Efficient Analysis of Parallel
Processor Scheduling Policies

Rajesh Kishin Mansharamani
Technical Report #1195

November 1993

EFFICIENT ANALYSIS OF PARALLEL PROCESSOR
SCHEDULING POLICIES

by
RAJESH KISHIN MANSHARAMANTI!

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN - MADISON
1993

1This is a slightly revised version of the dissertation. This research was partially supported by NSF
grant CCR-9024144.

Abstract

The widespread use of parallel systems has led to a number of proposals for high performance
parallel processor scheduling policies. However, due to the specific nature of the workload as-
sumptions and the performance evaluation techniques in previous work, the performance char-
acteristics of processor scheduling policies are not well understood. This thesis unifies and
generalizes previous policy analysis and comparisons using a general workload model that cap-
tures the essential features of parallel applications and a new performance evaluation technique.
Our workload model includes general distributions of job parallelism and cumulative processing
demand, controlled correlation between demand and parallelism, and a general nondecreasing
deterministic execution rate function that captures the impact of synchronization and commu-
nication overheads.

The proposed new approach to performance modeling of parallel processor scheduling is that
of interpolation approximations. The interpolation approximation approach yields closed form
expressions for mean response times that provide ready insight into the functional dependence
of policy performance on workload parameters, and can be easily evaluated for systems with
hundreds of processors. We use interpolation approximations to evaluate and compare four
policies shown in the literature to have high performance under various specific workloads. These
include a dynamic spatial equipartitioning (EQS) policy, the Preemptive Smallest Available
Parallelism First (PSAPF) policy, the dynamic First Come First Serve (FCFS) policy, and a
run-to-completion policy called Adaptive Static Partitioning (ASP). The results show that, as
in uniprocessor scheduling disciplines, the coefficient of variation of demand is a key parameter
that distinguishes relative policy performance. Using the interpolation models we also derive
other key parameters and delineate regions of the design space under which each policy performs
best. We show that the EQS policy has highest performance over most of the expected practical
regions of the workload space.

Finally, we thoroughly study the behavior of the EQS policy with respect to the workload
parameters using both sample path analysis as well as approximate analysis. For example, we
show that under our workload model the mean response time of EQS is smallest when all jobs
are fully parallel and is highest when all jobs are fully sequential.

ii

Acknowledgements

I am grateful to my adviser Mary Vernon without whose advice this thesis would not have been
possible. I thank her for teaching me analytic modeling techniques for parallel systems and
fundamentals of performance modeling in general, which I could never have learned through
coursework or text books. It has been my good fortune to learn from an expert in this area.
Despite her busy schedule she gave valuable input in formulating the problem in a way that
made it both analytically tractable and practically significant, provided me with a number of
research ideas, gave me sound advice about which research directions were likely to be most
fruitful, and ensured that the ‘big picture’ was always clear to me. Much of the presentation
ideas in this work are also due to her and I thank her for helping me improve my writing style.
I thank her for her constant support and encouragement, which also made this work possible.
To sum up, the credit goes to her for building the foundation and structure though it doesn’t
show up on the title page of this thesis.

It has also been my good fortune to do joint research and course work with Rajeev Agrawal.
I thank him for his advice and encouragement and for teaching me analytic techniques that
seemed formidable to learn through textbooks and research papers. I also thank him for serving
on my prelim and final defense committee as well as being a reader for this thesis.

I next thank Miron Livny for getting me interested in performance modeling of computer
systems. Through coursework and joint research he taught me the fundamentals of modeling
and simulation of computer systems. I am also grateful to him for his efforts to improve my
writing style.

I thank Randy Nelson for being in my prelim committee and for providing useful feedback
on this work. I thank Jeff Naughton for serving in my final defense committee and being a
reader for this thesis, and Sigrun Andradottir and Rajan Suri for serving in my final defense
committee. Suggestions from Vikram Adve, Peter Haas, Ravi Gujar, and other members of
the UW performance seminar, namely, Fred Worley, Dan Ross, Alain Kégi, and Chandu Rao
helped improve the presentation of part of this research. Scott Leutenegger was ever ready to
answer questions about his thesis that helped me with my work. Joint work with Su-Hui Chiang

il

provided a better understanding of one of the scheduling disciplines studied in this thesis.

The nonlinear programming faculty and students have been very helpful. Steve Dirkse im-
plemented nonlinear programs in GAMS that were used to obtain results for this thesis. Michael
Ferris helped in setting up the nonlinear programs and in explaining details on convexity of func-
tions. A course on linear programming taught by Olvi Mangasarian proved useful in obtaining
a key result of this thesis.

John Strikwerda was always ready to help with the numerical analysis related to this work,
and joint research with him and Eric Bach gave me ideas on the applicability of this work. Eric
Bach also provided assistance and references for random number generation.

A number of others have also helped out with my work in some way or the other. In
particular, Vikram Adve helped me get through the depth screening exam. Mike Litzkow
provided much needed assistance in running simulation jobs on the Condor distributed system.
The systems lab was very prompt in fixing machine and printer problems. Lorene Webber was
prompt in clearing up the paper work for the prelim and final defense. My office mates Jim
Lewis and Babak Falsafi were very helpful and cooperative. V. Srinivasan provided good advice
at the start of this thesis and also provided macros for figures in IATEX.

Regarding non-technical matters a number of friends have been helpful. To be brief, I simply
thank Vittaldas Prabhu to cover all of them.

iv

Contents

Abstract
Acknowledgements
List of Tables

List of Figures

1 Introduction

1.1 Motivation i i e e e e e
1.2 Goalsofthis Thesis o o i it i it e
1.3 Organization of this Thesis

Review of Previous Literature

2.1 Parallel System Models e
2.2 Parallel Workload Models e
2.2.1 Workload models with task graph structures
2.2.2 Workload models with ERFs
2.2.3 Summary of Workload Medels
2.3 Classification of Processor Scheduling Policies
2.4 Performance Evaluation Techniques
2.4.1 Mean Response Time Estimation
2.4.2 Optimal Policies and Mean Response Time Bounds.
2.5 Resultsin the Literature i i i e
2.51 FP/RTCPolicies i i ittt i
2.52 AP/RTCPolicies v i ittt e
2.53 AP/DAPolicies i
2.6 Motivation for this Thesis o e

3 System and Workload Model

3.1 System Model
3.2 Basic Workload Model o o o i i e e
3.3 Correlation Model 0 i e e e e e e
3.4 NOLAtION . - &« . o o e
3.5 Constraints on Workload Parameters o oo v

3.5.1 Constraints on CN . .« v v v v e e e e e e
3.5.2 Constraints on Cp . .« v v v v o i e e e e e e
3.5.3 COBSLTAINIS ON B .+ « « « ¢ v e b e et e vt e et e

4 The Interpolation Approximation Approach

4.1 Background
4.2 Reductions to Known Queueing Systems: Examples for EQ and FCFS
4.2.1 Queueing Systems with Known Solutions
422 Reductionsfor EQand FCFS o
4.3 Example Interpolation Approximations for EQ and FCFS
4.3.1 Interpolationon p: EQ B
4.3.2 Interpolationon N: EQand FCFS it
4.3.3 Interpolation on the pmfof N: EQand FCFS
4.4 Example Interpolation Approximations for PSAPF
441 Reductions . . . o v v v v it e e e e e e e e e e e
4.4.2 Interpolation Approximations
4.5 Model Validations v« v v v v i b e e e e
4.5.1 Validation Parameter Settings. oo
4.5.2 Summary of Validations oo
4.5.3 Example Validation Experiments
4.6 Comclusion . . . v v i e e e e e e e e e e e e e e e e

5 Analysis of the EQS Policy

.....................

5.1.1 Analysis under Constant N« . oo

5.1 Reductions for EQS under a General ERF .
5.1.2 Light and Heavy Traffic Analysis . .
5.1.3 Summary of Reductions

5.2 Interpolation Approximations
5.2.1 Interpolationon p: r=0
5.2.2 Interpolationon N: 7=0......

5.2.3 Interpolation on the pmf of N: 1 =0

vi

.....................

.....................

.....................

.....................

.....................

.....................

34
35
35
38
39
41
43

45

50
51

52
53
58
58
58
59
60
60
61
62
62
64
68
70

5.2.4 Interpolation on E[1/y(N):7=0, 78

5.2.5 Interpolationon Sp: 0<7 <1 oo 79
5.2.6 Interpolationon7: 0<r<1 80
5.3 Generalized Approximate Analysis: New derivation of interpolation approximations 80
54 Valldations . . . v v v vt e e e e e e e e e e e e e e e 82
5.4.1 Stress Tests for Validations o i e 83
5.4.2 Validation Parameters Settings oo 83
5.4.3 Summary of Validations oo 84
5.4.4 Example Validation Experiments 86
5.5 Summary of Analysis and Relation to Previous Work 89
Analysis of ASP, FCFS, and PSAPF 91
6.1 FOFS . . i e e i i e e e e e e e e e e e 92
6.1.1 Analysis under General N:r=0and~* 92
6.1.2 Analysisunder Constant N v 92
6.2 ASP . . e e e e e e e e e e e e e e 93
6.2.1 Analysis under General N: exp(1/D), r=0,7" 94
6.2.2 Analysisfor N=1and N = P: exp(1/D), ¥ 94
6.3 PSAPE: 7 =0 . . . o i e e e e e e e e e 96
6.3.1 Review of Analysis for General N: 7 =0,4' 96
6.3.2 More Accurate Estimator for General N: 7 =0,y 97
6.3.3 Analysis under Constant N oo 98
6.34 PSAPF:T >0 . . i i e e e e e e e 98
6.3.5 Analysisforr=1:9" 98
6.3.6 AnalysisforO<r <Lt 100
6.4 Validations of Approximations for Baspand RpsapF -« « « « c v v v v v v e 100
6.4.1 ASP Validations . . .« . v v v v o v i e e e e e e e e 101
6.4.2 PSAPF Validations. « .« v v v v v v v i e e 101
6.5 Summary of Analysis and Relation to Previous Work 103
Policy Comparison Results 106
7.1 Policy Comparison Using Interpolation Approximations 106
71.1 ASPversusEQSo 107
712 PSAPF versus FCFS o o i i e i e e s 113
71.3 PSAPFversusEQS o o o e 116
7.2 Policy Comparison using Exact Analysiso 120
7.2.1 Workload Assumptionso 121

vil

7.2.2 Sensitivity of EQ, FCFS, and PSAPFto Gy oo 122

7.3 Generalization and Unification of Previous Work 125
74 ConclluSiOnSs . . v v v o v e e e e e e e e e e e e e e e 127

8 Further Analysis of the EQS Policy 130
8.1 Mean Response Time Bounds for the EQS Policy 131
8.1.1 Lower and Upper Bounds: Fji =exp, r =0, y€ E®* 132

8.1.2 Experimental Evaluation of the N=Pand N =1Bounds 133

8.1.3 Upper Bound under General Workloads 133

8.2 Behavior of Rgqg with respect to Key Parameters: Uncorrelated Workloads (r = 0)135
8.2.1 Rggs as a function of jobdemand 135

8.2.2 Rggs as a function of available parallelism 135

8.2.3 ‘R.Eqs as function of ERF sublinearity 140

824 Summaryofinsightsforr=0......... 143

8.3 Behavior of _REQS for Correlated Workloads« .« ¢ v v v v v v v o 144
8.3.1 Rgqs as a function of job demand and parallelism 145

832 Rpgsasafunctionof r 146

84 COnClUSION . + v v v i o e e e e e e e e e e e e e e e e e 147
84.1 SummaryofResults 147

842 Related Work o v i i i i i i e e e e e e 148

9 Conclusions 150
0.1 SUIMMALY .+« « v« e o v e v e et e e e et 150
9.2 Future Research Directions o o v i vttt oo it 153

A Proofs and Derivations 156
A.l1 Proofsfor Chapter 3 oo i 156
A.2 Derivations for Chapter 6o e 159
A.3 Proofs and Derivations for Chapter 7« o oo 161
A.3.1 Proofof Theorem 7.1.1 o o v i i i i it et 161

A.3.2 Derivation of Min. and Max. Rpsapr at 7 = 1: e A 163

A.3.3 Proofof Theorem 7.2.2 . . . &« v v v v v i it et 164

A4 Proofsfor Chapter 8 o vttt 165
A.41 Proofof Theorem 8.1.1 o o it i i it v it it 165

A.42 Proof of Theorem 8.1.2« « o i i i ittt e it 169
Bibliography 171

viii

List of Tables

2.1
2.2
23
2.4
2.5
3.1
3.2
4.1
4.2
6.1
7.1

Parallel Workload Models« i i i i it e e 11
Analytic Models for Parallel Processor Scheduling 18
Optimal Policy Results for Parallel Processor Scheduling 21
Response Time Bounds for Parallel Processor Scheduling 22
Policy Comparison Results for Parallel Processor Scheduling 31
System Notationo 40
Three Bounded-geometric Distributionsfor N 41
Validation Workloads for N: P=20,100. o v v v v v v vttt 63
Validation Workloads for N: P==500,1000o 63
Summary of Model Solutions o 105
Three Bounded-Geometric Distributions for N'o v 114

List of Figures

2.1
3.1
3.2
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.1
5.2
5.3
5.4
5.5
6.1
6.2
6.3
7.1
7.2
7.3
74
7.5
7.6
7.7

Queueing Models for Parallel Processor Systems 6
Open System Model e 35
Twotypesof ERFs o oot i 42
Multiserver queue with sequential work 53
Normalized Mean Response Time o oo v v v i oo oo vt 57
Normalized Mean Extra Time« o o v v i v i v i v vt e v e e e e 57
Summary of Validations: EQ e 65
Summary of Validations: FCFSo 66
Summary of Validations: PSAPF e 67
Example Validations for EQo oo 69
Example Validations for FCFS, P =100o 69
Example Validations for PSAPF, P=100 70
Summary of Exact Results for EQS 76
Summary of Validations for Interpolations on p, N,andpmf............ 85
Summary of Validations for Interpolation on S, and generalized approximation . 87
Example Validations for Interpolation Approximations: r=0 88
Example Validations for the Interpolation on S, and generalized approximation . 88
Validations of ASP Approximations 102
Relative Error Histograms for PSAPF Approximations 103
Relative Error Histograms for PSAPF Interpolationonr. 104
Rasp/Req versus workload parameter 6: r=0,7' 109
Rasp(V)/Req(y) versus Sp(y): r=0. . . . oo v i 11
Rasp(¥)/Req(y) versus Sp(v): r=Ll. . . .o e 112
Rpcps/ﬁpsApF VErSUS €D ' o v v e e e e 115
Comparison of PSAPFand EQSat r=0: 7'o e 118
_RPSAPF/REQS versus N: 7=1,7" o . oo 119
Summary of Policy Comparison Resultso 126

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
Al

Tightness of N=1 and N=P bounds for _REQz D~exp,r=0........... 134

Linear Programs for Min and Max of REQS 136
Envelopes of Rpgs VErSUS IN "« o v v o v v i e i i e e 137
Envelopes of EEQS VEISUS ON « « v v v v e e e e e e e e e e e e e e e 138
Envelopes of Rpgs vS EQL/Y(N)] - - o - o o oo 139
REpgs vs ERF SUDHDEATIEY . « « « « v v v o v v e v e e e e 142
Performance of Spatial versus Temporal EQ 144
Rpqs versus Workload Correlation 147
A Property for Concave Functions 163

Chapter 1

Introduction

1.1 Motivation

The widespread use of parallel processor systems has created the need for multiprogrammed
job scheduling policies in order to reduce system response time and make efficient use of system
processors. As a result, a number of proposals for high performance parallel processor scheduling
policies have appeared in the literature.! More than 30 papers in the literature have evaluated
and compared parallel processor scheduling policies under various specific workload assumptions,
but the performance characteristics of these policies is still not well understood. This lack of
understanding makes it difficult to select a particular policy for implementation in a given
parallel system.

Parallel processor scheduling is not well understood primarily for several reasoms. First
and foremost, specific workload assumptions made in previous studies limit the applicability of
processor scheduling results because the relative performance of scheduling disciplines can be
sensitive to workload assumptions. Typical limiting assumptions in the literature include the
exponential distribution for job processing requirement, specific distributions for available or
maximum job parallelism, e.g., constant maximum parallelism, and uncontrolled or unspecified
correlation between processing requirement and parallelism. Second, the performance evaluation
techniques used thus far in the literature do not yield insight into key determinants of policy
performance since the techniques are primarily based on numerical analysis (i.e., simulation or
numerical solution of simultaneous equations). Third, even for a given set of specific workload
assumptions, only a subset of the promising high-performance policies have been compared.

A fourth issue that has contributed to the lack of understanding of parallel scheduling is the

1 We use mean response time as the performance metric throughout this thesis.

assumption of small system sizes in previous studies. While real systems are scaling to hundreds
of processors, processor scheduling models in the literature have typically been solved only for
systems with 10 to 20 processors primarily because of computational reasons. Note that for
uniprocessor systems it is easy to model an increase in system processing power by maintaining
a single parameter for processor capacity. But for parallel systems this is not necessarily the
case since total processing power is usually increased by means of adding more processors to the
system, which causes the underlying state space to grow exponentially and thus increases model
complexity. Thus while current parallel systems have hundreds of processors [16], there does
not exist any technique in the literature to model scheduling policies for these systems under
general workloads.

Due the above restrictions in models for scheduling policies, previous studies of processor
scheduling have arrived at different conclusions regarding which policy has highest performance.
Some studies recommend policies that give high priority to jobs with low parallelism and low pri-
ority to jobs with high parallelism, for example, the Preemptive Smallest Available Parallelism?
First (PSAPF) policy. The intuition for these policies is that parallel workloads are expected
to have positive correlation between processing demand and parallelism, and thus policies that
give high priority to jobs with low parallelism approximate the Shortest Job First policy which
is optimal for uniprocessing systems. Another feature of these policies is that they tend to serve
jobs with large parallelisms as late as possible and thus keep processor utilization high even
when there are only few jobs in the system. Other studies recommend run-to-completion poli-
cies that adapt processor partitions to number of jobs in the system but do not change a job’s
partition during its execution, for example, the Adaptive Static Partitioning (ASP) policy. Still
other studies show that spatial equipartitioning (EQS) policies that allocate an equal fraction of
processing power to jobs in the system have high performance over various specific workloads.
Finally, some studies show that a simple policy such as First-Come-First-Serve (FCFS) that
allocates processors up to a maximum of a job’s parallelism can have high performance under
specific workloads and thus it may not be necessary to use more sophisticated policies.

These conclusions for high performance scheduling policies have been arrived at in the lit-
erature under various specific workload conditions, but the qualitative behavior of the policies
under general workload conditions has not been examined. The workload parameters that are
key determinants of policy performance need to be identified, and the policy comparison results
need to be re-evaluated using more general workload assumptions in order to determine which

policy has best overall performance.

2The available parallelism, N, of a job is the number of processors the system scheduler believes the job can
productively use.

1.2 Goals of this Thesis

The purpose of this thesis is to understand the qualitative behavior of parallel processor policies

as a function of workload parameters and to unify and generalize previous policy comparison

results under a general workload model that captures the essential features of parallel applica-
tions. We choose to compare the ASP, FCFS, EQS, and PSAPF policies discussed above (and
defined more precisely in Chapter 2) since each has been shown to have high performance under

various specific workload assumptions. To accomplish our general goal we need to accomplish

the following specific objectives:

1.

4.

Design and parameterize a general workload model that captures the essential features
of parallel applications. The key properties to be represented include parallelism, process
synchronization and communication, processing requirement, and correlation between pro-

cessing requirement and parallelism.

Design of the model requires judicious assumptions that permit broad applicability of

policy comparison results and at the same time permit ease of analysis.

Develop mean response time models for the ASP, FCFS, EQS, and PSAPF policies, un-
der the given workload model, that yield direct insight into key determinants of policy
performance and are easy to evaluate for systems with hundreds of processors.

. Obtain the workload parameters that are the principal determinants of relative perfor-

mance of the given scheduling policies. For example, measures of job processing require-
ment, parallelism, and correlation between the two that influence the relative performance

of the given policies.

(a) Compare ASP, FCFS, EQS, and PSAPF over the workload design space using the
key parameters that affect relative policy performance.

(b) Delineate regions of the design space over which each policy performs best, and if
possible identify which policy has best performance for most of the design space or
over important regions of the design space.

(c) Unify and explain previous policy comparison results by showing how they relate to

different regions of the design space.

1.3 Organization of this Thesis

Chapter 2 reviews existing literature on parallel processor scheduling and clarifies the limitations
in previous work that were outlined to in Section 1.1. Chapter 3 focuses on our first goal and

explains our choice of system and workload model to compare parallel processor policies. In this
chapter we also derive constraints on workload parameters in order to delineate the parameter
space for policy comparison. Chapter 4 presents a new approach to performance modeling
of parallel processor policies, that of interpolation approzimations. The key idea behind this
approach is to first reduce processor scheduling policies to systems with known mean response
time results for particular values of workload parameters, and then to interpolate between these
points to obtain an approximation over a wider region of the parameter space. The interpolation
approximation approach yields closed form expressions for mean response times that directly
provide insight into policy performance as a function of workload parameters. Chapter 5 applies
the interpolation approximation approach to model the EQS policy and Chapter 6 does the same
for the ASP, FCFS, and PSAPF policies. Using the analytic models for these policies, Chapter 7
quantitatively compares their performance over the design space and delineates the regions of
best policy performance. Key parameters obtained from the approximate mean response time
expressions enable us to explore the design space in a more systematic way than done in the past.
Chapter 7 also derives exact results for the sensitivity of policy performance to a key workload
parameter. The EQS policy, which is shown to be the most promising policy, is further analyzed
in Chapter 8 where we examine the sensitivity of its mean response time to various workload
parameters. Chapter 9 provides a summary of this thesis and discusses directions for future
research. Appendix A provides proofs and derivations that can be skipped without loss of
continuity while reading this thesis.

Chapter 2

Review of Previous Literature

Tn this chapter we review the literature on performance evaluation of parallel processor schedul-
ing policies where the performance metric is mean response time. We first examine common
models in the literature for parallel systems and parallel workloads in Sections 2.1 and 2.2. In
order to categorize scheduling policy results that have appeared in the literature we classify par-
allel policies into four classes in Section 2.3, based on the presence or absence of two orthogonal
system constraints. Section 2.4 reviews previous performance evaluation techniques, Section 2.5
reviews results for processor scheduling and finally Section 2.6 summarizes previous processor
scheduling results and sets the stage for the work in this thesis.

The following overview on parallel processing should be useful in understanding the material
in the rest of this chapter. A parallel application consists of units of work, called tasks, that
can execute in parallel. Consider the simplest case of a parallel program where all tasks are
independent, that is, they have no precedence constraints. The number of tasks in the application
is either explicit, i.e., specified by the programmer, or implicit, i.e., generated by the compiler.
If there are as many processors allocated to the application as the number of tasks then all tasks
can simultaneously execute in parallel. However, in general the number of processors allocated
to the application will be less than the number of tasks and thus the tasks will need to be
allocated to processors according to some allocation rule. Two types of allocation are possible:
(1) static allocation where each task is assigned to a specific processor at program initiation
time, e.g., n - k tasks are allocated in units of k to each of n processors, and (2) dynamic
allocation where tasks are placed in a common task queue and scheduled on to n processors in
some scheduling order, e.g., FCFS or processor sharing. In this thesis we focus on processor
allocation to jobs and not on task allocation within a job. The nature of task allocation within
jobs will be implicitly captured by our workload model and assumptions (see Chapter 3). For

example, in many cases it will follow from the workload assumptions that work is redistributed

across processors allocated, i.e, dynamic allocation.

2.1 Parallel System Models

Local
Policy
O Processor 1 /|
6 O I ,
OO Global Policy | | Global Policy ‘
— |)
——d | | R 1
&9 — N — l
Q
(eNelle) USSR
Q00
C Processor P |
Parallel Jobs
(a) Centralized Queue (b) Distributed Queues

Figure 2.1: Queueing Models for Parallel Processor Systems

Job scheduling policies in computer systems allocate both processors and memory to jobs in the
system. However, most of the parallel scheduling literature has focused only on processor alloca-
tion and processors are the only resource in most parallel system models. The simplest and most
common parallel system model is the centralized queueing model shown in Figure 2.1a. Parallel
jobs arrive at the system and join a central job queue. The system has P identical processors
which are allocated to the jobs according to some global processor allocation policy. Exam-
ple systems for which the centralized queueing model is physically implemented include each
processor partition on the CM-5, the “compute” partition on the Intel Paragon, and Uniform
shared-Memory Access (UMA) machines such as the Sequent Symmetry and the Encore Multi-
max. While the central queue potentially achieves optimal load balancing it can also become a
system bottleneck if implemented in a naive way. For systems with thousands of processors the
central queue is only a conceptual model; efficient implementations of job schedulers will allow
for distributed queue access.

This chapter mainly focuses on processor scheduling literature that assumes the centralized
queueing model, viz. (1, 24, 25, 28, 27, 40, 41, 43, 44, 47, 48, 49, 50, 53, 54, 55, 63, 66, 69,
70, 71, 72, 80, 82, 84, 91]. A few studies have also examined a distributed queueing model

shown in Figure 2.1b, which consists of a global policy for dispatching jobs to one or more

processor partitions and a local policy for each partition. Such a distributed queueing model
is appropriate for processor pool scheduling in Non Uniform shared-Memory Access (NUMA)
machines (cf. [57, 68, 92]) and also for the Distributed Job Manager (DJM) on the CM-5.

A special case of the distributed queueing model is the fork-join queueing model which has
been analyzed in [2, 13, 42, 45, 46, 52, 67, 83]. Each processor has a separate task queue
associated with it which typically serves tasks in first-come-first-serve order. Jobs arrive at
the system, split into one or more independent tasks and the tasks are dispatched to one or
more queues based on a global policy, e.g., shortest queue routing. We believe that a fork-join
queueing model may not be practical for many parallel systems since there is no attempt to
coschedule the parallel tasks of a job. A discussion of the results for fork-join queues is beyond
the scope of this thesis. A generalization of the distributed queueing model is the hierarchical
task queue model (not shown), the details of which can be found in [12]. Policy comparison
results obtained thus far for hierarchical task queues have been the same as those for centralized

queues given identical workload conditions.

2.2 Parallel Workload Models

Essential features of parallel applications include parallelism, task synchronization and communi-
cation, processing requirement, and correlation between parallelism and processing requirement.
At one extreme of models for parallel applications are models in which the program structure
is explicitly represented by means of a task graph. At the other extreme are models in which a
general job structure is captured by an Execution Rate Function (ERF) that measures the rate
at which a program executes as a function of the number of processors allocated to the program.
A task graph contains more parallelism and synchronization information that an ERF, but an
ERF is simpler to parameterize. In between these two structures are application parallelism
profile models that measure number of busy processors as a function of execution time of the
application. Parallelism profile models provide more parallelism information than ERF models,
e.g., parallelism measures such as fraction of sequential work and average parallelism, but less
information than task graph models, e.g., less synchronization information. Parallel scheduling
literature has mainly used workload models based on the task graph or ERF model for job
structure, and hence we will review only these two application models in the rest of this section.
For details of parallelism profile models for processor scheduling we recommend well written
papers by Sevcik {71, 72].

Note that task graph and ERF models are only used to characterize parallel applications and
the task graph or ERF itself need not be known to the scheduler. For example, for a workload

based on the task graph model the scheduler model may only have information about instan-
taneous job parallelism. We next review workload models with task graph program structures
and then review workload models with ERFs.

2.2.1 Workload models with task graph structures

Studies that explicitly model job parallelism and task synchronization using task graphs as
program structures include (28, 27, 40, 41, 43, 47, 50, 53, 54, 66, 68, 80, 82, 84, 91, 92]. For
task graph workloads we review models for job parallelism and processing requirement, and also
models for correlation between parallelism and processing requirement.

A task graph explicitly shows the structure of a program in terms of task synchronization,
and a program is said to complete when all its tasks have completed. The simplest non-trivial
task graph structure is the fork-join structure which has been used in many analytic modeling
studies. In such a job structure the instantaneous parallelism starts out with N and decreases
as tasks complete. Given task service times the task graph structure can be used to obtain
several parallelism metrics such as fraction of sequential work, average parallelism, and variance
of parallelism.

For workload models with task graph program structures a job’s processing requirement has

been typically specified in one of two ways!:

(1) For a job with N tasks the task processing times, Th,... ,Tn, are independent and iden-
tically distributed (i.i.d.), within and across all jobs, according to a specific distribution
Fr. Task service time distributions considered in processor scheduling studies have been:
uniform [91, 92], (truncated) normal [68], exponential [40, 50, 53, 54, 55], and generalized
exponential [80].

(2) Total demand D is drawn from a distribution Fp and T; is a function of D, for i =
1,...,N. Job demand distributions considered in processor scheduling studies have been:

exponential and two-stage hyperexponential [41, 43]. Tasks service times in these two

studies are obtained as follows: T; = D/N in [41], and T} = E:TVIJLI—J:D in [43], where
j=1 “J

{U:}X, are ii.d. uniform random variables in the interval (0,1].

Note that in approach (1) where D is derived from N, jobs with few tasks have stochasti-
cally smaller demands than jobs with many tasks and demand and parallelism are positively
correlated. Thus, correlation between demand and parallelism is implicit in this model. On the

other hand, approach (2) for job processing requirement permits independent control of D and

1We exciude measurement studies in which processing requirement is not modeled since it is fixed depending
on the programs selected for the workload.

N. In this case D and N can either be independent, or D can depend on N as in the correlated
workload of [43, 41], where the mean demand of a job is proportional to its number of tasks.
More general correlation models are also possible by controlling the joint distribution of D and
N. In measurement studies the correlation between demand and parallelism depends on the
workload mix and can be explicitly measured using a parameter such as correlation coefficient
between demand and parallelism.

A job’s completion time is computed by explicitly determining the time for the last task to
complete. If the job was allowed to run stand alone on a number of processors greater than or
equal to its maximum parallelism then its completion time would be the critical path time of its
task graph. For example, for a fork-join program with N tasks the completion time would be
max(Ty, . ..,Tn). If the job is assigned k processors throughout its lifetime then its completion
time is the critical path time for the schedule on k processors. However, if the number of
processors allocated to the job varies over time, including an allocation of zero processors while
it is waiting for service, then computing the mean completion time needs more sophisticated

techniques, which are reviewed in Section 2.4.

2.2.2 Workload models with ERFs

Studies that model job structures using ERFs include [1, 24, 25, 44, 48, 49, 63, 74, 69, 70, 71, 72].
For ERF based workloads we review models for job parallelism and processing requirement, and
also models for correlation between parallelism and processing requirement.

An Execution Rate Function, v, measures the rate at which a program executes as a function
of processor allocation. Thus (k) is the ratio of a program’s execution time on 1 processor to
its execution time on k processors. The ERF ~, also called execution signature (18], implicitly
captures task synchronization and communication as a function of processor allocation. The
ERF is identical to the program’s speedup curve when a program runs stand alone. In models
of multiprogrammed systems the ERF is generally assumed to model the instantaneous ezecution
rate of a program, even in cases where a job’s processor allocation changes over time. Typical
ERFs are concave and nondecreasing.

Unlike a task graph, an ERF does not give any information about a job’s instantaneous
parallelism. Typically, instantaneous parallelism is assumed to be constant throughout the
lifetime of the program (i.e., available parallelism) in models where processor allocation to a
job can dynamically change with time (cf. [69]). In systems where processor allocation to a
job remains fixed throughout the job’s execution, it is typically assumed that some parallelism
information such as maximum parallelism is specified to the scheduler.

The ERF(s) may either be known to the scheduler as in [91, 72] or unknown to the scheduler
as in [25, 63]. If the full ERF is unknown to the scheduler, the scheduler may have statistical

10

_information about the ERF such as average parallelism (avg), or processor working set? (pws).
The job also has a fixed available or maximum parallelism, which is typically known to the
scheduler.

In workloads that use ERFs, job processing requirement is modeled by specifying the distri-
bution for total job demand D, e.g., an exponential distribution as in [63]. Correlation between
demand and parallelism is explicit in ERF workload models and can be controlled by means of
the joint distribution of D and N. In some analytic models job demand has been assumed to
be independent of the parallelism characteristic (cf. [71]), and in other analtyic models, such as
the one in [69, 70], mean demand can be correlated with available parallelism, but it has been
typical to use measures from specific workload mixes for which the correlation has not been
explicitly specified. In simulation studies that use execution signatures of real programs the
overall correlation is specific to the mix of programs.

Given an ERF 4, a job’s completion time on k processors is given by D/~(k), which is easy
to compute as compared to analyzing the completion time of a task graph. By varying one can
examine the sensitivity of policy performance to ERF sublinearity independent of job demand.
If the job’s allocation varies over its lifetime due to contention from other jobs, then computing
the mean completion time under ERF workloads requires analytic techniques which are reviewed

in Section 2.4.

2.2.3 Summary of Workload Models

We have thus far classified workload models of parallel programs into two broad categories. A
summary of these two types of workload models is given in Table 2.1. We note that ERF's
capture fewer parallelism and synchronization details than task graphs, but still capture many
essential features of parallel workloads.

The next section classifies processor scheduling policies for multiprogrammed parallel sys-

tems.

2.3 Classification of Processor Scheduling Policies

The function of a processor scheduling policy is to select jobs for processor allocation and deter-
mine how many processors to allocate to each of the selected jobs without violating underlying
system constraints. Two types of system constraints have been addressed in the literature, fixed

processor partitioning and run-to-completion processor allocation.

2The processor working set is defined in [25] as the minimum number of processors that maximizes v2(k)/k.
It is also coincides with the number of processors corresponding to the knee of the execution-time efficiency
profile {25].

11

Table 2.1: Parallel Workload Models

Task Graph Models ERF Models
Program Structure Specific task graph General structure captured
by an ERF «
Parallelism Number of tasks per phase Metrics such as maximum

or average parallelism

Processing Require- (1) Ty ~ Fr, D = Zf_’_ﬂ T; D~ Fp
ment (2)D~-7:Da(T17aTN)=.f(D)
Correlation Implicit in (1), Explicit in (2) Explicit
Service time on Critical path time for job schedule D /~(k)
k processors on k processors

Fixed partitioning means that processor partitions are fixed over all time as opposed to
adaptive partitioning where processor partitions adapt to the system state as defined by the
number and/or characteristics of jobs in the system. Fixed partitioning is motivated by sim-
pler protection mechanisms, e.g., messages cannot be sent or memory cannot be accessed across
fixed system boundaries, and thus is easier to implement than adaptive partitioning. Run-
to-completion (RTC) processor allocation means that a job runs to completion on the set of
processors initially allocated to it, as opposed to dynamic processor allocation where a job’s al-
location can change dynamically over its lifetime. RTC allocation is motivated by the elimination
of context-switch and data movement overheads, and no requirement for applications to adapt
to changes in processor allocation in the middle of execution. RTC allocation thus leads to lower
scheduling overhead and conceptually simpler programming models than dynamic allocation.

Fixed partitioning and RTC allocation are orthogonal system constraints. Based on the
presence or absence of each of these two constraints, four combinations are possible leading to

four classes of processor scheduling policies.

Fixed Partitioning/Run-To-Completion (FP/RTC): Processors are partitioned at system
initiation time and jobs are scheduled stand alone into the predefined partitions according
to a specific scheduling rule such as first-come-first-serve. The partition sizes can equal as
in [25, 44, 63, 70, 71], or unequal as in [48, 49} where partition size is based on priority classes.

Fixed Partitioning/Dynamic Allocation(FP/DA): Processors are partitioned as in FP/RTC

12

but a job’s allocation can change over its lifetime, e.g., time-sharing of jobs in a partition, as
in the CM-5.

Adaptive Partitioning/Run-To-Completion (AP/RTC): Processor partitions can adapt to
the system state as defined by number and/or characteristics of jobs in the system, with the
constraint that a job’s processor allocation remains unchanged throughout its execution, i.e.,
the job runs to completion once it receives its processor allocation.

Adaptive Partitioning/Dynamic Allocation (AP/DA): Processor partitions can adapt to
the system state and a job’s allocation can change over its lifetime. The processor allocation

may be either preemptive or nonpreemptive.

FP/RTC and AP/RTC policies have been referred to as static policies in the literature
whereas AP/DA policies have been referred to as dynamic policies. FP policies are simple to
implement but they can lead to inefficient processor utilization as compared to AP policies
among which the AP /DA policies potentially offer better processor utilization but at the cost of
higher scheduling overhead. Several studies have analyzed FP/RTC policies [25, 44, 48, 49, 63,
69, 70, 68, 71, 74]. Surprisingly, FP/DA policies have not been examined at all in the literature.
AP/RTC policies have been studied in [24, 25, 40, 48, 49, 63, 69, 70, 71, 72, 74, 91], and AP/DA
policies have been studied in [1, 27, 28, 40, 41, 43, 44, 47, 48, 49, 50, 53, 54, 66, 68, 69, 70, 80,
82, 84, 91, 92].

We describe FP/RTC, AP/RTC and AP/DA policies that will be reviewed in Sections 2.4
and 2.5. In order to create more meaningful names for policy comparisons across studies and
also to remove naming conflicts with the terms “AP” and “RTC”, we have changed the names
and acronyms of some of the scheduling policies in the literature. The policies below are listed
in the order of FP/RTC, AP/RTC and AP/DA, and within each category in alphabetic order.

FP(%) FP/RTC with P/n partitions of size n each, where n evenly divides the number of
processors P. Jobs are scheduled onto partitions in first-come-first-serve order.

ASP (Adaptive Static Partitioning) In this AP/RTC policy, proposed in [69, 70}, free pro-
cessors are assinged at job arrival and departure instants to jobs that have not received
service, one at a time in round robin order, under the constraint that no job gets more
processors than its maximum parallelism. [Note that the round robin order of alloca-
tion determines the number of processors allocated to each waiting job and it should

not be confused with round robin service as in time sharing systems.]

ASP(m) Same as ASP except that jobs receive a maximum allocation of m instead of their
maximum parallelisms, where m is a fixed constant. This is similar to the EPM policy
in [63].

13

avg based policies Four AP/RTC policies that allocate processors using average job paral-

P

METB

lelism and possibly additional parallelism characteristics have been proposed in the
literature: two versions of AVG, and one each of AVG+, and AVG+&mM. {Sev-
cik [71] denotes these policies by A, A+, and A+&mM.) The AVG policy uses only
average parallelism for processor allocation. In [71] the scheduler allocates free pro-
cessors to waiting jobs in a first-fit manner with each selected job getting its average
parallelism, whereas in [40] the scheduler allocates free processors are among waiting
jobs proportional to their average parallelisms. We survey results for both versions of
AVG in this chapter; the relevant version will be clear from context. The AVG+ and
AVG+&mM policies proposed in [71] use more job information than average paral-
lelism and adapt processor allocation to system load. Under AVG+ the allocation to a
job is a function of its average and variance of parallelism and the offered system load,
whereas under AVG+&mM the allocation is also based on minimum and maximum
job parallelism. In each of these two policies the scheduler selects jobs in first-fit order.

(Insurance Policy) Same as ASP except that a fraction of the free processors are re-
served for future arrivals. This fraction is a function of a prespecified parameter as

well as the number of jobs in the system [63)].

(Maximum Execution Time Benefit) This AP/RTC policy (called RTC in [91}) allocates
free processors one at a time to waiting jobs in the order of maximum execution time
benefit. More precisely, if 7;(k) is the execution time of job j on k processors then the
METB policy allocates the free processors one at a time to the waiting jobs, @, up to
a maximum of their maximum parallelisms in descending order of 7;(p;) — 75(p; + 1),
where p; is the number of free processors already reserved for job j, j € @%, and

73(0) = oo.

pws based policies Four AP/RTC policies based on processor working set (pws) are proposed

in [25]. We name them as follows: PWS, PWS-LA, PWS-FCFS, PWS-FCFS-
LA, the original names being FF, FF+LA, FF+FIFO, and FF+FIFO+LA, respec-
tively [25]. Only the LA policies allow for more than pws allocation to a job. Under
each of the four policies the scheduler scans jobs within a window of size w and allocates
free processors in a first-fit manner with each selected job getting its processor working
set (pws) allocation. If there are idle processors after the first-fit allocation PWS-LA
allocates them to the first job in the window whose pws is less than the number of free
processors, PWS-FCFS allocates them to the first waiting job, and PWS-FCFS-LA is
like PWS-FCFS except that if all jobs in the window get their pws allocations then
all remaining free processors are given to the first job in the window whose pws is less

RA

EQ

EQS

EQT

FCFS

14

than the number of remaining free processors.

The Robust Adaptive policy in [63, 74] computes a “target” partition size which equals
the total number of processors divided by the number of waiting jobs, and allocates
processors equal to the target size. (Jobs wait in the queue if the target number of
processors are not available.) A number of minor variants of this policy are proposed
in [63].

The AP/DA EQuiallocation policy allocates an equal fraction of processing power to
each job in the system unless a job has smaller parallelism than the equiallocation value,
in which case each such job is allocated as many processors as its parallelism, and the
equiallocation value is recursively recomputed for the remaining jobs. Reallocation
of power can occur on job arrivals, job departures, and changes in a job’s available
parallelism.

The Spatial EQuiallocation policy (EQS) is an EQ policy in which processing power is
allocated spatially for integral allocation and temporally for fractional allocation. For
example, if a job is to receive an allocation of 27.5 units of processing power, then it
is allocated 27 processors and it receives an additional 0.5 units of processing power
by time sharing an additional processor (i.e., the job alternately executes on 27 and
28 processors). Ignoring variations in implementation details, the EQS policy was first
defined in [82].

The Temporal EQuiallocation (EQT) policy is an EQ policy in which processing power
is allocated temporally by means of idealized round robin scheduling. When a job with
available parallelism N is scheduled it receives N quanta of size @/N. Thus the overall
quanta, Q, per job is independent of the available parallelism. When @ — 0 this policy
is an equiallocation policy [40]. Again ignoring implementation details, this policy was
first called Round Robin Job and defined in [41].

This is an AP/DA policy in which processors are allocated to jobs on a First-Come-
First-Serve basis. Each job is allocated processors as they become available up to a
maximum of its parallelism. Processors released by a departing job are first allocated
to the job in service (if any) whose allocation is less than its parallelism and then to

jobs waiting for service.

PSAPF (Preemptive Smallest Available Parallelism First) The central job queue is a preemp-

tive queue that is organized in ascending order of available job parallelism. Jobs with
the same available parallelisms are served in first-come-first-serve order. Each job is

15

allocated processors as they become available (or preempted) up to a maximum of its
available parallelism, and processors released by a departing job are first allocated to
the job in service (if any) whose allocation is less than its available parallelism and
then to the jobs waiting for service.

PSCDF (Preemptive Smallest Cumulative residual Demand First) Like PSAPF except that
job priority is cumulative residual processing demand instead of available parallelism
and instantaneous parallelism is used for maximum allocation instead of available par-

allelism.

PSNPF (Preemptive Smallest Number of Processes First) Like PSAPF except that instanta-

neous parallelism is used instead of available parallelism.
RRJ Round Robin Job. See definition for EQT.

RRP Round Robin Process. There is a single queue of processes from all jobs in the system,
and these processes are served in round robin order.

RR-slot This is a coscheduling policy that rotates processors among slots on a quantum basis.
An arriving job is either assigned to a slot with the maximum number of unused
processors or to a new slot, such that the average execution rate of the job is maximized,
where the number of processors assigned to the job is less than or equal to its average
parallelism. By average execution rate is meant the speedup of the job on its allocated
processors divided by the total number of slots, n, in the system including the new slot
for the job, if any (the job gets serviced once in n slots). This policy was proposed
in [91].

SCDF (Smallest Cumulative Demand First) Non-preemptive version of PSCDF.
SNPF (Smallest Number of Processes First) Non-preemptive version of PSNPF.

SNQPF (Smallest Number of Queued Processes First) Like SNPF except that job priority is
the number of processes waiting in in the queue. This policy is called SQ in [53].

UnequalDP (Unequal Dynamic Partitioning) In this AP /DA policy, proposed in [91], processor
allocation instants include job arrivals, job departures and changes in job parallelism.
When a job requests one or more processors (including job arrival) idle processors
are first used to satisfy the request. If there are no idle processors and the job is
a new arrival then UnequalDP preempts a processor from a job with two or more
processors and gives it to the incoming job. When processors are released either to due
job departures or decrease in job parallelisms they are first assigned one at a time to

16

waiting jobs and the rest of the processors (if any) are assigned on a FCFS basis. This
policy is called Dynamic in [91], but has been referred to as UnequalDP or UnEqDP

in more recent literature (39, 69).

The implementation of EQS in (82, 27] which we refer to by EQp¢ is based on a process
control approach where the runnable processes of an application are controlled in response to
the number of processors it is supposed to use. EQp tries to achieve equipartitioning at job
arrivals, departures, and periodic intervals of time that are system dependent (6 seconds in [82]
and 300ms in [27]). The implementation of EQS in [47] reallocates processors among jobs in
response to instantaneous parallelisms and we refer to it by EQ,p .

We have thus far surveyed parallel system and workload models and also classified processor
allocation policies that have appeared in the literature. The next section surveys performance

evaluation techniques for scheduling policies under various workload assumptions.

2.4 Performance Evaluation Techniques

The most important performance metric from a user’s point of view is system response time
and our goal is to find scheduling policies that minimize mean response time over a wide range
of workload parameter values. With this objective in mind, Section 2.4.1 summarizes previous
methods for estimating the mean response time of parallel processor policies under a variety of
workload conditions, and Section 2.4.2 reviews optimal policy results and response time bounds
under particular workload assumptions. We will use the notation Ry to denote the mean

response time under a parallel processor policy ¥.

2.4.1 Mean Response Time Estimation

The mean response time of a policy can be quantitatively estimated using analytic modeling,
simulation, or measurement. We review the use of each of these three techniques in the literature.

2.3.1.1 Analytic Modeling Techniques
Analytic modeling techniques for estimating mean response times of parallel processor scheduling

policies have broadly fallen into five categories.
e Birth death modeis
o Matrix-geometric analysis
e Recurrence relations

e Reductions to known queueing systems

17

¢ Bulk arrival queues

Birth death models need very specific workload assumptions and thus have limited applica-
bility. Matrix-geometric analysis and recurrence relations are based on state space enumeration
and the numerical analysis involved provides no ready insight into policy performance. Moreover
both matrix-geometric analysis and recurrence relations are limited to small system sizes. Some
studies have reduced parallel scheduling policies to known queueing systems such as M/M/c or
M/G/c queues, but to do so they have made very specific assumptions such as exponential de-
mands and constant parallelism. Bulk arrival queueing theory has been used only in the context
of workloads with i.i.d. task service times. The applicability of the results for i.i.d. task service
times may be limited, since in general it is unlikely that task service times in real systems will be
i.i.d. within and across all jobs and this assumption can influence relative policy performance.

Table 2.2 summarizes the analytic models for parallel processor scheduling on a per-policy
basis. Both task graph and ERF models are summarized. The columns of Table 2.2 contain
workload models, techniques, references, and applicability limitations for analytic models of
specific parallel processor policies. The workload model column shows that task graph models
for all policies analyzed have been only of the fork-join type, and that in nearly all studies for
AP/RTC policies only ERF models have been used. The limitations column shows that common
assumptions that may limit the applicability of analytic results include exponential demands or
task service times, and no job arrivals.

We have seen that exact analysis such as matrix-geometric analysis or bulk arrival queueing
theory is either limited to small systems sizes for computational reasons or requires specific as-
sumptions about the workload such as i.i.d. task service times, which suggests that approximate
analysis may be necessary for more general workload models. There has been one approximate
analysis of specific types of AP/RTC policies by Gelenbe et al. [24]. To apply their analysis,
however, one needs to know the probability that a job is allocated a given number of processors
as a function of job type and system utilization. These probabilities may be difficult to obtain
analytically for practical AP/RTC policies such as ASP.

2.3.1.2 Simulation

Simulation studies that have compared processor scheduling policies include [25, 41, 43, 48,
49, 63, 66, 71, 74, 91, 92]. Assumptions that may limit the applicability of these studies include
specific demand distributions such as exponential demands (per class), i.i.d. uniform task service
times, implicit correlation between demand and parallelism, specific synchronization or division
of job demand, and small system size. Note that the applicability limitations arise primarily
on account of the technique since it is impossible to span across general distributions using
simulation. Some simulation studies [43, 41] have broader applicability, on account of the use

18

Table 2.2: Analytic Models for Parallel Processor Scheduling

Policy Workload
Type
FP/RTC
FP(£) Fork-join jobs
ERF Model
AP/RTC
ASP ERF model
AVG ERF model
pws Policies* ERF model
RTC policies! Fork-join jobs
AP/DA
AVG Fork-join jobs
RRJ Fork-join jobs
EQ ERF model
FCFS Fork-join jobs
Fixed priority Fork-join jobs
PSNPF Fork-join jobs
RRP Fork-join jobs
SNQTF Fork-join jobs
Threshold ERF model
UnequalDP ERF model

Technique

Reduction
Reduction

Matrix-geometric

Reduction

Matrix-geometric

Average of mean
service times

Recurrence relatns
Recurrence relatns
Matrix-geometric

Bulk arrival queue
Matrix-geometric

Recurrence relatns
Bulk arrival queue
Recurrence relatns
Recurrence relatns

Bulk arrival queue
Birth death chain

Matrix-geometric

Refs.

(68]
[71, 63]

[69, 70]
(71]
(69, 70]

[40]

[40]
[40]
169]

[54, 55, 80]
(50}

(40}

[53]

[40]

[40, 80)

(53]
[44]

[69]

Limitations on
Applicability

D ~ exp

P small, D ~ exp

per class

D ~exp, N =k*,
single ERF

P small, D ~ exp
per class

T; iid exp, no arrivals

T; iid exp, no arrivals
T; iid exp, no arrivals
P small, D ~ exp
per class

T; iid exp or GE

T; iid exp

T; iid exp, no arrivals
T; iid exp

T; iid exp, no arrivals
T; iid exp or GE,

no arrivals in [40]

T; iid exp

D ~exp, N =k,
single ERF

P small, D ~ exp
per class

+ N = k denotes an identical value of the parallelism metric for all jobs.

* PWS-FCFS, and PWS-FCFS-LA.

t The RTC policies are modeled are for a fixed number of jobs where each job is allocated processors

once and for all at time ¢ = 0.

19

of hyperexponential demands which have more variation than the exponential. (It is typical in
computer system workloads to have high variation in processing demand.) It is unknown what
constitutes a realistic distribution for parallelism and the specific distributions of parallelism in
simulation studies cover only a narrow region of the design space. Moreover, simulation only

provides numerical solutions and thus no ready insight into policy performance.

2.3.1.3 Measurement

There have been very few measurement studies for parallel processor policies and these
studies have evaluated only AP/DA policies on UMA systems with 4, 16, or 20 processors [27,
47, 82, 84]. A possible reason for the scarcity of measurement studies is that there has been no
parallel workload characterization to date and thus it is unknown what constitutes a realistic
program mix for policy evaluation. The workloads used in measurement studies consist of
three to four parallel programs with different execution rate profiles. It is difficult to vary
system parameters in measurement studies and thus limited insight is provided into policy
performance. Moreover, the emphasis in these studies has been on implementation aspects
rather than processor allocation issues (e.g., spatial versus temporal equipartitioning, affinity
versus non-affinity scheduling, process control versus no process control).

We have thus far surveyed analytic, simulation, and measurement studies that estimate the
mean response time of various parallel processor policies under different workloads. We next
survey results for optimal policies and mean response time bounds.

2.4.2 Optimal Policies and Mean Response Time Bounds

Most of the optimal policy results and response time bounds derived in the literature use the
technique of sample path analysis where one couples sample paths of equal probability between
two systems and shows that over every pair of coupled sample paths the performance of one
system is better than the other. The advantage of sample path analysis is that one does not
have to solve for response times in order to compare systems and the comparisons do not involve
detailed mathematics. Proofs using sample path analysis typically require inductive arguments.
The applicability of sample path analysis is however very problem specific since (stochastic)
dominance relationships may not always hold for the performance of two (or more) systems.
We first survey optimal policy results and then survey response time bounds for parallel

processor scheduling policies under various workload assumptions.

2.3.2.1 Optimal Policy Results

There have been few optimal policy results in the literature for parallel processor scheduling.
These are summarized in Table 2.3. We note from the the table that a majority of the optimal
policy results are for AP/DA policies. In each case, fairly restrictive assumptions are made

20

such as i.i.d. exponential task service times or demands for the PSNTF and PSAPF results,
and fully parallel jobs and linear ERF's for the shortest demand first policies. Thus the results
need to be used with caution on account of their possible sensitivity to workload assumptions.
For example, Agrawal et al. [1] show that PSAPF is not optimal when demand distribution has
more variation than the exponential or when the ERF is sublinear. Leutenegger [39] gives a
counterexample to show that PSCDF is not optimal under a specific workload setting.

2.3.2.2 Response Time Bounds

There have been few results in the literature concerning response time bounds other than
optimal policy bounds. However, the applicability of the results is broader than the applicability
of the optimal policy results reviewed above on account of more general workload assumptions.
Response time bounds for classes of parallel processor policies and for individual policies have
appeared in [1, 80, 53]. Table 2.4 summarizes the results in these studies. For the last row
of the table, the TP, JP, and NP policies are three fixed priority policies in (53], namely, task
preemption (TP), job preemption of partially completed jobs (JP), and no preemption {NP),
and R; is the response time of the ** priority class.

All optimal policy results and bounds reviewed in this section have been for centralized
queueing system models. Optimal policy results and bounds for fork-join queueing models can
be found in [2, 3, 13, 42, 45, 46, 67].

2.5 Results in the Literature

In Section 2.4 we reviewed models for many parallel processor policies under various workload
assumptions. In this section we examine the results, emphasizing how processor scheduling
policies compare against each other. Since previous studies have made specific workload as-
sumptions our main objective is to summarize results for high performance policies over specific
regions of the design space. On the way we also show examples of contradictory results reported
in the literature because of different workload assumptions.

Section 2.5.1 discusses policy comparison results for FP/RTC policies, Section 2.5.2 for
AP/RTC policies, and Section 2.5.3 for AP /DA policies. We compare results for the performance
of AP/RTC policies versus the performance of AP/DA policies in Section 2.5.3. Throughout
this section we use the notation Cp to denote coefficient of variation in cumulative job demand
D. As before we use the notation N to denote number of tasks in fork-join program models and

available or maximum parallelism in ERF models.

Table 2.3: Optimal Policy Results for Parallel Processor Scheduling

21

Optimal
Policy

FP/RTC
FP(1)

AP/RTC

Allocate process-
ors proportional

to vD

AP/DA
PSNTF

PSAPF

SCDF
PSCDF

SEDF

Workload Assumptions

Linear ERFs, Cp = 0,
fully parallel jobs

Fixed number of jobs. Execution
time of job j on k processors:
Tj(k) = alij/k + az; + azk

Fixed number, K, of fork-join

jobs with iid exp. task service
times

General arrivals, available parallel-
isms, linear ERF's, and iid exp. job
demands independent of
everything else

Fixed set of fully parallel jobs with
linear ERFs

Poisson arrivals, fully parallel jobs
with linear ERF's

Poisson arrivals, fully parallel jobs
with linear ERF's

Scheduler Information
and Assumptions

FP(£) scheduler that
knows job arrival times

Scheduler has complete
knowledge of Dj, ay;
a2, and ag

Scheduler knows instant-
aneous job parallelisms

Scheduler knows available
parallelisms, arrival times,
and any other information
that does not reveal job

demands

Scheduler knows residual
job demands

Scheduler knows residual
job demands
Non-preemptive scheduler
that knows expected job
demands

Refs.

[68]

[72]

(40]

[1]

Table 2.4: Response Time Bounds for Parallel Processor Scheduling

22

Result

Ry > Ry, ¥ is a parallel processor
policy, and ¥} is the corresponding
optimal uniprocessor policy™

Ry(N = P) < Ry < Ry(N = 1), for

all processor-conserving policies ¥
Rrrp 2 Rpps

Lower and upper bounding systems for
RRP

RTP Sst Ri]P Sst R{VP .<.st RFCFS,
RIP >, R}P >, RYF >, RECFS

Workload Assumptions

ERF model, general workload

General arrivals, linear ERFs,
D ~ exp, N generall

ERF model, general workload

Poisson arrivals, fork-join jobs,
iid GE task service times,
N general

Poisson arrivals, fork-join jobs,
iid exp. task service times,
N general

Refs.

[1]

(80]

(53]

+ ¥ uses same workload information as ¥ and schedules workload on a uniprocessor of power P

f N denotes maximum parallelism in ERF models and number of tasks in fork-join models

23

2.5.1 FP/RTC Policies
Key issues in the design of high performance FP/RTC policies are:

e How should processors be partitioned, i.e., how many partitions and how many processors

per partition.
e In what order should jobs be scheduled.

Studies in the literature that have compared FP/RTC policies have only focused on FP(-E) poli-
cies with -’5 equal sized partitions and FCFS scheduling. The only key question for FP({:—) poli-
cies is how many partitions are required for high performance. In Section 2.3.2.1 we noted that
it has been shown in [68] that for a workload with Cp = 0, linear ERF's and fully parallel jobs,
the FP(1) policy is optimal throughout the range of system utilization. However, experimental
results for workloads with task synchronization and/or communication overheads show that the
optimal number of partitions increases as a function of system load [71, 25, 44, 69, 70, 68, 63].
(In [25, 69, 70] the overall Cp is greater than 1, in [71, 44, 63] Cp is equal to 1, and in [68]
Cp is less than 1.) In all these studies it is shown that at very low loads (p — 0) the opti-
mal partition size is equal to the maximum parallelism in the workload and at very high loads
(p — 1) the optimal partition size is either 1 or 2 depending on the sublinearity of the ERF3.
All studies explain this result by noting that at high loads a small partition size leads to more
efficient processor utilization since job speedup curves tend to be close to linear at low values of
processor allocation.

The experimental results mentioned above show that the optimal value of % depends on the
system load p, the overall Cp, workload parallelism, and ERF sublinearity, and it increases with
p in general. This has motivated the use of AP/RTC policies that give high allocation at low
loads and low allocation at high loads.

2.5.2 AP/RTC Policies
Key issues in the design of high performance AP/RTC policies are:

e How many processors should be allocated to each job, and on what basis should the

allocations be made.
e In what order should jobs be scheduled.

Studies have suggested that allocating processors equal to the knee of the execution-time effi-
ciency profile, that is the number of processors that maximizes the ratio of efficiency to execution

31In case where the ERF has (2) < 2 the optimal partition size is 1.

24

time, achieves good performance for individual jobs [19, 44, 25]. The processor working set (pws)
measure is the number of processors that coincides with the knee of the execution-time efficiency
profile [25]. An allocation of average parallelism (avg) to a job has speedup and efficiency proper-
ties similar to an allocation of the knee {19]. This has motivated researchers to examine whether
application characteristics such as avg and pws are useful for multiprogrammed scheduling in
general.

Several AP/RTC policies have been compared under various workload assumptions in the
literature [71, 91, 25, 40, 69, 70, 63, 74, 72]. All but the study of [63] compare policies that
use application characteristics such as avg or pws against policies that don’t. The study of [63]
compares only policies that adapt their allocation to number of jobs in the system but do not
use application characteristics for scheduling. We first review results for AP/RTC policies that
use at most maximum job parallelism or job parallelism metrics such as avg or pws, and follow
it by a review of results for AP/RTC policies that use additional application characteristics such
as variance of parallelism and minimum parallelism. Finally, we discuss the results to date on
the design of AP/RTC policies with good overall performance.

2.4.2.1 Policies that use maximum parallelism, avg, or pws
Leutenegger and Nelson [40] give experimental data to show that for a fixed set of K fork-join

jobs with i.i.d. exponential task service times
Rave < R.EQ—RTC < Rmop-FCFs, no arrivals, fork-join jobs with Tj iid exp.

In their model for RTC policies each of the K jobs is allocated at least one processor. The AVG
policy statically allocates processors proportional to average parallelisms, EQ-RTC statically al-
locates processors in an equipartitioned manner, and MOD-FCFS statically allocates processors
in an FCFS manner with the additional constraint that each job receives at least one processor.
Leutenegger and Nelson explain that AVG has higher performance under the given workload
conditions since it leaves fewer processors idle compared to EQ-RTC and MOD-FCFS. As noted
by them this is because jobs with few tasks have smaller average parallelisms and stochastically
smaller demands and are thus allocated a smaller fraction of the processors by AVG, which
results in fewer idle processors upon their departure. For most of their experiments Leutenegger
and Nelson note that the allocation under AVG is close to the optimal allocation (the optimal
allocation was determined using integer programming).

We now consider workloads in which jobs arrive continuously to the system as opposed to
having only a fixed set of jobs to begin with. To examine whether avg is a good characteristic for
processor allocation in a multiprogrammed mix of jobs Sevcik [71] compares AVG with first-fit
scheduling against FP(%) policies for a workload with exponential demands and identical avg
for all jobs in the system. In his experiments if a job is allocated k processors it executes with

25

rate y(k), where 7 is derived from a given application structure. Sevcik first argues that for
nearly linear ERFs AVG should perform better than FP(-’E—), and then provides experimental
data to show that for sublinear ERFs

Rave < Rpp(é), for all n, D ~ exp, and 0.2 < p < 0.5, sublinear ERFs,

and

— — D ~ exp and sublinear ERFs, where
RFP(P-) < RAVGa
" n > avg for p < 0.2 and n < avg for p > 0.5,

where 7 is the size of processor partitions.

Majumdar et al. [44] compare PWS against FP(£) for a similar workload as Sevcik {7 1] and
obtain results similar to Sevcik’s study, i.e., under exponential demands allocating at the knee
is optimal for linear ERF's and is good for sublinear ERF's at low to moderate loads only.

Ghosal et al. [25] compare PWS-FCFS against FP(£) and give experimental data for a
workload with five job classes each with exponential demands, and different ERF's, pws’s and

mean demands per class, to show that in general 4,

5 clagses with different ERFs and

Rpws—rcrs < Rppee
FP(Z) pws’s, D ~ exp per class.

They explain that PWS-FCFS fragments processors with increasing load on account of the
different pws values in the workload and thus the number of processor partitions increases with
the number of jobs in the system.

Ghosal et al. also compare PWS-FCFS with PWS, PWS-LA, and PWS-FCFS-LA. They
give experimental data to show that in general,

5 classes, different ERFs and

Rpws-rcrs < Rpws-rcrs—1a < Rpws < Rpws-r4, ,
pws’s, D ~ exp per class.

Since LA policies can allocate more than the pws, Ghosal et al. conclude that allocating more
processors than the pws is not beneficial for system performance. They also explain that the
reason why PWS-FCFS and PWS-FCFS-LA perform better is that they are more adaptive to
the number of waiting jobs, i.e., schedule more jobs into service, since they can allocate less
than the pws, which is not so under PWS and PWS-LA.

Setia and Tripathi [69, 70] compare PWS-FCFS, PWS-FCFS-LA, and FP(—E) policies for
a two class workload model with exponential demands, and different ERF's, pws’s and mean

demands per class. Their overall conclusions for these policies are the same as Ghosal et al.’s

4]n their results FP(P) and FP(P/2) are better than better than PWS-FCFS only over very narrow ranges
of the spectrum of offered load.

26

conclusions except that they give data to show that PWS-FCFS-LA has higher performance
than PWS-FCFS at light load (p < 1).
Setia and Tripathi also compare PWS-FCFS against ASP to show that

Rasp ~ Rpws-rors for p < 0.5, 2 classes with different ERFs
Rasp < Rpws—rcrs for p> 0.5 and pws’s, D ~ exp per class.

(PWS-FCFS performs marginally better than ASP at 0.1 < p < 0.5.) They attribute the higher
performance of ASP at moderate to high loads to the fact that PWS-FCFS saturates at lower
loads than ASP since PWS-FCFS does not necessarily allocate one processor per job when p — 1
as ASP does. They therefore conclude that at moderate to high loads it is more important to
divide available processors among all waiting jobs than to satisfy the pws requirements of a
subset of the waiting jobs.

ASP allocates processors up to the maximum parallelism of a job. A related policy is ASP(m)
which is like ASP except that it allocates up to a predefined maximum of m processors per job.
The ASP(m) policy is studied by Rosti et al. [63] who compare AP /RTC policies that do not use
parallelism characteristics but adapt processor allocation to number of free processors or number
of jobs in the system. They give simulation data to show that for a single class workload with
exponential job demands, fully parallel workloads, and a specific ERF, in general ASP(m) has
better performance than IP, which reserves a fraction of processors for future arrivals. However,
they also show that the best choice of m is sensitive to the workload. The RA policy is shown
in [63] to have similar performance as the best ASP(m) policy under exponential demands, but
their data shows otherwise for nonexponential demands with high Cp.

2.4.2.2 Policies that use additional parallelism characteristics

The policies compared above use at most maximum parallelism or parallelism characteristics
such as avg or pws for processor allocation. We now examine policy comparison results for poli-
cies that use additional application characteristics such as variance in parallelism and minimum
parallelism. Sevcik [71] examines policies that use variance of parallelism or variance, maximum
and minimum parallelism in addition to average parallelism, and shows that in general for a
workload with exponential job demands and specific application structures (with low and high

variance in parallelism)

Ravoremm = Raves =~ Rave for p <04, D ~ exp, specific application
Ravasemm < Baves < Ravg for p> 0.4 structures, avg ~ uniform.

AVG+&mM and AVG+ adapt to system load whereas AVG does not. AV G+ uses variance of
parallelism in addition to average parallelism, and AVG + &mM uses variance of parallelism,
minimum and maximum parallelism in addition to average parallelism. This gives some evidence

27

to show that use of additional parallelism characteristics helps in reducing mean response time.
These results are shown for specific policies under exponential demands and specific application
structures and it remains to be seen whether additional parallelism characteristics are useful for

other types of policies and also when Cp has a higher value.

2.4.2.3 Summary

To summarize, we have seen that high performance in AP/RTC policies can be achieved only
if the processor allocation to jobs decreases with an increase in system load. For this reason
ASP which does not use parallelism characteristics (except for maximum allocation) performs
better than PWS-FCFS. At p — 0 the optimal processor allocation is P and at p — 1 the
optimal processor allocation is 1. ASP satisfies both conditions and has the potential to be
a high performance AP/RTC policy. The performance of ASP, however, needs to be studied
under a broader range of workload conditions than has been done in the past. These include
higher values for Cp, more variability in N, and correlated as well as uncorrelated workloads.

In Sevcik’s study we note that the AVG+ and AVG+&mM policies that outperform AVG
are both adaptive to load unlike AVG. Thus we first need to understand AP/RTC policies with
respect to their adaptation to number in the system, i.e., how well they divide processors among
waiting jobs. The question of whether or not application characteristics in addition to avg are
needed for scheduling can be fully answered only if policies with similar adaptive properties are
studied. This is an interesting question in its own right and is beyond the scope of this thesis.

2.5.3 AP/DA Policies

AP/RTC policies have low partitioning overhead as compared to AP/DA policies, but their
overall performance can suffer to due static allocation. For example, if the processor allocation
to a job is low then the job cannot use additional processors even if they are idle, and if the
processor allocation to a job is high then the job can delay waiting jobs if it has a large demand.
This motivates the use of AP/DA policies in which the allocation to jobs can dynamically change
over time. In this section we first review previous comparison results between AP /DA policies
and AP/RTC policies. We then review comparison results for AP/DA policies.

AP/DA policies have higher repartitioning overheads as compared to AP/RTC policies but
they have the potential to provide better service to jobs based on instantaneous job character-
istics such as instantaneous parallelism. Zahorjan and McCann [91] show that for a workload
with i.i.d. uniform task service times the UnequalDP policy which does not use information
about job execution rates but preemptively attempts to allocate at least one processor per job
outperforms the METB (Maximum Execution Time Benefit) AP/RTC policy that uses com-
plete information about job execution times, even though the UnequalDP policy has high task

28

switching overheads. Setia and Tripathi [69] show EQp¢ to perform better than ASP for expo-
nential demands per class when the system load is moderate. In their experimental comparisons
EQpc incurs higher scheduling overhead than ASP.

Although AP/RTC policies may perform worse than well designed AP /DA policies it is not
true that dynamic allocation alone guarantees better performance. If the dynamic allocation is
performed temporally rather than spatially it can degrade performance. For example, Zahorjan
and McCann [91] show that the AP/RTC policy METB outperforms the AP /DA policy RR-slot
which rotates jobs on a time-sharing basis. Under RR-slot jobs execute at less efficient points
of their speedup curves than under METB and this causes it to perform worse. We next review
the literature for comparisons among AP /DA policies.

AP /DA policies compared in the literature include Coscheduling policies, FCFS, RRP, EQ,
dynamic AVG, SNPF, PSNPF, PSAPF, SNQTF, Fixed Priority policies, SCDF, and PSCDF.
We review the literature in the order of results for RRP, Coscheduling and FCFS, followed by
results for policies that attempt to approximate shortest job first but do not use job demand
information, and we then review results for equiallocation policies and finally results for policies
that use job demand information.

Ousterhout [58] proposed coscheduling policies for multiprogrammed parallel systems in
which all tasks of a job are scheduled at the same time and jobs are scheduled in round-robin
order. Seager and Stichnoth [66] give data to show that for a workload with correlation between
demand and parallelism and high barrier synchronization overheads

T;; = B; + Normal(0,0), B; ~ exp,

—RCoschedulin < _RRRP
9)
high barrier synchronization overheads.

On the other hand Leutenegger and Vernon [41] show that

ﬁCascheduling < R-RRP, high lock contention, D ~ Hy,T; = D/N;
Rrrp < RCoscheduung, independent processes, D ~ H,,T; = D/N.

Leutenegger [39] notes that the relative policy orderings remain unchanged for uneven division
of demand among tasks.

Towsley et al. [80] compare FCFS, RRP, and PS for a workload with fork-join jobs having
iid. GE task service times, where the PS (processor sharing) policy schedules jobs as if they
have only one task each. They show that, in general, when coefficient of variation, Cy, of task

service times is less than 4,
Rrcrs < Rrrp < Rps, T; iid. GE, C, < 4.

They explain that RRP outperforms PS due to better processor utilization since processes of a
job are not scheduled in parallel under PS. They explain that RRP performs worse than FCFS

29

since it gives lower priority to jobs with fewer tasks, which also have stochastically smaller
demands. This is opposite to the priority given by shortest demand first (SDF) scheduling.

Majumdar et al. [43] and Leutenegger and Vernon [41] give simulation data to show that
under specific distributions of N and H, job demands Rrrp is insensitive to Cp at moderate
loads and that Bpcps increases with Cp. Their results show that

correlated and uncorrelated workloads, D ~ Hy with

Rrrp < R ,
RRP S TUFCES: G typically > 2, T = D/N or UsD/ S, Uj, Us ~ U(0, 1].

RRP performs badly for correlated workloads with low to moderate Cp because it allocates
priority in opposite order of shortest demand first. The same is true for dynamic AVG as shown
in [40], where allocation is proportional to average parallelism. Under correlated workloads,
policies that give higher priority to jobs with few processes are expected to perform well since
they approximate shortest demand first. Thus Leutenegger and Nelson [40] show the PSNTF
policy to be optimal under their workload model that assumes i.i.d. exponential task service
times.

For i.i.d. exponential task service times Nelson and Towsley [53] show that

Rsngrr < BRrp~Ryp < Rvp < Rrcrs, 3 classes, T; i.id. exp.,

where TP, JP, and NP are fixed-priority policies with task preemption, job preemption, and no
preemption.

Another study that proposes a “smallest parallelism first” policy to have high performance
is the study of Majumdar et al. [43]. They show that for correlated as well as uncorrelated

workloads

correlated and uncorrelated workloads, D ~ Ha,

R < Rgrp,R
psNpPF < Rrrp,RFCFs Ti=U¢D/Zf_’__1Uj,Ui~U(0,1].

Leutenegger and Vernon [41] give data for specific distributions of demand and parallelism
to show that

Rpsnpr < Rrrp, uncorrelated workload with Cp < 2, correlated workld with Cp < 3-4;
Rpsnpr > Rrrp, uncorrelated workload with Cp > 2, correlated workld with Cp > 3-4.

Agrawal et al. [1] show PSAPF to be optimal for a workload with the linear ERF and
exponential demands independent of other workload variables. They also give counterexamples
to show that PSAPF is not optimal under Cp > 1 or sublinear ERFs.

We now review results for equipartitioning policies. Tucker and Gupta [82] use measurements
to show that

REgrc < Rarp, 4 programs with different ERFs.

30

They argue that EQpo performs better because it controls the number of runnable processes
per job by limiting it to number of processors allocated.
Leutenegger and Vernon [41] show that for specific distributions for demand and parallelism

Rers < Rpsnpr,BrrP, correlated and uncorrelated workloads, D ~ Hp, T; = D/N.

McCann et al. [47] give measurement data to show that the spatial EQ;p performs better
than EQT since there are fewer preemptions and jobs execute at better operating points of their
speedup curves.

To illustrate the high performance potential of EQ, Agrawal et al. [1] give experimental data
to show that under linear job execution rates, and a specific Hy distribution for demand with
Cp = 5, and specific workloads for available parallelism N, REQ is within twice of the best
achievable performance for the given workload conditions.

Leutenegger and Vernon [41] show RRJ to outperform PSNPF for specific demand and
parallelism workloads with and without correlation. On the other hand the study of Leutenegger
and Nelson [40] shows that RRJ performs worse than the optimal PSNPF policy. Thus there
exists disparity in the literature regarding the performance of EQ?® and PSNPF and one of the
goals of this thesis is to clarify this disparity by using a more general workload model and
delineating the regions of the design space where each of these policies has best performance.

When job demand characteristics are known PSCDF is good policy though it is not optimal
like its uniprocessor counterpart. Majumdar et al. [43] and Leutenegger and Vernon [41] both
show PSCDF to outperform all other policies they consider, which include PSNPF and RRJ.

To summarize, we note that the sensitivity of scheduling policy performance with respect
to workload parameters has not been fully studied primarily because of the specific nature of
the workload assumptions in previous studies and also because the solution techniques in these
studies do not reveal the functional dependence of policy performance on workload parameters.

This completes our survey of policy comparison results. Table 2.5 summarizes the policy
comparison results. The results column shows qualitative policy behavior whereas the compar-

isons column provides relative policy comparisons.

2.6 Motivation for this Thesis

We have reviewed performance evaluation studies of parallel processor policies by examining
system models, workload models, four types of parallel processor policies, performance evaluation
techniques, and policy comparison results. We now examine what needs to be done to obtain a

better understanding of parallel processor scheduling.

5RRJ is a particular EQ policy.

31

Table 2.5: Policy Comparison Results for Parallel Processor Scheduling

Policy

FP/RTC
FP(£)

AP/RTC
pws policies

ASP
Avg based
policies

AP/DA
UnequalDP
RRP

PSNPF

PSAPF

PSCDF

Results

FP(1) is optimal for Cp = 0, linear
ERF's and fully parallel jobs. For

sublinear ERFs, FP(1) is optimal at
p — 0 and FP(P) is optimal at p — 1.

Optimal at extreme ends of p.
For D ~ exp, using application
characteristics in addition to avg
improves system performance.

Rrrp degrades with workload
correlation, but is quite insenstive
to Cp.

Optimal for T; iid exp and
no arrivals.

Optimal for D ~ exp and linear ERFs.

Rpgry is quite insensitive to Cp,
under H, demand distributions and
specific parallelism workloads.
Optimal for fully parallel workload
with linear ERFs. Not optimal in
general.

Comparisons

Rpws-rors < Rpws-rFcrs-1a
< Rpws < Rpws-ra

Rasp < Rpws-FCFs

ﬁAVG+&mM < Ravgs < Rave

Runequaipp < RuyerB < RRR-slot-
Rrrp < Reoscheduting €xcept for
high lock contention workloads.
BErrp < Rrers for uncorrelated
workloads with low to high Cp.
Rrrp > Rrcrs for correlated
workloads with moderate Cp.
Rpsnpr < Rrors

Rpsnpr < Rrrp at low

to moderate Cp.

Rprs < Rrre.

Rrrs < Rpsnpr in [41],
Rrrys > Rpsnpr in [40].
Rpscpr < Rrry-
Rpscpr < Rpsnpr-

32

Most studies of parallel processor scheduling have assumed small system sizes with less
than 20 processors, which is very small compared to real systems that can have hundreds of
processors. Many studies have also made specific assumptions about the workload and have not
clarified the implications of the assumptions for processor scheduling results. Some studies have
assumed exponential demands or task service times, some studies have assumed no job arrivals,
and some studies have assumed i.i.d. task service times which leads to an implicit correlation
between demand and parallelism. Previous results under specific distributions of processing
demand and parallelism show that policy performance can be sensitive to coefficient of variation
in demand, Cp, as well as correlation between demand and parallelism and this calls for more
general models in future studies that include nonexponential demands and a range of correlation
between demand and parallelism.

In terms of performance evaluation techniques we believe that analytic modeling has the
highest promise for a thorough understanding of policy performance. Measurement gives exact
estimates that include system overheads but is limited to a specific mix of programs and specific
system characteristics. Simulation allows a broader range of workloads but is not as general as
analysis and does not give any direct insight into the dependence of policy performance on key
parameters. Also, simulation is very time consuming for large systems. Furthermore, specific
distributions of demand and parallelism are needed in simulation studies and it is unknown
whether important portions of the parameter space are being ignored by doing so. In contrast,
analytic modeling allows for general distributions of demand and parallelism and general ERF's
and if closed form expressions are available for mean response time then the dependence of
policy performance on workload parameters is readily observable.

Exact analysis for parallel processor systems has so far not been as successful as exact analysis
for uniprocessor systems since space enumeration techniques, such as matrix-geometric analysis,
have typically been required. Moreover, previous exact estimates of mean response time in
parallel scheduling have rarely take the form of closed form expressions except over narrow
ranges of system parameters. This indicates that approximate analysis is likely to be a future
trend in performance evaluation of parallel systems both from the viewpoint of obtaining closed
form expressions and from the viewpoint of scalability to systems with hundreds or thousands
of processors.

From the literature reviewed in this chapter we have seen that under specific workload
assumptions ASP has been shown to have high performance among AP /RTC policies, EQS has
been shown to have high performance among AP /DA policies, and PSNPF has been shown to
have high performance for highly correlated workloads. Ome study [80] also points out that
a simple policy such as FCFS may have high performance under specific workloads. Policy
comparisons in previous studies have been limited to specific workload assumptions and it is not

33

clear how ASP, EQS, PSNPF and FCFS perform over a broad range of workload parameters
that includes arbitrary Cp, arbitrary correlation, as well as general job execution rates.

In the remainder of this thesis we shall develop approximate analytic models for ASP, EQS,
PSAPF, and FCFS under a general workload model for systems with hundreds of processors. The
approximate analysis and the workload model are chosen such that the functional dependence
of policy performance on workload parameters is readily apparent and thus we can obtain key
parameters that influence qualitative policy behavior. The key parameters help us explore the
design space in a more systematic way than done in the past.

Chapter 3

System and Workload Model

In this chapter we address our first goal, that is, to design a workload model that captures
the essential features of parallel applications and is eaéy to parameterize. The goal is to have
a simple system and workload model that is broadly applicable, characterizes the essential
features of parallel workloads with respect to scheduling disciplines, contains a small number
of parameters, and is easy to analyze. With this end in mind we shall use the centralized
queueing system model and the ERF workload model that were reviewed in Chapter 2. The
ERF model implicitly captures job synchronization and communication, allows independent
control of demand, parallelism, and parallel program overhead, and is easier to analyze than the
task graph model.

To achieve broad applicability for policy comparison results, we make little or no restrictions
on the distribution of important system parameters, such as job parallelism and total service
demand. Since variation in demand has been shown to be a critical factor in the performance
of uniprocessor scheduling policies [33] and there is also experimental data that shows this
to be the case for parallel processor policies [43, 41] we place no restrictions on job demand
distribution. Since parallel programs are still in the early stages of design it is unknown what is
a typical distribution for available job parallelism. We therefore assume a general distribution for
available parallelism. There is experimental evidence in the literature to show that correlation
between demand and parallelism can affect the relative performance of some scheduling policies
(cf. [43, 41]). We therefore include a control parameter to vary the amount of correlation
in our workload model. Finally, practical programs have synchronization and communication
overheads and these overheads can be different for different workloads. We therefore assume
a general nondecreasing execution rate function (ERF) for the workload and to permit ease of

analysis we assume that all jobs use the same ERF.

34

35

We give details and further justification of our system and basic workload model in Sec-
tions 3.1 and 3.2. More details of our correlation model are provided in Section 3.3. The
notation used in this thesis and example workload settings are given in Section 3.4 and finally
in Section 3.5 we provide constraints on workload parameters that delineate the design space.
These constraints will be used to study the qualitative behavior of scheduling policies and to
obtain stress tests for validating mean response time approximations.

3.1 System Model

We consider an open system model with P identical processors and a central job queue. The
centralized queueing model is only conceptual; practical implementations of the policies con-
sidered will in general allow for distributed queue access. Jobs arrive at the system according
to a Poisson process with rate A as shown in Figure 3.1. We assume zero job scheduling and
preemption overhead, with the understanding that the actual implementation of a particular
scheduling policy will include limits on preemption rates (i.e., delayed preemptions) so as to
reduce overhead to a small fraction of the productive execution on the processors. We next
define our workload model.

Processor 1

SRS Job Queue
O O /\

000
booodg
09¢ Processor P

POOOC

Parallel Jobs

Figure 3.1: Open System Model

3.2 Basic Workload Model

We assume that all jobs are statistically identical. Every job is characterized by the following

random variables.

(1) Total service demand (execution time on one processor) D,

36

(2) Available parallelism N € {1,2,..., P},

(3) Execution rate function E : [0, P] — [0, P}, which is nondecreasing and has the following

E(z) <z 1<z <N,
E(N), N<z<P

properties:

il

The system operates as follows. Upon arrival each job joins the central job queue. At each
time, t, the P processors are allocated to jobs present in the queue according to the processor
allocation policy, ¥. If a(t) processors (possibly fractional) are allocated to a job at time ¢,
then its demand is satisfied at rate E(a(t)). The job leaves the system upon completion of its
total demand, D. The available parallelism, NV, of a job is the number of processors the system
scheduler believes the job can productively use. The workload model assumes that this value is
fixed throughout the lifetime of the job. The workload model also assumes that the job actually
can’t use use more than N processors productively (i.e., E(z) = E(N) for N <z < P).

We assume the following about N and E.

e N has a general (bounded) distribution, Fy, with mean! N, coefficient of variation® Cy,
and probability mass function p = (p1,...,pp), where px = Pr[N=k|,k=1,...,P.

o FE is derived from a deterministic function v, that is nondecreasing and is such that y(z) =
rfor0< z <1,and v(z) <z for 1 <z < P. We refer to -y as the execution rate function
(ERF) of the workload. The ERF 7 is said to be linear if y(z) =z, forall 0 < z < P.

For all jobs with available parallelism N, E(N) = v(N). When fewer than N processors
are allocated to the job, the execution rate E depends on more detailed characteristics of
the applications. In this thesis it is assumed that the work for a job can be dynamically
redistributed across the number of processors allocated to it such that it executes as if it
had available parallelism equal to the processor allocation, i.e., E(j) = 7(j),for1 £ j < N.
This could be appropriate for applications based on the work queue model, or in some cases
where the processes of a job are timeshared on the allocated processors. In cases where the
allocated processing power, z, is nonintegral we use a linear interpolation between (lz])

and 7([z]) to compute E(z).

Note that other assumptions about job execution rate on fewer than N processors are possible.
For example, one might assume that the parallelism overhead is about the same on fewer proces-
sors as on N processors, i.e., E(j) = jj\r—fy(N)for 1 < j < N, which could represent a system with

1\We interchangeably use mean and expectation throughout this thesis.
2The coefficient of variation of a non-negative random variable is defined as the ratio of the standard deviation
to the mean of the random variable,

37

jobs that have fixed parallelism in which overhead is primarily due to message passing software
and processing load is balanced across the processors, e.g., through judicious cyclic rotation
of processes. As another example, if communication overheads are fixed for a given available
parallelism but the load is only balanced when j evenly divides NV, then E(j) = T—]W-ﬂ—fy(N }, for
1<j<N.

The service time of a job on N processors is given by the random variable § = D /v(N }, and
we denote its mean by S.

The workload model defined above contains three simplifications each of which represents a
trade-off between analytic tractability and the simplicity of the parameter space on the one hand,
and generality of the model on the other hand. The first is the assumption of constant available
parallelism per job, the second is the assumption of a fixed execution rate, E(k), whenever the
job is allocated k processors, and the third is the assumption of the same deterministic execution
rate function v for all jobs.

The first assumption is realistic for RT'C processor allocation policies. The assumption is
also realistic for certain systems and/or workloads where processor allocation is dynamic. For
example, if the job is based on a work queue model and can continuously adapt to any given
number of processors up to a maximum value of N throughout (most of) its lifetime, or if the
system scheduler assumes the job’s parallelism is fixed (as in the CM-5). Similarly, the second
assumption is realistic for static scheduling policies and for certain cases of dynamic scheduling
(i.e., when execution rates are nearly linear and/or when parallelism overheads including load
imbalance are relatively evenly distributed throughout the execution of the program, on any
number of processors). Furthermore, since the purpose of the model is to analyze scheduling
policy behavior and performance, as opposed to obtaining precise mean response times for the
applications, assumptions that approximately represent key workload characteristics while keep-
ing the model tractable and the parameter space simple, are acceptable even when they don’t
precisely describe the behavior of individual applications. For example, if jobs have varying
available parallelism, one can view the model with constant available parallelism as capturing
the contention that occurs between phases of different jobs, where a phase is a portion of the
job in which available parallelism is constant. Similarly, although jobs actually have differing
degrees of sublinearity, one can view the model as representing how policy generally performs
as execution rates are more or less sublinear. Extensions that would further increase the appli-
cability of the model yet preserve its tractability and parameter simplicity would be desirable,

but appear to be quite difficult to obtain.

38

3.3 Correlation Model

It is unknown whether or how job demand is correlated with parallelism in real workloads.
The most general way to model correlation is to specify an arbitrary joint distribution of D
and N, F(D,N), but this approach can complicate both the analysis and exploration of the
design space. A simpler model that still permits a wide range of correlation, can be obtained
by assuming that for a job with available parallelism NV, its mean demand is either independent
of N with probability g or is linearly correlated with NV with probability 1 — g. Varying ¢ from
0 to 1 thus allows us to control the workload correlation in the model. Below we define the
parameters of the correlation model more precisely.
The mean demand of the job with available parallelism N is given by

Av = A, with probability g,
N c¢N, with probability 1 - q.

In the first case the demand is drawn from a general distribution, 3, with mean A and
coefficient of variation C,, where 4 and C, are fixed constants independent of N. In the second
case, the demand is stochastically equal to a demand that is drawn from the same distribution
and then scaled by the factor 9—;— In the latter case the mean demand is ¢ N as required, and
the coefficient of variation of is equal to C,, which does not depend on N.

Let r denote the correlation coefficient of Axy and N. That is,

E[Ay N] ~ E[AN]E[N]

CALON y OANION #0 (3.1)

T

Define r to be 0 when oo, = 0 or oy = 0. The following lemma shows how A and c are related
to D (i.e., the mean demand of the workload across all jobs) and N, and how ¢ is related to r.
This lemma shows that the workload correlation is specified by the single parameter 7.

Lemma 3.3.1 For the correlation model given by (3.1),
A=D, ¢=D/N, and ¢q=1 -7,
Proof. By definition of Ay,

An = A, with probability g,
= ¢N, with probability 1 —gq.

Thus, E[Ay] = D = qA + (1 - q)cN, for all 0 < ¢ < 1. Setting ¢ = 1 yields A = D, and
setting ¢ = 0 yields ¢ = D/N.

To prove that ¢ =1 — r2, we first note that either oaoy =0oroy =0 implies that An = D
with probability 1. Thus g =1 - 72 for these cases. For oa, > 0 and oy > 0, we evaluate the

39

RHS of equation (3.1). First note that
E[ANN]=q¢AN + (1-q)cE[N?.
Using this and E[An] = D and further simplifying we find,
E[ANN] - E[AN]N = (1-q)DNCj}. (3.2)
Also,

E[A}] gA* + (1-q)c E[N?,

E[AY] - E[AN?=(1-¢D°C}.

2
U'AN

Substituting oay = T —¢D Cn and the RHS of (3.2) in (3.1), we have

(1-qDNC,
= — = 1~ ,
"= /T=qDCnon "

which results in ¢ = 1 — 2 as required. |
A consequence of this lemma is that 7 = 0 implies that ¢ = 1 and thus that D and N are

independent.

3.4 Notation

Table 3.1 summarizes the notation for system parameters and variables. Under the implicit
assumption of Poisson arrivals with rate A, and dynamic redistribution of work whenever a job
is allocated fewer processors than its available parallelism, i.e., E(j) = ¥(j), we use the following

notation to characterize the system and workload model.
(‘I"r J:N, J:By T, 7)1

¥ = processor allocation policy
Fn = distribution of N, e.g., N = P, Uniform(1,P)
% = distribution of demand for jobs with mean demand independent of parallelism
e.g., exp(p)
r = correlation coefficient as defined by (3.1)

= execution rate function. By default we assume that -y is a general nondecreasing
ERF. We use the notation v € £°, to specify that v belongs to the class of concave
and nondecreasing ERFs, £¢. To specify the linear ERF we use the notation 7.

Table 3.1: System Notation

P Number of processors in the system
A Arrival rate of jobs
D Total job demand
;) Distribution of demand for “uncorrelated” jobs
D Marginal mean job demand
Cp Coeflicient of variation of marginal demand
p Offered load AD/P
N Available job parallelism
Fn Distribution of available parallelism
Dk Probability[N =k}, k=1,...,P
p (p1,p2,---,PP)
N Average available parallelism
Cy Coeficient of variation of available parallelism
Correlation coefficient (as defined by (3.1))
~ General execution rate function of the workload
£ Class of concave and nondecreasing ERF's
¥t Linear execution rate function
S Mean job service time
Sn Normalized mean service time 5/D
Ry Mean response time of policy ¥
RS Estimator for mean response time under ¥ (obtained
using an interpolation approximation on parameter T)
M/G/1p | An M/G/1 system with a processor of power P

41

To indicate a general distribution of demand or available parallelism, general workload ERF,
or arbitrary value of 7 between 0 and 1, we simply leave the notation as Fj, Fun, v, or 1,

respectively.
For experimental results in this chapter, we will make use the following bounded-geometric
distribution for available job parallelism (similar to the distribution in {41, 39]):

Definition 3.4.1 (Bounded-geometric(Pnax,p)) A random variable N has a bounded-geo-
metric distribution with parameters Pyax and p if
P, ith probability F,
N = i wz' prona “ Y Fmax; where X = Geometric(p).
min(X, P), with probability 1 — Prax,

In some experiments, three specific bounded-geometric distributions for N will be examined.
These distributions are given in Table 3.2. More details of these workloads are given in Chapter 4.
Another distribution for N that will be used is the following two-point pmf:

Definition 3.4.2 (K3(a,b,@)) N has a Kz(a,b,a) distribution if

N= { a, with probability o, 0<a<l

b, with probability 1 — a.
We use the following two types of ERFs in our experiments:
o y(k)=k%k=12,..,0<c¢<1,
o y(k)=(1+P)k/(k+8),k=12,..,0< B <L 00

Both ERFs are concave and nondecreasing as shown in Figure 3.2. The second ERF is derived

from a type of execution signature in [18].

Table 3.2: Three Bounded-geometric Distributions for N
Symbol | Parallelism | Prax P P=20 g_:lOO

N Cn N Cn

H | High 0.9 1.0 |1810 0.31]90.10 0.33
M | Moderate | 0.1 | 1/(0.4P)| 870 0.77 | 43.14 0.80
L | Low 0.1 0.9 300 1.89{11.00 2.70

3.5 Constraints on Workload Parameters

The workload model defined above is not only general but is also easy to parameterize. Impor-
tant generalizations in the workload model include the general distribution of available paral-
lelism, general distribution of job demand for jobs with no correlation, general nondecreasing

42

100 . 100
80 1 80 |
60 60
k) Yk)
40 40
20 | 20
0 : ; . : ;
0 20 40 o 60 80 100
(a) v(k) = k° (b) v(k) = 1+ B)k/(k+ B)

Figure 3.2: Two types of ERFs

deterministic execution rate function, and controlled correlation between demand and paral-
lelism. Varying workload parameters, such as Cp and 7, allows us to explore the design space
more thoroughly than in the past. Nearly all previous performance studies of parallel processor
scheduling policies have assumed specific distributions for demand and /or parallelism. Further-
more, we are not aware of any study that has considered a range of correlation between demand
and parallelism. (Some previous studies have considered specific extremes of our correlation
model such as 7 = 0 and r = 1, cf. [43, 41, 92]. In iid. task service time models there is
implicitly a high correlation between demand and parallelism and there is no opportunity to
vary demand and parallelism parameters independently.)

Workload parameters of immediate interest to us are mean and coefficient of variation in
demand, i.e., D and Cp, mean and coefficient of variation of available parallelism, i.e., N
and C, correlation coefficient 7, execution rate function v, and mean service time S. These
parameters must satisfy certain relationships which constrain the system design space. Without
loss of generality, we let D, N, r, and v be the free parameters in the model, where 0 < D < oo,
1<N<P,0<r<1land0<v(z) £z ") <v(z) and 7(z) =z for 0 <z < 1,
and then consider how these parameters constrain the other parameters of interest, i.e., Cn
(Section 3.5.1), Cp (Section 3.5.1), and S (Section 3.5.3). The constraints delineate the model
parameter space and will be useful in evaluating the qualitative behavior of scheduling policies
as well as for identifying stress tests for validating mean response time approximations.

Several bounds in this section are derived using simple properties of convex functions. A

43

convex function is defined as follows (cf. [61]).
Definition 3.5.1 (Convex Function) A function f : (a,b) — IR is called convex if
flaz + (1 - a)y) < af(z) +(1—a)f(y), forallz,yé€(ab)andac(0,1).
We shall also make use of Jensen’s inequality (see {26]) which states that
If h: IR — IR is convex and X is a random variable with a finite mean, then

E[h(X)] 2 h(E[X]).

3.5.1 Constraints on Cy

Since N is bounded above by P, it follows that Cy cannot be unbounded. For a fixed N we
first derive achievable bounds on C for general distributions of N in Theorem 3.5.1. We then
focus on bounded-geometric distributions of N and in Theorem 3.5.2 we derive distributions in

this class that have minimum and maximum Cy.

Theorem 3.5.1 (Bounds on Cy) Given N, for a general distribution of N we have

0 < Cy < \/W—L

N

The lower bound is attained when N is constant and integer-valued for all jobs. The upper bound
is attained for the K3(1, P,-) distribution.

Proof. The lower bound is trivial. The derivation of the upper bound is as follows. Since
Cn = on/N we need to derive an upper bound for on. By definition,

o3 = E[N*| -~

P p
BN = Y pek® = Y pif(k), (3.3)

i==1 i==1
where f(z) = z2. We derive an upper bound on E[N ?] by observing that f is a convex function,

that is,
flaz+(1-a)y) <af(x)+(1-a)f(y), 0ZLasgl

Choosing such that a -1+ (1 — @)P = k, that is, & = (P — k)/(k - 1), we get the following
bound for f(k),

f(k) = fla-1+(1-a)P) < af(1)+(1—a)f(P)=£: P-—1P2'

k k-1
To1+

44

Using this bound in (3.3) it follows that,

P

k-1
2 < 2
E[N?] < ;Pk(+P_1P)
P-N N-
T P-1 ' P- 1P
= N(P+1)-P
Hence,
E —
c2 = [N_]_2 _N(P+;) 1
N N

which yields the upper bound of proposition 3.5.1. This upper bound is attained when N has a
two point pmf with mass only at 1 and P. |

We now derive bounded-geometric distributions with minimum and maximum Cy.

Theorem 3.5.2 (Bounded-Geometric distributions with minimum and maximum
Cn) Let N have a bounded-geometric distribution with parameters Ppax and p. For a given

N, Cn is mazimum when p=1 and Cy i3 minimum when Prax = 0.

Proof. When p = 1, N can take one of two values, either 1 or P. As shown in the proof of
Theorem 3.5.1, for a given value of NV, Cy is highest (over all distributions of N with mean N)
if
N= { 1, with probability p;,
P, with probability 1 — p;,

which is the bounded-geometric distribution with p = 1 and Pnax = 1 — p1. Hence it trivially
follows than over all bounded-geometric distributions that have the same N, Cn is maximum
when p = 1.

The proof for the second result that over all bounded-geometric distributions with the same
N, Cy is minimum when Prax = 0 is rather long and has detailed algebraic manipulation. We
therefore provide it in the Appendix A. The intuitive reason for this result is that the pmf of N

is more evenly “spread” out when Ppax = 0. a

3.5.2 Constraints on Cp

In Section 3.3 we saw that a job with available parallelism & could belong to one of two types
in terms of its demand, either “uncorrelated” with mean A = D and coefficient of variation Cy,
or “correlated” with mean ck and coefficient of variation C,, where ¢ = D/N. The probability

45

that the job is uncorrelated is ¢ = 1 — r? and the probability that it is correlated is 1 — ¢ = r2.
Thus,

E[D?|N = k] gx A2(1+C2) + (1-q) xSk (1+C?)
=2

= 1-r)xD(1+C?) + r*x %km +C2)

. 2
1+ Cﬁ)D2 (1 —r? +1‘2_I.c__—-—2> .
N

Unconditioning on N = k, we get

ED? = (1+ 03)02 Z (1 Y _—k_—5) Dk
k=1 N
_ z

= (1+Cc)D* (1 —r? 4 rz%,->

= (1+CHD{1-r*+1r2(1 +C%)}

= (1+C2)D*(+r3Ch).

As a result,
2
oz =B 1 - qyeraenicd) -1, (3.4)

which shows how Cp is related to C,, 7, and Cy. We see that Cp increases with each of C,, 7,
and C. When there is no correlation (r = 0), Cp is simply C, in which case Cx has no impact
on Cp. At r = 0 any value of Cp is possible between 0 and co since we have no constraints
on C,. However, when r increases so does the influence of Cy on Cp. This causes Cp to
be lower bounded by r2C% and thus for correlated workloads in our model not all marginals
distributions are allowed for D. For example, if 7 > 0 and Cy > 0 it is not possible for D to be
deterministic, since Cp > 0. However, for uncorrelated workloads the distribution of D can be

general including deterministic.

3.5.3 Constraints on S

We first derive bounds for § when 7 = 0 and then derive bounds for S when r = 1. Using
the bounds we examine the qualitative behavior of § with workload correlation. The following
expressions for mean job service time, S, will be useful in deriving bounds for S under 7 = 0 and
r = 1 and in developing interpolation approximations for correlated workloads in Chapters 5
and 6.

46

_ Bpl L _alpl N
= ¢DE [7(N)] + (-0 =E [v(N)] (3.5)
= (1-r)5(r=0) + r*5(r=1), (3.6)

where S(r = 0) denotes the mean job service time (on N processors) when r = 0 and S(r=1)

denotes the mean job service time when r = 1.

3.5.3.1 Results for uncorrelated workloads

When 7 = 0, we have S = DE[1/y(N)]. Assuming v to be concave (which is typical for ERFs)
we derive bounds on E[1/v(N)] and use them to understand the behavior of S as a function of
N. We use the following definition for concave functions (cf. [61]).

Definition 3.5.2 (Concave Function) A function f : (a,b) — IR is called concave if
flaz + (1 —a)y) > af(z) + (1 - a)f(y), forallz,y€ (a,b) and a € (0,1).

Lemma 3.5.1 Given a concave ERF v, we have for a given value of N that
1 1 1 P-N N-1 1
=< = < Bl < + R
+(N) [7(N)] P-1 P-1 %(P)

Proof. Since y(z) < z, for 0 < £ < P, we have 1/z < 1/v(z) and thus 1/N < 1/4(N). Since
« is concave, 1/v is convex [61]. Therefore by Jensen’s inequality

1 1
L <& [] .
7(N) 7(N)
For integer N this bound is attained when N is constant for all jobs, that is, N = N.
To derive the upper bound on E[1/7(N)] we proceed as follows.

E[1/v(N)] = Zpk Zpkg(k (3.7)

where g(z) = 1/7(z). Since g is convex we choose a = (P — k)/(k — 1) so that
P-k 1+ k-1 1
P-1 P-1 ~(P)

g(k) = gla-1+(1-a)P) < ag(l) + (1 - 2)g(P) =

Using this upper bound for g(k) in (3.7) we get,

P P-k k-1 1 P-N N-1 1
1/7(N>1<Zpk(+P-1.7(P)) P-1 P-1 7P)

This upper bound is attained when N can take only one of two values, either 1 or P. n

The bounds on E[1/v(N)] from Lemma 3.5.1 yield the following bounds on S.

47

Theorem 3.5.3 (Bounds on S when r = 0) For a concave ERF v, we have for a given value
of N that when r =0

Il <l

< 2

N ~ ~(N)

- —(P-N N-1 1
< < . .
SR D(P—1+P—1 v(P))

For the linear ERF the bounds on S reduce to the following form:

Corollary 3.5.1 For linear ERFs, we have for a given value of N that when T =0
D <§<D (1 - -JY-I—1> :
N

The implications of Theorem 3.5.3 are that at r = 0, S is minimum when Cy = 0 and
T is maximum when Cy is maximum. (Note from Theorem 3.5.1 that for a given N,Cy is
maximum when N is either 1 or P which is also the case when S is maximum.) This result seems
to contradict a result by Nelson in [50] which shows that for a workload with i.i.d. exponential
task service times, S is minimum when Cy is maximum. However, the i.i.d. task service
time model is a fully correlated workload, whereas Theorem 3.5.3 was derived for uncorrelated
workloads. We will see below that for fully correlated workloads we can get the same result as

Nelson.
3.5.3.2 Results for fully correlated workloads
Now consider the case where r = 1, that is, we have a fully correlated workload. We note

from (3.5) that at r = 1, we have _
5=2g [—N-—] :
N

Y(N)
Thus when r = 1, to derive bounds on § we need to derive bounds on N, /v(N). N/v(N)is
often concave for many ERFSs, e.g., for the ERF (k) = k¢ where 0 < ¢ < 1, and for the ERF
v(k) = (1 + B)k/(k + B) where 0 < 8 < co. For concave N/4(N) we have the following bounds

on E[N/7(N)]-

Lemma 3.5.2 If N/y(N) is concave then for a given N

< . <
I<H—T*+7-1 79 =%

P-N N-1 P {N]

Proof. We first prove the upper bound on E[N/v(N)]. Since N/7(N) is concave —N/v(N) is

convex and it follows by Jensen’s inequality that

7% ~*[50]

48

which leads to the upper bound of the lemma. For integer N the upper bound is attained when
N is constant for all jobs, that is, N = N.
To derive the lower bounds on E[N/v(N)] we proceed as follows.

P

P
EIN/2(V)) = Y- peris = Y- pea(h) (3.8)
k=1 k=1

where g(z) = z/v(z). Since g is concave we choose a = (P — k)/(k — 1) so that

Pk k-1 1
P-1 " P-1 4P)

g(k) =g(a 1+ (1 -a)P) > ag(l) + (1 - a)g(P) =

Using this lower bound for g(k) in (3.8) we get,

P P-k k-1 1 P-N N-1 P
E[NM(N)]Z’;Pk(p..l*’p._1'7(P)>“P—1+P~1'7(P)'

This lower bound is attained when N can take one of two values, either 1 or P. Finally, since
v(P) < P, we have
1.

P—-ﬁ_{_ﬁ—l' P S
P-1 P-1 4P~

Lemma 3.5.2 readily yields the following bounds on § when r = 1.

Theorem 3.5.4 (Bounds on S when r =1) If N/v(N) is concave then we have for a given
N that whent =1

D
= N\P-1 P-1 ~P)) — = 4N)

From Theorem 3.5.4 we have the following corollary, where we use v to denote a linear ERF.

=l

E(P-"N‘ N -1 P) —

Corollary 3.5.2 If v is a concave ERF such that N/v(N) is concave, then for a given N

< %E[fm]ﬂ(mw < 5E[;771-ﬁ]=-5(r=0,7),

=2l

Sr=1,)=

where v* is the linear ERF.

Proof. The lower bounds for S(r = 1,4) follow directly from Theorem 3.5.4. For the upper
bound on S(r = 1,7) note that from Theorem 3.5.4 S(r = 1,%) < D/4(N) which from Theo-
rem 3.5.3 is less than or equal to S(r = 0,7). a

49

The implications of Theorem 3.5.4 are that if N/v(NN) is concave, then for fully correlated
workloads S is maximum when Cy = 0 and S is minimum when Cy is maximum. (Cy is
maximum when N can take one of two values either 1 or P.) This concurs with Nelson’s result
fori.i.d. exponential task service times. We also note from Corollary 3.5.2 that for a concave ERF
+ such that N/y(N) is concave, S(r = 1) < S(r = 0). That is, if D and N remain unchanged
mean service time decreases with workload correlation. For example, for the linear ERF we have
N/+*(N) = 1 which is trivially concave and thus §(r = 1) = D/N < DE[1/N] = §(r = 0). For
this example when r = 1 a job with parallelism k£ has mean demand D/N x k and thus mean
service time D/N which is the same for all k. On the other hand when 7 = 0 a job with low
parallelism has higher mean service time than a job with high parallelism and this increase in

variance causes the overall mean service time to increase as compared to the case for r = 1.

3.5.3.3 Summary

To summarize our results we note that for a concave ERF +, for uncorrelated workloads S is
minimum when Cy is minimum and T is maximum when Cy is maximum. For a concave ERF
~ such that N/v(N) is concave, we have that for fully correlated workloads S is maximum when
Cy is minimum and S is minimum when Cy is maximum. For the latter conditions on 7, S
decreases with workload correlation 7. (We only proved S(r = 1) < S(r = 0), but using (3.6) in
addition to this bound shows that that S decreases with 7.)

Chapter 4

The Interpolation Approximation

Approach

In this chapter we pursue our second goal, which is, to develop alternative models of parallel
processor scheduling disciplines. That is, how to develop models for scheduling policies that
are broadly applicable, yield insight into policy performance, and are easy to evaluate for large
systems. Analytic models have the potential to satisfy these desirable features. However, pre-
vious analytic models of parallel processor scheduling disciplines typically involve numerical
solutions of sets of simultaneous equations that grow superlinearly in the number of processors
and/or yields no direct insight into the functional relationship between performance measures
and particular workload parameters. Furthermore, all but one previous models either assume
exponential distributions of job service time (per class if needed) or assume i.i.d. task service
times implying a specific degree of correlation between total job demand and the number of
tasks in a job. These assumptions potentially limit the applicability of the results, and also
prohibit the analysis of how scheduling policy performance varies with workload parameters
that characterize service time distributions and/or correlation.

In this chapter, a new approach is proposed for the modeling of parallel scheduling policies,
that of interpolation approzimations. We reduce parallel processor systems under specific values
of system parameters to single server or multiple server queues with known solutions. Using
these reductions mean job response time formulas are derived that readily yield insight into
policy behavior, and are easy to evaluate for large systems (say hundreds of processors or more).
To illustrate the interpolation approximation approach we use the linear ERF (7") and assume
no correlation between demand and parallelism. We, however, assume a general distribution of
demand, D, and a general distribution of available parallelism, N. no correlation between D

50

51

and N. As per the notation introduced in Chapter 3 our assumptions are (Fy,Fp,r = 0,7Y).
The assumptions of linear ERFs and independence between D and N make it easier to present
our approach and we relax these assumptions for specific policies in the succeeding chapters.
In this chapter example interpolation approximations are developed for the mean response
times of the EQ, FCFS, and PSAPF policies. (Since execution rates are assumed to be lin-
ear, spatial EQS and temporal EQT have the same performance and we generically refer to
them as EQ.) These approximations result in simple closed form expressions that show how
policy performance depends on coefficient of variation in demand, Cp, and on job parallelism
parameters. The approximations are shown to be accurate for most of the parameter space by
means of validations against discrete event simulation and special cases of exact analysis. Sec-
tion 4.1 of this chapter discusses the interpolation approximation approach and surveys literature
that has used interpolation approximations for single server, multiserver, and fork-join queues.
Section 4.2 reduces EQ and FCFS under special cases of parameter values to single server or
multiserver queues with known solutions. Section 4.3 presents interpolation approximations for
the mean response times under each of EQ and FCFS based on the results derived in Section 4.2,
and Section 4.4 does the same for PSAPF. Validations for the interpolation approximations are
provided in Section 4.5 and finally the approximation approach is summarized in Section 4.6.

4.1 Background

In this section we outline the interpolation approximation approach and summarize such ap-
proximations that have appeared in previous literature.

The underlying principle behind interpolation approximations is simple: use the known to
predict the unknown. The first step is to derive exact results under extreme values of system
parameters, for example, light and heavy traffic limits of mean response time, or mean response
times under fully sequential and fully parallel workloads. The next step is to form a function
that interpolates among the extreme points in a way that approximates system behavior. The
interpolation is on the parameter for which exact results are derived under extreme values. In
some cases it is necessary to normalize the measure of interest before forming an interpolation
function, and then “unnormalize” the function to obtain the desired approximation. For exam-
ple, if the interpolation is on system utilization, p, the mean job response time is first multiplied
by 1 — p so that the heavy traffic limit does not go to infinity.

The following is a summary of interpolation approximations that have appeared in previous
literature. Cosmetatos [15] interpolates between the mean waiting time in an M/D/c queue and
in an M/M/c queue to obtain an approximation for the mean waiting time in an M/G/c queue
when the coefficient of variation in service time C; < 1. The parameter of interpolation is C2.

52

(The approximation can be used as an extrapolation for C; > 1.) Burman and Smith [9] perform
a linear interpolation between light and heavy traffic limits of the ratio of the mean delay in a
single server FCFS queue with non-homogeneous Poisson arrivals to the mean delay in an M/G/1
FCFS queue with the same mean arrival rate and service time distribution. In [10] they use a
similar approach to obtain estimates for the mean delay in single server and multiple server FCFS
queues (sequential jobs) with more general arrival processes. Fleming [22] interpolates between
light and heavy traffic limits of the moments of the waiting time distribution in an M/G/1
Round Robin queue. Simon and Willie {73] estimate response time characteristics in priority
queueing networks using interpolation approximations based on simulation and heavy traffic
limits. Reiman and Simon [59], and Reiman et al. [60] provide interpolation approximations for
the moments of response time and queue lengths in a variety of single server queueing systems
using light and heavy traffic limits as well as derivatives of the computed measure at light traffic.
Fleming and Simon [23] derive interpolation approximations for response time distributions in
several single server queues, based on a similar approach. Whitt [87], Fendick and Whitt [21]
interpolate between light and heavy traffic limits to obtain approximations for a measure they
call mean steady-state workload (or virtual waiting time) in a GI/G/1 queue and in general single
server queues without independence conditions. Varma and Makowski [83] propose interpolation
approximations (on system utilization) for the mean response times of a symmetric fork-join
queue (FCFS scheduling in each queue) with general inter-arrival and service time distributions.

Although interpolation approximations have been used for the analysis of single server, mul-
tiserver, and fork-join queues, we have not encountered the use of this technique for the analysis

of parallel processor scheduling policies.

4.2 Reductions to Known Queueing Systems: Examples
for EQ and FCFS

In this section we show how the parallel system model, under the FCFS or EQ scheduling policy,
reduces to queueing systems with known solutions for particular extreme values of the model
parameters. We first review the queueing systems with known solutions that are used in the
reductions. We then present the reductions followed by a summary of the results obtained from

these reductions.

4.2.1 Queueing Systems with Known Solutions

Consider an open multiserver queue with sequential work as shown in Figure 4.1. We consider
the special case of an M/G/c queue in which jobs arrive according to a Poisson process with rate

53

), and have i.i.d. service times with mean T and coefficient of variation C. Server utilization is
given by p = AT/c, where c is the number of servers. We assume that the scheduling discipline

is FCFS unless otherwise stated.
servers

Q O arrivals departures

O

Figure 4.1: Multiserver queue with sequential work

There is no known exact solution of the mean response time of the M/G/c (FCFS) queue.
As a result there have been a number of approximations for By /G /c in the literature (64, 77, 79,
88, 89]. Of particular interest to us is the simple approximation proposed in [64] for the mean
number in a GI/G/c queue, which leads to the following approximate formula for EM/G /et

pVA(1 4+ C)
20(1-p)

_R-M/G'/c ~ I+ (4.1)

Note that this approximation is exact for ¢ = 1 and ¢ = co. Using this approximation and the
fact that Rp/G/c ps = Ras/m/c 65], one can derive the following approximation:

_ D

RM/G/c ps = T+ m (4.2)
This approximation has a much simpler form than the exact expression for mean response time
in the M/G/c PS queue. It is also exact for ¢ = 1 and very accurate as shown by validations
in [64] for the M/M/c queue. We use the approximate expressions given by (4.1) and (4.2) for

the reductions in section 4.2.2.

4.2.2 Reductions for EQ and FCFS

We consider two cases of reductions. First, when available parallelism, NN, is constant across all
jobs, for both FCFS and EQ. Second, light and heavy traffic limits, where the heavy traffic limit
is derived for EQ and for a restricted case for FCFS.
4.2.2.1 Constant Available Parallelism (N = k)

By constant available parallelism we mean that N = k, for all jobs in the system, where
k € {1,...,P}. The mean response time under EQ and FCFS for N = k, when k evenly divides

P is given by the following proposition.

Proposition 4.2.1 For the workload assumptions (Fy,Fg,r = 0,4"):

_REQ(N == k) = RM/G/C PS» C s Pmodk =0. (43)

e

Rpors(N =k) = Ru/c/e c , Pmodk=0. (4.4)

In particular,

Rpqg(N =1)=Ryg/p ps: Req(N =P) =Ru/c/s ps
Rrcrs(N =1)=Ryjgp, Rrers(N = P) =Rua,

Proof. First consider the proof for the EQ reduction. Let I' = (EQ,N = k,F3,r = 0,7}),
where P mod k = (0. When there are ¢ < ¢ jobs in I, each job receives k amount of processing
power. When there are @ > ¢ jobs'in I, each job receives P/Q) amount of processing power.
This is how a processor sharing (PS) discipline allocates processing power to jobs, when there
are c servers, each with a processing power of k. (Note this reduction is valid only for the linear
ERF.)

Now consider the proof for the FCFS reduction. Let I' = (FCFS,N = k,F%,7 = 0,7}),
where P mod k£ = 0. System I" operates as follows. A job that arrives when system I' is empty
gets k processors. Subsequent jobs that arrive also get k processors unless all processors are
occupied. When a job departs it releases all k¥ of its processors as a single unit. The first
job waiting in the queue (if any) thus gets all ¥ processors released by the departing job, and
so on. Since processors are allocated and released in units of k, the system I" behaves like an
M/G/c system with ¢ = P/k processors, in which each job has one task with service requirement
z = D/k. (Note this reduction also holds for nonlinear ERFs.) |

From Proposition 4.2.1 we estimate the mean response time of EQ when N = k and P mod
k = 0, by using expression (4.2) with Z = D/k, and the mean response time of FCFS by using
expression (4.1) with T = D/k and C, = Cp. Thus, we have,

Reo(N=k) =~ §+2(—C+1) c—f- Pmodk=0
EQ - ~ k A(l"“p)’ _k’ =
- D pVEH(4l P
Rrcrs(N =k) =~ —I;-’rp 2A(1(~p) D), c= 7, P mod k =0,

55

where p = AD/P. These expressions can be evaluated even when c is not an integer. Therefore,

we use the same approximations with ¢ = P/k even when P mod k # 0, to get

D p\/2(§+1) L
-k~+—:\—(—1—-——_/;)—’ =12,...,P (4.5)
D pVAETD(1+03)

Rrcrs(N=k) =~ Tt) ,

Rpq(N =k)

Q

k=1,2,...,P. (4.6)

Note that both these approximations are exact when N = P since approximations (4.2) and (4.1)
are exact for ¢ = 1.

An important observation from approzimations (4.5) and (4.6) is that Rgq(N = k) depends
only on mean demand (D), whereas Rrcrs(N = k) depends on C% as well as D.
4.2.2.2 Light and Heavy Traffic Limits (p=0,p=1)

At light traffic, that is, p — 0, the mean response time under each of EQ and FCFS is
simply the mean job service time on N processors, S. Due to the assumption of linear execution
rates, the service time of a job with available parallelism of N is D/N. Since D and N are
independent, the mean job service time is given by

;i_g% Rpqg = lim Rrcrs =S = DE[1/N]. (4.7)

We present an informal derivation of the mean response time under heavy traffic for the EQ
policy. A more rigorous derivation is given in Chapter 5. At heavy traffic, an arriving job finds
more than P jobs in the system with probability 1 as p — 1. The EQ policy allocates an equal
fraction of processing power to all jobs if there are more than P jobs in the system. Hence the
processing power allocated to each job in the system is less than 1 when p — 1, in which case
only the total job demand matters for mean response time and not the available parallelism. In
particular, when p — 1 the mean response time in the system for any distribution of N reduces
to the mean response time when N = P. By Proposition 4.2.1, Rpq(N=P) = -RM/G/I,, ps =
(D/P)/(1 - p), which follows from setting ¢ = 1 and T = D/P in (4.2). Thus, we obtain the
following heavy traffic limit!: _

im (1-p)Beq = 3. (48)

We do not have a corresponding heavy traffic limit for the FCFS policy. However, for the
case of constant available parallelism we can obtain the following approximate heavy traffic limit
from (4.6): _
a+¢p)D

2 P’

1The independence assumption between D and N simplifies the derivation, but the result also holds for
correlated workloads.

;iml(l —-p)ﬁpcps(N =k) ~ k=1,2,..., P,

56

which we note does not depend on k.
4.2.2.3 Summary of Results for EQ and FCFS

To summarize the results of the reductions derived thus far, Figures 4.2a and 4.2b plot the
normalized mean response time?, F(p,k) = (1 — p)Re(p, N = k), ¥ € {EQ, FCFS}, where
k = 1,2,..., P denotes the fixed value of parallelism assumed for all jobs. The curves are
plotted for P = 100, and mean job demand D = P = 100. Figure 4.2a contains the curves for
the EQ policy, and for the FCFS policy when Cp = 1. (Note that the EQ curves hold for all
values of Cp, and that the reductions for the FCFS policy yield the same values when Cp = 1.)
Figure 4.2b contains the curves for the FCFS policy when Cp = 5.

Several points are worth noting about the results in Figure 4.2. First, for both policies and
all values of Cp, F(0,N) = DE[1/N], which is equal to D/k when all jobs have parallelism k.
Second, since F(1, N) is equal to D/P for EQ and F(1, N = k) is equal to D(1 + C%)/(2P) for
FCFS, the curve for normalized mean response time at p = 1 is flat in both plots. Finally, for
the EQ policy F(p, P) is equal to D/P, which yields a curve of constant value for N = P in
Figure 4.2a.

In Figure 4.3a and 4.3b, we have plotted the normalized mean eztra time, G(p,k) = (1 —
p)Xw(p, N = k), for constant parallelism k¥ = 1,2,..., P, and all other parameters as in Fig-
ure 4.2a. The extra time, X = R — §, is the time spent in the system other than the service
time S. In other words, X is the penalty incurred due to resource contention. The mean extra
time is thus given by X = R — 5, which equals R — D/k when N = k. Note that the range on
the Y-axis in Figure 4.3b is 13 times that in Figure 4.3a due to the influence of C% on system
performance for the FCFS policy. We observe that G(p, N) is constant at extreme values of p
(0 at p = 0 and D/P at p = 1). For extreme values of N, it is linear for N = P, but highly
convex for N = 1. That is, when N = P, G(p, P) = pD/P for EQ and p(1 + C3)/(2P) for
FCFS, and when N = 1, G(p,1) = (1 — p)W pr/m/p for EQ and (1 - p)WM/G/p for FCFS as
seen from Proposition 4.2.1.

In the next section we will interpolate between the response time and extra time values
obtained for particular points in the system parameter space. The plots in figures 4.2 and 4.3
will aid in determining how the interpolations should be constructed.

2The reason for normalizing the mean response time is that we can observe the behavior at low as well as
very high utilizations on the same plot.

F(rho,N) F(rho,N)
100

40 40
N=k 0 80 75~70 N=k 60 8075~
(a) EQ, Cp > 0 (b) FCFS, Cp =5
FCFS,Cp =1

Figure 4.2: Normalized Mean Response Time

D=P=100

(a) EQ,Cp 20 (b) FCFS, Cp =5
FCFS,Cp =1

Figure 4.3: Normalized Mean Extra Time

D=P=100

58

4.3 Example Interpolation Approximations for EQ and
FCEFS

In this section we use the reductions of the previous section to derive interpolation approxi-
mations for Rpg and Rrcrs that hold over the entire range of the system parameter space.
We first consider interpolation on p to derive an approximation for -}igq. Second, we consider
interpolations on N for both policies. Third, we derive interpolations on the distribution of N,
p = (p1,-.-,pp), for both policies. The interpolations are followed by validations using simula-

tion and exact analysis. All three interpolations for EQ are exact when p — 1, i.e., they yield
the heavy traffic limit for EQ given by (4.8).

4.3.1 Interpolation on p: EQ

Let F(p) = (1 — p)Req(p). The light and heavy traffic limits, F(0) and F(1), are given
in equations (4.7) and (4.8) of Section 4.2.2. Figures 4.2(a) and 4.3(a) suggest that a linear
interpolation between F'(0) and F(1) would be more accurate than a linear interpolation between
G(0) and G(1), and that the former interpolation may be reasonably accurate (particularly for
workloads with moderate to high parallelism). We thus proceed to define this interpolation.

A linear interpolation between F(0) and F(1) yields the following estimator for F(p):

F(p) = (1-p)F(0)+pF(1)
(1-p)S +pD/P.

Dividing F(p) by (1 — p) we obtain the desired estimator,

= A F(p)
REQ~R%Q = -i-?;
_ 5,20
= S+l—pP
= [1 D

This approximation is exact for the special case when N = P, which is easily seen by comparing
equations (4.5) and (4.9) when N = P.

4.3.2 Interpolation on N: EQ and FCFS

The next interpolation is applicable to both policies and uses the results derived in Section 4.2.2
for extreme values of available parallelism (N = 1 and N = P), where N = 1 and N = P,
respectively. Figures 4.2 and 4.3 suggest that a simple linear interpolation on N is likely to be

59

more accurate if the approximation is for the mean extra time than for the mean response time,
particularly for light to moderate traffic. We thus proceed to define this interpolation.
Let ¥ denote one of EQ or FCFS, and let Xy = Ry — . A linear interpolation on N yields
the following estimator for Xy,
¥ (P-N N-1\ = =
XV = —=—— =1 —_— = .
7= (E0) m@=-n+ (57 Te@=») (410)
where X¢(NV = 1) and X¢(N = P) are derived from equations (4.5) and (4.6), by setting k =1
and k= P, ie.,

o V2(P+1) D
Xpq(N=1)= li\(l-— PR Xeq(N = P)“rﬁ“;p
- = pVEPHD(4+ CB) p(1+C3) D
Xrers(N=1)= i—p) Xrcrs(N =P) = S0=p) P’

Substituting the above values in equation (4.10), the full interpolation approximations are:

3 . P N p,/z(P+1 N-1 p D
~ N - D
B _ _ PN\ pV2PH) (N -1 D) [(1+CE
RFCFSzR¥CFS=DE[1/N]+{(P—-1)p)\(l—-p)+<P—1> - ?}(20)'
(4.12)

Note in the above approximations that XN FCFS = X o1+ C3)/2.

4.3.3 Interpolation on the pmf of N: EQ and FCFS

We now derive interpolation approximations for EQ and FCFS that use all of the reductions
for constant available parallelism, N = k for k¥ = 1,2,..., P, derived in Section 4.2.2. These
approximations are more accurate than the previous interpolations on N, as will be shown by
validations.

The systems with constant parallelism have extreme values for the distribution of N, that
is,p=¢, 1< k < P, where g, is a vector of length P having a 1 in the kt* component and 0's
for all other components. An interpolation through the mean response times at these extreme
points (Ry (N = k)) yields the following form of approximation for both policies.

P
~ RE = qu,(N =k).

ll

. 60

From approximation (4.5) for Rgq(N = k) (Section 4.2.2) we get

ot (p wAEE B[
R‘%Q = kz:;lpk {Z- + %(—i—-_—-pT} = DE[1/N] + ——[/'\'(—1—:‘;)——". (4.13)

Similarly, from approximation (4.6) for Rrcrs(N = k) (Section 4.2.2) we get

5 SET1402)| B [pvaF] -
{2+” (1+CD)}=DE[1/N]+ [,\(1-p) - <1+202D). (4.14)

P
AP
Rpcps = ZPk

SPNE T - 2

We again note that X%, pg = X%Q(l + C%)/2.

As in the interpolations on p and N, the interpolation on p is an ad hoc approximation.
There is, however, reason to believe that it can be more accurate. First, it uses P data points for
interpolation as compared to 2 each for the interpolations on p and N. Second, from Figure 4.2
we note that the mean response time of EQ and FCFS when N = k changes very gradually with
k in the range of moderate to high k. A linear combination of these mean response times could
thus be expected to be an accurate estimator for workloads where all jobs have moderate to high
parallelism. Third, when N takes on one of two extreme values, either 1 or P, the interpolation
on p reduces to the interpolation on N. Thus we might expect the interpolation on p to be
accurate when Cy is low (e.g., constant N or N between two values of k that are moderate to
high) and to perform as well as the interpolation on N when Cy is high (e.g., N takes on one
of two extreme values). Validations will show that this intuition is largely correct and that the
interpolation on p is in fact significantly more accurate than the interpolations on p and N.

4.4 Example Interpolation Approximations for PSAPF

In this section we consider interpolation approximations for the PSAPF policy. The analysis
using interpolation approximations thus further illustrates the utility of this approach for analyz-
ing and understanding the relative performance of parallel scheduling policies. We first present
reductions for PSAPF and then use the reductions to derive interpolation approximations for

Rpsapr.

4.4.1 Reductions

We derive reductions for PSAPF under the case of constant available parallelism. When all
jobs have the same available parallelism the PSAPF policy reduces to simple FCFS scheduling.
Hence the reductions for PSAPF when N = k are the same as the reductions for FCFS that

61

were presented in Section 4.2.2. Thus,

P mod &k =0.

—_ —_ P
Rpsapr(N =k) = Rmcre, =1

In particular,

Rpsapr(N =1)=Ryyg/p, and Rpsapr(N = P) = Ruyyayi,-

Using the M/G/c approximation in (4.1), the reduction for Rpsapr(N = k) is thus as in
(4.6), i.e.,
- D pVEEHI(1+C2)
R N=k)=x — D
psaPF() Ai—p)
Note that the fact that PSAPF reduces to FCFS when all jobs have constant parallelism

enables the use of interpolation approximations to analyze a policy that might otherwise be

k=1,2,...,P. (4.15)

very difficult to analyze. Also note that the reductions for the PSAPF policy are summarized
in Figures 4.2 and 4.3.

4.4.2 Interpolation Approximations

The estimates for Rpsapr(IN = k) can now be interconnected to yield interpolation approx-
imations for Epsapr Over the entire parameter space. As before, the reductions at constant
parallelism provide the basis for two types of interpolations: (1) interpolation on N between the
endpoints Xpsapr(N =1) and X psapr(N = P), and (2) interpolation on p among all of the
reductions Rpsapr(N = k). Furthermore, since the workloads analyzed in this paper have no
correlation between demand and parallelism, we will again derive a simple linear interpolation

on N and a simple weighted sum interpolation on p, yielding:

oo = (P=-N\= - N-1\= -
REsapr =~ S+ (—}3—_“1'> Xpsapr(N =1)+ (—15—:7> Xpsapr(N = P) (4.16)
= , P-N)\ pV2P+D N-1\ p Dl [1+C}
- DEWN“’{(P-—l)A(l-—p) +(371) ihmy (B2 e
and
Ap P —
Regupr =~ D peRpsapr(N =k) (4.18)
k=1
B[pV*F] 14
~ D : D). 19
DM+ = (C7) (419)

Note that these approximations are identical to the corresponding interpolation approxima-
tions for mean response time under the FCFS policy. One might expect lower accuracy in the

62

simple interpolations for the PSAPF policy, since the interpolations do not reflect the priority
given to jobs with lower available parallelism. However, there are specific cases where FCFS and
PSAPF can be expected to have similar performance (e.g., exponential job demands and high
system utilization), and a previous simulation study [41] has shown that for specific distributions
of D and N, PSAPF is not significantly better than FCFS when D and N are independent and
when Cp < 5. We thus believe that it is worthwhile to start with the simple interpolations,
and to improve upon these interpolations if validations show that improvement is needed. Note
that if the simple interpolations validate well, then the interpolation approximations yield the
substantial insight that the FCFS and PSAPF policies generally have similar performance when
demand and parallelism are uncorrelated.

4.5 Model Validations

We validate the analytic interpolation approximations for the mean response time under EQ,
FCFS, and PSAPF against simulation results and against special cases of exact analysis. We
first provide the parameter settings for the validation experiments, after which we present a

summary of validations, and finally we present error plots for example parameter settings.

4.5.1 Validation Parameter Settings

For all validations, D is set to P. We varied the other model parameters as follows:
(i) P: 20,100,500,and 1000.

(i) F%: Exponential, and 2-stage Hyperexponential (H;) with Cp = 5.
As will be shown, the inaccuracy of the approximations for the FCFS policy increases as
Cp increases. Thus, Cp = 5 serves as a stress test for those approximations. We also ran
a few test experiments, and found no appreciable difference between the observed errors
for cases with deterministic or two-stage Erlang demand distributions compared to cases
for the exponential distribution, and no appreciable differences in observed errors for cases
with Gamma (Cp = 5) distributions of job demand as compared with the cases with Hs.

(ili) p: 0.1t0 0.9. (Since D= P, p=X.)

(iv) Fn: bounded-geometric, constant, and uniform. In the validations we ensured coverage

of extreme values of Cy and N which served as stress tests.

Table 4.1 and 4.2 list the parameter settings for all distributions of N considered in the
validations. In Table 4.1 the parameter settings for the bounded geometric distributions

63

are arranged in three groups of three, and within each group in decreasing N. As shown
by Theorem 3.5.2, for a fixed value of N, the bounded-geometric distribution with lowest
Cy has Ppax = 0.0 and the bounded-geometric distribution with highest Cy has p = 1.
Thus, the first group of three are low Cy workloads, the last group are high Cy workloads,
and the middle group are workloads with intermediate Cy. There are fewer workloads
in Table 4.2 than in Table 4.1 mainly because the simulations were very time-consuming
for P = 500,1000. However, workloads for which significant errors were observed in the
approximations at P = 20, 100 are also included in the P = 500, 1000 experiments.

Table 4.1: Validation Workloads for N: P=20,100

Distribution Parameter Settings
Bounded- Prax 0 0 0 1 1 d 9 5 1
Geometric P 005 1/(5P) 1/(1P) 01 1/(4P) 9 1 1 1

Constant N=1, N=P/4, N=P/2, N=3P/4, N=P
Uniform (P/2,P), (L,P), (1,P/2)

Table 4.2: Validation Workloads for N: P=500,1000

Distribution Parameter Settings
Bounded- Proz 9 1 1
Geometric p 1 1/(4P) 9

Constant | N=P/10, N=P/4, N=P/2, N=3P/4, N=P
Uniform (L,P), (1,P/2)

All approximations were validated against exact analysis when N = k, and against simula-
tion otherwise. Exact estimates for Rgg(N = k) were obtained by reducing the system to a
symmetric queue [30] (see Theorem 5.1.1 in Chapter 5). Exact estimates for Rrcrs(N = k)
or Rpsapr(N = k) for H; demand distributions were obtained using matrix-geometric analy-
sis [56, 51, 75]. For the estimates obtained by simulation almost all had 95% confidence intervals
with less than 5% half-widths [37]. To obtain the confidence intervals, we used the regenerative
method for many of the data points and the method of batch means whenever the regenerative

method was too time consuming.

64

4.5.2 Summary of Validations

Figures 4.4, 4.5, and 4.6 present histograms that summarize all of the validation experiments
for the EQ, FCFS, and PSAPF approximations discussed in this chapter. The total number of
data points for the EQ validations was 306 for P=20,100, and 172 for P=>500,1000. The same
is true for FCFS and for PSAPF at each value of Cp = 1 and Cp = 5, thus leading to a total
of 956 validations for each of FCFS and PSAPF.?

First, consider the EQ histograms in Figure 4.4. Since simulation estimates for Rpq were
statistically the same for different values of Cp we do not specify any value of Cp in the
histograms for EQ. We observe that all three approximations for REQ are fairly accurate for
small and large numbers of processors, and that the interpolation on p has extremely low error
for all cases examined. In fact, the maximum relative error that was observed for R%Q was only
—92.6%. The interpolation on N tends to underestimate Rzq and the interpolation on p tends
to overestimate Rgg. These trends can be predicted from the plots in Figure 4.3a. The worst
case errors for the interpolation on N were for (N = P/4, p = 0.9). This is consistent with the
data in Figure 4.3a, noting that the error at higher p will be magnified when the normalized
mean extra time is divided by 1 — p. The worst case errors for the interpolation on p were for
(N = P/4, p = 0.7), which is also consistent with the data in Figure 4.3a, noting that as N
decreases the mean response time is dominated by the mean job service time (e.g., at N = 1).
Note that for these cases of constant N the interpolation on p is extremely accurate.

Now consider the FCFS histograms in Figure 4.5. We first note that for Cp = 1 the FCFS
histograms are almost the same as the EQ histograms. The worst case errors at Cp =1 for
R]ch g were for the same workloads as the worst case errors for RJIEVQ. Comparing the results
for Cp = 5 we note that the performance of both the FCFS approximations degrades with Cp.
However, most of the data points are still within an acceptable range of error, i.e., within -5% to
35% error for the interpolation on p and within £35% for the interpolation on N. We also observe
that in general the interpolation on p is more accurate than the interpolation on N and that
the interpolation on p overestimates mean response time (i.e., is conservative) in the majority
of cases examined. At Cp = 5, the worst case errors for the interpolation on N were located at
(P =100, N =75, p=0.2) and (P = 1000, N =100, p = 0.9). Interestingly, the worst case
errors for the interpolation on p were also located at constant NV, that is, (N =3P/4, p=10.2).
This is non-intuitive since A;C pg interpolates among Rrcrs(N = k) and we had an off-the-
shelf solution available for Rrcors(N = k). The explanation is that approximation (4.6) for
Brcrs(N = k) turns out to be somewhat inaccurate at high Cp, low to moderate utilization,
and k between P/4 and 3P/4. The trade-offs between accuracy and simple approximations that

3Many simulation experiments were run on the Condor distributed system (6].

65

eP 100 Interpolation on p 5 100; Interpolation on p
r - -
g B Interpolation on N é B Interpolation on N
n 751 [Interpolation on p n 45 [Interpolation on p
- t 7 -~
Q Q
f f
p 50 D 50
a a
t t
a a 3
0 251 ?P 25
8 8
0 . P ; = oy ; b L F
35% -25% -15% -5% 6% 16% -50% -35% -25% -15% 5% 6% 16%
to to to to to to to o to to to to _ to
26% -16% -6% 5% 15% 20% 36% -26% -16% 6% 5% 15% 20%
Relative Errors Relative Errors
(a) P=20,100 (b) P=500,1000

Figure 4.4: Summary of Validations: EQ

readily yield insight still favor the use of this available solution for the M/G/c queue, but the
validation results suggest that the approximation for FCFS scheduling in a parallel system could
be improved if a more accurate closed-form approximation can be found for the M/G/c queue.

Figure 4.6 presents histograms that summarize the validations of the PSAPF approximations.
From Figure 4.6 we observe that the relative errors in the PSAPF approximations are very
similar to those for FCFS in Figure 4.5. In particular, the interpolation on pis highly accurate at
Cp = 1, the overall accuracy of both PSAPF approximations degrades with Cp, and at Cp =5
the interpolation on p tends to overestimate mean response time whereas the interpolation
on N shows no strong tendency towards underestimation or overestimation of mean response
time. We note that at Cp = 5 the errors for PSAPF are somewhat higher on average than
those for FCFS. The worst case errors for R% apr and R% sapr in the P=20,100 histogram
for Cp = 5 were located at (P = 100, N = Uniform(50,100), p = 0.3,0.4). The worst case
errors in the P=500,1000 histogram for Cp = 5 were located at (P = 1000, N =100, p = 0.9)
for the interpolation on N, and (N = 3P/4, p = 0.2) for the interpolation on p. Thus, the
approximation tends to be most inaccurate for workloads with constant parallelism or with very
low values of Cn.

One source of the error for RPSAPF at high values of Cp is that we used approximate
estimates at the end points N = k as given by (4.15) instead of exact solutions: To estimate the

amount of error due to this factor we computed exact solutions for Rpsapr(N = k) by means

P 100} B p
© B Interpolation on N ¢
¢ (] Interpolation on p ¢
0751) n 75
0 0
f f
p 204 D 50
a a
t t
a a
n n
t t
s s
0 - |
35% -25% -15% -5%
to to to to
26% -16% 6% 5%
Relative Errors
(a) Cd=1: P=20,100
p 100t _ £ 100
¢ M Interpolation on N é
£ .
25l O Interpolation on p R s
; :
?
D 50 9 50
a {
;, ;
(? 25 (})l 251
! :
0

100r pm Interpolation on N

(] Interpolation on p

olm M N I

T55%-35% -15% -5% 6% 16% 36% 56%

to to to to to to to to
-36%-16% -6% 5% 15% 35% 55% 70%
Relative Errors

(c) Cd=5: P=20,100

-50% -35% -25% -15% -5%
o to to to to
36% -26% -16% 6% 5%

Relative Errors

(b) Cd=1: P=500,1000

B Interpolation on N
[J Interpolation on p

1

0
-15% -55% -35% -15% -5% 6% 16%

to to o to to to to
-56% -36%-16% -6% 5% 15% 35%

Relative Errors

(d) Cd=5: P=500,1000

Figure 4.5: Summary of Validations: FCFS

66

P 100) _ P 100l
¢ B Interpolation on N ¢
¢ {3 Interpolation on p g
e i
n 75 {1 75
t
0
2 £
D 50 g) 50
7 t
i a
Pas Pas
: B
t t
] 5
0

P 1004 _ P 100
¢ M Interpolation on N e
c (J Interpolation on p c
%75 - ¢
It] | t 754
Q Q
£ f
D 50 D 50
a a
! T
a a
§ 254 P as]
l n
¢ :
§ s

L s [
-35% -25% -15% -5%

M Interpoiation on N
] Interpolation on p

to to to to
26% -16% -6% 3%

Relative Errors

(a) Cd=1: P=20,100

50% -35% -25% -15% -5%
{o to to to to
36% -26% -16% -6% 5%

Relative Errors

(b) Cd=1: P=500,1000

B Interpolation on N
{3 Interpolation on p

(]
55% -35%-15% -5% 6% 16% 36% 56% 76%
to to to o to to to to o
36%-16% -6% S% 15% 35% 55% T75% 135%
Relative Errors

(c) Cd=5: P=20,100

Figure 4.6: Summary of

5% -55% -35% -15% -5% 6% 16% 3“6)% fg%

o to to to to to to
-56% -36% -16% -6% 5% 5% 35% 55% 65%
Relative Errors

(d) Cd=5: P=500,1000

Validations: PSAPF

67

68

of matrix-geometric analysis and then used the same interpolation methods as (4.16) and (4.18).
Using this approach for P = 20, 100 we found that worst case errors (for Uniform N) at Cp =5
went down to about 60% and in the great majority of cases examined the approximation is
within 15% of the simulation estimates. Although the use of exact solutions at the end points
improves the accuracy of the PSAPF approximations, we note again that the exact estimates
at N = k are obtained using numerical analysis and thus they yield no direct insight into
policy behavior as a function of the system and workload parameters. Since for most cases
the simple approximations have relative error within —~35% to 35% range, these approximations
are sufficiently accurate for policy insights and comparisons. In Chapter 6 we improve on the
interpolation approximations for PSAPF by modifying the interpolation on p to account for the

priority given to jobs with smaller parallelism.

4.5.3 Example Validation Experiments

To illustrate how the interpolation approximation accuracy varies with various model parame-
ters, we present example plots of relative error versus utilization for specific distributions of N,
specific values of P, and in the case of FCFS and PSAPF, specific values of Cp. The distribu-
tions of N considered are bounded-geometric with parameter settings given in Table 3.2. Note
that these workloads have high (H), moderate (M) and low (L) average parallelism, respectively.
We found the errors for these three workloads to be fairly representative for bounded-geometric
distributions. We observed that the accuracy of the interpolation on N decreases with decrease
in Cy, this is also true for the uniform distribution. For the constant N distribution Cp is
lowest and the errors were also higher for the interpolation on N. For the interpolation on p the
constant N distribution reflects errors in the reductions rather than in the interpolation itself.

In Figures 4.7a and 4.7b we plot the relative percent error for each of the three interpolation
approximations for EEQ as compared to simulation estimates, for the H, M, and L workloads.
These figures show that, as expected, the interpolation on p accurately predicts Rgg for the
H workload, but overestimates REQ for the M and L workloads. The interpolation on N is
accurate for the H and L workloads as expected, but it underestimates '.T?:EQ for the M workload.
The interpolation on p is the most accurate approximation and its estimation is very close to
the simulated values.

Figure 4.8 presents example percent errors for the FCFS interpolation approximations for
Cp = 1,5 and P = 100. We observe that the interpolation on p performs fairly well for all three
example workloads, with errors within 10% of the simulation estimates for both low and high
Cp. The interpolation on N performs as well for the H and L workloads, but its accuracy is
significantly lower for the M workload when p > 0.5.

Figure 4.9 presents example percent errors for the PSAPF approximations forCp = 1,5 and

- X R R Kar)

= C -

~Emo0mMOY

ERRaBu e

@& I[nterpolation on p
&—a Interpolation on p

o--0 Interpolation on N

81 -t
] M 2 ° .
e |
OB g ‘;sﬂ\ .
] - ’
G . §]
.8 s
4“ H e G & =] F o o -
OT— o S -
00 02 04 06 08 1.0
(a) P=20

A2 000 T

= C =t~ [T

o -a [nterpolation on p
a—-a Interpolation on p

o--o Interpolation on N g

Y o R

g8 8

-)

1 g8 8 ;
0 gl gy
| *G‘\ '
M % /

\Q II

\\ ,Cbl

‘g

(b) P=100

Figure 4.7: Example Validations for EQ

&——s Interpolation on p

o--0 Interpolation on N

Ot—a a—er
—4 me\o
O‘M
-4 "'\G
-8 M "o
R
-16 N
[- S S S——
44 H ‘é—‘e\e\u
0.0 ' 0.2 04 p 0.6 038 1.0
(a) Cp=1

~ES 000

- QO =t = [T

&—= Interpolation on p

o--o [nterpolation on N

M 0
-16 \\
224 9
4 AN ,Q
-32] ‘o-0

-4 :‘ I_; Wﬂ(ﬁ

0.0 ' 0.2 l 0:4 p 0.6 038 ' 1.0

(b) Cp =5

Figure 4.8: Example Validations for FCFS, P = 100

69

o--o Interpolation on N

o--o Interpolation on N .
a&—a Interpolation on p a—= Interpolation on p
0} - 164 -
e e
L
P
P 4] e
e r
° MM ;
C O ﬂ.’_ﬁ.'_‘:@— R e
e R
n \‘Q n
t '4- \\ t
E B E
r 8 M N r
r N r
o .12 5o (o]
r r
e e e —
H
00 02 04 06 08 10 00 02 04 “) 06 08 1.0
(a) Cp=1 (b)Cp=5

Figure 4.9: Example Validations for PSAPF, P = 100

P = 100. We observe that both interpolations on N and p are very accurate for the H and M
workloads, the accuracy of the interpolations for the M workload degrades with Cp, with the

interpolation on p having more positive errors.

4.6 Conclusion

In the survey of analytic performance evaluation techniques in Chapter 2 we saw that exact
techniques that exist in literature are either limited to small system sizes for computational
reasons or require specific workload assumptions such as i.i.d. task service times within and
across jobs. This motivates the use of approximate analysis for large systems and general
workloads.

In this chapter we have explored the new approach of interpolation approximations to esti-
mate mean response times for parallel processor policies. We first found points in the parameter
space for which the parallel system reduces to a queueing system that has a known solution.
We then showed how three types of interpolations can be used to obtain mean response time
estimates over the entire parameter space of the assumed workload. Thus, in much the same
way that current parallel systems are built by interconnecting off-the-shelf microprocessors, we

71

have interconnected off-the-shelf solutions at extreme values of the model parameters to obtain
a parallel system performance model. Furthermore, just as different parallel processor inter-
connection networks provide different levels of performance, validation experiments reveal that
different interpolation techniques provide different degrees of accuracy.

The interpolation approximation approach was applied to three scheduling policies: EQ,
FCFS, and PSAPF for a workload with general demands, general available parallelism, no
correlation between demand and parallelism, and linear job execution rates. We will relax
the last two assumptions for the EQ policy in the next chapter, and obtain approximations
for Bpsapr under correlated workloads in Chapter 6. We will also apply the interpolation
approximation approach to the ASP policy in Chapter 6.

We have shown how interpolation approximations yield closed form expressions for REo,
Rrcrs, and Bpsapr. Validations showed these approximate estimates of mean response time
to be fairly accurate over the parameter space. More accurate estimates could be obtained by
using tighter approximations or exact analysis at the extreme values of interpolation parame-
ters, but we preferred to choose the analysis at extreme values of system parameters such that it
yielded simple expressions that readily show the dependence of policy performance on workload
parameters. Using the closed form expressions for mean response time we saw that the approx-
imations for —R-EQ are independent of coefficient of variation in job demand, Cp, whereas the
approximations for Rrors and Rpsapr increase linearly in C%. Thus Cp is a key determinant
of relative policy performance, which will be used to compare the policies in Chapter 7.

Chapter 5

Analysis of the EQS Policy

This chapter derives mean response time solutions for the spatial EQuipartitioning (EQS) pol-
icy so that we can study its qualitative behavior as a function of key parameters and compare
its performance with the other policies, namely, ASP, FCFS, and PSAPF. The previous chap-
ter illustrated that the interpolation approximation approach for the EQ policy yields accurate
mean response time estimates under general distributions of marginal demand and available
parallelism, and under the assumptions of linear ERF's and independence between demand and
parallelism. In this chapter we use the interpolation approximation approach to obtain mean
response time solutions for EQS assuming a general ERF, under both uncorrelated and cor-
related workloads. To do this, in Section 5.1 we first reduce the EQS policy under constant
available parallelism to a symmetric queue and also generalize the light and heavy traffic limits
for Rgo derived in Chapter 4. We then use the reductions for Rgg in Section 5.2 to derive
four interpolation approximations under uncorrelated workloads and two under correlated work-
loads assuming general demand and available parallelism distributions and a general ERF. In
Section 5.3 we propose a different approximate analysis approach under general workload as-
sumptions and show that it is a generalization of an accurate interpolation approximation of

Section 5.2. Finally, Section 5.5 summarizes the analysis of this chapter.

5.1 Reductions for EQS under a General ERF

In this section we analyze the system (EQS,Fy,F%,r = 0,7) under special cases of system
parameters. We first consider a constant value of available parallelism for all jobs, i.e., N =k,
1 < k < P, and then consider light and heavy traffic limits. We finally summarize both cases
(constant parallelism and traffic limits) by means of three dimensional plots of normalized mean

72

response time versus offered load and parallelism.

5.1.1 Analysis under Constant N

The EQS system under constant available parallelism will be shown to reduce to a symmetric

queue, which is defined as follows [30].

Definition 5.1.1 (Symmetric Queue) A queue is a symmetric queue if it operates in the

following manner:

(i) The service requirement of a job is a random variable whose distribution may depend upon
the class of the job.

(ii) A total service effort is supplied at the rate ¢(j), where j is the total number of jobs in the

queue.

(iii) A proportion a(l,j) of this effort is directed to the job in position le{1,2,...,5}; when
this job leaves the queue, jobs in positions [4+1,1+2,..., j move to positions Li+1,...,5-1,

respectively.

(iv) When a job arrives at the queue it moves into position | € {1,...,7 + 1} with probability
ofl,j+1); jobs previously in positions l,1+1,...,j move to positions [+1,1+2,...,7+1,

respectively, where j is the total number of jobs in the queue as seen by the arrival.

J
Note that ¢(j) > 0 if j > 0, and Y _o(l,5) = 1.

(=1
The exact solution for mean response time of the system (EQS, N = k, Fp, r =0, ~), for
k=1,2,...,P, is given by the following theorem.

Theorem 5.1.1 For the system (EQS,N =k, F§,7r=0,9), 1<k <P,

RE 5(N=k7'=0) — _b_ i (Pp)i | .
° ! X & (= Diy(Ry™o6m) T, 1(P/5)
(Pp)P p 1
Ply(k)™ [Tjemss V(P/5) =P <1 =" P) } &

where m = |P/k}, p=AD/P, and

P) -1
(Pp)} (Pp)? p]

b = |1 - .
2 T it @l PIrt o 7(P17) 1=

74

Proof. Let I'x denote the system (EQS,N = k,Fp,7 =0,7), 1 < k < P. We first show that
T is a special case of a symmetric queue [30], and then derive the mean response time of I'x
under a general distribution of job demand.

System I’ satisfies conditions (i) through (iv) for a symmetric queue in Definition 5.1.1. The
total service effort supplied when there are j jobs in T' is ¢(j) = j - min(E(k), E(P/j)) since E
is non-decreasing.. (Note that for j > P, ¢(j) = P, because E(z) = y(z) =z for 0 <z < 1.)
From the definition of the EQ policy, a(l,j) = 1/j, l = 1,...,7, since each job in I'; gets an
equal fraction of processing power. Note that this does not hold if available parallelism is not
constant across all jobs.

The mean response time of a job in system I'; can be derived from Theorems 3.8 and 3.10
of [30], which give the following steady state probability of ¢ jobs in the queue for the stationary
symmetric queue with arbitrary distribution of job service time:

= =, 1=0,1,2,... (5.2)
[Ti=1 ()
where
o . -1
— at
ea=AD, and b= —_)
I:; Hl:l ¢(1)]

Substituting ¢({) = I min(E(k), E(P/!)) into equation (5.2) and using Little’s Result

o
Rsos(V = k) = 2L

we obtain the mean response time for I'y, as given in (5.1), where m = | P/k]. That is, m is the
maximum number of jobs that can execute simultaneously without contention for processors.
To derive (5.1) we used the fact that if there are P or more jobs in the system then the total

service effort of the symmetric queue is P. |

Remark: Although the above theorem is derived for the case £ = 7, the symmetric queue
reduction and equation (5.2) actually hold for any nondecreasing ERF E, (e.g., for E(j) =
(j/N)Y(N)) and the mean response time formula (5.1) holds for any nondecreasing E such that
E(z)=zfor0<z <1,

An important observation from equation (5.1) is that Rpgs(eq— N = k) depends only on the
mean job demand and not on higher moments of job demand. This property is a generalization
of the corresponding property for Processor Sharing (PS) systems. Note that when P = 1
or when N = 1 the EQS policy is identical to the PS policy, and thus Rpos(N = 1) equals
-RM/G/p ps = _R-M/M/p. For the case of linear ERFs it was shown in Proposition 4.2.1 that
when Pmod k =0, Rpos(N =k) = —RM/G/C ps = _RM/M/C, where ¢ = P/k. The same does
not hold for nonlinear ERFs, however, if k > 1.

5.1.2 Light and Heavy Traffic Analysis

We present exact results for the limiting cases of job arrival rates, A — 0 and A — P/D. For
this analysis we will assume that D and N are independent.

Theorem 5.1.2 The following light and heavy traffic limits hold for the system (EQS, Fy, Fp,
r=0,7)

P
- - = 1 _ 1
lim R =8=DE|——=| =D e 5.3
P2 TEQS Ea 2P (5:3)
lim(1 - p)R _ D 5.4)
— PILEQS = B (5.

where p = AD/P.

Proof. The light traffic limit is straightforward. The proof for the heavy traffic limit is as

follows.

1. Pr[An arriving job finds less than P jobs in the system] — 0 as p — 1. Hence the steady
state probability of there being less than P jobs in the system goes to 0 as p — 1 (because

a Poisson arrival takes a random look at the system).

2. From 1, it follows that the fraction of time that the system is in states with less than P
jobs goes to 0 as p — 1. Therefore, the fraction of time that jobs hold more than one
processor goes to 0 as p — 1. In other words, the fraction of time that jobs hold less than

or equal to one processor goes to 1 as p — L.

3. When a job has less than or equal to one processor, its parallelism does not determine its
execution rate. That is, the job completes at rate a where a < 1 is the amount of processing
power allocated to the job and is independent of N. Since D and N are independent a
job’s parallelism does not determine its completion time if it is allocated less than or equal

to one processor throughout its lifetime.

4. From 2 and 3 it follows that Rpgs is independent of the distribution of parallelism as
p — 1. As a result we use the mean response time for N = 1 (equation (5.1)) to obtain
the heavy traffic limit given in (5.4). (Other choices of N suchas N =k,2<k < P, yield
the same heavy traffic limit.)

In the above proof we assumed that the system is stable when p — 1 even when the ERF 7 is
sublinear. The reason is that once there are P or more jobs in the system all jobs are processed

with a linear execution rate. Thus A < P/D (i.e., p < 1) ensures a stable system.

5.1.3 Summary of Reductions

To summarize the results of the reductions derived in Sections 5.1.1 and 5.1.2, Figure 5.1a
plots the normalized mean response time under EQS, F(p,k) = (1 - p)REegs(p, N = k), and
Figure 5.1b plots the normalized mean extra time G(p,k) = (1 — p)X eqs(p, k), where k =
1,2,...,P. The curves are plotted for P = 100, mean job demand D = P = 100, and the ERF
~v(k) = k®®. The curve trends at p = 0 and p = 1 are similar to those in Figures 4.2a and 4.3a,
which were for the linear ERF. We however, note that for moderate to high p the trends are
different when the ERF is sublinear. In Figure 5.1b we observe that for k& 2> 5, G(p, k) initially
rises with p and after reaching a maximum sharply decreases as p — 1. The reason for the sharp
decrease when p — 1 is that as p — 1 all jobs in the system execute with a linear execution

rate.

F(rho,N) G(rho,N) /'v'v'v v's'»'»'w's'ﬁ FITRRS
QU0

E i

/)
)
" //////45//;5;//5////

40
N=k

60

100 0

80 100

(a) Normalized Mean Response Time (b) Normalized Mean Extra Time
Figure 5.1: Summary of Exact Results for EQS

ERF (i) =%8,i=1,2,...
D=P=100

5.2 Interpolation Approximations

In this section we first present four interpolation approximations for _REQS for the workload
(EQS,Fn,Fp,m = 0,7), that is, for an uncorrelated workload with general distributions for

demand and available parallelism, and a general ERF 7. These approximations are derived from

77

the exact results of Section 5.1. We then extend our analysis to correlated workloads by deriving
two new interpolations. The first three interpolations under uncorrelated workloads are similar
to the interpolation approximations of Chapter 4. The fourth interpolation approximation under
r = 0 is new and generalizes to one of the interpolations under correlated workloads. Validations
of our approximations are provided in Section 5.4. All the interpolation approximations in this
section are ad hoc; in Section 5.3 and Chapter 8 we provide partial explanations for why they

work out to be accurate.

5.2.1 Interpolation on p: 7 =10

Let F(p) = (1 — p)REegs(p). A linear interpolation between F(0) and F(1) yields the following

estimator for F(p).
F(p) = (1 - p)F(0) + pF(1) = (1 - p)S + pD/P,

where the values of F(0) and F(1) are obtained from Theorem 5.1.2 in Section 5.1.2. Dividing
F'(p) by (1 — p) we obtain the desired estimator for Rpgs as

il

Rpgs(r=0)~Rpgs = S+ ‘i—p';
— D
= DE[I/'Y] + "'_‘5'1'5) under (FNa D ”7) (55)

Validations in Section 5.4 will show that approximation (5.5) is accurate when ERF's are close
to linear, but can have relative errors as high as —86% for extremely sublinear ERFs. Typical
errors in all our validations (1302 data points) were in the range of —35% to 15%. We note
from (5.5) that R%Q s is independent of Cp which corroborates our observation in Section 5.1.1

that Rggs(N = k) is independent of Cp.

5.2.2 Interpolation on N: r =0

Let Xpgs = Rggs—2S. A linear interpolation on N between X gos(N = 1) and Xpgs(N =P)

yields the following estimator for —REQS

N = P-N — N-1\ = —
ngzs*‘(P_)XEQS(N-"‘) (ﬁ)XEQS(N=P)~

Therefore, under the assumptions (Fy, Fp,7 = 0,7)

Rsgs(Frr=0) ~ Rlgs= [1/7<N>1+(P N

) W mym/p +

()(Rmsw P) = D/(P)), (5.6)

78

where Rpos(N = P) can be computed exactly using equation (5.1) {Section 5.1.1). Valida-
tions in Section 5.4 will show this interpolation on N to be more accurate in general than the
interpolation on p. However, the interpolation on N is quite sensitive to the distribution of N.
For workloads with high and low mean parallelism, the interpolation on N is vey accurate, but
for workloads with moderate parallelism and low Cy its accuracy is low for sublinear ERF's.
Typical relative errors for this approximation ranged between -35% to 5% in all our validations.
We note that fng s is also independent on Cp just like the interpolation on p. This follows
because each of Rggs(/N = 1) and Rpqs(N = P) is independent of Cp.

5.2.3 Interpolation on the pmf of N: 7 =0

In Section 5.1.1 we derived solutions for Rggs(N = &), k = 1,2,..., P (see equation (5.1)).
These points of constant parallelism are extreme values of the pmf of N, that is, p = ¢,
k = 1,...,P, where ¢, is a vector with a 1 in the kt* component and 0's elsewhere. An
interpolation through the mean response times at these points (Reqs(N = k)) yields the

following approximation

P
Bros(Fn,r =0) = B2o5 = > peRpgs(N = k,r =0), under (-, Fp, 7). (5.7)

k=1
Approximation (5.7) is the most accurate approximation among the interpolations on p, N and
p- Section 5.4 will show that for nearly all data points in the validations the relative errors for the
interpolation on p were between —5% to 5%. The maximum relative error among all validations
was about 14%. Note that the interpolation on p was also the most accurate interpolation
approximation for EEQS in Chapter 4, where the workload assumptions were restricted to linear
ERFs. From approximation (5.7) we note that R‘%Q is independent of Cp since Rggs(N = k)

is independent of Cp forallk =1,..., P.

5.2.4 Interpolation on E[1/y(N)]: =0

At light loads Rggs = S which at 7 = 0 equals DE[1/4(N)]. Thus at p =0, Rgqs is linear in
E[1/~+(N)] with slope D. When p — 1 we note that (1 — p)Reqs = D/P by the heavy traffic
limit and thus Rggs is independent of E[1/v(N)] when p — 1. More precisely, it is linear in
E[1/~(N)] with slope zero. Thus at the extreme values of p, Rgqs is linear in E[1/7(N)]. We
assume a similar behavior at in between values of p as well to get an interpolation on E[1/~(N)].
That is, we consider extreme values of E[1/y(N)}, i.e., 1 at N =1and 1/y(P) at N = P, and
then interpolate between the mean response time values at the two endpoints to obtain for the

workload (Fn, Fp, 7 =0, 7):

= = E[1/4(N)] E [:/(_IN_) - ?flP—)— 1-E [:/'(IW)']—— v
Rpqs(Fy,r=0) = Regs" V' = —F—5—Rees(N =)+———1— Roos(V = F),
v(P) ~+{(P)

(5.8)
where Regs(N ='1) and Rgqgs(IN = P) are obtained from equation (5.1) in Section 5.1.1. Not
only will validations show this to be an accurate approximation (more than 95% of validation
data points had relative errors between —5% to 15%) but we will also corroborate in Chapter 8
that E[1/4(N)] (almost) uniquely determines the mean response time of the EQS policy when

r=0.

5.2.5 Interpolationon S,: 0<r <1

The interpolation approximations for REQS derived above are accurate when there is no cor-
relation between demand and parallelism. We wish to obtain an approximation for Regs
for correlated workloads for all values of the correlation coefficient, r, between mean demand
and available parallelism. To develop approximations for REQS under arbitrary values of r
(0 < r £ 1) consider the following two approaches:

(i) Interpolation on 7:
Obtain Rpgs at 7 = 0 and 7 = 1 and then interpolate between these two endpoints. This

approximation has the form
Brgs = (1 - f(r) Bes(r =0) + f(r)Rees(r =1),

where f(r) is a suitable function of r such that 0 < f(r) <1, f(0) =0, and f(1) = L.
Whatever be the choice of f(r) the interpolation cannot be done unless we know the values
of Rpgs(r = 0) and Reos(r = 1). Rggs(r = 0) can easily be approximated using one
of the interpolation approximations for r = 0. However, for the present we do not have a

simple way of estimating Rpgs(r=1).
(ii) Generalize one of the previous approximations forr =0.

We followed the second approach in developing an approximation for Rggs when 0 < 7 <
1. We will show that this approximation has the useful property of being rewritten as an
interpolation on r, and thus can easily be used to obtain the qualitative behavior of EQS as a
function or r. The approximation for T%EQS when 0 < r < 1 is derived from the interpolation on
E[1/7(N)] for r = 0. Since § = DE[1/v(N)] when r = 0, E[1/y(N)] = 5/D. Let Sn = 5/D,
0 < r < 1, denote the normalized mean service time of the workload. We generalize the

80

interpolation on E[L/v(N)] given by approximation (5.8), by replacing E[1/v(IN)] by S,. Hence
for 0 < r < 1, we obtain for the workload (Fn, Fj, 7, 7):

_Sn-wm 1-Sn =
= 57— Eeos(V = 1) + T——~Rpos(N = P). (59)

v(P) v(P)

Rpos(Fwn,7) = Rips

Note that at N = 1 and N = P the question of correlation does not arise since N is con-
stant. Hence in this approximation S, alone captures complete information about correlation.
Validations for approximation (5.9) are given in Section 5.4. Typical relative errors from simu-
lation estimates in all our validations (2866 data points) were in the range —5% to 15%, which
shows that this approximation is very accurate. We will corroborate in Chapter 8 that Sp is
(almost) uniquely determines Rpgs for correlated workloads. Note that since Regs(N =1)
and Rgqs(N = P) are independent of Cp so is RIS.;’& - Thus all interpolation approximations
for Rpgs derived in this section are independent of Cp.

5.2.6 Interpolationonr: 0<r <1

Approximation (5.9) can be rewritten in a form that explicitly shows the dependence of Rgos
on 7. From equation (3.6) we note that Sp, = (1 —r%)Su(r = 0) + 728, (r = 1). Substituting
this in (5.9) and simplifying we obtain for the workload (Fn, F3, 7, v) that

Rigs(r) ~ (1 - 1?)Epgs(r =0) + r*Reqs(r = 1). (5.10)

5.3 Generalized Approximate Analysis: New derivation of

interpolation approximations

In Section 5.2 we developed an interpolation approximation on p for _REQs(T = 0) and this
approximation will be shown to be extremely accurate in the validations section of this chapter.
Likewise, the interpolation on r that holds for correlated workloads is also very accurate. How-
ever, all interpolations derived thus far have been very ad hoc. That is, they are accurate but
there does not seem to be satisfactory explanation for why they are accurate. In this section
we use an alternate approach, under general workload assumptions, the results of which provide
a justification for the interpolation on p when r =0 and for the interpolation on r. Further-
more, the new approximation also shows how the interpolation on p generalizes for correlated
workloads.

The approximate mean response time for the EQS policy for the workload (Fn, Fp,7,7) is
derived by (1) classifying jobs according to their available parallelism, (2) computing the mean
response time for each class of jobs by approximating the average interference from other classes

81

of jobs, and (3) computing the overall mean response time as a weighted sum of the approximate
mean response times per class. The particular approximate representation of average interference
by other job classes yields a system for each class that reduces to a symmetric queue, from which
the class mean response time is computed.

Let a job with available parallelism k belong to class Cy,fork=1,...,P. Let _R-EQS,C'L.
denote the mean response time of class Cy under the workload (Fn,F 5,7, 7). Clearly,

P
Reqs = Y_ PeReqs,cu- (5.11)
k=1

The approximate processor contention from classes other than C is modeled by assuming
each such class has available parallelism k, but retains its total service demands as before. More
precisely, we approximate Rggs,c. to be the mean response time of class Cy, in a system L'k
which is like the original system except that a class C; job in I'x has demand D; and available
parallelism k, where D; = ¢gdD+(1-¢q)cj,g=1-r>andc= D/N, as per the correlation
model in Section 3.3. The instantaneous load of class C; jobs is not accurately modeled by
assuming that class C; jobs have parallelism k. However, the average load by class C; jobs is
accurately modeled since the arrival rate and distribution of processing requirement of the class
are as in the actual system. Thus, the overall interference of C; with C) may be reasonably well
represented.

An approximation for REpgs,c. can be derived by solving for the mean response time of
class k in system I'y. Note that in system Iy there are P job classes, Cy,...,Cp, where C;
has available parallelism k and demand D;. Since all jobs have the same available parallelism
and since the definition of a symmetric queue permits multiple job classes with different service
demand distributions (see Definition 5.1.1), the system again reduces to a symmetric queue. In
this case, the total service effort with j jobs in the queue is #(j) = j - min(y(k),v(P/5)), 5 2 0,
and the fraction of effort for job @ is a(4,5) = 1/, for i = 1,...,j. Furthermore, equation (5.2)
holds also for the case of multiple classes with different distribution of demand (see Theorem
3.8 and 3.10 of [30]). Hence, Rr, = Regs(N = k,r = 0), and the overall mean response time
for T'x depends on the overall mean demand but not the demand distributions per class.

The mean response time of class k in ' is obtained from part (ii) of Theorem 3.10 of
Kelly [30]. Using the notation in this thesis, this theorem can be stated as follows.

Given there are Q customers in the symmetric queue, the classes of the customers
are independent and the probability the customer in a given position is of class Cj is

Ak?.k, where)y is the arrival rate of class Cy and D is the mean demand of class

Ck.-

82

Thus given @ jobs in system I'x, the of number, Qr, of jobs of class C}, is binomially distributed
with parameters () and uy where uy := A D /(AD) = pp Dy, /D. Therefore Q) = Quy and using

Little’s law we obtain the mean response time of class Cy in I'y; as

@ Qui _ Dy

_ = —.::'Rrk.

Rr. . = =
Te@e =%~ dpr D

Since Ry, = Rpgs(N = k,r = 0) and Br, ¢, is the proposed approximation for Rggs,c, we
obtain —

- Dy —

Rggs.c. = ':E-Raqs(N =k,r =0).

Substituting this in (5.11), we obtain under the workload assumptions (-, 7p, -,7) that

p -
Reos(Fv,m)~ Y _piRees(N =k,r=0), p}= Pk% =Dk <1 -+ TZ—II;—:) , o (6.12)
k=1
where the expression for p), was derived as per the correlation model described in Section 3.3.
Further insight can be obtained from equation (5.12) by making the following observations.
When r = 0, p}, = pk, for k= 1,2,..., P, and approximation (5.12) reduces to the interpolation
approximation in (5.7). On the other hand when r = 1 it follows from (5.12) that under the
assumptions (-, F§,*,7),

P

— k e

Rpgs(Fn,r = 1) = E PkﬁREQs(N =k,r =0).
k==l

Finally, for r between 0 and 1 and FBy),

P
— k)l —
REQS(J:N;T)] Zpk{l“"rz+T2ﬁ}REQS(N=k,T=O)
k=1
P

P
— k—
= (1-7%))_ mEes(N =k,r=0)+ > pk—-N-REQS(N =k,7 =0)
k=1 k=1

~ (1- TZ)REQs(J:N,’I‘ =0)+ TTR-EQ,S'(]:N,T' = 1),

which is the interpolation on r (5.10).
The next section will show that this general approximation is extremely accurate for uncor-

related workloads as well as for correlated workloads.

5.4 Validations

In Section 5.2 we presented interpolations on p, N, p, E[1/4(N)], and Sy, and in Section 5.3
we presented a generalized approximation in order to estimate _REQS for uncorrelated as well as

83

correlated workloads. Note that the interpolation on S, is a generalization of the interpolation
on E[1/v(N)] and thus we do not treat the latter as a separate interpolation. We validate the
approximations derived in Sections 5.2 and 5.3 against simulation and also against special cases
of exact analysis. We first discuss stress tests for the approximations, then provide the settings
of validation parameters, after which we present a summary of validations, and then error plots

for example validations.

5.4.1 Stress Tests for Validations

We first note that all three interpolations are exact when p = 0 and when p =1 (by exact at
p = 1 we mean that hm(l p)REQ g = glm(l p)REeqs where z € {p, N, p}). The interpolation
on p overpredicts mean response time when N = 1, and can underpredict mean response time
for higher values of N if the ERF is sublinear. To see this consider Figure 5.1b. The curve for
N = 1 lies below the straight line that connects the points G(0,1) and G(1,1). On the other
hand the curves for higher values of N = k lie above the straight line that connects G(0,k)
and G(1,k), specially at moderate to high utilizations. The interpolation on p is however quite
accurate for linear ERFs and moderate to high parallelism as seen from Section 4.5 in Chapter 4.
To stress test the interpolation on p we should therefore use workloads with sublinear ERF',
and also workloads with low parallelism and linear ERFs.

The interpolation on N is exact at N =1and N = P. We therefore expect it to be accurate
at the low and high ends of parallelism. For linear ERFs RJ,;’Q s usually underestimates REQS for
moderate parallelism as seen in Section 4.5 in Chapter 4. This can also been seen for sublinear
ERFs from Figure 5.1b for constant available parallelism. To stress test this interpolation we
consider workloads with moderate parallelism. The interpolation on p is exact whenever N is
constant. We therefore expect it to be accurate when there is little variation in the distribution
of N (low C). Thus, to stress test this approximation we use workloads with high Cny. The
interpolation on S, is exact at the extreme values of Sy, i.e., S, = 1/v(P) and S, = 1. To stress
test this approximation we need to vary S, using various distributions for N, several settings
for correlation coefficient , and several ERFs. Finally, the generalized approximation (5.12)
has properties similar to the interpolation on p and we use the same stress tests for it as for the

interpolation on p.

5.4.2 Validation Parameters Settings

The parameters of the workload model that we need to set are: number of processors P, dis-
tributions for job demand D, offered load p, distributions for available parallelism N, types of
ERFs, and values for correlation coefficient . We considered systems with P = 20 and P = 100.

84

The settings for D, p, and N were identical to the settings of the validations for the interpolation
approximations for linear ERFs discussed in Section 4.5.1 in Chapter 4. We used the following

settings v and 7.

@) v vk) =k k) =k 0<c<l, k)= (1+Ak/(k+B) 0<B < oo
k=12,...,P
In the absence of extensive data for real workloads we validate our models against three
types of ERFs. The first is simply the linear ERF. The second is a simple algebraic choice
of a concave sublinear ERF, whereas the third is derived from a type of ezecution signature
given in [18]. For the ERF (k) = k°, we used ¢ = 0.7, 0.8, and 0.9, which are plotted
for P = 100 in Figure 3.2a. At ¢ = 0.7, 7(20) = 8.14 and 7(100) = 25.12 which are
quite low compared to their linear counterparts of 20 and 100, respectively. The value of
¢ = 0.7 therefore stress tests the accuracy of the models for highly sublinear ERFs. For
the ERF ~(k) = (1 + 8)k/(k + B) the following values of § are used in the validations:
B = 20,50,100 for P = 20, and 8 = 50, 100,500 for P = 100. The smaller values of
are used as stress tests whereas the larger values are used to evaluate the accuracy of the
models when the ERF is close to linear, but not exactly linear. Figure 3.2b plots these
ERF's for P = 100.

(i) r: 0, 0.5, 1.

The interpolation approximations were validated against exact analysis for workload settings
with N = k, and against simulation otherwise. Exact values of Rpqs(N = k) were obtained
using equation (5.1). Simulation estimates of Rpgs had 95% confidence intervals with less than
5% half-widths. They were obtained using the regenerative method for many data points and the
method of batch means whenever the regenerative method was too time consuming (specially

for workloads with low parallelism).

5.4.3 Summary of Validations

Figure 5.2 presents a histogram of percentage of data points versus relative error that summarizes
all our validations for the interpolation approximations on p, N, and p, which assume that r = 0.
The total number of data points was 1302. The histogram shows that the interpolation on p
is the most accurate approximation (the maximum error for this interpolation was 13.92%).
The interpolations on N and p can considerably underestimate Rpgs, but they are reasonably
accurate for most of the data points. The worst case errors were located at (P =100, N =
100, p =0.7,, v(k) = k°7) for the interpolation on p, (P =100, N =25, p = 0.9, v(k) = k°8)
for the interpolation on N, and (P = 100, N = Bounded-geometric(Proz = 0.5,p = 1), p =

85

0.7, 4(k) = k%7) for the interpolation on p. In general the interpolation on p is quite inaccurate
when the ERF has moderate or high sublinearity, but it is accurate for ERFs that are close to
linear. The interpolation on N performs badly when the ERF has high sublinearity and N is
low to moderate and Cy is low. However, it is accurate for workloads with high or very low N,
and also for workloads with high Cn.

100+ E3 Interpolation on p .
P B Interpolation on N
£ (] Interpolation on p
€75+ p
e
n
t
0
' 50
D —

a

t

a

P

¥ 25

125+
t

s

0

90% -75% -55% -35% -15% -5% 6% 16%

to to to to to o to to

76% -56% -36% -16% -6% 5% 15% 20%
Relative Errors

Figure 5.2: Summary of Validations for Interpolations on p, N, and pmf

r=0,
P=20,100
(1302 data points)

Figure 5.3 summarizes the validations for the interpolation on S, and the generalized ap-
proximation (5.12) for a total of 2866 data points. We used three values of r in our validations,
r=20,7 = 0.5 and 7 = 1. From Figure 5.3 we note that the generalized approximation is
more accurate and that for both approximations at least 95% of the validations in each case

86

have a relative error between -5% and 15%. The maximum relative error for the generalized
approximation was the same as for the interpolation on p (see summary for 7 = 0) and the
maximum relative error for the interpolation on S, of 34.18% was for the was for the data
point (P = 100, N = Bounded-geometric(Ppoz = 0,p = 0.1), p = 0.5, 7 = 1, (k) = kO7).
Approximation (5.12) is extremely accurate since all data points in Figure 5.3 are with 15%
of simulation estimates. The highest errors (> 10%) for this approximation were observed for
correlated workloads with low to moderate N (0.1P to 0.5P), high Cn, and moderate to high

execution rate sublinearity.

5.4.4 Example Validation Experiments

To illustrate how the interpolation approximation accuracy varies with various model parame-
ters, we present example plots of relative error versus utilization for specific distributions of N,
specific values of P, specific v, and 7. The distributions of N considered are bounded-geometric
with parameter settings given in Table 3.2. For these example validations we varied p from 0.0
to 1.0.

We first provide example validations for the interpolations on p, N, and p which assume
r = 0. In Figures 5.4a and b we plot the percent error of these approximations of EEQS against
simulation estimates of Rpgs as a function of p for the H, M, and L workloads, for the linear
ERF. This is one stress test for the performance of the approximations since the linear ERF
is the limiting case of sublinear ERFs. In Figure 5.4b we present another stress test by using
the ERF with maximum sublinearity among the ERF considered in the validations. The ERF
used for this figure is y(k) = k%7, k = 1,2,...,P. From Figures 5.4a and b we note that
the interpolation on p is clearly the most accurate approximation. The interpolation on Nis
accurate for the H and L workloads, but it does not perform that well for the M workload,
specially for the highly sublinear ERF. The interpolation on p is reasonably accurate for linear
ERFs, but it considerably underpredicts mean response time for high and moderate parallelism

at extremely sublinear ERF's, specially at moderate to high utilizations.

We now present example validations for the interpolation approximation on S, and the
generalized approximation (5.12). Figure 5.5 presents example validations for the interpolation
on S, and the generalized approximation (5.12) for r = 0.5. We note that both approximations
typically overestimate mean response time, specially when the ERF is sublinear. The generalized
approximation is more accurate than the interpolation on S,. For the interpolation on Sy the
error is less for the H and L workloads as compared to the M workload. The reason is that the

interpolation is exact at extreme ends of parallelism (N =1and N = P).

100

— B Interpolation on Sn

P . . o

o [] Generalized approximation

r

C75 4

e

n

t

)

f

50 +

D

a

t

a

p

Q

125+

n

t

s

0 _ || -

-5% 6% 16% 26%
to to to to
5% 15% 25% 35%

Relative Errors

Figure 5.3: Summary of Validations for Interpolation on S, and generalized approximation

r=0, 0.5, 1,
P=20,100
(2866 data points)

oo Interpolation on p

e---o Interpolation on N
»~——s Interpolation on p

10
P P
(]]
¢ 10 ¢
g M ‘awa‘a" a E}G e
n - &] n
U O by trrg—r oy t
_&\
E e E‘:
; -10) \\Q ' r
o -14) \633 o]
r] r

41 H a--a8

O! a s i QEI a4

00 02 04 06 08

p
(a) Linear ERF

1.0

@-a Interpolation on p

o--o Interpolation on N
a~—a [nterpolation on p

1
=]
e

b
o

00 02 04 06 08 L0
p

(b) (k) = &7

Figure 5.4: Example Validations for Interpolation Approximations: r=0

D=P=100
, e--o Interpolation on Sy

2{ == Generalized approymation

045 o o a—G—G-o-
P L P
€ e

6 8.
(l; e e 4 ° (l;
e 4 M e e
o9 o i
t /1 t
g ? ety E
r r
0 0
N ;

) vu\ﬂ‘ﬂ

00 02 0.4p0.6 0.8

(a) Linear ERF

1.0

o-- Interpolation on S,
s—a Generalized approximation
PN

20
15
10
5

0
5
0

00 02 0.4p0.6 08 1.0

(b) (k) = kT

88

Figure 5.5: Example Validations for the Interpolation on S, and generalized approximation

r = 0.5,
D=P=100

89

5.5 Summary of Analysis and Relation to Previous Work

In this chapter we have developed interpolation approximations for T?:EQS under the assumptions
of general available parallelism, general demand, a general nondecreasing ERF, and correlated
as well as uncorrelated workloads. This shows the potential of the interpolation approximation
approach to model parallel systems with nonlinear ERFs and correlation between demand and
parallelism. Our validations showed the interpolation approximations for EQS to be fairly
accurate throughout the parameter space.

The only previous analyses in the literature that are related to this chapter are the analysis
of EQS in [40] using recurrence relations for a workload model consisting of a fixed number of
fork-join jobs with i.i.d. exponential task service times, and the analysis of EQp¢ in [69] using
matrix-geometric techniques for a workload model consisting of C job classes with exponential
demands, a fixed available parallelism, and a fixed ERF per class. The analysis in [69] is for
a more practical workload than [40] and it is also extensible to phase-type distributions for
demand, but it suffers from the drawback that it is computationally prohibitive to solve for
systems beyond 10-20 processors. Furthermore, the numerical nature of the solution does not
yield any insight into the performance of EQpc - As shown in this chapter both these drawbacks
are overcome by the interpolation approximation approach. The qualitative behavior of EQ has
been studied using simulation in [41, 39] and we review their results in Chapter 8 where we
further analyze the EQS policy.

Before ending this chapter we compare the interpolation approximations for _R-EQS under
linear ERFs as derived in Chapter 4 versus the corresponding interpolation approximations
derived under general ERFs in this chapter. The interpolation on p has the same structure for
both linear as well as general ERFs but it is quite inaccurate for ERFs with moderate to high
sublinearity. The interpolation approximations on N and p in this chapter have more complex
expressions than the corresponding interpolations for REgqs in Chapter 4 that were derived for
the linear ERF. This is because we used the symmetric queue to model the EQS policy under
constant available parallelism and we do not know of simple mean response time approximations
for the symmetric queue. However, the increase in complexity of mean response time expressions
does not prohibit the obtainment of key parameters since we could derive that the interpolations
approximations are independent of Cp and in Chapter 8 we will obtain that S, is a key workload
parameter. Neither does the increase in complexity of mean response time approximations affect
the time to compute the expressions. We note, however, that for very large systems (say with
P > 1000) the mean response time expression for Rpgs(N = k) as given in (5.1) may have to
be evaluated using special rearrangements since it involves factorials. We have not encountered
any problem in evaluating (5.1) for P = 500, but for P = 1000 a straightforward evaluation of

90

the expression caused numerical overflow. Special purpose rearrangements to avoid problems
with factorials is outside the scope of this thesis and we will not dwell further on this issue.

Chapter 6

Analysis of ASP, FCFS, and
PSAPF

The goal is to solve for the performance of the FCFS, PSAPF, and ASP policies under general
distributions of demand F¥ and available parallelism Fy, arbitrary correlation coefficient r, and
any general ERF «, as was done for the EQS policy in Chapter 5. However, the FCFS, ASP, and
PSAPF policies are difficult to analyze under such completely general workload assumptions and
therefore suitable restrictions are made below for the sake of analytic tractability. Fortunately,
the restrictions do not limit the applicability of the policy comparison results, because as will be
shown in Chapter 7, one can extrapolate from the comparisons under the restricted assumptions
to the general case.

In this chapter we review the interpolation approximation from Chapter 4 for Rrcrs under
(Fn, Fp, 7 =0, v') and derive new interpolation approximations or reductions for the following

policies and workloads assuming an arrival rate of A and E@) =~():

FCFS: (N =k, Fp, =0, 7),

ASP: (Fn, exp(1/D), 1 =0,),
ASP: (N=P, exp(1/D), r =0, %),
PSAPF: (N =k, Fp, =0, v),
PSAPF: (Fw, Fp, =0, 7'), and
PSAPF: (Fn, F&, r>0, 7).

As will be shown in Chapter 7, the restrictive assumptions (r =0, 4*) for FCFS under general
Fx provides the best case performance of FCFS relative to PSAPF. Likewise, the assumptions
(exp(1/D),r = 0,7') are favorable for ASP relative to EQS, and the assumption (v') will be

91

92

shown favorable for PSAPF relative to EQS. Chapter 7 will show that conclusions from these
“favorable” comparisons can be extrapolated to other regions of the general workload parameter
space. Regarding absolute policy performance, mean response time estimates for FCFS and
PSAPF under (N = k,r = 0,7) provide insight about how the performance of each of these
policies behaves with respect to ERF sublinearity.

In Section 6.1 we provide the approximations for Rpors. We then develop the (interpolation)
approximations for Rasp (Section 6.2), and for Rpgsapr under no correlation between mean
demand and available parallelism (Section 6.3) and under full correlation (Section 6.3.4). The

new approximations for Rasp and Rpsapr are validated in Section 6.4.

6.1 FCFS

We first review the interpolation approximation on p for Rrors from Chapter 4 that holds for
(Fn,Fp, 7 =0, 4'). We then develop a new approximation for Rpors under constant available

parallelism and general 7.

6.1.1 Analysis under General N: 7 =0 and +'

For the system (FCFS,Fn,Fp,7 =0, 4)) the following interpolation approximation on the
pmf of N, p, is an accurate estimator for Rrcrs (see Chapter 4)

P
Rpors(Fn,7=0) = Zpkﬁpcpg(N =k,r=0), under (-F%,7")

k=1
= -§+E'[p 2(5-“)- L+ Ch 6.1

where the solution for Rpcrs(N = k,7 = 0) is derived by reducing the system to the M/G/c
queue, under similar reasoning to the reduction under the more general assumptions of (N =

k,7 = 0,7), given next.

6.1.2 Analysis under Constant N

Let Trorsi = (FCFS,N = k,Fp,r = 0,7). In Chapter 4 mean response time estimates
were provided for this system under the assumption that v = 7. The extension to general
nondecreasing v is straightforward and uses the following reduction.

First consider the case where k evenly divides P. A job arriving at an empty system is
allocated k processors. Subsequent jobs that arrive are also allocated k processors unless all

processors are occupied. When a job departs it releases all k of its processors as a single

93

unit. The first job waiting in the queue (if any) thus obtains all k processors released by the
departing job, and so on. Since processors are allocated and released in units of size k, the
system [rerpgs .k behaves like a system with ¢ = P/k processors in which each job has one task
with service requirement S = D/v(k). That is, under (N =k,Fp,r=0,7)

Rrors(N =k,r=0) = _RM/G/C, c=P/k, Pmodk=0.

To compute Ry /GJc We use the following approximation which is derived using Sakasegawa’s

approximation [64] for the mean number in a GI/G/c queue:

kRM/G/C ~ 5+

pVAetl) (1+C§) S

1-v 2A

Cs being the coefficient of variation in job service time, S. Using § = D/~(k), we obtain
C% = C}, and thus

_ 5 /2P/E+1) 2
Rpcps(N=k,’r=0)z’YD +U (1_{;51)

e). under(.Fpm (62

Dk
where v = 7?— . 7——-(6 Since (6.2) can also be computed when k does not evenly divide P, it can

be used as an approximation for Rrcrs(N =k)forallk=1,2,...,P.

It is tempting to believe that the interpolation on p using estimates from (6.2) as the inter-
polation end-points can be used to approximate Rrers for a sublinear ERF «. Validations so
far have shown that this approximation is accurate for low values of p, but that the accuracy
degrades with p and at high load the accuracy can be quite bad even when Cp = 1 (a case
under which the approximation is very accurate for the linear ERF). With some “fine tuning”
it may be possible to obtain an accurate estimator by this approach, but this is not pursued
further in this thesis.

Note that both approximations (6.1) and (6.2) show that Rrors increases linearly with C%.

6.2 ASP

We develop an approximation for Rasp under (Fn,exp(1/ D),r =0,7'). Setia and Tripathi [69]
derive an exact solution for Rssp under exponential per class job demands and general job exe-
cution rates, which is based on matrix-geometric analysis [56, 51]. Two drawbacks of this exact
analysis are that the underlying state space grows exponentially in the number of processors
(making the analysis computationally prohibitive even for systems with 20 processors) and that
the analysis does not yield direct insight into the dependence of R asp on workload parameters.

94

In contrast, we derive a closed form approximation for Rasp under the restrictive assump-
tions of linear execution rates and exponential demands. The assumption of linear execution
rates yields estimates of the best possible performance of ASP (i.e., under no synchronization
and communication overheads). The exponential demand assumption should also result in lower
estimates for Rasp than for workloads with high Cp, since ASP is a static allocation policy.
This is discussed further in Chapter 7.

Section 6.2.1 presents an interpolation approximation under general Fy and Section 6.2.2
derives reductions and interpolation approximations for the extreme cases of constant N, i.e.,
N=1and N =P.

6.2.1 Analysis under General N: exp(1/D), r =0, *

To derive an approximation for Rasp we note from the definition of ASP in Chapter 2 that
at each allocation point ASP divides processors equally among waiting jobs (with no fewer
than one processor per job). This resemblance to the EQS policy suggests using the same
form of interpolation for Ragp as we used for REQS in (5.9), that is, an interpolation on Sn.
Thus we have the following interpolation approximation on S, for the mean response time of
(ASP, Fn,exp(1/D),r = 0,7").

Sn—1/P

1_1/P>RASP(N=1)+

Rasp(Fn) = (

(11:51},) Rasp(N =P), under (-,exp(1/D),r =0, . (6.3)

Solutions for Rasp(N = 1) and Rasp(N = P) are given next.

6.2.2 Analysis for N =1 and N = P: exp(1/D),

When N = 1, ASP is the same as FCFS. Therefore for exponential job demands, Rasp(N =1)

is simply the mean response time in an M /M /P queue, i.e.,
Rasp(N =1) =Bpymyp, (exp(1/D),r =0,7).
Under nonexponential demands the extension is that
Rasp(N =1)=Ryjgyp, (- Fp,m =0,7). (6.4)

We do not have an exact solution for Rasp(N = P) and develop an approximation for
Rasp(N = P) by observing the behavior of ASP at extreme ends of system utilization. When
p =0, Rasp(N = P) is simply S = D/P (since execution rates are linear). On the other
hand when p — 1 the queue length increases and a waiting job is allocated just one processor

95

upon service (assuming that there are at least as many jobs as free processors). Therefore, for
exponential job demands, as p — 1 the system under ASP tends to behave like an M/M/P
queue, i.e., Rasp — RM/M/}D as p — 1. More generally,

;LIIll Rasep = Rugrpr (FN2FDaTs) (6.5)

Combining these two estimates at extreme ends of p, we get the following approximation for
Rasp(N = P) when job demand is exponential.

Rasp(NV = P)~ (1 - ()3 + a(@)Baagrp, uander (exp(1/D)r =0, (66)

where a(0) =0, a(1) =1, and 0 < afp) < 1, for 0 < p < 1.}

We empirically derived c(p) by comparing the right hand side of (6.6), for various choices of
a(p), against simulation estimates of Rasp(N = P) at P=10, 20, 50, and 100. We tried to bias
the choice of a(p) so that it would be more accurate for P=50 and 100 as compared to P=10
and 20. Our empiric estimation proceeded as follows. We first note that it is likely for Rasp to
contain high powers of p as seen from the approximation (6.4) for Rasp(N = 1). We therefore
started out with the simple form a(p) = p°, and we ranged c from 1 to P. For all values of ¢
this choice of a(p) resulted in inaccurate estimates of Rasp(N = P) when validated against
simulation. As a result we next tried a(p) = a1p® + az2p®, for 0 < a; < 1,a; +ae = 1, and
1< ¢;,c2 < P. This approach did not yield accurate estimates at P = 100 motivating us to try
out a(p) = a1p + azp®® +a3p®, for 0 < ai,az,a3 < l,a1+az+a3 =1,and 1 < ¢1,¢2,¢c3 £ P.
This last form of a(p) produced satisfactory estimates for Rasp(N = P = 100) for certain
choices of coefficients and powers of p that were “fine tuned” to yield the following estimator

which is accurate at lower values of P as well.

2
o(p) = 5p+ (0.5~ 9/P)p* +0.501 P13,

where
3.5 P<20,
s=4¢ 45 P =350,
6.0 P =100.

Note that since approximation (6.3) will be shown to validate well in Section 6.4, S, is the key
parameter for job parallelism under the given workload. That is, Ragp is approximately the
same for all distributions of N that yield the same value for Sy.

The interpolation approximation approach in (6.3) and (6.6) also resulted in an accurate
approximation when job demand is deterministic (Cp = 0) and N has a general distribution,

1Note that the interpolation approximation on p might also be applied for general D, N, and/or 7; however
the function a(p) is difficult to derive in these cases.

96

Fx. In this case the functional form of a(p) was less carefully constructed and the approximation
also has so far been less extensively validated than the approximation for exponential demands
(Cp = 1). (For the 50 data points validated for this approximation, 42 are with 15% of the
simulation estimates and the maximum error is about 28%.) The following summarizes the

approximation for Cp = 0:

Sp ~ 1/P) —

EASP(TN) = (m Rasp(N = 1)+

1=8 \ = -
<) Rasp(N =P), under (-,D=D,r =0,7"). (6.7)

1-1/P
where
= N = _ p,/z(P+1)
=1)= o~ [,
asp()= Rum/p/p =D+ TN
and —

Fase(N = P)~ (1 - a(p)) 5 +a(0)Rars oy,

1
o(p) = 5 p+(05-1/P)pV P12 4 0.5 P2,

6.3 PSAPF:r=0

We first review the interpolation approximation on p from Chapter 4 for Rpsapr under (Fy,Fp,T =
0,7%), then derive a more accurate estimator under the same workload assumptions, and finally
provide solutions for constant N and general . Section 6.3.4 derives estimates for Rpsapr for

r > 0.

6.3.1 Review of Analysis for General N: r = 0,

The following interpolation approximation on the pmf of N was shown in Chapter 4 to provide
reasonably accurate estimates of Rpsapr under (Fy,Fp,r =0, 7') and is noted to be the same

as the interpolation approximation (6.1) for BRrers:

P
Bpsapr(Frnr=0) =~ Y peRpsapr(N =k,r=0), under (-, Fp,7)

k=1
= S+ E [P¢2<%+1>_ 1403, (6.8)
- 1-p 2 ' ’

In many validations this approximation results in less than 35% errors from simulation estimates.
However, it does not validate well in some cases with high Cp and low Cn (e.g., more than
100% relative errors have been observed), which motivates a more accurate approximation for

97

Rpsapr. We note that approximation (6.8) gives the “coarse” result that Rpsapp(r = 0) =
Rrcrs(r = 0) under the given workload assumptions. The new approximation derived next

will yield a more refined comparison.

6.3.2 More Accurate Estimator for General N: r =0, 4t

We derive a more accurate approximation for Rpsapr by observing that PSAPF is essen-
tially a Preemptive Resume (PR) priority scheduling policy. A known heuristic for obtaining
performance estimates of PR for a multiserver system with sequential jobs is to compare PR
with FCFS in a uniprocessor system and then map the comparison to the multiserver system
(cf. [11, 5, 78]). For example, in [5], Buzen and Bondi approximated the mean extra time (i.e.,
mean response time minus mean service time) of an M/G /¢ PR queue by

.X-M/G/lc PR =5 (6.9)

X m/Gjc PR R =——————XM/G[c FCFS:
X M/G/1. FCFS

where the M/G/1. PR queue is obtained by replacing all ¢ servers of the M/G/c PR queue by
a single server of power c. (Likewise for FCFS.) We use a similar heuristic to estimate the mean

extra time of a parallel system under PSAPF, X psapr = Rpsapr — S, as

— X —
XpSAPF = —M/Gte PR ¥ cors, (6.10)
M/G/1p FCFS

where job priorities in the M/G/1p PR queue are the same as those in the PSAPF system (i.e.,
inversely proportional to available parallelism).
A closed form expression for Epsapr is derived by obtaining closed form expressions for
each of XM/G/lp rersy Xrors, and X y/a/1p, pr 0 (6.10). Xnje/1, rops is simply p 21+
C%)/(2X(1 - p)) [32], and approximation (6.1) yields a closed form expression for Xrcrs =
Rrcrs—3S. The analysis in [33] for an M/G/1 PR queue (under the given workload assumptions)
yields,

P = k
— Ok—1 ok 1 +C,23 D
= — h = 3.
XM/G/1p PR ;Pk [1 — + 0o)0 =08 (5 5 Where Ok P;:TP
‘ (6.11)

Thus, under the assumptions (Fn,Fp," = 0,7"), we have the following closed form expression

for Rpsapr =S + X PSAPF:

R a & Tk— Ok 1+C -
RPSAPF(T:O)%SJr{;”’“ [1_0:_1 * (1-ok_1)(1—ak>(2 D)] 35} [pvEEF=2].
(6.12)

98

Note that the accuracy of approximation (6.10) can be improved if we use a more accurate
approximation for X rcrg; however, the use of numerical analysis entails significant loss of

insight.

6.3.3 Analysis under Constant N

When available parallelism is constant, i.e., N = k, PSAPF is identical to FCFS and approx-
imation (6.2) is valid for the system (PSAPF,A,N = k,Fp,r = 0,v) as well. We therefore

have,

_ T NEERD (142
Rpsapr(N =k,r=0) = +2 (1 tCp

) , under (,Fp,7) (6.13)

~(k) 1—v 2)
where v = :\—‘é . ———l-c——
P (k) _
Note that as in the case of FCFS, approximations (6.12) and (6.13) for Rpsapr increase

linearly in C}.

6.3.4 PSAPF:7>0

The estimate Rpgapr is first derived for fully correlated workloads (r = 1) and then combined
with approximation (6.12) for uncorrelated workloads (r = 0) to yield an estimate for arbitrary

partial correlation (0 <7 < 1).

6.3.5 Analysis for 7 = 1: '

The approximation for Rpgapr under (Fy, Fp, r=1, 7*) is derived by: (1) classifying jobs
according to their available parallelism, (2) computing the mean response time for each class of
jobs by approximating the average interference from other classes of jobs, and (3) computing
the overall mean response time as a weighted sum of the approximate mean response times per
class. This general approach yields very accurate estimates of Rgpgs under the given workload
conditions (see Chapter 5). In the case of PSAPF the particular approximate representation
of average interference by other job classes yields a system for each class that reduces to a

preemptive resume queue, from which the class mean response time is computed.?

Let a job with available parallelism k belong to class Cy, for k= 1,...,P. Let Rpsapr.c.
denote the mean response time of class Ci in the system (PSAPF, Fn,Fp, r,v). Clearly,
P
Rpsapr = Y PkRpsaPFCy- (6.14)
k==1

2This general approach validates well not only for r =1 but also for 0 < r < 1. However, the separate
approximations for Rpgapr(r = 0) and Rpsapr(r), 0 <7 <1, yield more insight.

99

The approximate processor contention from classes other than Cj is modeled by assuming
each such class has available parallelism k, but retains its total service requirements and job
priority as before. More precisely, we approximate Rpsapr.c, to be the mean response time of
class Cf in a system [’y which is like the original system except t_}ft a class C; job in T’y has

demand D;, priority j, and available parallelism k, where 'D'j = 2 -4, as per the correlation
model in Chapter 3. The instantaneous load of class C; jobs is not accurately modeled by
assuming that class C; jobs have parallelism k. However, the priority and average load of class
C; jobs are accurately modeled. Thus, the overall interference of C; with Cy may be reasonably
well represented.

An approximation for Rpsap F.c, is derived by solving for the mean response time of class
k in system I'y. Since jobs from classes k + 1 to P have lower priority than k it is only necessary
to consider arrivals from classes 1 through k to obtain Rr, ¢, . Recall that in I' all jobs have an
available parallelism of k. First assume that & evenly divides P. Thus processors are allocated
or preempted in units of k at a time. If processors are grouped k at a time and each such cluster
is thought of as a superprocessor, then we realize that T\ essentially functions as an M/G/c PR
queue with ¢ = P/k servers each of power k, and with k priority classes. Therefore, Br,.c. is
equal to the mean response time of the kt* priority class in this M/G/c PR queue. Tabetaeoul
and Kouvatsos [78] derive an approximation for per class mean response times of a GI/G/c PR
queue using a heuristic similar to (6.9). Using their heuristic we obtain the following expression

for Rr, c,, which is derived in Appendix A.2.

V20(etD)-2 _ _\/2(c+1)-2 1 V2(ct+1)-2
Z!h) ((¢ k,..l(c)) + ;;gka'k (e+1) pr > 0,

O)

1
R[‘Lc,c ~CcTkp + — (
Pk

i=1

(6.15)
where :
R = M Yo 4pi%3} (14 CE
. gé le - Jj-1 : (1-—0‘1_1)(1 —0‘,‘) 2 !
__ Di L
z;—ﬁ, and 0'i=/\;piz,~, i=1,...,k
We use the approximation (6.15) even when k does not evenly divide P and thus obtain
— P s
Rpsapr = Zpk h‘(k1A7(p17--'1pk)»(D1Cv))7 under (fN,FB,T = 117l): (616)
k=1

where h(k, A, (pl,...,pk),(—ﬁ, C,)) is given by the RHS of (6.15). We note from (6.15) that
Rpsapr grows linearly in the squared coefficient of variation of demand, C,, of each job class

when 7 = 1 and v = 7%

100

6.3.6 Analysis for 0 <r < 1: 4/

We have thus far obtained estimates for Rpsapr(r = 0) and Rpsapr(r = 1). To estimate
Rpsapr for a general r between 0 and 1, consider an interpolation approximation on r. That
is,

Rpsapr(r) = (1= f(r)) Rpsapr(r=0) + f(r)Rpsapr(r =1),

where f(r) is a suitable function of 7. We note from (3.6) that at p — 0, Rpsapr = 8 =
(1-r2)5(r = 0) +r2S(r = 1) and we therefore obtain at p — 0 that f(r) = 2. We found that
for p > 0 this choice of f(r) continues to yield accurate estimates for Rpsapr. Therefore, we

have,
Rpsapr(r) ~ (1 —1*)Rpsapr(r =0) + r°Rpsapr(r=1), under (Fn,Fp, “7h), (6.17)

where we estimate Rpsapr(r = 0) and Rpsapr(r = 1) using approximations (6.12) and (6.16),
respectively.

Note that the form of approximation (6.17) is identical to (5.10), which was proposed for
the EQS policy. This will prove useful in comparing the performance of the EQS and PSAPF
policies in the range 0 <7 < 1.

6.4 Validations of Approximations for Rasp and Rpsapr

In this section we validate the approximations for Rasp and Rpsapr derived in Sections 6.2, 6.3,

and 6.3.4. The parameter settings for the validations are as follows:
e For most of validations P=20 or P=100 processors.?

e We used three different distributions for available parallelism N. First, the bounded-
geometric distribution. Second, a uniform distribution with several values for the lower

and upper limits. Third, constant N, i.e., N = k.

e For validating the ASP approximations (6.6) and (6.3) we used an exponential distribution
for demand, and for validating the PSAPF approximations we used exponential (C,, =
1) as well as two-stage hyperexponential (H,) demands with C, = 5. In a few cases
we also validated the PSAPF approximations for deterministic and Gamma distributions
of demand. The accuracy of the approximations for deterministic demands was nearly
the same as the accuracy for exponential demands and for the Gamma distribution the

31n some cases we considered systems with 10 or 50 processors and in some other cases systems with 500 or
1000 processors. The accuracy of the approximations was approximately the same in these cases as the accuracy
for 20 or 100 processors.

101

accuracy was the same as for H; demands with the same C,. We also ran a few test cases
for C, < 5 and noted that the accuracy of the PSAPF approximations was higher at lower
Cy.

o For all validations D was set to P so that p = AD/P = X. In the validations p was varied
from 0.1 to 0.9.

The approximations for Rpgapr for constant available parallelism were validated using exact
matrix-geometric analysis [56, 51]. In all other cases, our approximations were validated using
discrete event simulation. All simulation estimates of mean response time had 95% confidence
intervals with less than 10% half-widths, and in nearly all cases the half-widths were less than 5%.

The batch means method was used if obtaining the regenerative cycles was too time consuming.

6.4.1 ASP Validations

Figure 6.1a depicts the relative errors for approximation (6.6) for systems with 10, 20, 50, and 100
processors. Observe that for all four system sizes approximation (6.6) overestimates Rasp(N =
P) at low utilizations, but underestimates Rasp(N = P) at moderate to high utilizations. In
all cases the relative errors are less than 10% in magnitude. We expect approximation (6.3) to
have higher relative errors since it uses approximation (6.6). To validate approximation (6.3)
we ran simulation experiments for many bounded-geometric distributions for N with different
values of Ppqz and p, and for uniform and constant distributions for N. The total number of
data points in the validations (excluding the points for N = P) was about 140 for systems with
90 and 100 processors. Figure 6.1b summarizes these validation results by plotting histograms of
relative error. The figure shows that approximation (6.3) is very accurate. For more than 90%
of the data points the approximation is within 15% of the simulation estimates. The highest
error (-36.4%) occurred for a U[50,100] distribution for N at p = 0.3. In general, we noticed that
the errors were larger and more negative for workloads with high average available parallelism

(say N > 3P/4) when load was low to moderate (around p = 0.5).

6.4.2 PSAPF Validations

We present validations for approximations (6.12), (6.16), and (6.17). For approximation (6.12),
and 7 = 0, the number of data points for each of C, = 1 and C, = 5 was 306 leading to a total of
612 validations. Figure 6.2a presents the histograms of relative errors for approximation (6.12).
We see that approximation (6.12) is extremely accurate when C, = 1, and reasonably accurate at
C, = 5 (about 90% of the data points have less than 35% error at C, = 5). This approximation
is more accurate than the PSAPF approximations in Chapter 4, which had more than 100%

102

p 100
C
t
P o]
e f
r
¢ -10 D 50
n a
t t
5 a
r P
r t
0 S
r 0 o 2y
-40% -25% -15% -5% 6%
to to to to to

-26% -16% -6% 5% 15%

Relative Errors

(a) Approximation for N=P (b) Approximation for general N

Figure 6.1: Validations of ASP Approximations

error in some cases. The maximum error at C, = 5 occurred at N = 3/4P and p = 0.2 for both
P=20 and P=100. In general, the largest errors at C,, = 5 were observed for distributions of V
with moderate to high N and low Cy. The overall accuracy might improve further if a more
accurate approximation for X rors is used in approximation (6.12).

Approximation (6.16) was validated against 178 data points for each of C, =1 and C, =5,
leading to a total of 356 validations. (Since the constant N distribution cannot be used when
» = 1 the total number of validations is fewer than when for r = 0.) Figure 6.2b summarizes the
validations for this approximation. As seen from the figure approximation (6.16) is very accurate
at low C, and quite accurate at high C, (about 95% of the data points have less than 35% error
when C, = 5). The maximum error at C, = 5 occurred for the data point N =U[1,100}, p = 0.5.
The approximation errors when r = 1 were highest for low Cx workloads at low to moderate
load.

For approximation (6.17) the validations consist of 226 data points for each of C, = 1 and
C, = 5, leading to a total of 452 validations (excluding the cases forr=0and r =1). We
considered three values of 7, viz., r = 0.25, 7 = 0.5, and r = 0.75. Figure 6.3 displays histograms
of the relative error at C, = 1 and C, = 5. The accuracy of approximation (6.17) is very high
at C, = 1 and fairly good at C, = 5. Thus all three approximations for PSAPF (i.e., for r=0,
r=1, and for general r) are reasonably accurate in general, as long as C,, < 5. The maximum
error for approximation (6.17) was encountered for a specific bounded-geometric distribution for

103

100

100
P O o=l : e
t t
- - CD=5 - - Cy=5
o 0
f f
D 50 D 50
a a
t t
a a
P] P
s s
0 — 0 — I W
5% 6% 16% 26% 36% -5% 6% 16% 26% 36%
to to to to to 10 to to to to
5% 15% 25% 35% 70% 5% 15% 25% 35% 55%
Relative Errors Relative Errors
(a) Approximation for r=0 (b) Approximation for r=1

Figure 6.2: Relative Error Histograms for PSAPF Approximations

N with low Cn, Cy =5, 7 = 0.5, and p =0.8. Asforr =0 and 7 = 1, approximation (6.17) is
more accurate for distributions of N with high Cn.

6.5 Summary of Analysis and Relation to Previous Work

In this chapter we have developed analytic models for the ASP, FCFS, and PSAPF policies. We
derived reductions for each policy under a general ERF and showed that their mean response
times are sensitive to Cp, unlike the mean response time of the EQS policy. We noted from
the reductions that assuming the linear ERF provides the same sensitivity results to Cp as
assuming a general ERF. All interpolation approximations in this chapter are valid for a general
distribution of available parallelism and the linear ERF. We derived an interpolation on S,
for Ragp for an uncorrelated workload with exponential demand. We derived a more accurate
approximation for Rpsapr under uncorrelated workloads than the interpolation approximations
for Rpsaprp from Chapter 4. We also developed an accurate approximation for Rpsapr under
fully correlated workloads with general demands, and used the the approximations at the extreme
ends of correlation to obtain an interpolation on r for Rpsapr that holds for arbitrary workload
correlation, i.e., 0 <7 < 1.

Previous analytic models for ASP have appeared in [69, 70] and for FCFS in (54, 55, 80,
50, 40]. There have been no analytic models for PSAPF but there is one analytic model in

104

100-

f] ¢=1

t

o - - Cv=5

f

D 50

a

t

a

P

t

: i
— [. .
20% -5% 6% 16% 26% 36%
to to to to to to

6% 5% 15% 25% 35% 45%

Relative Errors

Figure 6.3: Relative Error Histograms for PSAPF Interpolation on 7

r =0.25, 0.5, 0.75

the literature for PSNPF [40]. In [50] an approximation is derived for Rrcrs under the iid.
exponential task service time model using a generalized version of Amdahl’s law. Other than this
approximation all the analytic models for FCFS, ASP, and PSNPF in the literature are based
on numeric solution techniques such as matrix-geometric analysis or recurrence relations. None
of these models shows how policy performance varies as a function of coefficient of variation in
demand. Moreover, the models based on matrix-geometric relations or recurrence relations have
computational limitations since the state space grows exponentially in the number of processors.
Three simulation studies [43, 41, 39] give experimental data for the behavior of FCFS and PSNPF
as a function of demand and parallelism parameters. All three studies show that Rrpcrs and
Rpsnpr increase with Cp for specific two stage hyperexponential distributions but do not
examine whether they increase linearly with C% as done in this chapter: In [39] it is shown for
a specific distribution of demand and parallelism that Rrors and Rpsypr can increase with
N if Cp is high. We corroborate this result in the next chapter.

This chapter and the previous one have focused on developing analytic models for ASP,
FCFS, EQS, and PSAPF. Table 6.1 summarizes the model solutions derived in this chapter
and in Chapters 4 and 5. We have observed from all the analytic models that a key workload
parameter that influences the mean response time of these policies is coefficient of variation, Cp,
in demand. We will therefore use this parameter to explore the design space while comparing
policies in the next chapter. For the EQS policy under general workload assumptions and for the

105

ASP policy under D ~ exp, 7 = 0 and ~! we have noted that the normalized mean service time,

S, = §/D, is a key determinant of policy performance, which will prove useful in our policy

comparison study in the next chapter. This shows the utility of the interpolation approximation

approach in obtaining key parameters for policy comparison, besides being an effective approach

for easily evaluating policy performance for large systems.

Table 6.1: Summary of Model Solutions

Policy Reductions Approximations
ASP (N=1,Fp,r=0,7) (64) Interpolation on p: (N = P,exp(1/D),r =0, 'y Y (6.6)
(p = L, Fn,Fp,m7) (6.5) Interpolation on Sh: (]—'N,exp(l/D),r =0,7" (6.3)
EQS (N =k, Fp,r=0,7) (5.1) Interpolation on p: (Fn,Fp,7 = 0,7) (5.5)
(p = 1,Fn,Fp,7,7) (5.4) | Interpolation on N: (Fnu,Fb,r=0,7) (5.6)
Interpolation on p: (Fn,Fp,T = 0,7) (5.7)
Interpolation on Sa: (Fn,Fb,7:7) (5.9)
Interpolation on r: (Fn,Fp,77) (5.9)
Generalized approxxmatlon (Fn, Fb,m) (5.12)
FCFS (N =k,Fp,r=0,7) (6.2) | Interpolation on N: (Fn,Fb,r =0, 7 hH (4.12)
Interpolation on p: (Fn,Fp,7=0,7 H (4.14)
PSAPF | (N =k, Fp,r=0,7) (6.13) | Interpolation on N: (Fn,Fp,r =0, 7 Y (4.17)
Interpolation on p: (f'N,f'“ r=0,9") (4.19)
PR heuristic: (Fn,Fp,r = 0,7 h (6.12)
Generalized approximation: {(Fn,Fp,r = L) (6.16)
Interpolation on : (Fn, Fp, 7,) (6.17)

Chapter 7

Policy Comparison Results

The main goal of this thesis is to study policy performance with respect to workload parameters
and to determine which scheduling policy out of ASP, EQS, FCFS, and PSAPF has the highest
performance over most of the design space. Our analytic models in Chapters 5 and 6 reveal the
dependence of policy performance on workload parameters and clearly show that a key parameter
that affects the relative performance of these four policies is the coefficient of variation, Cp, in
job demand. It remains to quantitatively determine the relative performance of these policies
with respect to Cp and also other workload parameters in cases where Cp does not uniquely
determine relative policy performance.

In the first part of this chapter we compare ASP, EQS, FCFS, and PSAPF using our ap-
proximate analytic models (as well as simulation in some cases) and we delineate regions of the
design space over which each policy performs best. In the second part of this chapter we qualita-
tively corroborate the results from the first part using exact analysis under job dependent ERFs
and more general correlation between demand and parallelism. In the second part we assume a
generalized exponential (GE) distribution for demand, which is completely parameterized by the
mean and coefficient of variation of demand. Section 7.3 shows how the performance comparison
results in this chapter generalize and unify previous work. Finally, in Section 7.4 we summarize

our policy comparison results and relate them to previous work.

7.1 Policy Comparison Using Interpolation Approxima-
tions
The goal of this section is to compare the performance of ASP, EQS, FCFS, and PSAPF under

the general workload assumptions (Fn, F},7,7). The mean response times of ASP, FCF'S, and

106

107

PSAPF were each derived under one or more restrictive assumptions, i.e., linear execution rates
for all three policies, no correlation for ASP and FCFS, and exponential demands for ASP.
However, if it turns out that the restrictive assumptions are more favorable to one policy, ¥,
over another, U5, and yet ¥, performs worse, then the same relative ordering between ¥, and ¥
will hold under more general conditions that are less favorable to ¥;. In this way we will be able
to generalize the results from comparisons of the four policies under the restrictive assumptions.

The following theorem will prove useful in understanding the impact of execution rate as-
sumptions on policy comparisons. This theorem shows that for any fixed set of jobs with a
common workload ERF, ~, the total execution rate of all jobs (or equivalently the processor

efficiency) is maximum for the EQS policy.

Theorem 7.1.1 Consider a set of K jobs with available parallelisms (n1,...,nk). Let ¥ be a
processor allocation policy that allocates a}" processors to job i, fori =1,..., K. Then for a
workload ERF ~ that is concave and nondecreasing, and for E(j) = 7(4), i.e., jobs dynamically
and efficiently redistribute their work,

K K
ZE(aiEQS) > ZE(af’), for any processor allocation policy ¥. (7.1)
i=1 i=1
Proof. See Appendix A.3.1. a2
Remark: An extension to Theorem 7.1.1 is that the available parallelisms can be random
variables (Ni,..., Nk), in which case one must take the expected value of the sums in (7.1).

The intuition behind the result is that when v is concave the total execution rate decreases
with variability in allocation. EQS tends to allocate an equal fraction of processors to jobs and
this leads to high overall efficiency. As per the theorem, the assumption of the linear ERF is
more favorable to the ASP, FCFS, and PSAPF policies as compared to EQS. We discuss the
favorability of other workload parameter settings as they arise in the comparisons below.

This section first compares ASP and EQS and shows that EQS performs as well or better
than ASP for essentially the entire parameter space. We then compare FCFS and PSAPF and
show that PSAPF outperforms FCFS for most of the parameter space. Section 7.1.3 compares
EQS and PSAPF and delineates the regions under which each policy performs best. Note that
all experiments in this section have D set to P so that p = AD/P = A

7.1.1 ASP versus EQS

Section 7.1.1.1 compares the performance of ASP and EQS for uncorrelated workloads first using
approximations (6.3) and (5.9) under the assumptions of exponential job demands and the linear
ERF +'. Then the performance of the two policies is compared for Cp = 0 using approxima-
tion (6.7) for Rasp, and for Cp > 1 using simulation for R4sp. (Note that approximation (5.9)

108

for REQS is independent of Cp.) In all cases, the linear ERF is most favorable to the ASP
policy, which allows extrapolation of the policy comparisons to sublinear ERFs. Section 7.1.1.2

uses simulation for Eagp to compare the performance of ASP and EQS for correlated workloads.

7.1.1.1 ASP versus EQS: r=0

Key to the comparison of Rasp and Rgqs under the assumptions (F,exp(1/ D),r =0,7") are
the following observations from (5.9) and (6.3). First, Sy, D, and p are the key determinants of
Rasp and Regs under the given assumptions. Second, for fixed S, and p the ratio Rasp /_REQS
is insensitive to D because each of the formulas in (5.9) and (6.3) is directly proportional to D.
Therefore, if we keep D fixed and plot the ratio Rasp /EEQS against S, for different values of
p, the results will hold for all D and all distributions of N under (exp(1/D),r = 0,7")

Consider the maximum value of Sy, i.e, S, = 1, in which case all jobs are fully sequential.
When N = 1, the EQS system is identical to an M/M/P processor sharing (PS) system and
thus Rpgs(N = 1) = —R-M/M/p pg. From [65] we obtain Rp/am/p ps = Rum/p Fers- On
the other hand ASP is identical to FCFS when N = 1 and thus for exponential demands
Rasp(N=1)= _RM/M/p rors- Therefore, for Cp = 1,7 =0, and S, =1, Rasp = Regs-

Next consider how these policies compare as job parallelism increases, that is, as S, decreases.
Figure 7.1a plots Rasp/Rrqs versus Sy, for the workload (¥, exp(1 /D), =0,+"). (Consider
only the solid lines in the figure for now.) The range of S, in Figure 7.1a covers the likely practical
values of N (i.e., N = 0.05P to P). Recall that when S, =1 (not shown) Rpgs = Rasp and
thus the ratios for Cp = 1 will converge to 1 when S, = 1. Also recall that the assumption of the
linear ERF results in the lowest possible ratio of response times, as per Theorem 7.1.1, at each
value of p. Thus the curves for workloads with sublinear ERF's will lie above the curves shown
for the linear ERF. Figure 7.1a reveals that over the entire range of Sp < I, the EQS policy
outperforms the ASP policy. The ASP policy becomes more competitive with the EQS policy as
S, increases, but is significantly less competitive for workloads that are (nearly) fully parallel.
The reason for the poor performance of ASP is its lack of flexibility in processor allocation.
Unlike the dynamic allocation under EQS, the (adaptive) static allocation under ASP can leave
processors idle when a parallel job could otherwise use them.

To compare the policies for distributions of demand other than the exponential, we first note
from (5.9) that for fixed D, —REQS is insensitive to Fp. At S, = 1, i.e,, N=1, and v = 7,
Rasp = Ry JG/p and thus ASP policy performance is sensitive to Cp. When P is large (say
P > 100), then for S, = 1, Rasp is only slightly smaller than Rgpgs for Cp < 1, equal to
REQS at Cp = 1, and then increases with respect to nREQS with further increase in Cp. The
intuition for the increase of Rasp with respect to Cp at S, = 1is that a scheduled job runs to
completion without interruption and each large demand job in execution reduces the number of
system processors available for serving small jobs. This intuition should also apply for S, < 1.

109

0 . , .
000 005 0.0 015 020 00 1 2 3 4 S
Sn Cp
(a8 =5,,Cp=0,1 (b) 8 =Cp

Figure 7.1: Rasp /REQ versus workload parameter 8: r=0, 7t

P=100,D =P

Figure 7.la also plots RASP/REQS versus S, when Cp = 0 (using approximations (6.7)
and (5.9)), and as suggested by intuition the ratios are lower than when Cp = 1. However, the
ratio is greater than one throughout the range of S, shown in the figure although at S, =1
and Cp = 0, as noted above, Ragp is marginally smaller than R-EQS.

For Cp > 1 we do not have analytic estimates of Rasp and thus we resort to simulation
to show the trends in relative policy performance. For ‘REQS, however, approximation (5.9) is
valid for all Cp. Figure 7.1b plots Rasp /_REQS versus Cp for constant available parallelism and
two-stage hyperexponential (Hz) demand distributions. The figure shows that Rasp increases
significantly with Cp and the rise is sharper for larger available parallelism. The intuition for
the latter observation is that jobs with higher parallelism and larger processing demand can
occupy a larger number of servers, thus more significantly reducing the processors available to
serve waiting jobs. Using the same intuition it appears likely that Rasp should increase with
Cp for general demand and parallelism distributions. This was partially verified for specific
nondeterministic distributions of N (not shown).

Before concluding this section, it may be of interest to compare how EQS performs for
workloads with sublinear v versus how ASP performs when 7 is linear. Assuming that job
demand is exponential, S, () and Sn(7') are the respective key parallelism parameters for EQS

110

and ASP. To compare EQS(7) against ASP(7') we need relationships between S, () and Sa(7h)-
We consider the ERF (14 Bk
+
k) = i k=1,...,P .
1(k) =77 3 P (7.2)

For r = 0 and the ERF (7.2) we obtain

su) = B [= B[] = 5 (1495 7]) = gt + 85,00

or equivalently,

Sa(?') = -[1; (T +B)Sal(y) - 1]. (7.3)
For the ERF in (7.2) S.(v") is related to Sn(y) by (7.3), and thus Sn(v) uniquely deter-
mines the performance of both policies. For p = 0.7 and p = 0.9 Figure 7.2 plots the ratio
Rasp(7")/BEeqs(v) versus S,(v) for the ERF (7.2) with g = 100, which is considerably sub-
linear as shown in Figure 3.2. The ratios converge to 1 when S, =1 and are thus greater than
1 throughout the range of S, < 1. For (low) values of p where mean service time dominates
mean response time, the ratio will be less than 1 (except at S» = 1). However, Figure 7.2 shows
that (at moderate to high loads) a poor choice of scheduling policy, perhaps dictated by existing
system software or hardware can be more detrimental to overall mean system response time

than parallel program overheads.

7.1.1.2 ASP versus EQS: r==1

In Section 7.1.1.1 we noted that lack of flexibility of processor allocation under ASP causes it
perform worse than EQS when r = 0. For example, if a highly parallel job is allocated fewer
processors than its available parallelism it cannot make use of additional processors when they
become idle. When r = 1, the more parallel jobs also have larger demands and therefore the
static allocation under ASP should hurt their performance even more than when 7 = 0. Thus
intuition suggests that the differential between Rasp and —REQS will increase with .

We compare Rasp with Rpgs under the assumptions (-, Fp = exp(1/D),r = 1,4"). The
assumption of the linear ERF is more favorable to ASP and so is the assumption of exponential
demands compared with C, > 1. Due to lack of analytic estimates it is unknown whether 5, is
a key parameter for Rasp. As a result we use simulation and compare the performance of EQS
and ASP under specific distributions of N. More specifically, we use the bounded-geometric
distribution with parameters Ppax and p. We note from Theorem 3.5.2 that for bounded-
geometric distributions with a given N, over all values of Ppax and p, Cy is maximum when
p =1 and Cy is minimum when Ppax = 0. We refer to workloads with these two extremes of
Cy as high Cy and low Cy workloads, respectively.

Figure 7.3a plots EASP/REQS versus S, for the high Cy and low Cn workloads for the
linear ERF at two values of p. The curves for workloads with sublinear ERF's will lie above

111

3
2
- =0.9
Ragph | -TTT
Regs) | _ p=07 ~TTTmm—eo.
T
0
0.00 0.05 0.10 0.15 0.20

Sa(¥)

Figure 7.2: Rasp(7')/REeq(7) versus Sp(7): r=0

P=100,Cp =1, B =100

those for the linear ERF. We note from Figure 7.3a that Rasp /EEQS is higher for the high
Cn workload than the low Cy workload. Moreover, the ratios for the high Cy workload are
markedly higher than the ratios in Figure 7.1. What causes the performance of ASP to degrade
at 7 = 1 when Cy is high? The intuition for this behavior is as follows. For all data points
in Figure 7.3 we observed that the mean waiting time under ASP is negligible compared to
the overall mean response time of ASP!. Thus for the given range of utilizations and for the
given workload assumptions, for the ASP policy the mean response time of an arriving job is
primarily determined by the number of processors it is allocated when it begins service. The
high Cn workload has a much higher percentage of fully parallel jobs as compared to the low
Cy workload and fully parallel jobs under ASP have the highest mean service time among all
parallelism classes. Furthermore, these jobs are allocated a smaller fraction of the number of
processors that they can productively use on average. This phenomenon is exaggerated for ASP
than for EQS since under ASP a job’s partition cannot expand beyond its initial allocation.
From Figure 7.3a we also observe that all curves initially increase sharply with Sy, reach a
peak at moderate parallelism, and then decrease with further increase in S,. We clarify this

behavior by explaining two opposing trends that occur when S, increases. The first trend is

1This observation does not concur with the observations of Setia and Tripathi [69] because we examine a
system with P = 100 whereas they examined systems with P < 10 in which it is less likely for a job to find an
idle processor upon arrival.

112

0
0.00 0.05 0.10 0.15 0.20 80() 0.05 OSIO 0.15 0.20
Sn n
(a) linear ERF (b) 8 =100

Figure 7.3: Rasp(7")/Req(y) versus Sp(7): 1=1

P=100,D=P,C, =1

that when S, increases the mean demand of highly parallel jobs increases® which causes their
mean response time under ASP to increase relative to EQS because a highly parallel job can
make use of idle processors under EQS but not under ASP. The second trend is that when S,
increases the percentage of fully parallel jobs decreases which decreases their contribution to
overall mean response time. When S, is low the first trend dominates causing the curves in
Figure 7.3 to increase and as S, increases further the second trend dominates causing the curves
to decrease.

As in the case of r = 0 we also plot Rasp(7')/Reqs(7) versus Sp(7) for the highly sublinear
ERF with 8 = 100. Figure 7.3b shows that the ratios are greater than 1 throughout the range
of S, (they converge to 1 at S, = 1). At lower utilizations where S dominates mean response
time, the ratios will be less than 1. Thus at moderate to high utilizations EQS performs better
even when the EQS workload has a sublinear ERF and the ASP workload has the linear ERF.

7.1.1.3 Summary of ASP versus EQS Comparison
To summarize the policy comparison results for ASP and EQS, we conclude that EQS has

2As S, increases more and more of the probability mass shifts to lower values of parallelism where jobs have
smaller mean demands (since r = 1). Therefore, to keep the overall mean demand as D the mean demand of
highly parallel jobs increases.

113

significantly better performance because (1) it utilizes processors better, that is, jobs make use
of idle processors whenever possible, and (2) its mean response time is not sensitive to variation in
job demand. ASP becomes more competitive with EQS as S,, decreases, C, decreases, and ERF
linearity increases. While the last two observations follow from intuition and from Theorem 7.1.1
the first observation follows from the results shown in Figure 7.1 (and 7.3) and would be difficult
to obtain in the absence of simple approximations such as (6.3) and (6.7) for Rasp.

7.1.2 PSAPF versus FCFS

The purpose of this section is to quantify the difference in performance between PSAPF and
FCFS over the model parameter space (Fn,Fp,7,7). When N is deterministic, PSAPF is
identical to FCFS. For nondeterministic N, however, we expect PSAPF to perform differently
than FCFS. In general, one can expect PSAPF to perform better than FCFS for three reasons.
First, by delaying service of more parallel jobs, PSAPF tends to keep processor utilization
high for a larger portion of each busy period [1]. Second, for correlated workloads PSAPF gives
higher priority to jobs with smaller mean demands. Third, at high instantaneous load the overall
efficiency is higher under PSAPF for sublinear v because jobs that receive higher priority also
execute more efficiently. Due to the last two reasons the most favorable parameter values for
FCFS relative to PSAPF are no correlation (r = 0) and the linear ERF (y = 4"). Using the
analytic models of Chapter 6 we show how the policies compare under these favorable conditions
and extrapolate the results to the case of sublinear ERFs. We then provide simulation data to
show how PSAPF and FCFS compare under correlated workloads.

7.1.2.1 PSAPF versus FCFS: r=0
Consider the workload settings r =0 and v = +*. Using approx1matxon (6.10) we have that

XM/G/lp PR

X psapr = XFCFs %
X miG/1e

To compare Rpsapr with Rpcrs we need to compare Xujcnp pr With Xaycp FOFs:
From Section 6.3.2, under the given workload

L o1 k
—_ _ Ok—1 Ok 1+ C% D _ '
XM/G/IP PR~ k§=1:pk [+ (1 _ O'Ic-—]_)(l _ ka) (9 Pa where O =p E Dis

-0k iz=1

and

YM/G/IP FCFS = £ ('l"j—ng> 2

1-p 2 P
Note that relative policy performance is only sensitive to the first two moments of D. When
D = exp(1/D) then XM/G/“, PR = XM/M/IP and thus for all Fp with Cp = 1 and fixed D,

114

we have _XM/G”P = YM/M“P which means that X psapr = X rcrs when Cp = 1. Setting

Cp =1 in the formulas for TY—M/G/IP pr and /T(.M/G/lp rorg we find that

D RS SN SR

el (1-o0r1)1-0g)] P 1—p P

Now consider Cp > 1. Since (1 + C%)/2 > 1, we obtain

— 1+C2> il [Ok—1 o _D- 1+C2 D

X < D Z o= p_~f =
M[G[1p PR (2 > P 1 =01 (1-ork_1)(1—frk)] P (2 > 1-p P

k=1

Thus X psapr < X rcors when Cp > 1. Likewise, when Cp < 1, X psapr > X rcrs. Thus,
at r = 0, and v = 7}, the relative performance of PSAPF and FCFS as determined by Cp is as

follows _
> Rrcrs, Cp <1,

Rpsapr{ = Rpcrs, Cp =1, (7.4)
< Rpcps, Cp > 1.

These results are illustrated for the three bounded-geometric distributions for N given in Ta-

ble 7.1.

Table 7.1: Three Bounded-Geometric Distributions for N

P=100
Symbol | Parallelism | P P N Cw CDF of N
10+ L e
H High 0.9 1.0 90.10 0.33] T
F(k) M
M Moderate 0.1 1/(0.4P) | 43.14 0.80
ot L g
L Low 0.1 0.9 11.00 2.70 |) 0

Figure 7.4a plots Rrcrs /Rps app versus Cp for the H and M workloads. The response time
ratios for the L workload are not shown because they lie very close to those for the H workload.
We note from Figure 7.4a that Cp has a much stronger effect for the M workload as compared
to the H and L workloads. This is because PSAPF is more highly differentiated from FCFS for
the M workload in which there is a wider range of values for available parallelism as opposed to

the H and L workloads, as shown by the cdfs in Table 7.1.

115

“)N & Hm o [K1)
S
081 M © 08
e p=0.9
- 0.6
- 06 - p=07 R '
RpsapF —l{iﬁ
RrcEs FCFS
0.4
0.2
0.21
0.0
0.0 0 2 4.6 8 10
0 1 2.3 4 5 Cp
Cp
(a)r=0 (b)r=1

Figure 7.4: Rrcrs/Rpsapr versus Cp: a

P=100

7.1.2.2 PSAPF versus FCFS: r=1

Let us now compare PSAPF and FCFS at 7 = 1. We expect the performance of PSAPF to
improve as correlation increases and thus Rpsapr /-ﬁpc rs should be lower at r = 1 than at
r = 0. We ran simulation experiments to obtain Rrcrps at T =1 and C, between 0 and 5 for the
H, M, and L parallelism workloads. Rpsapr is approximated using (6.16). Figure 7.4b plots
the ratios Rrc ps/—ﬁps Apr as a function of Cp for the three parallelism workloads. (For the
L workload the results are shown up to C, = 3 which corresponds to Cp = 9.04 using (3.4).)
We observe that the mean response time ratios at r=1 are significantly lower than the ratios at
r=0. The ratios also decrease faster with increasing Cp, and also decrease more substantially
for the M workload compared with the H workload, and for the L workload compared with the
M workload. The reason for the marked improvement in the L workload is that when r = 1
90% of the jobs have lower mean demands than the other 10%. This differentiation in mean

demands when r = 1 increases the performance differential between PSAPF and FCFS.

7.1.2.3 Summary of PSAPF versus FCFS Comparison

To summarize the comparison between PSAPF and FCFS, the results have shown that PSAPF
performs better than FCFS for most of the parameter space. FCFS performs marginally better
when r = 0 and Cp < 1. The quantitative results above were for the linear ERF. PSAPF should

116

perform relatively even better if the ERF is sublinear, as explained above.

7.1.3 PSAPF versus EQS

Sections 7.1.1 and 7.1.2 showed that in general, EQS performs better than ASP and PSAPF
performs better than FCFS, respectively. The EQS policy has high performance since it effi-
ciently utilizes processors and its response time is insensitive to Cp. The PSAPF policy has high
performance for workloads with high correlation since it favors jobs with small mean demand
in these workloads. In this section we first compare PSAPF and EQS under no correlation and
the linear ERF (r = 0 and v = v*) and then under full correlation and the linear ERF (r=1
and v = +'). We use the comparisons at these two extreme ends of correlation to obtain results
for partial workload correlation. Note that on account of Theorem 7.1.1 the parameter setting
4 =4} is more favorable to PSAPF relative to EQS.

7.1.3.1 PSAPF versus EQS: r=0
We compare PSAPF and EQS at r =0 and v = +* using accurate approximations for the mean

response times of both policies. Using approximation (6.10) we have that

Xuone rr, (7.5

Rpsapr = S+ XrcFs -
XmiGne

Using this approximation for Rpsapr we first compare PSAPF against EQS when Cp =1 by
comparing X pcrs against X ggs when Cp = 1. We then extend the comparison over the entire
range of Cp.

At r = 0 and v = 4} the interpolation on p was shown to very accurate for X rors as well
as for X pgs. Using this interpolation approximation (see (4.14) and (4.13)) under the given

assumptions we get _ S—
E p‘/2('5'+1)

- I 1+ C}
Reors =~y (772
E[p\/?(%ﬂ)
Mi-p)

Using these formulas for X rcrs and ,_X—EQS we have that

and

X—EQS ~

Xrcrs ~ Xggs, under (Fy,exp(1/D),r =0,7).
It therefore follows from (7.5) that

_— - X —
Rpsapr =S+ XEgqgs- -M, under (Fy,exp(1/D),r = 0,7").
XM/G/1p FCFS

117

From Section 7.1.2.1 we observe that
Xm/G/np PR=XM/G/1p FCFS when Cp = 1.
As a result
Rpsapr = S+ Xggs = REos, under (Fy,exp(1/D),r = 0,7"). (7.6)

This comparison may seem limited since we have just examined one value of Cp and that too
an impractical one. We, however, claim that this comparison reveals full information about
the relative performance of PSAPF and EQS at r = 0 and v = 4*. The reason is that from
approximation (6.12) we have that Rpsapr increases linearly in C% and we have also repeatedly
seen from all approximations for _ﬁEQS that R-EQS is independent of Cp. If we plot Rpsapr
and Rpgs versus C}, we will observe the curve for PSAPF to be a straight line with a positive
slope and the curve for EQS to be a horizontal line. From (7.6) we note that these two lines will
intersect at Cp = 1, regardless of the distribution of N. This means that for all distributions of

N, when r =0 and v = %}

< —R-EQS, Cp < 1,
Rpsapr{ = Rpgs, Cp=1, under (Fn,Fp,7= 0,7h). (7.7)
> Rgpgs, Cp>1

Thus, when r = 0 and v = ~!, we can uniquely determine the relative performance of PSAPF
and EQS using Cp alone. Leutenegger and Vernon [41] have identical comparison results for
PSNPF and RRJ (temporal EQS) (using simulation) as (7.7) in the range Cp > 1, assuming Ho
job demands and specific distributions of N. The result we have shown holds for all distributions
of D and N. To graphically illustrate this result and get a quantitative estimate of the difference
between Rpsapr and REQS at 7 = 0 we use the three bounded-geometric distributions for N
given in Table 7.1. Figure 7.5a plots Rpsarr /-REQS versus C% for the H, M, and L workloads
for N. As explained above the curves are linear in C% because Rpsapr increases linearly in
C,2_-, whereas EEQS is insensitive to Cp. We observe that for Cp < 1, .REQS is fairly close to
Rpsapr and that at high values of Cp such as Cp = 5 EQS significantly outperforms PSAPF
for the H and M workloads which have high and moderate parallelism respectively. This is
particularly true at p = 0.9. For the L workload the difference between PSAPF and EQS is not
as significant because the mean response time of this workload is dominated by the mean service
time S, which is the same for both PSAPF and EQS. To observe how these two policies compare
over a range of parallelism values for workloads with practical values of Cp such as Cp =5 we
plot Rpos(N = k) and Rpsapr(IN = k) as a function of k in Figure 7.5b. We see that PSAPF
can perform as much as 12 times worse than EQS at p = 0.9 and close to 10 times worse at

118

p = 0.7. We observe that Epsapr can increase with an increase in parallelism, particularly, at
p = 0.9, whereas REQS decreases with an increase in parallelism. The same observation was
made by Leutenegger [39] for the PSNPF and RRJ policies for specific workloads of demand
and parallelism. We will study the behavior of Rpgs as a function of available parallelism in

more detail in Chapter 8.

61 1401
e ; e 00,9
Q
- M
L p=0.7 M0 PSAPF p=0.9
3 a
n
1001
4 R
¢
s 80
R P
EQS 3 o
n
S
21 e
T PSAPF p=0.7
i 1N e TTTTTTT
- e e m -
: e AEQS
; ol s
0 5 10 , 15 20 25 0 0 4, 60 80 100
Cp =
(a) Rpsapr/REegs vs Ch (b) Ry(N=k) vs k, Cp=>5, ¥ € {PSAPF,EQS}

Figure 7.5: Comparison of PSAPF and EQS at r = 0: +

D=P=100

7.1.3.2 PSAPF versus EQS: r=1
When 7 = 1 and v = 7, we have § = D/N (see the equation above (3.6)) and thus S, = 1/N.
Since S, is the key parallelism parameter for EQS, and N is uniquely determined from S, at
r = 1and v =+, it follows that N is equivalently the key parallelism parameter for EQS
under these workload conditions. That is, at 7 = 1 and v = 7 REgs is approximately the
same across all distributions of N with the same N. This is not necessarily true for RpsapF-
We therefore use approximation (6.16) and nonlinear programming to obtain the minimum and
maximum values of Rpsapr across all distributions of N that have the same IV, and then use
these values to determine the relative performance of PSAPF with respect to EQS. The details
of the nonlinear programming solution method are given in Appendix A.3.2.

Figure 7.6a plots the minimum and maximum of _EPSAPF/EEQS as a function of N for

119

- maximum ratio
—— minimum ratig_----

127 ---- maximum ratio 127
—— minimum ratio

2 Cy=

0 : :
0 20 40_60 80 100 0 20 40 _60 80 100
N

(a) p=0.7 (b) p=10.9
Figure 7.6: Rpsapr/REqs versus N:r=1,+

P=100

various C, at p = 0.7 for a 100-processor system. We observe that the ratios increase with C,
since PSAPF is sensitive to C,, whereas EQS is not. When C, <1 PSAPF performs better
than EQS. However, the reverse is mostly true for C, = 2 (in the range N > 30) and is true for
all cases with C, > 3. We also observe that the minimum and maximum ratios increase with
N for C, > 2, due to the improvement in EQS performance with increase in average available
parallelism when r = 1. Figure 7.6b plots similar ratios for p = 0.9 and we note that the
difference between PSAPF and EQS increases with an increase in p.

Under sublinear execution rates the ratios of Figure 7.6 should be higher by virtue of The-
orem 7.1.1. We can therefore conclude that for general workload conditions with r = 1, EQS
outperforms PSAPF as long as C, > 2.3

To summarize the policy comparison results between EQS and PSAPF at r = 1 we have

> Rpsapr, 0<Cy <1,

? Rpsapr, 15Cy<2,

< BRpsapr, Cy=2, N>03P,
< Rpsapr, Cuv>2,

Regs under (Fy,Fp,T = 1,7,

3Note that given Cy, Cn, and r, we can compute Cp using (3.4). For example, when N = 50, Cny < 0.99
from (3.5.1) and thus if Cy = 2, we get Cp < 3.

120

where the question mark for 1 < C, < 2 reflects that under the given assumptions the exact
relationship between Rggs(r = 1) and Rpsapp(r = 1) is sensitive to the distribution of N.

7.1.3.3 PSAPF versus EQS: 0 <r <1
Coupling the results from Sections 7.1.3.1 and 7.1.3.2forr =0 and r = 1 we have the following

relationships between REQS and Rpgapr at the extreme ends of correlation.

RPSAPF(T = 0), 0<Cy <1,
Reos(r =0){ = Rpgapr(r=0), Cy=1, (7.8)
Rpsapr(r=0), Cy,>1,

\

AN

and _
> Rpsapr(r=1), 0ZCy, <1,

? Rpsapr(r=1), 1<C,<2,
< Rpsapr(r=1), C, =2, N >03P,
< Rpgapr(r=1), Cy>2,

Rggs(r =1) (7.9)

Note that in (7.8) we used the fact that at r = 0, we have C, = Cp as can be seen from (3.4).
Now consider the case where 0 < r < 1. The approximations for —R'EQS and Rpsapr (see (5.10)
and (6.17)) for 0 < 7 < 1 have the following forms

_R-EQS ~ (1- Tz)-qus(T =0)+ Tzﬁgqs(r =1)

Bpsapr ~ (1=1)Rpsapr(r =0)+r*Rpsapr(r =1).

Using these approximations and the relationships in (7.8) and (7.9) it follows that for general
T, —REQS > Rpsapr for C, < 1 and -REQS < Rpgapr for Cy > 2. For C, between 1 and 2, the
relative performance of EQS and PSAPF depends on the value of r and on the distribution of
N. In general, workloads for computer systems have high variation in demand [65, pg16],[81]*

and in these systems we expect EQS to perform significantly better than PSAPF.

7.2 Policy Comparison using Exact Analysis

In the previous section we saw that the EQS policy has highest performance for most of the
design space, particularly, when coefficient of variation in job demand is moderate to high. In
this section we explain why it has high performance with respect to variation in demand. We
analyze the sensitivity of EQ (all EQ policies) for a workload model with job dependent ERFSs,
more general correlation that what we have assumed thus far, general available parallelism, and

for a generalized exponential (GE) distribution of demand.

4Note that we have also measured the coefficient of variation in service times on our local CM-5 to be ranging
from 2.8 to about 5, with the higher end being more typical.

121

A random variable has a GE distribution if it is either zero with a certain probability or
exponentially distributed otherwise. The GE distribution is completely parameterized by the
mean and coefficient of variation and is thus suitable for analyzing the behavior of a policy with
respect to Cp. The GE distribution has been used in several previous studies to analyze systems
such as FIFO and/or Preemptive Resume G/G/1 or G/G/c queues (34, 35, 36, 78]. It has also
been used to validate approximations in (non-product form) closed queueing networks with
FIFO queues under non-exponential service demands (86]. In the context of parallel processor
system models, we have already seen that Towsley et al. [80] have used a GE distribution to
model variation in task service times.

In this section we show that -R'EQ is insensitive to Cp when job demand has a GE distribution
under very general assumptions for the other workload parameters. We also show that for the
same workload assumptions Rrcrs and Rpgapr increase linearly in C% which corroborates
our results from approximate analysis. The result for EQ derived in this section generalizes to
all policies that provide instant service to arriving jobs, e.g., PSCDF, RRP and LCFS-PR. The
result for FCFS and PSAPF generalizes to all policies that do not always provide instant service
to arriving jobs and where jobs with zero demand do not affect the performance of jobs with
nonzero demand.

Section 7.2.1 provides more details of the workload assumptions for the results in this section.
Section 7.2.2 proves the sensitivity result for EQ using sample path analysis and also presents
the sensitivity result for FCFS and PSAPF. The proof for the FCFS and PSAPF result is given
in Appendix A.3.3.

7.2.1 Workload Assumptions

Assume that a stream of parallel jobs, ¢ = 1,2,..., arrive at the system. Each job i has the

follow characteristics:
(1) Arrival time A;,
(2) Total service demand (execution time on one processor) D;,
(3) Available parallelism N; € {1,2,..., P},

(4) Execution rate function E; : [0, P] — [0, P], which is nondecreasing and has the following

properties:

T, 0<z<l,
T, 1<z <N,
Ei(Ni), N; <z <P

E,,(IE)

IA

i

122

(5) External class C;.
We assume the following about the workload:
e The job arrival process is a Poisson process with rate A
e D; has a generalized exponential distribution with parameters y; and o, fori=1,2,...

That is,

D = exp(ui), with probability o,
' 0, otherwise.

We further assume that E[D;] = fi(V;, C;) is independent of &, where f; is a positive real
valued function. Thus, expected demand of job 4 is allowed to depend on N; and C; but

not on a.

These workload assumptions lead to the following relationships between demand parameters:

E[Dz] = % = fi(Ni,Ci).

T

Thus
i = 2 (7.10)
Y f(NG, G)
The coefficient of variation of Dj, i.e., Cp,, is related to « as follows:
2/i 2
2 ettt] =~ — 1,
CD.‘ = aE[DL]2 1 . 1

Thus Cp, is independent of 7, and we let C} =2/ —1, e,
a=(1+C%/2. (7.11)

As per our workload assumptions, each job has a demand drawn from a GE distribution that
has a job dependent mean but the same coefficient of variation, Cy, for all jobs. Furthermore,
the expected of value of job demand (E[D;]) is independent of the probability, «, that a job has

nonzero demand.

7.2.2 Sensitivity of EQ, FCFS, and PSAPF to Cy

We first prove that that for the workload assumptions of Section 7.2.1 Rpq is insensitive to Cy.
The proof uses sample path analysis and is given here rather than in the appendix because it
reveals the kind of policies for which the result can be extended. We then state the result that

Rrcrs and Rpgapr increase linearly in C? for the workload assumptions of Section 7.2.1.

7.2.2.1 FEQ is insensitive to C,

123

Theorem 7.2.1 Under the workload assumptions of Section 7.2.1, Rgq is independent of Cy.

Proof. Let I" denote a system with the EQ policy and workload assumptions as in Section 7.2.1.
Let a job be of type 1 if its demand is nonzero and of type 2 if its demand is zero. Type 1 jobs
arrive according to a Poisson process with rate A and type 2 jobs arrive according to a Poisson
process with rate A(1 — a). Let Rr,; denote the mean response time of type 7 jobs in system r,
i = 1,2. Clearly, Rr. = 0 since type 2 jobs receive instant service in . It therefore follows that

the overall mean response time of the EQ policy in system I' is given by
REQ = aﬁm. (7.12)

We wish to show that Bgg is independent of C, or equivalently of a (by virtue of (7.11)).
From (7.12) it follows that we need to show that Rr is inversely proportional to a. We show
this to be true by constructing an equivalent system, I', for type 1 jobs and showing how it is
related to a “faster” system I';; which does not depend on a.

Type 2 jobs exit instantaneously upon arrival in system I' and thus they do not affect the
processor allocation to type 1 jobs. As a result Rr,; is the same as the mean response time of a
system 'y where only type 1 jobs arrive with rate Aa and have exponential demands given by
D; ~ exp(pi). Denote the mean response time of I'y by RF = Thus Rr1 = Rl" = Now consider a
system I';; in which only type 1 jobs arrive with rate A and have exponential demands given by
D; ~ exp(pi/). Thus in system Ty job arrival and service rates are 1/a times faster than in
T';. Denote the mean response time of 'y by RI‘ e We show using sample path analysis that
Rp, =1 /eRr,,, and thus Rr; = 1/aRp,, which is inversely proportional to « as required.
We first suitably couple sample paths and then show that Rp [= 1/aRp [Over each pair of
coupled sample paths.

Coupling of Sample Paths in gl and gl

Fix {N;, E;,Ci}2, as the same for both ['; and I';;. (For notational convenience we index
type 1 jobs as 1,2,....) For I'y fix arrival times and job demands as {A4;, D;}{2;, where A; are
generated at jumps of a Poisson process with rate Ao, and D; is a sample from an exponential

distribution with rate p;. For system I';; the arrival process is Poisson with rate A and the
demand of the it job is exponentially distributed with rate s /a. As a result, fix the arrival
instant of the % job in T'r to be A;o, and the demand of the ith job to be D;c, where A; and
D; are the arrival time and demand, respectively, of job ¢ in I';.
Sample Path Analysis

For the above coupling of sample paths it follows that under the EQ policy I'y; is simply
a time compressed version of I'y. Thus if S is the state of system ['; at time ¢ then S is the
state of system 'y at time at. Let Qr I(t) denote the number of jobsw in T'; at time ¢, and let

124

Qr,,(t) denote the number of jobs in I'y; at time t. We have Qr,(t) = Qr,,(at). Taking time

averages, we get

Qr,

1t
Am /0 Qr, (u)du
.1t

= tgngo?/o an(au)du

1 at
= lim —-—/ Qr,,(s)ds, (wheres = au)
0

t—oo it

L1
= TILIEO :7: A QI—‘II(S)dS, (Where T = at)
= Qryp

By Little’s Law [76] it follows that over each pair of coupled sample paths,

1

I’

which completes the sample path analysis. Now uncondition on {A;, D, N;, E;, C;}32,.
Relating back to equation (7.12) we have Rr;= _RI‘ =1 /a—RF ;p and thus for system I’

Rpg = ax ERF” = RFII‘

To complete the proof it remains to show that FF . is independent of C, or equivalently is
independent of . This follows because T';; is a system where jobs arrive with rate A and have
exponential demands with mean a/p;, both of which are independent of . We have a/pu;

independent of a because from (7.10)

e !
& = [N, B,),
pi of filNi, By, i) i 2
and f; was assumed to be independent of & in Section 7.2.1. |

It is clear that the above proof also holds for policies other than EQ that provide instant
service to type 2 jobs and do not make use absolute values of job arrival times and/or demands
in scheduling jobs. That is, they may use the relative ordering of arrival times and/or demands
as in PSCDF but not the values of arrival times and demands themselves. This assumption is
needed because in the sample path analysis we used the fact that I’y is simply a time compressed
version of I';, which would not hold if processor allocation was based on absolute values of arrival

times and/or demands.

7.2.2.2 Rrcrs and Rpsapr increase linearly in C?

Theorem 7.2.2 Under the workload assumptions of Section 7.2.1, Rrcrs and Rpsapr in-

crease linearly in CZ.

Proof. See Appendix A.3.3. B

The result for FCFS and PSAPF extends to policies that do not always provide instant
service to jobs, do not differentiate between type 1 and type 2 jobs (for the GE distribution),
in which type 1 jobs are not affected by type 2 jobs and as before in which absolute values of
job arrival times and/or demands is not used for scheduling decisions. Policies other than FCFS
and PSAPF that satisfy these requirements include SAPF and AP /DA Fixed Priority policies.

7.3 Generalization and Unification of Previous Work

The policy comparisons that we have shown for the ASP, EQS, FCFS, and PSAPF policies
in Section 7.1.1-7.1.3 enable us to delineate regions of the parameter space under which each
policy performs best. Using the results derived from analytic comparisons in Sections 7.1.1-7.1.3
assuming the linear ERF, and extending the results for sublinear ERFs we obtain the delineation
shown in Figure 7.7. The key determinants of relative policy performance are labelled along
the axes of the figure. C, is a key parameter in all comparisons in this chapter, correlation
between mean demand and available parallelism determines relative orderings between FCFS
and PSAPF and between PSAPF and EQS, and the ERF sublinearity also affects relative
policy performance since at very sublinear ERFs EQS will be perform best for all C, > 0 and
all 0 < r < 1. The parameter S, is not shown in Figure 7.7, even though it is a key determinant
of absolute performance for ASP and EQS, because the performance of EQS is better than that
of ASP throughout the range of Sn.

We analytically derived results only for the topmost plane where the ERF is linear and the
comparison is favorable to ASP, FCFS, and PSAPF with respect to EQS. In particular, the
orderings between PSAPF and EQS, between FCFS and EQS at v = 0, and between FCFS and
PSAPF at r = 0 were shown analytically. To supplement the results from analysis and complete
the topmost plane of Figure 7.7 we assume the following specific results (1) FCFS performs
as well or better than ASP when Cp = 0 (i.e., in the narrow regions where ASP performs
marginally better than EQS), (2) Rasp(Cp = 1) is a lower bound for its performance when
Cp > 1, and (3) the simulation results for PSAPF versus FCFS when r = 1 (Section 7.1.3)
hold generally for all distributions of demand and parallelism. The exact crossover of FCFS and
PSAPF in the topmost plane where C, <1 and 7 > 0 has not been derived in this chapter and
is thus indicated by the line break along the boundary. Extending the results from the topmost
plane to sublinear ERFs makes use of Theorem 7.1.1 which shows that EQS should perform

126

relatively better as the ERF sublinearity increases. The crossover points of best performance
for C, < 1 and sublinear v are again shown by the line breaks and the exact crossover points
may depend not only on the specific ERF but also on the available parallelism distribution.
However, for C, >l andr=0and C, 2 2andr =1 the result that EQS performs best holds
for all distributions of N.

Due to the general workload assumptions in this chapter the delineation generalizes and

unifies previous results, as follows. First consider the line for 7 = 0 and v = 4}, and variable C,.

e A previous study shows that PSAPF, FCFS, and EQ have almost the same performance
at (Cy = 1,7 = 0,7") [41]. This is shown in Figure 7.7 for FCFS and EQS® and approxi-

mation (7.4) shows that Rpsapr ~ Rrcors under these conditions.

e For an uncorrelated workload (r = 0) with specific hyperexponential demand distribu-
tions (Cy > 1), specific distributions of N, and linear speedups, [41] shows that Reg <
Rpsapr, Rrcrs. Figure 7.7 shows the same result for all distributions of demand and

parallelism.

Figure 7.7: Summary of Policy Comparison Results

Now consider the line 7 = 1, v = 7, and variable C,.

e Leutenegger and Nelson [40] compare PSAPF, FCFS, EQ and several other policies for
a workload with a fixed number of jobs having i.i.d. ezponential task service times (for
which C, < 1 and 7 = 1) and linear task execution rates. They show PSAPF to be the

optimal policy for the workload. This is consistent with Figure 7.7 which shows that in

5Note that when - is linear, all EQ policies have the same performance under the assumption of E@G) = ()

127

general for C, < 1,7 =1, and v = v', PSAPF is optimal among ASP, FCFS, EQ, and
PSAPF.

o Leutenegger and Vernon [41] show that for specific hyperexponential demands, specific
parallelism distributions, full correlation (r = 1), and linear speedups, EEQ < Rpsapr.
Leutenegger [39] gives additional simulation data for specific distributions of parallelism,
other assumptions being the same, which show PSAPF to perform better than EQ if
C, < 2 and worse if C, > 2. [39] also shows cases with C, between 1 and 2 where PSAPF
performs worse than EQ. Again these results are consistent with Figure 7.7.

Now consider 0 < 7 < 1, which is the case in [69, 48, 49] where no quantitative measures of
workload correlation are given. These studies show that for particular workloads with sublinear
ERFs, EQS outperforms ASP under exponential per class demands (C, = 1) [69] and under a
specific mix of applications with C, > 1 [48, 49]. The same result is shown in Section 7.1.1 and
Figure 7.7 for all distributions of demand and parallelism.

Other results in the literature show that Rpsapr < RBpcrs for hyperexponential demands
(C, > 1), specific distributions of parallelism, and both r = 0 and r = 1 [43, 41]. We have shown
the same result (Section 7.1.2) for all distributions of demand with C > 1 and all distributions
of N. Finally, [80] shows FCFS to outperform Round Robin Process and Processor Sharing for
i.i.d. generalized exponential task service times with coefficient of variation < 4. Note that for
this model r = 1 and Figure 7.7 shows that if the C, of the sum of task service times is low,
then PSAPF performs better than FCFS whereas if C, is high then EQS performs better.

7.4 Conclusions

We have compared the performance of four parallel processor allocation policies, ASP, EQS,
FCFS, and PSAPF that were shown in previous literature to have high performance under
specific workloads. The comparisons were made over a general workload model that includes
controlled correlation between demand and parallelism, general distribution of available paral-
lelism, general demands for jobs with no correlation, and a general deterministic job execution
rate function for all jobs. Under the assumption that jobs can dynamically and efficiently re-
distribute their work across the processors allocated to them, the mean response time of each
policy was estimated using interpolation approximations for various regions of the parameter
space. We showed the mean response time formulas to be accurate and used them to obtain key
determinants of policy performance. By using the key parameters to explore the design space
we generalized and unified previous policy comparison results. The regions of the parameter

space under which each policy performs best are delineated in Figure 7.7.

128

The main results of this chapter are as follows:

e Coefficient of variation in demand (Cp) can be critical in determining relative policy per-
formance. This might be obvious from uniprocessor scheduling results, but most previous
analyses and comparisons of parallel processor policies have assumed exponential demands
or exponential task service times. This result shows that it is important to consider the

implications of the exponential assumption on the conclusions reached.

o Sublinearity of speedup curves and correlation between demand and parallelism are also
influential parameters for relative policy performance. While speedup curves have been
explicitly specified in previous studies, in many cases no indication of correlation is pro-
vided. This result shows that it is important to provide correlation information about the
workload and consider its implications on relative policy performance.

e The EQS policy has superior processor allocation characteristics in terms of processor
efficiency. More specifically, for a fixed set of jobs with a common nondecreasing and
concave execution rate function the EQS policy achieves optimal processor utilization over

all allocation policies.

¢ EQS substantially outperforms ASP for both uncorrelated as well as correlated workloads.
This result is shown for more general demand and parallelism distributions than in previous

studies.

e EQS outperforms PSAPF when Cp is moderate to high even when workload correlation is
high. PSAPF has lower mean response time tha EQ only for highly correlated workloads
at low to moderate values of Cp, and when execution rates are (close to) linear. These
results are hold for all distributions of available parallelism and general distributions of
demand. PSAPF outperforms FCFS for most of the parameter space. (FCFS has slightly
Jower mean response time when correlation is low, Cp < 1, and job execution rate is

linear.)

e Since general purpose computer systems are likely to have high variation in job processing
requirements, the EQS policy seems to be the best candidate for implementation among

the policies considered in this thesis.

The policies examined in this study have been idealizations of practical processor allocation
policies since we have assumed zero scheduling and preemption overheads. Our results should
continue to hold for practical (approximate) implementations of these policies that ensure that
the overheads are small compared to job service times. In this thesis we assume that appli-
cations can dynamically and efficiently redistribute their work among allocated processors. In

129

environments where this is not possible, based on the results of this chapter, a natural candidate

policy to consider is temporal equiallocation.

Chapter 8

Further Analysis of the EQS
Policy

Chapter 7 showed that among ASP, EQS, FCFS, and PSAPF, the EQS policy has highest
performance for most of the practical regions of the design space under our workload model.
The key properties that causes EQS to outperform the other three policies are the insensitivity
of Rpgs to coefficient of variation, Cp, in job demand and the higher efficiency in processor

allocation.
We have not yet examined thoroughly how the EQS policy performs with respect to workload

parameters other than Cp!. More specifically, we need to explain the following.
¢ How does R_EQS behave as a function of mean demand D?

e What measures of available parallelism, job execution rates, and correlation between de-

mand and parallelism are key determinants of the performance of the EQS policy?

e How does _R_EQS behave as a function of available parallelism? For example, how does its

performance change with changes in the distribution of workload parallelism?

e How do communication and synchronization overheads, and load imbalance of parallel

programs affect the performance of EQS?
e How does FEQS behave as a function of workload correlation?

The above questions have not been thoroughly studied in the literature for equipartitioning

policies. In this chapter we answer all these questions using sample path analysis as well as the

1'We have used the property that EEQS is (almost) uniquely determined by S» and in this chapter we will
explain how Sn turns out to be the key parameter.

130

131

approximate analysis of Chapter 5. Using sample path analysis we derive bounds on Rggs that
show that under exponential job processing requirements (demands) and any concave nonde-
creasing job execution rate function for all jobs REpos is minimum when the all jobs are fully
parallel and is maximum when all jobs are fully sequential. From Theorem 7.2.1 in Chapter 7 it
follows that this lower bound also holds for generalized exponential distributions. Further proofs
show that the upper bound holds under more general workload conditions that include general
interarrival times, general demands, general available parallelism, and general nondecreasing
execution rates, with arbitrary dependencies among these workload variables.

Using approximate analysis we derive the key parallelism parameter for R_EQS and use it
to study the behavior of EQS as a function of available parallelism, ERF sublinearity, and
correlation.

In Section 8.1 we derive mean response time bounds for EQS. Section 8.2 studies the qual-
itative behavior of R_EQS for uncorrelated workloads as a function of workload parameters. In
Section 8.3 we generalize our analysis to correlated workloads. Finally, in Section 8.4 we sum-
marize the results derived in this chapter and relate them to results that have appeared in the

literature.

8.1 Mean Response Time Bounds for the EQS Policy

In this section we first derive lower and upper bounds on Rggs for the workload (Fn, exp(1 /D),
r =0, v € £°), where £° is the class of concave and nondecreasing ERFs. These bounds show
that the mean response time is minimum when all jobs are fully parallel (i.e., N = P) and is
maximum when all jobs are fully sequential (i.e., N = 1), all else being equal. We then show
that the upper bound for -REQS holds under more general workload assumptions, which include
general job arrival times, job demands, available parallelisms, and execution rates, with arbitrary
dependencies among these workload variables. The lower and upper bounds in this section are
generalizations of the bounds in [1] for the EQS policy, and are obtained as corollaries of more
general bounds, which show that the performance of EQS improves with “increase” in available
parallelism. In [1] it was shown that the mean response time of any processor conserving policy?®
under ezponential job demands and linear job execution rates is minimum when N = P and
maximum when N = 1. Note that the generalizations below are only with respect to the EQS

policy and do not hold for all processor conserving policies.

2 A processor conserving policy does not allocate more processors to a job than the job can productively make
use of, and it does not leave a processor idle if any job can make use of that processor.

132

8.1.1 Lower and Upper Bounds: F} =exp, 7=0, y€£&°

We show that under the workload (Fn,exp(1/D),r = 0,7 € £°), the performance of EQS
is optimal when all jobs are fully parallel and is pessimal when all jobs are fully sequential.
Note that these bounds are derived assuming N and D are independent, D is exponential,
the workload ERF is concave and nondecreasing, and each job can dynamically redistribute its
work across its processor allocation. The assumption of exponential job demand is probably
not a serious limitation in this case, since the approximate analysis in this thesis as well as the
simulation experiments reported in this and previous papers indicate that REQS depends only
on mean demand and not on distribution of demand.?

The bounds follow as an immediate consequence of the following theorem.

Theorem 8.1.1 If¢ and m are constants such that £ < m, then under the workload assumptions
(~,exp(1/b_),r - 017 € gc)’

Rros(m < N<P) < Rpos(1<N <.

Proof. See Appendix B. |
The intuition for Theorem 8.1.1 is that whenever the number of jobs in each system is equal,
the total job completion rate in the system with higher available parallelism is greater than or
equal to the job completion rate in the other system.

Setting £ = m = P in Theorem 8.1.1 we obtain the following lower bound on Rpgs:

Corollary 8.1.1 Under the workload assumptions (-,exp(1/D),r = 0,7 € £°),
Rros(Fn) = Rpgs(N = P).

In [1] a corresponding bound was given for all processor conserving policies assuming exponential
demands and the linear ERF. As in [1] we note that a tighter lower bound can be obtained when
N # P, by using the fact that Rggs > 5. This yields the following bound, which we henceforth
refer to as the N = P lower bound:

Rpos(Fn) > max {S, Reqs(N = P)}, under (-,exp(1/D),r = 0,7 € &°). (8.1)

Setting m = £ = 1 in Theorem 8.1.1 we obtain following the bound on Rggs, which we

henceforth refer to as the N = 1 upper bound:
Corollary 8.1.2

Rros(Fy) < Emos(N=1), under (exp(1/D),r =0,7 € £). (8:2)

3The bounds also hold for the generalized exponential distribution since from Theorem 7.2.1 EEQ is the same
under expohential and generalized exponential demands.

133

For the linear ERF, the bounds in (8.1) and (8.2) can be shown to reduce to the following [1]:
- ., 1 D = _ . —
max | DE[1/N], =P < Rpgs(Fn,exp(1/D),r=0,7) < Ryymyp-
8.1.2 Experimental Evaluation of the N = P and N =1 Bounds

For the workload (-,exp(1/D),r = 0,7 € £°) and for many distributions of N, the mean system
response time will lie closer to the N = P lower bound than the N = 1 upper bound, primarily
because the lower bound is the maximum of the mean service time and the mean reponse time
when N = P. For example, for a given distribution of N, N # 1, the N = P bound is exact
when p — 0 but this is not true of the N = 1 bound. We further illustrate this point by
comparing simulation estimates of Rgegs against the bounds for a 100 processor system, the H
and L distributions of N given in Table 3.2, exponential job demand D with mean D = P = 100,
and ERF v(k) = k%8, k= 1,2,..., P.* As seen from Figure 8.12 and b the N = 1 upper bound
is rather loose for workloads with high average available parallelism, but is much tighter when
average available parallelism is low. Conversely, Rgos(N = P) is tighter for the H workload,
but looser for the L workload. Taking the maximum of S and Rpos(N = P), ie., the N = P
bound, results in a tight bound for both high and low average available parallelism.

8.1.3 Upper Bound under General Workloads

We now show that the N = 1 upper bound holds under more general workload assumptions,
i.e., general arrivals, general available parallelism, general demands, and general nondecreasing
execution rates, with arbitrary dependencies among these workload variables. The upper bound

follows as a direct consequence of the following theorem.

Theorem 8.1.2 Let I'; be a system with the EQS policy and primitive workload variables
{(4:,Di, N; = k, E),i = 1,2,...}, where A; is job i’s arrival time, D; its total demand, N;
its available parallelism, and E; its ezecution rate function. Let these primitive variables have
arbitrary marginals (given that N; 2 k, and the other variables make sense, e.g., D; > 0) with
arbitrary dependencies among them. Let T be a system with the EQS policy and the same
workload as T'; ezcept that Ny =k for alli=1,2,.... Then

RFI SRF”’ k=1,2,...,P

4 Al simulation experiments in this chapter have 95% confidence intervals with less than 5% half-widths in
almost all cases, and less than 10% otherwise. The confidence intervals were generated using the regenerative
method whenever feasible and otherwise the method of batch means.

134

2007 s—» N=1 upper bound 2001 s—a N=1 upper bound

— - &

M| e Rrpst) M| - Regs(L) ’

31601 5—o N=P lower bound al60] === N =P lower bound

R - REQWN=P) R Reos(V=P)

€120 €120

s S

5 * b 1 o

s 80 S 80

[e

T

1 40 T 40

m e m

¢ »;__g.‘.d-_—t:é.'_:t’/ e

00 02 O'4p0'6 08 10 0.0 02 0.4p0ﬂ6 08 1.0

(a) H workload (b) L workload

Figure 8.1: Tightness of N=1 and N=P bounds for ~1‘_15;;Q: D~exp,r=0

ERF: v(k) = k%8,
D=P=100

Proof. See Appendix B.]
The intuition for Theorem 8.1.2 is that system I'; allocates at least as much processing power

to each unfinished job as I'y; does.
Setting k = 1 into Theorem 8.1.2 we obtain the following result.

Corollary 8.1.3 Let T'; be a system with the EQS policy and primitive workload variables
{(A4:, D, Ny, E),i = 1,2, .. .}. Let these primitive variables have arbitrary marginals with arbi-
trary dependencies among them. Let T'1; be a system with the EQS policy and the same workload
as '; except that N; =1 for allt=1,2,.... Then
Rp, < Ry, k=1,2,...,P
More specifically,
Rpos(Fv) < Rges(N =1), under (\Fp,7,7).

If we consider only constant values of N in Theorem 8.1.2 we get the following corollary.

Corollary 8.1.4 Consider a system with the EQS policy with general {(4;, D;, Ey),t =1,2,...}
(i.e., these primitive variables have arbitrary marginals with arbitrary dependencies among

them). Then
Rpgs(N=P)<...<EBpos(N=k)<...<Rpes(N=1), k=P...,2

where N = k denotes N; =k, foralli=1,2,....

This corollary shows that for workloads with constant available parallelism the performance of
EQS improves as available parallelism increases. This result is generalized in Section 8.2.2.

8.2 Behavior of Rggs with respect to Key Parameters:
Uncorrelated Workloads (r = 0)

For the sake of simplicity we focus on uncorrelated workloads in this section and then generalize
the results for correlated workloads in Section 8.3. To determine the functional dependence of
EQS on key parameters we first need to identify which workload parameters are key determinants
of policy performance. Section 8.2.1 points out that it is quite straightforward to determine the
key parameter of job demand and discusses how REQS varies with the key demand parameter.
In Section 8.2.2 the behavior of REQS is examined as a function of several different parameters
of available parallelism and the key parallelism parameter is identified. Section 8.2.3 presents
insights into the behavior of EQS as a function of sublinearity in the workload ERF and compares

the performance of EQS versus EQT, and finally, Section 8.2.4 presents a summary of the results.

8.2.1 Rggs as a function of job demand

All interpolation approximations that we have derived for R_EQS and all exact reductions for
EQS (see Chapter 5) show that when r = 0, Rpgs depends only on D and not on higher
moments of demand. Simulation experiments have also verified this result for specific demand
distributions such as deterministic, Ers, exponential, Hs, and Gamma. Furthermore, we also
saw from Theorem 7.2.1 that ﬁEQS is insensitive to C'p for a GE demand distribution.

The dependence of _EEQS on D can be readily obtained from the interpolation approxima-
tions. For a given p, Rggs is directly proportional to D. See for example approximation (5.5).
Also note that Rgos(IN = k) given by equation (5.1) in Section 5.1.1 is directly proportional
to D for a given p (because A = pP/D). Hence approximations (5.6) and (5.7) are also directly
proportional to D. Thus Regs increases linearly in D given that all other workload variables

remain unchanged.

8.2.2 Rggs as a function of available parallelism

To understand the behavior of —R.EQS as a function of available parallelism, &V, we need to know

which parameters of N are principal determinants of Rpgs. Natural candidates are N and Cyn.

136

7
minimize Z Ry py maximize Z Ry pi
k=1 k=
subject to: subject to: l
Hpz20 Hpz0
P P
(i) > pe =1 (ii) }:pk =1
7 ¥
(i) > f(k)pe = E[f(N)]=a (i) S f(k)pe = E[f(N)] =a
k=l k=1

Figure 8.2: Linear Programs for Min and Max of REgs

Another measure of N that could be a key determinant when 7 = 0 is E[1/v(V)] since the mean
service time is DE[1/~v(N)].

A possible approach to determining if a given parameter of IV, say E[f(N)], uniquely de-
termines EEQS is to test whether REQS remains unchanged across all distributions of N that
have a given E[f(NN))], for each possible value of E[f(N)]. In other words, if min{Reqgs(Fn) :
E[f(N)] = z} = max{Rgqs(Fn) : E[f(N)] = z} for all feasible z, then E[f(N)] is a param-
eter that uniquely determines T?,EQS. To use this approach we must obtain the minimum and
maximum of Rpgs(Fn,r = 0) over all distributions of N for each value of E[f(N)]. A key ob-
servation about the accurate approximation (5.7) is that Rggs(IV = k,r = 0) does not depend
on the pmf, p (see equation (5.1)). Thus, for given fixed values for A, D, and v, RREQ can be
viewed as a linear combination of the pi’s and we can use linear programming {17] to obtain the
minimum and maximum mean response times. The generic form of the linear program is given
in Figure 8.2, where Ry denotes Rggs(N = k).

Below, the linear programs of Figure 8.2 are used to determine whether N, Cy,or E[1/v(N)]

uniquely determine _REQ S-

8.2.2.1 Rggs versus N

Setting f(N)] = N in Figure 8.2 we obtain linear programs that minimize and maximize the
estimator R Bq for a given N, A\, D, and ~ over all possible pmfs p such that the expected value
of N is N. For P = 100 and specific values of A, D, and v, the linear programs were solved
for N = 1,2,5,10,25,50,75,and100 using the Simplex Method of linear programming [17]
Figures 8.3a and b plot the envelopes obtained by the minimum and maximum values of RE FQ
versus N for D = P, two different ERFs, and two different values of p = AD/P = X. The
minimum value of R% Eq foragiven N was obtained for a distribution of N with low CN (typically
K2(|N|,[N1,[N] - N)). The maximum value was obtained for the K5(1, pE) distribution
of N.

137

1207 » Max — p=0.9
o Min ---- p=0.7

Max — p=0.9
a Min ---- p=0.7

[
e}
>3

M M
€
s 2100
n n
R R 807
[+ [
S S
b b 60
n n
S S
e e 40
T T
1
m m 20
e e

0 0

0 20 400 60 80 100 0 20 40..60 80 100

N N
(a) Linear ERF (b) (k) = 101k/(k + 100)

Figure 8.3: Envelopes of Rpqs versus N

D=P=100

Figure 8.3 clearly shows that for uncorrelated workloads, N alone does not adequately cap-
ture the influence of Fn on the behavior of REQS For example, at p = 0.9 and N =25in
Figure 8.3a, REQ ranges from a minimum of 11.88 when N = 25, to a maximum of 79.83 when
N has the K»(1,100, 22) distribution.

Although N does not in general uniquely determine Rpgs, the envelopes in Figure 8.3
provide useful bounds on REQS and lead to two useful observations. First, for each of the
given parameter settings and across all distributions of N, RE EQ s maximum when N = 1 and
minimum when N = P. This is consistent with the bounds for Rpos that were derived in
Section 2.4, where the upper bound was derived for general demands and the lower bound was
derived for exponential demands. For the envelopes in Figure 8.3 job demand has a general
distribution. Second, the plots for the maximum value of RQEQ versus N in Figures 8.3 reveal an
interesting property of the Ka(1, P N =) distribution of N — namely, that the response time
for this distribution decreases hnea,rly as the mean available parallelism increases (i.e. as the
fraction of fully parallel jobs increases). This observation is only for a specific distribution of
N; results below show that the result also holds for other distributions of V.

8.2.2.2 REQS versus Cy

We next examine whether Cy and N together uniquely determine REQS for a given D, A\, and
~. Figures 8.4a and b plot envelopes of R BQ Versus Cy for two values of N and two different
ERFs, for systems with P = 100, D = P, and p = 0.9. As before, the envelopes were obtained

138

100 100
M o Max M » Max
e Mi e .
e I po| oMn
R ' R -~
S S ' N=25
5 N=25 5 -
n P n o
S S)
[' e
@
T ; T
1 -8 1
m m
e e
175 %o 65 10 175
Cn
(a) Linear ERF (b) v(k) = 101k/(k + 100)

Figure 8.4: Envelopes of REQS versus Cn

D =P =100,
p=09

the linear programming. Note that for each value of N, the range of Cy is constrained as
specified in Theorem 3.5.1. As was the case in Figure 8.3 the envelopes of R%Q versus Cy are
very similar for both types of ERFs. The envelopes also have similar shape and orientation for
both values of ¥ and for different values of p (not shown). However, unlike the envelopes for
N there is no particular pattern to the distributions of N that yield the minimum or maximum
value of R%Q at different values of Cn.

The plots in Figure 8.4 show that Cy and N together are not sufficient to determine the
behavior of T%-EQS as a function of workload parallelism. However, the envelopes show that, for
the parameter values examined, REEQ is minimum when Cy is minimum and is maximum when

Cn is maximum, and that the range of possible mean response times is low for low Cp.

8.2.2.3 Rpgs versus E[1/v(N)]
The linear programs in Figure 8.2 with f(N) = 1/v(V) is used next to obtain envelopes of R%Q
versus E[1/v(IN)] for given values of D and A, and a given function . Note that E[1/v(N)] can
vary from 1/4(P) (when N = P) to 1 (when N = 1). Figure 8.5a and b plots the envelopes for
two different ERFs and two different values for p, given that P = 100 and D = P.

For the linear ERF in Figure 8.5a we observe that there is very little spread between the
minimum and maximum values of Eggs for a fixed value of E[1/N]. For sublinear ERF's as in

139

120 12
» Max — p=09 0

o Min - p=0.7

» Max— p=0.9
1 o Min.... p=0.7

o S
< o]

=] DnZOoTweX ool
=)
=

G~ O0DOTwoX Dol
[
=)

40 407
20 20057
?ﬁﬂ
0
0.0 0.0 2 04 06 08 1.0
E[1/Y(N)]
(a) Linear ERF (b) (k) = 101k/(k + 100)

Figure 8.5: Envelopes of Rpgs vs E[1/y(N))

D =P=100

Figure 8.5b the spread is somewhat larger but is still quite small. These results indicate that
E[1/~4(N)] almost uniquely determines Rpgs(r = 0) and is thus the key parameter of available
parallelism for uncorrelated workloads.

The qualitative behavior of Bpqgs versus the key parameter E[1 /v (N)] = §/D = S, yields
the following insights into the performance of EQS as a function of N when 7 =0.

(1) Since Rpos increases nearly linearly in E[1/y(N)], a workload with a lower value of

E[1/~(N)] has a smaller mean response time.

(2) Since 1/7(P) < E[1/y(N)] < 1/(1) it follows that Regs(N = P) < Reqs(Fn) <
Rpgs(N =1). Thatis, N =P is optimal and N = 1 is pessimal for the workload (A, Fn,
% r =0, v), which is generalization of the mean response time bounds of Section 2.4.
(3) We next consider distributions of N between the two extremes of N =1and N =FP. In
particular, consider two distributions Fn, and Fp, such that No <4 Ny (i-e., P[N; < n} 2
P[N; < n],1 < n < P). Under this condition it is shown in [62] that E[f(N1)] < E[f(N2)]
for any nonincreasing function f. Setting f = 1/ it follows that E[1/74(N1)] € E[1/7(N2)]
and thus R_EQS(]-' N) < _REQS(]: ~.). Thus, a stochastic increase in available parallelism
leads to a decrease in mean response time for the EQS policy. Hence the EQS policy does
not discourage and may encourage users to increase program parallelism (up to the point

where the ERF is nondecreasing).

140

(4) A stochastic increase in parallelism also increases the mean parallelism. What if the
mean parallelism is the same but the variability in parallelism changes? More precisely,
consider N7 = N and N; <, N, which means that E[f(N)] £ E[f(N3)] for all convex
functions f [62]. If v is concave then 1/v is convex and it follows that Rpgs(Ny) <
REQS(NQ) if Ny <, N,. Thus the mean response time of EQS decreases with a decrease
in variability of N if v is concave and N remains fixed. Note that for the bounded
distributions considered in this thesis the highest variability in N for a fixed N is when
N has a K»(1, P,.) distribution and the least variability in NV is when N is constant. Also
recall (from 3.5.1) that for a given N, the K»(1, P,-) has the highest Cy and the constant
distribution has the lowest C'y. Thus for a given N, REQS is maximum when Cy is highest
and is minimum when Cy is lowest. This results generalizes the corresponding results for

specific workloads in Figures 8.3 and 8.4.

Note that results (1) and (2) above contrast with studies of fork-join queueing systems
that have shown parallelism to be harmful for other scheduling disciplines, particularly at high
loads [45, 67, 13].

Another consequence of the (nearly) linear increase in REgs as a function of E[1/v(N)] =
5/D is that the interpolation approximation on E[1/4(N)] for Rgqs (see (5.8) is likely to be
accurate, which was verified in the validations for the approximation. (More than 95% of the

validations had relative errors between -5% and 15%, and the maximum relative error was about

30%.)

8.2.3 Rggs as function of ERF sublinearity

Intuition suggests that system performance should improve with a decrease in synchronization
and communication overheads. This is also shown analytically, since an increase in v decreases
E[1/4(N)] which in turn decreases Rgqs. This section addresses the following further questions
about the behavior of Bggs as a function of ERF sublinearity:

o How stable is the system as a function of ERF sublinearity?

e Precisely how does EEQS behave as the ERF sublinearity increases for given functional

forms of v
e How does the behavior of Rgos change with the functional form of v7

e Under the linear ERF, spatial and temporal equipartitioning have the same performance
assuming an identical allocation of processing power. How does the behavior of spatial

equipartitioning differ from that of temporal equipartitioning when the ERF is sublinear?

141

(i) System stability versus degree of sublinearity

(ii)

Under the assumptions of negligible preemption and scheduling overhead, and E(z) = z
for 0 < z < ¢ where c is a constant greater than zero, the stability condition for a system
with the EQS scheduling policy for any ERF v is the same as for the linear ERF, that is
A< P/ D or p < 1. This stability property of the EQS policy is not shared by several other
processor scheduling policies for parallel systems. For example, consider the FCFS policy
with a workload having N = P and ERF ~. This system behaves like an M /G/1 system
with mean service time T = D/~(P) and thus the stability condition is A < y(P)/ D. That
is, the upper bound on arrival rate for stable operation of the FCFS system depends on
~(P) and degrades as the sublinearity of v increases. If v(P) = P/2 then the upper bound
on) is half that of the EQS system.

Sensitivity of REQS to ERF sublinearity and type
The sensitivity of Rggs to the degree of ERF sublinearity is examined for the following
two specific ERF functions. In each function the degree of sublinearity is controlled by a

single parameter.

(a) y(k) = k% k=1,2,...,N,0< ¢ < 1. When ¢ = 0 we obtain the constant ERF
v(k) = 1, and when ¢ = 1 we obtain the linear ERF (k) = k. Thus we control the
degree of sublinearity by varying ¢ from O to 1. This ERF is plotted in Figure 3.2a

for different values of c.

(b) v(k) = %@%, k=1,2,...,N,0< B <oco. When g =0, we obtain v(k) =1, and
when 8 = oo we obtain the linear ERF. Thus we control the degree of sublinearity

by varying 8 from O to co. This ERF is plotted in Figure 3.2b for several values of 8.

Figure Figure 8.6 plots Rgos, estimated from approximation (5.12), versus ERF sublin-
earity, v(P)/P, for each of the above ERFs, the H and L workloads of Table 3.2, and
two different values of p. For each curve, P = 100 and D = P. For both ERF types we
observe that sublinearity has a fairly small impact on overall mean response time for the
L workload, since a significant fraction of the jobs are sequential and the service time for
sequential jobs is independent of ERF sublinearity. On the other hand, for the H workload
the ERF sublinearity has a significant impact on mean response time. Furthermore, the
precise behavior of REQS as a function of ERF sublinearity differs for the two different

types of ERFs, and the difference increases as p increases.

For the ERF (k) = (1+8)k/(k+0) the mean response time of EQS decreases dramatically
when (P) increases from 1 to 0.5P, and then decreases very gradually as y(P) varies from

142

120
M M
¢ €100}
n n !
R R 801
e e
S S
5 60 b 60
n n
S S
e 40 e 40
T T
m 20 L0
(4] e

0 0

00 02 04 06 08 10 00 02 04 06 08 1.0

Y(P)/P YP)/P
(a) v(k) = k¢ (b) y(k) = (1 + B)k/(k + B)

Figure 8.6: EEQS vs ERF sublinearity

D=P=100

0.5P to P. 5 For the ERF ~(k) = k¢, as p increases the mean response time decreases
more gradually for v(P) in the range of 1 to 0.5P. Rpgs behaves differently under these
two ERF types because of the different behavior of these ERFs when processor allocation
is low (say in the region of 0-0.20P, see Figure 3.2). At higher load, jobs are allocated
fewer processors, and for any fixed average allocation of processors k < P, say k=10, the
curves that correspond to fixed increases in (P) more rapidly approach rate k for the
ERF controlled by 8 than for the ERF controlled by c. (Note that for the H workload,
the mean number of jobs in the system as obtained from the interpolation on p is greater

than 10 under all ERFs for both values of p in Figure 8.6.)

One conclusion of this sensistivity study is that, as intuition might suggest, the EQS policy
provides better performance to workloads that have the initial part of their ERFs close
to linear (say the first 10-20%). Another conclusion is that if the ERF has this property,
Rpogs is relatively insensitive to ERF sublinearity in the range of v(P) > 0.5, particularly
if the workload is not fully parallel and p is less than 0.9.

5Note that the degree of insensitivity of EEQS to ERF sublinearity when v(P) > 0.5F is due to the fact that
the H workload contains a fraction of sequential jobs, whose service times dominate in the mean service time
estimates. For a fully parallel workload, the decrease in Rgqs as v(P) increases is still gradual for v(P) > 0.5,
but has somewhat more negative slope than the H workload.

143

(iii) Performance of spatial EQS versus temporal EQS

The EQS policy spatially allocates the integral part of a job’s processor allocation and
allocates only the fractional part temporally. If the allocation was purely temporal then the
performance would be likely to degrade for sublinear ERFs as shown in the measurement
study of [47). This is true assuming that under EQS jobs can dynamically redistribute
their work among the processors allocated to them. To illustrate the comparison between
spatial and temporal EQS consider the ERF (k) = (1+8)k/(k+03) and constant available
parallelism N = k for all jobs. The temporal EQS policy allocates k processors at a time
to a job and time slices jobs if there are more than P/k jobs in the system. If k evenly
divides P then it is easy to verify that ﬁtem,,omz-gqg = RM/G/C ps, where ¢ = P/k
and each server in the M/G/c queue is of power (k). Figure 8.7b plots the ratio of
Rtemporal EQS tO ﬁsmm;_ EQs versus 3, where an increase in 3 indicates an increase in
speedups as shown in Figure 8.7a. For the linear ERF, i.e., 3 = 0o, temporal and spatial
EQS have identical performance. However, as ERF sublinearity increases (B decreases)
—R—temporal-— EQs diverges away from Rspa.tia,l—- £Qs- For small values of k (i.e., low parallelism
in the workload) the difference between temporal and spatial EQS is quite small in the
practical range of 3, but as k increases temporal EQS performs worse due to inefficient
utilization of processors. This degradation is particularly noticeable at p = 0.9 and k = 20,
and also at p = 0.7 and k = 50. For k = 50 and p = 0.9 (not shown), even at close to linear
speedups such as 8 = 500 the value of Rtempomz_ EQs is 7.6 times that of _R—spatm,- EQS-

8.2.4 Summary of insights for r =0

In this section the following properties of the EQS policy for uncorrelated workloads with E = 7,
i.e., jobs can dynamically redistribute their work on the processors allocated to them, were

derived from the interpolation approximation in (5.7).
(i) D and S, = E[1/v(N)] are the key determinants of Regs (given p fixed)
(ii) Rpqs increases linearly with D for a given value of p and is insensitive to higher moments
of D (e.g., Cp).

(iii) Parallelism Considered Useful: Rpgs decreases with a stochastic increase in available
parallelism. In particular, N = P is optimal and N = 1 is pessimal for the EQS policy.

(iv) For concave ERFs, Rpgs decreases with a decrease in the variability of available paral-

lelism.

(v) Graceful degradation with ERF sublinearity: In the absence of preemption and scheduling
overhead, the EQS system is stable as long as A < P/D, regardless of the degree of

100 B==e
B=500
80 A=300
60
" B=100
40 350
20
p=10

00 20 40k60 80 100

(a) ERF (k) = (1 + B)k/(k + B)

R remporal ~EQ ‘

144

4

R spatial -EQ

0 100 ZOOBBOO 400 500

(b) ﬁtemporul—EQ/ﬁspatia!—EQ vs 3: N =k

Figure 8.7: Performance of Spatial versus Temporal EQ

D =P =100

sublinearity in the ERF. Furthermore if the workload ERF is close to linear when processor
allocation is 0 — 20% of P, REQS is relatively insensitive to ERF sublinearity at higher

processor allocations, given that the applications have at least 50-60% efficiency on P

PIOCEssors.

(vi) Spatial EQS performs significantly better than temporal EQS for sublinear ERFs assuming
that work can be efficiently and dynamically redistributed among the processors allocated

to a job.

8.3 Behavior of Rggs for Correlated Workloads

In Section 8.2 the behavior of EQS was studied for uncorrelated workloads using approxima-

tion (5.7) which has the form

P

Boos(Fn,r=0)~ Y prRegs(N =k, =0), under (Fp,-7). (8.3)

k=1

To study the behavior of _REQS for correlated workloads, we make a key observation about

the following approximation for Rpos under general workload conditions, which was derived in

Section 5.3 of Chapter 5.

P —
Rpos(Fn,T) = ZkaEQS(N =k,r=0), p,= pk% = pk (1 -7 4 r2%> . (8.4)
k=1

Comparing (8.3) with (8.4) shows that Rpgs(Fn,r) is obtained by replacing p, in (8.3) by
pl,. We note that p; > 0 and Zf::l pj, = 1. Hence p’ = (pi,...,Pp) is a pmf for a random
variable N' € {1,...,P}. This implies that if we use the random variable N’ instead of N
in approximation (8.3) we will obtain an estimate for Rgos(Fn,r). Thus we can view the
behavior of REQS under a correlated workloads as equivalent to the behavior of —ﬁEQS under
an uncorrelated workload with a different distribution of available parallelism. Formally,

EEQS(fN,T) ~ REQs(]’-N',T =0), under (+Fb,) (8.5)

8.3.1 Rpggs as a function of job demand and parallelism

When r > 0, as in the case of 7 = 0, D is the only determinant of Rpgs with respect to job
demand. This is true because approximation (8.4) is a weighted sum of the mean response times
of EQS under constant available parallelism, which depend only on the first moment of demand
and not on higher moments. (Note that the weights pj, do not depend on D since the ratio of
D—k/ﬁ is independent of D, fork=1,2,...,P)

Regarding the key determinant of Rpgs with respect to the distribution of available paral-
lelism for correlated workloads, in Section 8.2 we showed that E{1/v(IN)] is the key determinant
of Regs(Fn,r = 0) (given that A, D, and v are fixed). This, together with approximation (8.5),
implies that E[1/y(N")] is the key determinant for Reos(r). Simplifying E[1/v(N")] we get

fm] = Loista

k=1

== ke
=" D (k)
1 =

= 55 = Sp.

Thus S, is the key parameter for job parallelism, workload correlation, and job execution rate
function. Moreover, the result that REgqs increases (nearly) linearly as a function of S, as per
Figure 8.5, holds for correlated workloads since it holds for all distributions of N in uncorrelated
workloads. we can show that under nondecreasing v Sn(r) is minimum when N = P and
maximum when N = 1, and a stochastic increase in N causes S, to decrease. Thus for correlated
workloads N = P workload has optimal performance and the N =1 workload has pessimal

146

performance. Unlike the case of r = 0 for a fixed N, S, does not necessarily decrease with
decrease in variability of N. For example, when 7 = 1 it follows from Theorem 3.5.4 in Appendix
A that for concave v and concave N/v(N), S, is minimum when variability in N is maximum
and is maximum when variability in NV is minimum. Thus, since property (v) in Section 8.2.4 is
expected to hold generally for uncorrelated workloads, all of the properties of _REQS summarized
apply to workload with r > 0, except property (iv).

8.3.2 Rggs as a function of 7

We now study the behavior of Rgos when workload correlation increases. Recall from (8.5)
that the behavior of EQS under correlated workloads and a distribution of available parallelism
Fy is the same as the behavior of EQS under no correlation and a distribution of available
parallelism Fy+. The pmf of N', p/, is related to the pmf of N, p, as follows:

D 2 k
pﬁc:pvﬁ—k-:pk (1—7"2 +rzﬁ>-

Thus, pj, < pg for kb < N and p} > px for k > N. As a result the random variable N', has
stochastically higher available parallelism than N (i.e., N " >4 N). The intuitive reason for the
increase in effective available parallelism is that under correlated workloads, jobs that have small
demands and exit the system quickly have on average smaller parallelism and leave behind jobs
that have larger available parallelisms on average.

As seen in the previous section a stochastic increase in parallelism causes REQs(T = 0) to
decrease and hence Rggs(r) decreases with correlation, under the given model of workload
correlation and given that D remains unchanged. The intuition for this result is that as r
increases, larger demand jobs have larger available parallelisms, and this causes them to complete
faster than if they had lower parallelisms as in uncorrelated workloads. (Consider for example
the case where a sequential job in an uncorrelated workload runs on one processor but the
remaining processors are idle.)

Concerning the quantitative behavior of REpos as a function of 7, Figure 8.8 depicts Reos
(as obtained from approximation (8.4) versus r for the H and L workloads, two types of ERFs
(one linear and one sublinear), and two values of p. The trends are stronger for the L workload
than for the H workload, but the general behavior of Rpgs versus 7 is the same for both types
of ERF and for both values of p. In particular, there is a significant decrease in mean response
time as r increases, and the decrease is greatest as r approaches 1. This latter property is due
to the quadratic dependence of Rgpgs on r (under the given workload model), which is shown
in the interpolation on 7 (5.10). The results show that EQS is a high performance policy under
highly correlated workloads. Note that again that this property is not shared by all scheduling

147

s Yk)=101k/(k +100) 100
307 o Linear ERF — p=0.9 Mo
ceee p=0.7]
a n
f R
R € 601
€ S
S b — p=0.9
g [51 40< - p=0.7 \
s . e s Y(k)=101k/(k+100)%\
¢ T o Linear ERF N
T - TR 1 207)
it 6 m \%
rg - e
0
0 00 02 04 06 08 10
00 02 04 , 06 08 1.0 r
(a) H workload (b) L workload
Figure 8.8: 'R_EQS versus Workload Correlation
D =P =100
disciplines.

We therefore learn that an increase in workload correlation between demand and parallelism
can cause mean response time to substantially decrease under the EQS policy. This shows that
EQS is a high performance policy even under highly correlated workloads, which is why EQS

outperforms PSAPF even at low to moderate C, as shown in Chapter 7.

8.4 Conclusion

We first summarize the results of this chapter and then examine how they are related to previous

work.

8.4.1 Summary of Results

In this chapter we have studied the qualitative behavior of the EQS policy as a function of
workload parameters. First, we used sample path analysis to derive mean response time bounds
for EQS. These bounds show that under exponential demands and the same concave ERF for all
jobs EQS has optimal performance when all jobs are fully parallel, and under general demand,
available parallelism, execution rates, and correlation, EQS has pessimal performance when all

jobs are fully sequential. Second, we used approximate analysis to understand the behavior

148

Rgpos under the general assumptions of the workload model.

The approximate analysis yielded the insights that within the accuracy of the model (1) mean
workload demand D and normalized mean service time S, := S/D are the key determinants
of REQs; EEQS increases linearly in each of these determinants, (2) _REQS decreases with a
stochastic increase in available parallelism, in particular, it is optimal when all jobs are fully
parallel and pessimal when all jobs are fully sequential, (3) for uncorrelated workloads Rggs
decreases with decrease in variability of available parallelism, (4) REQS decreases with increase
in workload correlation (D remaining fixed), and (5) in the absence of preemption and scheduling
overhead the EQS system has the same stability condition for sublinear ERF's as it does for the
linear ERF.

Although the above results were derived assuming that all jobs have the same ERF, v, it
seems likely that the results will hold more generally as long as job ERFs are (nondecreasing
and) uncorrelated with parallelism. Thus, the key properties of the system that lead to the
nice performance behavior are (a) the equiallocation of processing power, (b) job ERFs are
uncorrelated with parallelism, and (c) job execution efficiencies improve for smaller processor
allocations (yet highly parallel jobs can make use of larger processor allocations when contention
is low). The results explain why several previous studies that fit assumptions (a) and (c) have
observed the EQS policy to have high performance. If property (c) does not hold for a given
equiallocation system (e.g., an EQ policy under workloads where E(j) = (j/N)v(N)) then some
of the results should continue to hold and other results do not hold. For example, insensitivity
of mean response time to coefficient of variation in demand, Cp, should continue to hold,
but the result that mean response time decreases with “increase” in available parallelism will
not necessarily hold, and system performance can be expected to be more sensitive to ERF
sublinearity. Thus, for high-performance multiprogrammed parallel systems, the development
of architectural and software support that allows jobs to dynamically and efficiently redistribute

their work across their processor allocation is highly desirable.

8.4.2 Related Work

Related work in the literature that has studied the qualitative behavior of EQ policies in-
cludes [41, 39, 47, 1]. For a workload with equal division of demand among tasks Leutenegger
and Vernon [41] use simulation to show that Eggry is independent of Cp for specific Hy dis-
tributions for demand and specific bounded-exponential distributions for parallelism. For the
same workload Leutenegger [39] also shows Rgrry to increase linearly with D and to decrease
with workload parallelism for specific distributions of demand and parallelism. We have shown
the same results for general distributions of demand and parallelism.

Agrawal et al. [1] derive a general lower bound for parallel processor policies that holds under

149

general workload conditions. They give examples to show that for uncorrelated workloads with
specific distributions of demand and parallelism and a linear ERF the mean response time of
EQS is within twice of the best achievable performance. They also show that for exponential
demands and linear ERFs the mean response time of any processor conserving policy (EQS
is included in this class) is minimum when N = P and maximum when N = 1. We have
generalized this result for the EQS policy by showing that REQS is maximum when NV =1
under general demands and ERF's, and that REgs is minimum when N = P under exponential
demands and concave ERFs.

There have been no results in the literature for the qualitative behavior of EQS as a function
of workload ERF and workload correlation. The study by McCann et al. [47] show spatial EQ
to outperform temporal EQ using measurements for a specific mix of parallel programs. We
have corroborated their result for our workload model.

Chapter 9

Conclusions

9.1 Summary

Under a general workload model we have developed a new approach of interpolation approxima-
tions to model parallel processor policies and used it to evaluate and compare the performance
of scheduling policies known from previous studies to have high performance under specific
workloads. These policies include the dynamic spatial equipartitioning (EQS) policy, the Pre-
emptive Smallest Available Parallelism First (PSAPF) policy, the dynamic First Come First
Serve (FCFS) policy, and a run-to-completion policy called Adaptive Static Partitioning (ASP).

The main results of this thesis are as follows:

e The interpolation approximation approach is a promising method for efficient analysis of
parallel processor scheduling policies, in that, it yields ready insight by means of closed
form formulas of mean response time which are easy to evaluate for systems with hundreds

of processors.

o Coefficient of variation in demand (Cp) can be critical in determining relative policy per-
formance. This might be obvious from uniprocessor scheduling results, but unfortunately
most previous analyses and comparisons of parallel processor policies have assumed expo-
nential demands or exponential task service times. This result shows that it is important

to consider the implications of the exponential assumption on the conclusions reached.

e Sublinearity of speedup curves and correlation between demand and parallelism are also
influential parameters for relative policy performance. While speedup curves have been
explicitly specified in previous studies, in many cases no indication of correlation is pro-

vided. This result shows that it is important to provide correlation information about the

150

workload and consider its implications on the conclusions.

o We have unified and generalized previous policy comparison results for the ASP, FCFS,
EQ, and PSAPF policies by showing how previous results map to different regions of the
parameter space and generalizing the results over broader regions of the design space. In
particular, we have shown that the EQS policy has highest performance over most of the
parameter space, that is, all of the parameter space except where coefficient of variation
in demand is low (less than or equal to 1 for uncorrelated workloads and less than or equal
to 2 for correlated workloads) and the execution rates are close to linear. For Cp < 1 the
FCFS policy has highest performance if correlation is low, whereas PSAPF dominates if
correlation is high. We note that Cp < 1 is probably a less likely region of the design
space for general workloads, as in uniprocessor scheduling environments [65, page 16], [81].

e The EQS policy has superior processor allocation characteristics in terms of processor
efficiency. More specifically, for a fixed set of jobs with a common nondecreasing and
concave execution rate function the EQS policy achieves optimal processor utilization over

all allocation policies.

e Under our workload model job arrival rate, mean demand, and mean service time are the

key determinants of REpgs. Within the accuracy of the model

— REpgs increases in each of mean demand and mean service time, given a fixed system
offered load,

~ Rpgs decreases with stochastic increase in available parallelism,

- REQS decreases with decrease in variability of available parallelism for a concave

workload ERF and uncorrelated workloads,
- EEQS decreases with increase in workload correlation, and

— when preemption and scheduling overheads are negligible the EQS system has the
same stability condition for sublinear ERF's as it does for the linear ERF and its mean
response time is relatively insensitive to parallel program overheads if the workload

is not fully parallel and the ERF is nearly linear for small processor allocations.

To achieve the main goal of studying qualitative policy behavior and comparing scheduling
policies over a general workload model this thesis proceeded through a series of stages. Chapter 2
first reviewed parallel processor scheduling results in the literature to show what needed to be
done to obtain a better understanding of scheduling policy performance. In Chapter 3 we
developed a general workload model that captures the essential features of parallel applications

and made judicious assumptions about the workload parameters to permit broad applicability

152

as well as ease of analysis. To permit broad applicability we assumed a general distribution of
demand by means of which we saw that Cp is a key parameter that influences relative policy
performance. This could not have been shown had we assumed exponential or some other specific
distribution of job demand. To permit ease of analysis we assumed the linear ERF to model
the PSAPF, FCFS, and ASP policies. However, we showed in Chapter 7 that this assumption
did not limit the applicability of our policy comparison results since the EQS policy performed
better than these three policies under this assumption even though the assumption favors these
three policies relative to the EQS policy.

Chapter 4 proposed the approach of interpolation approximations where we found points in
the parameter space for which the parallel system (under a given scheduling policy) reduces to a
queueing system that has a known solution. We then interpolated among the “known” values to
derive estimates for the “unknown” regions of the parameter space. The purpose of developing
the new approach was to enable us to readily see the dependence of policy performance on
workload parameters by means of closed form expressions, and to easily evaluate mean response
times for large systems. Chapters 5 and 6 showed that the interpolation approximation approach
resulted in accurate approximations for the mean response times of the EQS, ASP, FCFS, and
PSAPF policies. In Chapter 7 we used the interpolation approximations for these policies
to achieve our purpose of evaluating and comparing policy performance over the parameter
space. We used the interpolation approximations to obtain key determinants of relative policy
performance. We then used the approximate mean response time formulas to delineate the
design space without having to recourse to specific experimental workload settings in many cases,
as seen by the comparisons between FCFS and PSAPF for uncorrelated workloads, and EQS
and PSAPF for both uncorrelated as well as correlated workloads. We could therefore compare
policy performance over general distributions of available parallelism and a general range of Cp.

We finally point out the potential of analytic modeling that has been exploited in this thesis.
In our analysis of policy performance and in the comparisons of policy performance we made use
of general demands, general available parallelism and also in case of the EQS policy a general
ERF. These generalities were captured in the form of mean response time expressions. On the
contrary an experimental approach such as simulation would have forced us to assume specific
distributions for workload parameters, and it would be unknown whether the experimental
results would apply to other settings for workload parameters. Since there are an uncountable
number of settings it would be impossible to explore the entire design space as done using
analytic modeling. For example, in Chapter 8 we used linear programming to obtain minimum
and maximum mean response times for the EQS policy and this in turn yielded a key workload
parameter for EQS. For the linear programs we made no assumptions about the distribution

of available parallelism and thus obtained results than span across an uncountable number of

distributions. Clearly, this would have been impossible to do using simulation even if we could
estimate mean response times in a few seconds per data point. Similarly, in Chapter 7 we used
nonlinear programming to obtain minimum and maximum values of the mean response time of
PSAPF over all distributions of available parallelism which would again not be possible using
an experimental method such as simulation.

Thus analytic modeling is particularly important in evaluating parallel processor policies
since in addition to processing demand one also has to consider job parallelism which needs
to be modeled generally because it is unknown to date as to what is a realistic distribution
for program parallelism. We feel that we have developed a promising analytic approach in
this thesis and used it to show that under general workload conditions equipartitioning policies
have highest performance over known scheduling policies that do not use information about job

demand.

9.2 Future Research Directions

A number of research directions are open for the future. These include:

1. Use of Application Characteristics for Scheduling

Further work needs to be done to determine how useful are application characteristics
for scheduling. For example, modifying the EQS policy to use average parallelism in
addition to available parallelism may lead to improved performance. Similarly, limiting
the maximum allocation under ASP to equal a job’s average parallelism or processor
working set may lead to an AP/RTC policy with higher performance than ASP.

9. Guidelines for Interpolation Approximations

This thesis examined several types of interpolation approximations, e.g., interpolation on
system utilization, p, interpolation on average available parallelism, N, and interpolation
on pmf, p. Other types of interpolation approximations are also possible, e.g., interpo-
lation on coefficient of variation in demand, Cp. In general, how does one decide which
interpolation to use? As an example consider the RRP policy. When available parallelism
N is constant, RRP is identical to EQS in terms of allocation of processing power. As a
result a simple interpolation on N or p will show that under the linear ERF RRP and EQS
have identical performance. However, Leutenegger and Vernon [41] give experimental data
to show that for the linear ERF RRP can perform significantly worse than RRJ (temporal
EQS). This difference can be shown by using an interpolation on p. Using the DPS bound
for RRP in [1] we can derive a heavy traffic limit for Rrrp which will be different from the
heavy traffic limit for EQS, and thus an interpolation on p will show the difference between

Rrrp and Rggs. Thus, deciding which interpolation to use is sensitive to the policy being
modeled, and for a given policy or a given class of policies it will be useful if guidelines

can be developed as to which interpolation approximations will produce accurate results.

EQS with Multiple Job Classes

This thesis examined the EQS policy for a single class of jobs having a general distribution
for demand and parallelism and a common workload ERF . A more realistic workload
model will include multiple job classes based on ERFs. Mean response times per class can
provide further insight into the EQS policy, e.g., how does increasing the sublinearity of
one class affect mean response time of other classes under EQS. Developing mean response
time approximations on a per class basis may be more complex than the approximations

in this thesis.

ASP with General Demands and Sublinear ERFs

We obtained an approximation for Eagp for exponential demands and linear ERFs. Al-
though these two assumptions are restrictive they did not limit the policy comparison
results in this thesis since they are more favorable to ASP with respect to EQS and yet
EQS was shown to perform better. However, when ASP is compared with other AP/RTC
policies in the future it may not be reasonable to assume exponential demands and/or
linear ERFs. To obtain an approximation for Rasp for general demands and sublinear
ERFs we can use an interpolation on p since as p — 1 ASP tends to allocate one pro-
cessor per job and hence its mean response time will approach that of an M /G/c queue.
To get an accurate approximation it may be necessary to take light traffic derivatives as
in [83]. Although this approach is cumbersome as the number of derivatives increases it

can nevertheless lead to estimates of mean response time that can be computed quickly.

General Distribution of Inter-Arrival Times

We have only focused on Poisson arrivals in this thesis. The interpolation approximation
approach should extend to more general distributions of inter-arrival times by using results
from GI/G/c queues in the literature. For example, Sakasegawa's approximation [64]
for the mean number of customers in a GI/G/c queue is a closed form expression that
uses the first two moments of inter-arrival and service times. This can be used for the
approximations for Rrors and Rpsapr. Approximations for the EQS policy were derived
using results from PS queues and symmetric queues. For general inter-arrival times we
have not come across mean response time solutions for PS queues or for symmetric queues
in the literature, but it might be possible to derive simple approximations for their mean

response times along the lines of Sakasegawa’s approximation.

6. Closed System Models

(a)

(b)

For a closed system model where customers alternately think and submit jobs for
execution we can get exact mean response time estimates using recurrence relations.
The main idea is to develop recurrences for the mean time for the system to return
to a regenerative state (say all customers thinking) as well as develop recurrences for
the mean number of completions during that time. Using these two mean values we
can derive the throughput of the system and from that the overall mean response
time. The recurrence relations approach, however, will be limited by the number of
jobs in the system. For a large customer population asymptotic job bounds [38] can
be derived as in uniprocessor system models.

Since recurrence relations may be limited to small system sizes and will not permit
general distributions of demand, the interpolation approximation approach can be
used to solve the above closed system model. In addition, the interpolation approxi-
mation approach can also be used to solve for a closed system with an I/O subsystem,
where where jobs enter the I/O system only after completing service at the parallel
system and then loop back to the processor system. For example, for the EQS pol-
icy one can first assume that all jobs have constant available parallelism (N = k).
Since the EQS policy reduces to a symmetric queue that satisfies product form, we
can solve the overall network if the I/O subsystem also satisfies product form. After
obtaining estimates for Regs(N = k) we can interpolate on p to obtain Rggs. The
accuracy of this approximation will, however, need to be validated extensively against

simulation.

7. Including Memory Constraints into Scheduling Algorithms

We have only examined processor scheduling algorithms in this thesis. Practical policies

also need to consider memory constraints of jobs. Given the level of difficulty in modeling

processor scheduling policies alone it seems rather complex to include memory constraints

into models of scheduling algorithms. It may, however, be the case that memory con-

straints will automatically limit the maximum number of the jobs in the system leading

to analyzable models whose underlying Markov chains are either in matrix-geometric form
or have a finite number of states. Whether or not interpolation approximations will be

useful in this context is unknown at this point in time.

Appendix A

Proofs and Derivations

In this appendix we provide proofs and derivations that were skipped in the main text. This
appendix is organized by chapter number. Section A.l provides the proof for Theorem 3.5.2
in Chapter 3. Section A.2 provides the derivation of the approximation for Rpsapr(r = 1)
in Chapter 6. In Section A.3 we provide proofs for two theorems and nonlinear programming
details used in Chapter 7, and finally in Section A.4 we provide proofs of upper and lower bounds

for REQS that were derived in Chapter 8.

A.1 Proofs for Chapter 3

Theorem 3.5.2 Let N have a bounded-geometric distribution with parameters Pyax and p. For
a given N, Cy is mazimum when p =1 and Cn 1s minimum when Pnax = 0.
Proof. We proved the first part (maximum Cy when p = 1) of this theorem in Chapter 3.5.1.
We now prove that over all bounded-geometric distributions with the same N, Cy is minimum
when Pnax = 0.

Consider two random variables, N; =Bounded-Geometric(Pnax > 0,p) and N, = Bounded-
Geometric{0,u), such that N, = No. We show that Cy, < Cy, which means that Cn is

minimum for bounded-geometric distributions when Ppax = 0. The pmf of N, is given by

(l - Rnax)p(l _p)i_lv 1< 1 < P-1
D1 = P _ (A.1)
(1 - Pmax)(]- —p) + Praxy 1= P,

and the pmf of N; is given by

(A.2)

_ w(l—u)"l, 1<i<P-1
PR=Y 1-wP, i=P

156

Let A; = p1s — Pai- Since Zf:l D1 = Zipzl pa; = 1, we have

P
Y a=0 (A.3)
i=1
Since N; = N, we have Zi__l P = Zf;l ipe2i, which means that
P
> in=0. (A.4)
i=1

To prove that Cn, > Cn, we show that N’? > N2, that is, 25__1 i2A; > 0.
We divide our analysis into two parts: (1) p11 > pa1, and (2) pu1 < p21. In the first case we
prove that Zizl i2A; > 0. We then show that the second case is impossible.

(1) pu = par:
We first show that there exists an n < P — 1 such that

p1i > p2i, L1<i<m, and p1; <pai, n<i<P-1, (A.5)

and then use this property to prove that Cn, > Ch,.

To prove (A.5) we show that

(a) it is impossible that p1; > pai foralll <i< P~1,and

(b) after the first ¢ such that py; < pai, we have pyj <pyjfore <j < P -1.

Property (a) is proved as follows. Assume that py; > pai, forall 1 <4 < P —1. Hence
A; > 0forall1 <i< P—1. From (A.4) it follows that 31" iA; = ~PAp = PYE A
Since A; > 0 this equality means that A; =0, ¢ = 1,2,...,P —1 and hence Ap is also
zero. But A; = 0 for ¢ = 1,2,..., P means that p1; = pa and therefore Phax = 0 which
is a contradiction since we had assumed that Pnax > 0 for Ni. To prove property (b) we
proceed as follows. Since pi1 2 pa1, it follows from (A.1) and (A.2) that (1 - Poax)p 2 .
Let k be the first ¢ for which p1; < pai. As seen from property () it must be that k < P—1.

We therefore have,

(1 - Pmax)p
(1= Puaa)p(1 —p)F < u(l-w)*

v

u

These two inequalities imply that (1 — pk < (1- w)*, that is, (1 — p) < (1 —u). As a
result, fork <i< P -1,

pi = (1 = Pra)p(l = p) (1= p)F Su(l w1 —w)' ™ =pa, k<i<P-1,

which proves property (b).

We have thus proved (A.5). Let n be the first ¢ for which py; < p2;, n < P~1. From (A.5)
it follows that

A 20, i=1,...,n—-1, and A; <0, i=mn,...,P-1 (A.6)

We also have

This follows because Zf:l(P —1)A; = 0 (see (A.3) and (A.4)), which is equivalent to
PN P —i)A; =0 0r P —i)As =~ (P —i)A;. We therefore have

i=1 i=

n-1 P-1 P-1
So(P—i)ifi < = D (P =ijndi < = 3 (P =)k,
i=1 i=n i=n
or
P—1
(P —1)iA; <0. (A7)
i=1

Multiplying (A.4) by P we have,

P-1
> Pidi+ P?Ap = 0. (A.8)

j=1

Subtracting (A.7) from (A.8) we get

P
Z izAi >0,
i=1

that is Zle i’pyi > Zf;l i2py;, which shows that —]\712_ > N2 or Cy, > O, as required.

pu <P
We show that this case is impossible. The proof proceeds as follows. Let n be the first

i such that py; > po;. Ifn = P then A; <Ofori=1,...,P~—1 and therefore PAp =

-P Zf:"ll Ay > - Zf:l i;. Hence Z:‘; iA; > 0, which contradicts (A.4). Therefore,
n < P - 1. We now have,

(1 - Pmax)p < u (Since D < le)
(1 - Pmax)p(]- - P)n_l 2 u(l - U)TL-l'

From these two inequalities it follows that (1 — p)*~! > (1 —u)* ' or (1 —p) > (1 — u).

Therefore,

p1i = (1= Poax)p(1=p)" (1 =p) ™! <u(l—w)* (1 -w) ™ =py, n<i<P-1

159

Furthermore,
pop = (1~)" < (1=p)F < Puax + (1= Punax)(1 = 2)” =1,
We have therefore shown that
A; <0, 1=1,...,n~-1, and A; >0, i=n,....P.

From (A.3) it follows that P Ay=-5"7' A;. Hence,

P n-1 n~-1

ZiAi > —TLZAi > —-ZiAi.

i=n fz=l i=1

Combining the leftmost and rightmost terms, we get ZiliAi > 0, which contradicts
(A.4).

A.2 Derivations for Chapter 6

In this section we derive (6.15) using the per class mean response time approximation for an
M/G/c PR queue given in [78]. That is, we show that,

V2(c+1)- /2(c+1)-2 1 2e+1)—2
Zm) (gy M2 gy) + E)—k-gw;/_(c 2 pe >0,

1
Rrk C. ®RCT + —
Pk =1

(A.9)
where ¢ = P/k, ; = (Di)/(NP), oi = A Z;=1 p;%;, and

Ap; Yo {p(1 + CH)Z2)
2(1 = g4-1)(1 - 03) '

D; Ui—-1
3
1—0i-1

IT; +

gi =

Recall that Rr, ¢, in Section 6.3.4 was shown equal to the mean response time of the kt*
priority class in an M/G/c PR queue with k priority classes. To estimate Rr, c, we use
Tabetaeoul and Kouvatsos’ heuristic [78] for per class mean response times of an M/G/c PR
queue. To begin with, Er, o, can be expressed in terms of the overall mean response times for

the first ¢ classes, TM/G/C pr, for i =k —1,k. That is,

=k k-1
— AT cre pr = M-1T0/G
RFk,Ck - M/G/c PR /\k M/G/c PR ’ (A.].O)

where A; = Apg, and Ay = Zle \;. Let Z; denote the service time of class ¢ in the M/G/c PR
queue, fori =1,...,k, and let J; denote the overall mean service time of the first ¢ classes, that

160

N : — . ek ==k -
57, = 1 23:1 AiZi for i = 1,...,k. Define Xyr/6/c pr = Tarjcye pr — Yi- Tabetaeoul and

Kouvatsos [78] proposed the following heuristic to estimate _X_,;,,/G/C PR

MG (A.11)

—k —k
Xu/cje PR ™ Xumjc1. PR - =k
Xm/a/t.

where Y’L/G/lc PR = T’;[/G/lc pr—Tk/C TﬁJ/G/lc pr being the overall mean response time
of the first k classes in an M/G/1. PR queue that is obtained by replacing the c servers of
the M/G/c queue by a single server ¢ times faster. (The M/G/1. PR system has the same job
priorities, service demands, and arrival rates as the M/G/c PR system.) Similarly, Yﬁ,, /G/c 18
the overall mean waiting time in an M/G/c system that has the same workload as the M/G/c PR
system (i.e., k classes) and 7(_’;, /G/1, is the overall mean waiting time in an equivalent M/G/1,
system.

We first provide closed form expressions for YM/G/C and :‘(—M/G/lc and then for ._X—M/G/lc PR
so that we can get an expression for -}ZI,CW /G/c pr using (A.11). Using Sakasegawa’s approximation
for GI/G/c FCFS queues [64], we obtain

o Pasow
MIGle™ = oAkl —ox)

where CV, is the overall coefficient of variation in the service requirement of the k classes, and
ok = }:f=l XiZ;/c. Using the analysis in [32] for the M/G/1 queue we get,

< _op(1+CV2)
MG/, 2Ak(1_0_k)7

and as a result,
Xt ol
AM/Gle o) 2e+1)-2. (A.12)

=
XM/,

|

From the analysis in [33] we have the following expression for _X;’,cw /G/1. PR = IZ,, /61, PR™Uk/C-

©

-1 z-
X =LiA. o %, L N1HCNGF
M/G[1e PR™ A £) (1~0i2) ¢ 2(1—oi)(1—09) [’
i=1

where C, is the coefficient of variation of service requirement of class j, for j =1,..., k.
. =k
Substituting the above expression for X /g1, pr along with (A.12) into (A.11) we obtain

: 32
7 o1 i)" Oi-1 Zi Y= A+ CO)F FV2(erD-2
GM/Gle PR N "Y1-0im1 ¢ 2(1—0y-1)(1 ~0y) b '

i=1

161

k

. Rk <k . s . . .
Using Tyr/6/c PR = XM/GJe PRT 7, /c, substituting into (A.10), and simplifying we get

k-1
= - 1 2e+1)—2 2(e+1) -2 1 NPT
Rry.c, = 2k + :\‘;’\ (Z%’) (Uk e *Uk-—l(c) + Ec‘/\gk% D=2 p >0,

where .
9i = Pi7 Zifc + /\pizgzl{pj(l+03)2?/62}.
1-0i21 2(1 = 04-1)(1 —0o3)
We used); = Ap; to obtain g;. Substituting Z; = Z;/c into the above expressions for Rr, ¢,
and g; we obtain (A.9) as required. Note that Z; = Di/k = (Di)/(Nk), and since ¢ = P/k, we
get T; = (Di)/(NP), fori=1,...,k.

A.3 Proofs and Derivations for Chapter 7

A.3.1 Proof of Theorem 7.1.1

Theorem 7.1.1 Consider a set of K jobs with available parallelisms (n1,...,ng). Let ¥ be
a processor allocation policy that allocates af processors to job i, for 1 = 1,...,K, and let
ul = min(a¥,n;) be the useful processor allocation to job i under policy ¥, fori=1,.... K.

For a workload ERF ~ that is concave and nondecreasing and assuming that E(7) = v(j), i.e.,
jobs can dynamically and efficiently redistribute their work on the processsors allocated to them,

we have
K

K
Z'y(uiEQS) > Z’y(u}l’), for any allocation policy ¥. (A.13)

i=1 i=1
Proof. Without loss of generality assume that ny <na < ... < ng. We divide the proof into
three cases. First, when there are enough processors so that each job gets as many processors
under EQS as it can make use of. Second, when all jobs get the same allocation under EQS,
and third when all jobs do not get the same allocation under EQS. Throughout the proof we

use the following two properties:
e K a¥ <P
o w9 =af9% andu} <af,i=1,.... K.

Case 1: ©°X n; < P.

We have quS =aiEQS =n, Zug’,iz 1,..., K. Hence,

where the last inequality follows because 7 is nondecreasing,.

Case 2

Case 3:

162

ny > P/K, ie., all jobs under EQS get P/K processors each.
By definition, uszS = alEQS = P/K. Therefore,

K K ¥ K
E:ﬂﬁ@ﬂ=xw(§)sz<Z§gi>z§jwﬁ>z§jwwx

where we have used the fact that v is concave and nondecreasing.

ny < P/K.

Under EQS jobs with low available parallelism get as many processors as their available
parallelisms and the remaining jobs get the resultant equipartition number. Let the first J
jobs under EQS get as many processors as their available parallelisms. That is, aiE Q5 = g,
fori =1,...,J and anS = (P - E£J+1ng)/(K— J) fori = J+1,...,K, where

aJEQS SanS forje{l,...,J}and ke {J+1,...,K}. We now have

X Eesy_ % P-57 n
Zﬁwi>=§)mn+m>Jw<~?f§->. (A.14)

i=1
For any other policy ¥ we have
Jow

K 7 K J P-4
Sptud) =3 y@d)+ Yo w) SZ’Y(U?)+(K“J)’Y(—R‘7_1‘="}—Z'>7 (A.15)
i=1

izl i=J+1 (253
where the last inequality follows due to concavity of 7. On account of (A.14) and (A.15),

to prove the theorem it suffices to show that
J J J J
P-Tl m v P-SL u¥
igzly(m)-l—(K J)'y< Ty) > E y(ug)+ (K J)'y(aa, . (A.16)

To complete the proof we make use of the following property of concave functions. For a

concave function f

flz2) = f(z1) o flza) — f(z3)
T2 —T1 T4 — I3
This property is illustrated by Figure A.1 where slope of line AB > slope of line CD. Since
u¥ < g fori=1,...,J we have (P — S u¥)/(K —J) > (P - S)/ (K~).
Therefore,

, where z; < 73 < 73 < 24 (A.17)

P——E“{_ T P—i.J_ uy

¥ = =

uf <ngg —gsllt < T _gumt T (A18)

where the second inequality is a consequence of oS < a9 for je{l,...,J} and
J k

ke {J+1,...,K}. Applying (A.17) by using z,, 22, z3, and z4 from (A.18) we get,

~J 4 J
o () o ()
y(ng) — y(u;

>
= J \ J
N — 'll,;’[’ <P“Zz=1 ulﬂ) - (P—Zz=1 n‘)
K—J K—-J

163

f(x)

X1 xp2 X3 x4

Figure A.1: A Property for Concave Functions

As aresult, forz=1,...,J,

P }_ ul¥ P——Z]_ ne
7(7T) =7 (—-—-rrff—

Summing both sides from ¢ = 1 to J we get,

J J _ J W B J
> v(n) - Z;’Y(uf') > (K - J) - {7 (-IDMI;_E? -) -7 (-———-—-————-—P Kzigj} ne) } :

i=1

Rearranging terms,

- - J : ! — J u‘y
Y) + (K = J)v (5-[—{2-343—) > Y () + (K =) (—P-———-—-——-——Kzfj :) ,
=1

which is what we set out to prove (compare with (A.16)).

A.3.2 Derivation of Min. and Max. Rpsapr at 7 =1: 7/

In this section we provide details of how to minimize and maximize Rpsapr at 7 = 1 and
v =~ across all distributions of N that have the same N. Rpsapr is given by (6.16) for these

164

parameter settings. Our objective is to minimize or maximize Rpsapr over all pmf’s p subject
to the constraint that Zf___l ip; = N. It is easy to verify that the set of pmf’s that satisfies this
equality constraint is a convex set!. We henceforth denote this convex set by Q. From [4] we

note the following:

(1) Any local minimum of a convex function over a convex set is also a global minimum.

' (2) If a convex function has a maximum over a convex set S, then the maximum is achieved at
an extreme point of S, where an extreme point is a point that does not lie strictly within
the line segment connecting two other points of the set.

If we can show that Rpsapr is convex in p over the set), our task of finding the global
minimum and maximum values of Rpsapr over §) will be considerably simplified. (Note that
in general there is no known algorithm that obtains the global minimum and maximum for an
arbitrary nonlinear function.) We have been unable to rigorously prove that Rpsapr is convex
as desired, but we have empirically verified this property by selecting random pairs of points in
Q and verifying that the line segment connecting the mean response time values between each
pair lies above the mean response time function. We have also plotted the shape of Rpsapr for
2 and 3 dimensional problem sizes and verified it to be convex in . We shall therefore assume
that Rpsapr is convex in 2 and use properties (1) and (2) from above.

We obtained the minimum values of Rpsapr by writing a nonlinear program in GAMS [7].
By running the program over various values of A, Cy, and N as inputs we obtained the curves
shown in Figure 7.6. We specified different initial feasible points p € (to the GAMS program
and always obtained the same value for the minimum, thus strengthening our belief that Rpsapr
is convex in Q.

To obtain the maximum values of Rpsapr we first computed the extreme points in Q. It
can be verified that an extreme point in § is obtained by considering only two nonzero values
in the pmf p and attaching suitable weights to them so that the mean is N.2 (That only two
nonzero values are needed results from the fact that there are only two equality constraints, the
first 3 p; = 1 and the second) ip; = N.) Once the extreme points in {2 were obtained we then

computed Rpsapr at these points and selected the maximum value (see property (2)).

A.3.3 Proof of Theorem 7.2.2

Theorem 7.2.2 Under the workload assumptions of Section 7.2.1, Rrors and Rpsapr increase

linearly in C2.

1 A nonempty set S in IR™ is said to be convex if the line segment joining any two points of the set also belongs
to the set, i.e., if T1 and T2 arg_in S, then AT + (1 — A)Z2 is also in S for all A between 0 and__l [4].
2In the special case where N is an integer, the point specified by (p-ﬁ =1, p; = 0 for 1 # N) will also be an

extreme point.

Proof. Let I' denote the system under consideration, with scheduling policy ¥ which is either
FCFS or PSAPF. Let a job be of type 1 if its demand is nonzero and of type 2 if its demand
is zero. Type 1 jobs arrive according to a Poisson process with rate Ao and type 2 jobs arrive

according to a Poisson process with rate A(1 —). Let Rr,; denote the mean response time and '
Wr; the mean waiting time (until first service) of type 7 jobs in system T', 4 = 1,2. Since ¥
does not differentiate between type 1 and type 2 jobs and as a result Wr,l = Wr4. Therefore,

the mean response time of policy ¥ in system I is given by

Ry = aﬁpJ +(1 - a)ﬁr‘g
= aﬁr,l +(1- a)Wr'z
= a_R—[‘,l +(1- Q)Wp,l. (A.19)

In system I' type 2 jobs do not delay type 1 jobs. As a result ﬁm is the same as the mean
response time of a system I'; where only type 1 jobs arrive with rate Aa and have exponential
demands given by D; ~ exp(y;). Thus Rr,= ﬁ[‘ ! and Wp; = WI‘ r Now consider a “faster”
system [';; in which type 1 jobs arrive with rate A and have exponential demands given by
D; ~ exp(pi/c). Then as in the proof of Theorem 7.2.1 it follows that RI‘I = l/aRrII and
Wr = 1/aWr, p where Rp - and Wr,, are independent of . We now have Rp, = 1/aRp
and Wr, = l/aWp, . Using this in (A.19) we have the mean response time of policy ¥ in

system T is given by

1= -
Ry = ax ERFII +{(1—0) % EWFII

— — 1o
= Bp,-Wry,+ EWFU

= _— 14+C2—
= Bp, ~Wr,;+— W,
= by + C\pCS,

— J - 1) — —
where by = RF” - -2~Wp” and cy = §W1~”u Note that bg > 0 since RF” > WI‘”’ and

cy > 0 since in I'y; jobs do not always receive instant service.]

A.4 Proofs for Chapter 8

A.4.1 Proof of Theorem 8.1.1

Theorem 8.1.1 If ¢ and m are constants such that ¢ < m, then under the workload assumptions

('1exp(1/D~)1T = O,")’ € 86)7

Regs(m<N<P) < Reos(1< N <0).

166

Let Ty = (EQS, m <N <P, exp(1/D), r =0, y€ &%), and let 'y = (EQS, 1 <N <
¢, exp(1/D), r =0, v € £°). The following lemma is used in the proof of this theorem.

Lemma A.4.1 Suppose there are K jobs in system I'; such that the allocation of processing

power to these jobs is (a1, az, .. .,ak), and suppose there are M > K jobs in system T'j; such
that the allocation of processing power to these jobs is (b1, ba,. .., bar). Then
K K

1=l

> (@) 2 > ().
i=2]

(Note that the summation is from 1 to K on both sides.)

Proof. Since the ERF «, which is the same for both systems, is concave and nondecreasing

K K
> (6 < K (Z—;—;—b—> <xv(F) (A.20)
i=1 |

Since b; < ¢,1=1,2,..., K, and v is nondecreasing

K
S (k) < K (8).
iz==l
Using this along with (A.20) we get
K
> 4(b:) < K min(y(£),7(P/K)) < K min(y(m), v(P/K)), (A.21)

i==]
where the last inequality follows because £ < m and v is nondecreasing.

We now show that «
K min(y(m),7(P/K)) < Y 7(a:). (A.22)

i=l

To see this consider the following two cases:

(i) m > P/K:
If m > P/K thena; = P/K,i=1,2,.. ., K (since P/K is the equiallocation number and

the available parallelism of each job in I'; is at least m). Hence

K
K min(y(m),7(P/K)) = K¥(P/K) =) _(a:).

=1

167

(ii) m < P/K:
Since m < P/K each job in T'; gets at least m processors. Thatis,a; > m,i=1,2,..., K.

Hence

&
K min(y(m),7(P/K)) = Ky(m) < > _ (ai).
LESD
This proves inequality (A.22). The lemma follows from inequalities (A.21) and (A.22). B

Proof of Theorem 8.1.1. We prove this theorem using sample path analysis. We make use

of the following observations:

(i) If a job is allocated processing power z then the residual life time of the job is exponentially

distributed with rate y(z)u.

(ii) If there are k& > 0 jobs in system I';, ¢ = I,1I, at time ¢t with the 4" job having a processor
allocation of z;, 1 < j < k, then the time to the next departure from I'; is exponentially
distributed with rate Zle v(z;)p-

Let Qi(t) be the number of jobs in system I'; at time ¢, i = I,II. Let al(t) = v(ak)/P,
k=1,2,...,Qr(t), where ay is the processor allocation to the kt* job in T'; at time ¢. Similarly
let off(t) =v(bx)/P, k=1,2,..., Qi(t), where by is the processor allocation to the kth job in
T';; at time ¢. Thus the k** job in I'; departs with rate ok (t)Pu, i € {I,11}.

Coupling of Sample Paths in Ty and I'yy

Fix the arrival times of jobs to be the same in I'; and T';;. Fix sequences of integers {Nif ol
and {N/1}$2, for available job parallelisms in I'; and T'1y respectively, where m < Nf < P and
1< NI <¢,i=1,2,.... Consider that potential job completions [85] occur in each of I'; and

T';r at jumps of a Poisson process with rate Ppu. Fix the same potential completion instants
{T;}$2, in both 'y and [';z. To generate actual job completion times in I’y and Ty let {U:}52,
be ii.d. Uniform(0,1) random variables. At the rt" potential completion instant T, the k" job

in I'; departs if

k=1 k

U, € [}: a;(T:),Za;‘.(T;)) . k=1,2,...,Q:t), ie{l,II}. (A.23)
j=1 j=1

This ensures that the probability that the k** job departs from I'; is at (T7).

Sample Path Analysis
Using the above coupling of sample paths we show by an induction over time that for every

sample path, for allt > 0
Qi(t) < Qui(t). (A.24)

168

We carry out the induction only over arrival instants and potential completion instants since no

jobs depart in between these event times. Let {¢;}{2, be the sequence of arrival and potential

completion times arranged in increasing order. Let both I'y and I';; start out with zero jobs

each. Then clearly (A.24) is satisfied at t = to. Assume that (A.24) is true for all ¢ < ¢;.

Since

no jobs arrive or depart in (tj,t;41) (A.24) is also true for all {; < t < ¢;4;. We now prove

that (A.24) is true at ¢ = t;41. Consider all possible events at time ¢;1,.

1. Job Arrival:
By the induction hypothesis it follows that

Qi(tjs1) = Qrt;) +1 < Qur(t;) + 1 = Qri(tj41)-

2. Potential Completion:

(a) No departure from each of I'; and T'ry:
Qr(ti+1) = Qr(t;) < Qut;) = Qri(tj+1)-

(b) Departure from I'; but not from I';;:

Qrtiv1) = Qr(t)) =1 < Quulty) — 1= Qui(tjs1) — 1 < Qurltjsr).

(c) Departure from each of I'r and I'y;:
Qrtie1) = Qr(t;) — 1< Quit;) — 1 = Qri(tje1)-

(d) Departure from I';y but not from I';:
This implies that

Qrilt;) Qr(t;)
Ur & 0 L II t;+1 s and Ur (S Z az[(t;‘-{—l)’ 1 3

i=1

(A.25)

where tj4+1 = Ty, the rth potential completion instant, 1 <7 < j+ 1. Since these two

intervals overlap, we have

Q:(t;) Qri(t;)
IIf;~
of (t741) < Z o (t)-
i=1 i1

(A.26)

Since Qr(t;) < Qr1(t;) (induction hypothesis) we have from Lemma A.4.1 that

Qr(t;) 1 Qr(t;) Qr(t;) Qr(t;)

_ 1
a;”(j+1) = ‘ﬁ v(b;) < ‘I‘; Z C‘ 7+1)

im=1 i=1 i=1 i=1

(A.27)

169

(A.26) and (A.27) together imply

Qi) Qi) Qri(t;)

Y allitr)< Y altia) < Yl alf(th),

i=1 i=1 i=1

which shows that Q;(t;) < Qrr(t;). Hence
Q1(tj+1) = Qu(t;) < Qui(ty) ~ 1 = Quults).

This completes the proof by induction. Thus, we have shown for every sample path that
Q(t) < Qri(t), vt > 0. Hence for every sample path

1t 1 ol
Q; = lim —t-/ Qr(s)ds < lim —/ Qri(s)ds = Qrr,
0 —tJo

t—00

from which it follows by Little’s Law [76] that Rr, < Rr,, for every sample path. Now uncon-
dition on arrival times, available parallelisms, and potential completion times. |

Remark: Note that the above proof does not require the assumption of Poisson arrivals. The

arrival process can be any GI process.

A.4.2 Proof of Theorem 8.1.2

Theorem 8.1.2 Let I'; be a system with the EQS policy and primitive workload variables
{(Ai, Di,Ni 2 k,Ei),1 = 1,2,...}, where A; is job i’s arrival time, D; its total demand, N;
its available parallelism, and E; its ezecution rate function. Let these primitive variables have
arbitrary marginals (given that N; > k, and the other variables make sense, e.g., D; > 0) with
arbitrary dependencies among them. Let T;r be a system with the EQS policy and the same
workload as T; ezcept that N; =k for alli=1,2,.... Then

RF[SRPII’ k=1,2,..., P

Proof. Let Q(t) be the set of jobs in system I'; at time ¢, and likewise, let Qy1(t) be the set
of jobs in system T';; at time t. We prove this theorem by suitably coupling sample paths for
T'; and T';;, and showing that for every sample path Qr(t) C Qr(t), for all t > 0, from which
it will follow that Rp, < Rp,,-
Coupling of Sample Paths in T'; and IN7;

Fix {A;, D;}32, as the same for both I'; and T'ry. For system I'; choose a sequence (N2
such that N/ > k, i = 1,2,.... For system I'ys fix N/ =k for all i = 1,2,.... P1ck a

sequence of execution rate functions {Ef}ge, for I'y where E! is nondecreasing, ¢ = 1,2,.. ..

Fix the execution rate function for job 7 in system I';r as E!l(z) = ENz), for 0 <z < k, and
Ef(z) = E[(k), = 2 k.
Sample Path Analysis

Under the above coupling of sample paths we show by induction over time that for every

pair of coupled sample paths, for all ¢ > 0,
Qr(t) € Qrr(t). (A.28)

Let al(t) and af’(t) be the allocations of processing power to job ¢ in system I'; and Trr,
respectively, at time ¢. Note that af(t) = 0ifi ¢ Q(t), and ¢/’ (t) = 0if i ¢ Q™ (t). From (A.28)
it follows that

al(t) > al’(t), i€ (), (A.29)
because
aff(t) = min(k, P/|Qu(t)])
< min (N, P/|Qus(8)]) since N > k
< min (N}, P/|Q:(®)]) since |Qr(t)] < |Qr1(?)]
S HO!

The last inequality holds because if job ¢ gets NiI processors in I'; then al(t) = NiI and if
job % gets less than N/ processors then it gets at least as many as the equiallocation number
P/|Q;(t)|, by definition of the EQS policy.

We carry out the induction over arrival and departure times in I'y and I'yr. Let {t:}32, be
the sequence of arrival and departure times in I'; and T';; arranged in increasing order. Let
both T'; and T';; start out with zero jobs each at ¢ = 0. Then clearly (A.28) is satisfied at ¢ = #o.
Assume that (A.28) is true for all ¢ < t;. Since no jobs arrive or depart in (tj,tj+1) it follows
that (A.28) is true for all ¢ < tj41. We now prove that (A.28) is true at ¢t = ¢;41. Consider all

possible events at time ¢;4,.

1. Arrival of job k:
By the induction hypothesis it follows that

Qr(tj) = Qr(t;) U {k} € Qrr(t;) U {k} = Qriltj1)-
2. Departure from I'; only:

Qr(tje1) C Qr(t;) € Qur(ty) = Qriltje)-

171

3. Departure from both 'y and ;e
Suppose job ¢ departs from I'; and job m departs from I'y;. Then we have the following
cases depending on how / is related to m:

(a) £=m:

Qr(tj+1) = Qrlty) — {€} € Qu(ty) — {m} = Qrr(tjs1)-
(b) £ £ m:

Depending on whether or not T and £ are present in Q;(t;) and Q;1(t;), respectively,

we have the following cases:

(i) m € Qr(t;):
This is impossible. The reason is that m € Q;{t;) = m € Qr(tj4+1) because
¢ # m. Since Qr(s) C Qri(s), for all 0 < s < t;4,, it follows from (A.29) that
al (s) > all(s) for Ay < s < tj4y. Since job m has not departed from I'; by

time ¢;41, we have

tit1 tig1
Dy > / EL (ol (s))ds > / E (al1(s))ds.
0 4]

Hence job m has not departed from I';; by time t;41, which is a contradiction.
(i) m & Qr(t;), L € Qri(t;):

Since m ¢ Qy(t;), we have by the induction hypothesis that Q(t;) € Qrr(ty)

and since ¢ departs 'y but not I';; at time #;4 it follows that

Qr(tis1) C Qriltisr)-

(iii) m & Qr(ty), € & Quu(ts):
Similar to case (i), it is impossible that £ € Q(t;) and € & Qrr(t;)-

4. Departure from I';; only:
Suppose job m departs from T'yr. Then either m € Q(t;) or m & Qp(t;). The former
case is impossible as in case 3(b)(i). In the latter case Q;(t;) C Qri(t;) and Qr(tj4+1) C
Qrr(tje)-

This completes the proof by induction. We have shown that for sample path Q(¢) C Qrr(t).
Therefore, job i departs from I'; at least as early as it does from from I';;, from which it follows
that the response time of job 4 in I'; is less than or equal to its response time in I'z; for every
sample path, i = 1,2,.... Therefore _R-I“ ;< EI‘ i for every sample path. Now uncondition on
{(Ai, Di, N} ,ED),i=1,2,...}. |

Bibliography

(1] R. Agrawal, R. Mansharamani, and M. Vernon. Response Time Bounds for Parallel Pro-
cessor Allocation Policies. Technical Report #1152, Computer Sciences Department, Uni-

versity of Wisconsin-Madison, June 1993.

[2] F. Baccelli, and A. Makowski. Queueing Models for Systems with Synchronization Con-
straints. Proceedings of the IEEE 77, 1 (January 1989), 138-161.

(3] F. Baccelli, W. Massey, and D. Towsley. Acyclic Fork-Join Queueing Networks. Journal of
the ACM 36, (1989), 615-642.

[4] M. Bazaraa, and C. Shetty. Nonlinear Programming: Theory and Algorithms. John Wiley
& Sons, New York 1979.

[5] A.Bondi, and J. Buzen. The Response Times of Priority Classes under Preemptive Resume
in M/G/m Queues. Performance Evaluation Review 12, 3 (August 1984), 195-201.

(6] A. Bricker, M. Litzkow, and M. Livny. Condor Technical Summary. Technical Report TR
1069, Computer Sciences Department, University of Wisconsin, Madison, WI, Jan. 1992.

(7] A. Brooke, D. Kendrick, and A. Meerhaus. GAMS, a User’s Guide. Scientific Press, Red-
wood City, CA, 1988.

[8] S.Brumelle. Some Inequalities for Parallel-Server Queues. Operations Research 19, 2 (1971),
402-413.

[9] D. Burman, and D. Smith. Approximate Analysis of a Queueing Model with Bursty Traffic.
Bell System Technical Journal 62 (1983), 1433-1453.

[10] D. Burman, and D. Smith. An Asymptotic Analysis of a Queueing System with Markov-
Modulated Arrivals. Operations Research 34, 1 (1986), 105-119.

172

173

[11] J. Buzen, and A. Bondi. The Response Time of Priority Classes under Preemptive Resume
in M/M/m Queues. Operations Research 31, 2 (1983), 156-465.

(12] S. Cheng, and S. Dandamudi. Scheduling in Parallel Systems with a Hierarchical Organiza-
tion of Tasks. ACM International Conference on Supercomputing, Washington, D.C., July
1992, 377-386.

[13] C. Chang, R. Nelson, and D. Yao. Optimal Task Scheduling on Distributed Parallel Pro-

cessors. Proceedings of Performance’93.

[14] R., Conway, L. Maxwell, and L. Miller. Theory of Scheduling. Addison-Wesley, Reading,
Massachusetts, 1967.

[15] G. Cosmetatos. Some Approximate Equilibrium Results for the Multi-Server Queue
(M/G/r). Operational Research Quarterly 27, 3 (1976), 615-620.

(16] D. Culler et al. LogP: Towards a Realistic Model of Parallel Computation. Technical Report.
Computer Sciences Division, University of California, Berkeley, Jan. 1993.

(17] G. Dantzig. Linear Programming and Eztensions. Princeton University Press, Princeton,
1963.

(18] L. Dowdy. On the Partitioning of Multiprocessor Systems. Technical Report, Vanderbilt
University, Nashville, TN, July 1988.

[19] D. Eager, J. Zahorjan, and E. Lazowska. Speedup Versus Efficiency in Parallel Systems.
IEEE Transactions on Computers, 38 3 (Mar. 1989), 408-423.

(20] H. Flatt. A Simple Model for Parallel Processing. IEEE Computer 17, 11 (Nov. 1934), pg.
95.

[21] K. Fendick, and W. Whitt. Measurements and Approximations to Describe the Offered
Traffic and Predict the Average Workload in a Single-Server Queue. Proceedings of the
IEEE 77,1 (Jan. 1989), 171-194.

[22] P. Fleming. An Approximate Analysis of Sojourn Times in the M/G/1 Queue with Round-
Robin Service Discipline. AT&T Bell Laboratories Technical Journal 63, 8 (Oct. 1984},
1521-1535.

[23] P. Fleming, and B. Simon. Interpolation Approximations of Sojourn Time Distributions.
Operations Research 89, 2 (1991), 251-260.

174

[24] E. Gelenbe, D. Ghosal, and S. Tripathi. Analysis of Processor Allocation in Large Mul-
tiprocessor Systems. Proceedings of the International Conference on the Performance of

Distributed Systems and Integrated Communication Networks, Kyoto, Japan, Sep. 1991.

[25] D. Ghosal, G. Serazzi, and S. Tripathi. The Processor Working Set and Its Use in Scheduling
Multiprocessor Systems. IEEE Transactions on Software Engineering 17, 5 (May 1991),
443-453.

[26] G. Grimmett, and D. Stirzaker. Probability and Random Processes. Oxford University Press,
1989.

[27] A. Gupta, A. Tucker, and L. Stevens. Making Effective Use of Shared Memory Multiproces-
sors: The Process Control Approach. Technical Report, Computer Sciences Department,
Stanford University, Stanford, CA, July 1991.

[28] A. Gupta, A. Tucker, and S. Urushibara. The Impact of Operating System Scheduling
Policies and Synchronization Methods on the Performance of Parallel Applications. Pro-
ceedings of ACM SIGMETRICS Conference; Performance Evaluation Review 19, 1 (May
1991), 120-132.

[29] J. Gustafson. Reevaluating Amdahl’s Law. Communications of the ACM, May 1988, 532~
533.

[30] F. Kelly. Reversibility and Stochastic Networks. John Wiley & Sons, 1979.

[31] L. Kleinrock. Time-shared Systems: A Theoretical Treatment. Journal of the ACM 14, 2
(Apr. 1967), 242-261.

[32] L. Kleinrock. Queueing Systems, Vol I: Theory. John Wiley & Sons, New York 1975.

[33] L. Kleinrock. Queueing Systems, Vol II: Computer Applications. John Wiley & Sons, New
York 1976.

[34] D. Kouvatsos. Maximum Entropy and the G/G/1/N Queue. Acta Informatica 23, 5 (1986),
545-565.

[35] D. Kouvatsos. A Maximum Entropy Analysis of the G/G/1 Queue at Equilibrium. Journal
of the Operational Research Society 39, 2 (Feb. 1988), 183-200.

[36] D. Kouvatsos, and N. Tabet-Aouel. A Maximum Entropy Priority Approximation for a
Stable G/G/1 Queue. Acta Informatica 27, 3 (1989), 247-286.

[37] S. Lavenberg (Ed). Computer Performance Modeling Handbook. Academic Press, New York
1983.

[38] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik. Quantitative System Performance:
Computer System Analysis Using Queueing Network Models. Prentice Hall 1984.

[39] S. Leutenegger. Issues in Multiprogrammed Multiprocessor Sharing. Ph.D. Thesis, Tech-
nical Report #954, Department of Computer Sciences, University of Wisconsin-Madison,
Aug. 1990.

[40] S. Leutenegger, and R. Nelson. Analysis of Spatial and Temporal Scheduling Policies for
Semi-Static and Dynamic Multiprocessor Environments. Research Report-IBM T.J. Watson
Research Center, Yorktown Heights, Aug. 1991.

[41] S. Leutenegger, and M. Vernon. The Performance of Multiprogrammed Multiprocessor
Scheduling Policies. Proceedings of ACM SIGMETRICS Conference; Performance Evalua-
tion Review 18, 1 (May 1990), 226--236.

[42] Z. Liu and F. Baccelli. Generalized Precedence-Based Queueing Systems. Mathematics of
Operations Research 17, 3 (Aug. 1992), 615-639.

[43] S. Majumdar, D. Eager, and R. Bunt. Scheduling in Multiprogrammed Parallel Systems.
Proceedings of ACM SIGMETRICS Conference; Performance Evaluation Review 16, 1
(May 1988), 104-113.

[44] S. Majumdar, D. Eager, and R. Bunt. Characterisation of programs for scheduling in mul-
tiprogrammed parallel systems. Performance Evaluation 18, (1991), 109~130.

(45] A. Makowski, and R. Nelson. Distributed Parallelism Considered Harmful. Research Report
RC 17448, IBM Research Division, 1991.

[46] A. Makowski, and R. Nelson. Optimal Scheduling for a Distributed Parallel Processing
Model. Research Report RC 17449, IBM Research Division, 1991.

[47] C. McCann, R. Vaswani, and J. Zahorjan. A Dynamic Processor Allocation Policy for Mul-
tiprogrammed, Shared Memory Multiprocessors. ACM Transactions on Computer Systems
11, 2 (May 1993), 146-178.

[48] V. Naik, S. Setia, and M. Squillante. Scheduling of Large Scientific Applications on Dis-
tributed Memory Multiprocessor Systems. Proceedings of the 6th SIAM Conference on Par-
allel Processing for Scientific Computation. IBM Research Report RC 18621, T. J. Watson
Research Center, Yorktown Heights, Jan. 1993.

176

[49] V.Naik, S. Setia, and M. Squillante. Performance Analysis of Job Scheduling Policies in
Parallel Supercomputing Environments. Proceedings of Supercomputing’93, November 1993.
IBM Research Report RC 19138, Sep. 1993.

[50] R. Nelson. A Performance Evaluation of a General Parallel Processing Model. Proceedings
of ACM SIGMETRICS Conference; Performance Evaluation Review 18, 1 (May 1990),
13-26.

[51] R. Nelson. Matrix Geometric Solutions in Markov Models - A Mathematical Tutorial. Re-
search Report - IBM T.J. Watson Research Center, Yorktown Heights, Apr. 1991.

[52] R. Nelson, and A. Tantawi. Approximate Analysis of Fork/Join Synchronization in Parallel
Queues. IEEE Transactions on Computers 37, (Jun. 1988), 739-743.

[53] R. Nelson, and D. Towsley. A Performance Evaluation of Several Priority Policies for Parallel
Processing Systems. COINS Technical Report 91-32, Computer and Information Sciences,
University of Massachusetts, Amherst, MA, May 1991. (To appear in JACM.)

[54] R. Nelson, D. Towsley, and A. Tantawi. Performance Analysis of Parallel Processing Sys-
tems. IEEE Transactions on Software Engineering 14, 4 (Apr. 1988), 532-540.

[55] R. Nelson, D. Towsley, and A. Tantawi. The Order Statistics of the Sojourn Times of
Customers that Form a Single Batch in the M* /M/c Queue. Research Report, IBM T.J.
Watson Research Center, Aug. 1989.

(56] M. Neuts. Matriz-Geometric Solutions in Stochastic Models: An Algorithmic Approach.
The John Hopkins University Press, 1981.

[57] L. Ni, and C. Wu. Design Tradeoffs for Process Scheduling in Shared Memory Multiproces-
sor Systems. IEEE Transactions on Software Engineering 15, 3 (Mar. 1989), 327-334.

[58] J. Ousterhout. Scheduling Techniques for Concurrent Systems. rd International Conference
on Distributed Computing Systems, (1982) 22-30.

[59] M. Reiman, and B. Simon. An Interpolation Approximation for Queueing Systems with
Poisson Input. Operations Research 36, 3 (1988), 454-469.

[60] M. Reiman, B. Simon, and S. Willie. Simterpolation: A Simulation Based Interpolation
Approximation for Queueing Systems. Operations Research 40, 4 (1992), 706-723.

[61] A. Roberts, and D. Varberg. Convez Functions. Academic Press, New York, 1973.

[62] S. Ross. Stochastic Processes. New York, Wiley 1983.

[63] E. Rosti, E. Smirni, L. Dowdy, G. Serazzi, and B. Carlson. Robust Partitioning Policies of
Multiprocessor Systems. Technical Report, Department of Computer Science, Vanderbilt
University 1992. To appear, in Performance Evaluation (Special issue on the performance

modeling of parallel processing systems).

[64] H. Sakasegawa. An Approximation Formula L, = ap®/(1 — p). Annals of the Institute of
Statistical Mathematics 29, 1 (1977), 67-75.

[65] C.Sauer, and K. M. Chandy. Computer System Performance Modeling. Prentice-Hall, 1981.

[66] M. Seager, and J. Stichnoth. Simulating the Scheduling of Parallel Supercomputer Applica-
tions. Technical Report, User Systems Division, Lawrence Livermore National Laboratory,
Sep. 1989.

[67] S. Setia, M. Squillante, and S. Tripathi. Analysis of Processor Allocation in Multipro-
grammed Parallel Processing Systems.Technical Report CS-TR-2840, University of Mary-
land, College Park, MD, Feb. 1992.

[68] S. Setia, M. Squillante, and S. Tripathi. Processor Scheduling on Multiprogrammed, Dis-
tributed Memory Parallel Systems. Proceedings of ACM SIGMETRICS Conference; Per-
formance Evaluation Review 21, 1 (May 1993), 158-170.

[69] S. Setia, and S. Tripathi. An Analysis of Several Processor Partitioning Policies for Parallel
Computers. Technical Report CS-TR-2684, University of Maryland, May 1991.

[70] S. Setia, and S. Tripathi. A Comparative Analysis of Static Processor Partitioning Poli-
cies for Parallel Computers. Proceedings of the International Workshop on Modeling and
Simulation of Computer and Telecommunication Systems (MASCOTS), 1993.

[71] K. Sevcik. Characterization of Parallelism in Applications and Their Use in Scheduling. Pro-
ceedings of ACM SIGMETRICS Conference; Performance Evaluation Review 17, 1 (1989),
171-180.

[72] K. Sevcik. Application Scheduling and Processor Allocation in Multiprogrammed Parallel
Processing Systems. To appear, in Performance Evaluation (Special issue on the perfor-

mance modeling of parallel processing systems).

[73] B. Simon, and S. Willie. Estimation of Response Time Characteristics in Priority Queueing
Networks via an Interpolation Methodology based on Simulation and Heavy Traffic Limits.
Computer Science and Statistics: Proceedings of the 18th Symposium on the Interface,
American Statistical Association (1986), 251-256.

[74] E. Smirni, E. Rosti, L. Dowdy, and G. Serazzi. Evaluation of Multiprocessor Allocation
Policies. Technical Report, Vanderbilt University, Nashville, TN, 1993.

[75] M. Squillante. MAGIC: A Computer Performance Modeling Tool Based on Matrix-
Geometric Techniques. Proceedings of the 5th International Conference on Modelling Tech-

niques and Tools for Computer Performance Fvaluation, Feb. 1991.
[76] S. Stidham. A last word on L = AW. Operations Research 22, 2 (1974), 417-421.
[77] D. Stoyan. Comparison Methods for Queues and Other Stochastic Models. Wiley 1983.

[78] N. Tabet-Aouel, and D. Kouvatsos. On an Approximation to the Mean Response Times of
Priority Classes in a Stable G/G/c/PR Queue. Journal of the Operational Research Society
48, 3 (Mar 1992), 227-239.

[79] Y. Takahashi. An Approximation Formula for the Mean Waiting Time of a M/G/c Queue.
Journal of the Operations Research Society of Japan 20, 3 (1977), 150~163.

[80] D. Towsley, C. Rommel, and J. Stankovic. Analysis of Fork-Join Program Response Times
on Multiprocessors. IEEE Transactions on Parallel and Distributed Systems 1, 3 (July
1990), 286-303.

[81] K. Trivedi. Probability and Statistics, with Reliability, Queueing and Computer Science
Applications. Prentice-Hall, 1982, pg. 130.

[82] A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multiprogrammed
Shared-Memory Multiprocessors. Proceedings of the 12th ACM Symposium on Operating
System Principles, Dec. 1989, 159-166.

[83] S. Varma, and A. Makowski. Interpolation Approximations for Symmetric Fork-Join

Queues. Proceedings of Performance’93.

[84] R. Vaswani and J. Zahorjan. The Implications of Cache Affinity on Processor Schedul-
ing for Multiprogrammed, Shared Memory Multiprocessors. Proceedings of the 13th ACM
Symposium on Operating System Principles, Qct. 1991, 26-40.

[85] J. Walrand. Introduction to Queueing Networks. Prentice-Hall, Englewood Cliffs, New Jer-
sey, 1988.

[86] R. Walstra. Nonexponential Networks of Queues: a Maximum Entropy Analysis. Proceed-
ings of ACM SIGMETRICS Conference; Performance Evaluation Review , 1985, 27-37.

179

(87] W. Whitt. An Interpolation Approximation for the Mean Workload in a GI/G/1 Queue.
Operations Research, Vol. 37, No. 6, 1989, pp. 936-952.

[88] R. Wolff. Stochastic Modeling and the Theory of Queues. Prentice-Hall, Englewood Cliffs,
New Jersey, 1989.

[89] D. Yao. Refining the Diffusion Approximation for the M/G/m Queue. Operations Research
3% (1985), 1266~1277.

[90] D. Yao. Some Results for the Queues M~ /M/c and GI X /G/c. Operations Research Letters
4, 2 (July 1985), 79-83.

[91] J. Zahorjan, and C. McCann. Processor Scheduling in Shared Memory Multiprocessors. Pro-
ceedings of ACM SIGMETRICS Conference; Performance Evaluation Review 18, 1 (May
1990), 214-225.

[92] S. Zhou, and T. Brecht. Processor-pool-based Scheduling for Large-Scale NUMA Multipro-
cessors. Proceedings of ACM SIGMETRICS Conference; Performance Evaluation Review
19, 1 (May 1991), 133-142.

