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Abstract

This thesis establishes error bounds for linear complementarity problems, quadrat-
ic programs, strongly monotone nonlinear complementarity problems, and strongly
convex programs. After obtaining these theoretical error bounds, we apply them
to approximate solutions generated by various algorithms for solving these prob-
lems. This provides bounds on how far each approximate solution is from the set
of exact solutions of each problem.

After surveying the relevant literature, we prove a new global error bound for
monotone linear complementarity problems. We also extend another global er-
ror bound for the linear complementarity problem to cover the cases where the
underlying matrix is an Ro-matrix and give a new simple proof for this exten-
sion. We compare the new error bounds with existing ones and obtain relations
between them. We establish both an upper and a lower bound locally on the
distance to the solution set of any linear complementarity problem from an arbi-
trary point. We also consider other problems such as nonlinear complementarity
problems and convex programming problems. For the strongly monotone nonlin-
ear complementarity problem, we obtain that a natural residual is a global error
bound. In addition an equivalence relation has been established between a natural
residual and the implicit Lagrangian function for a general nonlinear complemen-

tarity problem. Immediate consequences are that the square root of the implicit

il



Lagrangian function is a local error bound for any linear complementarity prob-
lem, and is a global error bound for strongly monotone nonlinear complementarity
problems.

We further consider various computational algorithms such as exterior penalty,
interior penalty, proximal point, and augmented Lagrangian methods for solving
linear programs, convex quadratic programs, strongly monotone complementarity
problems and strongly convex programs. We bound the distance between any
approximate solution obtained by any one of the methods and the set of exact so-
lutions for the problem being solved. For many cases, we prove that this distance
depends only on computable quantities such as the size of the penalty parameters,
the amount of the constraint violation or the amount of violation of the comple-
mentarity condition. This makes it possible for these error bounds to be used as

termination criteria for these algorithms.
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Chapter 1

Overview and Summary

1.1 Introduction

Error bounds are useful tools in establishing the accuracy of approximate solu-
tions to mathematical programs, inequalities and complementarity problem. New
error bounds and their mathematical theory have led to new algorithms and es-
tablishment of the convergence and linear convergence rate for these algorithms.
For example, Pang [Pa86] obtained convergence results for the inexact Newton
method for the nonlinear complementarity problem. Recently, by generating a
new local error bound, Luo and Tseng [LuT92a] have established global conver-
gence results with 1qcally linear rate for matrix splitting algorithms for the affine
variational inequality problem. By obtaining another new global error bound,
Mangasarian [Ma91] completed a global linear convergence proof for the same
problem by using a new global error bound. In addition, there are a number of
new other convergence results for other algorithms based on error bounds ([LuT91]

[LuT92b] [LuT92c] [LuT92d]).

Error bounds for linear inequalities were first introduced by Hoffman [Hof52].
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For a given solvable linear inequality system, Hoffman proved that for an arbitrary
point, the distance between this point and the solution set of the inequality system
can be bounded by a measure of the violation of the inequalities at the point. Dif-
ferent error bounds were subsequently obtained for linear programming ([Rob73],
[MaS87]). Such error bounds can serve as termination criteria for iterative algo-
rithms and can be used to estimate the amount of error allowable in an inexact
computation of the iterates that converge to a solution of a mathematical pro-
gram. Recently more error bounds for various optimization problems have been
established ([Rob81] [Pag86] [MaS86] [MaPa90] [FeM91] [Giil91] [GHR92] [Li91]
[LuT92a] [LuT92b] [MaD88] [Ma90] [Ma91] [LMRS92]).

New error bounds have been found to be very important and useful in proving
the convergence and linear convergence rate for various algorithms. Also they are

a source and a tool for generating new algorithms.

1.2 Error Bounds and Algorithm-Generated Er-
ror Bounds

In this thesis, we develop new error bounds for mathematical programming prob-
lems and analyze relationships among different error bounds and error residuals.
We then apply these error bounds to various algorithms to obtain a closeness esti-
mate between an inexact solution obtained by an algorithm and the true solution
set of the problem we want to solve. We prove that for many algorithms these
estimates can be expressed in terms of computable quantities such as the size
of the penalty parameters and the violation of the constraints. Therefore, these
estimates can serve as termination criteria for iterative algorithms.

In Chapter 2, we develop new error bounds for the linear complementarity




problem. Based on a local error bound [LuT92a] and a global error bound [MaS86],
a new improved global error bound is established by properly combining these two
bounds. For the linear complementarity problem with an Rp coefficient matrix,
we show that a natural residual is a global error bound. The novel idea of the
proof consists in assuming that there are points that cannot be bounded by this
residual and then proving that this leads to a contradiction. This turns out to
be a very simple proof. This result extends the results in [MaPa90] [LMRS92].
We also show that Mangasarian and Shiau error bound holds [MaS86] for an LCP
with a R, matrix besides a monotone LCP. For the general (indefinite) linear
complementarity problem, we show that any known error residual fails to be an
error bound without multiplying it by a term involving the norm of the point
under consideration. In addition, we investigate relations among different error
bounds and error residuals. Relations between the new error bounds we developed
and exiting error bounds are given.

In Chapter 3, a new global error bound for the strongly monotone nonlinear
complementarity problem is obtained. This result is a natural extension of a well-
known natural error bound for the strongly monotone linear complementarity
problem [Pa86]. We also generalize the Mangasarian and Shiau error bound for
the linear complementarity problem to cover the strongly monotone nonlinear
complementarity problem.

In Chapter 4, we discuss the implicit Lagrangian function [MaS92] as an error
bound. We prove that the square root of this function can be bounded both from
above and below by a natural error residual. This shows that the square root of
the implicit Lagrangian is equivalent to the natural residual. Consequently, it is a
local error bound for any linear complementarity problem, and becomes a global

error bound for the strongly monotone nonlinear complementarity problem.




In Chapter 5, we use the error bounds that we have developed, to measure the
closeness between each inexact solution that is generated by certain commonly-
used algorithms and the true solution set of the problem we want to solve. We
apply exterior penalty, interior penalty, augmented Lagrangian and proximal point
methods to problems such as linear programs, Convex quadratic programs, strongly
monotone nonlinear complementarity problems and strongly convex programs. By
using the optimality conditions satisfied by inexact solutions generated by these
approaches, we are able to eliminate the dual variables from the error bound.
Thus we obtain error bounds involving only the primal variables at an inexact
solution. In many cases, these actual bounds depend only on the size of certain
parameters such as penalty parameters or violations of the constraints or violations
of the complementarity condition. These error bounds can be used as termination
criteria for these algorithms because they are computable and bound the distance
between the approximate solution and the real solution set of the original problem.

In Chapter 6, we end with a brief summary, some open questions and some

directions for new research.

1.3 Notation

All scalars, vectors and matrices in this thesis are real. We define below the

notation used throughout this thesis.

1. IR™ denotes the n-dimensional real space, and IR denotes the nonnegative

orthant, or the set of all points in IR" with nonnegative components.

2. 1 € IR™ denotes an n-dimensional column or row vector. For vectors z € IR"

and y € IR™, (z,y) denotes a vector in IR**™ with the i-th component



10.

11.

12.

13.

(z,9); = z; if i < n; (2,Y); = Yi—n otherwise.

A subscript is used to denote a component of a vector, e.g. z; is the i-th

component of a vector z € IR".

For a vector z € IR", ., is a n-dimensional vector with
(z4); = max{z;,0}, i =1,...,n, and |z| with |z|; = |z, i =1,...,n. We
say £ > 0 for a vector z € R™ if z; > 0,Vi =1,...,n. Similarly, z > 0 if

CE.LZO,V’I,:].,,TL

For two vectors £ € IR® and y € IR", min{z, y} is an vector in IR™ with
(min{z, y}); = min{z;, %}, i=1,...,n.

Superscripts are used to differentiate between vectors, e.g. z* and zF*!.

The scalar product of two vectors z and y in JR™ is denoted by zy.

The Euclidean or 2-norm of an z € IR", (zz)'/?, is denoted by || - ||», while

the 1-norm, 3% ; |z;] by || - ||1, and an arbitrary norm by || - ||.

JR™*" denotes the set of all real m x n matrices. All matrices are denoted

by upper case letters.
For a matrix A € IR™*", AT denotes the transpose of A € IR™*™.

A matrix A € R™*" is positive definite if zAz > 0,Vz % 0 € IR", positive
semi-definite if xAz > 0,Vz € IR™, a P-matrix if all its principal minors are

positive and a nondegenerate matrix if they are nonzero.
For a function F(z) from IR™ to IR™, VF(z) denotes its m x n Jacobian.

A matrix A € R™™ is said to be in class Ry if Mz > 0,z > 0,zMz = 0

implies that z = 0.




14. A norm || - | is called a monotonic if ||z|| = || |z ||



Chapter 2

New Global Error Bounds for the

Linear Complementarity Problem

(LCP)

2.1 Introduction

In this chapter, we develop various error bounds for the linear complementar-
ity problem. We also establish a number of relationships among different error

residuals that are used to bound the distance between an arbitrary point and the

solution set of the problem.

We consider the classical linear complementarity problem ([Mur88] [CoPS92])

of finding an z in the n-dimensional real space JR™ such that
Mz+¢g>0, >0, z(Mz+q)=0, (2.1.1)

where M € IR™*" and ¢ € IR*. We denote this problem by LCP(M, q) for short.




Let the solution set be
X :={z|Mz+q>0, z>0, z(Mz +q)=0}. (2.1.2)

We assume that X is nonempty. Define the natural residual ([Pa86], [LuT92a],
[Ma91]
r(z) = ||z — (z — Mz — g)+[|. (2.1.3)

We also introduce another residual ([MaS86], [Ma90])
S(iL‘) = “("‘MIE -4, —, IL'(M.’E + Q))+“ (214)

Note that z € X is equivalent to r(z) = 0 or s(z) = 0. We first give the following

definitions of a residual and error bound for the LCP.

Definition 2.1.1 Lete: R" — R.

1. e(z) is a residual for the LCP(M, q) if e(z) > 0, for all z € IR", and
e(x) = 0 if and only if z solves LCP(M, q).

2. e(x) is a global (local) error bound for the LCP(M, g) if it is a residual
such that there ezists some constant T (and € > 0) such that for each z € IR™
( when e(z) <€)

|z — 2(z)|| < Te(z)

where Z(x) is a closest solution of LCP(M, q) to = under the norm || - ||.

It is obvious that if e(z) is a global error bound, then it is a local error bound.
In addition Definition (2.1.1) can be extended to cases where the problem could
be any mathematical programming problem such as a linear program, a nonlinear

program or a nonlinear complementarity problem.



2.2 The Residual r(z) as an Error Bound

There have been a number of recent papers ([LMRS92], [LuT92a], [Ma90], [Ma91],
[MaPa90], [MaS86], [Pa86]) that use r(z) and s(z) to bound the distance from
a point z € IR™ to the solution set X . It turns out that some properties of M
such as positive definiteness and positive semi-definiteness play important roles in
generating error bounds. For an indefinite matrix M, we still do not have a global
error bound that does not involve the norm of the point in question ([Ma91]). We
begin by giving some basic error bounds for the LCP.

The first global error bound using r(z) was introduced by Pang ([Pa86]) for
LCP(M, q) with a positive definite M. We state it in the following lemma.

Lemma 2.2.1 [Pa86] Let M € IR™" be positive definite, then there exists a

constant A > 0 such that
lz — z|| < Ar(x), Vz € R" (2.2.1)

where T is the unique solution of the LCP. If || - || denotes the 2-norm in (2.2.1)
and in the definition (2.1.8) of r(z), then

where p is the smallest eigenvalue of the matriz —M-'%M—q:

Proof. See [Pag6]. Q.E.D.

Remark. Lemma 2.2.1 also provides a computable A in term of the matrix M
which is not the case in general. Hence it is possible to obtain an explicit upper
bound on the distance between any point and a closest solution of a positive

definite LCP. This can be used to decide how good an approximate solution is
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based on this error. However, Lemma 2.2.1 is too restrictive because of the positive
definiteness assumption on M and it fails to hold for a positive semi-definite M
([MaS86]).

Although the residual r(z) cannot provide a global error bound for an indefinite
LCP(M, q), it does provide a local error bound for it ([Rob81], [LuT92a]). This

result We will use this result later on. So we state it in the following lemma.

Lemma 2.2.2 [Rob81] [LuT92a] Let M € IR™", then there ezist € > 0andt >0

such that
|z — z(z)|| < 7r(z), V=, r(z) <€ (2.2.2)

where T(x) is a closest solution of LCP(M, q) to = under the norm || - ||.

Proof. See [LuT92a] and [Rob81] Q.E.D.

Tt should be pointed that by using Lemma 2.2.2, Luo and Tseng ([LuT91]
[LuT92a] [LuT92b] [LuT92c], [LuT92d]) recently established the convergence and
locally linear convergence rate results for a number of algorithms for various math-
ematical problems. In addition, by using a different new global error bound, Man-
gasarian ([Ma91]) globalized the locally linear convergence for the matrix splitting
algorithm for affine variational inequality problems. The key to achieving all these
results is the availability of a measure of the error reduction ratio between con-
secutive iterates obtained by using an error bound. As a result, convergence and
convergence rate results can be obtained for various algorithms. New error bounds
are an important tool and source for such results.

Recently, it was found that 7(z) provides a global error bound for larger classes
of matrices M and not only for positive definite matrices. For example, 7(z)
is a global error bound for P-matrices M ([MaPa90]) and more generally, for

nondegenerate matrices M ([LMRS92]). In this work, we further extend these
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results to an even larger class of matrices M. Specifically, we prove that r(z) is
a global error bound for Ry-matrices M. This class contains all these three other
classes ([CoPS92]). We give a completely different and simpler proof by using
Lemma 2.2.2. First we define the class of Ry-matrices ([CoPS92]).

Definition 2.2.1 An M € R™" is called an Ry-matriz if the LOP(M, 0) has

zero as its unique solution.

Theorem 2.2.1 Let M € IR™™ be an Ry-matriz. Then there exists T > 0 such

that for each z € IR™"
lz - Z(z)|| < 7r(z), (2.2.3)

where Z(z) is a closest solution of LCP(M, g) to = under the norm -1l

Proof. Assume that the theorem is false. Then for each integer k, there exists

an z* such that (2.2.3) is violated, i.e.
l2* — &(z*)|| > kr(z"),

where Z(z*) is a closest solution of LCP(M, q) to z*F under the norm | - ||. In

particular choose now a fixed solution Z such that
lz* — z|| > ||l=* — z(z*)|| > kr(z®). (2.2.4)

Since 7(z) is a local error bound, it follows by Lemma 2.2.2, there exist K > 0
and € > 0 such that r(zF) > ¢, for k > K. Otherwise, we would have for all
K > 0,¢ > 0, there exists some k > K such that r(z*) < e. This implies, because

r(z) is a local error bound, that

Hle - a(@)| > () 2 e ~ 3]
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where the first inequality follows from (2.2.4). This leads to the contradiction

T >1lask — oo, where 7 is defined in (2.2.2). Hence the right hand side of

(2.2.4) goes to infinity as k goes to infinity and so does the left hand side since it
is bigger. Therefore, ||z¥|| goes to infinity. Without loss of generality, let

lm =
e [l

Note that ||s|| = 1. Divide both sides of (2.2.4) by [|z*|| and let k goes to infinity

to obtain
kE__ =
k—oo  ||zk||
k
> lim k T-(ik-)-
k—oo ||z
zF  Mz*+q
= lim k% || min{ HI
= NG

= lim k * || min{s, M's}||.
k—o00 ’ ’
Therefore min{s, Ms} = 0. This is equivalent to the LCP(M, 0) having a nonzero
solution s. This contradicts the assumption that M € Ry. Q.E.D.

Previous results of [Pa86], [MaPa90], [LMRS92] follow as a corollary of Theo-
rem 2.2.1.

Corollary 2.2.1 Let M € IR™" be nondegenerate. Then there exists a T > 0

such that for any x € IR"
lz — 2(z)|| < 7r(2),

where Z(x) is a closest solution of LCP(M, g) to = under the norm -1l

Proof. Since each nondegenerate matrix is a Ro-matrix ([CoPS92]), the proof

follows from Theorem 2.2.1. Q.E.D.
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2.3 Variations of r(z) and s(z) as Global Error
Bounds

In this section, we discuss variations of s(z) and 7(z) as global bounds on the
distance between points z € IR® and the solution set of LCP(M, q) for wider
classes of matrices M. It stated in the previous section that r(x) by itself fails
to provide a global error bound for LCP(M, q) with a positive semi-definite M.
Therefore, other types of residuals are required in order to obtain a global error
bound for LCP(M, q) with positive semi-definite M. The residual s(z) is one
such residual. Mangasarian and Shiau ([MaS86]) established the first global error
bound for LCP(M, q) with a positive semi-definite M. This result is summarized

in the following lemma which will be used throughout this thesis.

Lemma 2.3.1 [MaS86] [Ma90] Let M € IR™" be positive semi-definite, then

there ezists a constant v > 0 such that
e ~ 5@ < ¥(s(@) +5(2)?), (2.3.1)

where Z(z) s a closest solution of LCP(M, g) to « under the norm -1 In
particular, if the LCP (M, q) has a nondegenerate solution, that isZ+MZ+q >0

for some solution T, then we have the simpler error bound
llz — 2(@)l < 7s(z)

Proof. See [MaS86] and [Ma90]. Q.E.D.

Remark. Lemma 2.3.1 fails to hold if we delete the term s(z)"/? in (2.3.1).
See Example 2.9 in [MaS86]. The residual s(z) alone provides a global error bound

only if M is positive semi-definite and LCP(M, q) has a nondegenerate solution.
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On the other hand, s(z)*/? does not provide an error bound by itself as can be

seen from the following example. Let

) )

It is easy to see that Z = (0, 0) is the unique solution for this LCP where M
is positive semi-definite. Now let sequence ¢ = (k, 0), k = 1,2,.... Then

Mz* + g = (1, 0), and under the 1-norm
s(z*) = ||(~Ma* — g, —a*, 2" (Mz" +q)+l| = F.

So

.k

The following theorem shows that even though r(z) and s(z) individually fail
to be an error bound for the positive semi-definite case, their sum does indeed
provide a new global error bound. Moreover, the following theorem says that
r(z) + s(z) covers no fewer classes of matrices M than s(z) + s(z)? does as a
global error bound for LCP(M, q), even though s(z) + s(z)? £ c(r(z) + s(z)) for

some constant ¢ > 0 and all z € IR™.

Theorem 2.3.1 Let the residual s(z) +5(z)? be a global error bound for LCP(M,

q) for some M, that is, there ezists a T such that
1
Iz — #(@)|| < 7(s(z) + s(2)7),

where 7(z) is a closest solution of LCP(M, g) to x under the norm || - ||. Then

there ezists a constant T > 0 such that

llz — z(z)|| < 7(r(z) + s(z)). (2.3.2)
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Proof. By Lemma 2.2.2, there exist ¢ > 0 and 7; > 0 such that if r(z) <

r(z) + s(z) < ¢, then
Iz — Z(2)|| < Tur(z) < mu(r(z) + 5(2))-

Else if 7(z) + s(z) > €, consider the following two cases:
Case 1 r(z) > s(z). In this case 7(z) > €/2, and it is easy to see r(z) >
[(¢/2)s(z)]/? together with s(z) + s(z)? being a global error bound. Then it
follows that
r(s(z) + 5(2)?)
7(s(z) + (2/€)*r(2))
rmaz{1,(2/€)*}(s(z) + r(z))
7(s(z) + r(2));
where Z(z) is defined as above and 7 = max{r, 7(1 + (2/€)/%)}.

Case 2 r(z) < s(z), it follows that s(z) > €/2, so s(z) = [(¢/2)s(z)]*/?, hence,

|z - z()|

IAN A IA

IN

lz— 2@l < 7(s(z) + s(z)?)
7(s(z) + (2/€)"*s(x))
75(x)
7(r(z) + 5(z)).

Therefore (2.3.2) holds for all z € R". Q.E.D.

N IA

IA

Corollary 2.3.1 Let M € IR™" be positive semi-definite. Then r(z) + s(z) is a
global error bound for LCP(M, g).

Proof. By Lemma 2.3.1 and Theorem 2.3.1, the corollary follows immediately.
In fact, there are cases of LCP where r(z) + 5(z) is a global error bound, but

s(z) + s(z)? is not.
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Theorem 2.3.2 The residual 7(z) +s(x) is a global error bound for a wider class

of LCPs than the residual s(z) + s(z)?.

Proof. By Theorem 2.3.1, it is sufficient to prove that there is an LCP(M, q)
for which r(z) + s(z) is a global error bound, but s(z) + s(z)? is not. Let

010
M=1000}|, q=
0 01

o O O

The solution set X of LCP(M, q) is {z | 21 = 23 = 0,22 2 0, or 3 = T3 =
0,7, > 0}. First we prove that r(z) + s(z) is a global error bound for this LCP.
By computing the 7(z) and ||z — Z(z)]|, it follows that

ri(z) = | min{z, Mz} = (min{z, 2o })? + (—x0)5 + T3,

Iz — 2@)|)} = min{z} + (—22)} + 23, (—z1)2 + 25 + 73} (2.3.3)
First consider z; < zy. Obviously
r*(z) = 22 + (—z2)% + 73,
Furthermore,

If zo0>2:>0: |lz— a‘:(m)!]% = min{w% + i zh+ 73} < T+ T3 = r(z)?%
I 2,020 ||z —2@)|}=min{s? + 23,2} + ) + o} <o +af < (@)
If 0>z>11: |lz— :E(:c)ll% = min{w% + i+ w%,x% + 22+ i} = r(a:)z.

Hence for the these cases above

Iz - 2()|I* < r*(2)-
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For the case where z; > zo, (2.3.3) gives
r2(z) = 23 + (—22)’ + 23
and
f 3y > >0: ||z —2()|3 = min{z} + 23,23 + 22} < 22 + 13 = r(z)’;
I 7,>0>3: |z—z(@)|}=min{z] + 2%+ 22,75 + a3} < 75+ 2f < r(z)%
I 0>a >a0: ||z— &)= min{z} +2;+ 22,22 + 73 + 33} < r(z)’.
Hence r(z) + s(z) is a global error bound for this LCP. On the other hand, take
oF = (—k™*, k2, k1), then Mz* +¢ = (k2,0,k7') and it follows that
S(xk) = ”('—ka — 4, ﬂxkaxk(Mmk + Q))+”2 = k~4
Iz — 2@ = |F4E 2 > kT
Hence s(z) + s(z)? is not an error bound for this LCP. Q.E.D.

Remark. Both error bounds (2.3.1) and (2.3.2) fail to hold for indefinite

symmetric M as can be seen from the following example.

Let
01 -1
M = , 4= :
10 0
It is easy to see that the LCP(M, q) has the solution set X ={(z1, z2) | 51 =

0, z» > 1}. Take the sequence z* = (k,1/k),k = 1,2,..., then Mz* +¢
(1/k —1,k), and

¥ — 2(@)ll. = [I(k, 1/k) = (0, Dll2,

s(@) = |(~1/k+1, —k, =k, =1/k, 1= k-+1)4
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= |I(=1/k+1, 2= k)l

r(z*) = |min{(k,1/k), (1/k =1, K} =1Q1/k =1, /)]

It is easy to see that the distance between z¥ and the solution set goes to the
infinity, but both s(z*) + s3(z*) and r(z*) + s(z*) remain bounded as k goes to
the infinity.

Both residuals s(m)+s(x)% and r(z)+s(z) are global error bounds for LCP(M,
q) with positive semi-definite M. By Theorem 2.2.1, (z) + s(z) is a global error
bound for Ry-matrices. The following theorem proves that this is also true for
s(x) + s(z)z. Thus this theorem gives another class of matrices for which the

error bound of Mangasarian and Shiau ([MaS86]) holds besides the semidefinite

case.

Theorem 2.3.3 Let M € IR™*" be an Ro-matriz. Then there ezists a positive o

such that
|z — ()| < o(s(z) + 5(z)?), (2.3.4)

where Z(z) is a closest solution to T under the norm -1l

Proof. Assume that the theorem is false. Then for each integer k, there exists

an zF such that (2.3.4) is violated, i.e.
ot — 2(a)|| > k(s(a*) + s(z*)?),

where #(z*) is a closest solution of LCP(M, q) to z* under the norm || - ||.

Case 1. ||z¥|| is unbounded. Without loss of generality, let

li _fi, _
e P
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Note that ||s|| = 1. By taking a fixed solution Z as Z(z"), it follows that
z* — 2| > ||z* — 2(z*)] > k(s(z*) + s(z¥)?). (2.3.5)

Dividing by ||z*|| and letting & go to infinity give

_|lzF - g
1 = lim -
k—oo  ||zF||
: s(z*) + 57 (")
> lim k 2.3.6
B ) (23.6)
Therefore 1
k 1o k
lim s(z )+k.92(:1: ) _o,
k—00 llz* ||

otherwise (2.3.6) would be violated. By using the definition of s(z) and taking

the limit of the above expression, it follows that
k M k 1
(=8, ~Ms, im “E 2Dy 4 (ms)f =
koo [|zF|
Therefore s > 0, Ms > 0, sMs = 0. This contradicts the assumption that M is

an Ry-matrix.

Case 2. ||z*| is bounded. The left hand side of (2.3.5) is finite when k goes to
infinity, thus s(z*) goes to zero. Without loss of generality, let {z*} converge to
z* and s(z*) = 0. Therefore z* is a solution. On the other hand, since r(z) is a
local error bound for each LCP(M, q) by Lemma 2.2.2, there exist positive K, €
and 7 such that when k£ > K, 7(z*) < € holds. Therefore for k > K

|z* — 2(z®)|| < 77(z). (2.3.7)
Let I = {z | z; > (Mz + q);}. We now estimate r(z) as follows

r(z) = llz— [z - Mz ~gllh
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= YoMz +q)l + ) |oil

i€l gl
= S (Mz+qul+ Y, |[(Mz+q)l
i€l (Mz+q); >0 i€l,(Mz+q); <0
+ Y ml+ > |m
1@1,x;>0 i€1,x;<0
< S Mzl 4+ Y ml+H (-7 —Mz - q)4x
iel,(Mz+q)i>0 i¢1,2;>0
< nfl Y Mz4qi+ Y #E+ll(-z, —Mz—q):lh
iel(Mz+g);>0 iglz;>0
< n%[ > z;(Mz+q)i+ >, :cz-(.M:c—l—q)i]%
iel (Mz+q); >0 i¢l,z; >0
+l(~z, —Mz - @)+l
T
< nil Y m(Mz 4+l + (-3, —Mz - g)+ll
zi(Ma:—{-q),-ZO
= n%[ Z zi(Mz +q); + Z z;(Mz + q);
zi(Mz4q); >0 z;(Mz+q); <0
— S z(Mz+q)lE +(—z, —Mz—q)+lh
zi(Mz+q): <0
= nis(Mz+q)— Y z(Mz+q)l* +[I(-z, ~Mz - )+
z;(Mz+q); <0
1
< nr(eMz+9)s — Y, zm(Mz+q)l? +||[(-z, —Mz - q)+|h
z;(Mz+q)i<0
1
< mdfeMz+)i+( X |m(Mz+q)l)?] (2.3.8)
z;(Mz+q); <0
+|(=z, =Mz - g)+[lx
< @) +s@H+ (Y |m(Mz+ ). (2.3.9)
z;(Mz+q);<0

By combining (2.3.5), (2.3.7) and (2.3.8), it follows that
B(s(a*) + s(a")?) < |la* — 3(z)]| < rr(a®)

< mdE) +s@) (2 |:vf(Mw’“+q>,-l>%}. (2.3.10)

af (MzF4q);<0
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But
(k= rn)ll(=a*, —Ma* — @)l < (k- mnd)(s(ah) +5()?)  (23.11)
Combining (2.3.10) and (2.3.11) gives
(k- nd)l|(—at, —Mz* — @)l <nd( X |oF(MaF +anl)*.
ok (Ma*+q)i<0
Since o* and Maz* + g are bounded, ie. |zf| < N and [(Mz® + q)i < N,

i = 1,...,n for some fixed N > 0, take (k — i) > r(nN)z and the above

inequality fails to hold. Therefore, we get the contradiction. Q.E.D.

2.4 Comparisons Among Different Error Resid-

uals

In this section, we establish relationships among different error residuals. We note
that we have not been able to provide a global error bound for an indefinite matrix
M which is not of the type (1 + ||z||)e(z) where e(z) = 0 on the solution set. We
exhibit all known error bounds in a useful table format given in Table 1.1. First

we define some other error residuals.

Definition 2.4.1 Let M be in IR™". Define the following error residuals for
LCP(M, q)
t(z) = |(~Mz — ¢, ~2)+, 3_(@(Mz + @)+, (2.4.1)

i=1

o(@) = (Mo — g, —)er > lzsMz + ol

i=1
It is obvious that s(z) < t(z) < v(z). In addition we find a relationship

between (z) and t(z) as can be seen from the following proposition.
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Proposition 2.4.1 Let || -|| denote the I-norm in the definition of r(z) and t(z).

Then for any z € IR",

r(z) < (-2, —Mz - @)+llr +[n i(wi(MfC + Q)i>+]1/2-

i=1

Consequently,

r(z) < n/?(t(z) + t(z)"/?) (2.4.2)

Proof. Let I = {i | z; > (Mz + q);}, then

r(z)

Q.E.D.

IA

IA

IA

IA

|z~ [z — Mz — gl+[lx
S |(Mz + )il + D |l

i€l igl
S Mzt + > |(Mz + q)il
iel (Mz+q); >0 iel (Mz+q);<0 '
gl z; >0 i¢l,x;<0
S |(Mz+qul+ Y sl -z —Mz =)+l
iel,(Mz+q):20 i@l,x;>0
1 — 1
DY (Mz+oi+ Y aflF (-2, Mz - gl
i€l ,(Ma+g)i20 igl,2; 20
1 i1
n?| > (z:(Mz + q)i)+ + > (zi(Mz + 0)i)+|?
i€I,(Mz+q)i>0 i@l >0

H(~z, —Mz —g)+lh
n3[> (@(Me + 0)i)4 )7 + (=2, —Mz = @)+l

g=1

Remark. The converse of Proposition 2.4.1 is not true, i.e. the residual 7(z)

cannot bound the residual t(z) + t(m)‘é as the following example shows. In fact,

the following example shows that r(z) cannot bound even the smaller residual

s(z) + s(z)z. Let

it} L
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Tt is easy to see that & = (0, 0) is the unique solution for the LCP. Now let the
sequence zF = (—4, 0), k=1,2,.... Then Mz* + ¢ = zF and under the 1-norm

, 1
r(zk) = ||z* — (3% — Mz* — ¢)1|h = E’

1 1
s(@*) = |(~Ma* — g, —zF, o*(Ma* + )4l =27 + 55
It follows that
s(z*) + s(z*)2
T (@)

. 1 1
= ,CILIEO2+-]-€-+(2]€+1)2
= 00
Remark. Although from Proposition 2.4.1, 7(z) can be bounded by ¢(z) +

¢(z)?, it can not be bounded by the smaller residual s(z) + s(z)? as the following

example implies. Let

010 0
M=100 0], g=10
001 0

The solution set X of LCP(M, q)is {z | z1 =23 =0,79 2 0 01 2 = 23 = 0,21 2
0}. Take z* = (—k~*, k%, k"), then MzF 4+ q = (k?,0,k7!) and

r(a*) = ||lmin{z*, Ma* + g}|| = |(=k7%,0,&7)]

but
s(z¥) = ||(~Mz* — g, —z*,z*(Mz* + g)|| = k™

Therefore there does not exist a constant 7 such that

r(z¥) < 7(s(z¥) + s(wk)%).
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This example even gives a further implication regarding s(z*) + s(z*)3, that

is, it is not a local error bound for LCP(M, q). This is so because
|z — z(z*)l2 = (=K%, 0,E7 Iz

which goes to zero slower than s(z*) + s(z*)%. In addition, since r(z*) goes to
zero, we know that even locally s(z*) + s(z¥)? cannot bound (z*).

Remark. There is another interesting comparison between r(z) and s(z) +
s(m)%, that is, if 7(z) goes to zero, then the distance between z and the solution
set of an LCP(M, q) goes to zero. This is because r(z) is a local error bound.
However, as the following example indicates, although s(z) + s(z)7 goes to zero,

the distance goes to infinity. Let

The LCP(M, q) has unique solution = (0, 0). Take 2 = (k(1+¢)(2+ 1), 1+1),
then Mat g = (-1~ F+ 11+ b+ D)= (24 )
H:ck ~Z|| — oo (k — 00).
r(z®) = | min{zF, Mz* + ¢}||
1 1
= ——.1 o
214 Dy
- 1 (k- 00).
s(z¥) = |(~Mz* - g,—z*,a*(M2" + )|
1 1 1 1 1
- ”('];7 -2 - 'E) '—k(l + "];)(2 + "]'{;_)7 ~1- Ea

e hes D+ ek
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Now we consider another residual defined as p(z) := ||(—z, —Mz — @)+[| +

[nyr(z:(Mz + g)i)+]2. Under the 1-norm it follows from the Lemma 2.4.1 that
r(z) < p(z) < n¥(t(z) + t(z)?). (2.4.3)

Hence p(x) is a residual for any LCP(M, q) and it is a local error bound since it
bounds r(x). However it does not provide a global error bound for an LCP (2.1.1)

for a positive semi-definite M as can be seen from the following example. Let

0 1 1
M = , 4=
{-—1 0} [1

M is positive semi-definite since M -+M T = () and the LCP has the unique solution

z = (0,0). Let zF = (0, k). Under 1-norm,

p(s") = (=2, Mz — )|+ [nzf;(mg(w Ll

[S1E

= (n(0, k)(k+1, 1))
= Vnk.

1t follows that

E_ =
lim Iz —il;—u
koo p(zk
k
= lim ——
k—oo \/nk
= -0

We also point out that we cannot reverse the inequality sign in (2.4.3) even if we
are permitted to multiply r(z) and p(z) by constants.
So far, we have studied several error residuals such as p(z), (), s(z) and t(z).

We have explored a number of relationships among them and by combining them,
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we have obtained new error bounds such as r(z) + s(z) and t(z) + t(z)z. Now
we further ask: What are necessary conditions for some residual to be an error
bound? In other words: How big should a residual be to become an error bound?

The following theorem is simple, but essential for our answer.
Theorem 2.4.1 Let M € R™" and ¢ =2+ ||M||, then

r(z) < cl|z — Z(=@)||, (2.4.4)
where Z(z) is a closest solution to z under norm -l

Proof. By the definition of r(z), it follows that

|z~ (z — Mz — g)+]
|z — (& — M3 — g)4 — &(x) + (3(z) — ME(z) = 0)+|

r(x)

< e - 2@ + Iz — Mz — )4 — (#(z) — ME(2) ~ )l
< o - 2@l + @ - Mz — q) = (2(z) — Mz(z) = 9

< o - 2@l + Iz — 2(@)]| + | Mz — Mz(z)l|

< cllz—2(2)l

Q.E.D.

Theorem 2.4.1 implies that the order of the distance from any point z to the
solution set X of any LCP(M, q) is at least as big as 7(z). Therefore, in order to
be an error bound, a residual must bound 7(z). In addition, since r(z) is a local
bound by Lemma 2.2.2, locally r(z) is equivalent to the distance to the solution
set. So, this distance is precisely characterized by r(z) at least locally. This is a
very useful result because r(z), which is a computable quantity, can be used as
an alterative for the non-computable distance to the solution set. For other types

of residuals we discussed, Theorem 2.4.1 fails to hold unfortunately.
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We point out that all these error residuals we have studied are not good enough
to globally bound the distance from any point T to the solution set X of any

LCP(M, q). Consider the following example. Let

el

It is easy to see that the LCP(M, q) has the unique solution Z = (0, 0). Take the
sequence z¥ = (k,1—1/k),k = 1,2,..., then MzF +¢q= (1/k,2 — 1/k) and

a3l
k—oo v(z) + v(z)/?
o Ik, 1~ DI
s (0,0, 1+ (1 — 52 — DI+ 1(0,0,1+ (1 = £)2— eIV

This example shows that Theorem 2.3.1 is false for an indefinite matrix M. It is
not clear to what extent we can extend Theorem 2.3.1. For example, we are not
able to show that it holds even for an indefinite symmetric matrix M, nor can we
give a counter-example.

Although all these error residuals fail to provide a global error for an arbitrary
LCP, there is a way to globalize a local error bound as can be seen in the following

theorem.

Theorem 2.4.2 Let M € IR™" and I(z) be any local error bound. Then, there

exists a positive T such that
|z — 2()]| < 7(1+ llzl)i(=), (2.4.5)

where T(zx) is a closest solution from x to the solution set of LCP(M, q)
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Proof. Assume that the theorem is false. then for each k, there exists an z*

such that (2.4.5) is violated, i.e.
lz* — 7(z*)|| > k(L + [|l2*[)U(z"),

where Z(z") is a closest solution from % to the solution set of LCP(M, q). Then

for a fixed solution Z, we have
2% = 7| > lla* — 22| 2 k(L + |25 D). (2.4.6)

Since I(z) is a local error bound by Lemma 2.2.2, there exist K > 0 and € > 0

such that I(z*) > ¢, for kK > K (See proof of Theorem 2.2.1). Hence the right

hand side above goes to infinity as k goes to infinity and so does the left hand side

since it is bigger. Therefore, ||z*|| goes to infinity. Without loss of generality, let
o

AT

and s # 0 since ||s|| = 1. Divide both sides of (2.4.6) by ||z*|| and let k goes to
infinity, then it follows that

E_ =
I |
k—oo |||

k k
i D
ko0 el

= klim kl(z*)

= lim ke.
k—r00

We get contradiction since the left hand side is finite. Therefore, Theorem 2.4.2
holds. Q.E.D.

Remark. Note that in (2.4.5) if z is far away from the origin, then the error

bound value increases, which could have nothing to do with the actual distance
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between z and the solution set of an LCP. This is a major drawback of this type

of global error bounds. There are similar cases in [Ma91].

Now, we summarize our error bound relationships in Tablel.1l where the fol-

lowing definition have been used:

r(z) = |z (z- Mz -k
s(z) = [(-Mz—q,—z,5(Mz +q))+
o) = (M~ g, =2)s, Yas(Ma+ D0
psd := positive semi—deﬁnzi;la M
pd := positive definite M
R, := M such that zero is only solution for LCP(M, 0).

We also note that there exist positive 71, 7o and ¢ such that:

r(z)

s(z) + s(x)?

cllz - z(z)|

IA

1.

71(#(z) + t(z)?)
7(t() + t(z) )
v(z).

IN

r(z) + s(z)?
t(x)

IA

IA

Table 1.1. Validity of Various Residuals
as Local and Global Error Bounds for LCP

Me B> | r(@) | s(z)+s(@)} | r(@) +s(@) | t(z) +t(z)?
arbitrary local | not local local local
psd local | global global global
Ry global | global global global
pd global | global global global
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Tt is also interesting to note that the residual 7(x)+s(x), which can be thought
of as the average of r(z) and s(z), covers most cases without recourse to the
irrational square root residual. This in a certain sense can be thought of as the

best residual.



Chapter 3

Error Bounds for the Strongly
Monotone Nonlinear

Complementarity Problem

(NCP)

3.1 Introduction

In this chapter, we search for new error bounds for nonlinear complementarity
problems. In general it is very difficult to establish even a local error bound for
nonlinear complementarity problems. In fact all error residuals used for the linear
complementarity problem in Chapter 2 fail to hold even as local error bounds for
the nonlinear complementarity problem. The only case where some of these resid-
uals work is when the nonlinear complementarity problems is strongly monotone.

We establish this result in the next section.

31
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Consider the nonlinear complementarity problem (NCP for short) of finding

an z in IR™ such that
F(z) >0, z2>0, zF(z) =0, (3.1.1)

where F(z) is a function from R" to IR". The LGP (2.1.1) obtains when F(z) =
Mz +g. We now define residuals for the NCP that correspond to ones defined for

the LCP as follows:
ra) = llz— (@ - F@)l,
sz) = l(-z —F(z), 2F @)l
te) = -z, ~F(@), DwRE)
w@) = |l(~z, —F(), }Z;lwiﬁ;(w)m (3.1.2)

Note that Z is a solution of (3.1.1) if and only if any of the residuals above is equal

to zero. An NCP is strongly monotone if there exists a constant ¢ > 0 such that

for any z, y € IR"
(F(z) — F@))(z —y) > cllz —yl’ (3.1.3)

3.2 A New Error Bound for Strongly Monotone
NCP

In this section, we establish that the residual r(z) is a global error bound for the

strongly monotone NCP. Here is the main theorem.

Theorem 3.2.1 Let the NCP (3.1.1) be strongly monotone with constant ¢ > 0.

Assume that F(z) is Lipschitz continuous with constant L >0, that is

|F(z) - Fy)ll < Lllz - yll, vz, y € B"
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Then Vz € IR™
' 14 2L

c

[l (@)1l (3.2.1)

lz —z|| <

where T is the unique solution of the NCP.

Proof. For a fixed z, the point p(z) := (z — F(z))+ is a solution of the related
LCP
F(p):==p-z+F(z)>0, p>0, pF(p)=0.

It follows that

(p(z) = 2)(F(p(z)) - F(Z))
= p(z)F(p(z)) - p(z)F(z) — 2F(p(z)) + ZF ()
= —p(e)F(z) - ZF(p(z))

< 0.

By the definition F(p(z)) = p(z) — = + F(z), it follows from the inequality above

that

0 > (p(z) - 2)(p(z) — z) + (p(z) — 2)(F(2) — F(2))
= (p(z) - &)(p(z) - 2) + (p(z) — =+ & — T)(F(z) - F(2))
= (p(z) — 2)(p(z) — z) + (p(z) — ©)(F(2) — F(2))
+(z - 2)(F(z) - F(2))
= (p(z) — 2)(p(z) — T + F(z) — F(2)) + (& — 2)(F(2) — F(2))
(p(z) — z)(p(z) — T + F(z) - F(2)) +cllz — Z|I* (3.2.2)

Vv

Since ||F(z) — F(2)|| < L||z — 7|, it follows that

Ip(z) = 2l = llp(z) - p(@)]|




34

I(z = F(z))+ — (& - F(2))+l]

1

< lz - Fz) - (@ - F(@))l

< lw =3l + |1F(z) - F(@))l

< |z -2l + Lilz - |

< (1+L)||lz — z|| (3.2.3)

By applying Cauchy-Schwartz to (3.2.2), we have

dz—3alP < llz - p@l(lp() - 7l + [ F(e) - F@))
< r(@)((1+ D)l -5l +Lie — ) By (3:23)
< (1+2L)r(z)|jz — Z||
Therefore,
o - 3l < =-2E0(a).
Q.E.D.

We have a similar relationship between 7(z) and ¢(z) to that for the the corre-

sponding residuals for the LCP, Proposition 2.4.1.

Proposition 3.2.1 Let||-|| denote the I-norm in the definition of r(z) and t(z).
Then for any z € IR",

r(@) < (=2, ~F (@)l + [nle<xiﬂ<m>>+1%.
Consequently,
r(z) < n*?(t(z) + t(x)Y?) (3.2.4)

Proof. The proof is similar to that of Lemma 2.4.1.
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Theorem 3.2.2 Under the assumptions of Theorem 3.2.1, there exists some con-
stant o > 0 such that
lz — 3| < o(t(z) + 1(2)?).

where T is the unique solution of the NCP.

Proof. The proof follows directly from Theorem 3.2.1 and Lemma 3.2.1.
An important feature of the residual r(z) is that it is also a lower bound to the
distance between any point = and the solution set of the NCP (3.1.1), provided

that F'(x) is Lipschitz continuous. This is characterized in the following theorem.

Theorem 3.2.3 Let F' : IR* — IR™ be Lipschitz continuous with constant L.
Assume that the NCP (8.1.1) has a solution. Then for any solution T of the NCP

(3.1.1),
r(z) < 2+ L)||z — z||. (3.2.5)

where || - || is a monotonic norm on IR™.
Proof. By the definition of r(z), it follows
r(@) < lz— (@ — F(2))+l]
= flz—(z - F(2))+ — %+ (T — F(Z))+ll

lle =zl + [(z = F(2))+ — (& - F(@)+]|
lz =zl + llz — 2| + || F(z) - F(@)]

7AN

IA

< @+ Dlz-z|.

Q.E.D.

Remark. By Theorems 3.2.1 and 3.2.3, we have that the distance ||z — Z||

is equivalent to r(z) in the sense that r(z) can bound ||z — Z|| from both above
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and below. In other words, 7(z) is a very good characterization of the distance
|z — z||. More importantly, it is easy to compute for any z. So, it can be used
to measure whether an approximate solution is a good solution and thus r(z) can
serve as a termination criteria for an algorithm. '

It is interesting that without the Lipschitz continuity of F(z), the residual
s(z) + s(z)? provides a global error bound for strongly monotone nonlinear com-
plementarity problems. But this is not the case for r(z) in Theorem 3.2.1. The
following theorem gives this result precisely which extends the result of [MaS86]

to the NCP for the strongly monotone case.

Theorem 3.2.4 Let F : IR® — IR™ be strongly monotone. Assume that the NCP

(8.1.1) has a solution T which is unique. Then there exists a positive A such that
llz — 2| < A(s(x) + s(z)). (3.2.6)
where the norm is a monotonic norm.

Proof. Assume that the theorem is false. Then for each integer k, there

exists an z* such that
2% — || > k(s(z®) + s(z*)?). (3.2.7)

Case 1. Let {z*} be unbounded. Then dividing the above inequality by ||z*||
and letting k go to infinity gives

E_ =~
Ry ol
#oe [JoF]

k kY3
Y CCVEE CID)
oo [l2*|
.. s(zF)
> lim k——r
koo ||

— L Kl ¢ F(z¥) o* F(z)
S v Py R P

(3.2.8)
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Hence
¢ F(z*) 2zFF(z¥)
1> lim k(- —x, — , . 3.2.9
Ll Py A T P R (3:2:9)
Therefore, limy_, oo -ﬂ-ﬁ-',:ﬂ < 0, limg 00 -%5”-k%2 < 0. But since Z > 0 and F(Z) >
0, we have
k(o k B kY L =T k(R 5 ak
lim T Fix ) > lim o*F(zF) + ZF(Z) ka: F(z) — ZF(z%)
k—oo ||zF|| k—00 [|z¥|
(F(z*) — F(%))(z* — %)
- l|z*||
cllz* — z||?
llz*|
= 0.

This contradicts (3.2.9)
Case 2. Let ||z*|| be bounded. Without loss of generality, let {z*} converge to
%. Since the left hand side of (3.2.7) is bounded, so s(z*) goes to zero. Therefore

s(Z) = 0, and hence Z is a solution of the NCP. Since the NCP has a unique

solution, Z = #. Again from (3.2.7),

ok — &l > hs(a")?

Hl(—a*, ~F(a), 2" F(a")).+ |

= k||(—2*,—F(z*), " F(z*) + TF(Z) - ZF(z*) — 2" F(z)

+2F(z*) + o F(z)) |2
_ K|(~2*, —F(a"), (F(z*) — F(@))(a* — 7) + F(a*) + 2" F(3))+] 2
K=, —F(z), cl|z* — 3|2 + ZF(a") + 2" F(2))]|?

v

Hence

|z* — z|| > k|| (=, ~F(z"), cl|z* — 7||* + TF (z") + FF@E)LE. (3.2.10)
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We prove that this inequality cannot hold when £ is sufficiently large, and hence

we have a contradiction. In fact, if ZF(z*) + z*F(Z));+ < —£||z* — %||?, then

Slle" — 2l < ~zF (") — 2" F(2))4
< (—2")4F(@) + (-F(ah)42
< |[(==F, =F (") liz, F @)
where || - |7 is the dual norm to || - ||. It is easy to see that |z, F(z)||r > 0. Hence

from (3.2.10)

Iz — 2|2 > E*l(—=*,—F ()|l
kclje* — ||?
2llz, F(z)|
Hence
k2c

1> ——F—7-
2||z, F(z)||

This inequality fails to hold for & sufficiently large.
Suppose now that ZF(z*) + z*F(Z))4 > —£||z* — ||?, then by (3.2.10)

Iz -zl > kl|(~z*,—F(z8), cla — 2|’ + ZF(a*) + 5" F(3))])7
k|l (cllz® — Z||? + ZF(z*) + o*F ()12

- c - 1
Bll(clia® — all* = Slla* — 21)+2

k5l .

Hence when k > \/g, this inequality fails to hold. Therefore we have a contradic-
tion. Q.E.D.

Vv

Y



Chapter 4

The Implicit Lagrangians as a
New Error Bound for the Linear
and Nonlinear Complementarity

Problem

4.1 The Implicit Lagrangian M (z, @)

Recently Mangasarian and Solodov [MaS92] established the following interesting

relation between each NCP (3.1.1) and the following implicit Lagrangian function

for (3.1.1)
M(z,a) = 20aF(2)+||(~aF (@) + o) - [l=]’

+(—az + F(@))+|” = | F()I, (4.1.1)

where || - || denotes the 2-norm in this chapter and « is some fixed positive real

number. In particular, for each a > 1, they proved that the implicit Lagrangian

39
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function M(z,a) >0, Yz € R™ and any point z solves NCP (3.1.1) if and only if
M(z,a) = 0. Therefore we can think of M (z, @) as a residual. More recently, Luo
[LMRS92] proved that if F(z) is linear, that is F° (r) = Mz + g, then (M(z, a))?
does indeed provide a local error bound for the distance between any point z and
the solution set of the LCP (2.1.1), that is, there exist some constants £ > 0 and

& > 0 such that
|z — z(z)|| < K(M(z, a))?, Vz whenever M(z,a) <6, (4.1.2)

where Z(z) is an orthogonal projection of z on the solution set of the LCP (2.1.1).

In this chapter we consider all residuals defined in (3.1.2) including M (z, a).
We want to investigate the relationships between the residual M(z,a) and those
known residuals such as r(z), s(z), t(z) and v(z). As a result, we can establish
error bound results for the residual (M(z, @))z. In the next section we prove
an equivalence relationship between the residuals (M (z,0))7 and r(z). In the
last section of this chapter, the restricted implicit Lagrangian N(z, ) ([Fuk92],
[MaS92]) is compared with the known error residuals. Consequently, error bound

results for N(z, @) are obtained.

4.2 An Equivalence Relation between r(z) and

1

(M(z,a))?
We begin with a theorem that establishes a precise inequality relation between
r(z) and (M(z,a))z.
Theorem 4.2.1 Let F : R* — IR® be any function. Then for each a > 1, the
following relation holds.

2(a — Dr(z)* < M(z,0) < 20(a - r(z)?, (4.2.1)
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Proof. Let

M;(z, ) == 20z;Fi(z) + (—aFy(z) + )} - z? + (—az; + Fy(z))L — Fy(z)®

and
ri(z) = (z — (z — F(z))+)i = min{z;, Fi(z)}.
Then
M(z, o) = ;M(m @)
and

r(z)? = z:n(mf

So, in order to prove (4.2.1), it is sufficient to show that
2(a — 1)ri(z)? < My(z, ) < 20(a— Dry(z)?.

For convenience, let I = {i | z; > aFy(z)} and J = {j | Fj(z) > az;} while I

and J denote the complements of I and J, respectively. Notice that z; Fy(z) =
min{z;, Fy(z)} maz{z;, F(z)}. Consider the following four cases:
Case 1: i € InJ. It follows that
aFi(z) > z;, az; > Fi(z).
= o?F(z) > az; > Fi(z).
= (! —1)Fy(z) > 0.

= E(iL‘) >0, z; > 0.
We also have that

7;Fy(z) < amin{z?, F(z)?}, maz{z;, Fi(z)} < amin{z;, Fi(z)}.




Therefore,

On the other hand

M;(z, o)

Mi(z,0) = 2ozFi(z)— z? — Fi(z)?

Vv

2az;Fy(z) — 2z;F3(x) — (z: — Fy(x))?

IA

2ax;Fi(z) — 2z; Fy(z)

Il

2 — 1)z:Fi()

20(a — V)min{z?, Fi(z)’}
2a(a — 1)(min{z;, Fi(z)})*
2a(a — 1)ri(z)?

I VAN

i

20z;Fy(z) — 7} — Fi(z)’

20(z:Fy(z) — (minf{zi, Fi(@)D?) + 2a(min{z;, Fi(z)})*
—z} — Fi(z)?

samin{z;, Fi(z)}(maz{z:, Fi(z)} —min{zi, Fi(z)})
—z2 — Fy(z)* + 2a(min{z;, Fi(z)})?

omaz{z;, Fy(x)}(maz{z;, Fi(z)} — min{z;, Fi(z)})
_a? — Fy(z)? + 20r:(z)’

2(maz{zs, Fix)})? — 22:Fi() — o} — Fi(e)? + 20m(2)”
(maz{z:, Fi(z)})? - 22:Fi(z) — (min{zi, Fi(2)})”
+2ar(z)?

(z; — Fi(z))? — 2(min{z;, Fy(z)})? + 2ami(2)?
—2(min{z;, Fi(z)})’ + 20r;(z)?

2(a — Dri(z)>.

42
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Case 2: i € INJ. It follows that

We also have that

T; > aFy(z), Fi(z) > az;.
= ;> oFy(z) > o’z
= (1-a%)z;>0.

= z; <0, Fy(z) <0.

az:Fi(z) > (min{z:, Fy(z)})?, min{z:, Fi(z)} > amaz{z;, Fy(z)}.

Therefore

M;(z, @)

IA

A

20z Fy(z) + (az)? + (aFy(z))?

~2a(z;Fy(z) — (min{z;, Fi(z)})?) — 2a(min{z;, Fi(z)})’
+(az:)? + (aFi(2))"

—2amin{z;, Fi(z)}(maz{z;, Fi(z)} —min{z:, Fi(z)})
—2ary(z)? + (am:)? + (aFi(z))?

—20*maz{z;, Fi(z)}(maz{z;, Fi(z)} — min{z;, Fi(z)})
—2ary(z)? + (ax;)? + (aFi(z))?

—2(amaz{z;, Fi(z)})? + 20’z Fi(z) — 2ari(z)”

+(am:)? + (aFi(2))”

—(amaz{z;, Fi(z)})? + 20’z Fi(x) - 20r;(z)?
+(amin{z;, Fi(z)})’

—a?(z; — Fi(z))? + 2(amin{z;(z), Fy(2)})’ - 2ari(z)"
2(ari(z))? — 20r;(z)?

20(o — 1)r5(7)?




On the other hand

Mi(iﬂ, Oé)

[AVARE AV |

44

—2az;Fi(z) + (az:)? + (aFy(z))?
~205.’Ei.Fi(1II> -+ ZazwiFi(l') + 042(561- - FZ("E»Z
2(a — 1oz Fi(z)

2(a — 1)(min{z;, Fi(z)})*

2(a — 1)ri(z)*

Case3: i € I N J. Then it follows that

Therefore

On the other hand

z; > oFy(z), az; > Fi(z).
= z; + az; > aFi(z) + Fi(z).
= ;> Fi(z).

= 7(z) = Fi(x).

Mi(z,0) = (aFi2))’ - Fi(z)’

= (a? - Dry(z)?

< 2a(a - Dri(z)®

My(z,0) = (&2 = 1ri(z)*
> 2(a - 1)ri(z)’

Case 4: i € I N J. It follows that

aFi(z) > z;, Fi(z) > az;.
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= oF(z)+ F(z) > z; + az;.
= 71i(z) = ;.

Therefore

Mi(z,0) = (am)* -3

~ (&= ey

< 2a(a— 1)ri(z)*

On the other hand
Mi(z,0) = (o —1)ri(z)®
> 2(a— L)ri(z)’.
From the four cases above we conclude that

2o - 1)éri(w)2 < éMm, 0) < 2a(a— 1>$_Z:1n(w>2,

that is
2(a — )r(z)? < M(z,a) < 2a(a - 1)r(z)*.

Q.E.D.
From the theorem above and Theorem 2.2.2, the following theorem follows
immediately.
Theorem 4.2.2 Let F(z) = Mz +q for M € IR™". For each oo > 1, there exists
some constants k > 0 and § > 0 such that

|z — Z(2)|| < w(M(=z, a))%, whenever M(z, o) <6, (4.2.2)

where T(x) 1s an orthogonal projection of z on the solution set of the LCP (2.1.1).
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Proof. The proof follows directly from Theorem 2.2.2 and 4.2:.1. Q.E.D.

We now show that if F(z) is strongly monotone, then (M(z, a))? is a global
error bound for the NCP (3.1.1).

Theorem 4.2.3 Let F(z) be strongly monotone and Lipschitz continuous. Then

for each o > 1, there ezists a constant T > 0 such that
Iz — #(z)|| < T(M(z,0))?, (4.2.3)
where T is the unigue solution of the NCP (8.1.1).

Proof. The proof is easy to see by Theorem 3.2.1and 4.2.1. Q.E.D.

Finally Luo [LMRS92] indicated that (M’ (z, a))%, where the prime indicates
differentiation with respect to , is also a local error bound. In fact by a proof

similar to that of Theorem 4.2.1, we can further establish the following interesting

relation between M'(z, ) and r(z)

or(z)? < M'(z,0) < 20 (z)?

4.3 Relating the Restricted Implicit Lagrangian
to Other Error Residuals

When restricted to the nonnegative orthant, the implicit Lagrangian becomes the
restricted implicit Lagrangian ([MaS92], [Fuk92]) defined as follows
N(z,q) = 2azF(z) + ||(—aF(z) + )4 ||2 = [z (4.3.1)

In this section we establish relationships between N (z,) and known error resid-

uals over IR. As a result, we obtain error bound results for N(z, o).
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Theorem 4.3.1 Let F : IR® — IR™ be any function. Then for each oo > 1
ar(z)? < N(z,a), forz > 0. (4.3.2)

Proof. Let I = {i | z; > Fi(z)} and

Ni(z, @) = 2az;Fy(z) + (—aFi(z) + ;)2 — 33

ri(z) = 7 — (z; — Fi(2))+ = min{z;, F5(2)}.

Fori = 1,...,n, If i € I,z; > oFj(z). Since z; = 0, it is easy to see that

ri(x) = F;(z). Therefore,
Ni(z,0) = 2azFy(z) + (—aF(z) + ;)% — 7
= 2az;Fi(z) + (aF(z))? — 2az;Fi(z) + 7 — 2
= (aFi(z))’
= o(Fi(2))’

= aryz).
If i & I, aFy(z) > z; > 0. Therefore

Ni(z,0) = 2az;F(z) -z}

> 20x;Fy(z) - az; Fi(z)
= az;Fi(z)
> a(min{z;, Fi(z)})?

ary(z)?.

Hence, fori=1,...,n

ari(z)? < Ni(z,), forz >0.
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By summing both sides on ¢ from 1 to 7, (4.3.2) holds. Q.E.D.

The following error bound results involving N(z,a) are immediate conse-

quences of Theorem 4.3.1.

Corollary 4.3.1 Let F(z) = Mz+q for M € R™". For each a > 1, (N(z, a))%
is a local error bound for LCP(M, q) on the nonnegative orthant, i.e. there exist

positive € and T such that
llz — z(z)|| < 7(N(z, a))z, for N(z,a) <e 20,
where () is a closest solution to T under norm -1l

Proof. The proof follows directly from Theorem 4.3.1 and Lemma 2.2.2.
Q.E.D.

Corollary 4.3.2 Let F(z) = Mz +q for M € Ry. For each o > 1, (N(z, @) is

a global error bound for LCP(M,q) on the nonnegative orthant, i.e. there exists

positive T

|z — 2(@)l| < T(N(z, @))%, forz>0,

where £(z) is a closest solution to T under norm |-l

Proof. The proof follows directly from Theorem 4.3.1 and Theorem 2.2.1.
Q.E.D.

Corollary 4.3.3 Let F(z) be strongly monotone and Lipschitz continuous. As-
sume that 7 is the unique solution for NCP. Then (N(z, cu))";‘ is a global error

bound on the nonnegative orthant, i.e. there exists positive A such that

Iz — 3| < AN (z,0))?, z>0.
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Proof. The proof follows directly from Theorem 4.3.1 and Theorem 3.2.1.
Q.E.D.
On the other hand, N(z,«) can be bounded by error residuals we introduced

before.
Theorem 4.3.2 Let F : IR® — IR™ be any function. Then for each o >1
N(z,0) < o*r(z)? +2a) (z:Fi(z))4, forz 20. (4.3.3)
g==1

Hence,

N(z,a) < o’r(z)? + 2at(z).

Proof. Let I,r;(z) and Ni(z, ) be defined in the same way as in Theorem

4.3.1. If i € I, it is easy to see that r;(z) = Fi(z) and

Ni(z, ) = o®(Fi(z))? = o’ri(z)?, 220
If i ¢ I and z > 0, then

Ni(z, @) = 20z;Fi(z) — z7 < 20(2:Fi(T))+-

Hence,
Ni(z, o) < o?ri(z)? + 20(2: Fi(7))+, 20,

By summing up two sides above with respect to index i, then we have (4.3.3).

Q.E.D.




Chapter 5

Error Bounds Generated by

Various Algorithms

5.1 Introduction

In this chapter, we apply the error bound results obtained in Chapters 2 and 3
to approximate solutions generated by algorithms which are often used to solve
optimization problems. The algorithms under consideration are exterior penalty,
interior penalty, augmented Lagrangian and proximal point. As a result, we give
a bound on the distance between each approximate algorithm-generated solution
and a closest real solution in terms of computable quantities. In some instances,
the bound is in terms of the penalty parameter of a penalty function. In others
the bound depends on a measure of infeasibility and complementarity. These
bounds are easily available. They can serve as a termination criteria for various
algorithms. They also can be used as a guide for improvement of an approximate
solution since these bounds explicitly give the quantities that affect the accuracy

of the approximate solution.

50
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In Section 5.2, methods such as penalty function or augmented Lagrangian are
used to solve a linear program. We obtain a linear relation between the distance
from an algorithm-generated point to the solution set and quantities computed
by various methods. In Section 5.3, we use a similar approach to solve a convex
quadratic program. Similar bounds on the actual distance are obtained except
that in some cases, the linear dependence relation no longer holds and additional
terms are necessary to bound the distance. In Sections 5.4 and 5.5, the same
approach is applied to a more complicated strongly monotone nonlinear comple-
mentarity problem and a strongly convex program, respectively. We extract the

same type of algorithm-generated error bound results.

5.2 Error Bounds for Linear Programs

In this section, various computational approaches are applied to a linear program.
Actual error bounds between any inexact solution of each approach and the solu-
tion set of the linear program are obtained. The new idea here is to use computable

quantities obtained from these approaches to linearly bound the distance to the

solution set.

Exterior Penalty Approach Consider the linear program:

min cT
st. Az <b (5.2.1)
and its dual
mnax ~bu

s.t. ATy = —c
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u > 0. (5.2.2)
Define the associated exterior penalty function for (5.2.1) as follows
P(z,0) = cz + %H(Ax —b)2 e>o. (5.2.3)

Let z(a) be a minimizer of this exterior function. From the theory of penalty
functions ([Ma86] [FiM68]), z(a) asymptotically goes to the solution set of the
linear program (5.2.1). However, these results do not relate z(a) explicitly to
a solution of the problem for a given a. In this thesis we bound the distance
between z(a) and a closest solution of the linear program (5.2.1). The bounds we
will develop answer the above question. In order to develop such a bound, first
we cite the famous Hoffman theorem ([Hof52], also [Rob73] [MaS87]) which gives

a bound on the distance between any z € IR™ and a closest solution of the linear

program (5.2.1).

Lemma 5.2.1 ([Hof52] [Rob81] [MaS87]) Let the solution set of (5.2.1) be non-
empty. Then, there ezists a o(A,b,c) > 0 such that Y(z,u) € R™*™

(2, w)— (&(z,w), @z, w)|| < o(4,, o)||(cz+bu, Az—b, —u)s, ATy+c||, (5.2.4)

where (Z(z,u), %(z,u)) is a closest KKT pair of the linear program (5.2.1) from

(z,u) under the norm || - ||.

The following lemma gives a very interesting result that the right-hand side
porm in (5.2.4) also provides a lower bound for the distance from (z,u) to the
KKT pair set of the linear program (5.2.1). In other words, the distance is equiv-
alent to the right-hand norm: that is, they bound each other. This tells that

this computable norm quantity well characterizes the distance and can be easily

calculated.
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Lemma 5.2.2 Let the solution set of (5.2.1) be nonempty and the norm used here

is monotonic. Then, there exists a p > 0 such that V(z,u) € R™™
I(z, ) — (&,8)| > pll(cz +bu, Az—b, —u)y, ATu+cl, (5.2.5)
where (Z,4) is any KKT pair of the linear program (5.2.1).
Proof. Since ¢z + b = 0, AZ < b,u > 0 and ATa+c¢=0, so

|({(cz + bu, Az —b, —u)y, ATy + c)||

= ||((cz + bu, Az —b, —u)4, ATu+c)— ((cZ +bd, AZ—b,0)4, AT+ o)l

< le(z — &) + b(u — @), Az — %), —(uv—a), AT(u-a)]|

< 7(4,5,9)|(z,v) - (9],

where 7(A, b, c) is some positive constant. Take 1 = ?274%755’ then (5.2.5) follows.
Q.E.D. |

Before deriving a bound on the distance between z(c) and the solution set of

the linear program (5.2.1), we need to establish the existence of such an z(«w) with

the following lemma.

Lemma 5.2.3 Let the linear program (5.2.1) be solvable. Then the penalty func-

tion (5.2.8) has a minimizer z(c) for each > 0.
Proof. Minimizing P(z, ) on IR™ is equivalent to ([Ma83])

min P(z,y,a) = cz + §||Az — b+ yl}3
s.t. y > 0. (5.2.6)

It is easy to see that (5.2.6) is a convex quadratic program. If it is both primal

and dual feasible, then it is solvable ([FraWol56]). Obviously (5.2.6) is primal




54

feasible. So the only thing we need prove is to find a dual feasible point. Consider

the dual quadratic program

min P(z,y,a) — yu
c+aAT(Az - b+y)
st Viggy(P(z,y,a) —yu) = =0
a(Az —b+7y)—u
u > 0. (5.2.7)

Since (5.2.1) is solvable, there exist Z and % that solve (5.2.1) and (5.2.2) respec-
tively. Now in (5.2.7), take z = Z, u =% > 0 and y = i/a — AZ + b, then the
constraints in (5.2.7) are satisfied. In other words, (5.2.6) is dual feasible. Hence
the primal objective is bounded below and (5.2.3) has a minimum solution point

fora > 0. Q.E.D.

The following theorem estimates for a fixed value of the penalty parameter
a > 0, the distance between a minimum solution to the exterior penalty function

(5.2.3) and an exact solution to the linear program (56.2.1).

Theorem 5.2.1 Suppose the linear program (5.2.1) is solvable. Let z(a) be a

minimizer of P(z,a). Then there ezists a constant o(A,b, ¢) > 0 such that
l5(e) — E(@(@))|| < (A, b,0)[|(Az(@) = b+, (5.2.8)
where Z(z(a)) is the orthogonal projection of z(a) on the solution set of (5.2.1).

Proof. By Lemma 5.2.3, such a z(a) exists. It satisfies the first order optimality

condition
VP(z(), @) = c + aAT (Az(a) ~ b)+ = 0.

Let u = a(Az(a) — b)4, then it follows

(cz(a) +bu)y = (cz(a)+ o(a)ATu — z(a) ATu + bu),
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= (s(e)"(c+ ATu) + (b~ Azn(a))"u)y
= ((b~ Az(e)"w)¢

= o((b— Az(a))" (Az(e) - b)+)+

= 0.

This together with Lemma 5.2.1 leads to

lz(a) - Z(z(@)|]] < o(4,b0)|l(cz(e) + bu, Az(a) = b, —u)y, ATu+c||
= o(4,b,c)l|(Az(a) — b)+]|.

Q.E.D.

Theorem 5.2.1 shows that the error in z(a) as measured by its distance from
the solution set of the linear program, is linearly dependent on the violation of
constraints of the linear program. Thus, if we can cut the violation by one half,

then the distance is automatically reduced by one half.

Interior Penalty Approach Consider the linear program

min cx
st. Az =1>
x>0 (56.2.9)
and its dual
mnax bu
st. ATu<ec. (5.2.10)

Define the associated interior penalty minimization problem with (5.2.9) as follows

min  Q(z,7) = ¢z — 7 =1 108 Ti




56

s.t. Az =b
z>0. (5.2.11)

Let () be a solution of (5.2.11). In order to bound the distance estimate between
z(7y) and the solution set of the linear program (5.2.9), we first need the following

lemma that is similar to Lemma 5.2.1.

Lemma 5.2.4 ( [Hof52] [Rob73] [MaS87]) Let (5.2.9) be solvable. Then, there
exists a o(A,b,c) > 0 such that ¥(z,u) € R™™

”37 - "E("L‘)H < U(Aa b7 C)”(C"E - bua ATU -G ”_CB)+’ Az - b“:
where Z(z) is the orthogonal projection of T on the solution set of (5.2.9).

Proof. The proof is similar to that of Lemma 5.2.1. Q.E.D.

Now by using the above lemma, we obtain the following interesting bound in
terms of the interior penalty parameter 7. In particular this parameter itself is
enough to bound the distance between z(7) ,solution to (5.2.11) and the solu-
tion set of the linear program (5.2.9). Note that, unlike the exterior case, the
solution z(v) of (5.2.11) may not exist even if the linear program (5.2.9) is solv-
able. However, (5.2.11) is solvable under a variety of sufficient conditions such as

boundedness of the primal feasible region.

Theorem 5.2.2 Let both (5.2.9) and (5.2.11) be solvable. Suppose z(y) is a
solution of (5.2.11). Then, there exists a o(A,b, c) > 0 such that

lz(7) = Z(z(Y)I| < o(4,b,¢)1n, (5.2.12)

where T(x(7)) is the orthogonal projection of z() on the solution set of (5.2.9).



57

Proof. Since z(7) is an optimal solution, there is a u € IR™ such that
c—yXle—- ATu =0,

where X = diag(z(7)), z(y) >0and e = (1,1,...,1). By Lemma 5.2.4, it follows

that
lz(7) = 2z < (A b )ll(ex(y) —bu, ATu—c, —2(7))+,

Az(y) - bl

= o(A,b,¢)(ca(v) — bu)+

= o(4,bc)(cz(y) — yz(7)TX e — bu
+yz(n)T X 7e)+

= o(4,b,¢)(cz(y) — y2(7)"X e — z(7)ATu
+yz(r) X " e)y

= o(A,b)(rz(1)T X e)s

— o(A,b,c)yn.

Q.E.D.

The theorem also justifies the use of penalty function methods ([FiM68],
[BaS79]) by showing that distance to the solution set from z(7y) is bounded linearly

by 7.
Augmented Lagrangian Approach Consider the linear program (5.2.1) and
define the associated augmented Lagrangian as follows
1
L(z,u,q) :=czx + 5&[I|(a(A:c —b)+u)i |- |uli], «>0. (5.2.13)

Let z(a, ) be a minimizer of (5.2.13) with respect to z for fixed u > 0 and fixed

o > 0. First, we establish the existence of such an z(a, u).
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Lemma 5.2.5 Let (5.2.1) be solvable. Then (5.2.13) has a minimizer with respect

to z for each o > 0 and u > 0 € R™.

Proof. The is similar to that of lemma 5.2.3. Q.E.D.

From augmented Lagrangian theory [Hes69] [Pow69], the unconstrained mini-
mizer z(u, @) with respect to z of (5.2.13) is a true solution of the linear program
(5.2.1) when an exact optimal multiplier is used for u for o > 0. Often z(u, ) is
used as an approximate solution of (5.2.1) in practice without knowing an exact
multiplier. However there was previously no good way to know the accuracy of
such z(u, o). The following theorem provides a computable bound on the distance
between z(u, ) and the solution set of (5.2.1). Moreover it explicitly gives the

quantities that affect the error.

Theorem 5.2.3 Let (5.2.1) be solvable and let z(a, u) be a minimizer of the
augmented Lagrangian (5.2.13) respect to T for some u = 0 and o > 0. Assume

that the following norm is monotonic. Then there exists (A, b,c) > 0 such that

z(a,w) — 5@l w)|l < o(4,b,0)l|(b — Az(a, w)+(a(Az(a,u) = b) + )+,
(Az(a,u) — b)4|, (5.2.14)

where Z(z(a,w)) is the orthogonal projection of z(a,u) on the solution set of

(5.2.1).

Proof. By Lemma 5.2.5, such a minimizer z(a, u) exists. It satisfies the first

order optimality condition

VoL(z(a,u),u,a) =c+ AT[a(Az (o, u) — b) +uly = 0. (5.2.15)
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Hence the point [a(Az(a,u) — b) + u]4 is dual feasible for the linear program
(5.2.1). Therefore,
cx(a, u) + b(a(Az(o, u) — b) +u)4
= cx(o,u) + z(a, u) AT [a(Az(a, u) — b) +ul+
—z(a, w) AT [0 Az(e, w) — b) + ul4 + b(a(Az(a, u) = b) +u)s

= (b— Az(a,v))[a(Az(a, v) — b) -+ ul4.

By Lemma 5.2.1, we have
2(, u) — Z(z(e, w))|| <
o (A, b, 0)||cz(a, u) + b(a(Az(a, u) — b) + u)4, (Az(o,uw) — b)+l
< o(A,0,0)|(b — Azn(e, w)+[a(Az(a,u) — b) + uly, (Az(e, u) = b)+]-
Q.E.D.

Theorem 5.2.3 also illustrates that if (o, u) is feasible for the linear program

(5.2.1) and
(b — Az(a,u))+(e(Az(a,u) — b) +u)y =0

then z(a, ) is an exact solution of the linear program. This justifies the result of

augmented Lagrangian theory, that if x(a, u) is primal feasible and

u = (a(Az(a,u) — b) +u)y, u(b— Az(a,u)) = 0. (5.2.16)
then z(c, u) is an exact solution of the linear program (56.2.1).
Proximal Point Approach Consider the linear program (5.2.1) and define the
associated proximal point minimization problem as follows

min P(z,y,€) :=cz+ ;;H:c —y|2, €>0, for fixedy

s.t. Az <b. ‘ (5.2.17)
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Note that this problem is always solvable since the objective function is strongly
convex. Now we obtain the following theorem that gives a computable bound on
the distance between the unique solution of (5.2.17) and the solution set of the

linear program (5.2.1).

Theorem 5.2.4 Let (5.2.1) be solvable and (¢, y) be a solution of (5.2.17) under

the constraints for some ¢ > 0 and y € IR™. Then there ezists a o(A,b,c) > 0

such that

lz(e, y) — 2(z(6, )|l < (A, b, ) ll(—ex(e, y)(z(e, y) — 1))+, —e(z(e,y) — W)l
(5.2.18)

where Z(z (¢, y)) is the orthogonal projection of z(e, ) on the solution set of (5.2.1).
Proof. Since z(e,y) solves (5.2.17), there exits some v 2> 0 € IR™ such that

V. P((e,y), v 6) + ATu = c+e(z(e,y)) —y)+ATu=0
Az(e,y) <b, u=>0
u(Az(e,y) —b) =0.

By Lemma 5.2.1, there exists a o(4,b,c) > 0 such that

”.’L‘(E, y) - Q—Z(IE(E, y))” < U(Aa ba c)]l(cm(e, y) + buv .Asc(e, y) - b? “u)-h
ATu+ ||

= U(A’ b’ C)“(CJJ(E, ?j) + bu)+’ -—-E(.’L‘(E, y) - y)”
The term (cz(e, y) + bu)+ can be further simplified as follows

(cz(e,y) +bu)y = (cz(e ) + ex(e, y)(z(e,y) —y) +bu — ex(e,y)(z(e,y) — ¥))+

= (—ex(e,y)(z(ey) —¥))+



61

Hence we have the final inequality
(e, y) — #(z(e, ) < o (4,6, 0| (—ez(e,9)(a(e,y) — ¥)+, —e(@(e,y) ~ ).

Q.E.D.

This theorem shows that the distance between the unique solution of the prob-
lem (5.2.17) and the solution set the linear program depends on the size of the €
and the closeness between z(e,y) and y. Unfortunately, it does not include the
result that when ¢ is small enough, then the proximal solution z(e,y) is actually

an exact solution of the linear program [MaM79]. Q.E.D.

5.3 Error Bounds for Quadratic Programs

In this section we bound the distance between each algorithm-generated approx-
imate solution and the solution set of a convex quadratic program. The bounds
we get, exhibit dependence relations on computable constraint violations, known
penalty parameters and known quantities.

The way we obtain these bounds is by adapting the error bounds obtained
earlier, such as r(z) + s(z) and s(z) + s(z)? discussed in Chapter 2 to optimality
conditions of convex quadratic programs. Note that Hoffman’s theorem does not
apply in this case. Consequently, the error bounds here may contain additional
nonlinear terms of penalty parameters and violations of the constraints, that were
not present in the case of the linear programs discussed in the last section.

Consider the quadratic program

min $TQT +cT

st. Az >b. (5.3.1)
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where Q € IR™™ is symmetric positive semi-definite (spsd for short),

A e R™" ¢ € IR* and b € R™. Assume that (5.3.1) has a nonempty solution

set.

We begin by giving an error bound in terms of the violations of the KKT
conditions for (5.3.1) by using s(z) + s(a:)’lz'.
Lemma 5.3.1 There ezists a 0(Q, A,b,c) > 0 such that for all (z,u) € R™™,
(=, w) — (&(z, u), @z, )| <
o(Q, A, b, 0)||(—Az + b, —u, (Qz +c— ATu) + uF(Az — b)),
Qz + ¢ — ATu|| + ||(~Az + b, —u, 2(Qz +c— ATu) +u’(Az — b))+,
Qz +c— ATul|? (5.3.2)

where (Z(z,w), &(z,w)) is the orthogonal projection of (z,u) on the set of the KKT
pairs of (5.3.1).

Proof. Let =z, — z_ and 74, z_ > 0, then (5.3.1) becomes

min Hzy — 3)TQzy — ) +c(z4 — 3-)
s.t. Alzy —z-)>b

ZTy, - 2> 0.
This is equivalent to

min 327 Qz + &z

z>0, (5.3.3)

where
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and A = (A,—A), z = (z4,2-), € = (¢, —c). By the assumption that Q is spsd,
it is easy to see that @ is spsd too. Therefore (5.3.3) is a convex quadratic
program. Hence solving it with Z is equivalent to satisfying the following first

order optimality condition with @ = (2, %) for some 7 € IR™

Mw+¢>0, w>0, w(Mw+q)=0, (5.3.4)
where
) AT ¢
M= C% RS :
A 0 —b

This is an LCP with a matrix M € R@ntm)*x@n+m) and a vector g € IR*™™. We
can easily show that M is positive semidefinite. Therefore, by Theorem 2.3.1,

there exits a o(Q, A, b, c) such that Vw € R*™™
lw — B(w)|| < o(Q, 4,b, c)(s(w) + s(w)?), (5.3.5)

where w(w) is the orthogonal projection of w on the solution set of (5.3.4). Let
(z,u) € R™™, then take w = (z4,2-,u) € R*™™ where 7, = (T)4,2- =
(—z). For such a w there exists a w(w) = (Z4+(w), Z- (w), @(w)) such that (5.3.5)
holds. Since

s(w) = |(~Mw - g, —w, w(Mw+ )]

and
Qz +c— ATu T4
Mw+g=| —-Qz—c+ ATu |, w=|z_ |,
Az —b u

it follows that

s(w) = ||(-Az +b, —u, (Qz + c— ATu) + u(Az - b)), Qz+c— ATu||. (5.3.6)
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Now let Z(w) = Z4(w) — Z_(w). By the definition at the begin of the proof,
(z(w), w(w)) is a KKT pair of (5.3.1). It follows that

(@, u) — (2(w), B(w))[x

< lw = @(w)ls.

IN

H(JJ, u) - (:E(J:, 'U')a '17,(.’13, ’lL)||1

By the equivalence of norms together with (5.3.5) and (5.3.6), we could conclude
that (5.3.2) holds for any norm. Q.E.D.

The next lemma generates another error bound on the same distance by using
r(z) + s(x) instead of s(z) + s(z)? as discussed in Chapter 2. This will lead later

on to different algorithm-generated error bounds that sometimes are better than

that obtained by using s(z) + s(z)?.
Lemma 5.3.2 There ezists a 0(Q, A,b,c) > 0 such that for all (z,u) € R™™,
(z, ) — (Z(z, u), @(z, u))|| < (@, A, c)(r(w) + s(w)). (5.3.7)

where s(w) and r(w) are defined in (5.3.6) and (5.3.8), respectively, and
(z(z, w), U(z,u)) is the orthogonal projection of (z,u) on the set of the KKT pairs
of (5.8.1).

Proof. In the proof of Lemma 5.3.1, let s(w) be the same as in (5.3.6), but

r(w) = ||min{Mw+q, w}|
Qr+c— ATy Ty
= ||min{| —-Qz —c+ ATu |, z_ |} (5.3.8)
Az — b U

By Theorem 2.3.1, there exists a o(Q, A,b,c) > 0 such that for all (z,u) € R™™,
(2, u) — (&(z,u), 8@z, w))|| < o(Q, 4,5, ¢)(r(w) + s(w))

Q.E.D.
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Exterior Penalty Function Consider the quadratic program (5.3.1) and the

associated exterior penalty function
1
}%@a%=§Mh+wx+%m—Ax+®H& a> 0. (5.3.9)

First we show the existence of a minimizer of the function P(z, ) for oo > 0

in the following lemma.

Lemma 5.3.3 Let the quadratic program (5.5.1) be solvable. Then P(z,a) has a
minimizer.
Proof. The proof is similar to that of Lemma 5.2.3. Q.E.D.

The new idea here is to relate the minimizer z(a) of (5.3.9) to the solution
set of the quadratic program (5.3.1) by using Lemmas (5.3.1) and (5.3.2). This
enables us to show a new error bound on the distance from each z(a) to the

solution set of the quadratic program. In addition the error bound involves only

the computable constraint violations. In the following theorem we derive these

results.

Theorem 5.3.1 Let the quadratic program (5.5.1) be solvable and z(«) be a min-
imizer of the penalty function (5.3.9), then there exists a (@, A,b,c) > 0 such
that
lz(a) - Z(z(@)l] < (@4, ¢b)(I(—Az(a) +b)4||
+[|(—Az(c) + b)) (5.3.10)
where T(z(c)) is the orthogonal projection of z(ct) on the solution set of (5.8.1).

Proof. By Lemma 5.3.3, such a z(c) exists. It satisfies the first order opti-

mality condition

V.P(z(e), @) = Qz + ¢ — aAT (—Ax(e) + b)4 = 0.
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By Lemma 5.3.1, (5.3.2) holds where u = a(—Az(a) + b)4. Since
(u(Az(a) — b))+ = a((—Az(a) + b)+(Az(a) — b))+ =0

and

2(a) - #(z(@))|| < ll(z(e), v) — (#((e), w), @z(a), w),
where (Z(z(a), ), i(z(a), )) is defined in Lemma 5.3.1, we conclude that (5.3.10)
holds. Q.E.D.

In (5.3.10) the error from z(a) to the solution set depends not only certain
norm of the constraint violation, but also the additional square root of the same
quantity. Therefore, if this violation size is small (< 1), the square root term
actually increases the bound which is not desirable. Fortunately in this case, by
using the Lemma 5.3.2, we derive in the following theorem a bound that depends
linearly on the norm the constraint violation without involving a square root term

that is the case of the linear program discussed in the last section.

Theorem 5.3.2 Let the quadratic program (5.8.1) be solvable and z(a) be a min-
imizer of the penalty function (5.8.9). Assume that the following norm is mono-

tonic. Then there ezists a o(Q, A,b,¢) > 0 such that
lz(a) — 2(z(@))]l < 20(Q, A, ¢, ))|(—Az(a) + D)+ (5.3.11)
where Z(z(a)) is the orthogonal projection of z(a) on the solution set of (5.8.1).

Proof. Similar to the previous theorem, we have

s(w) = ||(—Az(a) +b)+|
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By the definition (5.3.8) of r(w) we further have

Qr +c— ATy T,
r(w) = |min{| -Qz —c+A"u |, z_ |}
Az —b U
— || min{dz(a) - b a(—As(a) + b): H
= [|(b— Az(a))+]l

Hence, by Lemma (5.3.2),
2(e) — 3(z(e))]] < 20(Q, 4, ¢, b)||(—Az(a) + b)+-

Q.E.D.

It is very interesting that here for the convex quadratic program, we get the
same error bound as that for the linear program except for a different constant

a(Q, A, ¢, b). The error bound is simple and easily to compute.

Interior Approach Consider the quadratic program

min 12Qz + cz
st Azr=1b
z >0, (5.3.12)

where @, ¢, A and b are defined as before and the associated interior penalty

function minimization problem

min  Q(z,7) := 37Qz + cx — v i, log z;
s.t. Az =D
z >0, (5.3.13)




68

where v > 0 is a constant parameter.

We first establish the following two different error bounds in terms of the
KKT violations for (5.3.12) by using different two error residuals s(z)+ s(z)? and
r(z) + s(z). These two error bounds will lead to different algorithm~generated

error bounds later on. It is unclear which is the better error bound.
Lemma 5.3.4 Let (5.3.12) be solvable. Then there exists a (@, A, b, c) such that

(2, w) = (@(z, w), Uz, w)| <
(@, A,b,0)||(-Qz —c+ ATy, —z, 2(Qz +c — ATu) + u(Az — b))y,
Az — b1 + |(-Qz — c+ AT, -z, z(Qz +c— ATu) + u(Az — b))+,
Az - b7, (5.3.14)

where (Z(z,u), &(z,v)) is the orthogonal projection of (z,u) on the set of the KKT
pairs of (5.8.12).

Proof. (5.3.12) is equivalent to

min tzQz 4 cz
st Az > b

z >0, (5.3.15)

[ L

Since it is a symmetric convex quadratic program, it is equivalent to the LCP of

where

finding some w € IR™"*™ such that

Mw+¢g>0, w>0, wMw+q)=0 (5.3.16)
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where

- ) q=
A 0
It is easy to see that M is positive semi-definite. Therefore by Theorem 2.3.1,

there exists a o(Q, A, b, c) such that Yw = (,u4,u-) € Rn+2m

_ AT
MZ[Q /

lw — w(w)]| < o(Q, 4, b,¢)(s(w) + s(w)?) (5.3.17)

where w(w) is the orthogonal projection of w on the solution set of the LCP
(5.3.16). Now let (z,u) € IR"™™ and take w = (z,uy,u-) where uy = (u)4, v =
(—u)+. Then for such a w there exists a @(w) = (Z(w), G4 (w), @—(w)) such that

(5.3.17) holds. Let the norm in s(w) indicates 1-norm, then it follows

(2, u) ~ (@(z, ), 8z, )|z

< (@ g — ) = (@(w), G (w) - 2- (W)l

7AN

llw ~ @(w)llx
< o(Q,Ab,0)|l(-Qz + ATu — ¢, —z, =(Qz — ATu+c) +u(Az — b))+,

Az — bl + [(-Qz + ATy — ¢, —z,2(Qz — ATu+ ¢) + u(Az — b))+,
Az — b]l%,
where (Z(z, u), @(z,v)) is the projection of (z,u) on the set of the KKT pairs of
(5.3.12); the first inequality follows that (Z(w), By (w) — G_(w)) is @ KKT pair;
the second follows from the properties of the 1-norm; the third is from (5.3.17).

Finally, by the equivalence of norms, (5.3.14) could hold for any norm for some

constant 0(Q, A4,b,¢). Q.E.D.
Lemma 5.3.5 Let (5.3.12) be solvable. Then there ezists a 0(Q, 4, c) such that

I(z,w) — (Z(z, u), @z, u))|| < o(Q, A, b, ¢)(s(w) + r(w)) (5.3.18)
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where s(w) and r(w) are the residuals for LCP defined in (5.8.16) and
(Z(z, u), @(z,u)) is the orthogonal projection of (z,u) on the set of the KKT pairs
of (5.3.12).

Proof. By replacing s(w) + s(w)? by r(w)+ s(w) in Lemma (5.3.4), the same
proof goes through.

By using Lemma 5.3.4, we give the following interior-point-generated error
bound on distance between each z(y) and the solution set of the quadratic program
in terms of the penalty parameter v only. The new contribution here is that the

bound gives a precise dependence on the penalty parameter 7.

Theorem 5.3.3 Suppose both (5.8.12) and (5.8.13) are solvable. Let z() be a
minimizer of (5.3.18) for some v > 0, then there ezists a (@, A, b,c) > 0 such
that

1z(7) = 2(@(1)]] < (@, A, b, ) (yn + (yn)?), (5.3.19)

where (Z(z(7)) is the orthogonal projection of (z(v),u) on the set of the KKT
pairs of (5.3.12).

Proof. By the KKT optimality conditions, there is a u such that

Qr(y) +c—yXte—ATu =0
Az(y) =b

where X = diag(z(7)),e = (1,1,...,1) and z(y) > 0. By Lemma 5.3.4, it follows
that

(z(7), w) — (F(z(7), w), @(z(7), w))l
< o(Q, A b o)||(-Qz(y) — c+ ATu, ~3z(v), z(7)(Qz(7) + ¢~ ATu)
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+u(Az(y) = b))+, Az(y) = bl| + |(-Qz(7) — e+ ATu, ~z(),
2(7)(Q(y) + ¢ — ATu + u(Az(y) — b))+, Az(7) = b]|?
= 0(Q,Ab,c)(yn+ (m)'?)
Q.E.D.

Again in (5.3.19) a square root of 7 is involved in the bound. Unfortunately,
unlike the exterior case, we cannot totally get rid of it by using r(z) + s(z) in
Lemma 5.3.5. Instead we obtain another term replacing the square root in the

bound which is given in the following theorem. It is unclear which bound is better.

Theorem 5.3.4 Suppose both (5.8.12) and (5.3.18) are solvable. Let z(7) be a
minimizer of (5.3.18) for some v > 0, then there ezists a 0(Q, 4, b, c) > 0 such
that

[z (7), u(y) = @(@(7), w(7), Uz(7), w(M)]]
< (@, A,b,¢)(yn + [|min{z(y), y2(7) " HD), (5.3.20)

where u(y) is an exact multiplier associated with Az = b in (5.3.18), z(y)™t =

(@1 ()7, 22(1) 7 2a()™) and (E(z(7),u(y), Wz(7), w(7))) the orthogonal
projection of (z(7),u(y)) on the set of the KKT pairs of (5.3.12).

Proof. Similar to the proof of Theorem 5.3.3, we have

s(w) = yn.
In addition we have
r(w) = ||min{Mw +q, w}|
Qz +c— ATy Ty
= || min{ Az —b ; uy | HI

—Az + b U
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= |l min{yz(v)™, z(M}H

Hence by Lemma, 5.3.5, the relation (5.3.20) holds.

Augmented Lagrangian Approach Consider the quadratic program (5.3.1)

and define the associated augmented Lagrangian as follows:
1
L(z,u,a) = zQz + cz + ~2~&[H(a(b — Az) +u)]E = lul3l, @>0. (5.3.21)

Let z(a,v) be a minimizer of (5.3.21) with respect to z for fixed u > 0 and fixed

a > 0. First, we establish the existence of such an z(a, u).

Lemma 5.3.6 Let (5.8.1) be solvable. Then (5.3.21) has a minimizer with respect

to z for each « >0 and v > 0 € R™.

Proof. The proof is similar to that of lemma 5.2.3.

The following theorem establishes a bound on the distance between each min-
imizer z(a,u) of (5.3.21) with respect to z for each fixed o > 0 and u > 0 and the
solution set of the quadratic program (5.3.1). Again the corresponding results to
the linear program in the last section cannot be directly used here. Instead, the
error bounds obtained in the Chapter 2 are used to establish this result. Conse-

quently, the bound we get here are not as sharp as those of the linear case.

Theorem 5.3.5 Let (5.3.1) be solvable and let x(c,u) be a minimizer of the
augmented Lagrangian (5.8.21) respect to z for some u 2 0 and o > 0. Assume

that all norms are monotonic. Then, there exists o(A,b,c) > 0 such that

l2(er, u) — Z(z(e, w)l| <
(@, A,b,¢)(||(b — An(e, v))+, (@b — Az(a; u)) + u)4(Az(a) = b)+|
HI(b — Az(e, ), (alb — Az(a, ) + u) (Aa(a) — B)+[|%) (5.3.22)
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where Z(z(a,u)) is the orthogonal projection of z(a,u) on the solution set of

(5.2.1).

Proof. By Lemma 5.3.6, such a minimizer z(a,u) exists. It satisfies the first

order optimality condition
V.L(z(a,u),u, a) = Qz(o,u) + ¢ — AT[a(b — Az(a,u)) +u]4 =0. (5.3.23)
Take u in Lemma 5.3.1 as [a(b — Az(a, u)) + u]4, then (5.3.14) becomes

(e, w) — (&(z, v), 4z, v))|| <
(@, A, b, )(||(6 — Az(a, w), (b — Az(ar, ) + )1 (Az(e) — b))+
HI(b = Ao, w), (alb — Az(a,u)) + ) (Az - b)+]|?)
< o(Q,A,b,0)(||(b — Az(a, w))+, (b — Az(a,u)) + )4 (Az(e) — )+ |
b~ Az, 1)y, (b — Az(e, w)) + )+ (Az(e) = B)4[|2),  (5.3.24)

where z = z(a, u). Since
(e, u) — E(z(e, w))|| < l|(z,4) = (&=, u), @z, w)]-

Therefore (5.3.22) holds. Q.E.D.

The major difference between the bound here and the bound in (5.2.14) for the
linear program is that here there is the additional square toot term. The residual
of (5.3.22) shows that any minimizer of the augmented Lagrangian (5.3.21) with
respect to x is a solution of the quadratic program (5.3.1) provided it is primal
feasible and complementary. However, for small value of the residual the square
root dominates and hence the error is not linear in the residual.

The following theorem gives a different error bound for the same distance. The

bound does not contain a square root term. However it is not clear if it is better.
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Theorem 5.3.6 Let the quadratic program (5.3.1) be solvable and z(a,u) be a
minimizer of the augmented Lagrangian (5.8.21). Assume that all norms are

monotonic. Then there ezists a 0(Q, A,b,c) > 0 such that

llz(at, w) — &(z(e, w))]| < (5.3.25)
(@, A, ¢, b)([|(b — Az(a, )+, (b — Az(a, w)) + )4 (Az(a) — b)+ ||
+|| min{ A(a, u) — b, (a(b — Az(ax, u)) +u)+ H|) (5.3.26)

where Z(z(a)) is the orthogonal projection of z(c) on the solution set of (5.8.1).
Proof. In a similar manner to the proof of the previous theorem, we have
s(w) = ||(b — Az(a, )+, (a(b — Az(a, u)) + v)+(Az(a) — )+

By the definition (5.3.8) of r(w) we further have

Qzr +c— ATu T,
r(w) = ||min{| -Qz —c+ATu |, z— |}
Az —b U

= || min{Az(a, u) ~ b, (a(b — Az(e, w) + u)+ H-
Hence, by Lemma (5.3.2),

(e, u) — Z(z(a, w))l| <
7(Q, 4, ¢, 0)(|I(b — Az(a, w))4, (a(b — Az(a,u)) + v)+(Az(a) — b)+|]
+|| min{ A(e, u) — b, (a(b — Az(e, u)) +u)+H|)

Q.E.D.
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Proximal Point Approach Counsider the quadratic program

min 3TQT + cx
st Az >b
z >0, (5.3.27)

where Q, ¢, b and c are defined as before, and the associated proximal point

minimization problem

min $2Qz +cz + §ljz — y||?, for fixed y
s.t. Az > b
z >0, (5.3.28)

where € > 0 is some constant and y is a fixed vector in IR".

Theorem 5.3.7 Let (5.8.27) be solvable and z(e,y) be a solution of (5.5.28).
Then, there is a o(Q, A, b, c) such that

1(2(e), w) ~ (Z(z(e), w), wz(e), w))|
< o(Q,4,b,9)[ll(e(z(e) - v), —z(e)((e) — ¥))+|
+|(e(a(e) = v), ~a(e)(a(e) = ¥+, (5.3.29)
where u is an ezact multiplier associated with Az > b in (5.8.28) and

(z(z(€), u), @(z(€), u)) is the orthogonal projection of (z(€),u) on the set of the
KKT pairs of (5.3.27).

Proof. Solving (5.3.27) is equivalent to finding w = (z,%) € IR"*™ such that
it satisfies the KKT optimality condition, that is

Mw+4+q¢>0, w>0, wMw+q)=0, (5.3.30)
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where

M

Tt is easy to see that M is positive semi-definite. By Theorem 2.3.1, there exists

a 0(Q, A, b, c) such that for Vw = (z,u) € R™™™

lw - )| < (@ A b,c)(s(w)+s(w)?)
= (@, 4,b,0)(|(-Qz — c+ ATy, b— Az, -z, —u,
2(Qz + ¢ — ATu) + u(Az — b)) || + |(-Qz — ¢ — ATw,
b— Az, —z, —u, o(Qz +c— ATu)
+u(Az — B)4 ]|, (5.3.31)

where w(w) is the orthogonal projection of w on the solution set of (5.3.30).
Let (z,u) € R™™. Now by the assumption that z(e) solves (5.3.28), there is a

multiplier w associated with z(e) that satisfies the KKT condition
Mw+qg+v>0, w>0, wMw+q+v)=0,
where w = (z(€),u) and v = (e(z(€) — y),0) € R**™. Therefore by (5.3.31)

1(z(e), w) — (@(z(e, w), Az (e, w))|
< o(Q, A b, o)||(e(z(e) — ), —z(e)(@(e) — 9))+|l
Hl(e(z(e) = v), —a(e)(@(e) — )47

Q.E.D.
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5.4 Algorithm-Generated Bounds for Strongly
Monotone Nonlinear Complementarity Pro-
blems

Exterior Penalty Approach Consider the NCP (3.1.1) and the associated
exterior penalty minimization problem

min P(z,0) = oF (@) + SI(F@)4ll}, >0

st. >0 (5.4.1)
Theorem 5.4.1 Let F(z) be differentiable, Lipschitz continuous and strongly

monotone on IR". If z(a) solves (5.4.1) for some a > 0, then there ezists a

constant o > 0 such that
Iz(e) - || < oll(=F(2))+l, (5.4.2)
where T is the unique solution of (8.1.1).

Proof. Since z(a) solves (5.4.1), it satisfies the KK'T conditions of the problem
(5.4.1)
F(z(a)) + VF(2(a)) z(a) - aVF(2(2))" (- F(z(a)))+ 2 0,
z(a) > 0,
(0)(F(z(a)) + VF(z(e)z() — aVF(z(a))" (-F(z(a)))4) = 0. (5.4.3)
It follows that the point (z = z(a),u = a(—F(z(a)))+ is dual feasible for DP
(4.1) of [MaS92] and by property 4.4(i) of [MaS92]
0 > —a(-F((a)+F(z(e) - 2(a) VF(z(0))" (z(@) — o(=F(z(a)))+)
= —o(—F(z(e))+F(z(a)) + z(0) F(z(a)),
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where the second equality is from the complementarity condition of (5.4.3). From

the inequality above, we further have
(z(0)F(z(a))+ < (a(—F(z(a)+F(z(a)))+ = 0.
Since (z(a)F(z(c)))+ = 0 and z(a) > 0, by Lemma 3.2.1,
r(z(@)) < I(-F(z()))+h-
By Theorem 3.2.1 and equivalence of norms, there exits a constant o such that
lz(a) — 2|l < oll(=F(z(e)+]l

Q.E.D.

Interior Penalty Approach Consider the NCP (3.1.1) and the associated in-

terior penalty function minimization problem

min  Q(z,7) = 32F(z) — 7 i log Fi(x)
s.t. F(z)>0
z >0, (5.4.4)

where v > 0 is a constant parameter.

Lemma 5.4.1 ( Mangasarian and Solodov [MaS92]) Let F(z) be differentiable
and monotone on IR™, let v > 0 and z(y) solve (5.4.4). Then

n 2 z(7)F(z(y)) 2 0. (5.4.5)

Proof. See Proposition 4.6 of [MaS92]. Q.E.D.
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Theorem 5.4.2 Let F(z) be differentiable, Lipschitz continuous and strongly
monotone on IR, If z(v) solves (5.4.4). Then there ezists a constant o such

that,
|z(7) — 2| < o(m)?, (5.4.6)

where T is the unique solution of (8.1.1).

Proof. Since z(y) > 0, F(z(v)) > 0 and by Lemma 5.4.1,
wn > z(v)F(z(7y)) > 0. By Theorem 3.2.1 and Lemma 3.2.1, there exists a o such

that
lz(y) = 7|| < o(yn)3.

Q.E.D.

5.5 Error Bounds for Strongly Convex Programs

Let the problem be

min  f(z)

st. g(z) <0 (56.5.1)
where f(z) is differentiable and strongly convex with constant k, that is
f@) - flv) = V@) (@ - y) > kle - yl*, Vz,y € R",

and g(x) is differentiable convex and satisfies some CQ.

We obtain now results for (5.5.1) similar to those of [MaD88], but without any

non-negativity on z.
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Lemma 5.5.1 Let f(x) be differentiable and strongly conver with constant k, and

g(z) differentiable and convex, let

Vf(z)+uVg(z
F(z) := /(@) 9(@) (5.5.2)
—9(z)
where z = (z,u) € R"*™, then for any z,Z where u, % 2 0, we have
(F(z) — F(2))(z — 2) > kllz — &I (5.5.3)

Proof.
(F(2) = F(2)(z - 2)
= (Vf(z) - V@)(z - )+ (uVg(z) - aVg(2))(z — )
—(g(z) — 9(2))(u — @)

> k|z — z||* + ulg(@) — 9(z) — Vg(z)(Z — z)]
+alg(z) — 9(z) - Vg(@)(z — T)]
> k|lz - z|?

Q.E.D.

Exterior Penalty Approach Consider the problem (5.5.1) and define the as-

sociated exterior penalty function as follows
a
P(z,a) = f(z) + -2~I|(9($))+H§, a>0 (5.5.4)

Theorem 5.5.1 Let z(c) be a minimizer of P(z,a) for some a > 0. Then we

have

lz(@) — 2|l < kol (g(@(@))+ 13 + Bll(a(z(@)))+ 117, (5.5.5)

where T s the unigque solution of (5.5.1) and (8 is some fized constant.
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Proof. First of all, since (5.5.1) is a strongly convex program, such an z(a)

always exists. By the KKT conditions for (5.5.1), we have

VL(Z,4) = Vf(z)+aVg(Z) =0,

>0, g(z)<0, ug(z)=0.
By Lemma 5.5.1, for any (z,u) € IR*™™ where u 2> 0 and the KKT pair (Z, @)

le—zll < kHEFE) - FE)=- 2
= k¥(z - 2D)F(2) - (z - DF @)
= k3[zV,L(z,u) — ug(z) — 2V.L(z,u) + 4g(z)
—(z - B)VLL(T, ) + 9(Z)(u — B)]?
k™2 [2V L(z, u) — ug(z) + Y|V L(z, )| + Bll(9())+]

IA

~g(@)a + ug())?
k"%hvmfz(w, w) — ug(z) + 7| Vo Lz, w)|
+6ll(9(2))+ 117 (5.5.6)

IN

where 7 := ||Z|| and B = inf{||lu|| | v is any KKT multiplier}. Since z(«) mini-

mizes P(z, ), we have
V1 (a(a) + o 3 (ox(a(a) Voila(a) =
Let u = a(g(z(a)))4, then V,L(z(a),u) = 0. Hence (5.5.6) becomes

lz(c) — 3l < k¥ (~ug(a(a)) + Bll(a(z(e)))+2
k=3 (—al|(9(2(0))+ 12 + Bllg(z())+11)?

AN

Q.E.D.
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Interior Penalty Approach Consider the problem (5.5.1) and the associated

interior penalty minimization problem for (5.5.1)

min Q(z,7) = f(z) — v L4 log(—g:(2)) (5.5.7)
s.t. g(z) <0,
where v > 0 is some parameter.

Theorem 5.5.2 Let (5.5.7) be solvable and z(7y) be a solution for some vy > 0.

Then, we have
= my.1
lo(y) - all < (52 (5.5.8)

where T is the unique solution of (5.5.1).

Proof. Since z(7) solves (5.5.7), it satisfies the KK'T condition

&V
V(7)) vi:}:l @) 0 (5.5.9)
Let u; = — 5y, then from (5.5.6)
o) -3l < (L2
< (5

k

Q.E.D.



Chapter 6

Conclusion

6.1 Summary of Work

We have developed new error bounds for linear complementarity problems, quad-
ratic programs, strongly monotone nonlinear complementarity problems and

strongly convex programs. For a certain natural residual r(z), it was shown that
the residual can serve both as an upper and lower bound to the distance to the
solution set of an LCP from the point z. This bound is local for all matrices and
global for an Ry matrix. Moreover, for an approximate solution generated by a
computational algorithm such as interior penalty, exterior penalty, proximal point
and augmented Lagrangian, we have been able to bound the distance between an
approximate solution and the solution set of a given problem. The problems that
we have considered include linear programs, convex quadratic programs, strongly
monotone nonlinear complementarity problems and strongly convex programs.
The bounds involve computable quantities such as constraint violations, penalty

parameters and violations of the complementarity condition. These bounds are
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computable, and hence, serve as a measure of accuracy for the approximate solu-

tion computed by the algorithm.

6.2 Some Open Questions Relating to New Er-
ror Bounds

Following are some of questions that remain open in the sense that we were unable
to either give a proof of the conjecture or construct a counterexample to it. For
t(z) defined in (2.4.1), is ¢(z) + #(z)? a global error bound for an LCP(M, q) for
a general symmetric M? What is the largest class of LCPs for which r(z) is a
error bound? The broader question might be: Are there any local error bounds
for convex nonlinear programming problems that are not strongly convex, and for
monotone nonlinear complementarity problems that are not strongly monotone?
Also, is it possible to obtain error bounds for nonsmooth or nondifferentiable

problems? A typical case might be an objective function that is piece-wise differ-

entiable.

6.3 Further Research on Error Bound Applica-
tions

So far, the error bound results have been successfully used to analyze the error
reduction ratio for various algorithms. As a result, convergence and linear conver-
gence rates have been established for a number of algorithms ([LuT92a] [Ma91]

[LuT92b]), the convergence of which was not known previously. Typical examples
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of these algorithms are the matrix splitting algorithms for solving the nonmono-
tone symmetric linear complementarity problem ([LuT92a]). It can be further
shown that these algorithms with a line search step will also result in the same
convergence and linear convergence rate by using an error bound argument. The
common denominator to most of the convergence proofs consists of an error bound
and a forcing function. The error bound is used to bound the distance between
the current iterate and the solution set of the problem by the difference between
consecutive iterates. The forcing function forces the difference between the con-
secutive iterates to approach zero. Using an error bound alone without a proper
forcing function may fail to work. This is what happens when we deal with the
(even monotone) nonsymmetric linear complementarity problem by using matrix

splitting algorithms. The following is an example which shows this situation. Let

0 -1 1 0
—1 1 0 0

The solution set X of LCP(M, q) is {z | 1 = £z = 73 > 0}. It is a nonsymmetric

monotone LCP since M + MT = 0. Consider the matrix splitting with

0 -1 1 100 -1 -1 1
M = 1 0 -1|=B+C={010]|+ 1 -1 -1
-1 1 0 0 01 -1 1 -1
Since
2 1 -1
B-C=|-1 2 1
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is positive definite, then M = B+ C is a regular splitting. Also B is positive
definite. Consider the following regular splitting scheme for solving LCP(M, q)-

= (¢ - Bzt - Oz — g)4

= (~Cmi)+

Since B is positive definite, the sequence {z*} is well-defined ([CoPS92]). Now

take
0 0

2= 10 |, Then 2 =8k|o |, k=1,2....
1 1

Therefore {z*} diverge. So the regular matrix splitting algorithm fails to solve the
nonsymmetric monotone LCP. Here an error bound implies that the distance from
the current iterate to the solution set of the LCP is bounded by the difference
between consecutive iterates. The problem is that, for nonsymmetric LCP, there
is no appropriate quadratic forcing function associated with it. We need some
alternative strategies to deal with such cases.

Another way to use an error bound might be as follows. Generate an appropri-
ate objective function to be minimized based on an error bound ([Sh86] [MaS92]
[LMRS92]). The advantage is that it is possible to obtain an unconstrained mini-
mization problem for a constrained problem. Also for each iterate, it is also easy
to bound the distance between it and the solution set. In addition from the reduc-
tion rate of the objective, we can get the reduction rate of the distance between
the iterate and the solution set. However generating such a problem by using an
error is not easy. In particular, we may lose the differentiability or convexity of

the objective function. These are challenging problems for further research.
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