Specifying System Requirements
for Memory Consistency Models

Kourosh Gharachorloo
Sarita V. Adve

Anoop Gupta

John L. Hennessy
Mark D. Hill

Technical Report #1199

December 1993

Specifying System Requirements
for Memory Consistency Models *

Kourosh Gharachorloof, Sarita V. Advef,
Anoop Guptaf, John L. Hennessy!, and Mark D. Hill*

tComputer System Laboratory
Stanford University
Stanford, CA 94305

tComputer Sciences Department
University of Wisconsin
Madison, Wisconsin 53706

Stanford University Technical Report CSL-TR-93-594
University of Wisconsin-Madison Computer Sciences Technical Report #1199

Abstract

The memory consistency model of a shared-memory system determines the order in which memory accesses
can be executed by the system, and greatly affects the implementation and performance of the system. To
aid system designers, memory models either directly specify, or are accompanied by, a set of low-level system
conditions that can be easily translated into a correct implementation. These sufficient conditions play a key
role in helping the designer determine the architecture and compiler optimizations that may be safely exploited
under a specific model. Therefore, these conditions should obey three important properties. First, they should be
unambiguous. Second, they should be feasibly aggressive; i.e., they should not prohibit practical optimizations
that do not violate the semantics of the model. Third, it should be relatively straightforward to convert the
conditions into efficient implementations, and conversely, to verify if an implementation obeys the conditions.
Most previous approaches in specifying system requirements for a model are lacking in at least one of the above
aspects.

This paper presents a methodology for specifying the system conditions for a memory model that satisfies
the above goals. A key attribute of our methodology is the exclusion of ordering constraints among memory
operations to different locations by observing that such constraints are unnecessary for maintaining the semantics
of a model. To demonstrate the flexibility of our approach, we specify the conditions for several proposed memory
models within this framework. Compared to the original specification for each model, the new specification allows
more optimizations without violating the original semantics and, in many cases, is more precise.

1 Introduction

A memory consistency model or memory model for a shared-memory multiprocessor specifies how memory oper-
ations of a program will appear to execute to the programmer. The most commonly assumed model is sequential

*The Stanford University authors are supported by DARPA contract N00039-91-C-0138. Anoop Gupta is partly supported by a NSF
Presidential Young Investigator Award. The University of Wisconsin authors are supported in part by a National Science Foundation Presidential
Young Investigator Award (MIPS-8957278) with matching funds from A.T. & T. Bell Laboratories, Cray Research Foundation and Digital
Equipment Corporation. Sarita Adve is also supported by an IBM graduate fellowship.

consistency (SC) [L.am79]. While SC provides an intuitive model for the programmer, it restricts many architec-
ture and compiler optimizations that exploit the reordering and overlap of memory accesses [DSB86, MPC89].
This has led researchers to propose alternate models that allow more optimizations: e.g., processor consistency
(PC) [GLL*90), total store ordering (TSO) [SUN91], partial store ordering (PSO) [SUNO1], weak ordering
(WO) [DSBS86], and release consistency (RCsc/RCpc) [GLL*90].! These models are referred to as hardware-
centric because they are defined in terms of relatively low-level hardware constraints on the ordering of memory
accesses.

While the above relaxed models provide substantial performance improvements over SC [GGH91, GGH92,
7B92], they are difficult for programmers to reason with. To remedy this, another category of models, referred to as
programmer-centric, have been proposed. Programmer-centric models provide a higher level system abstraction
to the programmer, thus relieving the programmer from directly reasoning with memory access optimizations.
Instead, the programmer can reason with SC and is only required to provide certain information about memory
accesses (e.g., which accesses may be involved in a race [AH90D, GLL*90]). This information is in turn used to
allow optimizations without violating SC. DRFO [AH90b], DRFI [AH93], PL [GLL *90], and PLpc [GAG192]
are example programmer-centric models that allow optimizations similar to the hardware-centric models.

To correctly and efficiently implement a memory model, the system designer must identify the hardware
and software optimizations that are allowed by that model. Hardware-centric models, by the nature of their
specification, directly specify such optimizations. In contrast, it is difficult to deduce such optimizations from
the specification of programmer-centric models. Consequently, to aid designers, these models are also typically
accompanied by a set of low-level system conditions that are proven sufficient for correctness.

For both classes of models, the low-level system specification plays a key role by directly influencing the
hardware and system software implementation. Therefore, it is important for the specification to satisfy the
following criteria. First, the specification should be precise and complete. Any ambiguity arising from the
specification is undesirable and can lead to incorrect implementations. Second, the specification should be general,
allowing a wide range of system designs and optimizations. To achieve this goal, the specification should impose
as few constraints as necessary to maintain the semantics of the model. Finally, it should be easy to identify the
allowed optimizations from the specification and conversely to determine if a particular implementation obeys the
specification. For many of the models described above, the specifications of system constraints as they appear in
the literature fall short of meeting these goals by being .overly restrictive or ambiguous.

This paper presents a framework for specifying sufficient system constraints for a memory model that meets
the above criteria. Our framework extends previous work by Collier [Col92], Sindhu et al. [SFC91], and
Adve and Hill [AH92]. The framework consists of two parts: an abstraction of a shared-memory system, and a
specification methodology for system requirements based on that abstraction. Our abstraction extends previous
work by adequately modeling essential characteristics of a shared-memory system, such as replication of data,
non-atomicity of memory operations, and allowing a processor to read the value of its own write before the write
takes place in any memory copies. Previous abstractions either do not directly model some of these characteristics
or are more complex. A key attribute of our specification methodology is the exclusion of ordering constraints
among operations to different locations. This allows us to expose more optimizations while still maintaining the
original semantics of a model. To demonstrate the flexibility of our approach, we specify the system requirements
for several of the models discussed above. In all cases, the new specifications expose more potential optimizations
than the original specifications. In some cases, the new specifications are also more precise than the original
specifications. Furthermore, expressing the specifications within a uniform framework allows for an accurate
comparison of the system constraints imposed by the different models.

The rest of the paper is organized as follows. Section 2 presents our abstraction for the system and our
framework, and describes how system requirements may be specified through several examples. Section 3 describes
how the specifications can be translated into implementation constraints for the architecture and the compiler.
Section 4 compares our abstraction with previously proposed abstractions and discusses some implications of our
approach. Finally, we conclude in Section 5. The detailed specification for several models with the corresponding
correctness proofs are provided in Appendices B and C; Appendices A and D provide some of the other conditions
that are required for correctness.

The processor consistency model considered in this paper is different from that proposed by Goodman [Goo91]. The definitions for PC
and RCsc/RCpc given in [GLL ¥ 90] are modified in a minor way as explained in [GGH93].

P P. P
1 1 n
M oo r
W), j= 1.0
B L] B .] R(i) response |
1 1 n
— } T . } R }
"] u "]
R()
W(i)
W), jei M M
M 1 i n
W) from
other P’s
Network

Figure 1: Abstraction for a shared-memory system.

2 Our Framework

This section describes our framework for specifying system requirements that are imposed by a memory model.
The first part presents an abstraction of a shared-memory system that serves as the basis for the framework. We
then formally define the notion of an execution and describe how conditions may be imposed on an execution
in order to satisfy the semantics of various memory models. Our abstraction is influenced by the abstractions of
Collier [Col92] and that of Sindhu et al. [SFC91, SUN91]. Some of the formalism and terminology are derived
from work by Adve and Hill [AH92].

2.1 Abstraction of the System

Figure 1 shows the various components in our abstraction. The system consists of # processors, P, ..., P, Each
processor has a complete copy of the shared (writable) memory, denoted as M; for P;. A read operation reads
a specific memory location and a write operation modifies a location. A read operation R by P; is comprised
of a single atomic sub-operation, R(i). A write operation W by P; is comprised of (n+1) atomic sub-operations:
an initial write sub-operation W;y4:(i) and n sub-operations W(I), ..., W(n).? Each processing node also has a
(conceptually infinite) memory buffer, denoted as B; for P;. A read operation on P; results in the read sub-
operation R(i) being placed into the corresponding buffer, B;. Similarly, a write operation on P; results in write
sub-operations W(1), ..., W(n) being placed in B;. The sub-operation W;y;:(i) of W corresponds to the initial
event of placing W(1), ..., W(n) into B;. Sub-operations are removed from B; (not necessarily in first-in-first-out
order) and then issued to the memory system. A write sub-operation W(j) by P; executes when it is issued from
B; to the memory system and atomically updates its destination location in the memory copy M; of P; to the
specified value. A read sub-operation R(i) by P; executes when its corresponding read operation is issued to
the memory system and returns a value. If there are any write sub-operations W(i) in B; that are to the same
location as R(i), then R(i) returns the value of the last such W(i) that was placed in the buffer (and is still in B).
Otherwise, R(i) returns the value of the last write sub-operation W(i) that executed in the memory copy M of P;.

The above abstraction is a conceptual model meant to only capture the important properties of shared-memory
systems relevant to specifying system requirements for memory models. For example, we do not model details of
the processor architecture because we assume that each processor by itself behaves like a correct uniprocessor (this

2These can be thought of as virtual processors. In this way, the notion of process or processor become interchangeable if there is one
process per virtual processor.
3 All n sub-operations may not be present in an execution; see Condition 5.

notion is discussed further in the next section). Similarly, we only model memory operations to shared writable
data. Below, we explain how the different features of the above abstraction (i.e., a complete copy of memory
for each processor, several atomic sub-operations for a write, and buffering operations before issue to memory)
adequately model shared-memory systems.

The first two features of a complete memory copy per processor and several atomic sub-operations for writes
are based directly on the abstraction by Collier [Col92] and have been previously used as the basis for specifying
system requirements for memory models (e.g., DRF1 [AH92]). Dubois et al.’s “perform with respect to” abstrac-
tion [DSB86, SD87], though different in flavor, also effectively captures these concepts. Providing each processor
with a copy of memory serves to model the multiple copies of a datum that are present in real systems due to the
replication and caching of shared data. For example, in reality the copy of memory modeled for a processor may
represent a union of the state of the processor’s cache, and blocks belonging to memory or other caches that are
not present in this processor’s cache.

The multiple sub-operations attributed to each write operation model the fact that updating multiple copies
of a location may be non-atomic. Adve and Hill [AH92] explain the correspondence to real systems as follows
(slightly paraphrased). “While there may be no distinct physical entity in a real system that corresponds to a certain
sub-operation, a logically distinct sub-operation may be associated with every operation and a memory copy. For
example, updating the main memory on a write corresponds to the sub-operations of the write in memory copies
of processors that do not have the block in their cache. Also, while sub-operations may not actually execute
atomically in real systems, one can identify a single instant in time at which the sub-operation takes effect such
that other sub-operations appear to take effect either before or after this time.” Note that in reality, write operations
may actually invalidate a processor’s copy instead of updating it with new data. Nevertheless, the event can be
modeled as an update of the logical copy of memory for that processor.

The third feature, i.e., the memory buffer, represents a significant addition to most previous abstractions, and
seems necessary to capture the behavior of many multiprocessor system designs, such as Silicon Graphics and
SUN multiprocessors. Again, there may be no physical entity corresponding to this buffer in a real system. The
intent of the buffer is to model the scenario where a processor reads the value of its own write before any of
the write’s sub-operations take effect in memory. This scenario can occur in a cache-coherent multiprocessor if
a processor does a write to a location that requires exclusive ownership to be requested and allows a subsequent
read (issued by itself) to that location to return the new value while the ownership request is pending. 4 Sindhu
et al.’s abstraction [SFC91] models this effect through a conceptual write buffer and allowing the read to return
the value of a write before it is retired from this buffer. However, their abstraction is limited in two aspects:
they assume the processor stalls on a read operation until a value is returned and they model writes with a single
sub-operation. Thus, they do not model out-of-order reads and non-atomic writes.

The abstraction used by Gibbons et al. [GMG91, GM92] to formalize the system requirements for properly-
labeled (PL) programs and release consistency meets the criteria we have discussed above; i.e., it models the
existence of multiple copies, the non-atomicity of writes, the out-of-order execution of memory operations, and
allowing the processor to read its own write before the write is issued to the memory system. (The Mpase
abstraction in [GMG91] is limited because it does not model out-of-order read operations from the same processor;
however, the non-blocking Mp,s. abstraction in [GM92] removes this restriction.) While their abstraction meets
our goals, the methodology used in [GMG91, GM92] to specify system requirements is overconstraining and does
not fully expose the range of possible optimizations. We will further discuss their abstraction and framework and
contrast it to our approach in Section 4.

The next subsections define the notion of an execution and describe how extra constraints may be placed on the
ordering of memory sub-operations in an execution in order to satisfy the semantics of various memory models.

2.2 Definition of an Execution

The abstraction presented in the previous section provides the motivation and intuition for the formalism we present
below. Based on this abstraction, the system consists of n processors, Py, ..., P,. We use the same terminology
used in the previous section to refer to read and write operations (and sub-operations) to shared-memory. A shared
read operation R by P; is comprised of a single atomic sub-operation, R(i). A shared write operation W by P;

4Such implementations are covered more thoroughly in Section 3.

is comprised of (n+1) atomic sub-operations: the initial write sub-operation W ;,;;(i) and n sub-operations W(/),
..., W(n) (all sub-operations of W access the same location and write the same value).?

We define an execution of a multiprocessor program as follows. A multiprocessor execution consists of a set
of instruction instances and a relation called the program order on these instruction instances. The program order
relation is a partial order on the instruction instances, where the partial order is total for the instruction instances
issued by the same processor and is determined by the program text for that processor [SS88]. In addition, the
execution consists of a set of shared-memory sub-operations that correspond to the instruction instances that access
shared-memory. Note that read and write sub-operations to private memory are not included in this set. The notion
of an execution is formalized in Definition 1. Below we discuss two conditions that every execution should obey.

The first condition on the execution (Condition 1) is that each processor performs its computation correctly. We
refer to this as the uniprocessor correctness condition. Since this work is directed towards specifying multiprocessor
behavior, we do not fully formalize a correct uniprocessor, but rely on the intuitive notion. Some of the aspects
of correctness we assume involve executing the correct set of instruction instances, returning correct values from
private memory, and performing all register operations and local computation correctly. There is a characteristic
of the uniprocessor correctness condition as stated in Condition 1 that has a subtle implication on multiprocessor
systems. Given an execution E of a correct uniprocessor, if an instruction instance i is in E, then the number of
instruction instances in E that are ordered before i by program order should be finite.® Effectively, this disallows a
processor from issuing instructions that follow (by program order) infinite loops in the program. The exact effect
of this requirement on multiprocessor implementations is discussed in Section 3; Appendix D discusses how this
requirement may be relaxed to allow more aggressive implementations.

The second condition (Condition 2) is that for every execution, there should exist at least one total order, called
the execution order (and denoted by —=+), on all memory sub-operations in the execution that is “consistent” with
the values that are returned by the read sub-operations in the execution. The notion of when a total order is
“consistent” with the read values is formalized in Condition 2 below. Intuitively, this captures the notion that
values returned by read sub-operations should obey the abstraction of the system presented in the previous section. 7
Note that corresponding to each execution, there may be several execution orders that satisfy Condition 2.

Definition 1: Execution

An execution of a program consists of the following three components and should obey Conditions 1 and
2 specified below.

(i) A (possibly infinite) set I of instruction instances where each instruction instance is associated with the
processor that issued it, registers or memory locations it accessed, and values it read or wrote corresponding
to the accessed registers and memory locations.

(ii) A set S of shared-memory read and write sub-operations that contains exactly the following components.
For every instruction instance ¢ in I that reads a shared-memory location, the set S contains the memory
sub-operation for the reads of ¢ with the same addresses and values as in 1. For every instruction instance
i in I that writes a shared-memory location, the set S contains the W in; sub-operation for the writes of ¢
with the same addresses and values as in ¢, and possibly other sub-operations of these writes in the memory
copies of different processors.

(iii) A partial order, called the program order (denoted -£2,), on the instruction instances in I, where the
partial order is total for the instruction instances issued by the same processor.

Condition 1: Uniprocessor Correctness Condition

For any processor P;, the instruction instances of P; in the set I (including the associated locations and
values) belonging to an execution, and its corresponding program order 2., should be the same as the
instruction instances and program order of a conceptual execution of the code of processor P; on a correct
uniprocessor, given that the shared-memory reads of P; (i.e., the R(i)’s) on the uniprocessor are made to

return the same values as those specified in the set L.

51t is not necessary to explicitly model the W ;,,;; sub-operation. As will become apparent however, modeling this sub-operation makes it
easier to reason about properties such as the value condition (Condition 2).

SIn general, we assume that for any total or partial order -£2, defined on a (possibly infinite) set K, L2, orders only a finite number of
elements of set K before any element k in the set K, and the remaining (possibly infinite) elements are ordered after k.

7To model initial values in the memory copies, we assume there are hypothetical write sub-operations writing the values and for any such
write sub-operation W(i) to the same location as a sub-operation X(i) in the execution order, W(i) is before X(i).

Condition 2: Value Condition

Consider the set S of shared-memory read and write sub-operations. If set S is part of an execution, then
there must exist a total order called the execution order (denoted =) on the memory sub-operations of S
such that (a) only a finite number of sub-operations are ordered by -Z% before any given sub-operation, and
(b) any read sub-operation R(i) by P; returns a value that satisfies the following conditions. If there is a
write operation W by P; to the same location as R(i) such that W ;n.: (i) 22 R() and R@) =5 W(), then
R(i) returns the value of the last such Wiy (i) in =9, Otherwise, R() returns the value of W’(i) (from any

processor) such that W’(i) is the last write sub-operation to the same location that is ordered before R(i) by
o
=z,

Although an execution is defined in terms of a set of instructions and memory sub-operations, we also implicitly
associate it with a set of memory operations that comprise the memory sub-operations. We will often refer to this
set as memory operations or operations of the execution. We also extend the notion of program order to both
sub-operations and operations. Thus, an operation or sub-operation precedes another by program order if their
corresponding instructions do so. Further, if an instruction contains multiple memory operations, then we assume
that all constituent operations are ordered by L2, with the exact ordering being defined by the specific instruction.
Finally, except in Appendices A and D, the description of system constraints in the paper only concerns the
interaction between shared-memory operations. For this reason, we may often ignore the set I of the execution,
and use only S and the program order relation on S to describe the execution.

Qur definition of execution is influenced by the work by Adve and Hill [AH92] and by Sindhu et al. [SFC91]
and combines concepts from both. Adve and Hill define an execution similar to the above except that they do not
allow a read, R(i), to return the value of a write whose sub-operation, W(i), occurs after the read in the execution
order. On the other hand, Sindhu et al. model write operations as a single sub-operation. However, unlike these
two definitions, we chose to include all instructions in the execution as opposed to only shared-memory operations.

From this point on, we assume the above two conditions (1 and 2) are satisfied by all specifications presented
in this paper. The next section describes how extra constraints can be placed on an execution to satisfy the
semantics of a given memory model.

2.3 Memory Model Specific Requirements

This section describes our methodology for specifying constraints on an execution to reflect memory ordering
restrictions that are specific to each memory model. We first discuss general conditions that need to be satisfied
by an execution and an implementation in order to maintain the semantics of a memory model. We then present
specific system constraints for satisfying sequential consistency and other more relaxed memory models.

We use the following terminology below. We denote program order by L., Two operations (or sub-operations)
conflict if both are to the same location and at least one is a write [SS88]. We use R (or Ri, Rj, Rk, etc.) and W
(or Wi, Wj, WK, etc.) to denote any read and write operations respectively. RW denotes either a read or a write.
For RCpc, we use R.acq and W_rel to denote acquire and release operations, respectively.

The conditions for each model consist of three parts: the initiation condition (for memory sub-operations),
the <£% condition, and the termination condition (for memory sub-operations). Each of these parts specifies a
restriction on the execution order relation. For a system to obey a memory model, any execution allowed by the
system must have an execution order that satisfies each of the above three parts as specified for the corresponding
model. We discuss each of these parts below.

The initiation condition for memory sub-operations is a restriction on the order of the initial write sub-operations
(i.e., W;ni:(i)) with respect to other sub-operations. Its main purpose is to capture the program order among read
and write sub-operations to the same location.

Condition 3: Initiation Condition (for memory sub-operations)
Given two operations by P; to the same location, the following must be true. If R — W, then R(i)
% Winie(i). f W 25 R, then Winie(i)) == R(). If W1 -£5 W2, then Wlinie(i) Z2 W2inie(i).
The 2%5% condition imposed on the execution order is based on the 7% relation (=% is a subset of —
thus the name) among memory operations that is defined for each model (examples of this follow in the next
section). This condition requires certain sub-operations to execute in the same order as that specified by % on
their corresponding operations. The formal description follows.

Condition 4: =% Condition
Let X and Y be memory operations. If X 25 Y, then X(i) must appear before Y(j) in the execution order

S$TO

for some i,j pairs (the i,j pairs used are specific to each model). The — relation is individually specified
for each memory model.

The termination condition for memory sub-operations requires that certain write sub-operations take effect in
finite “time”. The subset of write sub-operations that obey this condition is specified by each memory model. The
condition is as follows.

Condition 5: Termination Condition (for memory sub-operations)

Suppose a write sub-operation Win;:(i) (belonging to operation W) by P; appears in the execution. The
termination condition requires that the other n corresponding sub-operations, W(I) ... W(n), appear in the
execution as well. A memory model may restrict this condition to a subset of all write sub-operations.

We define a valid execution order as one that satisfies the constraints specified by a memory model. A valid
execution is then an execution that has a corresponding valid execution order.® A correct implementation for a
model can then be defined as one that allows valid executions only. The definitions for these terms are presented
below.

Definition 2: Valid Execution Order
An execution order is valid for a memory model iff it satisfies the conditions (Conditions 3, 4, and 3)

specified for that model.

Definition 3: Valid Execution
An execution is a valid execution under a memory model iff at least one valid execution order can be

constructed for the execution.

Definition 4: Correct Implementation of a Memory Model
A system correctly implements a memory model iff every execution allowed by the system is a valid execution

for that model.

Typical implementations obey the constraints on execution order directly (and usually conservatively); i.e.,
constraints on the execution order are enforced among sub-operations in real time. However, a system designer
is free to violate the constraints imposed by a specific memory model as long as the resulting executions appear
to obey these constraints.” While this provides room for flexibility, in practice, we believe it is difficult for a
designer to come up with less restrictive constraints and guarantee that the resulting executions will be the same
as with the original constraints. Therefore, it is important to initially provide the designer with as minimal a set
of constraints as possible.

To avoid execution order constraints that are unnecessary for maintaining the semantics of a model, we exploit

the following observation in our framework. Given a valid execution order =2, any execution order 2%, that
maintains the same order among conflicting sub-operations as ~2, is also a valid execution order. The reason
is that the order among conflicting sub-operations completely determines the values read and written by the sub-
operations. Therefore, to specify valid execution orders, it is sufficient to constrain the execution order among
conflicting sub-operations only. Specifically, the use of this observation in the 22% condition is the primary
distinguishing feature of our methodology. (It is possible that two execution orders may impose different orders
among conflicting sub-operations and yet result in the same values being read and written by the sub-operations;
however, exploiting this observation to provide the minimal possible constraints on the execution orders seems

difficult.)

8Note that our framework covers infinite executions since an execution is a set which can be infinite, and the conditions for different
models are specified only as restrictions on this set. In practice, on a real system, one may want to test whether a partial execution (potentially
leading to an infinite execution) generates a valid outcome. For this, we can define a partial execution as a set I of instructions, a set S’ of
sub-operations, and a program order relation that represent the instructions and sub-operations that have been generated so far in the system and
the corresponding program order. Then the partial execution generates a valid outcome or is valid if it could possibly lead to a valid complete
execution; i.e., a partial execution is valid if its sets I' and S’ are respectively subset of sets 1 and S of the instructions and sub-operations
of some valid execution. Note here that in forming I’ and §’, we should not include speculative instructions or sub-operations that may have
been generated but are not yet committed in the system.

9This would not be possible for models such as linearizability [HW90] where correctness depends on the real time occurrence of events.
However, for the models we have been discussing, the real time occurrence of events is assumed to be unobservable.

define =Z5: X 223 Y if one of

LXx2y
22Xy
8TO sro

3. atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then either W —— AR or AW —— W

Conditions on
Initiation condition holds.
228 condition: if X <3 Y, then X(i) = Y(j) for all i,j.
Termination condition holds for all sub-operations.

Figure 2: Conservative conditions for SC.

The above observation has been previously made by others as well. For example, Shasha and Snir [SS88]
exploit a similar observation in identifying a minimal set of orders (derived from the program order) that are
sufficient for achieving sequential consistency for a given program. Collier [Col92] also uses this observation
for proving equivalences between different sets of ordering constraints. However, previous specifications of
memory models have not exploited this observation to its full potential. Specifically, many of the specifications
impose unnecessary ordering constraints on non-conflicting pairs of memory operations; even Shasha and Snir’s
implementation involves imposing delays among non-conflicting memory operations that occur in program order.
In contrast, our framework presents a unified methodology for specifying ordering constraints that apply to pairs of
conflicting memory operations only. We next present the constraints for sequential consistency in our framework
and contrast the two approaches of specifying the execution order constraints among both conflicting and non-
conflicting sub-operations versus among conflicting sub-operations only. We then proceed with specifications for
other more relaxed memory models.

2.3.1 Requirements for Sequential Consistency

This section develops the system requirements for maintaining SC. We first develop a set of sufficient constraints
on the execution order and then show how our framework allows us to express a substantially weakened set of
constraints that still satisfy SC.

First, we define some terminology below. As before, we denote the program order by 22, and the execution
order by =2, A condition like “X(i) > Y(j) for all i,j” implicitly refers to pairs of values for i and j for which
both X(i) and Y(j) are defined [AH92]. We also implicitly assume that X(i) and Y(j) appear in the execution for
all such pairs. For example, given R is issued by Py, “W(i) 22, R(j) for all 1, reduces to “W(i) == R(k) for
all i” because R is not defined for any value other than k. As mentioned before, two operations conflict if both
are to the same location and at least one is a write [SS88]. Two sub-operations conflict if their corresponding
operations conflict with one another. The conflict order relation (denoted <%,) is defined as follows. For an
execution order =% and two conflicting operations X and Y, X =%+ Y iff X(i) =% Y(i) holds for some i. If X
and Y are on different processors and X —— Y, then X and Y are also ordered by the interprocessor conflict order

1
X 2, Y. Since atomic read-modify-write operations (e.g., test-and-set and fetch-and-increment) are common
in shared-memory machines, we include them in our framework as well. Given an atomic read-modify-write
operation, RMW denotes the operation itself and AR and AW denote the individual read and write operations,

respectively. We assume AR 22, AW.

Lamport [Lam79] defines sequential consistency as follows: A system is sequentially consistent “if the result of
any execution is the same as if the operations of all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the order specified by its program”. While this
definition specifies the possible outcomes for a program, it does not directly translate into an implementation of SC.
Therefore, to aid designers, we need to specify a set of conditions that more closely relate to an implementation.
For example, Dubois et al. [SD87] have shown that to satisfy SC, it is sufficient to maintain program order and
make writes appear atomic in an implementation. Figure 2 shows these conditions expressed in our framework.

PI i) PI P

A=1 Write A Read Flag
P :

Flag=1; while (Flag == 0); Write Flag __co

T~ Read Flag

w=A; yro
Read A
(a) Program Text (b) Subset of Program Order
and Conflict Order

Figure 3: Example code segment.

Conservative conditions for SC in our framework

Figure 2 gives conservative conditions for SC in our framework. The ~=% relation (<=5 is a subset of 223
captures some of the conditions used to constrain the execution order -22,. The figure shows three conditions
under 2Z%. The first condition under == captures the program order between operations from the same processor.
The second condition captures the conflict order between conflicting operations (related to making writes appear
atomic). And finally, the third condition captures the atomicity of read-modify-write operations with respect to
other writes to the same location. (Read-modify-write operations are usually not covered in other frameworks in
the literature.) Given the definition of ==, the constraints on the execution order =2, are as follows: (i) the
initiation condition holds, (ii) if two operations are ordered by =2, then all sub-operations of the first operation
are ordered by =2+ before any sub-operation of the second operation, and (jii) the termination condition holds
among all sub-operations.

To better understand the conservative conditions, consider the example code segment in Figure 3. The left
side of the figure shows a program where one processor writes a location and sets a flag, while the other processor
waits for the flag to be set and then reads the location. Assume the values of A and Flag are initially zero. The
right side of the figure shows the program order arcs (2%,y and the conflict order arcs (—+) between the write
and the successful read of the flag. With sequential consistency, the read of A should return the value 1 in every
execution. Let us consider how the conditions on the execution order in Figure 2 ensure this. The program order
condition constrains ~2%» as follows: W A(i) =% Wriag(j) and Rpiag(i) == Ra() for all i,j. The conflict order
condition constrains =% such that W pi4, (i) =% RFia,(j) for all i,j. By transitivity, we have W 4 (i) == R4(j) for
all i,j, which denotes that all sub-operations of the write to A happen before the read A sub-operation, ensuring
that the read returns the value 1 in all executions. It is possible to weaken the conditions in Figure 2 while
maintaining the semantics of SC; we explore this more aggressive set of conditions next.

Aggressive conditions for SC in our framework

The conditions in Figure 2 impose constraints on the execution order between both conflicting and non-
conflicting sub-operations. The key insight behind the more aggressive conditions for SC is to impose constraints
on the execution order among conflicting sub-operations only. Figure 4 shows these aggressive conditions for SC.
As before, the 222 relation captures the conditions that constrain the execution order. We have added two other
relations, 2% and 2<%, for notational convenience (<2 is a subset of == and =% is a subset of the transitive
closure of —2+). These relations capture certain - and —— orders that are used in the ~=> relation. Note that
$ro . .« e . . sSTo . o . sre
2Z% is only defined among conflicting operations. Given —, the constraints on — are as follows: if X — Y

(X and Y conflicting), then X(i) =2+ Y(i) for all i.

Let us now consider the different conditions for the =% relation. The first condition under =% is uniprocessor
dependence and captures the order of operations from the same processor and to the same location. Together with
the initiation condition (Condition 3) and the value condition (Condition 2), this condition ensures that a read
returns either the value of the last write to the same location that is before it in program order or the value of
a subsequent write to that location. The second condition is coherence which ensures that write sub-operations
to the same location take effect in the same order in every memory copy. The third set of conditions, denoted
as the multiprocessor dependence chain, captures the relation among conflicting operations that are ordered by
£2, U 22, As we will see shortly, this set of conditions is the key component of our aggressive specification

that differentiates it from the conservative conditions (as in Figure 2). The notation “{A <= B 22% Y47 denotes

define Z25: X 25 Y if X and Y are to different locations and X £

define 223: X 223 Y if X,Y are the first and last operations in one of

i
(=1}
X —+Y
COI CO/

R ~—+ W -— R

define 2=3: X 2Z3 Y if X and Y conflict and X,Y are the first and last operations in one of

uniprocessor dependence: RW 2o w
coherence: W — W
multiprocessor dependence chain: one of
w < R 2% R
RW 225 {A 25 B 2 1+ RW
WS RZEL (A5 B AR
sxro

atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then either W — AR or AW 2w

Conditions on —:
Initiation condition holds.
222 condition: if X ZZ3 Y, then X(i) =2 Y(i) for all i.

Termination condition holds for all sub-operations.

Figure 4: Aggressive conditions for SC.

one or more occurrences of this pattern within the chain.!® Finally, the condition on atomic read-modify-writes is
the same as in the conservative conditions. The formal proof of equivalence between these aggressive conditions
and Lamport’s definition of SC appears in Appendix C.

Consider the program in Figure 3 again, this time with the aggressive conditions. The relevant condition

in Figure 4 that ensures the correct behavior for this program is the second condition under the multiprocessor

dependence chain category. This condition applies as follows: W 4 2% R4 because Wy ire, Wriag 220

RFiag LA R4 . In turn, W4 =% R4 constrains the execution order among the sub-operations such that W 4(i)
Z% Ra(i) for all i (this reduces to W 4(2) = R4(2) since R4(i) is only defined for i=2). Therefore, every
execution is required to return the value of 1 for the read of A. Note that there are many more valid execution
orders possible under the aggressive conditions as compared to the conservative conditions. For example, the
following execution order, W piq4(2) 22, RFi1ag(2) 22 W4(2) =2 Ra(2), is allowed under the aggressive but
not under the conservative conditions (because program order is violated on the first processor).

Even though the aggressive constraints place much fewer constraints on the execution order, the resulting
executions “appear the same as if” the strict conditions were maintained. While the difference between the
two sets of conditions is not discernable by the programmer, from a system design perspective, the aggressive
conditions allow more flexibility with respect to optimizations that are possible. For example, more aggressive
implementations of SC such as the lazy caching technique [ABM89] do not directly satisfy conditions in Figure 2,
but can be shown to directly satisfy the aggressive conditions in Figure 4. We further explore such implications
on system implementation in Section 3.

2.3.2 Requirements for Other Models

The previous section presented system requirements specific to sequential consistency. However, the framework
we described is general and can be used to express the system requirements for other memory models as well.
While the conditions for various models differ in the specific execution orders they allow, the basic categories
of conditions captured by the 22% relation and the way = is used to constrain the execution order among
conflicting sub-operations is uniform across many of the specifications. We present the conditions for one of the
hardware-centric models, RCpc, in this section. The conditions for several other relaxed models in addition to

proofs of their correctness are provided in Appendices B and C. We have also used this framework for specifying

10This is similar to regular expression notation. We also use “*" to denote zero or more occurrences of a pattern.

10

/
Spoc sSpo
define ~-£-+, o,

i
X2 yif X,Y are the first and last operations in one of
RW 22 Wrel
R.acq 25 rw

X P yirx {2525 e ¥

define 253 X 25

X —r Y
RI =% W 2% R2 where R1,R2 are on the same processor

Y if X,Y are the first and last operations in one of

define ~25: X 223 YifXand Y conﬂlct and X,Y are the first and last operations in one of

uniprocessor dependence: RW 2w
coherence: W — W
multiprocessor dependence chain: one of
wSARESR
RW E3 (A 255 B 25 14+ RW
atomic read-modify-write (AR AW): if W conflicts with AR,AW, then either W 225 AR or AW Z5 W

Conditions on ——2:
Imtranon condition holds.
8TO

2Z9 condition: if X 225 Y, then X(i) Z2 Y(i) for all i.
Termination condition holds for W.rel sub-operations.

Figure 5: Aggressive conditions for RCpc.

sufficient system requirements for programmer-centric models such as PLpc [AGG*93].

Figure 5 presents the conditions for RCpc [GLL*90, GGH93] in their aggressive form where the constraints
on the execution order are present among conflicting sub-operations only.!! We use R_acq and W_rel to denote
a read acquire and a write release, respectively, and R and W still denote any read or write, including acquires
and releases. Note that even though we are representing a different model than SC, the way the conditions are
presented is quite similar to the conditions for SC in Figure 4. Of course, at the detailed level, the exact orders
that are maintained do differ. As before, we use the 2% and = relations for notational convenience in order
to capture the relevant L%, and -2 orders that are used in the 2% conditions. Consider the 2% relation first.
While for SC, "% holds between any two operations ordered by 22, in RCpc, 2% holds for only a subset of
the operations ordered by L2,: (i) if the first operation is an acqurre, or (ii) if the second operation is a release,
or (iii) if the two operations are related by the reach relation 2% (will be drscussed shortly), or (iv) the transitive
closure of the above. Similarly, R1 <2 W =2 R2 does not constitute an ~— for RCpc unless R1 and R2 are
on the same processor. The conditions under =% are also similar in form to those of SC except the thrrd chain
under multiprocessor dependence is not present in the conditions for RCpc. The manner in which the 225 relation
is used to constrain —= is also identical to SC. However, the constraints imposed by the termination condition
apply only to release sub-operations under RCpc. 2

Consider our example code segment in Figure 3 with the conditions for RCpc. Assume the write to Flag is
identified as a release and the read of Flag is identified as an acquire. Therefore, we have W4 hLAN Wriag and
Rriag 2re, R4 . In addition, Wy =2, RrFiay translates to Wryg, 2 Rriag - By the second condition under
multiprocessor dependence chain, we have W4 2% Ry since Wy 2P, Wriag e, Rpiag 2P% R, , which in

turn imposes the constraint W 4 (i) Z2, R4(i) for all i. Therefore, given the read and write operations to Flag are
labeled as release and acquire, respectively, the read of A will always return the value 1. However, consider the

For simplicity, we treat all read and write nsync operations [GLL %90} as acquires and releases, respectively. Appendix B shows the
conditions without this simplification.

12This termination condition is sufficient for properly-labeled programs (PL [GLL *90] and PLpc {GAG*92]) where all races are identified.
For programs that do not identify all races (e.g., chaotic relaxation), it may be desirable to prescribe time intervals at which termination is
upheld for all writes (e.g., writes may be forced to take effect in all memory copies every so many cycles).

11

case, for example, where the write to Flag is not labeled as a release. In this case, Wy 22, Wriag no longer
holds, and none of the conditions in RCpc constrain the execution order between operations to location A any
more. Therefore, R4(2) =2 W 4(2) is an allowed execution order and the read of A may return the value of 0 in
some executions (an analogous situation occurs if the read of Flag is not labeled as an acquire).

We now describe the reach relation (15-@*) that is used as part of the 2% definition in Figure 5. The reach relation
captures the interaction between memory operations that arise due to uniprocessor control and data dependences in
each process’ program and extends these dependences to include multiprocessor specific interactions as well (e.g.,
“dependence” implied by the 2% relation). To motivate this, consider the code example in Figure 6. Here, we
show P1 reading location A, testing its value, and conditionally writing location B, while P2 does the symmetric
computation with accesses to A and B interchanged. Assume all memory locations are initialized to zero. In
each processor, whether the write occurs depends on the value returned by the read. Assume that each processor
waits for its read to take effect before allowing its write to take effect in the other processor’s memory copy. In
such an implementation, the writes do not appear in the execution of either processor since both conditionals fail.
Now consider an implementation that speculatively allows writes to occur before the result of the conditional is
resolved (e.g., possible in systems using branch prediction with speculative execution past branches). In such an
implementation, it is possible to get an execution in which both conditionals succeed and both writes occur in the
execution. However, the above execution is somewhat anomalous since writes in the future affect the value of
previous reads that in turn determine whether the writes should have been executed at all. This type of anomalous
behavior is automatically eliminated in models such as SC, PC, TSO, and PSO that maintain the 2% relation
from a read to writes that follow it in program order. On the other hand, such anomalous executions could occur

with models such as RCsc, RCpc, and WO if the reh, relation is not included in ~£%. However, these models are
intended to appear SC to a class of well-behaved programs [AH90b, GLL*90, AH93, GAG*92], and executions
such as the one described above violate this intent. Therefore, it is necessary to give precise conditions that would
prohibit the above type of anomalous executions.

The main purpose for the reach condition is to disallow the types of anomalous executions that arise if we
allow “speculative” write sub-operations to take effect in other processors’ memory copies. In most previous
work, such conditions were either implicitly assumed or assumed to be imposed by informal descriptions such
as “intra-processor dependencies are preserved” [AH90b] or “uniprocessor control and data dependences are
respected” [GLL190]. Some proofs of correctness (e.g., proof of correctness for PL programs executing on the
RCsc model [GLL*90]) formalized certain aspects of this condition, but the full condition was never presented
in precise terms. Recent work by Adve and Hill specifies this condition more explicitly in the context of the
DRF1 model [AH92] and proves that it is sufficient for ensuring sequentially consistent results to data-race-free
programs on models such as WO and RCsc. More recently, we have jointly formalized an aggressive form of this
condition as part of specifying sufficient conditions for PLpc [AGG *93] and have proven that PLpc programs

provide sequentially consistent results on models such as RCpc. Our use of the Tt relation for WO, RCsc,
and RCpc is a straightforward adaptation of the condition developed for PLpc. The formal proof that this type
of a condition is sufficient for providing sequentially consistent results for a general class of programmer-centric
models will appear in [Adv93].

Intuitively, a read operation reaches a write operation that follows it in program order (R ek, W) if the

read determines whether the write will execute, the address accessed by the write, or the value written by it.!
In addition, R % W if the read controls the execution or address of another memory operation that is before
W in program order and is related to W by certain program order (£%) arcs (e.g., -£) that are used in the
29 relation.' The formal definition of the Z%5 relation is provided in Appendix A and is a straightforward
adaptation of the conditions developed for PLpc [AGG193]. This formulation represents the most aggressive
condition developed so far and allows for several optimizations while disallowing the anomalous executions {e.g.,
speculative reads are allowed; writes that do not depend on the outcome of a branch are allowed to execute before
the branch is resolved).

Compared to the original conditions for RCpc [GLL 90, GGH93], the conditions presented here are more
complete (with respect to precisely specifying data and control dependences) and expose more aggressive opti-

13Gimilar to the uniprocessor correctness condition, the reach condition requires considering all instructions (not just memory instructions)
to determine whether the relation holds between a pair of memory operations.

14This aspect of the reach relation makes it memory model dependent since different models have different 222 relations.

12

P1 P2

if (A==1){ if(B==1){
B=1; A=1;
} }

Figure 6: Example to illustrate the reach condition.

mizations while maintaining the same semantics. We have provided the specification for several other models in
Appendix B and in each case, the new specification exposes more aggressive optimizations than the original one.
Similar to RCpc, the new specifications for WO and RCsc are also more complete. The next section will further
discuss how exposing more optimizations expands the range of efficient implementations for each model.

3 Implementation Techniques

This section describes how to implement a memory model that is specified within our framework. The first
part describes issues related to the architecture (i.e., hardware and any runtime software) while the second part
describes compiler-related issues.

3.1 Architectural Issues

This section discusses implementing the system requirements specified by our methodology at the architectural
level. We assume the uniprocessor correctness condition (Condition 1) is trivially satisfied.!> The remaining
requirements consist of constraints on the execution order due to the the value, initiation, 2% and termination
conditions (Conditions 2-5). We use the following terminology below. A write operation W by P ; whose Wip (i)
sub-operation appears in the execution but whose W(i) sub-operation is yet to appear is referred to as a pending
write. We will use the term uniprocessor dependence condition to imply the constraint imposed on the execution
order due to the uniprocessor dependence component of the =% condition. We will use the terms coherence
condition, multiprocessor dependence chain condition, and read-modify-write condition similarly, and will discuss
each of these conditions separately. Of all the conditions discussed below, the multiprocessor dependence chain
condition is the most important contribution of this work since it allows a wider range of optimizations and
implementations than previous specifications by imposing constraints among conflicting operations only.

3.1.1 Value, Initiation, Uniprocessor Dependence, and Coherence Conditions

The value, initiation, uniprocessor dependence, and coherence conditions interact in a close way and so we
discuss them together. The intent of the value, initiation, and uniprocessor dependence conditions is to maintain
the intuitive notion of uniprocessor data dependences; i.e., a processor should “see the effect of” its own conflicting
operations in program order. An intuitive way of ensuring uniprocessor data dependence would be to require that
the sub-operations of two conflicting operations of a single processor should execute in program order (e.g., if
R 22 W on P;, then R(1) =2+ Wi,i:(i) and R(i) 22, W(i)). With our methodology, for SC and RCpc, the
initiation and uniprocessor dependence conditions (Figures 4 and 5) ensure the above for two conflicting writes
in program order (i.e., W1 22, W2 on P implies W1;,4:(i) Z2 W2;n::(i) and W13G) =% W2(i)) and for a
write following a conflicting read in program order. However, if a read R follows a write W in program order
on P;, the uniprocessor condition does not require W(i) == R(i). While this may imply a possible violation of
uniprocessor data dependence, the initiation condition requires W ;¢ (i) L2, R(i) and even if RG) = W) (i.e.,
write is pending), the value condition still ensures that R will return the value of W (or a later conflicting write
that is before R by program order). This ensures that the essential notion of uniprocessor data dependence is
maintained; i.e., a read sees the effect of the conflicting writes that are before it in program order. Below, we first
describe how the value, initiation, uniprocessor dependence, and coherence conditions can be implemented, and

15To satisfy Condition 1, one of the requirements is that operations following an unbounded loop (by program order) should not be executed
until it is known that the loop will terminate. Appendix D discusses how this restriction may be relaxed in certain cases.

13

Pl P2

(a) A=1 A=2 (b)
x=A (¢)

Figure 7: Example code segment showing interaction between the various conditions.

then discuss their interaction which requires our less intuitive form for the value and uniprocessor dependence
conditions.

Implementation of value, initiation, uniprocessor dependence, and coherence conditions

A typical way in which the value, initiation, and uniprocessor dependence conditions are maintained is as
follows (all sub-operations below are from the same processor P;). A write sub-operation is delayed until previous
read and write sub-operations to the same location have executed in the memory copy of the issuing processor
(e, R 2% W implies R() <% Wini(i) and R() =% W(i); W1 2%+ W2 implies Wlins:(i) == W2ini(i) and
W1() =2 W2(i)).'¢ Read sub-operations do not need to be delayed for previous (in program order) read and write
sub-operations (except W 2% R implies W;n;: (i) == R(i)), but if there are pending memory write sub-operations
to the same location, the read has to return the value of the pending write to the same location that is the last one
before it in program order. For example, in an implementation that uses write buffers, the appropriate value is
forwarded to the read if there is a conflicting write in the buffer. The above techniques are well understood since
similar conditions need to be maintained in uniprocessors.

The coherence condition constrains write sub-operations to the same location to occur in the same order
with respect to every memory copy (i.e., Wi(i) 2%, W2(i) for all i). This is typically achieved through a logical
serialization point per location where writes to that location are serialized (e.g., at the home directory in a directory-
based coherence protocol). Techniques for maintaining coherence are also well understood and have been covered
in the literature (e.g., see [GLL*90, LLG*90] for a description of the Dash coherence protocol).

Interaction between value, initiation, uniprocessor dependence, and coherence conditions

There is a subtle interaction between the value, initiation, uniprocessor dependence, and coherence conditions
when all of them are to be satisfied by operations to a location. Consider the code segment in Figure 7. Assume
all values are initially 0. Both P1 and P2 write to location A and P2 also reads this location. Let W1 denote the
write on P1 and W2 the write on P2. Coherence requires all processors to observe the two writes of A in the
same order. As discussed above, this is usually achieved by sending the two writes to a serialization point from
where their sub-operations are sent to different memory copies in the same order. Thus, the write sub-operation
of P2 (i.e., W2(2)) cannot execute in P2’s memory copy as soon as it is issued. Instead, it has to be sent to a
serialization point and is executed in P2’s memory copy only after all other write sub-operations to A that are
serialized before this write have executed in P2’s memory copy. For our case, assume that P1’s write is serialized
before P2’s write. Now consider the state when P2’s write is waiting to be serialized and P2 issues its read of
A. For the traditional notion of data dependences to be satisfied, this read should return the value of P2’s write
on A or a write that is serialized after P2’s write. Thus, to satisfy data dependences, it is always safe for P2’s
read to return the value of P2’s write. The key question that determines the form of our conditions is: can this
read return the value of P2’s write before the write is serialized, and hence possibly before P1’s and P2’s write
sub-operations (W1(2) and W2(2)) are executed in P2’s memory copy? The answer to this question, and the form
of the uniprocessor, initiation, and value conditions, depends on the memory model.

For models which do not allow the read to return the value of P2’s write before it is serialized, we do not
need to model the W;,;;(i) sub-operation and we do not need an explicit value condition (i.e., the value condition
would simply require a read to return the value of the last write to the same location that is before it in the
execution order). Instead, we can make the uniprocessor dependence condition require that for a read following a
write in program order, the read sub-operation should appear after the write sub-operation in the execution order.
However, such models impose a delay on the read since it has to wait for a previous write to be serialized.

16The coherence condition discussed below ensures that the sub-operations of two conflicting writes of a processor execute in the correct
relative order in memory copies of other processors.

14

Other models (including all models discussed in this paper) can eliminate the above delay by allowing P2’s
read to return the value of P2’s write before the write is serialized. However, with this optimization, the write
sub-operation in P2’s memory copy appears after the read in the execution order, and thus we cannot require the
uniprocessor dependence condition to include a constraint on the order of execution of a read following a write.
Instead, the traditional notion of data dependence is maintained by using the initiation and value conditions. These
two conditions ensure that even if a write that is before a read by program order is executed after the read, the
read will still see the effect of the write. In particular, if a write that is before a read by program order appears
after the read in the execution order (i.e., R(i) > W(i) even though W,;;(i) =% R(i)), then the read will return
the value of the last conflicting write ordered before it by program order. For example, referring back to Figure 7,
let W1(2) and W2(2) denote the sub-operations for the two writes (by P1 and P2) destined for P2’s memory copy
and let R(2) denote the sub-operation for P2’s read. Assume W1(2) 22 W2(2) by coherence, as we did above.
The uniprocessor condition for the models that allow the read to occur while the write is pending corresponds
to allowing R(2) ~£2, W2(2). Then one possible execution order is R(2) 22, W1(2) =% W2(2). The value and
initiation conditions for such models ensure that the value returned by R(2) is that of W2(2), and not of any write
that is before W2(2), thereby maintaining data dependence.

Thus, our notions of uniprocessor dependence, initiation, and value conditions precisely and directly capture
the optimization of allowing a read to return the value of its own processor’s write before it is serialized. This
optimization is important since it is used by commercial multiprocessors such as those by Silicon Graphics and
SUN, and many of the memory models considered in this paper allow it (for SC, this had not been explicitly
stated in previous work).

Often, the above optimization of allowing a read to return the value of a write that is not yet serialized is
implemented in the form described by our abstraction; i.e., through early reads from the write buffer. An alternate
form of implementing this optimization is as follows. A write is allowed to update the logical memory copy
of the issuing processor before it is serialized. A read in this case simply returns the value in the processor’s
memory copy. However, care must be taken in handling the conflicting write sub-operations that arrive from other
processors while the serialization of the current write is pending.!” This typically involves ignoring any write
sub-operations (e.g., invalidation or update messages) that arrive for this location while this processor’s write is
still awaiting its response from the serialization point.!® Therefore, it effectively appears as if writes that were
serialized before this processor’s write took effect before it in this processor’s memory copy. Some systems like
DASH [LLG"90] use a hybrid scheme that is a merge of the two techniques discussed above. In DASH, a write
updates the write-through first level cache immediately (second technique), but the update to the second level
cache is delayed by the write-buffer until ownership is granted (first technique).

3.1.2 Multiprocessor Dependence Chain Condition

The multiprocessor dependence chain condition captures the relation among conflicting operations that are ordered
by certain program order and conflict order arcs. This condition is a key contribution of this work since it allows
a much wider range of optimizations and implementations than most previous specifications. The strength of our
framework is that it makes this wide range of implementations relatively obvious, and consequently, simplifies the
task of verifying if an aggressive implementation obeys a memory model.

Below, we first discuss the more conservative (and consequently simpler) implementations for satisfying
the multiprocessor dependence chain condition. Then we follow with more aggressive (and consequently more
difficult) implementations that exploit the extra flexibility offered by our specification approach. The discussion
below focuses on implementing the multiprocessor dependence conditions for SC (Figure 4). However, the
implementation techniques apply to specifications for the other models as well.

Conservative implementations of the multiprocessor dependence chain condition

The first multiprocessor dependence chain for SC is of the form W 22, R1 2% R2, where all three operations
are to the same location. Assume R1 and R2 are issued by P;. Given such a chain, the condition on the execution

17We assume sub-operations to the same location arrive in order from the coherence serialization point.

181nvalidations may apply to more than one location since they are typically at a cache line granularity. In this case, the specific locations
that are pending should not be invalidated while other locations in the cache line need to be invalidated. This can be achieved by keeping
valid bits per word, for example.

order is W(i) = R2(i). This condition can be trivially satisfied by maintaining program order among reads to

the same location. In other words, the implementation ensures that if R1 L2, R2 on P; and both are to the same
location, then R1(i) =% R2(i).

The second and third conditions under multiprocessor dependence comprise of chains of 222 and =5 arcs
which represent a subset of the program order (L2,y and conflict order (=), respectively. Given two conflicting
operations X and Y at the beginning and end of such a chain, the execution order is required to obey X(i)

To
=% Y(i) for all i. The simple way to maintain this order is to enforce an order between the consecutive operations
in the chain. This is similar to how the conservative conditions for SC (shown in Figure 2) implicitly satisfy this
condition. For consecutlve operations related by 2P%, we can maintain the program order such that A 5B
ensures A(i) — B(j) for all i,j. This can be achieved by delaying sub-operations of B until all sub-operations

of A are completed. ({GLL*90] gives a set of fence operations that provide one general way of achieving this

delay; Appendix A further discusses the particular case when the delay is due to the zeh, component of 2%
The above is sufficient to maintain the required order for chains that do not begin thh W 2% R (e.g., the third
multiprocessor dependence chain for SC) and do not contain an -L-> of the form R1 % W -2 R2. For chains
that begin with W 2% R or comprise of —= of the form R1 22, W -2 R2 (where R1 and R2 are on different
processors), the additional sufficient requirement is to make the writes that occur in such 2%%’s appear atomic.
One way of making a write appear atomic is to ensure that no read is allowed to return the value of the write until
all old copies of the line being written are either invalidated or updated with the new value [SD87, GLL +90].

Aggressive implementations of multiprocessor dependence chain condition

The primary reason our aggressive conditions lead to more flexible implementations is because we constrain the
execution order only among conflicting accesses. This is most important for the specification of the orders implied
by the multiprocessor dependence chain. Conservative conditions (e.g., Figure 2) typically specify the overall order
by requiring order between all intermediate operations in the chain; the simple implementation of the multiprocessor
dependence condition that we described above maintains the order in a similar way. However, maintaining the order
between intermediate operations is not necessary for correctness. Below, we discuss implementations proposed
in the literature that maintain the multiprocessor dependence condition more aggressively. We discuss the first
implementation in some detail, and only give the key ideas for the others.

The first implementation is the lazy caching technique proposed by Afek et al. [ABM89]. This implementation
uses a bus-based update protocol to keep the caches coherent. Sequential consistency is maintained in an aggressive
way as explained below. When a processor issues a write, it only waits for the updates of its write to be queued into
the FIFO input queues of the other processors and can continue with its next operation before the updates actually
take effect in the caches. Therefore, the implementation does not directly satisfy the conservative conditions for
SC specified in Figure 2 or the conditions specified by Dubois et al. [SD87], since X 22, Y does not necessarily
imply X(i) =% Y(j) for all i,j. However, it is relatively simple to show that the implementation satisfies the
aggressive conditions for SC shown in Figure 4 (i.e., the implementation directly maintains the required order
between the first and last operations for any of the multiprocessor dependence chains).

A number of other aggressive implementations have been proposed for SC. Scheurich proposes a similar
idea to lazy caching in his thesis, but his description of the implementation is very informal [Sch89]. Landin et
al. [LHH91] propose an implementation of SC based on “race-free networks.” Such networks maintain certain
transactions in order, and this inherent order allows a processor to continue issuing operations as soon as its
previous write reaches the appropriate “root” in the network (as opposed to waiting until the write reaches its
destination caches). This is similar to the lazy caching technique since the write reaching the root in a race-free
network is analogous to it being placed in the input queues of other processors in a bus-based system. Collier
proposes a similar implementation for ring-based systems where one node in the ring acts as the “root” that
serializes all writes [Col92]. Adve and Hill [AH90a] also propose an implementation of SC for cache- based
systems that in certain cases allows a processor that has issued a write to proceed as soon as the write is serialized
(as opposed to delaying the processor for the write to take affect in all cache copies). While none of the above
techniques satisfy the conservative conditions for SC, they all satisfy the aggressive conditions.

Above, we discussed aggressive implementations in the context of SC. Similar optimizations are possible
for more relaxed models. Landin et al. extend their observations for SC on race-free networks to aggressive
implementations of PC on such networks. Again, this implementation satisfies the aggressive conditions for PC

16

(provided in Appendix B).!® Dubois et al.’s delayed consistency implementation of release consistency [DWB+91]
delays doing the invalidations at a destination cache until the destination processor reaches an acquire as opposed
to performing the invalidations before the release on the source processor. While this does not directly satisfy the
original conditions for RC [GLL *90], it can be easily shown to satisfy the aggressive conditions for RC presented
in Appendix B. Adve and Hill’s implementations for the data-race-free-0 [AH90b] and data-race-free-1 [AH93]
programmer-centric models also use an aggressive form of the multiprocessor dependence chain condition to
provide more aggressive implementations than allowed by WO and RCsc. Zucker [Zuc92] makes a similar
observation in the context of software cache coherence, and finally, similar observations have led to more efficient
software distributed shared memory implementations [BZ91, KCZ92].

The implementations we have described above exploit the fact that maintaining the order among the inter-
mediate operations in a multiprocessor dependence chain is not necessary for correctness. Our framework for
specifying the system requirements for a model exposes this optimization. This leads to efficient implementations
similar to those described above and possibly allows one to explore more efficient implementations than those
already proposed. Furthermore, verifying that an aggressive implementation satisfies these conditions is relatively
simple since it involves showing that each condition is satisfied directly (of course, being more conservative than
the conditions require trivially satisfies them). In contrast, when the conditions are given in a conservative form
(e.g., as in Figure 2), coming up with an aggressive implementation and verifying its correctness requires more
involved reasoning because the orders specified by the conservative conditions are not directly upheld by the
implementation and doing the verification involves proving that the executions on such an implementation are the
same as if the conservative conditions were upheld.

3.1.3 Atomic Read-Modify-Writes

The read-modify-write condition requires such operations to behave atomically with respect to other writes to the
same location. This is typically achieved either by atomically modifying the location at the memory or by obtaining
exclusive ownership of the location and doing the atomic modification in the cache of the issuing processor.

3.1.4 Termination Condition

The termination condition imposes restrictions of the following form: for a certain write W, given the initial
Wi;ni: (i) sub-operation of the write is in the execution, other sub-operations of that write (i.e., W(1) ... W(n)) must
also appear in the execution; along with our assumption that only a finite number of sub-operations are ordered
before any given sub-operation in the execution order, this implies that the remaining write sub-operations can
not be delayed indefinitely. This condition is required to ensure other processors will eventually see the effect of
a write. The termination condition is especially relevant for systems that replicate data (e.g., through caching).
Cache-based systems that use hardware protocols for coherence usually satisfy the termination condition for all
sub-operations through the coherence protocol. Other systems such as Munin [CBZ91] and Midway [BZ91] which
use software consistency management need to explicitly ensure that the required sub-operations are executed.

Note here that the termination condition interacts in a subtle way with the uniprocessor correctness condition
(Condition 1). The latter condition imposes restrictions that require the R(i) or W ;5 (i) sub-operation of a given
operation to appear in the execution order. Given that the uniprocessor correctness condition results in the initial
sub-operation of the write in the execution order, the termination condition then specifies the other sub-operations
of the write that are required to execute. Thus, the uniprocessor correctness condition imposes restrictions on
which operations should be executed by the processor environment while the termination condition is an analogous
condition for the memory system. In particular, the termination condition prohibits implementations that might
deadlock, and prohibits the processor from always giving priority to certain types of sub-operations (such as reads)
over others (such as writes) for unbounded time.

YThey discuss two implementations of PC, one of which does not obey the coherence condition. The implementation without coherence
does not satisfy the semantics of PC as we have been using it and as defined in [GLL +90, GGH93].

17

3.2 Compiler Issues

The previous section described the impact of the specified system requirements on the implementation of the archi-
tecture. These system requirements have an impact on the compiler as well. Many useful compiler optimizations
involve reordering or eliminating memory operations (e.g., register allocation, code motion, loop interchange)
and the optimizations have to be done according to the conditions specified for a memory model. This section
discusses the implications of our specification on the type of optimizations that a compiler is allowed to do given
a specific memory model. Note that when applying these conditions, the compiler needs to consider all possible
executions for all possible sets of input data for a given program.

Many of the aggressive aspects of our specification methodology are relevant at the architectural level only
and are not likely to be exploited by the compiler. For example, compilers usually manipulate only the program
order within each process’ code and manipulate memory accesses at the granularity of operations (as opposed to
sub-operations). Therefore, the aggressive form of the multiprocessor dependence chain condition is not likely to
be exploited. For a similar reason, the coherence condition may not be relevant to the compiler. (An exception is
a system that implements software-based cache coherence using instructions such as cache invalidate (as in the
RP3 [PBG185]).) Below, we discuss the impact of the other conditions that are relevant to the compiler. We
first discuss how to conceptually reason about optimizations such as register allocation. Next we describe how to
determine the set of safe optimizations that a compiler can do based on a model’s constraints.

3.2.1 Reasoning about Compiler Optimizations

For a set of compiler optimizations to obey a given memory model, it is sufficient that for any execution E of the
optimized code, if E obeys the requirements of the memory model, then the instructions and sub-operations of E
(along with the values read and written by them) form an execution of the unoptimized code that obeys the model
requirements. However, this would preclude the use of optimizations such as register allocation and common
sub-expression elimination that eliminate or substitute memory sub-operations and/or instructions. To reason
about such optimizations, we consider executions (that obey the memory model) of the optimized code, but add
back the deleted memory sub-operations and replace new instructions by original instructions of the unoptimized
code. The compiler optimizations are considered correct as long as the instructions and sub-operations of the
augmented execution form an execution of the unoptimized code that obeys the system specification for a model.
As an example, we illustrate below how an execution can be conceptually augmented to reason about the register
allocation optimization alone (i.e., no code motion, etc.). The concepts presented should be easily extendible to
other optimizations such as common sub-expression elimination or combinations of such optimizations that result
in the code motion or elimination of memory sub-operations (or instructions).

Consider a memory location that is allocated to a register. Below, we briefly consider the scenarios that
arise due to register allocation. Typically, register allocation involves transforming a memory read to a register
read (memory-read to register-read) or a memory write to a register write of the same value (memory-write 1o
register-write). In cases where register allocation begins with a read, the memory read is still performed and the
value read is written to the register (memory-read plus register-write). Finally, in some cases, the value of the
register may be written back to its corresponding memory location (register to memory write-back).

Below, we consider how the memory sub-operations that are eliminated by register allocation may be added
back to the execution (that obeys the assumed memory model) of the optimized code. We will refer to the
W;ni: sub-operation of a write as the initial write sub-operation and the remaining n sub-operations as the per-
processor write sub-operations. The transformation of the optimized code execution described below is done for
one processor at a time until all processors are covered. For each processor, we traverse its instruction instances in
program order. For a register read on P; that arises from the memory-read to register-read case discussed above,
we replace the register read with a read sub-operation (R(i)) to the corresponding memory location that returns
the same value as the register read. To place this sub-operation in the execution order, we need to identify the
last memory write, or the last memory read that corresponds to the memory-read plus register-write case above
(whichever is later in program order), that is to the same location and before the added read in program order. The
added read sub-operation is then placed immediately after the chosen R(i) or Wy;:(i) sub-operation. A register
write on P; that arises from the memory-write to register-write case is replaced with an initial write sub-operation
(W;ni: (1)) that writes the same value to the corresponding memory location. The added Wy (i) is placed in the
execution order immediately after the read or W5, (i) sub-operation of the last read or write to the same location

18

(whichever is later) that is before the added write in program order. Finally, we consider a memory write W on
P; that arises from a register to memory write-back. We first remove the W;,;;(i) sub-operation corresponding
to this write from the execution (since one is already added where the register was written to). We then identify
all the previous (in program oder) register writes (that have been transformed to memory writes) since the last
write-back; for each such write W’, we add the per-processor write sub-operations (i.e., W’(1) ... W’(n)) to the
execution order with each W’(j) being placed immediately before the W(j) sub-operation corresponding to the
current write-back (the execution order among the added write sub-operations to the same memory copy should
correspond to the program order among those sub-operations).

Given the above augmented execution, the register allocation optimizations are considered safe if the instruc-
tions and sub-operations of the augmented execution form an execution of the unoptimized program and if this
execution obeys the system requirements for a given model. This methodology can be extended to reason about
the correctness of other combinations of optimizations.

3.2.2 Safe Compiler Optimizations

We now explore the optimizations that the compiler can perform based on the constraints imposed by a given
memory model. To satisfy the notion of uniprocessor data dependence upheld by the value, initiation, and
uniprocessor dependence conditions, the compiler needs to ensure that if a read returns the value of its own
processor’s write, then this write should be the last write before the read by the program order of the source
program. In the absence of optimizations such as register allocation, this is easily achieved if the compiler does
not reorder a write followed (in program order) by a read to the same location. With register allocation, the
condition is maintained as long as within the interval in which the location is register allocated, the program
ordering of the conflicting register operations in the compiled program is the same as the program ordering of
the corresponding memory operations in the original source program that are replaced by register allocation. This
ensures that if a read returns the value of its own processor’s write, then it will always return the value of the
last conflicting write before it by program order as in the original source program. In addition, the uniprocessor
dependence condition requires that the program order among all conflicting accesses be maintained.?’ Thus, the
notion of uniprocessor data dependence can be maintained similar to the way a uniprocessor compiler maintains
1t.

To enforce the multiprocessor dependence chain, it is sufficient if the compiler disallows reordering among
memory operations related by the 22, arcs (e.g., ~£5) that occur in any of the specified chains (refer to Appendix
A for implications of the reach relation). We use 2% o generically refer to the variety of £% arcs that make
up such chains. One of the requirements on the compiler is to preserve the labels (and fences, e.g. in PSO)
in a program in order to ensure that the “2% order remains visible by the underlying system. Again, while we
can satisfy the multiprocessor dependence chain aggressively in hardware without maintaining order among the
intermediate operations, we expect this type of flexibility will not be exploitable by the compiler. Below, we
briefly discuss the restrictions placed on register allocation arising from the multiprocessor dependence chains.
The conservative approach is to (i) disallow replacing a memory read R with a register read if the value of the
register is set prior to the previous operation ordered before R by 2% and (ii) disallow replacing a memory
write W with a register write if the write-back operation corresponding to W (or a later write in program order)
does not appear in program order before the next operation ordered after W by 22521 Furthermore, for case (i),
register allocation of R should be disallowed if the value of the register is set by another read R’ and the label
for R is more conservative than the label for R’, and for case (ii), register allocation of W should be disallowed

20The interaction between the value, initiation, uniprocessor dependence, and coherence conditions discussed in Section 3.1.1 also applies
to compiler optimizations. For example, if the uniprocessor dependence condition for a model implies 223 petween W -£% R to the same
location, and if the write is covered by the coherence condition, then replacing the memory operations by register reads and writes may lead
to incorrect executions. The reason is that register allocating W and R can result in the sub-operation of R to execute in its memory copy
before the sub-operation of W in that memory copy. In such cases, more analysis is required to determine whether register allocation is
safe. However, note that the aggressive specifications for models presented in this paper all exclude the W 22, R case from their coherence
conditions.

21 Register allocation can be done more aggressively than described above. For example, given X 2P2+ R, R may be replaced by a register
read if the value that it reads belongs to a write that is also register allocated and whose value is not written back to memory until after Xin
program order. Similarly, as mentioned above, given W YW may be replaced by a register write as long as there is a write back to
memory (of the value written by W or by a later write to the same location) before Y in program order. However, note that the value that
remains in the register may still be used to replace read references after Y as long as the other conditions allow this.

19

P1 P2

A=1; B=1;
while (B == 0); while (A == 0),

Figure 8: Code segment example for compiler optimizations.

if the label of W is more conservative than the label of the write-back memory operation (e.g., W is a release
while the write-back memory operation is an ordinary operation). In addition, given X 2%+ Y 2%+ Z, if register
allocating Y eliminates X “25+ Z, we conservatively disallow it.22

Finally, the compiler needs to ensure the termination condition; i.e., for certain writes, the compiler must
ensure that the write operation occurs in all executions of the compiled code. To ensure this, such a memory write
should not be completely eliminated by optimizations such as register allocation. For example, if a memory write
is converted to a register write, we have to guarantee that the register value will eventually get written to memory.
A related issue is that reads that may possibly be issued an infinite number of times should not be eliminated by
optimizations such as register allocation either. For example, register allocating a read within a loop may result
in the old value for the location to be used in every iteration of the loop and new writes to the same location
that appear in the execution order would not affect the value returned; this would violate Condition 2(a) (in the
transformed version of the program where we add back the register-allocated memory operations as discussed in
the previous section) because it will appear as if there are an infinite number of read sub-operations ordered before
the new write sub-operation to the same memory copy.

The above explained how the compiler can satisfy the model specific requirements. The uniprocessor cor-
rectness condition which is implicitly assumed for all models (Condition 1) imposes additional constraints on the
compiler. The requirement is that the memory sub-operations that execute for each process should correspond to
a “correct” uniprocessor execution of the process’ program given the reads return the same values as the multi-
processor execution. The intuitive notion of correctness for a uniprocessor compiler is for most part sufficient for
maintaining this condition. However, there are certain aspects that are specific to multiprocessors. For example,
an initial write sub-operation W ;5,;; that would occur in the correct uniprocessor execution should also occur in the
multiprocessor execution. Another case is if an operation A is followed by an operation B where B can execute
for an infinite number of times, then the compiler should not reorder B before A since this can cause A to never
execute. Similarly, if a write operation D is preceded by an operation C where C can execute for an infinite
number of times, then D should not be reordered before C. This is because D may execute in the “optimized”
execution while it would not have executed in the corresponding “unoptimized” execution. Appendix D discusses
how this cénstraint may be relaxed.

Below, we present different scenarios that can result in violations of the termination, value, and uniprocessor
correctness conditions. Refer to the code segment in Figure 8. Assume a model that requires the termination
condition to hold for P1’s write of A, and for P2’s write of B. The uniprocessor correctness, value, and termination
conditions together guarantee that any possible executions of this code should result in both loops to terminate.
However, any of the following optimizations may violate this property: (1) if the while loop on each processor
is moved above the write on that processor, (2) if the writes of A and B are done as register writes and the new
values are not written back to memory, or (3) if location B is register allocated in P1 or location A is register
allocated in P2. The first optimization is disallowed by the uniprocessor correctness condition, the second by
the termination condition, and the third by Condition 2(a) (as discussed above) because only a finite number of
sub-operations (reads in this case) may precede any given sub-operation (the write in this case) in the execution
order.

22For example, consider the aggressive conditions for RCsc given in Appendix B. Assume Re £ Rc.acq E°, W. Therefore, Re 225 W

holds. However, if we register allocate the acquire reference, the hdd may no longer hold between the read and write. To be more aggressive,
a compiler may use implementation-dependent information to determine whether register allocating the acquire results in possible reordering
of the other two operations.

20

4 Discussion and Related Work

This section compares our abstraction and framework with already existing approaches. The second part discusses
implications of some of the design decisions for our framework.

4.1 Comparison to Other Approaches

Below we discuss various approaches that have been proposed for specifying system requirements for memory
models. We distinguish between the system abstraction used by each approach and the methodology used to
specify the ordering constraints. For the system abstraction, we are interested in whether it is flexible enough for
expressing the desirable optimizations. For the specification methodology, we compare the approaches based on
aggressiveness of the constraints.

Dubois et al. [DSB86, SD87] present an abstraction based on the various stages that a memory request goes
through and use this abstraction to present specifications for both sequential consistency and weak ordering. As
discussed in Section 2, the notion of “perform with respect to a processor” in this abstraction models the effects
of replication and the non-atomicity of writes in real systems. One of the problems with this abstraction is that
the definition of “perform” is based on real time. Another shortcoming of the abstraction is that it does not seem
to be powerful enough to capture the optimization where the processor is allowed to read the value of its own
write before the write takes effect in any memory copy (as discussed in Sections 2 and 3.1.1).%3

The abstractions proposed by Collier [Col92], Sindhu et al. [SFC91], and Gibbons et al. [GMG91, GM92] were
also referred to in Section 2. Collier’s abstraction is formal and captures replication of data and the non-atomicity
of writes. Yet it has the same shortcoming as Dubois et al.’s abstraction in its inability to capture the optimization
where a read returns the value of its own processor’s write before the write is serialized. Note that our abstraction
subsumes Collier’s abstraction. In particular, our abstraction degenerates to Collier’s abstraction if we remove the
Winst sub-operation and require W 2% R to imply W(i) % R(i) when both operations are to the same location.
However, these two notions are important for properly capturing the mentioned optimization. Considering other
abstractions, Sindhu et al.’s abstraction [SFC91] was designed to describe TSO and PSO and therefore handles the
optimization described above, but is not flexible enough to capture the non-atomicity of writes. Another way of
abstracting the system is to represent it in terms of execution histories [HW90] (see [AF92] for another example
where this abstraction is used). Effectively, a history represents one processor’s view of all memory operations
or a combined view of different processors. This type of abstraction is in essence similar to Collier’s abstraction
and shares the same advantages and disadvantages. Gibbons et al.’s abstraction [GMG91, GM92] is the only one
that captures replication and non-atomicity of writes and is flexible enough for specifying models such as TSO.
However, while the I/O automaton model they use leads to precise specifications, the specifications typically model
the system at too detailed a level?®, making it complex to reason with and difficult to apply to system designs
with substantially different assumptions. oo :

We now consider the methods for specifying system requirements used with the above abstractxons Dubois et
al.’s specification style [DSB86, SD87] leads to unnecessary constraints on memory ordering since it constrains
the execution order among accesses to different locations in a similar way to the conservative conditions for
SC in Figure 2. This disallows the type of aggressive implementations discussed in Section 3.1.2. This same
limitation exists with the specification by Sindhu et al. [SFC91] for TSO and PSO and the specification by Gibbons
et al. [GMG91, GM92] for release consistency. Collier [Col92] does observe that two sets of conditions are
indistinguishable if they maintain the same order among conflicting accesses, yet his methodology for specifying
conditions constrains order among non-conflicting operations just like the other schemes. Therefore, none of
the above methodologies expose the optimizations that become possible when only the order among conflicting
operations is constrained.

Adve and Hill’s specification of sufficient conditions for satisfying DRF1 [AH92] is one of the few specifications
that presents ordering restrictions among conflicting memory operations only. However, parts of these conditions
are too general to be easily convertible to an implementation. While they provide a second set of conditions that

235ee [GGHI3] for a discussion on this limitation of Dubois et al.’s framework and an extension to it that allows this optimization to be
expressed.

24 Gibbons et al.’s specification [GMG91, GM92] involves more events than we use in our specification and inherently depends on states
and state transitions.

21

translates more easily to an implementation, this latter set of conditions are not as aggressive and restrict orders
among operations to different locations. Finally, because their specification is based on Collier’s abstraction, their
approach does not easily lend itself to specifying models that use the optimization of allowing a processor to read
its own write before the write is serialized.

In summary, the system abstraction proposed in this paper is more general than most previously proposed
abstractions. Furthermore, our specification methodology exposes more optimizations and is easier to translate
into aggressive implementations than previous methods.

4.2 Choice of Abstraction and Framework

In designing our specification technique, our primary goals have been to provide a framework that covers both the
architecture and compiler requirements, is applicable to a wide range of designs, and exposes as many optimizations
as possible without violating the semantics of a memory model. Our specification framework could conceivably
be different if we chose a different set of goals. For example, with the general nature of our framework, the
designer may have to do some extra work to relate our conditions to a specific implementation. Had we focused
on a specific class of implementations, it may have been possible to come up with an abstraction and a set of
conditions that more closely match such designs. Similarly, our methodology of only restricting the order among
conflicting operations is beneficial mainly at the architectural level. This complexity would not be very useful
if we wanted to only specify requirements for the compiler. And in fact, such complexity is undesirable if the
specification is to only be used by programmers to determine the set of possible executions under a model.?
However, we feel the benefit of providing a uniform framework, that covers both the architecture and the compiler
and applies to a wide range of implementations, outweighs any of its shortcomings.

The abstraction and framework presented in this paper is general and can capture a variety of memory models
and specifications. We provide the specification for several of the hardware-centric models in Appendix B. We
have also used our framework for specifying the system requirements for programmer-centric models such as
PLpc [AGG193]. Given the generality of our framework, it would be interesting to use it to specify the system
requirements for other models that we have not discussed in this paper. The fact that a uniform framework may
be used for specifying different models can greatly simplify the task of comparing the system implications across
the various models.

5 Concluding Remarks

This paper described a framework for specifying sufficient system requirements to satisfy the semantics of various
memory consistency models. Our specification methodology has two major advantages compared to previous
approaches. First, it exposes many aggressive implementation optimizations that do not violate the semantics
of a given model. The key observation that allows us to do this is that constraining the execution order only
among conflicting operations is sufficient for specifying the semantics for any model. The second advantage
of our methodology is that converting our specifications into either conservative or aggressive implementations
and conversely verifying that an implementation satisfies the specification are relatively straightforward. These
characteristics aid the designer in implementing a memory model correctly and efficiently across a wide range of
system designs.

References

[ABM89] Y. Afek, G. Brown, and M. Merritt. A lazy cache algorithm. In Symposium on Parallel Algorithms
and Architectures, pages 209-222, June 1989.

[Adv93] Sarita V. Adve. Designing Memory Consistency Models for Shared-Memory Multiprocessors. PhD
thesis, Computer Sciences Technical Report #1198, University of Wisconsin - Madison, December
1993.

250ur abstraction is meant to be used by system designers and we don’t expect the programmer to reason with this specification. We
strongly believe programmers should reason with the high-level abstraction presented by programmer-centric models.

22

[AF92]

[AGG193]

[AH90a)

[AH90b]

[AH92]

[AH93]

[ASUS86]

[BZ91]

[CBZ91]

[Col92]
[DSB86]

[DWB+91]

[FOW87]

[GAG192]

[GGHO91]

[GGH92]

[GGH93]

Hagit Attiya and Roy Friedman. A correctness condition for high-performance multiprocessors. In
Proceedings of the 24th Annual ACM Symposium on the Theory of Computing, pages 679-690, May
1992.

Sarita V. Adve, Kourosh Gharachorloo, Anoop Gupta, John L. Hennessy, and Mark D. Hill. Sufficient
system requirements for supporting the PLpc memory model. Technical Report #1200, Computer
Sciences, University of Wisconsin - Madison, December 1993. Also available as Stanford University
Technical Report CSL-TR-93-595.

Sarita V. Adve and Mark D. Hill. Implementing sequential consistency in cache-based systems. In
Proceedings of the 1990 International Conference on Parallel Processing, pages I: 47-50, August
1990.

Sarita V. Adve and Mark D. Hill. Weak ordering - A new definition. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, pages 2—14, May 1990.

Sarita V. Adve and Mark D. Hill. Sufficient conditions for implementing the data-race-free-1 memory
model. Technical Report #1107, Computer Sciences, University of Wisconsin - Madison, September
1992.

Sarita V. Adve and Mark D. Hill. A unified formalization of four shared-memory models. IEEE
Transactions on Parallel and Distributed Systems, 4(6):613-624, June 1993.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley,
1986.

B. Bershad and M. Zekauskas. Midway: Shared memory parallel programming with entry consis-
tency for distributed memory multiprocessors. Technical Report CMU-CS-91-170, Carnegie-Mellon
University, September 1991.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and performance of Munin. In
Thirteenth ACM Symposium on Operating Systems Principles, pages 152~164, October 1991.

William W. Collier. Reasoning about Parallel Architectures. Prentice-Hall, Inc., 1992.

Michel Dubois, Christoph Scheurich, and Fayé Briggs. Memory access buffering in multiprocessors.
In Proceedings of the 13th Annual International Symposium on Computer Architecture, pages 434~
442, June 1986.

M. Dubois, J.-C. Wang, L.A. Barrosso, K. Lee, and Y.-S. Chen. Delayed consistency and its effects
on the miss rate of parallel programs. In Proceedings of Supercomputing 91, pages 197-206, 1991.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence graph and its use in
optimization. ACM Transactions on Programming Languages and Systems, 9(3):319-349, July 1987.

Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta, John L. Hennessy, and Mark D. Hill. Pro-
gramming for different memory consistency models. Journal of Parallel and Distributed Computing,
15(4):399-407, August 1992.

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Performance evaluation of memory consis-
tency models for shared-memory multiprocessors. In Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 245-257, April 1991.

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Hiding memory latency using dynamic
scheduling in shared-memory multiprocessors. In Proceeding of the 19th Annual International Sym-
posium on Computer Architecture, pages 2233, May 1992.

Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Revision to “Memory consistency and
event ordering in scalable shared-memory multiprocessors”. Technical Report CSL-TR-93-568, Stan-
ford University, April 1993.

23

[GLL*90]

[GM92]

[GMGO1]

[Goo91]

[HW90]

[KCZ92]

[Lam79]

[L.HH91]

[LLG*90]

[MPC89]

[PBG*85]

[Sch&9]

[SD87]

[SFCI1]
[SS88]
[SUNO91]

[ZB92]

[Zuc92]

Kourosh Gharachorloo, Dan Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and John Hen-
nessy. Memory consistency and event ordering in scalable shared-memory muliiprocessors. In Pro-
ceedings of the 17th Annual International Symposium on Computer Architecture, pages 15-26, May
1990.

Phillip B. Gibbons and Michael Merritt. Specifying nonblocking shared memories. In Symposium on
Parallel Algorithms and Architectures, pages 158-168, June 1992.

Phillip B. Gibbons, Michael Merritt, and Kourosh Gharachorloo. Proving sequential consistency of
high-performance shared memories. In Symposium on Parallel Algorithms and Architectures, pages
292303, July 1991.

James R. Goodman. Cache consistency and sequential consistency. Technical Report Computer
Sciences #1006, University of Wisconsin, Madison, February 1991.

M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463-492, 1990.

P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for software distributed shared
memory. In Proceedings of the 19th Annual International Symposium on Computer Architecture,
pages 13-21, May 1992.

Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess pro-
grams. [EEE Transactions on Computers, C-28(9):690-691, September 1979.

A. Landin, E. Hagersten, and S. Haridi. Race-free interconnection networks and multiprocessor
consistency. In Proceedings of the 18th Annual International Symposium on Computer Architecture,
pages 27-30, May 1991.

Dan Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. The directory-
based cache coherence protocol for the DASH multiprocessor. In Proceedings of the 17th Annual
International Symposium on Computer Architecture, pages 148-159, May 1990.

Samuel Midkiff, David Padua, and Ron Cytron. Compiling programs with user parallelism. In
Proceedings of the Second Workshop on Languages and Compilers for Parallel Computing, August
1989.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAuliffe, E. A.
Melton, V. A. Norton, and J. Weiss. The IBM research parallel processor prototype (RP3): Introduction
and architecture. In Proceedings of the 1985 International Conference on Parallel Processing, pages
764771, 1985.

Christoph Scheurich. Access Ordering and Coherence in Shared Memory Multiprocessors. PhD thesis,
University of Southern California, May 1989.

C. Scheurich and M. Dubois. Correct memory operation of cache-based multiprocessors. In Proceed-
ings of the 14th Annual International Symposium on Computer Architecture, pages 234-243, June
1987.

P. S. Sindhu, J.-M. Frailong, and M. Cekleov. Formal specification of memory models. Technical
Report (PARC) CSL-91-11, Xerox Corporation, Palo Alto Research Center, December 1991.

Dennis Shasha and Marc Snir. Efficient and correct execution of parallel programs that share memory.
ACM Transactions on Programming Languages and Systems, 10(2):282-312, April 1988.

The SPARC Architecture Manual. Sun Microsystems Inc., January 1991. No. 800-199-12, Version 8.

Richard N. Zucker and Jean-Loup Baer. A performance study of memory consistency models. In
Proceedings of the 19th Annual International Symposium on Computer Architecture, pages 2—12, May
1992.

Richard N. Zucker. Relaxed Consistency and Synchronization in Parallel Processors. PhD thesis,
University of Washington, December 1992. Also available as Technical Report No. 92-12-05.

24

Appendix A: Reach Relation

This appendix defines the reach (ffi) relation for the models discussed in this paper. The reach relation is used in
the conditions for the WO, RCsc, and RCpc models as discussed in Section 2.3.2. Part of the reach relation is also
used in Appendix D to relax the uniprocessor correctness condition. This relation is a straightforward adaptation

of the 2% relation developed for the PLpc model and the formalism given below is taken from [AGG+93]. The

appendix concludes with a description of the implications of the %, relation on implementations, and a note on
how this relation could potentially be further relaxed.

Similar to the uniprocessor correctness condition, the reach relation depends on all program instructions as
opposed to only instructions reading and writing shared locations. Thus, when determining the reach relation for
an execution, we need to consider the set of instruction instances, I, of the execution. To formalize the reach
relation, we first present an abstraction for the program instruction statements. We classify instructions into three
types: computation, memory, and control. Computation instructions read a set of registers (register read set) and
map the read values into new values that are written to another (possibly same) set of registers (register write
set). Memory instructions are used to read and write memory locations (both private and shared). A memory read
instruction reads the address to be read from a register, reads the specified memory location, and writes the return
value into a register. A memory write instruction reads the address and value to be written from registers and
writes the value into the specified memory location. A memory read-modify-write instruction is both a memory
read and a memory write instruction that reads and writes the same location. Therefore, for the read instruction,
the register read set comprises of the address register and the register write set is the destination register. For
the write instruction, the register read set comprises of the address and value registers and there is no register
write set. Finally, control instructions (e.g., branch instructions) change the control flow by appropriately adjusting
the program counter. The register read set for a control instruction is a set of registers whose values determine
the change in the control flow. If an instance of a control instruction results in the program counter only being
incremented, then we say the instruction instance preserves program control flow; if the program counter changes
in any other way, we say the instruction instance results in changing the program control flow. Note that the above
description of instructions is merely an abstraction and can be adapted to most architectures and languages.

We now define the notion of local data dependence (14-») and control dependence (c—d+) that will be used to

develop the 7¢h relation. For two instruction instances A and B in an execution, A 24, B if B reads a value
that A writes into its register write set or a private memory location of its processor. (The interaction due to
shared-memory data dependence is handled later.) Our notion of control dependence is borrowed from Ferrante
et al. [FOW87]. Control dependence is defined in terms of a control flow graph and dominators [ASU86]. Let
Prog be the program under consideration, and let E be an execution of program Prog. Consider the control flow
graph of any process in program Prog, with the final node in the graph denoted by EXIT. Let C’ and D’ be
two instructions in the control flow graph. C’ is post-dominated by D’ if D’ occurs on every path in the control
flow graph from C’ to EXIT. Let A and B be two instruction instances of processor P in execution E and let
A’ and B’ be the instructions corresponding to A and B in the program text. Instruction instance B is control
dependent on instruction instance A if the following conditions hold: (i) A 22, B in execution E, and (ii) A’ is
not post-dominated by B’, and (iii) there is a path between A’ and B’ in the control flow graph of processor P

such that all the nodes on this path (excluding A’,B’) are post-dominated by B’. Note that if A <4, B, then A’ is
a control instruction.

To allow for possibly non-terminating executions, we need to augment the control flow graph and the resulting

=4, relation with additional arcs. Informally, consider a loop in the program that does not terminate in some SC
execution. Then for any instruction instance i that is program ordered after an instance of the loop, we require

4.+ to order i after instances of the control instructions of the loop that change the program flow for this loop
and cause infinite execution. More formally, let C’ be any control instruction that could be executed infinite times
in some SC execution E. Suppose an infinite number of successive instances of C’ change the control flow of the
program in E. Add an auxiliary edge from every such instruction C’ to the EXIT node. This ensures that any such
control instruction C’ is not post-dominated by any of the instructions that follow it in the control flow graph,

. . . . d e
and so instances of C’ are ordered before all instances of all subsequent instructions by -“Zs+. The modification
described above is not necessary if all SC executions of the program will terminate, or if there are no memory
operations that are ordered after possibly non-terminating loops in the contro! flow graph.

25

dd . .)

We next use —%+ and 2%+ to define two relations, the uniprocessor reach dependence ((Ei’f) and the multi-
Md . .

processor reach dependence (=Y below, and then define the ek relation in terms of these two new relations.

A discussion of the different relations and the definition of the ~2 relation used in the definition of Maep tollow
after the formal definitions.

Definition A.1: Uniprocessor Reach Dependence

Let X and Y be instruction instances in an execution E of program Prog. X P v in E iff X 22 Y, and
either

(a)Xfi»YinE,or

X 24 YinE or

(c) X and Y occur in another possible SC execution E’ of the program Prog, X 4722 YinE, and Z
does not occur in E.

Definition A.2: Multiprocessor Reach Dependence
Let X and Y be instruction instances in an execution E of program Prog. Let Y be an instruction instance

that accesses shared-memory. X MdeP v in B iff any of the following are true.

(@) X 2%+ Y in E and X and Y occur in another possible SC execution E’ of Prog, where X Ydep, 7 123 y

in E’, Z is an instance of a shared-memory instruction, for any A 4. B constituting the Udep, path from
X to Z in E’, B also occurs in E, and either Z does not occur in E, or Z occurs in E but is to a different
address in E and E’, or Z is a write to the same address in E and E’ but writes a different value in E and E’.
)X % YinEand X 2P Z 23 YinE.

© X% YinEand X ¥ 2 ™2 YinE.

d X L2 Y in E or X is the same as Y. Further, X generates a competing read R (in RCsc,RCpc) or
synchronization read R (in WO) within a loop and Y generates an operation O (different from R) such that

rpo

R —+Y.

Definition A.3: Reach’ Relation
Given an execution E and instruction instances X and Y in E (where X may or may not be the same as

Y), X reh Y in E iff X and Y are instances of memory instructions, X generates a shared-memory read, Y
generates a shared-memory write, and X {I-J—df? | Mdep }+ Y in E. For two different memory operations,
X’ and Y’, from instruction instances X and Y respectively, X’ ff-}i Y’ iff X* is aread, Y’ is a write, X’
22,y and X 25 Y.
Definition A.4: Reach Relation

rch rch!

Given an execution E and instruction instances X and Y in E, X — Y in Eiff X — Y and X generates a
memory read that reads the value of another processor’s write. (The Ik relation among memory operations

. : h
is defined in an analogous manner to ~—.)

_ " . Ud .
The reach relation is a transitive closure of the uniprocessor reach dependence (<=%) and the multiprocessor

d . . .
reach dependence (M) relations. The uniprocessor component corresponds to uniprocessor data and control
dependence, while the multiprocessor component corresponds to dependences that are present due to the memory

consistency model. The components that make up Y4 and M7 are defined for a given execution E. Both
relations also require considering other sequentially consistent executions of the program, and determining if an
instruction in one execution occurs in the other execution.?® For an instruction instance from one execution to
occur in another, we do not require that locations accessed or the values read and written by the corresponding
instruction instances in the two executions be the same; we are only concerned with whether the specific instances
appear in the execution. In the absence of constructs such as loops and recursion, it is straightforward to determine
if an instance that appears in one execution also appears in another. With loops and recursion, care has to be
taken to match consistent pairs of instruction instances. Instruction instances between two executions are matched
consistently if the set of instances that are considered to appear in both executions have the same program order

261t may be simpler to be conservative and consider all possible executions of the program and not just SC executions for E’ in the definitions

Ud Mde,
of —=%F and "=25P,

26

61 rl = A; 1) rl =D;

62 if (rl == 1) {6 r2=B;} 62 if (r1 == 1) {*¥ 2 =FLAG; @9 }
4 C=12; 9 E=1;

(a) (®)

Figure 9: Example code to illustrate the reach condition.

relation between them in both executions, and are the maximal such sets. (A set S with property P is a maximal
set satisfying property P if there is no other set that is a superset of S and also satisfies property P.)

To illustrate the above concepts, consider the example in Figure 9(a). The variables in uppercase are shared
memory locations; the symbols in lowercase refer to registers. The symbols in parentheses are labels for the
instruction statements. Assume an execution E where the read of A returns the value of 0. Thus, rl is 0 and the
read of B and assignment to r2 do not occur in this execution E. Therefore, in E, there is no instruction instance

ordered before (s4) by ~4, or by 4, Thus, parts (a) and (b) of the definition of Y42 46 not order any instruction
instance before (s4) by Ydep However, if we consider a possible SC execution E’ where the return value of A is
1 (assume it is the value of another processor’s write), then we have (s2) <4, (s3) 44, (s4) in E’, (s3) does not
occur in E, and so (s2) Udep (54) in E by part (c) of the definition of Ydep, Further, (sl) (52) in E and so (s1)
Ydep | (s4) in E and so (s1) =% (s4) in E.

The "2 relation also requires specifying a given memory model. There is a circularity however since the
model specifications that use the 7k, relation may depend on the MIP relation (through T—Ch») and yet, we say the
MdP relation depends on the model specification. For the purposes of defining Mdep (and -—+) for a model, we

consider the aggressive specification of the model with the === " relation removed. The parts of the specification
that we are interested in are the uniprocessor dependence part of the 2% condition, the initiation condition, and

the <22 relation with the ek relation removed (called - below). %7

Definition A.5: ~25 Relation

Let X and Y be instances of shared-memory instructions in an execution E, and let X’ and Y’ be the memory
operations corresponding to X and Y respectively in E. X ~25 Y in E iff either

(@) X’ 25 Y’ inE, or

)X 2% Y’ inEand X 25 Y’ is in the uniprocessor dependence part of the <=3 condition, or

(¢) X’=W £% Y’=R in E and the initiation condition requires that Win::(i) 22 R@) in E.

For example, for RCpc (Figure 5), the IP% relation is as follows. Let X and Y be instruction instances and

let X’ and Y’ be memory operations corresponding to X and Y respectively. X 2P yifx E ° Y’, or if

XY’ conflict and X° -£% Y’. To illustrate the use of 2% in Mdep (definition A.2 above), consider the example
in Figure 9(b) under the RCpc model. Assume an execution E where the return value for the read of D is 0.
Therefore, (s3) does not occur in E. Consider a possible SC execution E’ where the read of D returns 1 (assume
the value is from another processor’s write), resulting in (s3) to be executed Assume all memory accesses are
to shared locatxons Under RCpc, R.acq 22, W constitutes R_acq ~=+ W. Therefore, in E’, (s3) ~25 IP% (s4). Since
we have (s2) £, (s3) IP% (s4) in B’ and (s3) does not occur in E, we have (s2) Mdep (s4) in E by Definition
A.2(a). Further, (sl) (52) in E and so (s1) Udep (s2) Mdep (s4) in E and so (s1) — reh <25 (s4) in E. Note that in

this example, Udep does not hold between (s2) and (s4), and in the example on the left (Figure 9(a)), Maep does
not hold between (s2) and (s4).

We now discuss the implications of the ¢k relation on the hardware and software implementations of WO,
RCsc, and RCpc. This relation is involved in the multiprocessor dependence chain part of the aggressive conditions

21We allow the relation X <23 Y to be dependent on the addresses of X and Y. In this case, if the same pair of memory instructions accesses
different addresses in two executions, it is possible for the pair to be ordered by ZEZ in one execution but not in the other.

27

I I
and in the 2Z% part of the conservative conditions. (The ~Z% relation is also used later in Appendix D to relax
the uniprocessor correctness condition for all models; the implications on implementations of this relaxation are
discussed in appendix D.)

The use of the ~°* relation formalizes and extends the control condition developed for the DRF1 memory
model [AH92] and so the discussion of the implications for implementations is similar to that in [AH92]. The

most conservative way of satisfying the conditions that involve the Ik, relation is to make a processor stall on
a read until the read returns its value. A more aggressive implementation can allow a processor to proceed with
pending reads as long as it does not execute a write sub-operation W(j) until (a) it is resolved that W will indeed
be executed (i.e., will not have to be rolled back) with the given address and value, and (b) it is known which
memory operations before W by program order will be executed, which addresses such operations will access, and
which values such writes will write. Thus, reads can always be executed speculatively, but writes need to wait
until the control flow for the execution and the addresses and values to be accessed by different operations before
W are resolved.?® Note that the augmenting of the control flow graph discussed earlier in this appendix implies
that for a loop that is not guaranteed to terminate in an SC execution and whose termination depends on the value
returned by a shared-memory read R, writes following the loop in the control flow graph cannot be executed until
R returns its value. The implementation described above is more aggressive than many previous specifications. Of
course, we can be even more aggressive by directly following the specifications in the conservative and aggressive
conditions given for the models in Appendices B and C.

The constraints on the compiler of a WO, RCsc, or RCpc system due to the ek, relation are analogous to those
for the hardware. Consider a shared-memory write instruction W that follows (by program order) a shared-memory
read instruction R in the unoptimized source code. If an instance of R could be ordered before an instance of W by

2t in any execution of the unoptimized source code on a system of the corresponding model, then the compiler
cannot move W to before R in the optimized code. Also, similar to the hardware, for a loop that is not guaranteed
to terminate in all SC executions and whose termination depends on the value returned by a shared-memory read
R, the compiler cannot move a write that follows the loop (by program order in the unoptimized source code) to
before R.

Finally note that, as discussed in Section 2.3.2, the conditions for WO, RCsc, and RCpc use the ek, relation
to ensure that the models appear SC to a set of well-behaved programs. We have shown that the ek, relation
formalized above is sufficient for this purpose [Adv93]; however, we do not know that it is necessary and believe
that certain aspects such as requiring W £2, R as part of 2% in part (c) of definition A.2 may be overly

conservative. In the future, it may be possible to relax the <k, relation without violating the intended semantics
!
of the above models. The 22 relation is also used in appendix D to relax the uniprocessor correctness condition

1
for all the models. The above comment applies to the use of the Tk, relation in that context as well.

28Note that sub-operations that are executed speculatively but rolled back later are not included in the final set of sub-operations for the
execution.

28

define “23: X “E5 Y if X,Y are the first and last operations in one of
po
R — RW
w2 w

sCo sco

define 25: X I8 YifX 2 Y

define =23; X 225 Y if X and Y conflict and X,Y are the first and last operations in one of

. (=]
uniprocessor dependence: RW 22w
[
coherence: W —=—+ W
multiprocessor dependence chain: one of

co Spo
w =% REIR
sco spo

spo

RW —+ {A — B — }+ RW
atomic read-modify-write (AR,AW): if W conflicts with AR, AW, then either W 223 AR or AW 23 W

Conditions on —2:
Initiation condition holds.
322 condition: if X <23 Y, then X(i) = Y(i) for all i.

Termination condition holds for all sub-operations.

Figure 10: Aggressive conditions for PC.

Appendix B: Aggressive Conditions for Hardware-Centric Models

This appendix presents the aggressive conditions for PC, TSO, PSO, WO, RCsc, and RCpc based on our framework
(the conditions for SC were given in Section 2). In Appendix C, we prove that these aggressive conditions are
semantically equivalent to the original conditions for these models; i.e., an implementation that obeys the aggressive
conditions appears as if it obeys the original conditions and vice versa. Consequently, for the programmer, the
two sets of conditions are equivalent; however, for the system designer, our conditions expose more aggressive
implementations.

In the rest of the appendices, we refer to the original conditions as the conservative conditions. These
conditions are based on the following sources: PC, RCsc, and RCpc [GLL*90] (includes minor modification
discussed in [GGH93]); TSO and PSO [SFC91, SUN91}; WO [Sch89]. Since some of the original conditions do
not precisely define certain behavior, we make the following assumptions. For WO, we assume the following: the
cache coherence condition holds for all writes and the same location can be read and written by both synchronization
and data operations. For RCsc and RCpc, we assume that termination holds for all competing sub-operations. For

PC, we assume that termination holds for all sub-operations. For WO, RCsc, and RCpc, we use the Ieh, relation
as defined in Appendix A and explained in Section 2.3.2 to capture the notion of “uniprocessor data and control
dependences” [GLL*90]. Appendix C provides the conservative form for the PC, WO, RCsc, and RCpc (with
the above assumptions) expressed in our framework.

In the following conditions, we use R and W to denote any read and write operations respectively. For WO,
we use Rs and Ws to denote synchronization reads and writes. For RCsc and RCpc, we use Rc and Wc to denote
competing reads and writes and Rc_acq and We_rel to denote acquire and release operations, respectively. Note
that R and W include all operations (e.g., even competing or acquire and release operations). Read-modify-writes
are denoted by RMW, and AR and AW denote the individual read and write operation of a RMW. Finally, for
PSO, STBAR is the store barrier operation [SFC91, SUN91].

29

define “23: X 225 Y if X,Y are the first and last operations in one of

R £% rwW
w i w
AW (in RMW) 2% R
w 2% RMW 22 R

define 223: X 223 Y if X,Y are the first and last operations in one of

X2y
R-% w24 R
define ==5: X 223 Y if X and Y conflict and X,Y are the first and last operations in one of
uniprocessor dependence: RW 2w
coherence: W <2 W
muitiprocessor dependence chain: one of
w =4 RESR
RW 23 {A 22 B 5 14+ RW
WS RZEL (A B R
atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then either W 222 AR or AW 255 W

Conditions on —:
Initiation condition holds.
225 condition: if X 222 Y, then X(i) > Y(i) for all i.

Termination condition holds for all sub-operations.

Figure 11: Aggressive conditions for TSO.

define <25: X 73 Y if X,Y are the first and last operations in one of
R 2% RW
w 2 STBAR 22 W
AW (in RMW) 2% RW
w 22 STBAR 225 RMW 22 R

define ==5: X 255 Y if X,Y are the first and last operations in one of

X5y
R =5 W S5 R

define 2=3: X 25 Y if X and Y conflict and X,Y are the first and last operations in one of

. o
uniprocessor dependence: RW 22w
co
coherence: W —= W
multiprocessor dependence chain: one of

w5 RESR
RW 225 {A 25 B 3 }+ RW

WS RIS {(ASS B R
s8zo 8T 0

atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then either W — AR or AW — W

Conditions on —2:
Initiation condition holds.
223 condition: if X 223 Y, then X(i) == Y(i) for all i.
Termination condition holds for all sub-operations.

Figure 12: Aggressive conditions for PSO.

30

define —"-53 ‘?ﬂ, sfi :
X2y 1f X Y are the first and last operations in one of
RWs —+ RWs
RW l’.‘l RWs
Rws 22 RW
x °F spo

Y if X 22 A{”hﬁ”‘il}*v
X 25 yieX {25 2% e Y

/
define =53, 22

s8co

X — Y 1f X,Y are the first and last operations in one of

X2y
Rl ——= W — R2 where R1,R2 are on the same processor
X "CO

Y if X,Y are the first and last operations in R1 2 W =% R2 where R1,R2 are on different processors
define <Z3: X 223 Y if X and Y conflict and X,Y are the first and last operations in one of

po
uniprocessor dependence: RW —— W
coherence: W 2 W

multiprocessor dependence chain: one of

w -S4 R 3PS

7
RW 23 {(A)](A sco, g B9, 2%)1+ RW
W ico spo {(A sco spo

9 |(A sco 5po)}+ R

atomic read-modify-write (AR, AW) if W conﬂlcts with AR,AW, then either W 223 AR or AW 223 W

3T o
e zo
Conditions en —:

Initiation condition holds.

222 condition: if X 223 Y, then X()) = Y(i) for all i
Termination condition holds for all sub-operations

Figure 13: Aggressive conditions for WO

31

" i
spo spo’ spo spo
define 223 ———+, L, LA

X 2, Yif X and Y are competing and Xc 22 ve

X P Y lf X,Y are the first and last operations in one of
rRW 2% Wc_rel
Rc_acq 2, RW

X 2%y x T A (e e e ey
i 1
X S yiex {Z | P | PNy

sco SCO
define —+, —:

X 225 Y if X,Y are the first and last operations in one of
X2y

R1 =% W =% R2 where R1,R2 are on the same processor
ECO

X — Y if X,Y are the first and last operations in Rl <2 W =2 R2 where R1,R2 are on different processors

define =53; X 223 Y if X and Y conflict and X,Y are the first and last operations in one of

o
uniprocessor dependence: RW o,
co
coherence: W —— W
multiprocessor dependence chain: one of

w5 R ER

!
RW SPS &po {(A sco)1(A sco’ spo)}+ ,RW
W .‘32 .spo {(A sco spo)I(A sco spo)}+ R

atomic read-modify-write (AR, AW) if W conﬁxcts with AR,AW, then either W 222 AR or AW 222 W

Conditions on —>:
Initiation condition holds.
229 condition: if X 223 Y, then X(i) =2 Y(i) for all i.
Termination condition holds for all competing sub-operations.

Figure 14: Aggressive conditions for RCsc.

32

1
Spo 8po
define —‘L,—p—ﬂ

X f-’f-: Y if X and Y are the first and last operations in one of
Re -F% Rwe
we 22 we
RW 22 We_rel
Rc_acq 22 rw
X 28yt X {Zh 2% ey
define =<3; X 255 v if X,Y are the first and last operations in one of
X =Y
RI <% W =2 R2 where R1,R2 are on the same processor

define ==5: X 223 Y if X and Y conflict and X,Y are the first and last operations in one of

uniprocessor dependence: RW 22w
coherence: W =2 W
multiprocessor dependence chain: one of
w L RAESR
RW 23 (A 25 B 3 }+ RW
atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then either W 222 AR or AW 25 w

Conditions on =2
Initiation condition holds.
223 condition: if X <23 Y, then X(i) =2 Y(i) for all i.

Termination condition holds for all competing sub-operations.

Figure 15: Aggressive conditions for RCpc.

33

Appendix C: Proofs of Conditions in Appendix B

This appendix shows that the aggressive conditions for the different models presented in Appendix B are equivalent
to the more conservative conditions that were used to define these models in the earlier literature. The latter part
of the appendix provides the conservative conditions for PC, WO, RCsc, and RCpc expressed in our framework.
These conditions are effectively a direct translation of the original definitions for the models (see Appendix B for
further explanation).

C.1: Proofs for SC

This section shows that the aggressive conditions for SC (as in Figure 4) and Lamport’s definition of SC [L.am79]
are equivalent. Lamport’s definition, as interpreted in previous work [AH90b, GLL *90, GMG91], requires every
execution on a sequentially consistent system to obey the following.

There exists a total order, ,i‘i-,, on the memory operations of the execution such that (i) if A £ B

then A2 B, and (ii) a read returns the value of the last write ordered before it by 2, that is to the
same location as the read.

Theorem 1 states that a system that obeys the aggressive conditions for SC also obeys Lamport’s definition.
Theorem 2 states that a system that obeys Lamport’s definition also obeys the aggressive conditions.

Theorem 1: A system that obeys the aggressive conditions for SC (Figure 4) also obeys Lamport’s definition of
SC.

Proof: Consider any execution, £, on a system that obeys the aggressive conditions for SC. The following shows
that there must exist a total order on the operations of £, that obeys Lamport’s condition, thus proving theorem
1.

The proof consists of three steps. The first step shows in lemma 1.1 that £, has an =2, that obeys the
aggressive conditions of SC with an augmented uniprocessor dependence condition. The second step shows in
lemma 1.2 that £, has an — that obeys the conditions of lemma 1.1 with an augmented 222 relation. The third
step shows in lemma 1.3 that the ~£2, demonstrated by lemma 1.2 implies that £, obeys Lamport’s definition.

Lemma 1.1: There is an =+ of E, that obeys the aggressive condition of SC with a modification to the uniprocessor
dependence part of the definition of 225 as follows:

Define 22%: X *Z5 Y if X and Y conflict and X,Y are the first and last operations in one of:

. o
uniprocessor dependence: RW 22 RW
coherence, multiprocessor dependence chain, atomic read-modify-write : same as before

Proof: Consider an =% of E, that obeys the aggressive conditions of SC. Modify this =2, as follows: First,
for every R(i) such that W 2%, R and R(>i) =% W(i), move R(i) to immediately after the last such W(i) in the
22, order. (The uniprocessor correctness condition ensures that there are only a finite number of such writes.)
Second, move every Wi, (i) to immediately before its corresponding W(i) in the =2 order.

We first show that the modified order is an execution order for E,; i.e., it obeys the value condition. Thus,
we need to show that the value condition applied to the modified order requires a read to return the same value
as it does when applied to the original %, First consider a read, R(i), that is not moved in the first step of the
modification. The value condition applied to the original 2 and applied to the modified order require that R(i)
return the value of the conflicting write W(i) that is ordered last before it by the corresponding order. This W(i)
is the same for both the orders. Thus, the value condition requires R(i) to return the same value with the modified
order as with the original —-. Now consider a read, R(i), that is moved in the first step of the modification.
The value condition and the initiation, and uniprocessor dependence part of the %5 conditions of the aggressive
conditions for SC applied to the original Z2; require that the read return the value of the last conflicting write,
W(i), before it by program order. The modification ensures that W(i) is the last conflicting write before R(i) in the
modified order, and W;n;: (i) is before R(i). Thus, the value condition applied to the modified order would require
R to return the value of W as well. Thus, all reads are required to return the same value with the modified order

34

as with the original order. Thus, the modified order obeys the value condition and is an execution order. We will
refer to this order as the modified —.

The modified =% also clearly obeys the uniprocessor dependence part of the =% condition using the modified
225 relation given by the statement of lemma 1.1. Similarly, it also obeys the coherence part and the read-modify-
write part of the 275 condition. We show next that it obeys the multiprocessor dependence chain part of the
2% condition below, thus proving the lemma.

Assume for a contradiction that the modified = does not obey the multiprocessor dependence chain part of
the "% condition; i.e., there is a multiprocessor dependence chain from X to Y with the modified % but Y(i) is
ordered before X(i) for some i by the modified =%, There are three types of chains and each is discussed below.
We use the fact that two conflicting sub-operations A(j) and B(j) can be ordered differently by the original and
the modified =% only if A(j) is a read, B(j) is a write, A(j) — B(j) in the original <+, and there is a W(j) such
that W(j) 2% A() and AG) == W() =% B(j) in the original =

I3
Case a: X=W 22 R’ L2, Y=R.
There are two sub-cases discussed below.

Sub-case al: X(i) is ordered before Y(i) by the original —.
Since X is a write and Y is a read, X(i) must be ordered before Y (i) in the new — also.
This is a contradiction.

Sub-case a2: X(i) is ordered after Y(i) by the original -

Thus, it must be that R’(i) was before W(i) in the original Z2, . otherwise, there would
have been a multiprocessor dependence chain from X to Y, and so X(i) should have been
before Y(i) in the original 22, Thus, R’(i) was moved below W(i) in the modification of
the original 22, But then Y(i) should also have been moved below W(i), a contradiction.

Case b: X 2% {A 25 B 22 Y4 ¥,
There are two sub-cases discussed below.

Sub-case bl: X(i) was after Y(i) in the original 22,

The above chain from X to Y could not have existed in the original ==+ (otherwise
the 2=% condition would require X(i) to be before Y(i)). Therefore, one or more of the
22% arcs in the above chain are of the type W 2% R where R(i) was moved after W(i) in
the modification of the original =%,

Consider one of the W =% R arcs mentioned above. Let R return the value of W’ in
E,. Then W(i) must be before W’(i) in the original =>. So we can replace each of the
W 2% R arcs of the above type with a W sco W’ arc to get a chain from X to Y that was
also present in the original ==. But then by 2%% condition on the original <%+, X(i) must
have been before Y(i) in the original =2,, a contradiction.

Sub-case b2: X(i) was before Y(i) in the original 22,

X(i) must have been moved to after Y(i) during the modification. So X is a read and
Y is a write. Let X return the value of the write W’ in E,. Since X(i) was moved after
Y (i), W’(i) must be after Y(i) by the original (and hence the modified) =2.. Thus, there
is a multiprocessor dependence chain from W’ to Y in the modified 22, that is of the
type discussed in sub-case bl. As proved in sub-case bl, W’(i) must be before Y(i) in the
modified =2, a contradiction.

Case c: X=WI 2% RI *2% [A 2% B 22% }+ Y=R2.

If the above chain exists in the original -~ as well, then X(i) is before Y(i) in the original 22, and
hence in the new =%, a contradiction. Therefore, there must be one or more W 2% R arcs on the
above chain where R(i) was moved after W(i) by the modification of Z%. We call such an arc a
violating arc for the rest of this case. There are two sub-cases.

Sub-case cl: The first arc on the chain is not a violating arc.
As in Case b, each violating W 2% R arc can be replaced by a W == W’ arc where
W’ is the write whose value is returned by R leading to a multiprocessor dependence chain

35

from X to Y that must be present in the original 22, Thus, X(i) is before Y(i) in the
original > and so it must be in the new — too, a contradiction.

Sub-case c2: The first arc on the chain is a violating arc.

Let W’ be the write whose value is returned by R1. Then there is a multiprocessor
dependence chain of the type discussed in case b from W’ to R2 with the new =%+, So by
case b, it follows that W’(i) is before R2(i) in the new —. It must be that W1(i) is before
W’(i) in the original (and so in the new) 22, Thus, W1(i)=X(i) is before R2(1)=Y(i) in
the new =%, a contradiction.

The three cases complete the proof of lemma 1.1. O

Lemma 1.2: There is an = of E, that obeys the aggressive condition of SC with the modification of the
uniprocessor dependence part of the 2% definition as stated in lemma 1.1 and with the following modification to

the 222 relation of the aggressive conditions:

XZLyifX 25 ¥ (ie, X and Y do not have to be from different locations)

7
Proof: Consider an — of E, that obeys the conditions of lemma 1.1, and consider the corresponding =2, relation.

For a contradiction, assume the lemma is not true. Then there must be operations X,Y such that there is a
multiprocessor dependence chain of the second or third type from X to Y with the modified definition of P2 and
Y(i) =2+ X(i). On this chain, there must be at least one 2% arc that is due to the modification; i.e., the 22 arc

!
is between operations to the same location. This implies that there is a cycle in 22, U =% and at least one of
the 2% arcs on the cycle is between operations to the same location. Consider the shortest such cycle in terms

’
of the number of 2% and <%+ arcs. Let one of the -2 arcs between accesses to the same location in this cycle
be U 2% V. Then the cycle must be of one of two forms which are analyzed as separate cases below.

Case a: The cycle is of the form A =, utLy LN B ... A, where A! = B, and U and V are to
the same location.
There are three sub-cases.

Sub-case al: A and B are from the same processor.

Then the path from A to B on the cycle above can be replaced by one L2, arc. This

o 0 !
L2, arc is between operations to the same location and so we have a cycle in 22, U % such

that at least one -2+ arc is between operations to the same location, and this cycle is shorter
than the chosen cycle, a contradiction.

Sub-case a2: A and B are from different processors, and there is a X2 arc between
operations to the same location on the path from B to A on the cycle.

At least one of A, U, V, and B must be a write. Thus, either A -ff; B,or A —93; U

<9 B, or A 2%V <% B can replace the path from A to B on the cycle. Thus, again we

7
have a cycle in 2% U 2% that has at least one L2, arc between operations to the same

location and that is shorter than the chosen cycle, a contradiction.

Sub-case a3: A and B are from different processors, and there is no 2+ arc between
operations to the same location on the path from B to A on the cycle.

Either A and B conflict or A and B are both reads. Each case is handled separately in
the paragraphs below.

Suppose A and B conflict. Then the path from B to A is either a multiprocessor
dependence chain (by the modification of lemma 1.1) or the path consists of a multiprocessor
dependence chain from B to a write W followed by W co A. In either case, B(i) 22 AQ)
for all i. However, the first three arcs on the cycle require A — B and so A(i) == B(i)
for all i, a contradiction.

Suppose A and B are both reads. Then V must be a write. Either the path from V
to A is a multiprocessor dependence chain (by the definition of lemma 1.1) or the path

36

consists of a multiprocessor dependence chain from V to a write W followed by W co A.
In either case, V(i) == A(i) for all i. However, the first two arcs on the cycle imply that
A % V(i) for all i, a contradiction.

] ’
Case b: The cycle is of the form A == U L2, v 22, B = A, where U and V are to the same location.
There are two sub-cases discussed below.

Sub-case bl: U and V conflict.

By the uniprocessor dependence part (as modified by lemma 1.1) of the == condition,
it follows that U(i) —= V(i) for all i. Since A and V conflict, it follows (using the coherence
part of the =% condition) that A(i) =%+ V(i) for all i. The cycle implies V(i) =+ A(i) for
all i, a contradiction.

Sub-case b2: U and V are both reads.

A must be a write. So the path from A to V is a multiprocessor dependence chain of
the first type according to the original definition of such chains specified in Figure 4. Thus,
AG) =% V() for all i. However, the cycle requires V(i) =2, A() for all i, a contradiction.

The above two cases complete lemma 1.2. O
Lemma 1.3: E, obeys Lamport’s definition of SC.
Proof: Consider the =%+ (and corresponding -2,) guaranteed by lemma 1.2. E, obeys Lamport’s definition of
SC if there is a total order on the memory operations of F, that is consistent with 22U —99—1»\ Therefore, for a

i
contradiction assume that there is no such total order. Then there must be a cycle in £2 U 2. But this cycle
implies a violation of the <=% condition (with 2% as modified by lemma 1.2), a contradiction. O

The proof of theorem 1 follows from lemma 1.3. B
Theorem 2: A system that obeys Lamport’s definition of SC also obeys the aggressive conditions for SC (Figure 4).
Proof: Consider an execution, E, on a system that obeys Lamport’s definition of SC. Consider the total order,
L2, on the memory operations of E. that is guaranteed by Lamport’s definition. Derive a corresponding total
order, —, on memory sub-operations as follows: X(i) — Y(j) for all i,j iff X to, Y, and W;,,i: (1) is immediately

before W(i) by — for any write sub-operation W(i) issued by any processor Pi. Then it follows that — is an
ro . To . ..
=2, and this == obeys the aggressive conditions of SC. B

C.2: Proofs for TSO

This section shows that the aggressive (Figure 11) and original conditions for TSO [SFC91] are equivalent. We
will refer to the original conditions as the conservative conditions below. Theorem 3 states that a system that
obeys the aggressive conditions for TSO also obeys the conservative conditions for TSO. Theorem 4 states that a
system that obeys the conservative conditions for TSO also obeys the aggressive conditions.

Theorem 3: A system that obeys the aggressive conditions for TSO (Figure 11) also obeys the conservative
conditions for TSO [SFC91].

Proof:

Consider any execution, E,, that has an 22, that obeys the aggressive conditions for TSO. The following
shows that there must exist a total order on the operations of E, that obeys all the axioms of the conservative
conditions for TSO, thus proving theorem 3. Below, the relation ~— implicitly refers to the = of E, that obeys

the aggressive conditions for TSO. The relations =2, i"—l-», and == refer to the corresponding relations for the
above 2.

The proof consists of four steps. The first step constructs a relation T, on the operations of E,. The second
step shows in Lemma 3.1 that the relation s a partial order. The third step shows in Lemma 3.2 that any
total order consistent with -~ obeys all the axioms of the conservative conditions of TSO except possibly the
atomicity axiom. The final step shows in Lemma 3.3 that there is at least one total order consistent with =% that

37

also obeys the atomicity axiom of the conservative conditions of TSO. Thus, it follows that there is a total order
for E, that obeys all the axioms of the conservative conditions of TSO, completing the proof.

. . rel
Construction of relation —

1 . . .
Define =55 : X rel Y if X,Y are the first and last operations in one of

X2y
W co’
Loy
1 i
R <2, W and if R returns the value of its processor’s write, W’, in E,, then W’ -2+ W
{ rel
Xx Iz y

. L, .
Lemma 3.1: Relation == is a partial order.

Proof: For a contradiction, assume T, isnota partial order. Then there must be a cycle C involving the 222 and

<o, arcs that make up rel, 'We first show in Claim 3.1 below that cycle C implies a cycle C’ in 2% U 22 with

alternating <£% and =% arcs. Furthermore, if R 2% W is one of the > arcs on C’, then it cannot be that W
2P% R. We then show in Claim 3.2 that this cycle C’ contradicts the fact that 22, obeys the aggressive conditions
for TSO. This contradiction completes the proof of Lemma 3.1.
Claim 3.1: A cycle Cin I, implies a cycle C’ in 2% U 2% with alternating ~2% and 22> arcs.
Furthermore, if R 2%% W is one of the <% arcs on cycle C’, then it cannot be that W -5 R.

Proof: Consider a cycle C in e, involving the fewest number of 2£% and <9, arcs.

First we show that there cannot be two consecutive ~= arcs on cycle C. For a contradiction,
assume that there are two such arcs: X <25 Y 222 Z. Then it cannot be that X 2o, Z; otherwise, the
two -5 arcs can be replaced by one 2% arc leading to a shorter cycle than C in I—eL, a contradiction.
Therefore, it must be that X is a write and Z is a read, X is not from a RMW and there is no RMW
such that X 2% RMW 22, Z. But then the only way for X 2% Y to be possible is for Y to be a

write. But then it cannot be that Y <2 Z, a contradiction. Thus, each 2E% arc on cycle C must be
!
preceded and followed by a <% arc.
!
It is straightforward to show that a chain of consecutive =2 arcs can always be replaced by a

2%, arc or a chain of the form R —» W =2 R. Thus, a chain of consecutive 22, arcs on the cycle
C can be replaced by a 2% arc.

From the above two paragraphs it follows that the cycle C also implies a cycle C* of alternating
2P% and =% arcs, proving the first part of claim 3.1. We now prove the second part of the claim.
For a contradiction, assume one of the ~— arcs on cycle C’ (obtained from cycle C as shown in the
above two paragraphs) is R <% W where W 2% R. Then it must be that this == arc was formed

by replacing a chain of consecutive 29, ares in cycle C. This implies that in cycle C there must be a
chain of the type R <2, w’ <o, < w. Furthermore, since R —— W, the value condition and the
uniprocessor dependence part of the sxo conditions of the aggressive conditions of TSO ensure that R
will return the value of its own processor’s write in E,. However, then the definition of e, implies
that R 2%, W’ cannot be on the cycle C, a contradiction. Thus, if R 2% W is on cycle C’, then it
cannot be that W “£% R, proving the claim. O

Claim 3.2: The existence of cycle C’ described by Claim 3.1 contradicts the condition that =2 obeys
the aggressive conditions for TSO.

Proof- Let Al 2% A2 %% A3 2% A4 .. An =% Al be the cycle C’ described by claim 3.1.
Note that n must be even and greater than 0. There are two cases depending on whether Al and An
conflict. We show below that each case obeys claim 3.2.

Case a: Al and An conflict.
We first consider the sub-case where n = 2 and then the sub-case where n > 4, and
show that both sub-cases obey the claim. If n = 2, then claim 3.1 implies that it cannot be

38

that Al is a write and A2 is a read. Thus, the above cycle implies that =2 contradicts the
uniprocessor dependence part of the 2% condition, proving claim 3.2. If n > 4, then the

above cycle implies that =%+ contradicts the multiprocessor dependence chain part of the
sSTo

Z=% condition for the chain from Al to An, again proving claim 3.2.

Case b: Al and An do not conflict.

There must be a W such that A1=R 2% A2 2°% A3 225 A4 . An=R =5 W 22 Al=R.
Alternately, W 2% A1=R 225 A2 %% A3 *2% A4 .. An=R =% W. This cycle implies
that 2% contradicts the multiprocessor dependence chain part of the <% condition, proving
claim 3.2.

The two cases above complete the proof of Claim 3.2. [

Claims 3.1 and 3.2 complete the proof of lemma 3.1. O

Lemma 3.2: Any total order on the operations of E, that is consistent with RN obeys all the axioms of the
conservative condition for TSO except possibly the axiom of atomicity.

Proof: Consider a total order 22, on the operations of E, that is consistent with Tl 'This order obeys the Order,
LoadOp, and StoreStore axioms of the conservative conditions for TSO by construction. The order also obeys the
Termination axiom of the conservative conditions of TSO because of the following. The termination condition
for TSO requires that a write appear after a finite number of reads to the same location. Below, we show that
the order also obeys the Value axiom of the conservative conditions for TSO; i.e., if R returns the value of W in

E,, then the value axiom of the conservative conditions of TSO when applied to 22, would require that R return
the value of W. There are two cases depending on whether R returns the value of its own processor’s write or
another processor’s write and we show the above must be true in each case. Each case uses the fact that for two

conflicting writes W1 and W2, if W1 % W2, then W1 ¢l W2 and so W1 % W2. We also use the fact that
the termination condition ensures that conflicting operations are related by iy

Case a: R returns the value of another processor’s write, W, in E,.
rel, (and therefore -2,y orders R with respect to all writes of other processors that conflict with
R, and this order is the same as by —. Since all conflicting writes are similarly ordered by -2, and

2., it follows that the last conflicting write of another processor before R by L2, is W. We know by
the value condition and the initiation condition of the aggressive conditions of TSO that all conflicting
writes ordered before R by program order must be ordered before W by -2 (otherwise, R would
have returned the value of its own processor’s write). Therefore, again, since all conflicting writes are

ordered similarly by 22, and <2, all conflicting writes before R by program order must be ordered
before W (and so also before R) by 12, Thus, the value axiom of the conservative conditions of
TSO applied to e, requires that R return the value of W.
Case b: R returns the value of its own processor’s write W in E,.

The only case when the value axiom of the conservative conditions for TSO when applied to
22, would require that R return the value of another write, W’, where W’ # W is if W Low
22, R and W’ is from another processor. But in this case, W 2% W’ and so <% ensures that

R 2% W, a contradiction. Therefore, the value axiom of the conservative conditions of TSO also
requires R to return the value of its own processor’s write and this write must be W.

Thus, <% obeys the value axiom of the conservative conditions as well, proving lemma 3.2. O

. !
Lemma 3.3: There exists a total order on the operations of E, that is consistent with L=, and that obeys the
atomicity axiom of the conservative condition for TSO.

Proof:

Consider a RMW operation in E,. Below we show in Claim 3.3 that there is no other operation ordered after
the AR and before the AW of the RMW by el This implies there exists a total order of the operations of E,

39

that is consistent with % and such that there is no operation between the AR and the AW of any RMW ordered
by this total order. This total order obeys the atomicity axiom proving lemma 3.3.

Claim 3.3: For a RMW in E,, there is no other operation ordered after the AR and before the AW of
the RMW by 1.
Proof: Suppose there is an operation, say X, between AR and AW ordered by el Then consider

L
some path from AR to X to AW consisting of the 225 and % arcs that make up Z¢%. There are two
cases and we show below that each leads to a contradiction.

Case a. The first arc on the path from AR to X to AW is an 222 are, AR 225 Y, where Y
may or may not be the same as X.

We have cither AR 2% 2y 15 X T AW or AR 2% Y=X 2<% AW, It must be that
AW 2% Y and so AW 2% Y and so AW % Y. Thus, we have a cycle in -2 because
cither X =% AW 24 Y —r~e—l~> X or X 2% AW ¢4 Y=X. This contradicts lemma 3.1 and
is not possible.

Case b. The first arc on the path from AR to X to AW is a <, arc, AR L W', where W’
may or may not be the same as X.

We have either AR <o, w I X I AW or AR <% W=X L AW Either W*

<, AW or AW % W', We show that both cases lead to contradictions. If W’ — AW,
then we have AR =% W’ -2% AW, but this implies that =2+ violates the atomicity condition

of the aggressive conditions for TSO, a contradiction. If AW L W’, then we have a cycle

in rel because either W’ el x I AW I W or W=X 2 el AW %L W’, a contradiction
to lemma 3.1.

The two cases above prove claim 3.3. O

This completes the proof of lemma 3.3. O
Theorem 3 follows from lemmas 3.2 and 3.3. Ml

Theorem 4: A system that obeys the conservative conditions for TSO [SFC91] also obeys the aggressive conditions
for TSO (Figure 11).

Proof: Consider any execution, E,, that obeys the conservative conditions for TSO. The proof shows that there
must exist a — on the sub-operations of E that obeys the aggressive conditions for TSO, thereby proving the
theorem.

Below, the relation == refers to the partial order which is the memory order relation for E . that obeys the
different axioms of the conservative conditions for TSO.% Furthermore, % refers to the minimal such partial
order; i.e., its transitive reduction must consist of only arcs necessary to obey the axioms of the conservative
conditions for TSO. Therefore, the transitive reduction consists of only arcs of the following types: (i) arcs
between two writes, (ii) arcs from a read to any operation where the first read is before the second operation by
program order, (iii) arcs from a write to a read where the write is before the read by program order, (iv) arcs from
a write to a read where the read returns the value of the write, and (v) arcs between a read of a RMW and a write.

Cons1der relation rel, on the operations of F. as follows: R ¢l W if R returns the value of write W’ in E e

and W 22 W,
The proof now proceeds in four steps. The first step shows in Lemma 4.1 that =% U 2% is acyclic. The

second step shows in Lemma 4.2 that any total order consistent with el oy e (extended to sub-operations)
on the sub-operations of E is an 2., The third step shows in Lemma 4.3 that any =2 of the type discussed
in Lemma 4.2 obeys all the aggressive conditions for TSO except posmbly the read-modify-write part of the
22% condition. The final step shows in Lemma 4.4 that there is at least one — of the type discussed i in Lemma
4.2 that also obeys the read-modify-write part of the 229, condition. Thus, it follows that there is an —+ for E,

that obeys the aggressive conditions, completing the proof.

We assume this partial order obeys the property in footnote 6: there are only a finite number of operations ordered before any given
operation.

40

! . .
Lemma 4.1: = U 2% s acyclic.

Proof: Suppose there is a cycle in Tel, U 2% Consider the shortest such cycle. It must be of the type: Rl

el w1 2% R2 2L w2 .. Rn 25 Wn 2% R1, where n > 1. There are two cases depending on the value of
n and both lead to contradictions as discussed below.

Case a: nis > 2.
Either W1 2% W2 or W2 % W1. Suppose W1 =% W2. Then if n is greater than 2, W1 =% R2
el w2 2% R3 can be replaced by W1 2 R3, resulting in a shorter cycle, a contradiction. If n =

2, then W1 % R2 rel, w2 % R1 can be replaced by W1 2% R1, also resulting in a shorter cycle,

a contradiction. Thus, the case of W1 =% W2 is not possible. Now suppose W2 =% W1. Then we

have W2 22 R2 and so we have a shorter cycle, R2 Tel, w2 2% R2, a contradiction, completing

this case.

Case b: n = 1.
We have R1 =% W1 2% R1. If R returned the value of W’ in E, then W =2 W1 22 RI.
But this contradicts the value axiom of the conservative conditions.

The above two cases prove lemma 4.1. O

. to’ . , . . I
Lemma 4.2: Consider a total order =2~ on the operations of E .. that is consistent with % U <=, Define 2, on

the sub-operations of E . as follows. X(i) 2y j) iff X oy, Further, for a write W(i) issued by Pi, order its
corresponding Winiu(i) sub-operation as follows. If there exists an R such that W P2 Rand R RN W, then let
Winit(i) be immediately before the first such R(i) in ze,, If there does not exist the above type of R, then let
Winsi(i) be immediately before W(i) in 12, . Then the order —%+ is an =%.

Proof: To show that 225 is an =%, we need to show that it obeys the value condition. Consider a read R(i) that
returns the value of W(i) in F.. For a contradiction, assume that the value condition of the aggressive conditions

for TSO applied to Lo, requires that R return the value of another write, W’. There are three cases possible
discussed below, and each leads to a contradiction as shown. (Each of the cases uses the fact that conflicting

writes are ordered by —2+ in the same way as by %)

Case a: W —"—1—3; W
Then R 2% W’ and so R(i) =% W’(i). Further, it cannot be that W £% R; otherwise, R would
have returned the value of W’ in E,. So the value condition of the aggressive condition for TSO

applied to 2, cannot require R to return the value of W’, a contradiction.
Case b: W =% Wand W 2% R.
Then W’(1) Lo, W(@) Lo, R(i) and so the value condition of the aggressive condition for TSO
applied to -2, cannot require that R return the value of W’, a contradiction.
Case c: W 2% W and - (W =% R).
Then W is from the same processor as R. In either case of W(i) Lo, R(1) or R(i) Lo, W), it

follows that the value condition of the aggressive condition for TSO applied to 2, would require
that R not return the value of W’.

Thus, the value condition of the aggressive condition for TSO applied to Lo, requires that R return the value
of W, and so L2, obeys the value condition and is an =2, proving Lemma 4.2. O

Lemma 4.3: Any total order 2, described in Lemma 4.2 obeys all the aggressive conditions for TSO except
possibly the read-modify-write part of the == condition.

Proof: Lo, clearly obeys the initiation condition (by construction). It also obeys the termination condition and the
uniprocessor dependence and coherence parts of the 222 condition of the aggressive condition for TSO since similar
(or more conservative) conditions are obeyed by Z2%,. It also obeys the termination condition by construction. We
next show that it obeys the three parts of the multiprocessor dependence chain part of the 225 condition.

41

We first discuss the first part of the multiprocessor dependence chain. For this part, we need to consider a
chain of the type W dol, Ry 228 R2, where all three operations on the trace conflict. R1 -£% R2 implies R1
2% R2 and so R1 ALIN R2. So W AL R2 and so W(i) LN R(@) for all i. Thus, Lo, obeys the first part of the
dependence chain condition.

We next discuss the second part of the multiprocessor dependence chain condition. For this part, we need to
consider chains of the following type: Al 2% A2 2% A3 2% A4 . 225 An, where Al and An conflict. There

are two cases and for each case we show below that Al(p) Lo, An(q) for all p,q, théreby obeying the required
condition.

Case a: All cases except when An-1 is a W from RMW and An is a read.
We show by induction that for the chain given above, for every k, either
Ak=Al, or
Al(p) <%+ Ak(q) for all p,g, or
Ak is a read, Ak-1 is a write from a RMW, Ak-1 2% Ak, and if Ak+1 exists, then Al(p)
to
— Ak+1(q) for all p,q.
Thus, it will follow that A1(p) Lo, An(q) for all p,q as required.

Base case: Trivially true.
sco

Induction: If Ak-1 — Ak, then we are done by induction hypothesis. So suppose Al
. 2% Ak-1 225 Ak. By induction hypothesis, Al(p) Lo, Ak-1(q) for all p,q- Ak-1(p)
Lo, Ak(q) for all cases except when Ak-1is a W from RMW and Ak is a read. Thus, in
all cases except the above, the proposition is true. So assume Ak-1 = W from RMW, Ak
=R, Ak-1 ZP% Ak, If there is no Ak+1, then we are done. If there is an Ak+1, then either
it is a write or a read. We show next that for both cases, the proposition is true. Suppose

Ak+1 is a write. By the atomicity axiom, % (and therefore 1o,) either orders Ak+1
before the R or after the W of the RMW of Ak-1. Further, ~— (and therefore Lo) orders

Ak after the R of the RMW of Ak-1. Since Ak =% Ak+1, it follows that Ak-1 io-,—> Ak+1.
Therefore, Ak-1(p) L2, Ak(qg) for all p,q and it follows that A1(p) L, Ak+1(q) for all p,q.
Thus, the proposition is true. Suppose Ak+1 is a read. Then there is a write W’ such that
Ak =% W* =5 Ak+1. The above analysis for Ak+1=write applies to W’ and so Al(p)

L2, W’(q) for all p,q. Thus, Al(p) —2 Ak+1(q) for all p,q as well.

Case b: An-1is a W from RMW and An is a read.

Then A1l must be a write and by Step 1, it must be ordered by -2, before the W of the RMW
of An-1. By atomicity axiom on —=%, Al must be ordered before the read of the RMW of An-1

by =2 (and so by do,). The R of the RMW of An-1 is ordered before An by 33; Thus, Al(p)
Lo, An(q) for all p,q and so L2, obeys the second part of the dependence chain.

Finally, we consider the third part of the dependence chain. For this we need to consider the following types of
chains: W sco A1=R 2% A2 sco A3 2% A4 ... 225 An=R The reasoning for the second part of the dependence
chain can be directly applied here as well to show that this condition is also obeyed.

This completes the proof of lemma 4.3. O
Lemma 4.4: There is at least one —+ described by lemma 4.3 that obeys the read-modify-write part of the
STo Py s v
— condition of the aggressive conditions for TSO.
Proof: Consider a RMW operation in E,. Below we show in claim 4.1 that there is no other operation ordered
after the AR and before the AW of the RMW by 7% U 2% This implies there exists a total order %+ of the
operations of E that is consistent with 2,y 2%, and such that there is no operation between the AR and the AW

of any RMW ordered by this total order. Therefore, a total order Lo, generated from 22, on the sub-operations
of E. (as discussed in Lemma 4.2) obeys the read-modify-write part of the 25 condition, proving lemma 4.4.

42

Claim 4.1: For a RMW in E., there is no other operation ordered after the AR and before the AW of
the RMW by 2% U =%,

Proof: Suppose there is an operation, say X, between AR and AW ordered by 70 U I Then
consider some path from AR to X to AW consisting of the base arcs of =% U e, (Base arcs are

those that form the transitive reduction of 2% and % as discussed in the beginning of the proof of
theorem 4.) There are two cases and both lead to contradictions.

Case a. X is a write.
Then we know that X must be ordered with respect to both AR and AW by 2. But
then it must be either after AW or before AR by —-%. Either case implies a cycle in

2% U —r—il—'r, a contradiction to lemma 4.1.
Case b. X is a read.
Case (a) has shown that there cannot be a write ordered between AR and AW by

T, U % Thus, it follows that the path from AR to X and from X to AW cannot
contain a write. Thus, the path must be of the type AR 2% X=R 2% AW, where AR

22 AW 2% X=R. But X=R 2% AW is not a base arc for =, and so cannot be present,
a contradiction.

The two cases prove claim 4.1, O

This completes the proof of lemma 4.4. O
Theorem 4 follows from lemmas 4.2, 4.3, and 4.4, &

C.3: Proofs for PSO

This section shows that the aggressive (Figure 12) and original conditions for PSO [SFC91] are equivalent. We
will refer to the original conditions as the conservative conditions below. Theorem 5 states that a system that
obeys the aggressive conditions for PSO also obeys the conservative conditions for PSO. Theorem 6 states that a
system that obeys the conservative conditions for PSO also obeys the aggressive conditions.

Theorem 5: A system that obeys the aggressive conditions for PSO (Figure 12) also obeys the conservative
conditions for PSO [SFC91].

Proof: The proof of theorem 5 is very similar to that of theorem 3; i.e., it consists of constructing a relation —r—i,
and proving the statements of lemmas 3.1-3.3 with TSO and the old T, relation replaced by PSO and the new
¢!, relation. The relation =% for PSO is similar to the relation =% for TSO except for an additional component

of 33; arcs defined below.

7 !
Define 2% : X 22, Y if X 2% Y and X and Y are writes to the same location.

Define =% : X 24 Y if X,Y are the first and last operations in one of

X2y

w2y
[7

R <% W and if R returns the value of its processor’s write, W’, in E,, then W == W
i

X2,y

x bz y

The proofs for the lemmas corresponding to lemmas 3.1-3.3 for PSO are very similar to that for TSO. The
only significant difference is in the proof of the first part of claim 3.1 in lemma 3.1 as follows. The first part
of claim 3.1 requires proving that a cycle C in rel, implies a cycle C’ in 2% U 2% consisting of alternating

1 !
3P% and 2% arcs. As for TSO, we consider a cycle C in rel, with the fewest number of P2 PO, and <2 arcs.
The next step is to show that there cannot be two consecutive 2P% arcs on cycle C. The reasoning for this is a

straightforward extension of that for TSO that takes into account the differences in the 222 arcs of TSO and PSO.

43

! ’
The final step is the straightforward observation that any chain of consecutive 22, and 2% arcs on cycle C can
be replaced by a —>+ arc or a chain of the form of R <% W % R. (In the TSO case, we did not have to consider
1 ! !
22, arcs.) Thus, any chain of consecutive — and 22, arcs on cycle C can be replaced by a =% arc. Thus,
it follows that the cycle C implies a cycle of alternating ~2% and =% arc, proving the first part of claim 3.1 of

lemma 3.1 for PSO. As mentioned above, the rest of the proof for PSO is almost identical to that for TSO. B

Theorem 6: A system that obeys the conservative conditions for PSO [SFC91] also obeys the aggressive conditions
for PSO 12.

Proof: This is virtually identical to the proof of theorem 4. Il

C.4: Proofs for PC, RCsc, and RCpc

The conservative and aggressive conditions for PC, RCsc, and RCpc follow a similar form and so we discuss
these models together. This section shows that the aggressive conditions (Figures 10, 14, 15) and conservative
conditions for each of the above models (Figures 16, 18, 19) are equivalent.

Theorem 7 gives a common proof for all the above models that shows that a system that obeys the aggressive
conditions for any of the above models also obeys the conservative conditions of that model. Theorem 8 gives a
common proof for all the above models that shows that a system that obeys the conservative conditions for any
of the above models also obeys the aggressive conditions of that model.

Theorem 7: A system that obeys the aggressive conditions for PC, RCsc, and RCpc also obeys the conservative
conditions for PC, RCsc, and RCpc respectively.

Proof: Let M represent any one of the models of PC, RCsc, and RCpc. Consider an execution, E, on a system
that obeys the aggressive conditions for M. Consider an >+ of E, that obeys the aggressive conditions. The
%2, clearly obeys the initiation and termination parts of the conservative conditions. It obeys the -~ part of
the conservative conditions because of the uniprocessor dependence aspect of the =% part of the aggressive

conditions. It obeys the o] part of the conservative conditions because of the coherence and read-modify-write
aspects of the =% part of the aggressive conditions. Thus, we only need to show that it also obeys the 2o, part
of the conservative conditions.

We use the following two notions in our proof below. First, we overload the symbols =25 and sz0, to also
imply relations between memory sub-operations as follows. A(i) 22, BA) iff A =5 B, and A() s29, B() iff

1
A %% B. Second, we note that for an —= to obey the aggressive conditions, it is sufficient if the =2, (on
y 28

sub-operations) corresponding to the =%+ is the same as the — of some other — that is known to obey the
aggressive conditions.

For a contradiction, assume that no —— of E, that obeys the aggressive conditions of model M also obeys
the 5o, part of the conservative conditions of model M. Now consider some Z2, of E, that obeys the aggressive
conditions of model M. Then it follows that for this ——, there must be a cycle in —- U 290, where — and
529 are on sub-operations. (Otherwise, we can define an = that has the same -5 as the — considered above
and such that if A s29, B, then A(i) —- B(j) for all i,j. This 22, obeys the conservative conditions of model M,
a contradiction.)

Consider the shortest cycle in =2+ union 529 (in terms of the number of —%» and *Z% arcs). Let this cycle be
AQ) ... B(i) =%+ A(@i). This cycle obeys the following properties.

(P7.1) The cycle has at most two consecutive 22, arcs and these are of the form R1(i) — W(i)
=2, R2(i) (otherwise this is not the shortest cycle). Thus, R1, and R2 are from the same processor
and so R1 =% R2. .

(P7.2) By definition, an 222, arc from X(i) to Y(j) on the cycle implies either X 2P% Y or X=W
2R 2o, Y, where 2% and 29, are as defined by the aggressive conditions. (The LN case occurs
only for RCsc.)

44

The above properties imply that the cycle A(i) ... B(i) -~ A(i) implies a cycle on the operations of E, that

. spo spo’ . . SCO co’ ! .
consists of <5 or % arcs alternating with 2% or 2% arcs. Furthermore, an =% arc is always followed by an

o spo’ sco sco’ . .- ! o'
529 arc. (Here 2%, *E%. 2%% and *°% are as defined by the aggressive conditions, and 2% and 2% occur only

for RCsc.) Such a cycle implies a cycle of the form C ... D <% C where the path from C to D is a multiprocessor
dependence chain defined by the aggressive conditions. But then by the =% condition, C(i) = D(i) for all i.
However, the cycle requires D(i) = C(i) for all i, a contradiction. ll

Theorem 8: A system that obeys the conservative conditions for PC, RCsc, and RCpc also obeys the aggressive
conditions for PC, RCsc, and RCpc respectively.

Proof: Let M represent any one of the models of PC, RCsc, and RCpc. Consider an execution, £, on a system
that obeys the conservative conditions for M. Consider an 22, of E, that obeys the conservative conditions. The
~2; clearly obeys the initiation and termination parts of the aggressive conditions. It also obeys the uniprocessor

dependence, coherence, and read-modify-write aspects of the 225 part of the aggressive conditions because of the

1
225 and % parts of the conservative conditions. Thus, we only need to show that it also obeys the multiprocessor

dependence chain part of the =% part of the aggressive conditions. For this, we need to show that if there is a
multiprocessor dependence chain from X to Y, then X(i) =% Y(i) for all i.

’
We use the following properties that follow from the 22, part of the conservative conditions and the definition
of the various relations.

(PS.1)If A 2% B, or A 2% B, or A 2% C 2% B, or A=W 2% R 2% B (as defined by the
aggressive condmons) then A(i) —= B(j) for all i,j except possibly if B is a write and Pj issues B.
(P8.2) If A 2%+ B or A 2% B, then A(i) —~ B(i) for all i.

I
The multiprocessor dependence chains of the aggressive conditions consist of 2% or 222, arcs that alternate
1 !
w1th 22, 2% or 222 arcs (as defined by the aggressive conditions). The 222, arcs are always followed by

2%, arcs. Further, the chains always start with 229 or with W 25 R 2% ° , and always end with P2 or 22 °

From the above two properties, it follows that for a multiprocessor dependence chain from X to Y, it must be that
X(@) = Y(j) for all i,j except possibly if Y is a write and Pj issues Y. When Y is a write and Pj issues Y, then

by the =% and ¥% parts of the conservatnve conditions, it follows that XQ) <% Y(j) whenever both X(j) and
Y(j) are defined. Thus, it follows that X(i) =% Y(i) for all i and so the <% part of the aggressive conditions is
obeyed. B

C.5: Proof for WO

This section shows that the aggressive conditions for WO (Figure 13) and the conservative conditions for this
model (Figure 17) are equivalent.

Theorem 9 gives the proof that a system that obeys the aggressive conditions for WO also obeys the conservative
conditions for that model. Theorem 10 gives the proof that shows that a system that obeys the conservative
conditions for WO also obeys the aggressive conditions for that model.

Theorem 9: A system that obeys the aggressive conditions for WO also obeys the conservative conditions for
WO.

Proof: The proof for this theorem is almost identical to the proof of theorem 7 given for RCsc. The main
difference is that the conservative conditions for WO require W -=% R if W 22, R and W,R conflict, while the
aggressive conditions do not require this. We can use the same technique used in Lemma 1.1 for SC whereby
we can find an = for any execution with the aggressive conditions of WO that obeys these conditions with a
modlﬁcatlon to the uniprocessor dependence part of %% where if X and Y conflict and X £% Y, then X 2> Y.

Given this =2, the proof of this theorem is identical to the proof of Theorem 7 for the RCsc model. ||

Theorem 10: A system that obeys the conservative condition for WO also obeys the aggressive conditions for
WO.

45

Proof: The proof for this theorem is almost identical to the proof for Theorem 8 for the PC, RCsc, and RCpc
models. W

46

define “E3: X 23 Y if X,Y are the first and last operations in one of:

R 2% RW
w 2w
define 223, 813;, szl
X 23 Y if X and Y conflict and are the first and last operations in RW 2w
X 29 Yif X 23y
X ”——3—,»/ \zoif X and Y conflict and are the first and last operations in one of
W

W —
szo’!

11
atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then either W 2% AR or AW =5 W

wer xo
Conditions on —:
sxro

If X 223 Y, X,Y by P, then X(m) == Y(m).

szo

If X — Y, given X,Y by P, and one of
Y=R, then X(i) —= R(j) for all i,j, or
Y=W, then X(i) —> W(j) for all i,j except j=m.

SIO//

If X 222 Y, then X(i) — Y(i) for all i.
Initiation condition holds.
Termination condition holds for all sub-operations.

Figure 16: Conservative conditions for PC.

define “23: X 2E% Y if X,Y are the first and last operations in one of:
RWs 22 RWs
RW 22 RWs
RWs £ RW
define =3 5-1-3: S—I—O«I»I
b ¥
X 222 Y if X and Y conflict and are the first and last operations in one of
RW 22w
w2 R
/
X 2% Y if X,Y are the first and last operations in one of
X2y
w 22 R ZES RW
R w
it
X % Y if X and Y conflict and are the first and last operations in one of
W W
szo’!

i1
atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then either W =+ AR or AW =% W

.y To
Conditions on —:
sTO

If X 523 Y, X,Y by P, then X(m) <2 Y(m).

sxo’

If X =2 ¥, then X@) —= Y(j) for all i,j.

&:EO”

I X 22 Y, then X(i) =5 Y() for all i.
Initiation condition holds.
Termination condition holds for all sub-operations.

Figure 17: Conservative conditions for WO.

47

i
SpO SPO
define —+, L

X f—’f—: Y if X,Y are the first and last operations in Xc 2 ye
X 223 Y if X,Y are the first and last operations in one of
Rcoacq 2 rw
RW 22 Werel

szo sxo’ szo'!
define ——, ——,

X ZZ5 Y if X and Y conflict and are the first and last operations in RW 2
!
X 22 Y if X,Y are the first and last operations in one of
X2y
X 2%y
W <% R 2% Rw
RI% W
g
X 22, Y if X and Y conflict and are the first and last operations in one of
w2 W

!

/. 1
atomic read-modify-write (AR, AW): if W conflicts with AR, AW, then either W =%+ AR or AW =% W

e o
Conditions on —:
ST O

If X 223 Y, X,Y by Ppn, then X(m) ——= Y(m).
S:IJOI

If X — Y, given X by Py, and Y by Pn, and one of
Y=R, then X(i} —= R(j) for all iJ, or
Y=W, then X(i) == W() for all i,j except j=n.

I X 2% Y, then X() =2 Y for all i

Initiation condition holds.

Termination condition holds for all competing sub-operations.

Figure 18: Conservative conditions for RCsc.

48

I
PO Spo
define L, L

X i’f: Y if X,Y are the first and last operations in one of
Rc 2% RWe
we 25 we

X <25 Y if X,Y are the first and last operations in one of
Re_acq 22, Rw

RW 22 Werel

sSro SIOI SIO“
define ——, —+, —1

X =25 Y if X and Y conflict and are the first and last operations in RW 2w

!
X 2% Y if X,Y are the first and last operations in one of

XEy
X ==Y
RIA w

1
X Z2, Y if X and Y conflict and are the first and last operations in one of

co
W= W
szo! szol!

atomic read-modify-write (AR,AW): if W conflicts with AR,AW, then either W — AR or AW — W

spo’

s zo
Conditions on —:
ST O

IF X 323 Y, X,Y by P, then X(m) =2 Y(m).

'
IfX 2%y, given X by Pr, and Y by Py, and one of
Y=R, then X(i) =% R() for all ij, or
Y=W, then X(i) =3 W() for all i,j except j=n.

SSIO,,

If X 22, Y, then X(i) ~= Y(i) for all i.
Initiation condition holds.
Termination condition holds for all competing sub-operations.

Figure 19: Conservative conditions for RCpc.

49

Appendix D: Aggressive Form of Uniprocessor Correctness Condition

This appendix discusses a relaxation of the uniprocessor correctness condition (Condition 1) given in Section 2.2.
This condition is a straightforward adaptation of the condition developed for the PLpc model [AGG *93]. As
discussed in Section 2.2, the notion of a correct uniprocessor used in Condition 1 assumes the following: given an
execution, E, of a correct uniprocessor, if an instruction instance, i, is in E, then the number of instruction instances
in E that are ordered before i by program order is finite. Section 3 described how this restricts implementations
by prohibiting the aggressive execution of operations that may be ordered after potentially non-terminating loops
by program order. To allow aggressive implementations, we could eliminate the above constraint when defining
uniprocessor correctness; i.e., we could assume that a uniprocessor can execute an instruction even if a loop
before the instruction does not terminate in the execution.3® Previous specifications of models have not explicitly
stated which version of the condition is assumed; we therefore assumed the more conservative version in the
text. However, we believe that except for SC, the intent of the remaining models can be captured even with the
more aggressive uniprocessor correctness condition if one additional condition is enforced. We believe that the
additional condition should ensure the following two conditions:

(1) For certain classes of well-behaved programs (e.g., DRF1/PL. for RCsc or PLpc for RCpc), the models
should appear SC (see Section 2.3.2).

(2) Consider any pair of shared-memory instructions X’ and Y’ from the same processor where X’ is before
Y’ in the control flow graph of the processor. If the original specification of the model requires sub-operations of
instances of X’ to execute before those of Y’, then the new condition should ensure that only a finite number of
instances of X’ are ordered by program order before any instance of Y'.

The additional condition is formalized below as Definition D.3 and is called the infinite execution condition.
Parts (a), (b), and (c) of the definition cover (1) above (the proof for this is in [Adv93] along with a more formal
set of conditions) and part (c) also covers (2) above. First we define some concepts that will be used by definition
D.3.

Definition D.1: Loop
A loop in a control flow graph refers to a cycle in the control flow graph. A loop L does not terminate in
an execution iff the number of instances of instructions from loop L in the execution is infinite.

Definition D.2: Infinite Execution Order (i?—‘l)
Let X and Y be two shared-memory instruction instances in an execution E, with X’ and Y’ being the
corresponding memory operations.

ieo spo

If E is an execution on a WO (or PC) system, then X — Y iff X’ — Y, where P2 is as defined for the
conservative conditions of WO (or PC).

If E is an execution on a RCsc (or RCpc) system, then X L0 Y iff X (e | 2,) Y’, where <25 and
i are as defined for the conservative conditions of RCsc (or RCpc).

If E is an execution on a TSO system, then X ~°% Y iff X=R £2 Y=RW or X=W 2% Y=W.

If E is an execution on a PSO system, then X %% Y iff X=R 2 Y=RW or X=W -£% STBAR 22 Y=W.

Condition D.3: Infinite Execution Condition

Consider an execution E of program Prog that contains instruction instance j of instruction j’.

(a) If loop L does not terminate in some SC execution, then the number of instances of instructions in E that
are from loop L and that are ordered by program order before j is finite.

(b) The number of instruction instances that are ordered before j by reh) in E is finite (for models that have
ek defined; e.g., WO, RCsc, RCpe). ,
(c) The number of instruction instances that are ordered before j by 222 in E is finite.

With the above modifications to our framework, a processor can execute a read (R) or write (W), even if it is
not known whether previous loops (by program order) will terminate, as long as the loop is known to terminate
in every SC execution and as long as no memory operation from the loop will be ordered before the R or W by

30This implies that 2 fora single processor no longer obeys the property of total orders described in footnote 5. We assume, however,
that all other total orders discussed in this paper obey the property.

50

P P2 P1 P2

while (1); if (A==1) while (A==0); (sync) if (B==0)
A=1; exit(0); B=1; A =1; (syne)
(a) (b)
PL P2 P3
A=1, while (B==0); if (P==1)
B=1; if (A==0) { exit(0);

while (1) { C = 1;} (sync)
P=1; (sync)

(c)

Figure 20: Example code segments to illustrate the infinite execution condition.

.)
ek, or by ~%. Similarly, the compiler can move a shared-memory instruction i that is after a loop to before a

loop that obeys the above conditions.

Figure 20 shows three example code segments to illustrate the use of the three parts of Condition D.3. Assume
the memory model used is WO. Figure 20(a) shows a program that is properly labeled (PL). The write to A never
occurs in any SC, and the exit statement is never executed under SC either. Furthermore, the while loop does not
terminate in any SC execution. However, allowing the write to A to occur before the loop operations complete will
lead to non-SC executions. Condition D.3(a) disallows this, however. Figure 20(b) shows an example where the
while loop terminates in every SC execution. Again the program is properly labeled (PL) since the two competing
operations are identified as sync. However, if we allow the write to B to occur before the loop completes, it is
possible for P2 to see the new value of B and to therefore not do the write to A (again a non-SC result). The
above is disallowed by Condition D.3(b). Finally, Figure 20(c) shows an example that is not properly labeled. P3
would never execute the exit instruction in any WO execution of this code. However, the exit instruction may get
executed if we allow the write to P to occur on P2 before its preceding while loop ends. This is disallowed by
Condition D.3(c).

Note that the above modification leads to optimizations only for loops that are known to terminate in all SC
executions, and have shared-memory operations following such loops. The information about whether a loop will
always terminate in an SC execution is often known to the programmer, and can be obtained from the programmer.
In fact, most programs are written so that either they will terminate in all SC executions, or there are no shared-
memory operations that follow a potentially non-terminating loop. Thus, the above modification is applicable to
a large variety of programs.

Also note that the infinite execution condition for SC would imply that there is no gain in relaxing the
uniprocessor correctness condition for SC.

The proofs of appendix C are applicable even with the above modification.

51

