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Abstract

To successfully query a database systemn, a user needs to know not only the data model of the
underlying Database Management System (DBMS) and the associated query language, but also
the exact arrangement of the data in that particular database. Recent years have witnessed a
growing number of DBMS users who are not versed in the above skills, yet still need to interact
regularly and productively with a DBMS. Further, even for a person having the requisite skills,
the need to explicitly conform to the database structure while querying can be a time consuming
and laborious task, especially as the number of ad-hoc queries to DBMSs increase.

When we talk to each other we have no trouble disambiguating what another person means,
even though our statements are almost never meticulously specified down to the very last detail.
We ‘fill in the gaps’ using our common-sense knowledge about the world. This thesis presents
a formalism to allow users of Object Oriented DBMSs to specify queries to a database system
in a manner closer to the way we pose questions to each other, which constitutes a vague query
specification for the underlying DBMS. Our system takes as input this vague specification, and
generates complete queries consistent with this vague specification that it believes are what the
user most likely meant by the vague specification. The formalism we present is completely do-
main independent - it requires no knowledge about the specific entities in a particular database.
The system works by exploiting the structure of the relationships between data entities in the
database. A set of two preliminary experiments with human subjects indicates that such a
purely structure-based approach to disambiguation of vague queries is quite powerful.




Contents

1 INTRODUCTION w 5
2 THE DATA MODEL AND ASSOCIATED QUERIES 8
9.1 The Data Model . .« o v v v v v oo 8
9.1.1 Object Classes . .« v v v v v o mm v m e 8

9.1.2 Object Relationships « . « .« v v v oo o 9

9.1.3 Constraints on the Schema . . . . ..« oo v 11

9.2 Queries and Path EXpressions . .« « ..o vv e e 12
2.9.1 Path EXPressions . . « « v v v vvv v o v vonem 12

9.92 The Vague Connector Symbol ™ . . . oo vve e 13

2.3 Semantics of Vague Path EXpressions . . . .« o« o v oo v eme st 14
2.3.1 Generating Completions of Vague Path Expressions . . . . . ...« 14

2.3.2 Cyclic Path Expressions and Invisible Classes . . . .« o+« v v o v oo e 15

2.3.3 Choosing the Most Plausible Path EXPressions . . .« o« oo oo v o s e 17

94 Where Tt AILFIES . o o o v v oo v e e 17

3 COMPLETIONS AS OPTIMAL PATH COMPUTATIONS 18
3.1 Optimal Path Computation . . . .« .o ovvvvve e 18
3.2 The Problem as Optimal Path Computation . . . v v v v v o vt 19
3.3 The Path Collapse Function . . . .« o v oo v oo e 20

4 THE PATH COLLAPSE AND SELECTION FUNCTIONS 22
4.1 Collapsing Relationships in Path EXPressions . . . . oo v v v o soe n o s e 22
4.1.1 Secondary Relationships . . . « .« v v oo v 22

4.1.2 The Collapse Function . . . .« o v v v v oo 24

4.2 Path Expression Discriminators . . . ...« oo o et 25
4.9.1 The Ordering of Collapsed Relationship Kinds . o v v v v v oo 25

4.9.2 Tsa Sub-Path Preemption Criterion . . . . . . o v v v v oo oo 26

4.9.3 Effective Lengths of Path Expressions . . . . . ..o oovvvve s oemeee 27

4.9.4 Domain Specific Discriminators . . . . .« v oo 27

4.3 Properties of AGGand CON . ..o oo 28

5 THE COMPLETION ALGORITHM 29
5.1 A Procedure To Generate Plausible Completions . . . .« o oo vt oo 29
5.2 Inapplicability of Existing Algorithms . . . v v v v v v 30
5.3 Dealing With Intermediate Point Specifications . . . .. oo e 31
53.1 Restricted Regular Expressions . . . . ..o covvm e e e 32

5.3.2 Ordered Sequence of End Point Specifications . . . . ..o e 32



5.4 The Traversal Algorithm . . . . . oo o oo v v v i e
541 Caution SEts . . . . v i v e e e e e e
5.4.2 Relationship SNOOD « + « o v v v v v v e e e
5.4.3 Effective Length Calculation . . . ... ..o
5.4.4 Traversing the Schema Graph . . . . . . .. v v v i
5.4.5 Matching Intermediate Point Specifications . . . . . . ... oo

THE EXPERIMENTS

6.1 Measures of Effectiveness . . . . . . . oo

6.2 MOLIVALION  « v v v v v v v e e e e e e

6.3 Experiment 1 - Formulating Queries For Naive USers . . « « « v v v v v o v v v v e v s
6.3.1 FExperimental Methodology . . .. ... .o oo o
6.3.2 ReSUIES .« v v v v v e e e e e e e

6.4 Experiment 2 - Shorthand Mechanism for Formulating Queries . . . .. ... . ...
6.4.1 Experimental Methodology . . . . ...« .cvevvoem e
6.4.2 ReSUIES . o v v v v v e e e
6.4.3 Efficiency of Traversal . . . . .« . v v v oo v v oo m o m

6.5 Summary of Results . . . . oo oot

DISCUSSION

71 FEstimation of Answer Sizes . . . .« . ... o s s s

7.9  Alternate Collapse Functions and Orderings . . . . - v« o v ce v e e e e e e e

7.3 Introduction of Learning . . . .« « o o v o oo n oo

RELATED WORK

8.1 Database INterfaces . . . . o v o v v o v e
8.2 Semantic Networks and Spreading Activation . ... ... ... ccvee e e
8.3 Object Hierarchies and Common-Sense Reasoming . . « v« v v o v oo e n e

9 CONCLUSIONS

A Vague Queries For Experiment 1 (parts 1 and 2)




List of Figures

2.1
2.2
2.3

4.1
4.2
4.3

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

7.1
7.2
7.3
7.4
7.5
7.6

A Sample Schema in the OODB Model . . . . . . .o oo v oo
Dealing With Invisible Classes . . . . .. oo oo oot v e
Relationship amongst modules in the DBMS . ... . ..o
The Adjacent Relationship Collapse Function Qe e e
A Partial Order For Collapsed Relationship Kinds . . . . . .. .o v ovvve v e
The Isa Sub-Path Preemption Criterion . . . . . . v oo v vvvo v oe e e e e e
Calculating Effective Length of a Path Expression . . ... .. .ovnvvve v
The Traversal Algorithm for End Point Specifications . . . .. ..coovvee e e
The World Model Description Used in Experiment 1 . . . . ... .ccvvoe v
Average Recall Fraction (Experiment 1- Part 1) oo
Average Precision Fraction (Experiment 1- Part 1) . o oo o c
Average Recall Fraction (Experiment 1- Part 2) e
Average Precision Fraction (Experiment I-Part 2) . . . o oo
Average Recall Fraction (Experiment 1- Part 3) . -« oo oo ee e e e
Average Precision Fraction (Experiment 1- Part 3) i
Average Recall Fraction (Experiment 1- Part A) oo
Average Precision Fraction (Experiment 1- Part 4) © e
Average Recall-Precision Product (Experiment 1- Part1l) ... .. ...
Average Recall-Precision Product (Experiment 1- Part2) ... .. ... .. ...
Average Recall-Precision Product (Experiment 1- Part 3) o
Average Recall-Precision Product (Experiment 1-Part4) . ... ... ...
Average Recall Fraction (Experiment 2) . . . .« oo v oo v v
Average Precision Fraction (Experiment 2) . . .. ..o oo e
Average Recall-Precision Product (Experiment 2) e e
Number of Recursive Calls Per Query (Experiment 2) e
Tmprovement in Precision with Answer Size Estimation-Part 1. . ... ... ....

Improvement in Recall-Precision Product with Answer Size Estimation - Part 1 . . .

Improvement in Precision with Answer Size Estimation - Part 2. . ... .. .. ...
Improvement in Recall-Precision Product with Answer Size Estimation - Part 2 .
Improvement in Precision with Answer Size Estimation - Part 3. .. .. ... . ...
Improvement in Recall-Precision Product with Answer Size Estimation - Part 3 .



Chapter 1

INTRODUCTION

Consider the following fragment of conversation:
“Do you know Valerie #”
“No. Who is she ¢”
“She’s a new teaching assistant in the department.”

“What are Valerie’s courses ?”

Tf we are asked the last question we have absolutely no difficulty in interpreting it as meaning
either one of the following or both:

e “What are the courses taught by Valerie 7”
o “What are the courses taken by Valerie ?”

Of course, if we think hard enough, in a typical university setting there are a myriad of other
options of courses that are associated with Valerie, some of them mildly plausible in the context of
the original question, some frankly ludicrous. For example, the options

e “the courses taught by fellow teaching assistants in Valerie’s department”
o “the courses taken by the students in Valerie’s department”
o “the courses taught by Valerie’s advisor”
e “the courses taught by all the professors in Valerie’s department”
are all valid associations between Valerie and a set of courses. Technically, the question
“What are Valerie’s courses #”

is underspecified, and hence has a number of possible interpretations. As humans however, we
know exactly what the question means. In everyday life we fill in the gaps in the specification of
the question using our common-sense knowledge about teaching assistants, universities and student
life with absolutely no difficulty. Is it possible for a computer program to fill in such gaps in an
underspecified statement/query so that the complete statement /query reflects the user’s intuition ?

Before we address this question further we present three trends in the usage of database man-
agement systems (DBMSs) that we feel have a direct bearing on the importance of the question

above.




A noticeable trend in tecent years has been a sharp increase in the number of naive users with
access to DBMSs. A user of a DBMS system is said to be naive if the user is not familiar with at
least one of the following:

o The query language of the DBMS,
e The data model of the DBMS,
o The schema of a database in the DBMS.

Most such users are not computer scientists or database experts, nor do they wish to become
one. They need however, to manage vast quantities of data and require quick access to answers by
formulating queries (often ad-hoc) to the DBMS in order to make decisions. Furthermore, most
such users would not even have designed the schema for the data. Such users are then left with two
equally unattractive options. Fither learn the schema so that they can formulate queries that the
DBMS will accept without choking ( not a light task for most DBMSs which store large quantities
of data about many different types of objects and whose schema may constantly evolve ), or hire an
intermediary (a computer expert) to interact with the DBMS and provide the necessary answers
to their questions. For most business executives for example, the latter is currently the option of
choice.

Another trend we expect to observe is a significant increase in the number of ad-hoc queries to
DBMSs. Many current systems are used for business purposes ( e.g. managing inventories ), and
have a fixed set of queries that are pre-compiled, pre-optimized and stored. The expansion of the
application domains of DBMSs and the increase in the number of naive users will result in many
more ad-hoc queries.

A final trend that we expect to see in the coming decades is the prevalence of the Object
Oriented (00) model for DBMSs [ABD+ 89]. The technology still suffers from the lack of a single
formal model unlike its predecessor, the relational model. However the OO model provides a more
natural way of organizing and thinking about data, as well as the advantages of imposing 2 natural
structure on the data, inheritance of properties, and the ability to specialize objects via subclassing.
Various 00 DBMSs (OODBMSs) are currently available as products, and we expect to see more
as the technology becomes more widespread.

The challenge is to give naive users with access to a DBMS the ability to formulate questions in
the way they think naturally and common-sensically. The problem of course is that everything has
to be specified exactly to a computer and a DBMS. With the number of ad-hoc queries increasing,
this implies that the user must know exactly how the data is organized (must know the DBMS
schema), since all DBMSs require the user to ezplicitly conform to the schema structure while
querying. This is no trivial task for most real world databases even if a natural language or
menu driven interface could be provided to formulate the exact query. Work on Graphical User
Interfaces (GUIs) [ILH 92] is a step in this direction. A GUI provides a pictorial representation
of the organization of the data in the DBMS to the user. However, there are drawbacks to this
solution too. Most current DBMS schemas are too large to fit into one screen of most workstations.
Printing out the schema is not too useful if it is constantly changing. Further, even with the entire
schema in front, specifying a query to the DBMS completely may be a tedious chore. It would be
much more convenient if the user were simply to click on a few entities on the schema diagram and
have the system figure out a way to connect the entities selected into a query that is meaningful
to the user.

This thesis introduces a mechanism that allows a user to specify incomplete ( and therefore
ambiguous ) queries, without explicitly having to know how the data is structured inside the DBMS.



For users familiar with the database schema this mechanism provides a convenient shorthand with
which to specify queries, which, due to the structure of the schema, may be long and difficult to
formulate. In response the user is presented with a completely specified query (or possibly a set of
queries) that is consistent with the original query and is its most likely completion based on the
system’s knowledge.

A straightforward approach to achieve the above is to associate several rules with a given
database that capture some common-sense notions of the world represented by the data in the
database. Such a solution however, is schema dependent and is hence quite useless for any other
schema but the one for which the rules were designed. Furthermore, with a constantly evolving
schema, the rule set may have to constantly evolve to keep track of the new data, and experience
with production systems has shown that this is not a trivial task in a lot of cases.

In this thesis, we introduce a novel, lightweight approach to the problem above. Based on the
third trend above, we assume the underlying DBMS is 0O. Qur procedure exploits the structure
of the database schema to choose likely completions of underspecified queries. It has absolutely no
knowledge about the entities in the underlying database - all it knows are the semantics of the
various types of links supported by the data model of the DBMS. This implies that the system is
very easily portable from one database to another.

At first glance, such an approach seems very restricted in terms of power. However, we present
results from a preliminary set of experiments that indicate that a such a purely syntactic approach
yields good performance at little cost.

This thesis is organized as follows. In Chapter 2 we introduce the OO data model we assume
for the rest of this thesis, and introduce the notion of a path expression. In Chapter 3 we cast
the problem as the familiar problem of computing an optimal path over a labeled directed graph
and introduce the notions of path collapse and path selection functions. Chapter 4 presents the
particular path collapse and path selection functions implemented by us as also certain properties
satisfied by these functions that are useful for optimizing an implementation. In Chapter 5 we
present the algorithm to generate plausible completions to vague specifications with optimizations
for efficient traversal of a database schema. In Chapter 6 we present the results from a set of
preliminary experiments conducted on two different schemas with human subjects. Chapter 7
discusses various possible options for increasing accuracy of the procedure based on the experimental
results. In Chapter 8 we present related work. We conclude in Chapter 9 with some directions for

future work.




Chapter 2

THE DATA MODEL AND
ASSOCIATED QUERIES

In this chapter, we introduce the data model of the DBMS that the rest of the thesis assumes and
present criteria for “correct” schemas in this model. We then introduce path expressions and show
how our problem essentially reduces to finding appropriate path expressions in the schema graph.
We also present the overall picture of where exactly we expect such a system to fit in the context

of a full-fledged DBMS.

2.1 The Data Model

Our OODB model is based loosely on the MOOSE OO data model [Wilo 93]. However, it is
general enough to easily map onto most existing OODB models. In the DBMS, real world entities
are modeled by objects. Objects are grouped together by uniquely named classes, which capture
the objects’ common properties. Binary relationships describe the connections between objects in
the schema classes.

This work is only concerned with the database schema, not the actual data stored in the database
itself. We represent the schema as a graph: each class is a node in the graph, and each relationship
is an edge, possibly directed, in the graph between two class nodes. Each relationship has a label
in each direction, which if unspecified, is equal to the name of the target class of the relationship in
that direction. Figure 2.1, shows a sample OODB schema representing information about students,
professors, and universities.

2.1.1 Object Classes

Fach class has a kind which describes the class’s basic structure. We allow three kinds of classes in
our OODB model: primitive, tuple, and collection.

The primitive classes are provided by the system. Currently our model assumes the existence
of four types of primitive classes - Integer, Real, Character String, and Boolean; in Figure 2.1 they
are represented by circles and abbreviated to the letters I, R, C, and B respectively.

Objects in tuple classes consist of a prespecified number of other objects called parts, usually
from several different classes. Each part is identified by a relationship, uniquely labeled for that
class. A special case of tuple classes are atomic classes, whose objects have no parts.

Objects in a collection class consist of an arbitrary number of other objects, all from a single
class, called the members class. We allow two general types of collection classes: sets and arrays.
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Figure 2.1: A Sample Schema in the OODB Model

An array is a set indexed by the set of consecutive integers {1, ..., n}. Sets may be multisets, strict
sets, or indexed sets. The elements of an indexed set are indexed by (the elements of) another
arbitrary collection object. This collection object is called the keyset for the indexed set, because
its elements provide indexing keys into the indexed set. ! For the purposes of this thesis we treat
all collection objects in the schema uniformly.

Tuple objects are represented by solid rectangles and collection objects by broken rectangles in
Figure 2.1.

2.1.2 Object Relationships

Relationships in our data model may be cither directed or undirected. A directed relationship has
two distinct interpretations when traversed in opposite directions. Such relationships are said to
be non-isotropic. For all non-isotropic relationships, the data model designates one of the interpre-
tations as the dominant interpretation. Informally the dominant interpretation corresponds to the
more intuitive view of the relationship. In the schema graph diagram the dominant interpretation
is the interpretation of the relationship in the direction of the arrowhead.

We assume two major types of relationships between classes in the schema.

1 An indexed set indexed by the consecutive integers is an array.




1. Inheritance Relationships

An inheritance relationship is a directed relationship between two classes, called the super-
class and the subclass. An inheritance relationship implements inclusion and specialization
semantics : inclusion inheritance means that all objects in the subclass are also instances
of the superclass. Thus, in Figure 2.1 all instances of the class grad are also instances of
the superclass student and its superclass person. Specialization inheritance means that the
subclass inherits all the relationships of the superclass. The subclass may refine (redefine)
these relationships and possibly define its own relationships in addition to those inherited
from the superclass. For example, the class student inherits the relationships name and ssn
from its superclass person. In addition student defines three new relationships for all objects
of class student: department, courses and id, which are inherited by all objects of class grad
and undergrad along with the properties name and ssn.

Our model allows multiple inheritance ; i.e., a class may be a direct subclass of more than one
superclass ; such a class inherits properties from all its superclasses. Inheritance relationships
are also called Isa relationships in the direction from subclass to superclass, and May-Be in
the direction from superclass to subclass. Hence, in Figure 2.1, student Isa person and person
May-Be student. We use the symbols @> and <@ to denote the Isa and May-Be relationships
respectively.

Our model requires every object in the data base to be associated with at least one class in
the schema graph. Thus, if subclasses a and b of superclass ¢ share some common objects,
then these objects must be members of an explicit class d in the schema that is a subclass of

both a and b.

The dominant interpretation for an inheritance relationship is Isa.

2. Connection Relationships
A connection relationship between two classes implies a logical or physical relationship be-
tween their object instances. For example, connection relationships can be used to describe a
composite object: the relationships will connect the composite object class (e.g. department)
to the classes of its parts (e.g. faculty, student).

Our data model allows four distinct kinds of connection relationships between classes in
the schema to reflect the different ways that objects may be related and capture additional
semantics implied by these relations. In general, each kind of relationship may be interpreted
in two different ways from the perspective of each of the two classes it connects. In each
interpretation, one of the two related classes plays the role of the source class and the other
one plays the role of the target class, thus imposing a direction in the interpreted relationship.

(a) Has-Part (Is-Part-Of)

This is a structural relationship between two classes. Such relationships (also called
part relationships) are used to describe relationships between classes that are physical
or logical parts of a whole and vice versa. Such a relationship is directed from the class
that contains the part to the class that is a part of it (the dominant interpretation of a
part relationship is Has-Part). If the relationship is traversed in the reverse direction to
the arrowhead it is read as Is-Part-Of. We use the symbols $> and <$ to denote the
Has-Part and Is-Part-Of relationships respectively.

(b) Is-Set-Of (Is-Member-Of)

This is a structural relationship between a collection class and a members class. An

Is-Set-Of relationship (also called a set relationship) connects objects of a collection
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class to the objects of the member class of that set. The dominant interpretation of
a set relationship is Is-Set-Of. The relationship in the reverse direction is read as Is-
Member-Of. We use the symbols => and <= to denote the Is-Set-Of and Is-Member-Of
relationships respectively.

(c) Is-Indexed-By (Indexes)

This relationship connects an indexed set class to the collection class of its keyset.
The arrowhead for this directed relationship (also called an indez relationship) is in the
direction of the Is-Indezed-By relationship (that is from the indexed set to its keyset).
We use the symbols -i-> and <-i- to denote Is-Indezed-By and Indezes relationships
respectively. The dominant interpretation of a indez relationship is Is-Indexed-By.

(d) Is-Associated-With

This is the only undirected relationship between two classes in the schema. This re-
lationship connects two classes that are mutually associated with each other, and the
relationship is equally dominant in both directions. Hence associations have the exact
same interpretation in both directions (they are isotropic). Such a relationship is read
as Is-Associated- With in both directions. For the case when one of the classes is a prim-
itive class, the relationship is read as Has-Attribute from the non-primitive class to the
primitive class and is meaningless in the reverse direction. For example, in Figure 2.1
person Has-Attribute ssn, but to say that the class of Integersis associated with the class
of person is quite meaningless. We use the symbol . to denote the Is-Associated- With
relationship.

Each of these relationships can have other properties such as a cardinality ratio in each
direction, mutability constraints, existence of NULL values, etc. Our model does not preclude
these orthogonal properties nor does it require them.

Another point to note is that quite often the decision on whether to use an association or a
part relationship between two classes is subjective and depends on the designer of the database
schema. For example, the Is-Associated- With relationship between student and department in
Figure 2.1 could equally well have been modeled as a Is-Part-Of relationship between the two
classes. Association relationships are essentially “weaker” than the corresponding structural
relationships in terms of the relationship they encapsulate. There is no one “correct” modeling
of a given world ; it is dependent, to a certain extent, on the schema designer.

2.1.3 Constraints on the Schema

Our OODB model imposes some constraints on the schema due to the semantics of the classes and
the relationships connecting them. Specifically, the following cases of class-relationship combina-
tions are considered incorrect for the schema:

o The structure of objects in a tuple class is defined by some arbitrary number of Has-Part
relationships, which should be the only dominant non-isotropic connection relationships of
the class.

e The structure of collection objects is defined by a single Is-Set-Of relationship, except for
objects in an indexed set class, whose structure is defined by a single Is-Set-Of and a single
Is-Indezed- By relationship. No other dominant non-isotropic connection relationships should
exist for the class.

11




o This is a global constraint on the entire schema. Natural structural considerations imply that
the directed subgraph constructed by merging all classes connected by Isa relationships, and
restricted to the dominant interpretation of all the other non-isotropic relationships must be
acyclic. This simply means that objects of a class cannot have objects of the same class as
parts.

o The directed subgraph constructed by retaining only the dominant inheritance relationship
should be acyclic. This means that a class cannot be a specialization of itself.

2.2 Queries and Path Expressions

We assume that queries in our model are specified in a SQL-like declarative syntax. The exact
syntax is irrelevant for our purpose. What concerns us is the notion of a path expression in a query.

2.2.1 Path Expressions

Path Expressions are the primary mechanism of specifying relationships of data that are part of a
query. A path ezpression corresponds to a path in the schema graph. The path expression starts at a
class, called the path expression root ( which cannot be a primitive class ), and continues traversing
relationships. For each relationship traversed, the path expression contains a connector symbol
corresponding to the type of relationship and the relationship label. Inheritance relationships
use the connector symbol @ , part relationships the connector symbol $ , set relationships the
connector symbol = , index relationships the connector symbol -i- , and association relationships
the connector symbol . . Path expressions can traverse inheritance and connection relationships
in both directions. For directed relationships, the direction of the relationship may be (optionally)
specified by using the symbols > and < along with the relationship connector symbol, for the
forward relationship traversal and reverse relationship traversal respectively.
Some sample path expressions for the schema. of Figure 2.1 are:

e student . courses . teacher

e student @ person . ssn

o student @> person . ssn

o department . student @ person . name

Any path expression that contains a fragment of the form:
a@>b<@c

where, b is a single relationship name, and @ and c are arbitrary path expressions, is invalid. The
class b, that the relationship b points to, is termed an invalid Isa crossover point for the path
expression. This restriction stems from our requirement that every object in the database be
associated with an explicit class in the schema. Tf such a class exists in the schema, d say, then the
path expression fragment above can be replaced by the fragment:

a <@ d@> ¢

which designates the same set of objects that are members of the classes @ and c. If the class d
does not exist, then the initial fragment above, corresponds to a set of non-existent objects, and

hence would produce a NULL answer.
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2.2.2 The Vague Connector Symbol ~

A path expression corresponds to a specification of a path in the schema graph between a class node
and a relationship having the label equal to that of the last relationship in the path expression. In
general, there are multiple such paths in a given schema graph. However each of these paths refers
to a potentially distinct set of objects in the given database.

For example, the paths:

1. teaching-asst @> grad @> student @> person . name
2. teaching-asst @> grad @> student . courses => course . name
3. teaching-asst @> instructor @> teacher . courses => course . name

are all valid paths in the schema of Figure 2.1 from the class teaching-asst to a connection
relationship labeled name. However, the first path refers to the name of the teaching assistant as
a person, the second to the names of the courses that the teaching assistant is taking as a student,
and the third to the name of the courses that the teaching assistant is teaching as a teacher.

Tt is clear from the above, that the user formulating a path expression must know the details of
the schema graph. For the reasons mentioned in Chapter 1, this is often undesirable.

Ideally, we would like to develop a mechanism that will allow a user to specify something like

“the names of the teaching-assistants”

and have the system figure out the path expressions
teaching-asst @> grad @> student @> person . name, and/or
teaching-asst @> instructor @> teacher @> employee @> person . name

as the path expressions the user meant to construct. This is achieved by introducing the = connector
symbol for path expressions. When it appears in a path expression, the ” symbol acts as a wildcard
specification. A path ezpression having one or more instances of the ~ symbol in it is termed a
vague path ezpression. This is similar to the * specification in regular expressions in UNIX with one
important difference. While a specification of the form a+b for a UNIX regular expression returns
all strings beginning with @ and ending in b, a path expression of the form a ~ b returns the
best path expression(s) starting at the class a and ending in a relationship labeled b, under some
definition of ‘best’ discussed in Chapter 4.
For example, the expression

“the names of the teaching-assistants”
would be stated as
teaching-asst = name
and the system should retrieve the path expressions
teaching-asst @> grad @> student @> person . name, and/or
teaching-asst @> instructor @> teacher @> employee @> person . name

as the best corresponding path expressions for the given vague path expression. It may be noted
that the path expressions

13




teaching-asst @> grad @> student . courses => course . name
teaching-asst @> instructor @> teacher . courses => course . name
teaching-asst @> grad @> student . department . name

are also consistent with the vague path expression above. However, they are obviously not as
intuitive as the path expressions denoting the name of the teaching assistant.

A vague path expression can have more than one instance of the ~ connector in it. Further,
when the type of relationship connector for a particular relationship is known, it can appear in a
vague path expression. This corresponds to providing additional information to guide the search
for the appropriate path expression(s). For example,

student = courses = name
student . course ~ professor = name
student . department ~ teaching-asst

are all valid vague path expressions.

2.3 Semantics of Vague Path Expressions

This section presents the notion of a path expression consistent with a given vague path expression,
the treatment of collection classes and cycles while generating path expressions, and introduces the
notion of the most plausible path expressions consistent with a given vague path expression.
2.3.1 Generating Completions of Vague Path Expressions
Consider a vague path expression

n=s ¢l dalz ... Pklk
where,

1. sis the name of the root of the path expression(s) corresponding to this vague path expression.

2. Vé;l é; is a valid relationship connector symbol, and
3, 6=
=1 ¥J

3. szl I; is the label of a relationship in the schema graph.

Let ¥ denote the set of all valid path expressions that are consistent with 7 in the schema. A
valid path expression 9 is said to be consistent with the vague path expression 7 iff it has root
class s and the sequence of labels and connector symbols created by removing all instances of the
connector symbol ~ from 7 results in a subsequence of 1, where each connector-label pair in 7 is
considered a single unit for connector symbols # ™ .

For example, given the vague path expression

n = student . department ~ name

the path expressions

o student . department . name
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o student . department $> faculty => professor @> teacher @> employee @> person
name

o student . department $> faculty => professor @> teacher . courses => course . name
o student . department . student @> person . name

are all path expressions consistent with 7 in the schema of Figure 2.1, while the path expressions
o student . courses . teacher <@ professor <= faculty <$ department . name
o student @> person . name

are not.

2.3.2 Cyclic Path Expressions and Invisible Classes

Our data model allows a]l relationships to have a cardinality ratio. A relationship may have a 1:1,
1:N. M:1, or M:N cardinality ratio. This implies that strict collection classes as defined by our data
model, are redundant as a mechanism for representing collections unless other (derived) properties
of the collection (e.g. the highest/lowest member, the number of members etc) also need tc be
maintained.
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Figure 2.2: Dealing With Invisible Classes

In general, most users do not consider cyclic path expressions consistent with a given vague
path expression to be very cognitively plausible, unless the cycle is explicitly specified in the vague
path expression. Human beings do not think circularly for the most part, and when they do,
such a circularity is explicitly stated. For this reason we do not allow cycles when generating
path expressions between any two classes in the schema graph. However, this restriction on path
expressions gives rise to a problem, illustrated by the example below.

Consider, the vague path expression
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student ~ professor

corresponding to the statement, “the professors of this student”. A logical completion of the above
vague path expression, is the statement : “the professors who teach a course this student takes”.
This corresponds to the path expression

student . courses => course <= courses . teacher <@ professor

in the schema graph of Figure 2.1. The path expression above has a cycle through the collection
class courses. The only non-cyclic path expression in the schema graph dealing with students,
professors, and courses is

student . courses . teacher <@ professor

which designates “the professors who teach ezactly the same set of courses taken by the student”,
a completion that is not very intuitive, and is unlikely to yield any answers from the database.

We as humans, do not think in terms of collections of objects as distinct collection and member
entities. We tend to think of collections simply in terms of a given number of member entities. For
example, we say

“John owns a Mercedes, a BMW, and a Porsche”

as opposed to

“John owns a set of cars and the set consists of a Mercedes, a BMW, and a Porsche”

The grouping of similar member entities into a collection is implicit.

However, our data model requires a schema graph to explicitly differentiate between collection
and member classes, which is not very intuitive. To capture human intuition vis-a-vis collections of
objects, we term all collection classes encountered while generating a path expression to be invisible
except in the following cases :

1. The vague path expression explicitly denotes the collection class by a term of the form ¢;l;,
where I; is the name of a relationship to the collection class, and the connector symbol o;
matches the kind of this relationship.

9. The vague path expression explicitly denotes a derived property of the collection class.

Our algorithm deals with invisible collection classes by acting as though they don’t exist. When
an invisible class is encountered, the algorithm attempts to descend the Is-Set-Of relationship from
this class as far as possible (a class may be a collection of collection classes), and then ascend back
up to the original collection class node. Since the class is invisible, this is not considered a cycle.
If the class is visible, then this is a cycle, and is disallowed. For the example above, the set class
courses is invisible, and hence the path expression generator algorithm can pass through it again
‘without’ cycling.

The invisible class mechanism can be thought of as essentially replacing the connection rela-
tionships to the invisible collection classes, by the identical connection relationships (but having a
:N cardinality ratio) directly to its member class. This situation is shown pictorially in Figure 2.2.
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2.3.3 Choosing the Most Plausible Path Expressions

Given the set U of path expressions consistent with a given vague path expression 7, our problem
is to determine the subset Wpos; C ¥ that contains the ‘best’ (most cognitively plausible) path
expressions consistent with the given vague path expression. Intuitively, each path expression in ¥
has a certain ‘property’ based on its structure. The set of path expressions in Wpest contains only
those path expressions that have the ‘best’ properties from all those in ¥. For our purposes, the
‘best’ path expressions from the set ¥ consist of the most intuitive path expressions in ¥. How
we rank path expressions on the basis of relevance to intuition and plausibility will be presented in
Chapter 4.

2.4 Where It All Fits

We conclude this chapter with an overview of where a module such as ours may fit in the context
of an overall DBMS.

Front - Database
USER ——~ Path Expression = Query
Parser
End Evaluator Evaluator
vague
specifications

path

expressisg

completion Path Completion Schema

Module Representation

Figure 2.3: Relationship amongst modules in the DBMS

The structure of the system is shown in Figure 2.3. We envisage our path completion module
to be callable from a path expression evaluator module. A user enters a query / vague path
expression to a front end, which is then parsed by a parser module. Note that the front end could
implement a Natural Language like interface to capture vague path expressions and use a synonym
lexicon to relate the user input to the actual class/relationship names in the schema. The path
expressions / vague path expressions are then sent to a path expression evaluator, which calls our
module when a vague path expression is encountered. The path completion module returns a set of
likely path completions (making use of a common schema graph representation) back to the front
end which presents them to the user in an appropriate form (English like or path expression syntax).
The user selects the path expression(s) desired which are then sent off to the path expression
evaluator. If none of the path expressions returned are ones the user desires, then the user has to
focus the query a bit further by providing additional information in terms of intermediate points
to the vague path expression. The entire specification-path completion generation cycle is designed
to take as little time as possible. Hence, we hope to provide close to real time disambiguation and

query formulation of vague path expressions.
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Chapter 3

COMPLETIONS AS OPTIMAL
PATH COMPUTATIONS

In this chapter we cast the problem of generating path expressions consistent with a given vague
path expression as an optimal path computation over a labeled directed graph. We begin with
an introduction to the optimal path computation problem, model our problem as an optimal path
computation, and then introduce the path collapse function CON.

3.1 Optimal Path Computation

There has been much work done on the problem of computing several properties that are specified
over the set of paths in a labeled directed graph [Carr 79, Ros+ 86, ADJ 90, IRW 93]. Such
properties are called aggregate properties and the computation of such a property is termed a path
computation.

Most path computation algorithms use some variant of the path algebra formalism below, which
is taken from [Carr 79, IRW 93]. There is a label L;; associated with each arc (i, j) in the graph.
A path p;; from node i to node j is an ordered set of arcs {(source, destinationg)}, k = 1, ..., n,
such that i = source;, destination; = sourcey, ... , destination, = j. A path is sometimes specified
by the sequence of nodes on it. A label is associated with a path p;;. Intuitively, this path label is
computed as a function, called CON (for concatenate), of the sequence of labels of the arcs in p;;.
A label can be associated with a path set P as well. This path set label is computed as a function,
called AGG (for aggregate), of the path labels of the paths in P.

Informally, the CON function computes the desired property of a path while the AGG function
selects the paths having the optimal or ‘best’ such property. Formally, AGG and CON are defined
as binary functions over path labels. Path Computation algorithms require both AGG and CON
to possess identities, designated ® and O respectively. Furthermore, several core properties must
hold for the algorithms to be applicable. They are :

1. CON(Ly, CON(Lg, L3)) = CON ( CON(L1, L2), L)

9. AGG(L1, AGG(Lz, L3)) = AGG ( AGG(L1, L2), Ls)
3. AGG(Ly, Lg) = AGG(Lz, In)

4. AGG(®,L,) = Ly ; CON(O,L;) = CON(L1,0) = I
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The problem of optimal path computation is intimately linked to the computation of the tran-
sitive closure of a graph, and, in the general case, is exponential in time for cyclic graphs. To
permit efficient path computation and ignore cyclic paths path computation algorithms require the
following two properties in addition to the four enumerated above :

5. AGG ( CON(Ly, L), CON(Ly, L3)) = CON (L1, AGG(Ls, Ls))
6. AGG (L1,0) = ©

If a graph satisfies the properties above, then efficient optimal path computation algorithms
exist [IRW 93].

3.2 The Problem as Optimal Path Computation

Clearly we can cast the problem of generating plausible completions of vague path expressions as
an optimal path computation over a labeled directed graph as follows.

o The graph in question is the schema graph with each relationship between two classes replaced
by two directed arcs between the class nodes ; one for the forward traversal and one for the
reverse traversal. The labels on the arcs in the path computation formalism are the kinds of
the relationships when the relationship is traversed in that particular direction in the schema
graph. To avoid any confusion between our use of the term label for a relationship as the
name identifying that relationship and that used in the path computation formalism presented
above, we henceforth use the term connector or kind to refer to the label of an arc in the graph
in the path computation formalism. For example, in Figure 2.1 the part relationship between
the classes department and faculty would be replaced by the following arcs between the class
nodes for department and faculty:

1. An arc with connector Has-Part from department to faculty with label faculty.

9. An arc with connector Is-Part-Of from faculty to department with label department.
o A path in the graph above corresponds to a path expression in the schema graph.

o The function CON above corresponds to a path collapse function for our problem. The path
collapse function attempts to preserve the kind of the relationship between the two end points
of a path fragment based on the kinds and order of the links in that path fragment. The
path collapse function defines several additional kinds of relationships in addition to those
provided by the OO data model in Chapter 2. Such relationship kinds are termed secondary,
as opposed to primary relationship kinds provided by the data model. For example, in
Figure 2.1, consider the path fragment

student Is-Associated- With courses Is-Associated- With teacher

The path collapse function replaces the pair of primary relationships (Is-Associated- With,
Is-Associated- With), between the nodes student and teacher, with the secondary relationship
Is-Indirectly-Associated- With to indicate that the class of students is indirectly associated
with the class of teachers through another class (in this example, the class courses).

As a further example, consider the path fragment

student Is-Associated- With courses Is-Associated-With teacher May-Be professor
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As before, the path collapse function replaces the initial fragment to give the equivalent path
fragment

student Is-Indirectly-Associated- With teacher May-Be professor

and finally replaces the relationship pair (Is—Indz’rectly-Assocz’ated-With, May-Be) between
student and professor, with the secondary relationship May-Be-Indz’rectly-Associated—With,
since none of the teachers the student Is-Indirectly-Associated- With may be professors (they
may all be instructors).

e The function AGG above corresponds to a selection function over sets of path expressions
consistent with a given vague path expression. As its primary discriminator AGG uses an
ordering amongst the relationship kinds generated by the CON function. This ordering is
based on surveys of psychological and cognitive validity of certain orderings amongst object
relationships [CHW 88, ChAr 90, ChHe 89, ChHe 88, Bate 1979, WCH 87]. AGG also uses
various other discriminators amongst path expressions which are presented in Chapter 4.

3.3 The Path Collapse Function

Each path expression has a single relationship kind (primary or secondary) associated with it,
obtained by applying the Path Collapse Function CON to successive pairs of relationship kinds in
it. The result represents the kind of relationship that holds between the path expression root class
and the last relationship in the path expression. The single relationship kind obtained by applying
CON repeatedly to the path expression is called the collapsed relationship kind or collapsed kind

of that path expression.
The notion of a path collapse function is similar to the work in [CoLo 88] to generate plausible

inference rules by the combination of pairs of relationships.

We define the adjacent relationship collapse function Q. € operates on ordered pairs of adjacent
relationship kinds (primary or secondary) and returns a relationship kind (primary or secondary).
Q is used to replace an ordered pair of adjacent relationship kinds by a single relationship kind that
is semantically equivalent to the relationship designated by the original relationship kind ordered
pair. For example,

Q (Is-Associated- With, Is-Associated- With) = Is-Indirectly-Associated- With
Q (Is-Indirectly-Associated- With, May-Be) = May-Be-Indirectly-Associated- With

Depending on the types of secondary relationships defined, Q can vary greatly even for the
same set of primary relationships. The-particular £ used in our experiments will be presented in

Chapter 4.

The Path Collapse Function CON operates on an ordered sequence of relationship kinds (pri-
mary or secondary). This sequence is the sequence of primary relationships in a path expression,
or the sequence of secondary and primary relationships at an intermediate stage in the collapse of
a path expression. For the sequence of relationships

=91 e In
CON is defined as follows.
1. CON (%) = Q(11,72) whenn = 2.
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2. CON (X) = CON( CON (... CON (91,72)573)-+» Yn—1), Tn) Otherwise.
For the path expression
Y=13 ¢1ly ... Prli

where

e s is the root class of the path expression z,b

o Vi, ¢; is a primary relationship.

o VE_, I; is a relationship label of a relationship in the schema graph having kind ¢.
the collapsed relationship Cy of 9 is given by

Cy = CON (¢1, -, &%)

We will use the CON function interchangeably with the path expression and the ordered se-
quence of connectors in the path expression, wherever there is no ambiguity. For the path expression
1 above, the expressions

Cy, CON (), and CON (g1, -, k)

denote exactly the same quantity - viz. the collapsed relation obtained by the left to right applica-
tion of CON to successive pairs of relationship connectors in the path expression.
For example, consider the path expression

W' = teaching-asst @> grad @> student @> person . name
The sequence of relationships in 4’ above, is
Y = Isa, Isa, Isa, Is-Associated- With
the following sequence of steps yields the collapsed relation C, of ' 1
1. ¢, = CON ( CON ( CON (Isa, Isa), Isa), Is-Associated- With)
2. C, = CON ( CON (Isa, Isa), Is-Associated- With)
3. Cy = CON (Isq, Is-Associated- With)
4. Cy = Is-Associated- With

Each path expression ¢ in the set ¥ of path expressions consistent with a given vague path
expression 7, has an associated collapsed relation Cy.

1Q (Isa, Isa) = Isa, and Q (Isa, Is-Associated- With) = Is-Associated- With.
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Chapter 4

THE PATH COLLAPSE AND
SELECTION FUNCTIONS

This chapter presents the particular path collapse function and path selection function used in our
implementation. We begin with an introduction to secondary relationships and our path collapse
function CON. We then present the various discriminators used by the path selection function
AGG. We conclude by presenting various properties of AGG and CON that are important for the

purposes of a schema traversal algorithm.

4.1 Collapsing Relationships in Path Expressions

This section presents the particular path collapse function used in our implementation. We begin by
introducing the secondary relationship kinds defined by this function and then present the collapse

function Q.1

4.1.1 Secondary Relationships

The collapse functions define the following additional relationships that may hold between the
classes at the two end points of a path expression. Just like primary relationships, secondary
relationships may be directed and have a dominant interpretation.

1. Contains (Is-Contained-By)
The Contains and Is-Contained-By relationship kinds are used to capture the relationship
between two classes that are related by some sequence of set and part relationships having
their dominant interpretations in the same direction. These relationships are also known as
meronymic relationships from the Greek words meros, which means part, and onoma, which
means name, since they are essentially structural relationships between objects. A meronymic
relationship between two classes indicates that objects of one class are contained structurally
in objects of the other class. For example, in Figure 2.1 we combine the two path expressions

(i) departments Is-Set-Of department, and
(ii) department Has-Part faculty

to give

1Recall that CON is defined in terms of §2.
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departments Contains faculty

The dominant interpretation of a meronymic relationship is Contains. We use the symbols,
MER> and <MER to designate the Contains and Is-Contained-By relationships respec-
tively.

2. Sharing
This relationship between two classes a and b, indicates that members of these classes may
share some objects of a third (common) class between them, where the common class is
related to a and b by either a part, set, or meronymic relationship. The sharing relationship is
undirected and hence has no dominant interpretation. However it has two flavours, depending
on how the sharing occurs:

(a) If the classes a and b share objects of a class that they either have as a part or as
a collection member, then the sharing relationship is called a Shares-SubParts-With
relationship, denoted by .gpp . For example, we combine the two path expressions

(i) engine Has-Part screw, and
(ii) screw Is-Part-Of chassis
to give
engine Shares-SubParts-With chassis

(b) If the classes a and b are members or parts of a common class, then the sharing relation-
ship is called a Shares-SuperParts- With relationship, denoted by .pr . For example, we
combine the two path expressions

(i) helicopter-rotor-motor Is-Part-Of helicopter-rotor-assembly, and
(ii) helicopter-rotor-assembly Has-Part helicopter-rotor-shaft
to give
helicopter-rotor-motor Shares-SuperParts- With helicopter-rotor-shaft
3. Is-Indirectly-Associated-With
This relationship is an isotropic undirected relationship similar to the Is-Associated- With
primary relationship. This relationship denotes the fact that an object is indirectly associated

with an object of anothér class through objects of another (or more than one) class. The
Is-Indirectly-Associated- With relationship is denoted by the symbol ..

For example, we combine the two path expressions

(i) department Is-Associated- With student, and

(ii) student Is-Associated-With courses
to give
department Is-Indirectly-Associated- With courses

which essentially captures the fact that a particular department is indirectly associated with
the sets of courses taken by each of it’s students.

4. May-Be Versions of Relationships
Each of the primary and secondary relationships has what is termed a May-Be version of the
relationship. A May-Be version of a particular relationship v between two classes a and b,
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indicates that some, (as opposed to all), objects of class a maybe related to some objects of
class b by the relationship 7.

For example, in Figure 2.1 we combine the two path expressions

(i) courses Is-Associated- With teacher, and

(ii) teacher May-Be professor

to give

courses May-Be-Associated- With professor

which captures the notion that some sets of courses maybe taught by a professor, but not all
courses need be taught by a professor.

The May-Be version of a relationship
the May-Be version of the Has-

symbol for the relationship 7. Hence,

), is denoted by $>x . Note, however, that the
), is simply May-Be (which is denoted by <@ ).

4.1.2 The Collapse Function

With the secondary relationships above,
present the adjacent relationship collapse function
relationship kinds (primary or secondary), and returns a result rel
the kind of relationship obtained by combining the two input relationships in order.

v is denoted by placing a *x immediately after the
Part relationship ($>
May-Be version of the Isa relationship (@>

and the primary relationships defined in Chapter 2, we
Q. Q operates on an ordered pair of adjacent
ationship kind that designates

[nput [ @> <@ | 8> [ <8 | = <= | MER> | <MER | .FB .BF |
Q> @> <Q $> <$ = = MER> <MER .FPB .BF
<@ <@ <@ $>* <$x =>% <=x MER>* | <MERx .FB* | BF*
$> $> $>* $> .FB MER> FB MER> FB .FB
<$ <3 <8 BF <8 INV | <MER Br <MER Br
=> = =>% MER> .FB = .FB MER> .FB FB
<= = =% INV <MER INV <= INV <MER IN .BF
MERS || MER> | MER>* | MER> 75 | MER> 75 | MER> 7B B
<MER <MER | <MERx .BF <MER INV <MER .BF <MER .BF
. o . .

-FB .FB FB* .FB INV -FB -FB
BF :BF -BF* -BF -BF :BF
ek

Figure 4.1: The Adjacent Relationship Collapse Function

We present {2 as a table in Figure 4.1. The entries are read as follows:

o The value of Q(r, c) is the entry in the table at row r and column c.

e If a particular entry in the table is marked as INV , it indicates t

adjacent relationship kinds is invalid, as it is precluded by the structural constraints of our

data model.

hat such a sequence of

e The collapse function treats the indez relationships as though they do not exist. Hence for an
index relationship ¢; and any relationship 7
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Qr,¢:) = Ui 1) =7

e For the sake of conciseness, we have not shown the entire table. The remaining part of the
table consists of the entries where either one (or both) of r or c is a May-Be version of a
relationship kind. For any such case, the value of the resulting relationship is a May-Be
version of the value of Q(r', ¢'), where r and ¢ are the non May-Be versions of r and c. Put
differently, once any of the input relationships to Q is a May-Be version, the result relationship
will always be a May-Be version.

4.2 Path Expression Discriminators

The AGG selection function is used to select the most cognitively plausible path expressions from a
set of path expressions consistent with a given vague path expression. The AGG selection function
uses various possible discriminators for a set of path expressions in decreasing order of importance.
We present them one by one, below, in the same order.

4.2.1 The Ordering of Collapsed Relationship Kinds

Each path expression has a final collapsed relationship kind obtained by repeatedly applying
to the ordered sequence of relationships in the path expression. Based on cognitive science and
psychology studies of semantic relations [Herr 87, MiFe 91, CoQu 69, ChHe 84, WCH 87, ChHe 88,
ChHe 89, ChAr 90, CHW 88], we constructed an ordering of importance of collapsed relationship
kinds of path expressions. The set of possible collapsed relationship kinds forms a partial order.
The partial order used in our experiments is shown pictorially in Figure 4.2.

Figure 4.2: A Partial Order For Collapsed Relationship Kinds

There are a few noteworthy points about the ordering of relationship kinds in Figure 4.2.
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o Two relationships 71 and 7 are said to be incomparable, iff there is no path from 71 to 7,
and vice versa. Every relationship is incomparable to itself.

e The arrows in the diagram, denote a worse than relationship. A relationship 71 is said to be
worse than a relationship 7o, (denoted 1 < 72), if there exists a path from 71 to 72 in the
diagram. If a path exists between two relationships, they are said to be comparable. The <
operator is transitive.

o We consider all the structural relationships equally important and hence all structural rela-
tionships are incomparable to each other. Further, the direction of the relation for a structural
relationship, (Has-Part or Is-Part-0f), isn’t important when distinguishing amongst them.

o A May-Be version of a relationship and the relationship itself, are indistinguishable for the
purposes of this particular ordering.

It may be noted that there are many plausible, alternate orderings of relationship kinds.. We
found that the ordering in Figure 4.2 yielded the most accurate results most of the time from all
of the orderings we tried.

The worse than operator < for collapsed kinds is the primary discriminator for AGG. Since <
defines a partial order on relationship kinds, two relationship kinds may be incomparable to each
other. Relationship kinds y; and 72, are said to be incomparable on the basis of the < ordering, iff
neither of the following holds

1. 71 <72, OT

2. 12<m

We retain only those path expressions from the set ¥ of path expressions consistent with a
vague path expression whose collapsed kinds are not worse than the collapsed kind of another path
expression in . The paths in this subset are indistinguishable from each other on the basis of
importance of collapsed kinds.

4.2.2 TIsa Sub-Path Preemption Criterion

This is a structural discriminator based on the fact that a subclass of a given class may redefine a

property of the class. The inheritance property of object oriented systems states that a property

not defined by a particular class is inherited from the nearest superclass in which it is defined.
For two path expressions

P =8 @> Il @> I, ... Q> l] o L and
Pe=85@> 15 @> 1 ...@> ;... @> I ¢

having incomparable collapsed relationships, Cye, and Cye, the path expression 1y is deemed prefer-
able to the path expression %;. The root class s inherits the property L from class Ij, not its
superclass l. This situation is shown pictorially in Figure 4.3. When such a case arises, path
expression ¥y is said to preempt path expression %3, and path expressions 1y and 1, are said to
satisfy the conditions of the Isa Sub-Path Preemption Criterion. Note that path expressions 1
and 1, must share a common sub-path of Isa relationships

s@> [; @> Iy ... @> lj

for one path to preempt the other.
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Figure 4.3: The Isa Sub-Path Preemption Criterion

4.2.3 Effective Lengths of Path Expressions

There is a further discriminating factor used to choose from amongst path expressions having
incomparable collapsed relations. Cognitive Science studies support the assertion that concepts with
greater semantic distance between them are considered less plausible by humans than corresponding
concepts with a lesser semantic distance [CoQu 69]. We attempt to capture the notion of semantic
distance by the heuristic of effective length of a particular path expression. The effective length of a
path expression is a measure of how far apart (semantically) the concepts of the root class and the
final relationship are for that particular path expression. The effective length notion should also
try and capture quantities such as number of relationship reversals encountered when traversing a
path expression.

Since effective length is a heuristic we could define any arbitrary function to compute the
effective length of a particular path expression. At first glance, actual length may seem to suffice.
However, this is not a very satisfactory measure of the semantic distance. Consider the path
expression which is simply a long chain of contiguous Isa relationships. It is obvious that such
a chain is equivalent to a single Isa relationship. Similar arguments can be made for chains of
contiguous part relationships of the same relationship kind.

The system should also provide a user settable parameter N_.EFF LENGTHS, that specifies
how many best effective length values to retain in the final answer presented to the user. The
better the definition of the effective length function captures the notion of semantic distance, the
smaller the value of N_.EFF LENGTHS. We will present the effective length function used in our
experiments in Chapter 5.

4.2.4 Domain Specific Discriminators

A final type of discriminator that can be used is domain knowledge about the type of path ex-
pressions sought, where available. For example, a user may want to specify that he/she is really
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not interested in a certain part of the database. If this sort of information can be stated in some
declarative form to the system, then the system need not even consider answers that deal with the
particular part of the database the user is not interested in.

Another powerful discriminator is a subsumption check. If a database can provide a system
with an answer size estimator for path expressions, the system could toss path expressions that
may be subsumed by more focused path expressions.

The domain specific discriminators, where available, are useful in terms of keeping the search
more focused and pruning extraneous answers. However, they are not an essential requirement for

the completion procedure.
The function AGG takes a particular path expression ¥ and a path expression set ¥ as input
and returns a set of path expressions that are indistinguishable on the basis of the discriminators

presented above.

4.3 Properties of AGG and CON

We present below, several important properties that our collapse function CON, and our selection
function AGG satisfy. These properties are exploited by the algorithm while traversing the schema

graph.

(I) CON is Associative
The function €2, (and hence CON), is associative. That is, for any three valid adjacent

relationships 71,72, and 73,

CON (71, CON (72,73)) = CON ( CON (71,72); 13)

The associativity of the path collapse function implies that collapsing the relationships
in a path expression in any arbitrary order, will yield the same collapsed relationship

for that path expression.

(II) AGG is Order Independent
For any two arbitrary path expressions 1, and b2, and an arbitrary path expression set

v,
AGG (1, AGG (2, 7)) = AGG (12, AGG (1, 7))

This implies that we can compare a new path expression against all existing ones so far
in any arbitrary order and get back the same set of path expressions.

(II) CON is Monotonic
For any relationship kinds 71, and vs,

CON(71,72) is always worse than or incomparable to 1

This property implies that if the collapsed kind of an initial fragment of a path expres-
sion ), is worse than the collapsed kind of another path expression %2, then Cy,, < Cye
always holds, irrespective of the remaining relationships in ;. The monotonicity prop-
erty helps us perform a branch and bound type traversal of the schema graph.
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Chapter 5

THE COMPLETION ALGORITHM

This chapter presents our algorithm to generate completions of vague path expressions. We begin
by presenting the algorithm declaratively as a four stage domain independent procedure. We
then present reasons why nome of the standard path computation algorithms in the literature
are applicable. We present two distinct ways to deal with intermediate points in vague path
expressions, and justify our choice of one of them. The next section presents our algorithm along
with optimizations for efficient traversal of the schema graph.

5.1 A Procedure To Generate Plausible Completions

We present below, a domain independent procedure to generate plausible path expressions matching
a given vague path expression. The procedure is divided into four main stages followed by a post

processing stage.
Given a vague path expression

n =8 ¢1ly bala .. Prlk
where,

1. sis the name of the root of the path expression(s) corresponding to this vague path expression.

2. VE_, ¢i is a valid relationship connector symbol, and
3_113::1 ¢J ="

3. V&, I; is the label of a relationship in the schema graph.

the procedure generates the set Wyes of the most cognitively plausible path expressions that are
consistent with n through the following stages.

(I) Generate Consistent Path Expressions
Given 7, we generate the set ¥ of all valid path expressions consistent with 7 in the
schema. This set is usually quite large, and hence has to be pruned of most of its

members.

(II) Prune ¥ using the < operator
Do a pairwise comparison of the path expressions in ¥ using the < operator to compare
the collapsed relations of the path expressions on the basis of the partial ordering of
collapsed relationship kinds. The set of path expressions remaining in ¥ after this
pairwise comparison is considerably smaller than the original set.
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foreach ;,7%; € ¥ do
C¢) = CON (¢)
Cy, = CON ()
if Cy, < Cy) then
remove ; from ¥
else if Cy, < Cy, then
remove ¥; from ¥

fi
od

(I11) Apply Additional Discriminators
For each pair of path expressions ;, 1; that satisfy the conditions of the Isa Sub-Path
Preemption Criterion, remove from ¥ the path expression that is preempted.

(IV) Apply Heuristic Discriminators
From the paths remaining in ¥, retain only those paths with the best N_EFF_LENGTHS

effective lengths.

(V) Post Processing with Domain Specific Discriminators
Apply any available domain specific discriminators to discard paths from those left in

v.

The set of path expressions remaining in ¥ after stages (I) through (V), is the set Upest that is
returned to the user as the most plausible path expressions.

Stages (II) through (IV) (and stage (V) where possible), comprise the AGG selection function
for path expressions. Stages (I) through (IV) are completely devoid of any knowledge about the
specific database. They operate on path expressions solely on the basis of the structure of the path
expressions. Stage (V) is the only place where any existing domain specific knowledge is used. This
implies that the entire procedure (Stages (I) through (IV)) should work as well on any database
domain.

5.2 TInapplicability of Existing Algorithms

All the path computation algorithms in the literature are based on the following crucial property
of of the AGG selection function :

AGG imposes a total order on path expressions

For our particular problem, AGG neverforms a total order owing to the fact that many collapsed
kinds are simply incomparable (in terms of being ‘more intuitively plausible’), to other relationship
kinds. In the general case, AGG is a partial order. This implies that, in general, AGG may not
cven have a distinct identity ®, as required by condition (4) in Section 3.1.

In addition, all the algorithms [IRW 93] assume that AGG deals with a pair of single path
expressions at a time. Due to the fact that AGG is a partial order, our AGG function needs to
deal with a set of path ezpressions. This implies that conditions (5) and (6) in Section 3.1, will not
be satisfied in the general case.

Furthermore, all the path computation algorithms presented in the literature assume either one
of the two following cases :
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1. Computation of the optimal path over all possible paths in a graph.

2. Computation of the optimal path over the set of all paths starting at a given node in the
graph.

Our problem requires, the optimal path from the set of paths starting at the given vague path
expression root, and having arcs labeled Iy, 13, ..., in the same relative order as those in the vague
path ezpression. This is a more general version of the path computation problem.

More importantly, the problems with AGG imply that none of the existing path computation
algorithms are directly applicable to our problem. We present our algorithm to do efficient path
computation below.

5.3 Dealing With Intermediate Point Specifications

Consider a vague path expression of the form
N=35 .. Pnln

1. f n = 1, then 7 is termed an end point specification, as any path expression consistent with
n simply needs to have s as the root class, and [,, as the last relationship (end point) of the
path expression. For example,

undergrad =~ faculty
is an end point specification for the schema of Figure 2.1.

2. Ifn # 1, then nis termed an intermediate point specification, and the relationships d1ly, P2lay ooy a1, ln-1
are termed the intermediate points of the vague path expression. For example,

undergrad ~ course ~ faculty

is an intermediate point specification for the schema of Figure 2.1.

For a path expression ¢ to be consistent with an intermediate point specification, it must have
root class s and the sequence of labels and connector symbols obtained by removing all instances
of the ~ connector symbol from 7 must be a subsequence of those in 9, where a connector-label
pair in 7 is treated as a single element of the sequence for all connector symbols # ~ .

In general, our algorithm for generating path expressions consistent with an end point specifi-
cation does not allow any cycles in the path expression (except cycles through invisible collection
classes), for the reasons presented in Section 2.3.2. A cyclic path expression however may often
denote something quite meaningful. For example, the path expression

undergrad @> student . courses => course <= COUTSES . student <@ grad

is a perfectly reasonable path expression for the schema of Figure 2.1. It designates all graduate
students who are taking a course taken by at least one undergraduate. We take the approach that,
if the user wants a path expression to cycle through a class (or classes), then he/she should use an
intermediate point specification and may explicitly specify the required cycle.

There are two ways one can deal with intermediate point specifications.
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5.3.1 Restricted Regular Expressions

An intermediate point specification could be treated as a restricted version of a regular expression
matching a path in a graph, similar to the work of [MeWo 89]. The ~ connector symbol in the
specification acts as a wildcard specifier for that part of the expression. The path expression so
generated is restricted in the sense that it is not allowed to have any cycles (except cycles through
invisible collection classes). For example, the intermediate point specification

undergrad ~ course ~ grad

would yield the path expression

o undergrad @> student . courses => course <= COUTSES . teacher <@ instructor <@
teaching-asst @> grad

from the schema graph of Figure 2.1 with this approach.

Since this approach does not allow cycles it is restricted in the types of path expressions it can
return. Ideally we’d like an approach to intermediate point specifications that is tractable, allows
cyclic path expressions, but does not overwhelm the user with a large number of meaningless cyclic

path expressions.

5.3.2 Ordered Sequence of End Point Specifications

This approach treats an intermediate point specification as a series of end point specifications. The
problem is thus subdivided into a number of smaller problems. Each of the end point specifications
yields sets of ‘best’ path expressions. The path expressions in these sets are concatenated (in the
same order as the intermediate points in the intermediate point specification), to give the final
set of ‘best’ path expressions. Here too, we do not allow cycles when generating path expressions
consistent with the end point specification subproblems.

Such an approach is based on our contention that when we connect up a number of entities our
minds treat the likely connections between each pair of entities as a separate problem, rather than
one long problem. This approach obviously generates cyclic path expressions, and is in fact faster
than the restricted regular expression approach above. Further, this approach to intermediate points
produces surprisingly few meaningless cyclic path expressions and generates path expressions that
the restricted regular expression approach cannot. For example, the intermediate point specification

undergrad ~ course ~ grad

yields both path expressions

1. undergrad @> student . courses => course <= COUTSES . teacher <@ instiructor <@
teaching-asst @> grad

2. undergrad @> student . courses => course <= COUTses . student <@ grad

from the schema graph of Figure 2.1.

On the basis, of the above observations, we chose this approach to deal with intermediate point
specifications. All the results reported in Chapter 6 are based on this approach, which performed
consistently better than the restricted regular ezpression approach on all the ezperiments.
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5.4 The Traversal Algorithm

We present below, the algorithm for traversing a schema graph to generate the ‘best’ path expres-
sions consistent with a given vague path expression. As typical schema graphs in most real life
databases have hundreds of classes and relationships, we would like to optimize our traversal of the
schema to the extent possible. Further, the theory developed in this thesis is meant to help the
user formulate complete queries quickly. If the system takes more than a few minutes to come up
with meaningful suggestions, then its usefulness is severly limited. Since none of the path compu-
tation algorithms are applicable to our particular problem, we developed our own schema graph
traversal algorithm. We first present our optimizations, followed by the pseudo code to calculate
the effective length of a path expression. In subsequent sections we present the pseudo code for a
end point specification traversal algorithm, and the top level procedure that handles intermediate
point specifications.

5.4.1 Caution Sets

For two comparable collapsed relationship kinds y1 and 72, the < operator can be thought of as
defining a function BETTER that returns the better of the two relationship kinds. That is

BETTER (71,72) = 1 if 12 <m
= 79 otherwise.

If the BETTER and CON functions were to obey the distributivity property

BETTER(CON(71,73), CON (72, "3)) = CON(BETTER(11,72),73) (5.1)

for any three arbitrary relationship kinds, v1,72, and 7s, then a traversal algorithm could retain
the best collapsed kind from a root class to a given class node in the schema, and when revisiting
this class node, continue from this node only if the collapsed kind of the new path fragment to this
class node is not worse than that already stored. This corresponds to pushing the selection (on
the basis of the < ordering) before the collapsed kind computation of the entire path expression.
The Left Hand Side (LHS) of Equation 5.1 above, denotes the computation of both paths having a
common node, and a sub-path from this node with the same collapsed kind, followed by a selection
of the best one on the basis of their collapsed kinds. The Right Hand Side (RHS) corresponds to
choosing the path with the best collapsed kind for the initial sub-path to the common node, and
only generating this path. The LHS is what we have to do to generate all paths and take the best
one. The RHS however, offers the opportunity of a significant speedup in the time complexity of
the traversal algorithm, if the property in Equation 5.1 holds.

The property above is never violated, insofar as there is no case when two distinct relation-
ship kinds appear on the LHS and RHS of Equation 5.1. However, due to the fact that certain
relationship kinds are incomparable to each other, two types of interesting cases arise:

1. When the LHS has two incomparable relationship kinds, while the RHS has just one of them.
This implies that pushing the selection ahead will tend to lose a possible path expression
that may be as good as ! the one found. We call such cases two-one cases. An example of a
two-one case is the following:

71=$>,72: « 273 =

1The path expression lost may be ‘better’ than the one retained in terms of discriminators like effective length.
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LHS ={ .. , .. } (two distinct paths)
RHS ={ .. } (one path lost)

2. When the RHS has two relationship kinds, while the LHS has just one. Such cases arise when
the collapsed kinds of the initial sub-paths to the common node are incomparable, but the
collapsed kinds of the entire paths are comparable, since the RHS of Equation 5.1 has only
one call to the selection function BETTER. For example, if

Y1= .FB ,Y2= -BF ,73 = $>
LHS ={ .Br }
RHS = { .. , .BF }

We call such cases one-two cases. One-two cases are not really a problem. They are easily
removed by placing an extra call to BETTER on both sides of Equation 5.1.

Two-one cases are a problem however. If performing a selection first implies that we may
lose a valid path then it is obviously not correct. We deal with two-one cases by introducing the
notion of a caution set for each relationship kind. The caution set of a relationship kind 7; is
the set of all relationship kinds 72, which are worse than 71, but which, when combined with a
third relationship kind 73, via CON, yield a relationship that is equivalent or incomparable to the
relationship CON( 71,73). Now the traversal algorithm can still perform a traversal equivalent to
the RHS of Equation 5.1 - however, we have to generate both paths if the previous relationship
kind at the common node is in the caution set of the collapsed kind of the new sub-path to this
node.

5.4.2 Relationship Snoop

For a vague path expression

n=3:s ¢lll ¢212 ¢nln
a (¢;,1;) pair is termed a search target pair, and the (¢;,[;) pair the algorithm is currently trying
to match is termed the current search target pair. If ¢; = ~ , then the traversal algorithm looks for
a relationship labeled /; in the path.

As part of the initialization phase, the relationships at each class node are sorted and ordered
according to importance. If the traversal algorithm is looking for a particular relationship labeled
I; from a given class node, it may have to search along paths from all the relationships ordered
before I; at that node. For large schemas this can translate into an unacceptably large amount
of computation time exploring useless paths, even though the relationship needed is right there.
We implement a snoop optimization to avoid this. When the traversal algorithm checks the first
relationship at a given class node, it snoops through all the relationships at that class node to check
whether one of them matches the current search target pair. If the snoop detects a match, then
paths out of that relationship are explored first.

5.4.3 Effective Length Calculation

The block of code in Figure 5.1 calculates the effective length of a path expression p.

We treat the set relationships (Is-Set-Of and Is-Member-Of) as invisible, similar to the treat-
ment of collection classes. For multiple part or inheritance relationships in the same direction, the
effective length remains unchanged. Associations and index links contribute to the effective length.
Every time a directed relationship reverses direction effective length is incremented. Hence our
effective length function captures reversals in direction as well as changes in relation type.
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lastlink := INVALID ; efflength := 0 ;

foreach relationship r in p do

case (r) of

Isa : if (lastlink = May-Be ) then efflength := efflength + 1 fi

May-Be : if (lastlink = Isa ) then efflength := efflength + 1 fi

Is-Set-Of , Is-Member-Of :

if ((lastlink = May-Be ) or (lastlink = Isa)) then
lastlink := r fi

Has-Part : if (lastlink <> Has-Part ) then efflength := efflength + 1 fi

Is-Part-Of : if (lastlink <> Is-Part-Of ) then efflength := efflength + 1 fi

Is-Associated-With , Is-Indezed-By , Indezes : efflength := efflength + 1
endcase

if ((r <> Is-Set-Of ) and (r <> Is-Member-Of)) then lastlink :=r fi

od

Figure 5.1: Calculating Effective Length of a Path Expression

5.4.4 Traversing the Schema Graph

The algorithm for traversing the schema graph for end point specifications uses the following global
variables and constants.

1.

BestRelsSoFar : A set of the best collapsed relationship kinds of the path expressions found
so far. Initialized to {}.

BestEffLenSoFar : The best effective length from the path expressions found so far. Initialized
to maxint.

PathFound : A boolean variable that is initialized to false, and set to true as soon as the
first path expression is found.

Visited [ nClassesThisSchema ] : A boolean array that is used to avoid cycles. Each element
is initialized to false.

RelSets [ nClassesThisSchema ] : An array of sets of relationship kinds of the best collapsed
kind from the root class to a class node. Each element is initialized to {}.

BestEffLength [ nClassesThisSchema | : An array of integers of the best effective length of a
path from the root class to a class node. Each element is initialized to maxint.

EEFLENSLOP : A constant value that indicates by how much a given path expression’s effec-
tive length can vary from the best one found so far, and still be considered good enough.

In addition, as part of the initialization phase, the code constructs the following three sets of
relationship kinds for each relationship kind r.
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1.
2.
3.

WorseSet [ r ] : Set of all relationship kinds rst.r <7
BetterSet [ r] : Set of all relationship kinds rstor <7

CautionSet| r ] : Set of all relationship kinds 7 st r <7, and
34" s.t. CON (r,7") and CON (+',7") are incomparable.

The traversal algorithm assumes the existence of the following functions

get_next_link (node)
Returns the next link (relationship) to search out from for class node. Implements the rela-
tionship snoop, and returns NULL if no more relationships match the current search target

pair.

points_to (link)
Returns the class node in the schema graph that relationship link points to.

concat_path(oldpath, link)
Concatenates relationship link onto the path expression oldpath returning a new path expres-

sion.

worsethan (rel, relset)
Returns true if 3r € relationship kinds set relset, such that rel < r, else returns false.

update_paths_found (newpath)

Adds newpath to set of existing paths found, updates the values of the BestRelsSoFar set
and BestEffLenSoFar, and sets PathFound to true. This function performs checks for path
expression pairs satisfying the Isa Sub-Path Preemption Criterion, as well as comparisons
using additional and domain specific discriminators, of newpath to all existing paths.

The traverse function in Figure 5.2 has the following three input parameters

thisnode : The current class node of the recursion.
psf : The path expression so far from the root class to thisnode.

frominvis : A boolean value indicating whether this particular call originated from an invisible
class and reached thisnode via an Is-Set-Of link.

The traverse algorithm is presented in the form of a Depth First Search function in Figure 5.2.
Our traversal differs from pure depth first search in a number of important ways

®

Monotonicity allows us to terminate a search down a particular path if the collapsed relation
of the sub-path from the root class is worse than the collapsed relation of a previously found
path (line no. 8).

If the effective length of the current path exceeds the sum of BestEffLenSoFar + EFFLENSLOP,
then search is terminated along this path, since effective length is a monotonically increasing
function of actual length (line no. 9).

Recursion along a path with collapsed relation ¢ to a class node n is only continued, if

There does not exist a relationship  in RelSets [ n ], such that

r € BetterSet|[c],
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r ¢ CautionSet[c|, and
effective length from root class to n < BestEffLength[n] + EFFLENSLOP.

(line nos. 15-17).

e Since we have to deal with invisible classes as efficiently as possible, each recursive call passes
back a traverseret structure containing two fields

1. matchedtarget : A boolean field indicating that the current target was matched while
descending an Is-Set-Of relationship.

2. augmentedpath : The augmented path got by descending the Is-Set-Of relationship chain
to the first visible class, and then ascending back to the invisible collection class.

The traverseret return values are only of interest while returning from a series of calls down
Is-Set-Of relationships (line nos. 20-23). In all other cases, the value of traverseret is NULL.

Note that although we separated the effective length heuristic discriminator from the collapsed
relation discriminator in our declarative presentation of the procedure, we use the fact that effective
length is a monotonically increasing function during the traversal of the schema graph itself to speed
up the traversal. This optimization generates considerably fewer path expressions that have to be
discarded on the basis of effective length considerations, as well as significantly improves the time
of traversal on large schemas.

5.4.5 Matching Intermediate Point Specifications

As explained in Section 5.3.2, we treat an intermediate point specification as an ordered sequence
of end point specifications. The classes that the last relationships in the path expressions consistent
upto the previous search target pair point to, become the root classes of the path expressions for
the next search target pair. We repeat this process for each search target pair, essentially treating
it as a different problem. After each stage, the sets of path expressions obtained for each search
target pair are concatenated with the path expressions set obtained for the previous search target
pair. This may result in some of the newly formed path expressions being discarded owing to their
final collapsed kinds, (since CON is associative, the final collapsed kind of each newly formed path
expression is obtained by simply applying CON to the collapsed kinds of the two path expressions
it is created from), or owing to their final effective length.

Before beginning the end point traversal for each search target pair, the following data structures
are reinitialized to the following values :

e BestRelsSoFar := {} ;

BestEffLenSoFar := maxint ;

®

PathFound := false ;

Visited []. Set to false for each class node.

RelSets []. Set to {} for each class node.

o BestEffLength []. Set to maxint for each class node.

The traversal algorithm in Figure 5.2 is then called for each successive search target pair. The
final set of path expressions returned after the call to traverse with the last search target pair is the
set of ‘best’ path expressions for this intermediate point specification.
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10.
11.
12.
13.
14.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

function traverse (thisnode, psf, frominvis)
Visited [ thisnode ] := true ;
invis := ((thisnode.type = Collection) and (psf.lastlink # Is-Member-0f)) ;
while (link returned by get_next.link(thisnode) # NULL) do
nextnode := points_to(link); newpath := concatpath(psf, link);
colrel := CON (psf.collapsedrel, link.relation) ;
if (Visited[nextnode] = true) or (thisnode is at invalid Isa Crossover) or
((PathFound = true) and (worsethan(colrel, BestRelsSoFar))) or
(3 a shorter path (effective length) of a comparable relation)) then
goto next iteration of loop fi
if (newpath is a complete path) then
update_paths_found(newpath) fi -
if (nextnode is a leaf node) then
goto next iteration of loop fi
if (A1 s.t. (r € RelSet[nextnode]) and (r € BetterSet[colrel])) and
(r ¢ CautionSet[colrel]) and
(newpath.efflen < (BestEffLength[nextnode] + EFFLENSLOP)) then
update RelSet[nextnode] and BestEffLength[nextnode] ;
tretretd := traverse (nextnode,newpath, (invis and (link =Is-Set-0f)));
if ((invis = true) and (link = Is-Set-Of)) then
if (frominvis = true) then tret := tretretd fi
if (tretretd.matchedtarget = true) then return (tret) fi
psf := concatpath(tretretd.augmentedpath, link.reverse) fi fi od
Visited [ thisnode ] := false ;
if ((frominvis = true) and (tret = NULL)) then
tret.matchedtarget := invis ; tret.augmentedpath := psf fi
return (tret) ;

Figure 5.2: The Traversal Algorithm for End Point Specifications

38



Chapter 6

THE EXPERIMENTS

In this chapter we present the results of some preliminary experiments on human subjects. We
conducted two sets of experiments with two unrelated schemas of vastly differing sizes. The two
experiments were intended to test the efficacy of our system on two different tasks. We begin by
presenting the parameters used to measure the effectiveness of the system, the motivation behind
each set of experiments, the experimental set-up and methodology, and the results obtained.

6.1 Measures of Effectiveness

Two important parameters of information retrieval effectiveness are recalland precision [Salt 89].

Recall is defined as the proportion of relevant answers retrieved. In our case an answer corre-
sponds to a path expression consistent with a given vague path expression. If the path expression
corresponds to what the user had in mind when he/she posed the vague path expression, it is a
relevant answer. Sometimes an answer cannot be expressed as a single path expression in a schema,
but rather as a set of path expressions which together make up the answer a user has in mind. In
such cases all the path expressions in this set are considered relevant. For any information retrieval
system to be successful it should have close to perfect (100 %) recall.

Precision is defined as the proportion of retrieved articles that are relevant. It is obvious that
one way of achieving a high recall rate is to retrieve all possible answers. Precision is a parameter
that provides a measure of the percentage of retrieved answers that are irrelevant.

An ideal system has recall and precision values equal to 100 %. In reality the two parameters
are often approximately inversely proportional to each other reflecting the trade-off inherent in the
two. We define a quantity we term the Recall-Precision Product that measures the product of the
two values. This quantity provides a rough guide as to the effectiveness of a particular information
retrieval system.

The main input that our system accepts is the number of best effective length values used
to choose the answers to a query. Informally, the number of best effective length values used
corresponds to the ‘pickiness’ of the system. The greater this number the more answers retrieved,
but precision is obviously affected. All our results plot either recall or precision, or the recall-
precision product as a function of the number of best effective lengths.

6.2 Motivation

As mentioned in Chapter 1, there are two primary motivations behind the work in this thesis.
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e The first is to give to naive users a tool with which to correctly query a database that contains
the information they need, but to which they do not know how to get. Our goal is to not
have the user even know what the schema looks like - the user should simply formulate a
query in the form of a vague path expression, and the system should come up with a correct
completion. An English language description of the database should suffice for the user to be
able to query it. Our first set of experiments is based on the assumption that the user simply
knows about the entities in a database and has a loose idea about how they are related.

o A second use we envisage for this work is for experienced database users and schema designers.
As mentioned before, typical database schemas contain hundreds of classes and relationships
amongst them. Specifying a query on such large schema graphs is sometimes a daunting
prospect even for the schema designer. A GUILis not much help here as the schema is typically
too large and richly connected to fit into one window. Since the DBMS requires the user to
explicitly conform to the structure of the schema while querying, specifying queries on such
schemas is laborious, even for database experts. Our second experiment was conducted on a
real life schema in the MOOSE OODBMS [Wilo 93], to determine to what degree a system
like ours can aid schema designers and database administrators in querying the database.

We present below details about both sets of experiments and results obtained.

6.3 Experiment 1 - Formulating Queries For Naive Users

6.3.1 Experimental Methodology

This set of experiments was actually split into four different parts. The motivation behind all four
parts was to test how accurately our system allows naive users having limited knowledge about the
relationships between entities in a database, to pose queries in the form of vague path expressions,
and receive completed queries that are consistent with their intuition. We chose our set of human
subjects carefully, so as not to bias our experiments toward one particular group of people.

We used nine human subjects for our experiments (eight graduate students and one staff mem-
ber). Two of the subjects are senior grads working in the field of artificial intelligence, two are doing
graduate work in databases, two are doing graduate work in operating systems, one in business,
and one in textile science. The staff member chosen was the designer of the MOOSE schema used
in the second experiment. Our motivation behind choosing such a group was to have people both
familiar and unfamiliar with computers, as well as to have some people familiar with databases and
database schemas and some not.

The schema we chose for our first set of experiments was the schema of Figure 2.1. The world
it models is familiar and not too detailed, so it could be described in a paragraph or two. On
the other hand, even a relatively simple schema such as that of Figure 2.1 captures almost all our
intuition about a restricted university world.

The subjects were not shown the schema. All they were given was a description of a particular

world reproduced in Figure 6.1. They were then asked to do the following tasks based on this

description. !

1. We presented each subject with twelve identical, vague, English statements about this world
and asked them to tell us what they thought the statements should mean based on their intu-
ition and common-sense knowledge about the world. The twelve statements were arbitrarily

1We did not encourage subjects to draw diagrams to represent the world described. They were asked to fill in any
gaps in the description either by asking questions or using their common-sense.
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The world model we are using for our initial set of experiments
consists of universities and persons and related entities.

Each university has a set of departments.
Each department has a name and a set of professors who comprise its faculty.
All professors have offices which have office numbers. A professor also

has information associated with him/her indicating whether he/she is tenured.

A11 persons in the world have a name and a social security number.
A person in the world may be either a student or an employee.
An employee has a salary and an id number. Further, an employee may be

either a teacher or staff member (but not both). Each staff member is
associated with a particular university.

Each teacher in the world teaches a set of courses. A teacher may be either

an instructor or a professor. Unlike professors, instructors do *not#*
have offices.

A student is associated with a particular department of a particular

university. Each student has an id number. A student takes a set of courses.

a

Each course has a name (of the course) and a number of credits.
A student may be either an undergrad or a grad student (but not both).

An undergrad student has a major.
A grad student may be a teaching assistant. A teaching assistant is

grad student *as well as* an instructor.

2.

Figure 6.1: The World Model Description Used in Experiment 1

chosen by us. 2 For each of the statements we ran our system with the corresponding vague
path expression and compared its answers against the ones given by the subjects.

For each of the statements in part 1 above, we presented the subjects with a series of alter-
natives (each statement had a minimum of three alternatives and some statements had up to
nine alternatives), which essentially corresponded to valid path expressions consistent with
the vague path expressions of the statements. We asked the subject to rank the alternatives
as below

(a) If the alternative was the intuitive completion (or part of the intuitive completion), for
the vague statement, then subjects were asked to rank it as an (A).

(b) If the alternative did not instantly spring to mind as an intuitive completion, but was
not too far-fetched not to be an intuitive completion, subjects were asked to rank it as

a (B).
(c) I the alternative was too far-fetched to be an intuitive completion for the given vague
statement, subjects were asked to rank it as a (C).

The twelve statements used in parts 1 and 2 are presented in Appendix A.

For part 3, we asked each of the subjects to come up with ten vague statements of their own
for the world described to them, and tell us what they meant in terms of the completions
they expected to see from the system.

21 fact two of the statements were rejected as meaningless by a majority of the subjects, and hence the results
shown only reflect the subjects’ answers on the remaining ten.
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4. Finally, for each of the vague statements in part 3, we also provided a series of alternatives
and asked the subjects to rank them as (A), (B), or (C) above.

The motivation behind part 2 was to average out any idiosyncrasies of individual subjects for
particular statements and contrast how the system performed with respect to part 1 (since it is
the same set of vague path expressions we are testing on). Part 3 gave us a chance to test the
system on a large set of arbitrary vague statements. Part 4 was used to test whether or not the
system could come up with some answers the subject didn’t think of initially, but which they would
consider intuitive completions for the vague path expressions of part 3.

6.3.2 Results

This section presents the results of our experiments on the student-university world. We considered
a path expression to be relevant in each of the parts of experiment 1 as follows :

o For parts 1 and 3 above, the path expression (or expressions) corresponding to each subject’s
intuitive completion of a vague path expression was considered relevant.

o For part 2, the path expressions corresponding to only those alternatives that received a
majority of (A) rankings were considered relevant. Alternatives receiving a majority of (B)
and (C) rankings were considered irrelevant.

o Tor part 4, the path expressions corresponding to the alternatives ranked (A) were considered
relevant.

Figures 6.2 and 6.3 show the values of the average recall and precision fractions as a function
of the number of best effective length values for part 1 of the experiment. The graphs show that
recall does increase initially with the number of best effective lengths, as more relevant answers
are retrieved, and then levels off. Precision on the other hand initially decreases as the number of
answers retrieved increases, since the percentage of relevant answers in the new answers retrieved
keeps decreasing. Recall did not hit a 100 % figure, because there were some answers given by users
that were not considered as ‘good’ in terms of their collapsed kinds as some of the other answers
retrieved.
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Figure 6.5: Average Precision Fraction (Experiment 1- Part 2)
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Figure 6.8: Average Recall Fraction (Experiment 1- Part 4)

1 T ]
Average Precision - focused -o—
Average Precision -~ unfocused —+-

1 ] 1

1 2 3 4 5

Best N Effective Lengths

Figure 6.9: Average Precision Fraction (Experiment 1- Part 4)

46



Recall-Precision Product

Recall-Precision Product

¥ T ¥
Average Recall-Precision Product -o—

1 2 3 4 5

Best N Effective Lengths
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Figure 6.11: Average Recall-Precision Product (Experiment 1- Part 2)

47




Recall-Precision Product

Recall-Precision Product

Average Recall-Precision Product - focused -o—
Average Recall-Precision Product - unfocused -+

+4

3
Best N Effective Lengths

Figure 6.12: Average Recall-Precision Product (Experiment

Average Recall-Precision Product - focused -o—
Average Recall-Precision Product - unfocused -+ J

3
Best N Effective Lengths

Figure 6.13: Average Recall-Precision Product (Experiment

48

1- Part 3)

1- Part 4)



Part 2 was meant to present the user with the alternatives retrieved by the system along with
other likely completions, to see which of the system’s answers the user considered likely. Part 2
was also meant as an averaging step for part 1. The results are shown in Figures 6.4 and 6.5. Here,
recall does hit 100 % very quickly, as in general, the majority consensus for alternatives results in a
smaller subset of answers being considered likely. The graph of the precision fraction in Figure 6.5
shows a slight increase in precision from 1 to 2. This apparent anomaly was due to the fact that the
relevant answer for one of the queries did not have the best effective length according to the effective
length heuristic of our implementation. We believe that this glitch in the behavior of precision is
insignificant. In general, precision does decrease with the number of best effective lengths.

Parts 3 and 4 were intended to test the effectiveness of the system on a large set of random
vague path expressions. Some users’ vague path expressions contained additional information, such
as the specific kind of relationship desired between a pair of entities. We tested such vague path
expressions, in which a user provided additional information, in two different ways. We ran our
system both with and without this additional information. The results shown are labeled focused
and unfocused respectively in the graphs of Figures 6.6, 6.7, 6.8, and 6.9. For example, a statement

such as
student names associated with this university
could be translated into either of the following vague path expressions
o university ~ student . name (focused specification)
o university ~ student ~ name (unfocused specification)

As can be seen from the graphs, focusing a vague path expression does improve the precision,
but not too significantly. Recall is unaffected. The reason that the increase in precision is not
greater is because we treat each search target pair in a given intermediate point specification as a
separate problem, and hence even an unfocused specification retrieves only a few additional answers
as compared to the focused one. 3

In parts 3 and 4, the maximum recall obtained is slightly lower than in parts 1 and 2. It may
also be noticed that precision was lower than in parts 1 and 2.

Figures 6.10, 6.11, 6.12, and 6.13, show the behaviour of the average Recall-Precision Product
for the four parts of Experiment 1. As expected, this quantity stays approximately constant. The
reason for the slight decrease in the value of the Recall-Precision Product between the number of
effective lengths from 1 to 2 in parts 3 and 4 can be attributed to the corresponding sharp decrease
in precision in this interval.

In general, the system performed well in terms of providing intuitive path completions to vague
path expressions provided by users. As has been indicated by work in adaptive interfaces [ShMa 93],
users are not alike. A system that is to work optimally must adapt to a user using some form of
learning and feedback. Our current implementation and theory does not provide for this. Thus,
although our path collapse function and selection functions are good, they are not perfect in quite
a few cases. We address the possibility of integrating learning into this framework, in Chapter 7.

3Experiments we conducted using the restricted regular expression approach to intermediate point specifications,
indicate that focusing a vague path expression for this approach often dramatically improves the precision.
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6.4 Experiment 2 - Shorthand Mechanism for Formulating Queries

6.4.1 Experimental Methodology

This experiment was intended to test how effective a shorthand query formulation mechanism is
provided by our system for non-naive database users. The schema we used for this experiment
was the input part of the CUPID [NoCa 83] schema, which represents the structure of the various
entities used in soil science experiments. The CUPID schema was designed by Larry Murdock of
the Soil Sciences department using the MOOSE OODB data model. The schema has 219 classes
and 364 relationships. It has all the kinds of relationships allowed by our model as well as derived
relationships. Hence, it is a sufficiently large schema to make the formulation of ad-hoc queries a
non-trivial task, even for the schema designer.

We asked Larry Murdock to come up with ten ad-hoc vague path expressions with the schema
diagram in front of him. For each of these vague path expressions, he had to have the corresponding
path expression(s) he wanted to see returned by the system ready. In some cases, the system came
up with a path expression that he hadn’t thought of, but which he felt was good enough to be
considered an intuitive completion for his vague path expression. For this experiment a path
expression was considered relevant if it was one Larry Murdock had in mind or was one retrieved
by the system that he felt was an intuitive completion. We chose this definition because the sheer
size and complexity of the CUPID schema graph resulted in a few intuitive completions being
overlooked initially.

Further, having the schema designer with us enabled us to use domain specific knowledge as
well. For example, one rule that had to be obeyed by all path expressions returned by the system
was that they should not pass through two specific classes in the schema. * Such a declarative
statement did help the precision fraction tremendously. 5

6.4.2 Results

The results of the experiments are shown in Figures 6.14, 6.15, and 6.16. The system performed
remarkably well in terms of being able to select the ‘correct’ path expression(s) from the set of
path expressions matching a given vague path expression (to get an idea of the discernibility of
the selection function, an average of over 500 path expressions are consistent with each vague path
expression).

Figures 6.15 and 6.16 also indicate that even a small amount of domain knowldege can dra-
matically improve the precision of the system, especially for database schemas like the CUPID
schema which have certain ‘universal indexing’ classes serving as indexes for most of the classes
in the database. Without additional knowledge of the specific database domain such classes are
indistinguishable from other indexing classes in the schema. It should however be noted that our
effective length heuristic performed remarkably well even without the domain knowledge (perfect
precision for the best effective length values). Even with domain knowledge the precision fell from
a perfect value (100 %) for answers with the best effective length, to a slightly lower value as the
effective length was increased.

The recall was not affected by the effective length increasing.

Due to the fact that the recall did not vary with effective length (indicating that our effective
length heuristic was very effective), the recall-precision product graph follows the trend of the
precision graph.

4These two reference classes were created as a sort of index for the plethora of different experiments carried out.
5 Although our procedure does have a stage for domain specific discriminators, there is no corresponding stage
implemented as yet. We performed the domain specific discrimination amongst path expressions returned, by hand.
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The length of the average path expression returned as an answer from the CUPID schema was
about 15 relationships long. Thus specifying a query is not a trivial task even for the schema
designer. As the experiments show, our system does provide a convenient and powerful shorthand
mechanism to specify complete answers.

6.4.3 Efficiency of Traversal

The CUPID schema graph is a realistic size schema for most databases. We ran a final experiment
on this schema graph to measure the relative efficiency of traversal of our two approaches to
intermediate point specifications. The traversal algorithm formulation presented in Chapter 5 is
recursive irrespective of whether we use the restricted regular expression approach or the ordered
sequence of end point specification approach. Each recursive call corresponds to an exploration
of a class node in the schema graph. Hence we use the number of recursive calls as a measure of
the efficiency of traversal of the schema graph for a given vague path expression. We tested the
efficiency of the two approaches on the same set of ten vague path expressions used in Experiment 2.
While the recall and precision figures turned out to be identical to those above, there was a marked
difference in terms of efficiency of traversal of the schema graph.

Figure 6.17 plots the number of recursive calls taken on each of the ten vague path expressions by
the two algorithms. While both algorithms followed the same general trend the restricted regular
expression traversal was significantly more expensive in terms of number of class nodes visited.
Furthermore, the restricted regular expression cannot generate any path expressions with cycles,
and in general, does not perform as well as our current method of dealing with intermediate point

specifications.

51




Recall Fraction

Precision Fraction

T ¥ i
Average Recall -o—

3
Best N Effective Lengths

Figure 6.14: Average Recall Fraction (Experiment 2)

precision Fraction w/ domain knowledge -o—
precision Fraction w/o domain knowledge —+-

2 3 4 5
Best N Effective Lengths

Figure 6.15: Average Precision Fraction (Experiment 2)

52



Recall-Precision Product

Number of Recursive Calls

1 1] ]

Recall-Precision Product w/ domain knowledge -¢—
1 b Recall-Precision Product w/o domain knowledge -+ 4

3
Best N Effective Lengths

Figure 6.16: Average Recall-Precision Product (Experiment 2)

¥ 1 i 1 L) ¥ ¥ i

ordered Seq of End Point Specs Approach -o—-
Restricted Regular Expression approach —+-
Average - Ordered Seq of End Point Specs Approach -B--

Average - Restricted Regular Expression Approach =¥~ |

250000

225000

200000

175000

150000

125000

100000

75000

50000

25000

0
1 2 3 4
Vague Path Expression #

Figure 6.17: Number of Recursive Calls Per Query (Experiment 2)

53




6.5 Summary of Results

The experiments in the preceding sections of this chapter, while by no means exhaustive, indicate
that our approach to disambiguating vaguely specified queries to a database is promising. The
results of Experiment 1 indicate that a purely English level description of the data in the database
suffices quite well for a naive user (in this case a user who does not know the database schema)
to successfully query the database without having to know the explicit schema layout. While the
schema for Experiment 1 is quite small, we believe that this approach will scale reasonably well.

The results of Experiment 2 indicate that our theory can also serve as a valuable query for-
mulation shorthand mechanism even for database designers and administrators by relieving them
of the tedium of formulating large queries. Once again, the results here are encouraging but more
experiments with different ‘real life’ schemas are required.

Domain specific knowledge, where available, can improve the precision of the retrieved answers.

The approach we have chosen to dealing with intermediate point specifications not only gener-
ates better answers (meaningful cyclic path expressions), but is also more efficient in terms of the
number of nodes explored in the schema graph. The efficiency of traversal of the schema graph is
crucial as we expect to deal with large database schemas and require as close to real time response
as possible from the completion code module.
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Chapter 7

DISCUSSION

In this chapter we discuss certain techniques that could possibly be used to enhance the theory
presented in earlier chapters, so as to achieve better performance of the system in terms of precision
and recall.

7.1 Estimation of Answer Sizes

Each path expression retrieved corresponds to a set of objects of a particular class, or attributes of
objects of a particular class, in the database. For example :

e course <= courses . student @> person . mname, and

o course <= courses . teacher <@ professor <= faculty <$ department . student @>
person . name

both denote the name attribute of objects belonging to the class student in the schema of Figure 2.1.
However the first path expression represents the set of names of students taking a particular course,
while the latter denotes the set of names of students in the department of the faculty member
teaching that particular course. In most cases the number of objects in the database satisfying the
former path expression is going to be considerably smaller than the number of objects satisfying
the latter one. In such a case, we say that the former path expression subsumes the latter one, as
the latter path expression has a much larger possible set of answers than the former one.

The motivation behind the above is based on various psychological studies that indicate that
when confronted with two answers of widely differing sizes, humans tend to prefer the more spe-
cific or focused answer of the two. This also corresponds to the case of picking the most specific
rule/explanation applicable to a particular problem situation in production systems and Explana-
tion Based Learning system.

We attempt to capture the notion of specificity of answers as follows. We assume the database
provides some sort of answer size estimator for path expressions. 1 A pair of path expressions 1
and 1, are said to be comparable for answer size estimation, if

e The final relationship in both path expressions is the same.

e If the final relationship is not a Has-Attribute relationship, then the most specific subclass of
the class pointed to by the final relationship in both path expressions is the same.

1How this answer size estimator is to be implemented is beyond the scope of the current work. It may be through
domain specific rules, periodic sampling, integrity constraints like functional/inclusion dependencies, or any other
convenient technique.
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o If the final relationship is a Has-Attribute relationship, then the most specific subclass of the
class that has the final relationship as its attribute in both path expressions is the same. In
the example above, in both path expressions, the most specific subclass present of the class
person having attribute name is the subclass student.

Consider two comparable path expressions 9 and 1, with estimated answer sizes Aco and Ac¢
with Ao # 1. If

Ac/Aco > MAX_ASZ MULTIPLE > 1

where MAX_ASZ_MULTIPLE is a database specific constant, then the path expression i, (with
the smaller answer size estimate) subsumes the path expression 1y, (with the larger answer size
estimate). Subsumed path expressions are discarded from the answer set returned.

Tf the estimator estimates that the answer size of a given path expression is likely to be zero,
then the path expression is discarded from the answer set. Our objective is to present the user
with as specific an answer as possible ; however it is quite useless presenting the user with a path
expression that is likely to yield no answer from the database.

Answer size estimation is a powerful domain specific discriminator, if available. It can be applied
as a post-processing step to pairs of comparable path expressions surviving the initial discriminatory
phases. Answer size estimation will not normally affect the recall fraction of a system. However it
tends to improve the precision fraction (and hence the Recall-Precision Product) of a system, by
presenting users with fewer irrelevant answers.

We ran an answer size estimation post-processing step by hand for the results in parts 1 through
3 of experiment 1. The results are shown in Figures 7.1, 7.2, 7.3, 7.4, 7.5, and 7.6. Figure 7.5
indicates that such a step can improve precision dramatically in some cases. The reason the
improvement is so insignificant in parts 1 and 2 is because these parts of experiment 1 only deal
with ten vague path expressions, of which only one contained pairs of comparable path expressions.
Part 3 on the other hand, deals with ninety vague path expressions, offering a much greater scope
for path expression pairs to be comparable. In all the cases, recall was unaffected by answer size
estimation.
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7.2 Alternate Collapse Functions and Orderings

Our implementation employed a particular collapse function (and associated secondary relation-
ships), and a particular ordering of the relationships shown in Figure 4.2. We explored over ten
different collapse functions and over twenty orderings of the associated relationships. We felt that
this particular combination most accurately modeled the way humans think in terms of discernment
on the basis of collapsed relationships. However we make absolutely no claim that this is the ‘best’
modeling.

The theory we have put forward does not preclude alternate collapse functions or orderings of
collapsed relationships. In fact alternatives may be used very easily, especially if they satisfy the
following properties :

e If the collapse function is associative, then our method of dealing with intermediate point
specifications can be employed as is. If not, then additional computation is required for each
path expression and search target pair.

o The selection function must be order independent for any arbitrary path expressions.
o If monotonicity holds, then the schema graph traversal can be optimized.

o If the distributivity equation 5.1 holds, then the traversal can be optimized via the caution
sets optimization.

Another point to note while constructing alternative collapse functions and orderings, is the dis-
tinction between sharing and association relationships. Our ordering of the collapsed relationships
in Figure 4.2, places the sharing relationships Shares-SubParts-With and Shares-SuperParts- With
(and their corresponding May-Be versions), above a direct association (Is-Associated- With) re-
lationship (and its May-Be versions). Our rationale behind this decision was that the sharing
relationships are structural inasmuch as they arise out of the combination of two oppositely di-
rected structural relationships (part or set). The Is-Associated- With relationship, while denoting a
direct association between two entities, is non-structural, and hence ‘weaker’ in terms of the type
of relationship it encapsulates, than a structural one.

It can be argued that a sharing relationship is also a form of association since it is undirected
(owing to the fact that the structural relationships from which it arises have opposing directions
in terms of dominant interpretations). If such is the case, it may be preferable to order the
sharing relationships along with the direct associations, or even as a weaker form of association
(Is—Indirectly-Associated— With for example), to yield better discernment amongst collapsed relation-
ships. We were not able to test this hypothesis convincingly on the two test schemas we had since
the schema in Figure 2.1 cannot give rise to 2 sharing relationship, while the distinction between
the two was not conclusive enough, either way, from the path expressions generated on the larger
CUPID schema of experiment 2. In general, we do not expect such comparisons between path
expressions to arise very often in schemas.

7.3 Introduction of Learning

Tt is obvious that however we attempt to model the human thought and selection process in terms
of collapsed relationship kinds and orderings, there are going to be some users with which the
particular collapse and selection functions chosen are not going to work too well. It would be ideal
if the system can use some form of learning from the feedback it receives after presenting a set of
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‘best’ answers to a user, to improve its performance on the next iteration, or simply to adapt to a
user’s particular quirks. )

Work with learning interface agents [ShMa 93] has shown that it is possible to have a population
of interface agents, all working on the same task a bit differently, to increase accuracy of a system
like ours. These interface agents typically have some sort of genetic representation of their task
encoded in them. The better an agent’s performance vis-a-vis the task at hand, the more reward it
obtains. At the end of a particular period, (termed a generation), the agents receiving the highest
rewards reproduce amongst themselves to form a new generation of agents while the weaker ones
do not survive. The idea behind the reproduction phase is to mix the genetic material of successful
agents and hopefully produce even more successful agents. The genetic algorithm [Holl 92] which
is the basis of the entire technique is a proven optimal parallel search technique that adapts quickly
to a changing environment.

In our case, the space to be searched is the space of possible collapsed relationship kind orderings,
given a particular collapse function. An agent is a selection function based on a particular ordering.
The changing environment, is either different users of the system, or a user on whom a current
modeling is mot very successful. Some sort of genetic representation has to be devised for the
ordering of relationships. One possible solution could be to code the partial order as a C macro,
(or a LISP function), and use the associated technique of genetic programming [Koza 92].

The genetic search technique however, often takes a long time to converge to a solution. We need
our system to start operating at near optimal efficiency from startup. This implies that the initial
orderings of the agents have to be handcrafted, instead of randomized, which is not unreasonable.
Further, reproduction need only take place if the overall efficiency falls below a certain threshold,
or at times the system is not in use.
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Chapter 8

RELATED WORK

This chapter briefly reviews other work that has a relation to ours. We have not been able to find
any work that has a direct bearing on ours. All of the work we review however, has some similarity
with certain aspects of our work. We begin this review by presenting some of the current work in
DBMS User-Interfaces (Uls), then present the concept of spreading activation in ‘a semantic net,
and end with a brief review of the use of object-oriented hierarchies for common-sense reasoning.

8.1 Database Interfaces

There has been a large body of work on various types of user interfaces to DBMSs, each system de-
signed to address a specific problem. There are numerous database browsers [MDT 92], [Motr 86al
present for DBMSs. Most such browsers allow a user to browse through the schema and the data
in the database, and are used when the user does not know the database schema, or the data model
or query language. Browsers are also used when the user has only a vague idea of what he/she
wants to retrieve from the database. Browsers suffer from the same disadvantages as GUIs [ILH 92]
mentioned in Chapter 1.

Tt often happens that the user may be familiar with a schema but may not know the exact values
stored in the database itself. Interfaces such as VAGUE [Motr 88] allow a user to specify queries
based on some predefined notions of similarity or closeness to other data values. For example,
VAGUE allows users to formulate queries like

select all theatres close to LosAngeles that are showing films like Psycho
where the interface selects data values from the database for the terms
e close to LosAngeles, and
e films like Psycho

based on some data metric of closeness of attribute values for an attribute domain. Such interfaces
are powerful, but are also dependent to a large extent on the database domain.

Certain other interfaces such as SEAVE [Motr 86b] take the approach that every user query is
based on certain presuppositions about the data values in the database. If a query fails owing to
the absence of the required data values in the database, then with a little deviation from the values
specified by the user, it may be possible to formulate a query that succeeds, and that the user is
interested in. For example, if the query

select all female employees with age < 30 and salary > 40000
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fails, then the interface attempts to formulate similar queries, but with data values that are likely
to succeed. For the example above the interface may attempt to formulate alternate queries such
as

o select all female employees with age < 30 and salary > 35000
o select all female employees with age < 36 and salary > 40000

based on its knowledge of actual data values in the database.

Interfaces such as FLEX [Motr 90] attempt to combine the approaches above, so that experi-
enced users can directly formulate queries, while naive users may use one or more of the mechanisms
above to get at the data they are seeking.

8.2 Semantic Networks and Spreading Activation

Semantic Networks are general cases of Object Oriented Systems. There has been significant work
done on semantic networks in the Artificial Intelligence community. Almost all of this work has
concentrated on Natural Language Understanding through semantic networks.

A semantic network is a network of inter-related concepts (which act as the nodes in the net-
work). Semantic network programs attempt to draw inferences between various concepts by doing
a search out from the concept nodes, until the searches intersect at a given node or nodes. For
example, the concepts large, gray, and animal will intersect at the concept node elephant. Differ-
ent semantic network systems perform differing degrees of inference, and support differing degrees
of natural-language like semantics. However, for the most part, they all perform a search for an
intersection set of concept nodes, from a given start set of concept nodes.

There have been various algorithms published in the literature to make this search as efficient
as possible. Most of the efficient algorithms for semantic networks use a technique termed marker
passing to spread activation out from the original concept nodes [CoLo 75, Hend 87, Char 83,
Char 86, Hirs 92]. Perhaps the most famous is the NETL [Fahl 79] algorithm that performs parallel
local processing at each node (or set of nodes) to speed the search.

The work in semantic networks is similar to ours inasmuch as we too perform a search over a
network of relationships and concepts (classes). However, we have only the start concept to begin
with and various concepts (intermediate points) to string along the way. Performing a search on the
schema using a marker passing algorithm similar to [Fahl 79, Char 83, CoLo 75, Hend 87, Char 86],
is not very straightforward for intermediate point specifications especially for the restricted regular
expression approach. Even for an end point specification there may be multiple classes in a schema
pointed to by the last relationship in the vague path expression. For example there are three
relationships labeled name in the schema of Figure 2.1 itself. A crucial reason why we do not
use a spreading activation scheme is because most such schemes are inherently breadth first. Our
algorithm is depth first. As soon as we find a path expression consistent with a given vague path
expression, we can use the monotonicity property of Chapter 4 to bound the search.

8.3 Object Hierarchies and Common-Sense Reasoning

Another significant body of work in Artificial Intelligence is in the field of object hierarchies and
common-sense reasoning. Various attempts have been published to formalize the mathematics of
object hierarchies, especially those that contain defeasible links, and hence non-monotonic infer-
ences [Tour 84, Brac 83, Tour 90].
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Most of the work in this area has concentrated on non-monotonic inferences from object hierar-
chies. Some of the work has also been concerned with approximate reasoning [ToCo 89, Tabo 88,

BoCo 75].

None of the work above is directly related to our task at hand, as our model precludes the
existence of defeasible links in a database schema.

A final piece of research that bears some similarity to our notion of a path collapse function
is the work in [CoLo 88] on constructing plausible inferences from pairs of adjacent relationships.
However the research in [CoLo 88] uses a larger set of relationships and is more oriented to various
actions in English than the relationships in our data model.
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Chapter 9

CONCLUSIONS

With the increasing proliferation of DBMSs amongst non-computer experts there is a growing need
for user friendly interfaces. With a growing pumber of queries to DBMSs being ad-hoc we argue
that there is a compelling requirement for a query formulation mechanism that takes as input a
given vaguely specified query to a database, and presents a user with a set of completely specified
query for that particular database by somehow ‘filling in the gaps’ in the vague path expression.

‘his mechanism should be database independent, as well as data model independent, to allow
easy translation and portability to any DBMS and database. This precludes the usage of database
specific rules for the task. The mechanism used also has to be fast (close to real time response), to
be effective. If the user has to wait for more than a few minutes to receive likely completions for
his/her vague path expression, then its utility is severly limited.

We have introduced a theory of generating plausible completions of vague path expressions. Our
00 data model is general enough to easily map onto most existing data models. The completion
generation procedure is deliberately split into various phases, with the database dependent phases
used as a last resort or post-processing step. As Chapters 6 and 7 demonstrate, database specific
knowledge, where available, can improve precision, (and occasionally recall), in most cases. However
our theory does not require this knowledge as an essential component of the completion generation
procedure.

A fundamental contribution of this thesis is the casting of the entire completion generation
problem as the familiar problem of optimal path computation over a labeled directed graph. As
none of the path computation algorithms in the literature are suited to the peculiarities of our
problem, we designed the caution sets optimization for efficient traversal of the schema graph. If
the path collapse function and the selection function satisfy the properties in Chapter 4, then the
traversal algorithm presented guarantees an efficient traversal.

The preliminary experiments of Chapter 6 indicate that our knowledge lean approach of ex-
ploiting the structure of the relationships in a path in the schema graph is very promising. A lack
of alternative large schemas in the MOOSE data model prevented further experiments, as also time
constraints. However additional experiments on different ‘real life’ schemas like the CUPID schema
need to be done to confirm the validity of these initial results.

The introduction of a feedback and learning step to the procedure of Chapter 5 will assure that
the system will not suffer large differences in performance with different users. We feel that the
learning agent approach combined with genetic evolution is the most promising, owing to its ability
to quickly adapt to a changing environment as well as retain properties from previous successful
agents. The evolution of new generations can take place when the system is not in use thus assuring
a fast response time during a user session.
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Another interesting direction for this work would be to provide users the ability to specify the
properties of relationships used in a particular data model declaratively, (in terms of certain deep
structure properties of these relationships such as underlying hierarchical or spatial interpretations),
and have a computer algorithm to automatically generate an adjacent relationship collapse function
and the associated secondary relationships. The postulating of an associated deep structure for
every relationship kind and the usage of this deep structure to generate plausible inferences from
adjacent relationship pairs, is akin to the research reported in [CoLo 88].

The interface for such a system can also be made more user friendly with a few easily im-
plementable modules. Addition of a synonym lexicon for class and relationship names does not
constrain the user to know the particular class names/relationship names in the schema. A module
to translate the path expressions generated into a more Natural Language like form when present-
ing the options to a user, would also improve the system’s ease of use for naive users. Satisfactory
versions of both the above modules are relatively easy to implement, and we believe necessary,
before a system based on this theory can be used successfully by naive users.

This thesis has presented an effective procedure for generating completions consistent with a
given vague path expression. The procedure is domain independent and hence portable, while
the implementation presented is fast, efficient, and modular, and can easily be integrated into
the overall context of a DBMS. The experiments presented here indicate that this approach bears

promise.
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Appendix A

Vague Queries For Experiment 1
(parts 1 and 2)

The
The

Subjects were urged not to be biase
entities in the statements in terms of

following twelve queries were the vague statements used in parts 1 and 2 of Experiment 1.
wording of all the statements was deliberately kept the same so as not to influence subjects.
d by verbal cues to the extent possible and to think of the
their most intuitive associations. Questions 5 and 7 were

considered meaningless by a majority of the subjects.

1

o o s N

-

. “The name or names of this teaching assistant”
“The name or names of this course”

«The course or courses of this teaching assistant”
«The professor or professors of this student”
«The credit or credits of this department”

“The name or names of this faculty”

“The office number or numbers of this student”

8. “The course or courses of this grad”

10.
11.
12.

«The social security number or numbers of this course”
«The ID number or numbers of this university”
“The teacher or teachers of a course or courses of this student”

«The teacher or teachers of an undergrad or undergrads of this department”
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