasks that would have been assigned to the measured process
during a parallel run. We thus hypothesized that the measured variance in task times on a single
processor is a good estimate of the variance in task processing requirements across different parallel
runs, for the tasks assigned to the process. Using this to calculate the component of CV#% due to
variations in D, we obtained a value of (0.042)2. Thus, this value added to CV%, p agrees quite

closely with the measured value of CV%.

3.3.4. Measurements of Execution Time Distribution

In Section 3.2.2, we showed that the distribution of execution time in an interval asymptoti-
cally approaches a normal distribution, when the non-determinism is due to random delays. Since
this is an asymptotic result and since there are other sources of non-determinism, it is important to
determine if real program phases show normally distributed execution times. This can be done using

the measured samples of running times used in Section 3.3.3. Here, the samples are used to

39

construct an empirical distribution which is an estimate for the unknown parent distribution. Furth-
ermore, the mean W and variance o2 of the samples can be used to construct a Normal distribution,
and thus the shape of the estimated parent can be directly compared to a Normal for each phase. In
addition, the Kolmogorov-Smirnov statistic can be constructed from the measured samples and used
to derive a confidence band for the actual parent distribution [Tri82]. This gives an error bound

between the estimated and actual parent distribution at a certain level of confidence.

The empirical distribution calculated using 300 samples, the upper and lower ends of the 95%
confidence band, and the predicted Normal distribution, are shown in Figure 3.4(a) for the Connl
phase of Bicon. We see that the empirical distribution very closely tracks the normal distribution.
The corresponding curves are given for the Lowhigh phase in Figure 3.4(b), and although we
believe the variations in task execution times are the dominant cause of variance in this case, we
again see that the empirical distribution closely tracks the normal. In fact, this is not surprising
because the measured process executes 256 individual statistically identical tasks, and thus the sum
of the processing requirements itself has converged to a normal distribution. The width of the
confidence bands is +0.076 in both cases. The same data (from 80 and 100 samples) are shown in
Figure 3.4(c) for the Move phase of MP3D executing on 16 processors with an input size of 20000
particles, and in Figure 3.4(d) for MP3D executing on 4 processors with input size of 5000 parti-
cles, but with the external bus loading program executing on 14 processors in the latter case. In both

cases, the distribution is very close to normal.

Finally, the curves for the two iterations of Locus Route are shown in Figure 3.4(e,f). The
empirical distributions (calculated using 100 samples each) are different from the corresponding
(predicted) normal distribution in each case, particularly for Iteration 1 which clearly shows a trimo-
dal form. The processing demands of a task in this program can be affected by which tasks have
been completed previously (and thus even by the order of previous completions), and in a few runs
the execution times of the iterations are significantly higher than in most other runs. The variability
in communication delay, which would otherwise yield normally distributed execution times, is

much smaller than this variability in processing demand.

Fr(x)1.0
0.9
0.8 Empirical
0.7 Normal
0.6
0.5 5% Confidence Band
04
0.3 pr =23.35 ms.
0.2 Cv,=0.011
0.1

0%7 233 239 345
X (ms.

(a) Bicon: Phase Connl
1.0
F
g)
0.8
0.7 Empirical
0.6 Normal
0.5 '
04
0.3
02l — wr = 247.94 ms.
O. 1 CVT = 0.005

98571 24627 2488 25138
x {(ms.

40

Fr(x)1.0
0.9
0.8
0.7
0.6 ormal
0.5
04
0.3

0.2
0.1

0057 277 2938 31.8
X (ms.

iy = 28.65 ms.
CVT = 0.040

(b) Bicon: Phase Lowhigh
Fr(x)1-0
0.9
0.8
0.7
0.6
0.5
04
0.3

0.2
0.1

0064 2700 2735 2771
X (ms.

wr =271.7 ms.
Cvy =0.008

(c) MP3D: Phase Move (d) MP3D: Phase Move (with Bus load)
FT(x)l-O Fr(x)1.0 .

0.9 0.9 g e
o . 08 7y Empirical
0.6 \ Empirical 0.7 / Norm

’ ! Normal 0.6
0.5 0.5 !
8-‘; 0.4 /

. { iy = 360.63 ms. 0.3 _

/ - § pr =298.05 ms.
0.2 CVr=014 021/ CV;=0.089
0.1 ,
0.1] -

0050 3654 423.0 4504
X (ms.

(e) Locus Route: Iteration 1

0375 3011 3548 4984
X (ms.

(f) Locus Route: Iteration 2

Figure 3.4. Comparing measured execution time distributions and predicted Normal.

41

3.4. Summary and Discussion

In this chapter, we have studied the effect of random delays, as well as other sources of non-
determinism, on the execution time of processes in parallel programs. We described an analytical
model of program behavior that yields considerable insight into the effect of random delays on the
variance and distribution of process execution time over any interval. We used detailed measure-
ments of several shared-memory programs on two different systems to parameterize and apply the
model to those programs, and thus to evaluate the variance of process execution time between syn-
chronization points due to communication delays. We also used direct measurements of variance

due to all sources of non-determinism. The key conclusions of our study are:

e In programs on current shared-memory systems, communication delays introduce negligible
variance into the execution time of a process between successive synchronization points, even
under conditions of high communication cost and contention. Furthermore, this conclusion
should continue to hold for systems in the foreseeable future, at least for shared-memory pro-
grams with granularities similar to those on current systems.

e For many but not all shared-memory programs, non-deterministic processing requirements also
introduce very little variance into the execution time between synchronization points.

These results have potentially important implications for the performance prediction of paral-
lel programs and for general stochastic models of parallel systems. First, the results suggest that per-
formance models of parallel programs should have the ability to represent task executions times
with fairly low variance, and process execution times with extremely low variance. In Chapter 2,
however, we saw that previous stochastic models that apply to any but the simplest program struc-
tures have had to assume exponentially distributed task execution times for analytical tractability.
Even with this assumption, these models require extremely complex and heuristic solution tech-
niques [KMES89, MaL.90, Moh84, ThB86]. It thus appears important to re-evaluate the usefulness of
stochastic models for parallel program performance prediction, and perhaps to develop an alterna-
tive approach. Chapters 5, 6, 7 in this thesis explore these questions in some detail. Thereafter, in
Chapter 8, we briefly discuss some other implications of the results of this chapter, including impli-

cations for parallel system performance models.

In this chapter, we also used the analytical model to prove that process execution times in the
presence of random delays asymptotically approach a normal distribution, and we used direct meas-
urements of the distribution of process execution times to show that, in practice, phases of many

real programs exhibit a distribution that is very close to normal. This result, while interesting in

42

jtself, may also have some practical implications. For example, in simulation studies of parallel sys-
tems, some assumptions about the workload are necessary. In particular, when non-deterministic
tasks are modeled, some default distribution is often chosen. Our results show that a normal distri-

bution should be a reasonable choice in many cases.

43

Chapter 4

A Deterministic Model for Parallel Program
Performance Prediction

The discussion of previous models in Chapter 2 showed that stochastic models proposed so far
have not had significant proven success for performance prediction of parallel programs. Except for
models restricted to simple fork-join task graphs, these models have required complex solution
techniques as well as the assumption of exponential task times for analytical tractability; neverthe-
less, neither the efficiency nor the accuracy of these models has been demonstrated for actual pro-
grams. In fact, we believe that the limited success of these models is inherently due to the non-
deterministic assumption, and more specifically, due to the difficulty of predicting average syn-
chronization delays at synchronization points in the presence of non-deterministic task execution
times. The difficulty can be traced to the combinatorially large number of execution paths that are
possible for such a program. Models for arbitrary task graphs have had to take resort to Markov
chains (by assuming exponential task times) to account for all possible execution paths. Models for
fork-join programs have also required simplifying assumptions such as i.i.d. task times and
simplified task scheduling, and even in this case, the best known solution is only asymptotically

exact as the number of processors and the number of tasks per processor become large [KrW85].

In this chapter, we propose a deterministic model for parallel program performance prediction,
in which task execution times are represented as deterministic quantities. The advantage of the
deterministic assumption is that it implies a unique execution sequence for the program, and furth-
ermore the delay at each synchronization point in this sequence can be calculated as simply the
numerical maximum of the execution times of the synchronizing processes, ignoring the variance of
these execution times. Thus, we are able to develop a model that is intuitive and conceptually sim-
ple, has a solution complexity of O(N 2) for a program with N tasks (and common task scheduling
disciplines), and applies to programs with arbitrary task graphs.

The assumption of deterministic task times is motivated by the results of the previous chapter,

as we explain in Section 4.1. The deterministic model is presented in Section 4.2. First, in Section

44

4.2.1, we explain a basic form of the model that ignores communication and other resource conten-
tion costs. In Section 4.2.2, we present the complete model which incorporates these overhead costs
as well. Section 4.3 discusses some issues regarding the implementation of the model. Finally, sec-

tion 4.4 discusses issues that arise when deriving model inputs to apply the model in practice.

4.1. Motivation for a Deterministic Model

A fundamental limitation of a deterministic model is that it cannot account for the variance
introduced by non-deterministic delays due to communication and resource contention. Although
authors have cited such random delays as a primary argument for assuming non-deterministic task
times [DuB82, KrW85], the results of the previous chapter in fact motivate the use of a determinis-

tic performance model for shared-memory parallel programs, as explained below.

First, the study showed that in shared-memory programs with granularity similar to those on
current systems, the principal effect of random delays due to communication and contention is to
increase the mean execution time of each process between synchronization points, while the vari-
ance of this execution time remains essentially unaffected. This indicates it should be reasonable to
ignore the variance introduced by such delays when computing synchronization costs in a perfor-

mance prediction model.

Although the above result applies to overall process execution times, it indicates that it might
be reasonable to represent the execution times of the individual tasks as deterministic quantities as
well. In particular, this implicitly introduces the additional assumption that the sequence of task
execution times is also deterministic. However, the second key result of the previous chapter
showed that in many programs the total CPU requirement of a process in an interval between syn-
chronization points is also deterministic or close to deterministic, i.e. the CPU requirement varies
very little in different executions for a particular input. This at least indirectly indicates that this
additional assumption may also not introduce significant errors for many programs.11 Thus, in our
model, we represent each task execution time as a deterministic quantity equal to the sum of the

CPU requirements of the task and the mean total overhead experienced by the task.

11. In programs where the conclusion does not hold, i.e., if the execution time varies appreciably
across different runs, the deterministic model may nevertheless provide results about one particular
execution, as will become clear from the description of the model.

45

4.2. The Deterministic Model

Throughout this thesis, unless noted otherwise, we assume that the allocation of tasks to
processes is non-preemptive, i.e., a process executes an allocated task to completion before starting
on the next available task, if any. To simplify the description of the model we initially also assume
that only one process per processor is used during the execution of the program, as is true in many
parallel programs today. When multiple processes per processor are used, the allocation of process-
ing power to the processes or tasks must be taken into account in the model. We will discuss how

this can be done in Section 4.2.3.

The model inputs are described formally in Table 4.1. We deliberately separate the CPU
requirements from other resource usage parameters (such as demand for memory modules, intercon-
nection network resources, etc.). The number and type of the latter class of parameters will typically
vary from one system to another. In the table, we have represented the task scheduling algorithm in
the form of a scheduling function Sched (ready_task_list,p) which, given a list of ready tasks and an
idle process p, specifies which task, if any, will be executed next by process p. This definition is
very general, but it is not suitable for use as an input representation in practice. Instead, many com-
mon scheduling algorithms can be specified much more concisely to the model. We will discuss this

issue further in Section 4.3.

Table 4.1. Inputs to the Deterministic Model .

Parameter Explanation

N Number of Tasks (Task 1 is assumed to be the only task with
no predecessors)

Parents(i) List of direct predecessors for each task i, 1 i SN

T; CPU requirements for each task i, 1 <i <N

{Mij: 15 < Noaram} Resource usage parameters for each task i, 1 <i <N

Sched (ready_task_list,Idle-Proc) | Scheduling function: specifies which task from ready_task_list (if any)
is executed next by process Idle-Proc

P Number of Processors

46

Figure 4.1. The Basic Deterministic Model.

Inputs
All inputs listed in Table 3.1 except resource usage parameters {M; ;}.
Algorithm
Treman() « T, 1<i<N /* Remaining cpu requirement for task i */
Esot ¢ { Task 1} /* Set of executing tasks */
Do N times {
® next_task_done « teEgq : Tremain (1) is minimum
Delete next_task_done from Egg
e Tetapse < Tremain (NEXt_task_done) /* Interval since last task completion */
Tt < Tiotat + Telapse /* Elapsed time since start of program */
Tremain(t) <« Tremain(t) — Telapsa V te Egar
e For all immediate successors ¢ of task next_task_done
If all parents of ¢ are done
Insert ¢ in ready_task_list
e For each free process p
If Sched(ready_task_list,p) finds a task t to execute
Addtto Eset
}

Total Program Execution Time = Tigta

4.2.1. The Basic Model Ignoring Communication and Other Resource Contention Costs

For a parallel program and a fixed input data set for that program, assume that
(1) the execution times of the tasks are each deterministic and known, and
(2) all communication and contention costs and other overheads are negligible.
Then, for a particular number of processors, this program has a unique execution sequence, ie. a
unique starting and ending time for every task relative to the start of the program. Furthermore, a
simple algorithm can be used to compute this execution sequence, and thus the exact execution time
of the program. This basic algorithm is outlined in Figure 4.1. Essentially, it consists of repeating

the following four steps N times:

47

e Delete task with minimum remaining CPU requirement from E, (the set of executing
tasks)

o Update remaining time of other tasks in Ej,,

o Find any newly ready tasks and add to ready_task_list (list of ready tasks)

e For each idle process, select a ready task (if available) from ready_task_list according to

scheduling function and add it to Eg,;

The complexity of the first three steps in the algorithm is O(N P + E) because, for the first
two steps, the size of Ej,, is never greater than P 4, and for the third step, each edge in the graph
needs to be examined exactly once in the overall solution. The complexity of the fourth step, and
hence of the overall algorithm, depends on the cost of evaluating the scheduling function. For many
common scheduling functions such as typical static and dynamic task scheduling schemes (includ-
ing most of those used in the applications considered in this thesis) this cost is O(1), while some
more sophisticated functions such as some semi-static scheduling schemes may have a cost that is
O(n) for a ready-list containing n tasks. In the former case, the overall cost of computing the run-
ning time will be O(N P oy + E), for a graph with N nodes, E edges, and maximum parallelism
P ax. This follows because at most N P ay choices from the ready list need to be made in all. With
a careful implementation, the same complexity can be ensured even in some cases where the
scheduling function cost is O(n). Specifically, this will be possible in cases where it can be detected
in O(1) time that no ready task is available for a particular free process p; in such a case, at most
O(N) choices from the ready-list will have a cost that is greater than O(1), and the cost of each will
be O(P may)- In practice, we believe that the algorithm should be extremely efficient for any practi-

cal task scheduling method.

The above algorithm, namely computing the unique execution sequence for a program, is the
essence of the deterministic model. We believe that, unlike stochastic models suggested so far, this
approach is conceptually simple because it conforms well with the intuition programmers bring to
the design of parallel programs. For example, in the extreme case of an unlimited number of proces-
sors the algorithm just computes the critical path in the graph, which is essentially how program-
mers reason about program execution time. The existence of such a simple, yet exact, underlying

model is an important advantage of the deterministic approach.

Even in this basic form (i.e., ignoring overheads such as communication costs), the model can

be applied to some real programs, at least on current systems, to study issues such as load-balancing

48

and non-uniform or limited parallelism, which can influence key design questions such as task
scheduling and granularity. In Section 5.3, we will use this model to predict the running times of
two real parallel programs with complex and moderately large task graphs. (In fact, these programs
are extremely difficult if not impossible to model with previous stochastic models.) We will also
use this basic model in Chapter 7 to compare alternative program designs in one of the programs,

and to obtain significant performance improvement.

4.2.2. The Complete Model Including Overhead Costs

For a model to apply to most programs, communication, contention and other overhead costs
must also be represented. As explained in Section 4.1, we represent these costs as deterministic
quantities that are added to the deterministic CPU requirements of each task. Thus, the total task
execution times are still deterministic and, once they have been computed, the model above can be
used unchanged to compute the overall execution time of the program. The chief remaining issue
therefore is how the mean communication and contention costs should be computed and incor-

porated into the task execution times.

The most general stochastic models (described in Chapter 2) have typically computed
resource contention costs separately for each combination of tasks in execution. As explained ear-
lier, however, the number of such states in stochastic models grows exponentially with the parallel-
ism in the program. A key distinguishing feature of the deterministic model is that, unlike stochastic
models, it represents a unique execution sequence for the program on a particular input. This
sequence will contain at most N states for a program with N tasks (exactly N states if no two tasks
terminate simultaneously), where a state denotes the list of task-process pairs for all the executing
tasks. Thus, assuming an efficient system-level model, it should be possible to efficiently compute

communication and contention costs for every state.

The actual choice of system-level model used to calculate the communication and queueing
delays is strongly dependent both on the system under consideration, and perhaps also on the
required accuracy of the modeling study. Therefore, unlike many previous authors
[KME89, Mal.90, ThB86], we do not specify any particular queueing network framework to be used
at the system level. In modeling applications on the Seguent Symmetry multiprocessor, we used a
simple but highly system-specific queueing model for the bus and memory modules, incorporating a

few key features such as limits on the number of outstanding memory requests. This queueing

49

network model is described in Appendix B.

Given some model of the system, the method we use to incorporate mean delays into the cal-
culation of execution time is as follows. We assume that the system model gives the expected total
delay Tgeiqy(t,cpu_service,cur_state) experienced by task ¢ over an interval in which it receives
cpu_service units of service at its processor, when the system is in state cur_state. (In practice, only
one solution of the queueing network in state cur_state is needed to compute
Thetay(t, * - ,cur_state) for all executing tasks z.) In addition to the four steps of the basic algo-
rithm, a new step is added to the beginning of the loop (the complete algorithm is shown in Figure
4.2):

e Solve system-level model to calculate for each executing task the total delay,
T getay(t: Tremain(t), cur_state), that it would incur until it completes execution assuming no
other task completes first (i.e., assuming the system stays in state cur_state).

Note that this condition will actually be true only for the task that completes first and that task is the

one having the minimum value of Tygmgin(t) + Tetay(t, -..)- This interval is denoted Tygps. as before.

For each other task 7, we assume that the total delay experienced in this interval will be
Tge1ay(t)

T remain(®) + Teiay(t)

the remaining life of the task, if the task had been the first to complete.)12 Thus, each task ¢ will

Tremain (t)
receive an amount of CPU service equal to T, X , and Tppain (1) is updated to
1 elapse Tremain (t)+ Tdelay(t) rematt P

reflect that. Otherwise, the algorithm stays just the same as in the basic model.

TetapseX . (Intuitively, we assume that the delay would be spread uniformly over

The complexity of the full model solution depends on the cost of solving the system-level
model, usually a queueing network in which each processor (or perhaps each executing task) is
represented as one customer. Even in the latter case, the number of customers is O(Pyax). The
number of queueing centers will typically be a small constant (e.g., 5 in our model of the Sequent
bus and memory sub-system.) An MVA solution technique will suffice since only mean values of
task delays are required; furthermore approximate customized MVA has repeatedly proven

extremely accurate for queueing network analysis of multiprocessor system performance

12. “One-time” overhead costs, e.g., the cost incurred to obtain a lock on a task queue and re-
trieve a task, are not subject to this assumption. Such delays are computed only once for each task
and directly incorporated by delaying the start of the task in the execution sequence.

50

Figure 4.2. The Complete Deterministic Model Including Overheads.

Inputs
All inputs listed in Table 3.1.
Algorithm
Tromain() « T, 1<isN /* Remaining cpu requirement for task i */
Eget « {Task1} /* Set of executing tasks */
Initialize current state cur_state /* List of task-processor pairs (one per task in Eggy) */
Do N times {
° Solve system-level model to calculate Tggjay (t, Tromain (t), CState) for all executing tasks t
e next_task_done « teEgg : Tremain(t)+Tgelay(t) is minimum
Delete next_task_done from Egg
e Tetapse < Tremain(N€Xt_task_done) + Tyeiay(next_task_done)
/* Interval since last task completion*/
Tiotat < Tiotat + Telapse /* Elapsed time since start of program */
Telapse
T) — Tromain(x{ 1~ VieE
remain(remain (-Tremaln (t) + Tdelay (t)) set
/* Subtract part of Trgmain(t) completed in time Teapse */
® For all immediate successors ¢ of task nexi_task_done
If all parents of ¢ done
Insert ¢ in ready_task_list
° For each free process p
If Sched(ready_task_list,p) finds a task t to execute
Addtto Egy
Update current state cur_state /* Delete task next_task_done and
) add newly started tasks */

Total Program Execution Time = Tygya)

[AdV93, VLZ88, WiE90]. The solution complexity of approximate MVA is relatively insensitive to

the number of customers (indirectly, the number of iterations required for convergence can be

affected by the customer population). Finally, from a single solution of the queueing network, the

mean response times and thus the mean total delay Tpqy(Z,...) can be computed for all te E;,, in

time proportional to the size of E,,,, which is O(P sy). Thus, the complexity of this step is O(P max)s

i.e. it contributes O(N P) to the complexity of the overall algorithm. Thus, the overall complex-

ity is the same as for the basic model. (Exceptions to the above arguments arise only if a

non—homogeneous queueing network is used and solved using exact MVA, or if some other

51

solution technique is used that has cost greater than O(n) with n executing tasks.)

In practice, however, the system-level solution step could easily dominate the overall solution
time of the model, and reducing the number of times the system-level model must actually be
solved is invariably worthwhile. A suitable method that is often extremely effective is discussed in

Section 4.3.

Finally, a desirable and potentially useful property of the (basic or full) deterministic model is
that it gives exactly the same results whether used with the original task graph or the condensed
graph, in programs for which the condensed graph can be constructed. This is easiest to see in the
case of the basic model: when tasks are statically allocated to the processes, the execution sequence
will be exactly the same whether tasks that would be condensed into a single node are enumerated
one at a time, as with the original graph, or all together, as with the condensed graph. Since the CPU
requirements time of a node in the condensed graph is just the sum of the individual CPU require-
ments of its component tasks, the model gives identical results in both cases. With the full model,
this will continue to hold if tasks that are condensed into a single node have identical resource usage
parameters. It then follows from the above uniform delay assumption that the model will compute
the same total delay time for the interval in which a processor executes the tasks of a condensed
node, whether the tasks are specified separately in the original task graph or as a single condensed
node in the condensed graph. Our experiments with statically scheduled programs (discussed in

Section 4) have borne out these conclusions.

4.2.3. Extensions to the model for multiple processes per processor

So far we have assumed that a single process per processor is used during the execution of the
program, as is true in many parallel programs today. When multiple processes per processor are
used, the allocation of processing power to the processes must be taken into account in the model.
This will typically require system-specific modifications to the model. We use two examples to

illustrate the changes that could be required.

First, consider the case where idealized processor-sharing is used to schedule the N, processes
of the program on P < N,, processors, but processes do not relinquish the processors when accessing
other shared resources, such as for remote communication. Then, referring to Figure 4.1, the only

required change in the basic model is that the value of Tegpse is now calculated as

52

P
Eger I 9Np }

executing tasks. In the full model (Figure 4.2), in addition to this change, the solution of the

Toiapse < Tremain(next_task_done) x miu{l, g }, where |E;,| gives the number of

system-level model must also take into account that each of the P processors (customers in the
queueing network) is “simultaneously” executing multiple processes with possibly different

resource usage behavior. Otherwise, the models remain unchanged.

When processes do relinquish processors for remote communication or access to other shared
resources (note that this would only be useful if there were more processes than processors), an even
simpler modification suffices. Possible examples of such systems are multi-threaded processors
[ALK90] or parallel applications with significant I/O requirements. Representing such a program
with the model only requires modifying the system-level queueing network to represent the indivi-
dual processes instead of the processors as customers, and to include the P processors as individual
queueing centers with some appropriate scheduling discipline. Otherwise, the algorithm of Figure

4.2 remains unchanged.
4.3. Model Implementation Issues

4.3.1. Optimizations

Some care in certain aspects of model implementation can make the model solution
significantly more efficient. One fairly obvious technique for this purpose has the additional benefit
of simplifying the input representation of the task graph. Specifically, tasks with a common set of
predecessors and successors as well as common values of resource usage parameters can be
specified and operated on as a single task group. Only the task CPU requirements need be specified
and stored separately for the individual tasks in the group. This method is particularly useful for
programs with loop-based parallelism which often have very large numbers of iterations per loop,
all of which can be represented as a single task-group leading to dramatic savings in the size of the
input specification and also some savings in model solution time. For example, updating the ready-
list (step 3 or 4 in the basic or full model) only needs to be done when an entire task group com-

pletes execution.

Second, large savings in model solution time can be obtained for many programs by avoiding

unnecessary solutions of the system-level model as far as possible. Specifically, that model only

53

needs to be solved when the total number of executing tasks changes or a newly started task has dif-
ferent resource usage parameters from the task that just completed. For example, in the loop-based
programs mentioned above, large groups of tasks may have identical resource-usage requirements
and typically only one such group is executing at a time. Therefore, the number of required solu-

tions of the system-level model can be reduced by an order of magnitude or more.

4.3.2. Specifying the Task Scheduling Function

While the form of the task scheduling function in Table 4.1 is quite general, it is not appropri-
ate for use as an input specification in the implementation of the model: clearly, it is impractical to
list the values of the function Sched (ready_task_list, - +) for every combination of tasks in
ready_task_list. Instead, a common scheduling framework that includes a broad class of common
task scheduling functions is provided in the deterministic model implementation. (The framework is
based on a few simple primitives in the code, specifically, one or more task queues that together
contain all the tasks in ready_task_list, along with routines to insert or delete tasks in these task
queues.) The most common task scheduling functions including static scheduling of groups of tasks
(usually a loop) or dynamic task scheduling based on a single task-queue can be directly specified as
single command-line options. In addition, a large class of static and semi-static scheduling policies
that are also represented in the framework can be specified fairly concisely in an input file. (The
programs PSIM and DynProg described in Section 5.1.1, and the scheduling function for Locus
Route studied in Section 7.3 provide examples of such policies.) However, some types of schedul-
ing methods are inherently difficult to support in a generic model implementation. In particular, the
scheduling algorithm can involve detailed computation as part of the program, perhaps considering
many details of the input values (for example, task allocation based on the evolving spatial distribu-
tion of objects in an N-body problem). To generate the input specification of scheduling for any
task-graph based model, some portion of this computation might have to be reproduced. Whether

this is possible and how much effort is entailed would depend heavily on the specific program.

4.4. Deriving Model Inputs

Of the input parameters for the deterministic model listed in Table 4.1, the key input is the
task graph. Constructing the specification of the task graph (N and Parents (i), 1<i<N) for a pro-

gram is equivalent to reproducing the parallel control structure of the program, and can usually be

54

done from a basic understanding of the program, by carrying out little or none of the actual compu-
tation.! The control structure can be as simple as a parallel loop (i.e., a fork-join task structure) or
can be more complex as in programs with non-series-parallel task graphs. However, even for the
program with the most complex task graph we have studied, namely the program Polyroots
described in Section 5.1, it was not difficult (even without assistance from the authors of the code)

to write a script to generate the task graph by exploiting basic regularities in the graph structure.

The other inputs required for the model are the task scheduling function, the task CPU times,
and (for the full version of the model) the shared resource usage parameters. For any scheduling
algorithm, the principal question is in what form the algorithm can be specified to the model, and
the issues involved have been discussed above. The methodology used to derive the CPU times and
shared resource usage parameters will depend not only on the required precision of the experimental
results but also on the nature of the experiment. In particular, the approach to deriving these param-
eters depends on whether the model is being used to evaluate an existing program or to evaluate
potential program design changes. Below, we discuss the issues involved in obtaining model inputs

in each of these two cases.

4.4.1. Deriving Model Inputs for Evaluating an Existing Program

In current practice, performance studies most commonly focus on evaluating an existing pro-
gram on an existing system. For a given program and input, the CPU requirements of the individual
tasks, T(i),1<i <N, can be obtained by direct measurement. An advantage of our definition of a task
in Table 2.1 is that these values can be measured from a single execution of the program, and then
used for all analyses of this program for this input. The most convenient method is to measure these
values directly in software using explicit system timers or using software instrumentation tools such
as pixie and qpt [BaL92]. Note that some software timing techniques will implicitly include over-
heads due to communication or shared-resource contention, rather than purely the CPU require-
ments. Depending on the desired accuracy, this effect could be simply ignored, or some degree of
care could be used to minimize the effect during measurements (such as measuring while executing

stand-alone on 1 processor). If even greater precision is desirable, such as in our model validation

13. In exceptional cases such as parallel discrete event simulation, much of the actual computa-
tion would have to reproduced to generate the task graph.

55

experiments, these additional overheads could be estimated and subtracted from the CPU require-

ments. (The overheads can be easily estimated from the shared resource usage parameters, obtained

as described below.)

It is also desirable to be able to study the performance of a particular program on a range of
inputs, rather than a single input, and to do so efficiently. In measurement or simulation-based per-
formance tools, this typically requires a new execution for each case. A more abstract model such as
the deterministic model, however, provides greater flexibility. In particular, in algorithms where the
number of tasks and the computational requirement of each task scale as simple functions of one or
a few input parameters, it will be possible to study a range of program inputs by extrapolating from
a single set of measured task CPU times to obtain the necessary model input values for each case. A
common example occurs in parallel loops where the number of iterations and the CPU requirement
per iteration each scale as some function of one or a few input parameters. Note that it may not be
necessary for this scaling to be extremely precise. Standard algorithm analysis techniques for
sequential algorithms could be used to determine both how the CPU requirements scale, and how
accurate the scaled estimates might be. For example, the application PSIM, a multistage network
simulator, (studied in the next section) contains a number of parallel loops. The number of iterations
in each loop is proportional to K N (where K and N are the base and order of the simulated network);
the CPU requirement of each iteration is constant in some loops, while in others it is another simple
function of N and K such as N K2. Thus, once the CPU requirements for one value of N and K are
measured, the performance for other combinations of N and K can easily be studied. In fact, similar
accurate scaling of the number of tasks and the task CPU times is possible in 3 of the 5 applications

studied in the next section.

When using the full deterministic model, communication and other shared resource usage
parameters ({M; ;1<) S_Npam,,,},ISiSN) must also be obtained. The deterministic model does not
prescribe a particular set of parameters since it does not assume a particular system-level model,
thus providing flexibility in the level of detail at which communication and shared resource conten-
tion are represented. More detailed parameters can allow a more precise representation of communi-
cation behavior, but obtaining the parameter values would require greater effort. For example, on
the Sequent Symmetry, the cache miss rate alone provides useful information about the communica-
tion behavior of an application, and can be estimated directly from software by reading special

hardware counters that monitor cache misses per processor [Seq81]. Additional parameters such as

56

the fraction of misses that are satisfied by a remote cache instead of by main memory, or the frac-
tion of cache misses that require write-backs, allow a more accurate prediction of the mean response
times on cache misses, but also require more detailed measurements. An additional limitation of
using detailed system-level parameters is that the parameter values obtained typically will not gen-
eralize to other system configurations or to other systems. More abstract or high-level parameters
describing the inherent communication in the program could provide greater flexibility for predict-

ing performance across a range of system configurations.

4.4.2. Deriving Model Inputs for Studying Program Design Changes

In a parallel program performance study, it is important to be able to evaluate the effect of
program design changes or changes to the underlying system, and it is desirable to be able to do so
with as few additional measurements as possible. Whenever possible, it is especially attractive to be
able to do so before actually having to implement such changes. By using the deterministic model,
some important kinds of program or system changes can be fully or partially explored without
requiring any additional measurements (and thus without requiring the changes to be implemented).
In particular, if it is reasonable to ignore any changes in shared resource usage parameters such as
cache miss rates, then issues such as the effects of system changes on mean communication laten-
cies or the effects of changes in task scheduling (i.e, granularity and task allocation) on overall per-
formance can easily be studied without additional measurements. For example, analyzing changes
in task scheduling for a given program only requires specifying a new scheduling function, without
changing the task graph or measuring new values of the task CPU times or the task resource usage
parameters (when the latter remain approximately fixed). This predictive power of the model is
principally due to the abstract task graph representation of parallelism, together with the appropriate
identification of the tasks (i.e., conforming with the definition in Table 2.1), the separate representa-
tion of task scheduling, and the separate system-level model of shared resource usage. Even if
changes in task scheduling do effect the low-level parameters such as communication rates, it may
still be possible to study the approximate impact of such changes on load-balancing, without requir-
ing new parameter values. In Chapter 7, we provide a few examples of using the model to analyze

these various kinds of design changes.

For program or system changes that significantly affect low-level parameters such as mean

communication rates, predicting the full performance impact of such changes requires estimating or

57

measuring the new values of these parameters. In some programs, sequential algorithm analysis
techniques may provide at least rough estimates of how mean communication requirements (for
example) scale with input size and the number of processors used, and the effect of alternative
scheduling disciplines may be analyzable as well. In fact, for algorithms with simple, regular and
fixed data-reference patterns, Tsai and Agarwal have shown that it is possible to derive precise
analytical estimates of multiprocessor cache miss rates as functions of input size, cache block size,

and the number of processors [TsA93].

Finally, when using a model in early stages of the design and development of a program,
important parameter values, in particular CPU requirements and perhaps rough communication
rates, may have to be estimated or measured from partially developed code. The abstract representa-
tion of a program using tasks and a task graph should prove helpful in understanding what pieces of

the algorithm are necessary to isolate and measure.

58

Chapter 5

Comparative Evaluation of Deterministic and
Stochastic Models

In Chapter 4, we described a conceptually simple deterministic model for parallel program
performance prediction. In this chapter, we will evaluate the efficiency and accuracy of the deter-
ministic model, and compare the deterministic and stochastic approaches for parallel program per-
formance prediction. For this study, we use five shared-memory programs on a Sequent Symmetry.
The programs are described in Section 5.1, along with the methodology used for the study. Three of
the five programs have fork-join task graphs, and in Section 5.2 we use these three programs to
evaluate the full deterministic model as well as representative stochastic models, and thus to com-
pare the two approaches. The two remaining applications have more complex, non-series-parallel
task graphs, and the only previous stochastic models that apply to these programs are the three Mar-
kov chain models described in Section 2.2. However, the exponential time and space complexity of
these models make it impractical to use them to analyze these two programs. (Our results in Section
5.2 will corroborate this claim.) In contrast, the deterministic model can easily be applied to these
programs, and we do so in Section 5.3 to further demonstrate the efficiency and accuracy of this
model. In fact, these two programs have very low communication and contention overhead, at least
on the Sequent. Hence, we will apply the basic deterministic model, which ignores overheads, and

thus demonstrate that even this extremely simple model can be quite useful in practice.
5.1. Applications and Methodology Used in the Study

5.1.1. Applications

The five programs used in this study are briefly characterized in Table 5.1. The key common
features of the applications are that all five are scientific and engineering applications written for
shared-memory systems, they are written assuming one process will be used per processor during
execution, and they do not have significant /O requirements. Three of the programs (MP3D, PSIM

and Locus Route) were briefly described in Section 3, where they were used in the study of

59

Table 5.1. Applications Evaluated Using the Analytical Models.

Name Application Task Graph Task Allocation Cause(s) of
Description Structure Method Perf. Loss

Poly- Compute roots of poly- Non-series-parallel; widely Dynamic allocation Load imbalances;

roots nomial with arbitrary varying task sizes with single FIFO limited overall
precision integer coeffs. task queue parallelism

DynProg | Dynamic programming Pipelined: dynamic program- | Static round-robin Limited parallel-
algorithm for alignment ming array of numerous allocation of rows to | ism at beginning
of 2 gene sequences small but uniform tasks; processes and end

MP3D Particle simulation in Fork-join: five parallel loops | Static allocation of Cache misses;
rarefied fluid flow per iteration; one loop con- loop iterations in Load imbalances

tains more than 90% of total each loop.
work.

PSIM Multistage inter- Fork-join: two parallel Static allocation of Cache misses;
connection network phases per iteration (6 paral- loop iterations; load imbalances
simulation let loops per phase with processes “split” due to process

widely differing granulari- between different splitting
ties); barrier at the end of parallel loops
each phase

Locus Wire routing in VLSI Fork-join: two parallel Dynamic allocation Load imbalance

Route standard cells (Commer- | phases; widely varying task in each phase with due to a few large
cial quality) sizes per phase single FIFO task tasks;

queue cache misses

random delays. In this table and the description below, we discuss in a little more detail the charac-
teristics relevant to this study, particularly the task graphs, scheduling methods, and the nature of

variations in the task times.

The first program, MP3D, is taken from the SPL.ASH suite of parallel applications [SWG92].
It simulates the motion of particles in very low density fluids. The task. graph for this program is
shown in Figure 5.1(a). It is an iterative fork-join task graph with five parallel phases (parallel
loops) per iteration. In each parallel loop, chunks of 8 consecutive loop indices are always allocated
as a single unit and hence we can consider a chunk to be a single task (see Table 2.1). There are
small but significant variations in the task times in each parallel loop. The tasks are statically allo-
cated to the processes in cyclic order (one of the cases supported directly in the deterministic model

implementation).

PSIM is an interconnection network simulator written in PCP, a parallel extension of C that
supports efficient nested forking within programs [Bro88a]. PSIM is a fork-join program in which

each parallel phase consists of 6 parallel loops with no intervening barriers (Figure 5.1(b)). The

60

START START

END
(a) MP3D (One Iteration) (b) PSIM (One Iteration) (c) Locus Route
5000 particles (539 tasks) 1024-node system (10243 tasks) Circuit bnrE.grin
20000 particles (1978 tasks) 4096-node system (40963 tasks) (843 tasks)

0O () Single Tasks o
[1Group of Tasks (Shown expanded at right) % % % .

™ All precedences are downwards

END
(d) Polyroots (e) DynProg
Polynomial Degree 20 (217 Tasks) Sequence Length: 100 (1403 Tasks)
Polynomial Degree 30 (348 Tasks) Sequence Length: 500 (32003 Tasks)

Figure 5.1. Task Graph Structures of the Applications.

61

tasks of each loop, which correspond to individual loop iterations in this case, are statically allo-
cated in cyclic order to the processors that execute the loop. Two of the six loops are executed by
all processors. Of the other four loops (two pairs), one pair of loops is executed only by the even
numbered processors while the other pair is executed only by the odd numbered processors (unless,
of course, only a single processor is being used). The granularity of work per task (loop iteration) is
much larger in some loops than in others. (For example, for a particular input, we observed that the
mean task times in the six parallel loops of the second phase were 44, 677, 7, 473, 7 and 42
microseconds respectively, with very little variation around the mean within each loop.) Despite
this skew, the load is fairly well balanced on an even number of processors because the two largest
loops are executed by different sets of processors. However, because of the processor-splitting
between loops, significant performance degradation occurs when executing on an odd total number
of processors since the even numbered processors have to accomplish a larger amount of work in

this case.

Locus Route, also a SPLASH application [SWG92], is a commercial quality wire-router for
VLSI standard cells. It is a fork-join program consisting of two iterations, with each iteration ending
in a barrier (Figure 5.1 (c)). One of three levels of task granularity can be chosen by the user; we
examine the coarsest granularity, namely one wire per task, because finer levels of granularity have
poor performance on this system size. Modeling a finer level of granularity would require a larger
task graph but with otherwise the same structure, and would not be significantly more difficult. The
task CPU requirements in each iteration are highly skewed. For example, for the input circuit we
consider, most tasks require less than 10 milliseconds of execution time while a few require 100
milliseconds or more. Two scheduling options that are orthogonal to the choice of granularity are
also available in the program. For the experiments in this section, we used the dynamic task
scheduling from a single FIFO task queue. (We ignore the small costs associated with retrieving
tasks from the task queue such as contention for the task queue lock. Experiments with the next pro-
gram, Polyroots will be used to explore modeling such costs.) The other scheduling option is a
semi-static scheduling method in which geographic areas of the VLSI chip are allocated to specific
processors. We will use the deterministic model to evaluate the performance of this scheduling
option and variants thereof in some detail in Chapter 7. Finally, an important characteristic of
Locus Route is the non-deterministic nature of the CPU requirements, as observed in Section 3.3.

This effect has to be taken into account when evaluating model accuracy. The effect will be

62

quantified and discussed further when presenting the results for this program.

The remaining two programs, Polyroots and DynProg, have non-series-parallel task graphs.
Polyroots computes the roots of a polynomial with arbitrary-precision integer coefficients. The task
graph of this program is fixed for a particular input polynomial degree, and is shown in Figure
5.1(d) for a polynomial of degree 20. The tasks of Polyroots have very widely varying execution
times both within and across task groups (shown as boxes in the figure). The tasks are dynamically
scheduled using a single task queue, as in Locus Route. Scheduling overhead including contention
for the task queue lock is small in this program as well. However, by introducing an artificial delay
into the corresponding critical section, we were also able to study the accuracy of modeling lock

contention.

DynProg, uses a pipelined dynamic programming algorithm for aligning two gene seguences.
The program has a pipelined task graph (Figure 5.1(e)) with 0(G?) tasks for an input containing
two gene sequences of size G each. The tasks are quite uniform in computational costs, and are of
much smaller granularity than many of the tasks in Polyroots. All the tasks in a row of the pipe-
lined task array are allocated to the same processor; rows are statically allocated to processors in
round-robin fashion. This scheduling method was specified explicitly to the program that solves the

deterministic model.

5.1.2. Methodology For Applying the Deterministic Model

The above applications were evaluated on a 20-processor Sequent Symmetry S-81. The
methods used to derive the required input parameters for the basic and full deterministic models are
similar to those described in Section 4.4. In particular, scripts to generate the task graph for each of
the above programs were not difficult to develop with only a basic understanding of the code. The
specific scheduling functions in the programs were specified as explained above. The measurements
of task CPU requirements were made from software using the hardware microsecond timers pro-
vided on the Sequent Symmetry. To minimize bus contention during these measurements, they were
made while executing stand-alone on 1 processor. For MP3D, PSIM and Locus Route, which
have significant communication overhead, we subtracted the mean communication costs on 1 pro-
cessor from the measured CPU requirements since communication behavior including contention

would be represented separately and precisely in the full deterministic model.

63

For the applications with significant communication overhead, we used a detailed set of
system-level parameters to describe the communication behavior. These parameters are defined and
explained further in Appendix B (along with the queueing model used to compute mean response
times for communication events). To allow precise evaluation of model accuracies, the parameter
values were obtained using careful hardware measurements. Since measuring these parameters for
every task in a program is clearly impractical, we measured the average values of these parameters
over the duration of a phase and used these values for all tasks in the phase. We also assumed that
the communication behavior would stay approximately constant for 2 or more processors, but that

the behavior on 1 processor might be different.!*

Finally, the accuracy of model predictions were tested by comparing against actual measured
program execution times for each program, measured separately on different numbers of processors.
All the above measurements were made when no other user programs were actively using the sys-

tem.

5.1.3. Methodology for Evaluating and Comparing the Stochastic Models

The numerous complex heuristics used in many of the stochastic models make it impractical
to implement and explicitly evaluate every model of interest. Furthermore, the exponential time and
space complexity of the three Markov chain models (Thomasian and Bay, Mohan, and Kapelnikov
et al.) make these models impractical for realistic task graph sizes in the programs we study (see
Figure 5.1). Thus, four models were implemented and directly compared in this study: the deter-
ministic model, the Mak and Lundstrom model and two versions of the Kruskal and Weiss model,
one using estimates of the actual variance of task execution times and another assuming task times
are exponentially distributed. We refer to these models as deterministic (full or basic), ML, KW p,q1

and KW, respectively.

14. We tested this assumption for the mean communication rate in two programs (MP3D and
PSIM) on the Sequent and found it to be quite accurate for these two cases. For example, for the
dominant phase of MP3D, the values we obtained on 1, 2, 4, 6, 8, 10, 12 and 16 processors were
539, 443, 404, 418, 415, 429, 447 and 452 bus cycles respectively. Similarly, for the larger phase of
PSIM, the values obtained on 1, 4, 8 and 16 processors were 79, 75, 72 and 78 respectively.
Although this is encouraging, the assumption may be more approximate for or may not extend to
programs on larger systems.

64

Before describing the methodology used to evaluate and compare the stochastic models, it will
be useful to understand some key characteristics of the relevant models, for a few reasons. First,
these characteristics influence the methodology we used to evaluate the stochastic models. In fact,
they also show how and when we can infer important aspects of the accuracy of the three Markov
chain models from the results of the stochastic models that were directly evaluated. Finally, these
characteristics are fundamental in determining the accuracy of the various models and therefore will
be important in understanding the experimental results later in this section. Nevertheless, these

characteristics have not previously been discussed even for the individual models.

The accuracy of an overall model is determined both by the accuracy of the high-level model
component, as well as the accuracy of the low-level model component. However, as discussed in
Chapter 2, for any overall model and for any particular system, various choices of system-level
model are possible and an appropriate one can be chosen to provide the desired accuracy in the
low-level model results. The more significant differences between the various modeling approaches
lie in how the high-level behavior of tasks and processes are represented. Thus, in the discussion

below, we focus on the accuracy of the high-level model component in each model.

The accuracy of the high-level model component depends primarily on how accurately syn-
chronization costs are estimated, which in turn depends on how accurately the distribution of execu-
tion time of each process between synchronization points is modeled.'” (Note that these process
execution times are implicitly represented in each model, and not explicitly computed.) The
representation of process execution time is determined by the combination of two key factors: the
individual task execution times, and task scheduling. Thus, the accuracy of the computed synchroni-
zation costs is determined by how faithfully the combination of these two factors is represented in

the model.

The stochastic model of Kruskal and Weiss allows arbitrary variance of task times, and thus
the variance in each task’s execution time caused by communication and contention delays can be
represented precisely (if it can be estimated or measured). Nevertheless the representation of task

execution times in the model can be imprecise because the model assumes all task execution times

15. Although synchronization costs depend on the distribution of process execution time and not
just the variance, the variance is a good indicator of synchronization cost in “well-behaved” distribu-
tions, particularly when the number of processes is not extremely large. Thus, in this discussion we
use the representation of variance in these models as a measure of the accuracy of the distribution.

65

have equal mean and variance; in particular, the differences (skew) in task CPU requirements must
be stochastically represented as one component in the variance, in addition to the component due to
communication and contention delays. Furthermore, the simple representation of task scheduling
(namely, that tasks are scheduled in fixed-size batches from a single task queue) may also be impre-
cise for some programs. In fact, more detailed representations of scheduling are precluded by the
common mean and variance assumption. For example, the model cannot distinguish between dif-
ferent orderings of the same set of tasks in a task queue. Within the limitations of these assump-
tions, however, the model should be accurate because the actual variance introduced by communi-

cation and contention delays is included.

The deterministic model removes the above simpiifying assumptions and also applies to arbi-
trary task graphs by assuming deterministic instead of stochastic task times. In this model, indivi-
dual mean CPU requirements as well as individual mean overhead costs are represented precisely
(using a set of deterministic values), and task scheduling is also represented precisely, while only
the variance in the individual task times is ignored. Because it ignores the variance, the model effec-
tively assumes that the execution time of a process between synchronization points is deterministic
when computing synchronization costs. The model should be fairly accurate for programs where the

variance of execution time of each process is small, as explained in Chapter 4.

The other stochastic models also remove the assumptions of the Kruskal and Weiss model and
apply to non-fork-join programs, by assuming exponential task times for analytical tractability. The
three Markov chain models allow different mean task times, and also represent task scheduling pre-
cisely. Because of the exponential task assumption, however, they implicitly represent the execution
time of a process between synchronization points as a sequence of exponentially distributed inter-
vals. Roughly, the larger the number of tasks executed by a process in this interval, the closer to
deterministic the implicit representation of total process execution time will be. Thus, for programs
with low variance of process execution time, these exponential task models could be accurate if the

number of tasks per process is “sufficiently large”, but could be inaccurate otherwise.

The Mak and Lundstrom model is also an exponential task model and also allows unequal
mean task times but, unlike the Markov chain models, it does not consider task scheduling at all
when computing synchronization costs in the high-level model, as explained in Section 2.3. Instead,
in a parallel phase with N tasks, it computes the total phase execution time as the maximum of N

independent, exponentially distributed task residence times. Thus, the model is likely to

66

overestimate synchronization costs when N > P, as is often true. In this case (which includes all of
the examples we study), it should be more accurate to use the condensed graph as input to the Mak
and Lundstrom model than to use the original task graph, since the task scheduling would be
represented precisely when creating the condensed graph. (In any case, our experimental results dis-
cussed in Section 5.2 show that the concomitant reduction in the size of the graph is essential to be

able to solve the ML model in practice.)

Note that assuming a condensed graph eliminates the key difference between the ML model
and the three Markov chain models, namely the representation of task scheduling. Thus, these four
models should have the same accuracy when used with the condensed graph (as explained in Sec-

tion 2.3), allowing us to infer the accuracy of the three Markov chain models in this case.

To understand the accuracy of the Markov chain models when used with the original task
graph we can use the results of KW, model, at least for certain fork-join programs. (This was one
key motivation for including the KW, model in our study.) To understand for which programs
such an inference is possible, recall that two assumptions in the Kruskal and Weiss model are not
present in the Markov chain models: the simplified task scheduling and equal mean task times in a
phase. Because of the latter in particular, the variance of the exponential distribution in the KW,
model must represent.the skew in mean task execution times in addition to the variability due to
communication and contention delays. Thus, when (1) the skew in mean task execution times is
small compared to the variance of the exponential distribution, and (2) the scheduling of tasks in
KW, is a faithful representation of the actual task scheduling, the KW, model should give

results similar to the three Markov chain models.

Another advantage of including the KW, model is that it is perhaps the simplest model to
use in practice. In particular, it only requires knowledge of the mean task time across all the tasks in
a phase; it does not require the individual mean task times or the variance of task times. The results
for this model will indicate whether it is sufficient to use the exponential distribution instead of the

more detailed representations.

The inputs for the stochastic models evaluated here were derived from the inputs measured for
the deterministic model (see Section 5.1.2). The input specification required for the Mak and

Lundstrom model is essentially equivalent to that used for the Deterministic model and can be

67

easily derived from the same parameters, at least for programs with static scheduling.16 The Kruskal
and Weiss model requires estimates of [,y and 62, (the common mean and variance of task
times) in each phase of a fork-join program. We compute these for a given phase as follows. Let pic

and 6% denote the mean and variance of communication costs experienced by each task in the

phase, and let py = 717 Z::’;’ T(i). Then p,.q and 02 were calculated as g = U + e and Gag

N
= ”N_I:I— S(TE) - }LT)Z + 0%. Of the parameters in this expression, T(i) are the task CPU require-
i=1

ments measured for the deterministic model (we continue to assume that these are deterministic).
lLc was calculated using the same queueing network as used in the Deterministic model. 6%, how-
ever, is extremely difficult to estimate or measure directly, even with our available setup for direct
hardware measurements. Instead, we used the analytical model described in Chapter 3 to estimate
c% analytically (just as was done to estimate CVr)p for the study of the influence of random
delays). Recall, however, that using that model in turn required detailed hardware measurements of
the mean and variance of bus inter-request times and response-times. While we include 6% for com-
pleteness in the model validations, this term is typically much smaller than the component of Ok
used to represent the unequal values of T(i), and has a small effect on the results and accuracy of
the KW, model. This step would probably be unnecessary if the model were used in practice,

except for programs with extremely small tasks, which could have significant values of c%.)

5.2. Evaluation of Deterministic and Stochastic Models for Fork-Join Task
Graphs

In this section, we evaluate the accuracy and efficiency of the deterministic model as well as
representative stochastic models, by applying each of them to the first three programs in Figure 5.1,
i.e., the programs with fork-join task graphs. We begin by assessing the efficiency of the various
models. For these three programs and for the input sizes we used, the task graphs ranged from 539

tasks to 40963 tasks. Even for the smallest task graph, the ML model required over 56 megabytes of

16. Their model does not separately represent task CPU requirements and task scheduling; in-
stead these must be combined and specified in the form of mean resource demands for the proces-
sors, to be used in the system-level queueing network model. Except for static task scheduling algo-
rithms, these CPU resource demands would be difficult if not impossible to compute, for the same
reason that the condensed task graph is difficult or impossible to compute.

68

memory, and about 12 minutes of execution time on a workstation with sufficient memory; larger
task graphs far exceed the available memory. While some improvement may be possible with a
carefully optimized implementation, even this will quickly become impractical for larger graphs
because of the O(N?) and O(N?) time and space complexity of the algorithm. Thus, for all other
cases, the only way we were able to apply the ML model was to use the condensed task graph,
which is typically much smaller than the original graph for P < 20, the maximum number of pro-
cessors available on the Sequent Symmetry. (Recall, however, that condensing the task graph is
only possible for statically scheduled programs. We were therefore unable to apply the ML model
to evaluate Locus Route.) Finally, the models of Thomasian and Bay, Mohan, and Kapelnikov et
al are significantly more complex than the ML model. Overall, we conclude that in most cases, these
four most general stochastic models can only be applied in practice using the condensed graph as

input, and only if the condensed graph contains on the order of a hundred or fewer tasks.

In contrast to the ML model, the deterministic model proved extremely efficient for all pro-
grams to which we have applied it. Even for the task graph with 40963 tasks (the largest studied in
our work), the model could be solved in under 9 seconds on a DECstation 5000/125, and required
less than 2.6 megabytes of memory. Finally, solution efficiency is clearly not an issue for the

Kruskal and Weiss model.

The accuracy of the various models for each of the three programs are described below.

5.2.1. Results for MP3D

We consider two input sizes for MP3D: a small input size of 5000 particles, and a somewhat
more realistic input size of 20000 particles. The program has 539 tasks and 1978 tasks for these two
input sizes respectively. The condensed task graph for 16 processors has 76 tasks for either input
size (more generally, it has at most P tasks per parallel phase). The percentage errors in the
predicted execution time from each model for different values of P are given for the two input sizes
in Figure 5.2 (a) and (b) respectively.

The KW,euq model is very accurate for this application because the model scheduling
assumptions faithfully represent the static loop scheduling in MP3D, and because the variations in
task CPU requirements in each parallel phase are relatively small and can be adequately
represented, together with the variance due to communication delays, in a single common variance

parameter for each phase.

o 100.0 P Deterministic
Q ;A =---A Mak & Lundstrom
T 90.0 - i X-=--x Kruskal and Weiss
= 80.0] % ---% Kruskal and Weiss (Exponential)
& i
O -
T 70.0 I-’
] ;
& sool- i
!
50.0 — A
]
]
w00 | PR 3
r e
0.0F Pt e
[P
200 ! -
1 g
100 | ¥
o./
0.0} &=
-10.0
0 2 4 6 8 10 12 14 16
PROCESSORS
(a) Input Size: 5000 particles
o 100.0 ¢+ A=A Deterministic
Q /& --A Mak & Lundstrom
& 0.0~ j X---X Kruskal and Weiss
~ sool- ,! ¥ ---% Kruskal and Weiss (Exponential)
T 70.0 — ,.’
i ;
% s00f
$
50.0 +—]
[
40.0 "
ool |
! oY
- ¥ -
200 i ke
T S
10.0 ! e
0.0 I o= ooporen: - rprrevrersrers® T
]] |] | | | |

-10.0
0

Figure 5.2. Errors in the Predicted Running Times for Program MP3D.

8 10 12 14 16
PROCESSORS

(b) Input Size: 20000 particles

69

70

The Deterministic model is also highly accurate for MP3D, indicating that ignoring the vari-
ance due to communication delays, while representing the individual task CPU times together with
the individual mean communication delays by a set of deterministic quantities, is reasonable for this
program.

The error in these two models increases (becomes more negative) slowly with P because some
small serial portions of the program were ignored when constructing the task graph. Such factors
could be included for greater accuracy, but this may not be necessary even on larger systems if pro-

portionally larger input sizes are used.

The results for the KW ,, model are quite inaccurate for MP3D, and the comparative accu-
racy of the KW,y model shows that the error is due to the exponential task assumption. Further-
more the three Markov chain models, namely Thomasian and Bay, Mohan, and Kapelnikov et al,
will have errors very similar to the KW, model for this program. This follows because MP3D
satisfies the conditions under which these models are roughly equivalent: the scheduling in the
Kruskal and Weiss model is accurate, and the standard deviation of task CPU times (e.g., 6% of the
mean for the dominant phase with the larger input size) is much smaller than that of the exponential
distribution. Thus, the exponential task assumption is inaccurate for this application whether it
represents both variations in CPU times and variations in communication delays, or only the latter
of these two quantities. In either case, the exponential assumption overestimates the variability in
task execution times, leading to significantly higher synchronization costs, even though each pro-
cess executes a fairly large number of tasks between synchronization points (about 100 tasks per

process in the dominant phase, for the larger input size).

The pessimistic assumption of the exponential distribution is even more severe when the
models are applied to the condensed graph, as shown by the results for the ML model. Furthermore,
these results are approximately the same as would be obtained by applying the KW, model or one
of the Markov chain models to the condensed graph, as explained in Section 5.1.3.7 Thus these
results indicate that using the condensed graph to allow efficient solution of large programs may not

be a viable alternative for these exponential task models. (For ML, the error with the original graph

17. In fact, we tested this claim by using the KW ., model with the condensed graph. The error
curve we obtained was almost indistinguishable from the error curve for the ML model shown in

Figure 5.2, for both input sizes.

71

would be even higher then with the condensed graph because of the scheduling assumptions in the

model, as explained in Section 5.1.3.)

The condensed graph was also used as input to the deterministic model, and the results
obtained were identical to those from the original task graph with the same model. This corro-
borates our discussion in Section 4.2.2, where we had predicted that these results would be identical
when identical resource usage parameters are used for each set of tasks condensed into a single node

in the condensed graph, as was done in our experiments with this application.

5.2.2. Results for PSIM

We consider two input network sizes for PSIM, corresponding to 1024 and 4096 processors
respectively. The task graph contains 10243 and 40963 tasks in these two cases, with almost exactly
half in each phase. The percentage errors in the predictions for the two input sizes are shown in Fig-
are 5.3 (a) and (b).

The KWenq model is less consistently accurate for this program than for MP3D. For small
odd values of P, this model (as well as KW,;,) underestimate the execution time because the model
scheduling assumptions do not capture the unequal amounts of work allocated to the even and odd
numbered processors by processor-splitting. At larger values of P,-this error becomes small, and the
model is accurate for these input sizes. In fact, the model does not represent the scheduling pre-
cisely even at larger values of P because the scheduling in the model is oblivious of the specific task
times, whereas in the actual program, the loops with large task granularities are evenly divided
between two sets of processors to minimize load imbalance. The large common variance used to
represent the highly skewed loop granularities, combined with the oblivious task scheduling,
implies that the model could potentially predict higher load balance than in the actual program if the
number of tasks executed per process per phase were small. For the input sizes and number of pro-
cessors considered here, this number is very large and hence this source of error is not significant,

although it introduces slightly higher error in the smaller input size.

PERCENT ERROR

PERCENT ERROR

100.0 —
80.0 -
800

700 O-—0 Deterministic

A~—A Mak & Lundstrom

60.0 |- X——X Kruskal and Weiss

50.0 | ¥—3% Kruskal and Weiss (Exponential)

40.0
30.0 -
20.0
10.0

0.0
-10.0
-20.0

-30.0
0 2 4 6 8 10 12 14 16

PROCESSORS

(a) Input Size: 1024 nodes

100.0 ~
90.0 -
80.0 -

700 O——0O Deterministic

A—A Mak & Lundstrom

60.0- X—X Kruskal and Weiss

50.0+ ¥——3% Kruskal and Weiss (Exponential)

40.0
300}
20.0
100
0.0
-10.0
-20.0
-30.00

2 4 6 8 10 12 14 16
PROCESSORS

(b) Input Size: 4096 nodes

Figure 5.3. Errors in the Predicted Running Times for Program PSIM.

72

73

The KW ,, model has the same potential source of error at the larger values of P, but these are
actually smaller than in the KW, model because the variance of the exponential is even smaller
than the variance used to represent the highly skewed task times in KWcyq. Thus, in fact, the
number of tasks per process per phase is large enough to make the exponential task assumption
fairly accurate for these inputs sizes. As with KW, however, the accuracy may not be consistent

across different input sizes and different numbers of processors, for the same program.

The accuracy of the three Markov chain models cannot be directly inferred from KW, for
this program (as it could for MP3D). Qualitatively, however, we expect those models to be as accu-
rate as the KW, model because the effect of the exponential task assumption is relatively small,
due to the large number of tasks per phase. However, the large task graphs of PSIM would clearly

preclude applying the Markov chain models directly to the original graph.

The condensed graph for this application (on 16 processors) has 195 tasks. (When condensing
the graph, we accurately represent the processor-splitting scheduling method used in the program.)
However, the results of the ML model show that when the condensed graph is used, the pessimistic
assumption of exponential tasks is as severe for PSIM as it is for MP3D. As before, these results

show that using the condensed graph is not a viable option in exponential task models.

In contrast to the above models, the deterministic model is consistently accurate, yielding exe-
cution time predictions within 3 to 4% of the actual measured values. Thus, even the highly skewed
task granularities of PSIM are accurately represented (along with mean communication costs) by a
set of deterministic values. The model also accurately represents the task scheduling method. Ignor-
ing the variance due to communication delays again appears reasonable, even though this applica-
tion has relatively high communication overhead due to bus contention (e.g., bus utilization is 0.81
for the larger input size on 16 processors).

The condensed graph was also used as input to the deterministic model and, as with MP3D,

the results obtained were identical to those from the original task graph.

5.2.3. Results for Locus Route
As seen in Section 3.3, non-deterministic CPU requirements can cause the execution time of
Locus Route to vary significantly from one execution to the next, for the same input. This is illus-

trated in Figure 5.4, which gives a histogram of the measured execution times in 150 runs of Locus

74

Route on 16 processors, for the input circuit bnrE.grin. For such a program, comparing model
predictions against a single measured metric such as the mean alone will not be sufficient to provide
a complete picture of model accuracy. Thus, we compare model predictions against the range of
measured speedups, i.e., the minimum and maximum, as well as the mean. (For these comparisons
we use the absolute values of speedup, rather than percentage errors.) To compare the speedup pred-
ictions from different models, all speedup values are computed relative to the mean measured exe-
cution time on 1 processor.18 The range as well as the mean of the measured values in the following

experiments were obtained from 40 runs of the program for each number of processors.

Figure 5.5 compares the speedups predicted by the KW, KW, and Deterministic models with
the range and the mean of the measured speedups, The ML model could not be used because the
condensed task graph cannot be constructed for any of the task scheduling options implemented in
the program, since they are all dynamic scheduling disciplines. Before discussing the accuracy
results, note from the figure that the difference between maximum and minimum speedup is fairly
small for most values of P, and furthermore the mean is close to the maximum in all cases, showing
that most measured values are clustered close to the maximum speedup or minimum execution time
(just as in the histogram of Figure 5.4). Thus, comparisons against the mean would also be mean-
ingful, at least for this input, although the more complete picture provided by Figure 5.5 should not
be ignored.

The KW,.py model shows higher errors here than for the two previous applications. In this
application, skewed task times combine with the ordering of tasks to introduce a greater load imbal-
ance in the actual program than is predicted by the model using a common variance alone.
Specifically, in this input circuit, an unusually large task appears towards the end of the queue in
each iteration and thus a significant part of each iteration is spent executing this task alone. Since
the model assumes i.i.d. tasks with a common mean and variance to represent skewed task times, its
scheduling assumptions cannot distinguish different orderings of the same set of tasks (even though

the FIFO scheduling algorithm in the program is exactly equivalent to scheduling in the model with

18. The comparison is made in terms of speedups rather than execution time because the
minimum, maximum and mean execution time curves are difficult to distinguish at high values of P,
where the execution times fall near the low end of the Y-axis scale.

75

0.30 |- Measured Mean
0.25

0.20 - (Bucket width for Histogram = 0.008 s.)

RELATIVE FRACTION OF MEASURED VALUES

0.00
0.5 0.6 0.7 0.8 0.9

EXECUTION TIME (seconds)

Figure 5.4. Histogram of Execution Times in Different Runs of Locus Route.

o 180 %=k Kruskal and Weiss (Exponential)
g X Kruskal and Weiss
& 16,0} ©O=——0 Deterministic
E 01« + 00 Measured Maximum
%] @- - ~-@ Measured Mean
14.0 0 - - -3 Measured Minimum
12.0
10.0 .
8.0
6.0
4.0
2.0
0.0 A]]]]] i)]

0 2 4 6 8 10 12 14 16 18
PROCESSORS

Figure 5.5. Comparison of Predicted and Measured Speedups for Locus Route.
Input circuit: bnrE.grin

76

a batch size of 1). Thus, the mean execution time predicted by the model is significantly smaller
than observed in practice for this particular ordering of tasks. Correspondingly, the predicted speed-

ups in Figure 5.5 are significantly higher than even the maximum measured values.

The error in the KW, model arises for the same reason, and predicts speedups almost identi-
cal to the actual variance model. Thus, in this application, the exponential assumption correctly
represents the total variance due to skewed task CPU times as well as communication delays. How-
ever, the exponential assumption will have too high a variance for representing variations due to
communication delays alone. Thus the three Markov chain models would over-estimate the execu-
tion time (or underestimate the speedup) of this program, and furthermore this error would be

significant since this program has even fewer tasks per process per phase than MP3D.

Finally, the Deterministic model is quite accurate for this program compared to the mean
measured values, but this error shows an increasing trend at higher values of P. In addition, the error
compared to the most distant measured value (the minimum speedup or maximum execution time)
is somewhat higher than in the two previous programs, due to the variability in task CPU require-
ments observed in Section 3.3. Further detailed measurements in individual executions indicated
that the increasing trend in the error at higher values of P is also attributable to the variability in
CPU requirements (which arises because the task CPU requirements are sensitive to the order of
execution of tasks). For example, we measured the individual task execution times in a specific
execution on 16 processors and subtracted the measured communication costs (available from the
detailed hardware measurements used in Chapter 3). The remaining values, which correspond solely
to CPU usage, were significantly higher than the measured CPU requirements on 1 processor. Since
the latter are used as inputs to the model, the predicted execution times are low. Similar measure-
ments on 2, 8 and 18 processors showed that this effect is most significant at P=16 or P=18 but

much less significant at P=2 or P=8, matching the observed trend in the model prediction errors.

Even for such a program, however, we believe that at present the deterministic model is still
the model of choice, because of the inaccuracy and/or inefficiency of current stochastic models.
Even if, in the future, an accurate and efficient stochastic model were available that provided the
capability to represent the variability in each task’s CPU requirements, quantifying the variability in
individual task times due to factors such as sensitivity to the order of execution appears difficult.
Thus in practice, a stochastic model may not prove more useful than a deterministic model that

ignores this variability.

77

In general, if the deterministic model is being considered for use with another program having
significant variability in CPU requirements, it will be necessary to informally understand or for-
mally quantify the variability in execution times of the program so as to understand how the model
predictions compare with the actual range of execution times, before being able to draw broader
conclusions about program performance from the model predictions. For Locus Route in particu-
lar, the model predictions are sufficiently accurate (both qualitatively and quantitatively) for the
model to be potentially useful for exploring program performance issues. In fact, we use the model

in Section 7.3 to evaluate various interesting changes to this program.

5.2.4. Comments on a Previous Deterministic Model

Our comparisons above have focused on contrasting previous stochastic models with the
deterministic model developed in Section 4. We have not directly compared the most relevant pre-
vious deterministic model, namely that of Tsuei and Vernon [TsV90]. The main reason is that their
model has already been shown to be accurate for fork-join programs with good load-balance, and it
is restricted to these programs. More specifically, as explained in Section 2.4, the model assumes
that the computational work as well as communication costs and other overheads are equally
divided among the processes in each parallel loop. Therefore, although it could be applied to other

fork-join programs, it would not be accurate for programs that have significant load imbalances.

In fact, we can easily predict the accuracy of their model if it was applied to the three fork-join
programs studied above. The model would be fairly accurate for MP3D, but still slightly more
optimistic than KW,q or the Deterministic model, because the load-imbalances in this program
are small yet measurable. For PSIM, the model would require a slight extension to apply.
Specifically, to be able to accurately model the processor-splitting scheduling, the calculation of
CPU time per process per phase would have to be carried out separately for the even and odd num-
bered processes in each phase. This extension would allow the model to capture the load-imbalance
due to processor-splitting fairly accurately, even at odd values of P. Thus, this extended model
should be fairly accurate for all values of P. Finally, for Locus Route, the model would
significantly underestimate the execution time because it cannot represent the load-imbalance. In
particular, it would have larger (more negative) errors than the KW model because both models
use the same value of the common mean task time, but the KW,,,,; model also partially represents

the skew in task times using the common variance.

78

5.2.5. Comments on Previous Stochastic Bounding Techniques

We have also not directly compared the two previous stochastic bounding techniques dis-
cussed in Section 2.6. Recall that these techniques are applicable when the maximum parallelism in
the input graph is no larger than the number of processors. Thus, these techniques could be applied
using the condensed graph for MP3D and PSIM as well as for DynProg, since all three applica-

tions use static scheduling of tasks, but not for Locus Route and Polyroots.

These bounding techniques share some limitations observed for the stochastic models studied
above since they require the same or more detailed inputs as the above models. In particular, they
require the full task graph along with distribution of the individual task times. On the one hand,
when accurate (i.e., possibly unequal) individual mean task times are used, the variance of task
times only represents variations due to communication and contention delays and, in some pro-
grams, due to individual task CPU requirements as well. However, the results for the deterministic
model above, as well as the study of random delays in Chapter 3, show that the former source of
variance can be ignored without significant loss of accuracy. In any case, measuring or estimating
the variance due to either source is difficult in practice. On the other hand, when a common task
time distribution is used, as in the Kruskal and Weiss model, the results for that model show that the
accuracy of the predictions will be inconsistent across different programs as well as across different
numbers of processors and input sizes for specific programs. In addition to the above limitations
common to stochastic models, the data on the accuracy of these specific bounds previously provided
by the authors show that the tightness of the bounds can decrease with the parallelism in the input

graph and is sensitive to the specific task graph structure.

The deterministic model uses little or no more detailed information than used by these bound-
ing techniques (even when the bounds are applied using a common task time distribution, as men-
tioned above). Furthermore, the deterministic model appears consistently accurate (as our results for
the two other programs will further confirm), and is extremely efficient. Finally, it is not restricted
to statically scheduled programs. Thus, in cases where the conclusions of the random delays study
holds, the deterministic model improves significantly on the bounding techniques in many of these
respects. If an application domain arises where significant variance of individual task execution
times is possible, a stochastic model may be necessary and if the requirement of a condensed graph
can be satisfied, the bounding techniques would be a promising approach. However, further data

would still be needed to evaluate the accuracy of these techniques for actual programs.

79

5.3. Evaluation of the Deterministic Model for Programs with Complex Task-

Graphs

The two remaining programs, Polyroots and DynProg, have non-series-parallel task graphs
as explained in Section 5.1.1. The only previous general analytical models that apply to such pro-
grams are the three Markov chain models. (Although the model of Lewandowski et al. [LCB92]
does apply to DynProg, it was specifically developed for this program and is restricted to similar
pipelined programs. Hence we do not consider it here.) The former three models are too complex to
be used for these programs. Specifically, the original task graphs in these programs (ranging in size
from 217 to about 25000 tasks) are too large to apply these three models directly, as the discussion
in Section 5.2 indicated.!® Furthermore, a condensed graph is not possible for Polyroots since it is
dynamically scheduled, and the condensed graph for DynProg is almost the same as the original
graph because of the pipelined precedence constraints. Thus, it does not appear practical to use pre-

vious stochastic models to analyze these two programs.

On the other hand, the deterministic model can be used quite easily for these programs. In
fact, as explained earlier, Polyroots and DynProg have relatively low communication costs and
other overheads on the Sequent Symmetry, and we can even apply the basic deterministic model.
For the program Polyroots, having task graphs with 217 tasks and 348 tasks for two input sizes,
solving the basic deterministic model for all values of P from 1 through 16 is virtually instantane-
ous. The program DynProg has much larger task graphs: 1403 and 32003 tasks for two input sizes
studied. Even in the latter case, the basic model can be solved in about 30 seconds of execution time
on a DECstation 5000/125. In fact, this case required the longest solution time and the largest
memory capacity (about 6 megabytes) of all the deterministic model analyses presented in this
thesis. (Though PSIM has larger task graphs up to about 40000 tasks, its graphs are significantly
simpler, containing large groups of tasks with similar behavior that can be manipulated much more

efficiently, as explained in Section 4.3.)

19. For example, just the 20 tasks in the final phase of Polyroots for the smaller input size would
induce 22° states in the Markov chain at P = 20, and this portion of the state space cannot easily be
collapsed because the tasks in the phase have widely varying CPU requirements.

80

5.3.1. Results for Polyroots

The accuracy of the basic deterministic model for program Polyroots is shown in Table 5.2.
The table gives the measured and predicted execution times, as well as the percentage error in the
predictions, for each of two input sizes, namely input polynomials of degrees 20 and 30. For the
larger input size, the predicted execution times are all within 1% of the measured values. With the
smaller input size, the errors are slightly higher because the program has some small forking and
communication overheads and these are relatively more significant with the smaller input size and
greater parallelism. Overall, the results are extremely accurate and show that the basic deterministic
model precisely represents the task execution sequence of the program, i.e., the task execution times
and dynamic task scheduling.

Using this program, we conducted an additional experiment to evaluate how accurately the
full deterministic model represents contention for a shared software resource, namely the lock pro-
tecting the shared task queue in Polyroots. An important difference from the bus and memory con-
tention modeled in the previous sub-section is that very few lock accesses occur between synchroni-
zation points; thus the renewal model in Chapter 3 shows that the relative variance introduced by
lock accesses will be larger than that introduced by the numerous remote memory accesses. To
ensure that the cost of each lock access had significant mean and variance, we artificially introduced
an exponentially distributed delay into the lock holding time (the actual contention for this lock in
the program is small). The mean delay time can be specified as an argument to the program. No new
measurements of the model inputs were required because the tasks were the same, and the lock

holding times were known.

We modeled the lock as an M/M/1/~/K queue, which forms the system-level model. We
maintained a running average of the number of active processors in the execution sequence and
used this as the value of K to solve the queueing model at each step. (This contrasts with using the
instantaneous number of active processors for the Sequent bus queueing model in the previous sub-
section, and is perhaps better since the lock is accessed only at task boundaries.) At each step, the
mean lock response time was included in the mean task execution time of each task added to the set
Ege.

The predicted and measured running times on 2 through 16 processors are shown for the two
input sizes in Table 5.3 (a) and (b) respectively. The mean lock holding times used were 1, 10 or 50

milliseconds; the latter value far exceeds the execution time of many of the tasks in the program.

81

Table 5.2. Accuracy of the basic deterministic model for program Polyroots.

Para- Procs | Measured | Predicted Error
meters Time (s) Time (s) (%)
Degree 1 99.278 99.158 -0.12 %
=20 2 51.384 51.033 -0.68 %
4 27.558 27.214 -1.25 %
217 8 16.705 16.579 -0.75 %
tasks 12 11.850 11.55 25%
16 11.558 11.01 -4.8 %
Degree 1 397.95 397.62 -0.08 %
=30 2 202.51 201.66 -0.42 %
4 107.46 106.76 -0.65 %
348 8 56.44 56.21 -0.41 %
tasks 12 44.38 44.08 -0.67 %
16 31.69 31.84 +0.47 %

Table 5.3. Accuracy of deterministic model for program Polyroots with lock contention.

(a) Input Polynomial Degree 20

(b) Input Polynomial Degree 30

Lock || Procs | Measured | Predicted | Error Lock || Procs | Measured | Predicted | Error
Delay Time (s) | Time (s) (%) Delay Time (s) | Time (s) (%)
1 ms. 2 51.52 51.15 073 % 1 ms. 2 202.75 201.84 045 %
4 27.57 27.28 1.04 % 4 107.55 106.86 0.64 %
8 16.78 16.36 2.48 % 8 56.51 56.19 0.57 %
12 11.92 11.55 3.09 % 12 44.45 44.12 0.73 %
16 11.60 11.03 4.84 % 16 31.61 31.86 |-0.80%
10 ms. 2 52.67 52.55 0.23 % 10 ms. 2 204.58 203.58 0.49 %
4 28.57 28.27 1.05 % 4 108.64 107.92 0.67 %
8 17.91 17.40 2.82 % 8 57.40 57.28 0.22 %
12 13.23 12.58 4.97 % 12 45.79 44.86 2.04 %
16 13.14 12.22 7.00 % 16 33.62 32.45 347 %
50 ms. 2 59.36 59.41 -0.09 % 50 ms. 2 213.76 212.32 0.68 %
4 35.14 34.99 043 % 4 115.39 116.16 | -0.67 %
8 25.53 24.96 2.24 % 8 65.71 65.30 0.63 %
12 22.22 20.57 743 % 12 54.92 53.98 1.70 %
16 22.58 20.03 11.29% 16 44.45 42.82 3.68 %

82

Nevertheless, the model errors are again quite small, and are higher than 5% only when lock hold-
ing times are large (10 ms. or more) and total processing time is small (degree 20). Note that the
total running time of the program is substantially higher than in Table 5.2, indicating that there was

significant contention for the lock.

Table 5.4. Accuracy of the basic deterministic model for program DynProg.

Para- Procs | Measured Predicted Error
meters Time (sec) | Time (sec) (%)
Sequence 1 0.457 0.465 1.817 %
Length 2 0.237 0.236 -0.712 %
G=100 4 0.122 0.122 -0.0755 %
8 0.066 0.066 0.723 %
1403 12 0.0482 0.0472 -2.231%
tasks 16 0.0477 0.0453 -2.908 %
18 0.0464 0.0451 -2.758 %
Sequence 1 11.503 11.679 1.526 %
Length 2 5.856 5.852 -0.0803 %
G =500 4 2.939 2.941 0.0905 %
8 1.496 1.499 0.193 %
32003 12 1.008 1.017 0849 % |
tasks 16 0.773 . 0.785 1.615%
18 0.686 0.7003 2.068 %

5.3.2. Results for DynProg

For the second program, DynProg, only the accuracy of the basic deterministic model was
evaluated, using two input sizes corresponding to sequence lengths of 100 and 500. The predicted
and measured execution times, as well as the percentage errors in the predictions are listed in Table
5.4. Even though the absolute execution times are about two orders of magnitude smaller than
Polyroots, the errors are still within the range of 1-3% in all cases. These results again indicate that

the basic deterministic model is extremely accurate for programs to which it applies.

Overall, the results for these two programs show that the deterministic model can be used to

efficiently and accurately solve large and complex task graphs that are impractical to analyze using

83
previous stochastic models.

5.4. Summary of the Results

We have applied the Deterministic model as well as representative stochastic models to three
parallel programs, to compare the generality, accuracy and efficiency of the various models. We
also applied the deterministic model to two further programs that are impractical to analyze using

previous stochastic models. Our key conclusions are as follows:

1. Simple stochastic models based on i.i.d. tasks and incorporating the actual variance of task
times (such as the Kruskal and Weiss model) are extremely efficient, and are also accurate for
programs that do not exhibit large skew in task times and with task scheduling that matches the
model assumptions. However, significant errors can be introduced for programs where specific
details of task skew, task ordering and the task scheduling algorithm cannot be represented by
the simplified assumptions in the model. Furthermore, all such models are restricted to programs

with the simplest task structures [AIA90, KrW85, MaS91].

2. Stochastic models applying to more general classes of programs
[KME89, Mal.90, Moh84, ThB86], all of which assume exponentially distributed task times,
have significant and sometimes large errors. Furthermore, the models in this class appear too
inefficient to use even for programs with relatively small task graphs of a few hundred tasks.
Applying such models using a condensed task graph (when this can be constructed) does not

appear useful because the exponential assumption produces extremely high errors in this case.

3. The Deterministic model is accurate in all the programs studied here, because it accurately
represents key details of task scheduling, non-uniform task times, and average communication
costs. Ignoring the variance in task times due to communication and contention delays has little
or no perceptible impact on the model accuracy. The model is very efficient, and is easily able
to solve even task graphs with tens of thousands of tasks. Finally, it is applicable to a wide class

of programs, including programs that appear impractical to analyze using the stochastic models.

The above results provide evidence for answering a more general and fundamental question: is
a deterministic approach likely to prove more practical and widely applicable than stochastic
approaches for parallel program performance prediction? Our results show that all previous sto-

chastic models except those that are restricted to fork-join programs with simple task-scheduling are

84

inefficient, inaccurate, rather ad hoc and conceptually complex. In all cases, the complexity is
inherently produced by the stochastic representation. In contrast, the Deterministic model appears to
have to be accurate and efficient for a wide variety of programs, and it is conceptually simple to
implement and use as well. Again, the conceptual and practical simplicity is inherently due to the

deterministic task assumption.

85

Chapter 6

Comparison of Deterministic Model and Parametric Bounds

Techniques to obtain bounds on the speedup of a parallel program, as described in Chapter 2,
provide another, somewhat different, modeling approach that can also allow a programmer to gain
some insight into program performance. An important example of such techniques is the work of
Eager, Zahorjan and Lazowska [EZL89], described in Section 2.6. In general, these techniques com-
pute upper and lower bounds on speedup from simple program metrics such as average and max-
imum parallelism. Thus, these techniques are somewhat different in nature from the detailed analyt-
ical models evaluated in the previous chapter: they are intended to provide general qualitative
insights into program performance rather than detailed quantitative measures, and they are based on
a few abstract parameters describing an application rather than a detailed description such as a task
graph. Therefore, the two questions we address in this comparison are: Are these bounding tech-
niques fundamentally easier to use than a detailed model, when evaluating a parallel program? And
how much more qualitative and quantitative information is provided by a detailed model, compared

to the bounding techniques?

When applying the EZL bounds to a given task graph, the key parameter required is the aver-
age parallelism, A. Using the definition given, A can be computed as the ratio of the execution time
on 1 processor to the execution time on P 2 P nax processors (where P, denotes the maximum
parallelism). However, directly measuring the latter quantity is not possible for typical scientific and
engineering applications because Pmax at realistic input sizes is often very high (e.g., in the
thousands or more). On the other hand, computing these metrics for a particular program is no
simpler than a single solution of the basic deterministic model for that program. The information
required to compute these metrics is exactly what is required to solve the basic deterministic model,
namely knowledge of the task graph structure and the mean execution time of the tasks. (For exam-
ple, consider estimating A for the task graph of Polyroots in Figure 5.1(d).) Given this information,
the basic model of Figure 4.1 provides a simple algorithm for computing average parallelism (the

speedup at P = P 5¢) and more detailed metrics as well. Thus, obtaining the required metrics for

86

the bounds is equivalent to a single solution of the deterministic model. % Furthermore, the deter-
ministic model is efficient enough that multiple such solutions for different values of P is quite
straightforward, even for fairly large task graphs. Thus, it is not significantly more difficult to obtain
the required model inputs and solve the deterministic model multiple times (i.e. obtain precise
speedup estimates from the model) than to obtain the same inputs and solve the model once (in
order to compute the bounds). We conclude that comparable effort is required to apply the two
approaches in practice.

In the remainder of this chapter, we use examples to compare the usefulness of the two
approaches for understanding program performance. Our first example is the program Polyroots,
which is particularly interesting for a number of reasons. First, P is small (e.g., 30 for the larger
input set used earlier), making it possible to compare the two approaches over the full range 1< P <
P 1nax - Second, the program fits well with both assumptions used to derive the bounds denoted (A)in
Section 2.6. Specifically, overhead costs are very low in this program (as shown by the accuracy of
the basic deterministic model for this program in Table 5.2), and the dynamic scheduling of tasks
used in Polyroots is work-conserving. However, the processor sharing assumption for the
(A +P ax[PS) bound does not hold.

To compute the bounds, we derived the required parameter values exactly as described above.
Specifically, we used the basic deterministic model to predict the execution time, T.., of Polyroots
on P=P p,,=30 processors (P pmax is usually easy to derive by inspecting the task graph. Alterna-
tively, the deterministic model can be solved using P = N, which gives T'., as well as P 5c.) The
execution time on one processor is just the total processing requirement, T(1) = Z:zll" T(@),and A =
T(1)/T.,.. Thus, as explained above, A can be derived from a single solution of the basic determinis-

tic model ignoring communication.

20. An interesting, related measurement-based technique has been developed by Larus and imple-
mented in a tool called pp [Lar93]. His technique uses a trace of an execution of a sequential pro-
gram to detect data dependencies and CPU times for the iterations of each parailel loop in the pro-
gram, and computes the potential speedup of the program (if parallelized) on an idealized parallel
computer with an unbounded number of processors that communicate and synchronize at no cost via
a uniform-cost shared memory. Thus, his technique can be viewed as constructing a task graph by
detecting the tasks and precedences within the loops in a program (with the additional constraint of
preserving the sequential semantics of the program) and actually computing the average parallelism
of the program, if it were parallelized. In fact, the computation of the average parallelism is exactly
equivalent to the solution of the basic deterministic model on an unbounded number of processors,
since both techniques just compute the critical path in the task graph.

SPEEDUP

32

28 |-

24}~

EZL bounds (A)

EZL lower bound (A+Pmax/PS)

EZL Estimate (A)

Deterministic
O Measured

87

N=317,A=18.1, Py =30

(a) Polyroots

SPEEDUP

16

14

o 3¢ -~~ EZL Bounds (A, A+Pmax/P8), Estimate (A)
2 -~ Deterministic (wo Comm.) ,¢*
W 25}~ -— Deterministic (with Comm.) o
g O O Measured s
e
0 | | | | | | | }
24 28 32 0 4 8 12 16 20 24 28 32
PROCESSORS PROCESSORS

(b) PSIM
N = 40963, A =3407, P nax = 20480

— --- EZL Bounds P
-~ Deterministic (w/o Comm.) /%
- —— Deterministic (with Comm.) ’,_.“"
O O Measured Speedup /’

1 1 | |]] | 1

0 2 4 6 8 10 12 14 16

PROCESSORS

(c) MP3D
N =1978, A =726, P oy = 1274

Figure 6.1. Comparison of deterministic model and parametric speedup bounds.

88

In Figure 6.1 (a), we give the speedup bounds ((A) and (A +P max[PS)), the speedup estimate
which is the geometric mean of the (A) bounds, as well as the measured speedup and the actual
speedup predicted by the deterministic model (recall that the latter is theoretically exact in the
absence of communication and other overheads), for program Polyroots on the larger input size.
Although the speedup estimate from the (A) bounds is quantitatively fairly accurate for this pro-
gram, qualitatively, the estimate and bounds do not capture the most interesting aspect of program
behavior. Specifically, the actual speedup shows significant jumps for many values of P, most
noticeably from 14 to 15 processors and from 29 to 30 processors. These jumps occur because the
final phase of the program has 30 large tasks and therefore the load-balance is relatively poor at
values of P that are not submultiples of 30. In contrast to the bounds, the deterministic model
represents this phenomenon exactly. In fact, in Chapter 7, we use these insights to improve the

overall performance of the program, as well as to reduce the non-uniformity in the speedup.

We next consider the program PSIM for the larger input size (4096 nodes in the simulated
network). This program has much higher values of P, and A: 4096 and 3407 respectively. Furth-
ermore, it violates both basic assumptions used to derive the bounds because it has significant bus
contention overhead and it uses static scheduling of tasks which is not work-conserving. Thus,
PSIM differs from Polyroots in all these respects. To apply the bounds, we estimated A by using

the basic deterministic model (i.e., ignoring overheads), just as for F’Olyroots.21

In Figure 6.1 (b), we give the (A) and (A +P 1x[PS) bounds, the (A) estimate, the measured
speedup, the speedup if communication were absent (predicted by the basic deterministic model), as
well as the predicted speedup including communication. The first point of interest in the figure is
that, since P<A, the (A) bounds and estimate as well as the (A+P 1ax]PS) bound all indicate
almost-linear speedups, and the only information they provide is that there is sufficient available
parallelism in the program for near-perfect speedups, if the parallélism can be efficiently exploited
during execution. These are fairly severe limitations because many scientific and engineering appli-

cations will have AP in systems of practical interest. (For example, the corresponding results for

21. Note that the overhead costs cannot be included in the speedup bounds by including them
when estimating A for this program (e.g., by using the full deterministic model to compute T, in-
stead of the basic model). This is because the communication and contention costs on Py = 3407
processors would be prohibitively high, even on a more scalable system of the near future. Thus,
such a value of A is not likely to provide meaningful bounds.

89

MP3D below show the same limitations.) Quantitatively, in fact, even the speedup that would be
obtained if communication were absent lies significantly lower than the lower bound because of the
non-work-conserving scheduling of the tasks. The true speedup (including communication costs) is
lower still, as shown by the deterministic model as well as the measured values for P € 16, Qualita-
tively, the bounds and speedup estimate cannot represent the non-uniform speedup curve caused by
the higher load-imbalance at odd numbers of processors, whereas the deterministic model captures
it very accurately. Another important qualitative conclusion shown by the full deterministic model,
which cannot be obtained from the bounds, is that application speedup would be severely limited by

bus contention overhead with a greater number of processors on this system.

The corresponding curves for MP3D with the larger input size, given in Figure 6.1 (c), show
results similar to those obtained for PSIM: the (A) bounds predict almost perfect speedup due to
high available parallelism in this program, since A = 726>P. Like PSIM, this program is also stati-
cally scheduled, but the predicted speedup ignoring communication, which falls within the bounds,
shows that the static task allocation achieves good load balance for these values of P, i.e. the appli-
cation is able to exploit the available parallelism well. The detailed model including communica-
tion, however, shows a small but perceptible loss in speedup due to communication costs, and this

is corroborated by the measured values of speedup.

The results above show that with very similar effort to that required to calculate A, exact esti-
mates of the speedup can be obtained using the deterministic model. The exact estimates provide
important qualitative information not available from the bounds, and are quantitatively more accu-
rate. Furthermore, the bounds do not hold for statically scheduled programs (and other non-work-
conserving disciplines), programs in which contention overheads are significant, or programs that
have different task graphs for different values of P, whereas the deterministic model is applicable in

all these cases.

In the remaining two applications, Locus Route and DynProg, the predicted speedups from
the deterministic model do not provide significantly greater insight than the bounds and estimate,
although they are quantitatively more accurate. Both applications have relatively low values of A,
comparable to available values of P, at least for the small input sizes considered here. The predicted
and measured speedups and bounds are given in Figures 6.1 (d) and (e). In Locus Route, there is
low average parallelism due to the large disparity in task times, and this is manifested in a low value

of A<P ,x and a correspondingly low lower-bound on speedup. The poor ordering of tasks in the

90

a 1601 --- EZL Bounds (A) % o 16 --- EZL Bounds (A) L
2 EZL Estimate (A) o 2 ~v= EZL Estimate (A) ot
ﬂ 140 -~ Deterministic (w/o Comm.) .* ﬁ 14} -— Deterministic S .
% —— Deterministic (with Comm.)” [O O Measured Ry
’ o . a
120}- © © Measured (Mean) i .
10.0
8.0
6.0
4.0
2.0
0.0]] |]] ! |] 0 ! !]]] []]
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
PROCESSORS PROCESSORS
(d) Locus Route (e) DynProg
N =843,A =214, P =420 N =32003, A =50.6, P, =500

Figure 6.1. Comparison of deterministic model and parametric speedup bounds (continued).

task queue (see Section 5.2.3) causes the actual speedups to lie close to the lower-bound. (The
bounds roughly hold because the dynamic scheduling is work-conserving and communication over-
heads are small.) In DynProg, there is somewhat low available parallelism due to the pipelined pre-
cedence constraints, which is manifested in A <P . and a somewhat low lower bound on speedup.
The predicted speedups show, however, that the static scheduling, though not work-conserving,

achieves a good load-balance at these values of P, and this is confirmed by the measured speedups.

The bounds of Eager, Zahorjan and Lazowska discussed above consider only the average
parallelism and sometimes the maximum parallelism. The above results show that these simple
metrics are insufficient to capture many interesting details of program behavior. It is relevant there-
fore to ask whether bounds or estimates based on more detailed information, but still much less than
the full task graph, can provide better insight. One detailed representation of the parallelism in a
program is the parallelism profile, {fir1 i < Ppac }, where f; is defined as the fraction of time that
i processors are active in an execution on an unbounded number of processors. Given the parallel-
ism profile, an estimate for the speedup may be obtained by assuming that (informally) each “level”

of fixed parallelism in the graph must complete before the next level can begin. This leads to the

following estimate for speedup:

91

o 32 --- EZLbounds(A) o 320~ -~ Parallelism Profile)
2 — Deterministic 2 --- Deterministic (w/o Comm.) /‘I
W 28~ -- Parallelism Profile W 2p0f- — Deterministic (with Gomm.) - .*
@ g O O Measured o

24}

] |] | | 1] |

0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
PROCESSORS PROCESSORS
(a) Polyroots (b) PSIM
N=317,A=18.1, Py =30 N =10243, A =871, Ppax = 5120

Figure 6.2. Speedup estimate based on full parallelism profile.

T(1) _ A
P T Pom
T X Y f;[i/P] Y f; [i/P]
i=1

i=1

Speedup(P) =

(This estimate often may be pessimistic compared to work-conserving task scheduling disciplines,
but it is not a lower bound even for such disciplines.) Now, the parallelism profile is directly avail-
able from the same solution of the deterministic model used above to compute T.. and, therefrom,
A. Thus, this more detailed estimate can be computed with essentially the same effort as the EZL
bounds. To compare the information obtained from the two approaches, Figure 6.2 (a) shows the
speedup estimate from the parallelism profile of Polyroots, as well as the EZL bounds and the
actual speedup predicted by the deterministic model. The non-uniform speedup behavior is reflected
clearly in the estimate because the leftover tasks at values of P that are not submultiples of Py,
which lead to poor load balance in the final phase, are represented in the scheduling scenario used to
derive the estimate. Thus, by using more detailed parameters, this estimate can provide more infor-
mation and insight into program behavior than the bounds based on simpler parallelism parameters.
A similar comparison for the program PSIM (Figure 6.2 (b)) shows, however, that the estimate is

unable to capture the non-uniform speedup behavior or the loss in speedup due to load imbalance in

92

this program, both of which are caused by the non-work-conserving task scheduling method,
namely processor-splitting. The estimate obviously also cannot capture resource contention over-
heads. In fact, as with the EZL bounds shown in Figure 6.1 (b), the estimate provides little informa-
tion when P<A. Thus, the estimate does not alleviate some of the most significant limitations of
these bounds. In general, the estimate based on more detailed parallelism information can provide
better insight into program performance in programs where the simpler bounds are applicable, but it

does not significantly extend the class of programs to which these techniques apply.

To conclude this Chapter, we discuss another aspect of the relationship between the deter-
ministic model and the work of Eager et al. and others. In their paper, Eager et al. show that the
average parallelism can also be useful for making scheduling decisions in a multiprogrammed paral-
lel system. For example, they show that allocating A processors to a program achieves a good
compromise in the tradeoff between the speedup and the efficiency of the program. In a later study,
Sevcik argues that in a multiprogrammed parallel system under moderate to high load, better perfor-
mance is possible if scheduling decisions are based not only on A but also on one or more additional
parameters such as maximum parallelism, variance of parallelism and offered system load [Sev89].
We observe that the deterministic model provides an efficient technique for obtaining these various
parameters for a particular program. In fact, all these parameters can be derived from the same solu-
tion of the deterministic model used above for calculating A. Specifically, as noted above the paral-
lelism profile of the application is derived as part of that solution, and all parameters of interest can
be easily derived from this profile including the minimum, maximum, average and variance of
parallelism, and the fractions of work in sequential and maximum parallel phases [Sev89]. Thus, if
these scheduling results were to be used in practice, the deterministic model provides a practical

means of obtaining the necessary parameters.

93

Chapter 7

Example Applications of the Deterministic Model

The results of the two previous chapters show that the deterministic model provides an accu-
rate and efficient technique to predict program performance from a task-graph based description of
the parallelism, scheduling and communication in the program. We argued earlier (Chapter 2) that
the task-graph abstraction can be useful for exploring and understanding many program perfor-
mance issues. In this Chapter, we illustrate how the task-graph based deterministic model can be
used to examine several design issues for some of the programs studied in the previous chapters,
specifically Polyroots, PSIM and Locus Route. For each of these programs, insight obtained by
using the model led to one or more suggested program design changes. After implementing the

changes for two of the programs, the performance improvement predicted by the model was borne

out in each case.

7.1. Evaluating Possible Changes to Polyroots

The speedup curves for Polyroots in Figure 6.1 (a) showed that the speedup of this applica-
tion is substantially less than linear, and is also non-uniform and can be particularly poor at some
values of P. To gain some insight into the program in a specific instance, Figure 7.1 shows the exe-
cution profile of the program (i.e., the instantaneous number of active processors as a function of
time during an execution) when executing on 24 processors. This profile is directly available from
the deterministic model solution. In the figure, the fluctuating parallelism seen in initial phases of
the execution is due to the small tasks and numerous precedences in the corresponding portions of
the task graph. (The task graph for this input size is similar in structure to that shown in Figure 5.1
(d).) The final phase of program execution begins about 10.3 seconds after the start of the program.
This phase, corresponding to the lowermost box in Figure 5.1(d), is a single parallel loop beginning
and ending in a barrier, and containing P,y large and non-uniform tasks. The execution profile
shows that there is sufficient parallelism in the initial half of the execution of this phase but much

lower parallelism in the entire second half, thus indicating poor load-balance during the execution

of the phase.

9

24 ;

20

16

BUSY PROCESSORS

12

0 !] i]]
0.0 5.0 10.0 15,0 200 250 300
TIME (seconds)

Figure 7.1. Execution profile showing number of busy processors over time for Polyroots.

Input polynomial degree 30: N =317, P, =30, P =24.

To explore this imbalance further (and to illustrate the detailed task- and process-level infor-
mation available from the model), Figure 7.2 (a) shows timelines of execution for each process; a
continuous band of a fixed shade represents the execution of a single task by the corresponding pro-
cess. The figure shows that the load imbalance arises because of the large, irregular granularity and
relatively small parallelism. A closer inspection also shows that the two longest tasks in the phase
(the last task each for processes 23 and 18) are among the last to begin execution, thus exacerbating
the load-imbalance. Recall that the program uses a single shared task queue to store and allocate the
tasks; the timelines show that the two largest tasks in fact appear towards the end of the queue. This
immediately suggests that one simple improvement would be to place the largest task, which is
trivial to identify, at the head of the task queue. However, if all task processing times in the phase
were somehow known during program execution, better performance might be possible if tasks
were picked off the task-queue in decreasing order of execution time. In fact, this heuristic, called
the Longest Processing Time (or LPT) rule, is optimal (among non-preemptive schedules) when
there are at most twice as many tasks as processors, and in the general case its execution time is

bounded to within 1% of that of the optimal schedule among non-preemptive schedules [HoS84].

95

0.0 10.0 20.0 30.0

TIME (seconds)
(a) Original ordering of tasks

“NOHODNROON

0.0 1(;.0 2(;.0 30.0
TIME (seconds)

(b) LPT ordering of tasks in final phase

Figure 7.2. Process timelines showing individual task executions for Polyroots.

Input polynomial degree 30: N =317, Py =30, P =24.

96

o 2 -~ LPT Task Order (Model) o 161 -~ LPT Task Order (Model)
8 -~ Largest Task at Head of Queue (Model) 8 -~~~ Approx. LPT Task Order (Model)
W o2g}- — Qriginal Program (Model) ﬁ 14} A A Approx. LPT Task Order (Measureg)
% % — Original Program (Model)
241 12}- © O Original Program (Measured)
20
16 I~
12—
8 -
44+
0 I I ! !] 1] i 0) ! ! 1]] L1
0 4 8 12 16 20 24 28 32 0 2 4 6 8 10 12 14 16
PROCESSORS PROCESSORS
(a) Improvement predicted by the model (b) Measured improvement

Figure 7.3. Effe_ct of reordering tasks in the final phase of program polyroots.

It should be clear that the deterministic model can easily be used to predict the effect of these
two changes, and compare them to the original program. Observe that all three use dynamic
scheduling from a single task queue, and only the ordering of tasks in the queue is different in the
three alternatives. Thus, we can use the model to predict the execution time in each case simply by
specifying the input values of T(i) in the appropriate order. First, to re-examine the case studied ear-
lier, Figure 7.2 (b) shows the new process timelines with the LPT rule, as predicted by the model.
The figure shows that the overall execution time drops from 30 to about 25 seconds. Thus, the
improvement is significant, at least for P = 24. To determine the effect on execution times at other
values of P, the predicted speedups with the LPT order are shown in Figure 7.3 (a). The figure also
shows the predicted speedup with the simpler heuristic of placing the largest of the tasks first in the
queue. This graph shows that the simpler heuristic would yield a small though useful improvement
for P > 16, but executing the tasks in the LPT order would yield a more significant improvement in
speedup over a wide range of P. These results indicate that it could be worthwhile to attempt to
implement the LPT heuristic in the program.

In fact, the LPT order can be approximated in the program with very little additional computa-

tion at the start of the phase. Each task in this final phase executes a binary search on an interval of

the real line; the two largest tasks correspond to the unbounded intervals at either end. We inserted

97

sequential code at the start of the phase to sort the tasks in decreasing order of the corresponding
interval lengths. The new task order obtained is not exactly in decreasing order of execution time;
we therefore call it the Approximate LPT order. We measured the execution time of this modified
program for 1 < P < 16 on the Sequent Symmetry. We also used the deterministic model to predict
the execution time with the approximate LPT order (simply by ordering the input data to the model
in the appropriate sequence, determined from the modified program). In Figure 7.3 (b), we compare
the predicted speedup for LPT with the predicted and measured speedups for the Approximate LPT
task order as well as the original program. (Note that we have truncated the axes to P < 16, com-
pared to the graph in (a).) The figure shows that the simple approximation to LPT was able to real-
ize almost the full improvement possible with LPT. More important in the context of this work, the
model was able to provide insight into a performance bottleneck, accurately predict the performance
impact of the various modifications, and correctly predict that it could be worthwhile to attempt the
full task reordering. This is possible because of the precision with which the deterministic model
represents task ordering and scheduling behavior, and the accuracy with which it computes syn-

chronization costs in the program.

Improving the load balance in this phase could also be possible with a finer granularity of
parallelization, but this would require modifications to the algorithm. Alternatively, this might also
be possible with preemptive scheduling of tasks. For example, potentially higher and also more uni-
form speedup would be obtained if the processing power is allocated to the tasks using processor
sharing (i.e., idealized round-robin task scheduling). In this case, for any number of processors, the
execution time would be independent of the order in which tasks appear in the task queue since,
effectively, all parallel tasks would be served “simultaneously”. With system support this could be
approximated by using P, processes to execute the program, and system-level round-robin
scheduling to schedule the processes on P < Py processors. Again, we can use the deterministic
model to predict the speedup achievable with this method, using the simple modifications to the
model for processor sharing described at the end of Section 4.2. These model predictions indicate
the available potential for improvement; in practice, additional overheads due to context switching
and cache interference between the multiple processes sharing a processor would reduce the actual

performance improvement obtained.

Figure 7.4 compares the predicted speedup for Polyroots using processor sharing with the

speedup of the original program (FIFO scheduling). With processor sharing, the speedup improves

98

o 92r --- Proc. Sharing (Model)
2 -~- Approx. LPT Task Order (Model)
W 28 — Original Program (Model)
&
24—

! l ! | —
0 4 8 12 16 20 24 28 32
PROCESSORS

Figure 7.4. Processor sharing using P processes in program polyroots.

for all P < 30, but the predicted improvement is significantly higher than the Approximate LPT task
order only for a few values of P (e.g., 14 and 29). In practice, of course, the overheads incurred in
any system that provides processor sharing of tasks will not be negligible. Nevertheless, these

results further demonstrate the modeling power of the task-graph-based analytical model.

It is also interesting to compare the predicted speedup to the processor sharing (A+P maxPS)
bounds of Eager et al, and we show these curves in Figure 7.4 as well. The lower bound is much
closer to the actual speedup in this case. Also, the bounds provide more accurate qualitative insight
into the smooth speedup behavior of processor sharing than into the non-smooth performance of

FIFO task scheduling.

7.2. Evaluating a Possible Design Change to PSIM

The speedup curve for PSIM in Figure 6.2 showed that the application has a speedup of about
13.5 at P = 16, and fairly poor speedups at small odd values of P. To analyze these results further,
Figure 7.5 shows the three principal components of lost CPU cycles in this program for different
values of P, as predicted by the deterministic model. Each bar shows the average fraction of execu-
tion time lost to communication (the components due to latency and bus contention are shown

separately) and to idle time, each averaged across all the processors. The high average parallelism,

99

1.0

[ide

& Bus+Memory Contention
0.8 B __Bus+Memory Latency

FRACTION OF EXECUTION TIME
=)
(5.}

PROCESSORS

Figure 7.5. Sources of inefficiency in PSIM with processor-splitting task scheduling.
Input: 4096 node system; N = 40963, A = 3407

as well as the lower idle fraction at P = 16 than at P = 3, indicates that the idle cycles are caused by
load-imbalance rather than insufficient parallelism. This is confirmed in Figure 7.6 (a), which gives
predicted timelines of process execution in two cases, namely P = 3 and P = 16. In this graph, each
interval of fixed shade represents the execution of a set of tasks belonging to a single loop (recall
that each parallel phase of the program contains 6 parallel loops). The load-imbalance due to the
processor-splitting scheduling method (which schedules different sets of loops on even and odd
numbered processors in each phase) can be clearly seen for P = 3. More unexpectedly, there is also
some load-imbalance in the second phase of the program at P=16: even though the same number of
processors are assigned to every loop, the two sets of loops for even and odd numbered processors

appear to contain unequal amounts of work.

PROCESS NUMBER

PROCESS NUMBER

w

]

-

100

s

PROCESS N

0.0

0.0

Figure 7.6. Process timelines showing executions of task groups in PSIM.

1.0 2.0 3.0 4.0 5.0 OfO 0f2 034 O!G 0.8 1.0
TIME (seconds) TIME (seconds)
(a) Processor-splitting task scheduling
1.0 2.0 3.0 4.0 5.0 0!0 0f2 0,4 036 0.8 1.0
TIME (seconds) TIME (seconds)
(b) No processor-splitting

101

o 161 -~ No Processor-Spilitting (Model)

8 A A No Processor-8Splitting (Measured)
L -—— Original Program (Model) A
% O O Original Pgm (Measured) X A

]]]] |] | |
0 2 4 6 8 10 12 14 16
PROCESSORS

Figure 7.7. Improvement in speedup of PSIM without splitting processors between loops.

Since the tasks within each loop have approximately equal work, the load-imbalance should
be smaller if, instead of splitting the processors between loops, the iterations of each loop were stat-
ically scheduled across all processors. The deterministic model can again be used to predict the exe-
cution times that would be obtained in this case. The predicted process timelines with no processor
splitting for P = 3 and P = 16 are shown in Figure 7.6 (b). They show that this ordinary form of
static loop scheduling achieves good load balance, at least at these values of P, with only slight
imbalance in the first phase at P = 16. We also modified the program code to eliminate processor-
splitting and directly measured the new execution times. In Figure 7.7, we compare the predicted
and measured speedups for the original as well as the new scheduling method. The predicted
improvement in speedup is about 5.5% for even values of P, and as high as 40% for P=3. Once
again, the deterministic model was able to accurately predict the achievable performance improve-
ment: the graph shows that predicted performance with the suggested design change is very close to
the performance attained by the subsequently modified code. We also used the deterministic model
to examine dynamic scheduling of the loop iterations (ignoring any scheduling overhead such lock-
ing the index variables), but the predicted further improvement was negligible. Examining the com-
ponents of lost CPU cycles with the new scheduling (Figure 7.8), we see that the lost cycles are now

almost entirely due to communication overhead, including significant bus contention.

102

1.0
[idie

Bus+Memory Contention

0.8 B Bus+Memory Latency

0.2

FRACTION OF EXECUTION TIME
=
o

NUMBER OF PROCESSORS

Figure 7.8. Sources of inefficiency in PSIM without processor-splitting.
Input: 4096 node system; N = 40963, A = 3407

7.3. Evaluating Communication Locality-and Load Balancing in Locus Route

In some applications, a trade-off must be made between locality of communication and load-
balancing of computational work: careful static task allocations can enhance locality but may cause
load-imbalance, while dynamic scheduling can provide better load-balance but may reduce the
locality of communication. Evaluating such design choices requires considering both effects. The
deterministic model can predict communication costs in a program accurately, given the appropriate
parameters such as cache miss rates. Unfortunately, when studying possible modifications to a
scheduling algorithm and their impact on communication, predicting the effect of the modified
scheduling on parameters such as cache miss rates can be difficult. Thus, in general, it may be
necessary to measure these parameters, which in turn requires implementing the modified code. In
fact, however, the deterministic model can be used a priori to obtain at least some task and process
level information about communication locality, and thus to explore design choices that influence

locality as well as load-balancing.

103

The VLSI wire routing program, Locus Route, requires a dynamic load balancing strategy
because of the widely varying execution times of the individual tasks. However, two or more
processes routing wires through overlapping regions of the chip must read and intermittently update
common portions of the cost-array data structure, and this is the principal source of remote com-
munication (cache misses) in the program [SWG92]. To reduce this communication requirement,
Locus Route provides a semi-static task scheduling option called geographic scheduling in which
separate task queues are maintained for tasks corresponding to wires in different regions of the chip.
The underlying principle is to enhance processor locality of data access by allocating only one or
perhaps a few processes per task queve. The chip is divided into a number of regions of equal area,
with one task queue used for each region, and each wire placed in the task queue of the region con-
taining its leftmost pin.22 In each iteration, each processor is initially assigned to a single queue. To
reduce load imbalance, a process takes tasks from another queue once its own queue becomes

empty, choosing a queue with the fewest number of processors assigned to it.

Figure 7.9 (a) compares the predicted speedups of geographic scheduling and dynamic
scheduling from a single task queue for the same input as before (bnrE.grin) on the Sequent Sym-
metry, using measured values of the communication parameters for each case, as in the experiments
in Chapter 5. (For comparison, the figure also shows the speedup of the static form of geographic
scheduling, i.e, where a process stays idle after completing its allocated tasks. To predict the
speedup in this case, the measured communication parameters for geographic scheduling were used,
since the static form is not actually implemented in the code. As expected, this scheduling method
has poor performance due to extremely poor load balance.) The two dynamic policies have very
similar speedups (measured as well as predicted), in part because the latency of communication on
the Sequent system is relatively low and hence only a small fraction (about 4-5%) of execution time
is lost to communication in each case. On systems with higher communication latencies relative to

CPU speed, however, higher locality is likely to be more significant.

To explore to what extent this locality is compromised by the need for processes to switch

task queues to preserve the load-balance, we used the model to compute how the average number of

22. Since long wires can span multiple regions, processes working on different queues will still
need to share data. Computing regions to ensure non-overlapping data access, even if possible,
would require much more sophisticated computation.

104

o 16 ¢ ---© Dynamic Scheduling (Single Task Queue) - 16— --- Geographic Scheduling
8 A---A Geographic Scheduling O 15 Static Geographic Scheduling
14| X---X Static Geographic Scheduling @ ul-
o @ 13
@ :
12 tw 121~
a 11—
10} =d o 10
N P @ oL
8 A,.&‘ o 8 ¢ §
P il ¢ t
R a 7 4 by
61 & 61— {in i
Z Ml -
A;A X 5 [::"‘ : '::
a}- ya T S 4} Sl ;o
ﬂ’ N.“x“.w,.,x Meveresse3 3l : 1 :]
VAt v : M 1
2k A 2k 5 ITEUN
e P) TR Lo A EX oV SORULRNY WO, X
0]]] !]] |] 0 |]] |]
0 2 4 6 8 10 12 14 16 0.00 0.20 0.40 0.60 0.80 1.00
PROCESSORS TIME
(a) Speedups (b) Processes per region during an execution (P = 16)

Figure 7.9. Predicted impact of dynamic, semi-static and static scheduling in Locus Route.

active processes per active region changes over the interval of execution of the program. Figure 7.9
(b) plots this average as a function of time in an execution on 16 processors, using 16 regions for
geographic scheduling. (The pair of points on each curve mark the end of the first and second itera-
tions of the program.) In the static form of geographic scheduling, exactly one process works on
each region throughout the execution. In the actual (i.e., non-static) geographic scheduling, how-
ever, the average changes as processes switch from empty to non-empty queues. (An increasing step
in the figure indicates either that a process switched queues, joining a region that already had one or
more processes working on it, or that the last process working on a region became idle, thus
decreasing the number of active regions. A decreasing step indicates that a process became idle
while at least one other process still had an unfinished task for the region.) The figure shows that
some processes complete their allocated tasks and have to switch queues early in each iteration,
indicating the some task queues contain relatively little work. For a substantial portion of each itera-
tion, the average number of active processes per region is fairly large, indicating that a few queues
contain a large fraction of the total work. Thus, the key conclusion from this figure is that an unbal-
anced initial division of work, i.e., causing some regions to contain much more work than others,

could significantly compromise the processor locality of communication.

105

» 16 --- Equal-Area Geographic Scheduling a 16 —O—O0 Balanced Geographic Scheduling
Q - Balanced Geographic Scheduling 8 & ---& Dynamic Scheduling (Single Task Queue)
8 4l Static Geographic Scheduling W ypa--a Geographic Scheduling
c ¥ a4} X i i i
p % XX Static Geographic Scheduling
E 12 12 -
i
0w 10p
73]
L
(8]
o]
o
o
0 ! 0 '
0.00 0.20 0.40 0.60 0.80 1.00 0 2 4 6 8 10 12 14 16
TIME PROCESSORS
(a) Speedups (b) Processes per region during an execution (P = 16)

Figure 7.10. Predicted impact of balancing work across task queues with semi-static scheduling.

The above results suggest using a more balanced initial division of the chip into spatial
regions. We used the deterministic model to study one hypothetical division of this type, in order to
evaluate the possible effect on locality. To restrict the division to be based on information available
to the program, we used the area of the bounding box of each wire (the smallest rectangle contain-
ing it) as a measure of the work required for the wire [SWG92]. We then divided the chip into rec-
tangular regions containing approximately equal amounts of work, still using the leftmost pin of a
wire to define its “location” on the chip. The division is approximate mainly because of the artificial
restriction to rectangular regions, assumed in order to simplify the computation required to do the
division. By specifying the new allocation of tasks to queues, the model can once again be used to
predict the detailed evolution of the average number of processes per region with this new alloca-
tion. (For the low-level communication parameters, we used the values measured earlier for geo-
graphic scheduling. These could not be directly measured since the study was done entirely without
modifying the program.) Figure 7.10 (a) compares this average with the corresponding curve for
the original (i.e., “equal-area”) geographic scheduling, shown previously. The figure shows that the
improved division of tasks significantly reduces the length of time for which the average is greater
than one and also significantly reduces the average number of processes per queue over substantial

intervals of the program. Together, these curves indicate that the more equitable, yet simple, initial

106

division of tasks should enhance the processor locality in the program.

We also found using the model that a balanced initial division of tasks among task queues
incidentally tends to improve the overall load balance in the program, in addition to any improve-
ment due to better communication locality. For example, ignoring the change in communication
locality (since new values of the communication parameters are not available), Figure 7.10 (b) com-
pares the speedups for the balanced geographic scheduling with those for the other scheduling alter-
natives shown earlier. (The communication parameters for equal-area geographic scheduling were
used for the balanced geographic scheduling.) The figure shows that the balanced method has
slightly higher speedups than the original geographic scheduling. This improvement is due to due to
a slightly better order of execution of the wires. For example, on 16 processors, Figure 7.10 (a)
shows that all but one of the tasks in each iteration complete well before the end of the iteration. In
general, balanced geographic scheduling has a tendency to yield slightly better load-balance than
scheduling methods that do not consider task execution times since large tasks will tend to begin
execution earlier because of having fewer tasks in their task queue, on average. However, it could
also perform significantly worse. In general, as was seen earlier in Polyroots, tasks with widely
varying granularities can make the overall execution time sensitive to the order of execution of
tasks.

The above discussion indicates that a heuristic reordering of the order of execution of tasks, as
in the case of Polyroots, might be used to reduce the execution time. Using the same estimate of
computation work as before, this can easily be combined with the balanced task allocation: after
allocating the task to the different queues, the tasks in each queue can be reordered in decreasing
order of computation work. As before, we used the deterministic model to predict the execution
times with this change. (Unlike in Polyroots we are not predicting the effect of perfect LPT order-
ing based on known task execution times, but only the approximate ordering which can be imple-
mented in the program.) Figure 7.11 (a) compares the new speedups with those for the unsorted bal-
anced method and the original scheduling methods. The figure shows that the heuristic reordering
based on approximate estimates of task execution times is successful in improving speedup, and
provides significant improvement for P > 10. Furthermore, unlike the contingent improvements in
load-balancing for the (unsorted) balanced geographic scheduling, our intuition about the benefits of
LPT ordering indicates that the performance of this heuristic should be consistent for other input

circuits as well (assuming the approximate estimates of task execution times are not less reliable).

107

16 — O—O Balanced Geographic Scheduling 16—~ - Balanced Geographic Scheduling
A---A Balanced Geographic Scheduling (Sorted Qu@es) --- Balanced Geographic Scheduling (sorted queues)
141

SPEEDUP
B
1

PROCESSES PER REG
3
i

8 ™ :l
6 :
i ;
4 i ;
o ¥
2 1 .." .
- ! 2)
0 TN NN T [N N N N 0 ! ! ! L I
0 2 4 6 8 10 12 14 16 000 020 040 060 0.80 1.00
PROCESSORS TIME
(a) Speedups (b) Processes per region during an execution (P = 16)

Figure 7.11. Predicted impact of reordering tasks with balanced semi-static scheduling.

These improvements in load balance due to reordering, however, come at the possible cost of
some decrease in locality compared to the unordered balanced geographic scheduling. Specifically,
the key effect of initially sorting the queues is to increase the likelihood that processes that com-
plete their work early will find leftover tasks in other queues. Consequently, at the end of each
iteration, we can expect the average number of processes per queue to be higher than in the unsorted
balanced case. Again, we can use the deterministic model to obtain some information about this loss
in locality by predicting the average number of active processes per active region as a function of
execution time under the reordered balanced geographic scheduling. Figure 7.11 (b) compares this
average with the curve previously given for balanced geographic scheduling. As expected, we see a
narrow spike in the former curve towards the end of each iteration. The interval over which this
number is much larger than 1 is still small, however, and thus the locality is reduced for only a
small portion of the execution time. (The figure also confirms the improved load-balance as shown
by the steep drop in the number of active processes close to the end of each iteration.) Overall, we
conclude from these results that the loss of communication locality due to the reordering of tasks is

likely to be worthwhile, given the significant improvement in load-balance predicted by the model.

In the above experiments, metrics from the deterministic model suggested a modification to

the scheduling in a program to improve locality of communication, provided some task and process

108

level information about the potential improvement in locality, suggested a further improvement in
load balancing and provided information about the consequent trade-off in locality. Thus, although
new communication parameters such as cache miss rates are difficult to obtain, the model could be
used to provide some insight into the performance impact of program design choices that affect
communiéation costs as well as load balancing. Although these results are specific to Locus Route,
semi-static scheduling using multiple tasks queues is a typical method for improving communica-
tion locality while preserving acceptable load balance. Similar experiments would be possible in
other such programs as well. In each case, however, a complete comparison of execution times
under the various design alternatives would require knowledge of their impact on cache miss rates
and other parameters describing inter-process communication. In particular, comparing such design
alternatives analytically would require analytical techniques to derive these parameters for a given
program, scheduling method and system configuration. If such techniques can be developed, the
deterministic model would provide the framework to include these techniques in a complete evalua-

tion of the above kind of program design alternatives as well. These issues are briefly explored

further in Chapter 9.

7.4. Summary

To summarize the results of this chapter, we used the deterministic model to predict the per-
formance impact of program design changes that affect load-balancing in two programs, and to
explore design changes in another program that affect load-balancing as well as communication
locality. The former experiments show the ability of the deterministic model to precisely represent
the important details of the task scheduling and execution of a program and to compute synchroni-
zation costs sufficiently accurately in each case. Section 5.2 showed that the principal defects in pre-
vious analytical models fall in exactly these two areas: the exponential task models yield inaccurate
predictions of synchronization cost, while the simple i.i.d. task models are unable to capture details
of task scheduling. Furthermore, only the full Markov chain models are able to distinguish between
different orderings of tasks in a task queue, whereas the other models (including Mak and
Lundstrom and Kruskal and Weiss) do not distinguish between different orderings. Thus, the deter-
ministic model is able to overcome key limitations of previous models. The model can also be used
to obtain task and process level information about communication locality that can be useful for

comparing design issues that affect locality as well as load-balancing. Overall, we believe these

109

results indicate that the model can support useful and potentially important performance prediction

for parallel programs.

110

Chapter 8

Further Implications of the Study of Random Delays

The three previous chapters used the results from the study of random delays to motivate,
develop and demonstrate an improved model for parallel program performance prediction. In this
chapter, we briefly discuss other implications of the results of the random delays study. In particu-
lar, we use examples to show the implications for stochastic performance models of parallel systems
(Section 6.1), and we briefly describe some insights the results provide for programmers of parallel

systems (Section 6.2).

8.1. Implications for General Parallel Processing Models

The data presented in Chapter 3 strongly indicate that the principal effect of communication
delays in shared-memory parallel programs is to increase the mean completion time of a process in
a phase, and not the variance, even under conditions of high communication costs and contention.
Furthermore, the data indicate that the overall variance of execution time between synchronization
points due to both communication delays and processing requirements is also extremely small in
many programs. Both results were corroborated for the same programs by the evidence of Section
4.4: a deterministic model that ignores both sources of variance proved to be accurate for the pro-

grams studied.

Stochastic models are nevertheless important for the performance evaluation of high-level
design issues in parallel systems including issues such as multiprogrammed multiprocessor schedul-
ing policies, synchronization management poliéies within programs, and sometimes abstract models
of parallel program behavior as well [ALL89, Bal.90, ChN91, LeV90, LeN91, LCB92, NTTS8S,
Nel90, NTT90, SeT91, ZaM90]. For example, the models in multiprocessor scheduling perfor-
mance studies must represent complex workloads consisting of many different jobs (programs).
Representing the characteristics (e.g., CPU demands, parallelism, etc.) of each individual workload
member would be too tedious and sometimes impractical. In such cases, a stochastic representation

of aggregate workload characteristics is usually necessary.

111

Many parallel system performance models must assume exponentially distributed task or pro-
cess execution times to permit tractable analysis. The evaluation of stochastic models for parallel
programs in Chapter 5 might seem to indicate that parallel system models that assume high variance
are seriously limited as well. This extrapolation is not valid because the goals of the two types of
models are typically quite different. In particular, for the models in Chapter 5, numerical accuracy
of the predictions for a specific program is an important consideration. In many parallel system per-
formance models, however, the nature of the problem requires a qualitative comparison of design
alternatives based on quantitative performance estimates. More generally, the qualitative or quanti-
tative conclusions of the models may not be sensitive to the precise representation of synchroniza-
tion costs in individual programs. Our results in Chapter 3 emphasize that it is important to deter-
mine by informal reasoning or formal validation how the model results depend on the exponential
assumption. Specifically, the results imply that if a conclusion of such a model would be
significantly weaker, or even different, for programs that have much lower task time variance, it
may not apply to many parallel programs. In the remainder of this chapter, we discuss two examples
of previous results obtained through stochastic performance models of parallel systems. The conclu-
sion in the first example does not appear to be strongly influenced by the distributional assumption
used to derive it, whereas in the second example the strength of the conclusion is affected by the

choice of distribution used to represent the parallel workload.

A result that is not strongly dependent on the distribution assumption is as follows. Nelson et
al [NTT88] showed that in an environment containing mixed sequential (interactive) and large
parallel (batch) jobs, an unpartitioned parallel system yields better performance than one in which
processors are statically partitioned among the two classes. They assumed that the parallel jobs con-
sisted of tasks with exponentially distributed execution times. But, in fact, Setia and Tripathi
[SeT91] showed that the same conclusion holds with a completely different assumption about task
times. Specifically, they assumed that each job consisted of tasks of equal size, while the total exe-

cution time of the jobs on any fixed number of processors was assumed to be exponentially distri-
buted.
In contrast, one result that is significant for exponentially distributed tasks but weaker for

tasks with lower variance is Nelson’s result [Nel90] that higher variance of parallelism can yield

112

LR L2
a Class Dist. MeanP
¢ 10 Response Time A B=08 24
) Ratio of Pg=0.2
Vgl —AtoB B B,=06 24
o T CtoD B, = 0.4

C B,=05 165
0.6 32 - 0.5
Normal D Pis=05 165
0.4 Distribution Big =0.5
— — ~ Exponential
0.2 Distribution
0.0
00 02 04 06 08 10
CV of Normal Distribution

Figure 8.1. Comparing predictions from Exponential and Normal Distributions.

lower response times, when queueing effects are small. He considers a parallel processing system
with P processors and an arrival stream of parallel jobs, where an arriving job splits into n tasks
with probability B, 1 < n < Npax. Each task has exponentially distributed processing requirement
with unit mean. He compares two types of jobs, one with higher variance of parallelism than the
other, and shows that the jobs with higher variance have significantly lower response times when
queueing effects are negligible. This result arises because the completion time of n tasks on P pro-

cessors is a concave increasing function of n. (For example, for exponentially distributed task times

with mean 1/j1, and for n < P, it is given by (1/) Z:’l‘ 1/i.) Although this result holds for any con-
cave task time distribution, it is weaker when the curve grows more slowly as a function of n, such
as for distributions with lower variability. To show the effect of the choice of distribution, consider
the two systems (A and B) that were compared in [Nel90], each with 8 processors but different dis-
tributions of parallelism (f;) as given in Figure 8.1. Both systems have mean parallelism of 2.4, but
A has a higher variance of parallelism than B. If each task has exponentially distributed execution
time, the ratio of the mean response times of A and B is about 0.82 (i.e., A has 18% lower response
time). Now consider the same two systems, but assume task execution times are normally distri-
buted with unit mean and variance 6. In Figure 8.1, we plot the ratio of average response times of
A and B for a range of values of CV = ¢. The ratio is close to 1 for low variance and approaches

approximately 0.82 as ¢ gets close to 1. We repeat this comparison for another pair of systems, C

113

and D, with 32 processors each, and C having a higher variance of parallelism. The performance
ratio of C to D is about 0.75 with exponentially distributed task times, but it is again close to 1 for
low o. Thus, jobs with higher variance of parallelism do show lower response times, but the effect

is significant only when the variance of task execution time is high.

The above example is intended only to emphasize that it is important to evaluate the effects of
distribution assumptions on the results of a model, as we stated earlier. If a result is dependent on a
task time distribution with high variance, our findings show that it may not apply to many parallel

programs.

8.2. Implications for Programmers

Load balancing is an important aspect of the design of efficient parallel programs. In particu-
lar, programmers have to choose between static and dynamic load balancing for probably every
parallel program. Static load balancing is an attractive choice because it is simpler to implement
and debug. In most systems today, static scheduling performs well if the computation load is evenly
balanced. In future systems with much higher communication costs relative to computational speed,
static scheduling would not perform well if contention introduced significant variability in task
completion times, even when the computational work is divided evenly among the processes. Our
results indicate that this problem is not likely to arise in practice, and the variance introduced by
random communication delays can usually be ignored when choosing between static and dynamic

scheduling.

It is important to emphasize here that the above argument refers solely to the variance intro-
duced by communication and contention delays. In particular, the mean communication costs of the
individual processes sometimes cannot be ignored in choosing a task scheduling policy. For exam-
ple, locality of communication may be compromised by dynamic load-balancing. Even with static
scheduling, a policy that ensures a degree of processor affinity for tasks accessing common data
may provide better performance than one that does not ensure such affinity. Nevertheless, these
observations do not contradict our conclusion above: for any particular scheduling policy, the load-
balance will not be significantly affected by the variance introduced by communication and conten-

tion delays. In other words, this variance can be ignored when choosing between different schedul-

ing policies, as stated above.

114

Chapter 9

Summary and Directions for Future Research

Parallel processing systems hold out the promise of enormous computing power and, perhaps
more important, cost-effective computing power across a range of performance levels from high-
performance workstations to large-scale multiprocessors. To meet this promise, however, qualita-
tive improvement in the programmability of parallel systems will be necessary. I believe two com-
plementary advances are essential before truly general-purpose parallel programming becomes pre-
valent. The first is an abstract parallel processing model that can be supported efficiently in
hardware and can also serve as a practical model for the design and analysis of parallel algorithms
and software. A deep understanding of the important qualitative aspects of parallel processing will
be essential for the development of such a model. The second is a comprehensive set of techniques
for quantitative performance prediction that will enable programmers and algorithm designers to
evaluate design choices and trade-offs. This thesis has shown that analytical performance evaluation
techniques can contribute significantly to the understanding of parallel program behavior and pro-

vide useful, efficient techniques for quantitative performance prediction.

9.1. Contributions of the Thesis

The first part of this thesis developed an analytical model to study one potentially important
aspect of program behavior, namely the non-deterministic nature of delays due to inter-process
communication and shared resource contention. This model yields the key insight that even if the
individual delays during a process’s execution are highly variable, the total delay over an interval of
execution will have small variability if the interval includes a sufficiently large number of these
individual delays. Detailed measurements show that in shared-memory programs on current sys-
tems, the number of individual communication delays in intervals between synchronization points is
sufficiently large that such delays introduce negligible variance into the execution time of a process
between successive synchronization points, even under conditions of high communication cost and
contention. Furthermore, extrapolation based on the analytical model indicates that this conclusion

will continue to hold for systems in the foreseeable future, at least for shared-memory programs

115

with granularities similar to those on current systems. Finally, for many but not all such programs,
non-deterministic processing requirements also introduce only small variance into the execution

time between synchronization points.

These results hold potentially useful insights for programmers as well as designers of shared-
memory parallel systems. In addition to helping programmers reason about parallel program
behavior, these results can provide guidance in specific design decisions. They indicate, for exam-
ple, that when making design choices for load balancing, a programmer need only consider process-
ing requirements and mean communication costs, and can ignore the variability in communication
costs. For analytical models that are “used for parallel program performance prediction, the results
imply that it may be reasonable to ignore the variance of process execution times when computing
synchronization costs. In particular, a deterministic performance prediction model may be more
accurate than one that assumes high variability in task times, such as in the exponential distribution.
For stochastic performance models of parallel systems, especially models that assume exponentially
distributed task or process execution times, the results indicate that it is important to determine
whether model conclusions are sensitive to the assumed task or process execution time distribution:
such conclusions may not be accurate for many parallel program workloads. Finally, by contribut-
ing to our understanding of a basic aspect of parallel program performance, the above results may
contribute to the development of a useful and general model of parallel processing, referred to

above.

The second part of this thesis developed, validated and demonstrated the use of a deterministic
analytical model for parallel program performance prediction. The choice of using a deterministic
model was motivated both by the results of the above study of random delays and by a qualitative
assessment of the limitations of previous stochastic models. Specifically, these previous models are
either restricted to programs with simple task graphs or require complex and non-intuitive solution
techniques as well as the assumption of exponential task times to model programs with more com-
plex task graphs. The deterministic model developed in this thesis instead allows a straightforward
and intuitive solution technique for arbitrary task graphs and a wide range of static, semi-static and
dynamic task scheduling disciplines. Experimentally, it has proved efficient and accurate for the set
of programs tested. In contrast, experimental data provided in this thesis shows that stochastic
models that only apply to simple task graphs and scheduling disciplines have inconsistent accuracy

(when they apply), whereas models allowing more sophisticated graphs and scheduling proved to be

116

extremely inefficient and often inaccurate. The inaccuracy in the latter models is principally due to
the assumption of exponential task times. Also in comparison, parametric speedup bounds and esti-
mates require parameters that are not significantly easier to obtain in practice than the solution of
the deterministic model. Furthermore, as shown in Chapter 6, these parametric techniques do not
provide significant qualitative information that is available in many cases from the deterministic
model, and, perhaps most important, do not apply to non-work-conserving scheduling disciplines

including common ones based on static scheduling.

The thesis also provided evidence that the deterministic model can be useful for predicting,
understanding and improving certain aspects of program performance. By using an abstract
representation of the inherent parallelism structure and task scheduling, the model provides the abil-
ity to quickly predict program performance on varying system sizes, varying input sizes, and with a
variety of task scheduling strategies. Performance metrics related to the task graph and scheduling
are sufficiently detailed to allow a programmer to quantify and understand nuances of program per-
formance. A key aspect of the model is that it represents the program at the task level, where (infor-
mally) a task is an independent unit of sequential work. We believe that this identification of tasks,
defined in Section 2, is appropriate for reasoning about high-level design decisions during program
development, particularly decisions about task granularity, partitioning and scheduling that affect

load-balancing in a program.

9.2. Directions for Future Research

Overall we believe the deterministic model provides a promising basis for accurately and
efficiently evaluating and predicting parallel program performance. The validations and perfor-
mance studies in previous chapters have relied on one common methodology for obtaining model
inputs to apply the model, specifically deriving the task graph by hand and measuring task execu-
tion times and resource usage parameters explicitly. They have also focused on one important class
of parallel programs, namely computationally intensive scientific and engineering programs. These
experiments and results suggest several directions for future research, including research to widen
the scope of performance studies that can be carried out using the model, as well as to investigate
using the model in new domains such as /O intensive parallel applications. The latter case also pro-
vides scope for further uses of the renewal model to explore program behavior in these new

domains. These avenues for future research are briefly discussed below.

117

The nature and scope of performance studies based on the deterministic model could poten-
tially be expanded in two different directions: towards more abstract algorithm analysis similar to
studies that use abstract computational models, and towards detailed and comprehensive program
performance analysis in conjunction with measurement and simulation, incorporated into automated

performance tools.

First, it would be interesting to investigate applying the model at an abstract level for analyz-
ing and comparing algorithms, represented by their task graphs. Standard sequential algorithm
analysis techniques might be used to estimate task CPU times, whereas a parallel computation
model must also be considered for estimating the inherent communication requirements with other
tasks. Finally, each of these inputs must be appropriately translated into numerical values that can
be used by the model. With these inputs, the model could be directly applied to obtain numerical
estimates of execution time, and thus used to study algorithm performance as a function of input
size and number of processors, and to compare alternative algorithms. Although the model would
not yield analytic expressions for the execution time of a given algorithm, this might be offset by
the ability of the model to analyze complex algorithms (e.g, complex task graphs) and complex task
scheduling policies, including dynamic policies. Finally, experience with using the deterministic
model for algorithm analysis as well as parallel program performance prediction could contribute to
the development of more sophisticated and comprehensive algorithm analysis models in the long

run.

Second, it would be worthwhile to investigate incorporating the model into automated meas-
urement or simulation-based performance analysis tools. If the process of deriving model inputs can
be partially or fully automated, it would considerable simplify the use of the model for the program-
mer. Furthermore, measurement or simulation-based tools could use the deterministic model to pro-
vide task-level analysis of program performance. This would combine the complementary strengths
of analytical studies and measurement or simulation, and could yield a number of benefits for each.
The task-level analyses using the model (besides being simpler for the programmer to carry out)
could be supplemented with more detailed performance experiments made possible by measurement
or simulation, for example, analysis of communication events at the level of individual data-
structures or code statements. Conversely, measurement or simulation tools should benefit from the
efficiency and insight provided by the analytical model. Perhaps more important, such tools, which

have generally been restricted to a given program on a specific system, could exploit the predictive

118

power of the analytical model to explore the effect of system and program design changes. Overall,
exploring the benefits afforded by the combination of these approaches would be a significant and
interesting research problem. The initial and perhaps the more challenging research issues, how-
ever, will arise in developing the infrastructure required to automate the process of applying the

model.

For the deterministic model to be integrated into automated performance tools, compiler or
run-time support (and perhaps also programmer annotation) will be required for creating the task-
graph of a given program. Some requisite infrastructure for program analysis is already available in
parallelizing compilers such as Jade [RSL93] and others, and in run-time systems such as Chores
[EaZ93]. In parallelizing compilers, the compiler automatically detects and enforces (a superset of)
the data dependencies in a program, and implements the partitioning and scheduling of work. The
task graph defined by these data dependencies can be directly constructed, together with the
scheduliﬁg function, and instrumentation can be inserted to measure the other model parameters. In
Chores, a program is specified in terms of atoms of work, and a collection of atoms that apply the
same function to different data sets is called a chore. The atoms are always executed sequentially
and thus correspond directly to the tasks of the program. The programmer can specify certain kinds
of static and regular precedences between atoms (indexed chores) or implement more complex pre-
cedence structures by adding atoms to a chore during execution (dynamic chores). In the former
case it should be possible to construct the task graph from the specified precedences between
atoms.?> Developing the necessary infrastructure for systems where it is not already available, as
well as building on the infrastructure to implement the deterministic model would be significant
research problems. Finally note that, besides simplifying the process of using the model for the pro-
grammer, a programming environment supporting automatic construction of model inputs might
itself make use of the model. In parallelizing compilers, for example, the model might be used to

guide various task granularity and scheduling decisions, especially decisions that can be made at

compile-time.

23. Specifically, this should be possible at least in programs where no additional precedences are
introduced using low-level synchronization constructs (with programmer annotation to indicate the
absence of such constructs). ‘

119

A related avenue for future research, one that could enhance the overall predictive power of
the deterministic model, is to develop analytical techniques to predict cache miss rates and other
communication parameters, or at least the changes in the parameters, for a given program on new
system configurations and under new scheduling methods. Such techniques would enable the model
to explore the impact of hypothetical system and algorithm design changes on communication costs
in greater detail than is possible now. A preliminary step in this direction has recently been taken.
Tsai and Agarwal [TsA93] describe a method for computing multiprocessor cache miss rates in
shared-memory algorithms as a function of problem size, cache line size, and system size, for algo-
rithms with simple, regular and fixed data reference patterns. However, their method requires a
detailed analysis by hand of the communication pattern in the algorithm to derive the final miss
rates. A new challenge is to develop an appropriate high-level representation of communication
behavior from which the relevant low-level communication parameters can be derived. (This is
analogous to the abstract, task-level representation of parallelism and scheduling, which makes it
possible for the model to predict in detail the impact of hypothetical system and algorithm design
changes on synchronization costs and load-balancing.) The appropriateness of the representation
should be judged not only by the effort required of the algorithm designer for deriving it but also the
insight into program behavior that can be directly gained in the process. At least for regular appli-
cations such as the ones studied by Tsai and Agarwal, we believe such a high-level model could be

possible.

The validation and uses of the deterministic model in this thesis, as well as the studies of the
effect of random delays, have focused on current computation-intensive scientific and engineering
applications. Similar studies are possible for other classes of applications as well as for applications
on future systems. First, the renewal model or extensions thereof could be used to examine the vali-
dity of the assumption of deterministic task and process execution times for new classes of pro-
grams. On future systems, even for the class of applications studied here, the conclusions of the
study of random delays would have to be validated using measurements of the renewal model
parameters for those systems. The results of such studies have impact both on the design of parallel
programs and on the techniques used to evaluate and predict parallel program and system perfor-
mance, as shown by the implications of the renewal model study in this thesis. Finally, either for
new application classes or on new systems, if the deterministic task assumption appears reasonable,

further experiments could explore whether the deterministic model continues to prove useful for

120

exploring the key performance issues.

An important class of applications not considered in this thesis are I/0 intensive applications.
The validity of the deterministic assumption in the presence of significant I/O activity would have
to be examined. Based on insight from the renewal model, we speculate that processes that perform
large numbers of 1/O operations should see low relative variability, even if the mean time for I/O is
fairly high. In any case, directly applying the deterministic model fér such programs should be an
interesting test of the modeling approach. A key feature that could be found in such programs but
was not present in the applications studied in this thesis is the use of multiple processes per proces-
sor to overlap computation with I/O activity. The accuracy of the model extensions for handling this
case, suggested in Section 4.2.3, would have to be evaluated. If successful, the model could yield a
potentially important analytical evaluation technique for such programs. For example, the model
might be useful for application areas such as parallel query processing in database systems where,
again, significant partitioning and scheduling issues arise [ShN93]. A common workload charac-
teristic complicating the problem of partitioning is data skew. In such cases, skewed task execution
times would have to be represented as a set of (unequal) deterministic quantities, with the partition-
ing of work represented by the scheduling function. These aspects are analogous to the task execu-
tion times and scheduling in.the applications.studied in this work, and it appears reasonable to

explore this approach for the new class as well.

Though much is taken, much abides. Today, large-scale parallel processing systems are on the
verge of the transition from research vehicles to mainstream use, but exploiting the computing
power of these systems remains a complex and laborious task. Nevertheless, it appears realistic to
look forward to the day when our understanding of parallel computation and the techniques and
tools available for programming parallel systems can keep pace with the size and power of these

systems, and when parallel programming is as commonplace as sequential programming is today.

121

Appendix A. Proof that Fy is Asymptotically Normal

Claim. If 63 and o% are finite, then (T(D)—(D))/c(D) => Normal(0,1) as D— oo, where (D)
and o(D) are as given in (7).

Proof. The proof is essentially a direct application of the Central Limit Theorem for cumulative

reward processes. For a renewal process generated by the i.i.d. sequence {X;} (with E[X{] = p), let

{W;} be a sequence of ii.d. random variables (rewards), where W; is independent of {X;: j=i }.

Define the cumulative reward C(¢) tobe C(t) = Zi:f(’) W;, where R(¢) is the number of renewals up

to time ¢ (just as was defined in (4), Section 3.2.1.1). Then, if E[XJZ] and E[sz-] are finite,

1
C(t)- —t E[W
® uf Wil

777 = Normal(0, 1) as t— co.

(i) vartw, - ELW 110
(A slightly more general case is proved in [Wol89, p. 124].) In our model, let X; = P;, W; = ;.
Then | = Wp, E[W;] = ¢, and C(D) = Zfz(f)C,-. Then, under the hypotheses of the claim, the
above theorem directly applies, showing that C(D) converges to a Normal with mean Dpc/pip, and

variance given by

Var(C (D)) = 2 Var(C, - — E[C11P})
ip Hp

0%‘ D llcz 2
s o 3 Op

Kp Wp

But, T = D + C(D), since C(D) is just the total of the communication delays in the first R(D)
cycles. Thus T also converges to a Normal with mean ur =D + D Le/1p and variance o% the same

as the variance of C (D) calculated above. QED.

122

Appendix B. System-Level Model for the Sequent Symmetry

In this appendix, we briefly describe the system-level model component we developed to cal-
culate system overhead costs for applications on the Sequent Symmetry. For the applications with
significant system overhead (MP3D, PSIM and Locus Route), remote communication was the
most important source of such costs, and we used a queueing network model of the Sequent bus
sub-system to calculate them. We ignored other sources of overhead, namely lock contention and
forking overhead, for our study. If these costs are also significant, Tsuei and Vernon have shown

that each can be separately and accurately included [TsV90].

The Sequent Symmetry bus supports an invalidation-based snooping cache protocol. In a pre-
vious analytical modeling study of the Sequent bus [TsV92], Tsuei and Vernon showed that two
aspects of the bus protocol have a significant impact on performance: (1) at most three read requests
can be outstanding at any time from all processors, with at most one per processor, and (2)
responses to read requests have higher (non-preemptive) priority for the bus than all other bus
requests. In their model, Tsuei and Vernon used a Markov chain in addition to a queueing network
to represent these and other details of the bus protocol. We develop a much simpler but less detailed
model which represents both the above features of the protocol using a queueing network alone. We
compared the predictions of our model to direct hardware measurements of communication costs
for these applications, and found that the model predicted mean response times within 10% of the
measured values in most cases, and the error was less than 18% in all cases tested. The model is as

follows.

The possible types of remote communication requests on the bus are read, read+write_back
and invalidate, and for either type of read request the required cache line is supplied either by main
memory or by a remote processor’s cache. Thus, we use the following parameters (assumed to be
the same for each active processor) to characterize remote communication behavior on the Sequent:

Abus Mean request rate to bus per active processor
fivatidae Fraction of requests that are of type invalidate
Srwb Fraction of read requests that are of type read+write_back
Deache Probability that a read request is served by a remote cache
The values of these four parameters are specified for each task as the resource usage inputs to the

model. (Thus, referring to Table 3.2, Npgram = 4.) When solving the system-level model, the state

cur_state specifies the number of active processors, Pgcrive> a8 well the identities of the actively

123

executing tasks. Ay, is set to the average of Ap,s(#) for all active tasks ¢, and the other three parame-
ters are calculated similarly. (If more than 1 process is allocated to a processor, each active task

must be weighted according to the fraction of processing power it receives.)

Our system-level model is a closed single-class queueing network model with P4y, custo-
mers, and with the bus and the two memory modules represented as queueing centers, and the
caches and processors represented as infinite-server (i.e. delay) centers. The queueing network is
solved using the recursive MVA algorithm, with recursion on the customer population n from n=1
up 10 Poerive. (Note that since Pyerive is the number of active processors, rather than processes or
tasks, it is effectively just a small constant in this system. For larger systems, e.g., with a few hun-
dred processors, a non-recursive MVA solution might be desirable.) The two important features of
the bus protocol mentioned above are incorporated into this solution using heuristic approximations.
The non-preemptive priority of the read responses is modeled using a standard MVA priority
approximation (service-time-inflation) [BKL84]. The limit of three outstanding read requests is
modeled using an additional delay center in the queueing network. For n24, read requests visit the
delay center with probability ppjcx before using the bus, and the mean delay time per visit to the
delay center is Rpjoct. For each value n 2 4, pyjocr and Ry, are first estimated by solving a separate
M/M/3//n queue. The mean service time in this queue is equal to the total mean residence time of a
read request from the time it is transmitted across the bus until the time the response is received at
the processor (calculated from the queueing network solution at population value n—1).

The solution of this overall queueing network in state cur_state gives the average response
time for remote communication, R. Then, we calculate the delay for each executing task ¢ as
T getay(t, Tremain(2), cur_state) = Tremain(t) X R / Apys(®). Thus, a single solution of the system-level

model yields Tgeqy(t, - -) for all executing tasks.

124

References

[AdV93]

[ASH8E]

[ALK90]

[Amd67]

[AIA90]

[BaL92]

[Bro88a]

[Bro88b]

[BKL.84]

[CMMB88]

[CKP93]

[Cve87]

[DuB82]

[EZL89]

V. S. ADVE and M. K. VERNON, Performance Analysis of Mesh Interconnection
Networks with Deterministic Routing, IEEE Transactions on Parallel and Distributed
Systems (to appear), July 1993.

A. AGARWAL, R. SIMONI, M. HOROWITZ and J. HENNESSY, An Evaluation of
Directory Schemes for Cache Coherence, Proc. 15th Annual International Symposium
on Computer Architecture, Honolulu, ‘Hawaii, June 1988, 280-289.

A. AGARWAL, B. LiM, D. KRANZ and J. KUBIATOWICZ, APRIL: A Processor
Architecture for Multiprocessing, 17th Annual International Symposium on Computer
Architecture, May 1990, 104-114.

G. M. AMDAHL, Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities, AFIPS Conference Proceedings 30(1967), 483-485.

H. H. AMMAR, S. M. R. ISLAM, M. AMMAR and S. DENG, Performance Modeling of
Parallel Algorithms, Proc. 1990 International Conference on Parallel Processing,
1990, III 68-71.

T. BALL and J. R. LARUS, Optimally Profiling and Tracing Programs, Conference
Record of the 19th Annual ACM Symposium on Principles of Programming Languages,
January 1992, 59-70.

E. D. BROOKS III, PCP: A Parallel Extension of C that is 99% Fat Free, Computational
Physics Division Technical Report, Lawrence Livermore National Laboratory,
September 1988.

E. D. BROOKS III, The indirect k-ary n-cube network for a vector processing
environment, Parallel Computing 6(1988), 339-348.

R. M. BRYANT, A. E. KRZESINSKI, M. S. LAKSHMI and K. M. CHANDY, The MVA
Priority Approximation, ACM Trans. on Computer Systems 2, 4 (November 1984),
335-359.

R. C. COVINGTON, S. MADALA, V. MEHTA, J. R. JUMP and J. B. SINCLAIR, The Rice
Parallel Processing Testbed, Proc. 1988 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, May 1988, 4-11.

D. CULLER, R. KARP, D. PATTERSON, A. SAHAY, K. E. SCHAUSER, E. SANTOS, R.
SUBRAMONIAN and T. EICKEN, LogP: Towards a Realistic Model of Parallel
Computation, Proc. Fifth ACM SIGPLAN Notices Symposium on Principles and
Practices of Parallel Programming, May 1993.

7. CVETANOVIC, The Effects of Problem Partitioning, Allocation and Granularity on
the Performance of Multiple-Processor Systems, IEEE Trans. on Computers C-36, 4
(April 1987), 421-432.

M. DuBoIS and F. A. BRIGGS, Performance of Synchronized Iterative Processes in
Multiprocessor Systems, IEEE Trans. on Sofiware Engineering SE-8, 4 (July 1982),
419-431.

D. L. EAGER, J. ZAHORJAN and E. D. LAZOWSKA, Speedup versus Efficiency in
Parallel Systems, IEEE Trans. on Computers C-38, 3 (March 1989), 408-423.

[EaZ93]

[FuK92]

[Gre89]

[HaM92]

[HeT83]

[HoS84]

[KME&g9]

[KSRO1]

[KiS90]

[KrW35]

[Lar93]

[LeN91]

[LCB92]

[MaS91]

[MaL.90]

[MCH90]

125

D. L. EAGER and J. ZAHORJAN, Chores: Enhanced Run-Time Support for Shared-
Memory Parallel Computing, ACM Trans. on Computer Systems 11, 1 (February 1993),
1-32.

Y. O. Fuentes and S. KiM, Foundations of Parallel Computational
Microhydrodynamics : Communication Scheduling Strategies, A.I.Ch.E. J. 38(1992),
1059-1078.

A. GREENBAUM, Synchronization Costs on Multiprocessors, Parallel Computing
10(1989), 3-14.

F. HARTLEB and V. MERTSIOTAKIS, Bounds for the Mean Runtime of Parallel

Programs, Proceedings of the Sixth International Conference on Modelling Techniques
and Tools for Computer Performance Evaluation, September 1992, 197-210.

P. HEIDELBERGER and K. S. TRIVEDI, Analytic Queueing Models for Programs with
Internal Concurrency, IEEE Trans. on Computers C-32, 1 (Jan. 1983), 73-82.

E. HOROWITZ and S. SAHNI, Fundamentals of Computer Algorithms, Computer
Science Press International, Inc., Rockville, Maryland, 1984.

A. KAPELNIKOV, R. R. MUNTZ and M. D. ERCEGOVAC, A Modeling Methodology for
the Analysis of Concurrent Systems and Computations, Journal of Parallel and
Distributed Computing 6(1989), 568-597.

KENDALL SQUARE RESEARCH, KSRI Principles of Operation, Kendall Square
Research, Waltham, MA, October 1991.

J. KM and A. C. SHAW, An Experiment on Predicting and Measuring the Deterministic
Execution Times of Parallel Programs on a Multiprocessor, Technical Report 90-09-01,
Department of Computer Science and Engineering, University of Washington,
September 1990.

C. P. KRUSKAL and A. WEISS, Allocating Independent Subtasks on Parallel Processors,
IEEE Trans. on Software Engineering SE-11, 10 (October 1985), 1001-1016.

J. R. LARUS, Loop-Level Parallelism in Numeric and Symbolic Programs, IEEE Trans.
on Parallel and Distributed Systems 4, 7 (July 1993), 812-826.

S. T. LEUTENEGGER and R. D. NELSON, Analysis of Spatial and Temporal Scheduling
Policies for Semi-Static and Dynamic Multiprocessor Environments, IBM Research
Report, August 1991.

G. LEWANDOWSKI, A. CONDON and E. BACH, Realistic Analysis of Parallel Dynamic
Programming Algorithms, Computer Sciences Technical Report #1116, University of
Wisconsin-Madison, Oct. 1992.

S. MADALA and J. B. SINCLAIR, Performance of Synchronous Parallel Algorithms with
Regular Structures, IEEE Trans. on Parallel and Distributed Systems 2, 1 (January
1991), 105-116.

V. W. MAK and S. F. LUNDSTROM, Predicting Performance of Parallel Computations,
IEEE Trans. on Parallel and Distributed Systems 1, 3 (July 1990), 257-270.

B. P. MILLER, M. CLARK, J. K. HOLLINGSWORTH, S. KIERSTEAD, S. LIM and T.
TORZEWSKI, IPS-2: The Second Generation of a Parallel Program Measurement

[Moh84]

[NTT88]

[Nel90]

[PoK87]

[RAM92]

[RHL93]

[RSL93]

[Sar89]

[Seq81]

[SeT91]

[Sev89]

[ShN93]

[Sha90]

[SWG92]

[TaV85]

126

System, IEEE Trans. on Parallel and Distributed Systems 1,2 (April 1990), .

J. MOHAN, Performance of Parallel Programs: Model and Analyses, Ph.D. Thesis,
Carnegie Mellon University, July 1984.

R. NELSON, D. TOWSLEY and A. N. TANTAWI, Performance Analysis of Parallel
Processing Systems, IEEE Trans. on Software Engineering 14, 4 (April 1988), 532-
540.

R. NELSON, A Performance Evaluation of a General Parallel Processing Model, 1990
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems
18, 1 (1990), 14-26.

C. D. POLYCHRONOPOLOUS and D. J. KUCK, Guided Self-Scheduling: A Practical
Scheduling Scheme for Parallel Supercomputers, IEEE Trans. on Computers C-36, 12
(Dec. 1987), .

D. A. REED, R. A. AYDT, T. M. MADHYASTHA, R. J. NOE, K. A. SHIELDS and B. W.
SCHWARTZ, An Overview of the Pablo Performance Analysis Environment, Technical
Report, University of Illinois, November 1992.

S. K. REINHARDT, M. D. HILL, J. R. LARUS, A. R. LEBECK, J. C. LEWIS and D. A.
WOoOD, The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel Computers, Proc.
1993 ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems, May 1993, 48-60.

M. RINARD, D. J. SCALES and M. S. LAM, Jade: A High-Level Machine Independent
Language for Parallel Programming, Computer 26, 6 (June 1993), 28-38.

V. SARKAR, Determining Average Program Execution Times and their Variance, Proc.
1989 SIGPLAN Notices Conference on Programming Language Design and
Implementation, 1989, 298-312.

SEQUENT COMPUTER SYSTEMS, INC., Symmetry Technical Summary, Sequent
Computer Systems, Inc., 1988.

S. SETIA and S. K. TRIPATHI, An Analysis of Several Processor Partitioning Policies
for Parallel Computers, University of Maryland CS-Tech. Rep.-2684, May 1991.

K. C. SEVCIK, Characterizations of Parallelism in Applications and Their Use in
Scheduling, Proc. ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems 17, 1 (May 1989), 171-180.

A. SHATDAL and J. F. NAUGHTON, Using Shared Virtual Memory for Parallel Join
Processing, Computer Sciences Technical Report #1139, Univ. of Wisconsin-Madison,
March 1993.

A. C. SHAW, Deterministic Timing Schema for Parallel Programs, Technical Report
90-05-06, Department of Computer Science and Engineering, University of
Washington, May 1990.

J. P. SINGH, W. WEBER and A. GUPTA, SPLASH: Stanford Parallel Applications for
Shared-Memory, Computer Architecture News 20, 1 (March 1992), 5-44.

R. E. TARJIAN and U. VISHKIN, An Efficient Parallel Biconnectivity Algorithm, SIAM
Journal of Computing 14, 4 (1985), 862-874.

[ThB86]

[TRS90]

[Tri82]

[TsA93]

[TsV90]

[TsV92]

[TuG89]

[VLZ388]

[VSS88]

[WiE90]

[Wol89]

[YaV91]

127

A. THOMASIAN and P. F. BAY, Analytic Queueing Network Models for Parallel
Processing of Task Systems, IEEE Trans. on Computers C-35, 12 (December 1986),
1045-1054.

D. TOWSLEY, G. ROMMEL and J. A. STANKOVIC, Analysis of Fork-Join Program
Response Times on Multiprocessors, IEEE Trans. on Parallel and Distributed Systems
1, 3 (July 1990), .

K. S. TRIVEDI, Probability and Statistics with Reliability, Queueing and Computer
Science Applications, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1982.

J. TSAI and A. AGARWAL, Analyzing Multiprocessor Cache Behavior Through Data
Reference Modeling, Proc. 1993 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, 1993.

T. TSUEI and M. K. VERNON, Diagnosing Parallel Program Speedup Limitations Using
Resource Contention Models, Proc. 1990 International Conference on Parallel
Processing, 1990, I 185-189.

T. TSUEI and M. K. VERNON, A Multiprocessor Bus Design Model Validated by
System Measurement, [EEE Trans. on Parallel and Distributed Systems 3, 6
(November 1992), 712-727.

A. TUCKER and A. GUPTA, Process Control and Scheduling Issues for
Multiprogrammed Shared-Memory Multiprocessors, Proc. 12" AcM Symposium on
Operating Systems Principles, December 1989, 159-166.

M. K. VERNON, E. D. LAZOWSKA and J. ZAHORJAN, An Accurate and Efficient
Performance Analysis Technique for Multiprocessor Snooping Cache-Consistency
Protocols, Proc. 15th International Symposium on Computer Architecture, June 1988.
D. F. VRSALOVIC, D. P. SIEWIOREK, Z. Z. SEGALL and E. F. GEHRINGER, Performance
Prediction and Calibration for a Class of Multiprocessors, IEEE Trans. on Computers
37,11 (Nov. 1988), 1353-1365.

D. L. WILLICK and D. L. EAGER, An Analytic Model of Multistage Interconnection
Networks, Proc. ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, May 1990, 192-202.

R. W. WOLFF, Stochastic Modeling and the Theory of Queues, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1989.

N. YAZICI-PEKERGIN and J. VINCENT, Stochastic Bounds on Execution Times of
Parallel Programs, IEEE Trans. on Software Engineering 17, 10 (October 1991), 1005-

1012.

