CENTER FOR
PARALLEL OPTIMIZATION

MINIMUM-PERIMETER TILING
IN PARALLEL COMPUTATION

by

Jonathan A. Yackel

Computer Sciences Technical Report #1170

August 1993

MINIMUM-PERIMETER TILING IN
PARALLEL COMPUTATION

By
Jonathan A. Yackel

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN — MADISON
1993

Abstract

This thesis is primarily concerned with two combinatorial optimization problems
that have applications in parallel computing. In each problem the goal (from an
applications point of view) is to partition the cells of a grid (of two or more di-
mensions) evenly among a number of processors so as to minimize interprocessor
communication subject to load balancing constraints. In the perimeter minimiza-
tion problem the communication is measured by interprocessor “boundary”, while
in the diversity minimization problem communication is measured by summing
the number of distinct processors in the “slices” of the grid. Besides the parallel
computing applications, these problems are of intrinsic interest as combinatorial
problems. For the two-dimensional versions of both these problems, a single the-
ory based on geometric arguments provides good lower bounds on both objective
functions and also characterizes the forms of optimal and nearly optimal solu-
tions. The results include a method for generating provably optimal solutions for
a large class of problems by “tiling” the grids with optimal shapes. This theory
generalizes to arbitrary dimensions for the diversity minimization problem. A dif-
ferent theory provides lower bounds for many-dimensional versions of perimeter
minimization.

A tiling-based heuristic for diversity minimization provides the basis for the

empirical results in the the thesis. The heuristic, which incorporates a high-level

ii

genetic algorithm, is naturally parallel and has been implemented on a Thinking
Machines CM-5. The code is efficient (spending less than 3% of the total com-
puting time on interprocessor communication) and produced solutions of better
quality than a previous heuristic developed by database researchers for diversity
minimization. The code computed solutions within 4.2% of the best known lower
bounds on all test problems, and solved a million-variable problem to optimality

in 70 seconds.

iii

Acknowledgements

I would like to thank Lisa Pankratz Yackel for her love and support, Robert
Meyer for his invaluable guidance and encouragement, Eric Bach for his advice,

and Shahram Ghandeharizadeh for the seed of this thesis.

iv

Contents

Abstract

Acknowledgements

1 Introduction

1.1
1.2

1.3
1.4

Perimeter minimization o ..o oo oo
Diversity minimization oo
1.2.1 Minimizing overhead and query response time
1.2.2 Minimizing data duplication in parallel hash-joins
Computational complexity« o oo

Unifying concepts o o oo

2 2-Dimensional Theory

2.1
2.2

2.3

Lower bound on semi- and 2-perimeter
Minimum-perimeter and 2-perimeter groups
2.2.1 Optimal rectangles« . .o
2.2.2 Optimal Irregular Tileso
Optimal Tilings o« v v oo

2.3.1 Minimum-perimeter tilings oo

ii

iv

© o 00 O B

12

2.3.2 Minimum diversity toroidal tiling
9.4 Lower Bounds as Functions of Problem Size

2.5 Non-uniform Grids« v v i i e e

Many-Dimensional Theory
3.1 Lower bounds on d-perimeter

3.2 Lower bound on surfacearea

Heuristics
4.1 A Diversity Minimization Algorithm
4.2 Data Struchures . . . v v v v e e e e e e e e e e e e e e e e e

A genetic algorithm

51 Awgeneric GA

5.2 A minimum diversity GA. oo o
52.1 Encoding
5.2.2 Fitness Function oo
5.2.3 Initial Population oo

5.2.4 Genetic Operators and “Survival” Policies

Computational Results

6.1 Interprocessor Communication
6.2 Effectofrandomseedo
6.3 Effect of survival strategies

6.4 Effect of crossover and mutationrates

Conclusions and Future Research Directions

7.1 Summary and Conclusions

vi

48
48
52

56
56
59

67
68
69
70
70
71
71

74
79
81
82
83

86

7.9 TFuture Research Directions

APPENDICES

A Problem Variations

A.1 Nonlinear objective functions

A.2 Minimizing maximum diversity

A.3 Relaxed load balancing
A.4 Weighted versions . . .
A.5 Target diversities . . .

A.6 More general variations

........................

........................

........................

B Integer Programming Models for Diversity Minimization

C A Diagonal-based Solution Technique

D Elongated Grids

vii

90
90
91
92
92
93
94

95

98

101

Chapter 1

Introduction

As distributed and parallel computer systems are used to solve larger and larger
problems, the issue of mapping the problem data and computational tasks onto
multiple processors becomes more important because a poor mapping may cause
a large amount of interprocessor communication or degrade the throughput of
the system. This thesis focuses principally on two combinatorial optimization
problems, both of which involve finding the least expensive way (as measured by
some objective function) of partitioning the cells of a grid (which correspond to
data and/or computation tasks) into a specified number of groups of specified
size (usually the groups sizes are nearly equal, for load balancing reasons). These
problems will be shown to model several problems that arise when partitioning
data among the processors in parallel and distributed computer systems in order to
minimize communication costs. Geometric concepts will be used to derive lower
bounds on the costs of the partitions, and techniques for constructing optimal
partitions for some grid classes will be presented.

The first problem we consider is the “geometric” problem of partitioning the

grid cells of a 2-dimensional rectilinear domain into a specified number of groups

1

LY O | DN DNt
W W I |
w | (o

>

I

[

ot
ol |||
=30 B> T BN I B e ol R0 o}
[=> 30 B> T BN S N B (e < B e)

Figure 1: A minimum perimeter partition of a rectilinear domain

(subsets of cells) of specified size so as to minimize the sum of the lengths of the
group perimeters. We refer to this problem hereafter as “perimeter minimization”.
The perimeter of a group is the length of the boundary enclosing the cells in the
group. A set of cells is said to be connected if for every pair of cells ¢;, c; there is
a path of cells in the set from ¢; to ¢; such that adjacent cells in the path share
an edge. Any partition of a 2-dimensional grid into groups creates one or more
maximal connected sets of cells per group, which we call “tiles”. Given a group g,
the perimeter of the group, denoted by P(g), is formally defined as the sum of the
perimeters of these tiles. The objective function for the perimeter minimization
problem is therefore 3, P(g). An optimal partition of a domain with 48 grid cells
into 8 equal size groups is shown in figure 1 (each group is made up of a single
tile with a perimeter of length 10 for a total perimeter of 80).

The other problem addressed here is a combinatorial problem whose objective
function is determined by the (d — 1)-dimensional slices of a d-dimensional grid.
For eage of discussion, a d-dimensional grid can be be imagined to be aligned with a
d-dimensional Cartesian coordinate system so that each grid cell can be identified

by an integer d-dimensional coordinate vector. A slice is the subgrid formed by the

cells that have a common coordinate value in a particular dimension; for example,
the slices of a 2-dimensional grid are the rows and the columns. Again, we assume
that some processor index is to be assigned to each cell. Given a partition of
the grid cells into groups corresponding to processor indices, the diversity of a
glice is defined to be the number of distinct indices occurring in that slice. The
problem considered here is to partition the cells into a specified number of groups
of specified size so as to minimize the sum of the slice diversities. This problem
will be referred to as “diversity minimization”. It can be formulated as an integer
transportation problem with a nonconvex objective function, or as a linear integer
program. The details of these formulations are contained in appendix B. The
partition shown in figure 1 is optimal for both the minimum perimeter and the
minimum diversity problem. Figure 2 shows a partition of a 5x 5 grid into 5 equal
size groups that optimizes total diversity but does not optimize total perimeter
because too many tiles are “split” into more than one connected set. Because of
its slicewise definition, diversity is less affected by such splitting of groups. Notice
that in figure 2 there is a diversity of 3 for each row and 2 for each column, for
a total diversity of 25, while the perimeters for groups 1 through 5 are 10, 10,
14, 14, and 12 respectively for a total perimeter of 60. The minimum possible
perimeter for this problem is 52. For both problems, the notation A, is used to
denote the specified size or the “area” for group g.

Several variations on the problems stated above may be of interest depending
on the underlying application. Alternate objective functions and/or constraints
are the principal modifications which we consider. Some of these variations are

discussed in appendix A.

1141455
1111255
1(112(2]3
3141223
314(4|5|3

Figure 2: A 5 x 5 grid partitioned for minimum slice diversity

1.1 Perimeter minimization

In many computations performed on parallel and distributed systems, the data
and computational tasks that make up the problem are related by some kind
of grid structure and the communication is decentralized, occurring only be-
tween neighbors in the grid structure. In fluid flow problems solved with do-
main decomposition and obstacle problems solved by successive overrelaxation,
a 2-dimensional physical region is discretized by dividing it into grid cells[5, 13].
Values at each grid cell are iteratively computed based on the values at the north,
south, east, and west neighbor cells. For cells on the boundary of the region,
boundary conditions may be used in the computations. If the grid cells are as-
signed to processors (that is, the computation associated with each cell is per-
formed by a particular processor), then sharing data between neighboring cells
may involve interprocessor communication. With respect to communication cor-
responding to the domain boundary, there are at least two possible simplifying
assumptions that mesh with the perimeter minimization model. One could as-
sume that computing the boundary values is done locally by the processors (e.g.

using boundary conditions) with no communication necessary. Alternatively one

could assume some fixed amount of communication proportional to the number of
boundary edges for each boundary cell. In either case the amount of communica-
tion corresponding to the grid boundary is a constant. Thus the communication
due to inter-group perimeter is the only part of interprocessor communication that
varies with the partitioning strategy.

Edge detection in computer vision systems is another application in which
the data and the computational tasks have a grid structure. An image is rep-
resented as a 2-dimensional array of intensity values. To detect edges, a linear
combination of each value and its north, south, east, and west neighbor values is
computed[17]. If the image data is distributed across multiple processors, and the
edge detection computation at each pixel is computed by the processor on which
the pixel data reside, some computations require interprocessor communication.
The communication associated with the image boundary is handled as described
above.

For the computations described above, there exists the inherent problem of
optimally distributing the data and the computational tasks among the proces-
sors. If the objectives are to minimize interprocessor communication and balance
the computational load, the perimeter minimization problem is a good model un-
der some assumptions about the parallel architecture. Each grid cell represents
a data value and/or a computational task, and the number of groups into which
to partition the grid is equal to the number of processors in the system. Load
balancing is achieved by specifying A, for each group. In most cases, the group
sizes will be as equal as possible — modelling the case where the processors are
identical. Different group sizes can be specified to model processors with unequal
speeds or unequal amounts of memory. If we assume that there is an equal cost for

communication between any pair of processors (as in a distributed system), then

each unit of the perimeter corresponds to a unit of interprocessor communication
or boundary value computation, and minimizing the interprocessor communica-
tion is equivalent to perimeter minimization. To explain this equivalence let o
denote the length of the inter-group boundary for a partition, i.e., the number of
edges between adjacent cells of different groups; and let § denote the length of the
domain boundary. Notice that for any partition, the sum of the group perimeters
>4 P(g) is equal to 20 + (3 (each inter-group boundary edge is counted twice, once
for each bordering group). The communication cost for a partition is kyo + k23,
where k; and k, are chosen to relate the costs of communication across interior
edges and domain boundary edges. Since # is a constant, minimizing 3>, P(g) is

equivalent to minimizing ko + kof3.

1.2 Diversity minimization

The physical design of distributed database systems presents several data parti-
tioning problems. Many distributed systems are designed with a “shared-nothing”
architecture in which each processor has its own disk drive on which it stores a
portion of the database [6, 3, 18, 12]. Communication in such a system is central-
ized (messages travel only between the distributed processors and a coordinating
processor), with a cost depending on the number of processors communicating.
Partitioning the data on such a system in order to minimize the response time
for various database operations may be modelled by the diversity minimization
problem. The difference between the centralized communication model and the
local communication model of the other applications necessitates the development

of a different formal model, namely the diversity minimization problem.

In the relational database model, information is stored as a collection of “tu-
ples”. Each tuple is made up of a list of attribute values. For example, in a
relational database of employees, there may be a tuple for each employee having
attributes such as name, salary, age, social security number, etc. By partitioniﬁg
the domain of each of d attributes into ranges, the domain of tuple values can be
mapped onto a d-dimensional grid with a (d — 1)-dimensional slice corresponding
to each attribute range. For example consider the employee relation EMP in fig-
ure 3. The attributes are age and salary. Three partitions in each attribute are
created, producing the 3 x 3 grid in figure 3. Each grid cell corresponds to the
tuples of the relation that have attribute values in the corresponding ranges, e.g.,
the upper left cell of the grid corresponds to tuples that have salary values less
than $20,000 and age values between 0 and 25. Each set of tuples in a grid cell

is referred to as a “fragment” of the relation. The tuples of a relation may be

Salary in $K
< 20 20-50 > 50

Age 0-25

in 2650
Years > 50

Figure 3: The EMP relation

partitioned among the processors by partitioning the set of fragments.

1.2.1 Minimizing overhead and query response time

Diversity minimization is a model for overhead minimization, and under cer-
tain conditions response time minimization, for selection queries on distributed
databases. A selection query selects all tuples from the database that share a
common value in a particular attribute. Such a query must access all the data
corresponding to a slice of the grid, and utilizes all processors which own fragments
in that slice. This allows each processor to execute a portion of a query in parallel
with the other processors, resulting in a lower reSponse time for the query. How-
ever, there is communication overhead associated with initiating and terminating
a query on multiple processors, and this overhead increases as a function of the
number of processors used to execute a query. This overhead is primarily in the
form of additional messages to control the execution of the query on additional
processors and, in the Gamma database machine [6], increases linearly with the
number of employed processors. For this reason, it is desirable to minimize the
number of processors used in a query. Each possible selection query corresponds
to a grid slice, and the number of processors used to execute the query corresponds
to the diversity of the slice. Minimizing the total overhead is therefore equivalent
to diversity minimization.

The partitions that minimize overhead also, under certain assumptions, mini-
mize the average query response time —a nonlinear function of the slice diversities.

See appendix A for these results.

1.2.2 Minimizing data duplication in parallel hash-joins

The problem of minimizing data duplication for multiple parallel hash-joins can

also be modeled by diversity minimization. If the parallel joins Ry M Ry, By X

Rs, Ry X Ry,..., with join attributes chosen from {Ai, As,...,Ap}, are to be
performed on a distributed system, one approach is to partition R; across the
processors via a hash function on A;, Ay, As,...Ap. This divides the relation
into fragments arranged in a D-dimensional grid (one dimension for each of the
join attributes). In the join R; X R; on attribute A;, each tuple ¢ of R; must be
matched with the tuples of R; which share the value of t in attribute A;. If a
number of processors own tuples which might match ¢, then ¢ must be duplicated
and sent to each of these processors. The processors to which ¢ needs to be
sent are exactly those to which tuples matching ¢ in attribute A; would hash,
i.e., the processors in a (D — 1)-dimensional grid slice in dimension j. Clearly
the amount of duplication is proportional to the diversity of the corresponding
slice. Assuming equal frequency of all joins, minimizing total data duplication is
equivalent to diversity minimization. The load balancing constraints once again
model the similarity of the processors with regard to storage space.

Various methods of partitioning are common in distributed database machines.
Range partitioning divides the database into fragments by partitioning the values
of a single attribute into ranges. This is equivalent to creating a 1-dimensional
grid of fragments. Selection queries on the partitioning attribute execute on a
single processor, but queries on any other attribute require all of the processors.
Ghandeharizadeh generalized range partitioning to many dimensions to overcome

this disadvantage (8].

1.3 Computational complexity

Perimeter minimization is equivalent to a restricted form of the graph partitioning

problem. In its full generality, the graph partitioning problem is to partition the

10

nodes of a given graph into a specified number of disjoint subsets of specified
sizes so as to minimize the number of “cut edges”, i.e., edges connecting nodes in
distinct subsets. Given a domain composed of grid cells, construct a “grid graph”
with a node for each grid cell and an edge between each pair of nodes corresponding
to adjacent grid cells. Perimeter minimization is therefore equivalent to graph
partitioning on grid graphs. Below, the problem is shown to be NP-hard, however
the proof uses a non-rectangular subset of a rectangular grid, so the complexity of
perimeter minimization restricted to rectangular graphs remain an open question.

Diversity minimization for general rectilinear domains is NP-hard. The NP-
complete partition problem can be reduced to diversity minimization. The par-
tition problem is: given a set of positive integers ay, ag, .. ., Gy, answer the ques-

tion “is there a partition of the a’s into two disjoint subsets X and Y such that

— 1
Paex @ = Paey @i =3 Yt a;?”

Theorem 1 The diversity minimization problem and the perimeter minimization

problem are NP-hard.

Proof: Given an instance of the partition problem ay, ag, ..., an, We construct
an instance of diversity minimization which has minimum value 37 ; a; +n if and
only if there exists a partition of a1, as,...,0,. We divide a domain of 37, a;
cells into two equal size groups, where the domain has the cells arranged in n rows

and Y7, a; columns as illustrated below.

3]

ag

an

11

For any feasible assignment of the cells, the diversity for each column will be 1,
and the diversity for each row will be either 1 or 2. Therefore >, a; +n is a
lower bound on the total diversity. If there exits a partition X,Y of a;,as,...,0n,
then there is a feasible assignment of the cells of the domain which achieves a
total diversity of %, a; + n by assigning all cells in row ¢ to group lifa; € X
and to group 2 if a; € Y. Conversely, if there is a feasible assignment of the cells
which achieves a total diversity of 31, a; +n, (i.e., a diversity of 1 for each row),
then there exists a partition X,Y of a3, as,...,0n which has a; € X if the cells in
row i are assigned to group 1 and a; € Y if the cells in row 7 are assigned to group
9. Therefore there is a partition of aj, ag, . . ., @, if and only if there is a minimum
total diversity of >i-; a; + .

Using essentially the same reduction, partition is reduced to a decision version
of the minimum perimeter problem. Given an instance of the partition problem
a1, 0z, - - -, Gn, construct an instance of perimeter minimization with the same do-
main as for the previous reduction split into two equal size groups. There is a
partition of the numbers ay,as, ..., 0 if and only if the minimum value of the
total perimeter is 2 Y%, a; + 2n. The perimeter of the domain must contribute
to the total perimeter of any feasible solution, therefore 2 3%, a; + 2n is a lower
bound on the total perimeter. If there is a partition of the numbers ay, az, . . ., Gn,
then the same assignment of cells to groups as for the diversity problem yields a
total perimeter of 237, a; + 2n. If there is a feasible assignment of cells which
achieves a total perimeter of 27, a; + 2n, then each row of the domain must be
assigned to a single group and the implicit partition of the rows corresponds to a
partition of the a;. |

In most of the applications of diversity minimization, the domain is a rectan-

gular grid. The complexity of diversity minimization on this restricted class of

12

domain is not known. Diversity minimization is a restriction of a data aggrega-
tion problem of Helman[15]. The general data aggregation problem can be stated
as follows: given a set of elements and a collection of subsets of these elements,
partition the elements into a specified number of groups of specified size in order
to minimize the sum of the diversities of the subsets, where again the diversity of
a subset is the number of groups intersecting the subset. If the set of elements is
the set of grid cells and the collection of subsets is the collection of all slices of

the grid, then the grid problem can be seen to be a restricted class of the data

aggregation problem.

1.4 Unifying concepts

This section introduces the central geometric concepts of “semi-perimeter” and
“d-perimeter”. The combinatorial diversity minimization problem is shown to be
equivalent to the geometric problem of d-perimeter minimization. Semi-perimeter
and d-perimeter are shown to be related, providing a single framework in which
to address both perimeter and diversity minimization.

Given a 2-dimensional domain partitioned into groups, the semi-perimeter of
a connected group of cells g, denoted by S (g), is defined as the width plus height
of the smallest rectangle enclosing the group. If a group is made up of more than
one maximal connected subgroup (tile), then its semi-perimeter is the sum of the
semi-perimeters of the tiles.

We will now show that for a large class of cell groups, or “configurations”,
that play a key role in the theory below, the perimeter is exactly twice the semi-
perimeter, and that for other configurations, perimeter is more than twice the

semi-perimeter. A group of cells is “slice-convex” if for any two cells ¢y, ¢z of the

13

group in the same slice, the smallest rectangle containing ¢; and c; lies entirely in

the group. (Note that a slice-convex configuration need not be convex.)

Lemma 2 For a group of cells g, P(g) > 25(g). Furthermore, P(g) = 25(g) if

and only if each tile of g is slice-convez.

Proof: Notice that the perimeter of a group is the sum of its tile perimeters.
Consider a tile ¢; of g. There are at least two cell edges forming part of the group
boundary in each slice of ¢;. Therefore each slice intersecting ¢; contributes at
least 2 to the perimeter of g, but exactly 1 to S(¢;). Since S(t;) is the number
of slices intersecting t;, P(t;) > 28(¢;). If ¢; is slice-convex, each slice intersecting
¢; contains exactly 2 group border edges, so that P(t;) = 28(t;). If t; is not
slice-convex, there is a slice of ¢; with more than 2 group border edges, therefore
P(t;) > 28(t;). The lemma follows since S(g) = ¥ S(t;) and P(g) = X; P(t;). B
Since lemma 2 links perimeter and semi-perimeter, a lower bound on perimeter
may be obtained by developing a bound on semi-perimeter.

Consider the diversity minimization problem. Because reordering the slices of
a grid does not affect the diversities, we may consider the cells in a particular
group in their most “compact” configuration. For a group g of cells, define the
compact configuration C(g) to be the group after the slices of the grid have been
permuted so that in each dimension the slices containing cells in the group are
contiguous. For example, Figure 4 shows a group g of 9 cells and C(g). For a group

g of cells in a d-dimensional grid, we define the d-perimeter of the group, denoted

Pa(g) to be the sum of the d dimensions of the smallest hyper-rectangle enclosing

C(g). For example, the 92-perimeter of the configuration is4d+3="T7.

Another way to interpret Py(g) is as the total number of (d--1)-dimensional slices

14

g g g 91919
91919
—1919|9
g g g
g g g

Figure 4: Permuting slices to produce a compact configuration.

intersecting g. To relate the slice diversities to the group d-perimeters, define the

slice-group incidence vector X:

1 if group g intersects slice s

Il

0 otherwise.

The diversity of slice s is 3, x¢, and the sum of the slice diversities is 35 >g X3-
The perimeters can also be expressed in terms of x: Palg) = XsxJ. The sum
of the group d-perimeters is 35, 2 x¢ which is equivalent, by reversing the order
of summation, to the sum of the slice diversities. Therefore the problem of “d-
perimeter minimization,” i.e., partitioning a d-dimensional grid into groups of
specified sizes so as to minimize >, Pa(g), is equivalent to diversity minimization.

Restricting d to 2, the 2-perimeter and semi-perimeter concepts are related by

the following lemma:
Lemma 3 Given a group of cells g,

S(g) > 8(C(g)) = P2(C(g)) = P2(9)-

Furthermore
S(C(9)) = Pa(9)

15

if g is connected or slice-conver.

Proof: The left inequality in the lemma follows because the compaction op-
eration can coalesce two tiles, but cannot split a tile apart. The middle inequality
follows because each slice intersecting C(g) contributes to the semi-perimeter of
at least one tile of C(g). The right equality holds because compaction does not
change the 2-perimter. The conditional equality follows because if g is connected
or slice-convex, each slice through g intersects only one tile. |

This relationship allows us to derive a common lower bound on semi-perimeter

and 2-perimeter as a function of the size of the group of cells.

Lemma 4 Ifls(n) is a lower bound on the semi-perimeter of any group consisting
of n cells, then ls(n) is also a lower bound on the 2-perimeter of a group of n cells;
and if lp(n) is a lower bound on 2-perimeter, then Ip(n) is a lower bound on semi-

perimeter.

Proof: Since Ps(g) is a lower bound on S(g), any lower bound on Py(g) must
also be a lower bound on S(g). The other part of the proof is by contradiction.
Assume that Is(n) is a lower bound on semi-perimeter and that there exists a
group of n cells, g, with 2-perimeter strictly less than ls(n). Let h and w be
the height and width respectively of the smallest rectangle enclosing C(g), i.e.,
Py(g) = h +w. It is clearly possible to construct a connected configuration g’
of n cells enclosed by an h X w rectangle since hw > n. Since g’ is connected,

S(¢) = h+w < ls(n), a contradiction. i

Chapter 2

2-Dimensional Theory

This chapter deals with perimeter and diversity minimization on 2-dimensional
domains and grids. It unifies the results from perimeter minimization [20] and di-
versity minimization [21]. A lower bound on group semi-perimeter and 2-perimeter
is developed. The derivation of this lower bound yields a geometric characteri-
sation of tiles with minimum semi- and 2-perimeter. A technique for generating
all optimal tiles, i.e., tiles with minimum perimeter, of a fixed number of cells is
described. We then show how optimal tiles may be used to tile several classes

of grids, yielding provably optimal solutions to the diversity and perimeter mini-

mization problems.

2.1 Lower bound on semi- and 2-perimeter

By lemma 4 a lower bound for semi-perimeter is a lower bound for 2-perimeter
and vice versa. We derive a bound on semi-perimeter. Let the notation |g| denote
the number of grid cells in the group g. Let A* 1 IN — IN be the function

mapping a positive integer semi-perimeter to the maximum number of cells in a

16

17

group with with that semi-perimeter, t.e.,
An)= max, gl
such that S(g) =n.
Theorem 5 Given a semi-perimeter S, the mazimum size group with semi-per-
imeter S is a § x £ square if S is even, and 1s a (—5-231) X (§—'2hl) rectangle is S 1is
odd, i.e.,
2
(%) if S is even
A*(8) =
(55) (8f2) of S is odd

Proof: For a group g let S;(g) and Sy(g) denote the width and height respec-
tively of the smallest rectangle enclosing the group. Given any group g with semi-
perimeter S and area A, there is a rectangular tile with dimensions Sz(g) % Sy(9),
with semi-peimeter S;(g) + Sy(g) = S and area S2(9)8,(g9) > A. Therefore we
need only consider rectangular tiles as candidates for maximum area groups. To
find the rectangle of maximum area with semi-perimeter S, we maximize S;Sy
subject to S + Sy = S. This result can be sharpened by constraining S, and
Sy to be integers. Of all pairs of integers with a certain sum, the pair with the
greatest product is the one with the numbers closest together. If S is even, this
is achieved by setting S; = Sy = %, and if S is odd, it is achieved when S; and
S, differ by 1. [|

By “inverting” the function A*, we obtain a function S* : IN — IN which is
defined as the function mapping a group size to the minimum semi-perimeter of
all groups of that size, i.e.

S*(n)= ming S(9)
such that |g| =mn.

18

Theorem 6 Given a group size A, the smallest achieveable semi-perimeter is
S (A) = i [AV] + (2 -) | A"
where i is the smallest positive integer such that
[A1/2]i ‘-Al/zr"" > A
Furthermore, the lower bound on S is tight, i.e., for any A, there is a group
of A cells with a semi-perimeter of {.Al/ 2] + (2 —1) |_A1/ ZJ.

Proof: We may bound the semi-perimeter of any group of A cells from
below by finding the smallest semi-perimeter & that satisfies A*(S) > A, since
this implies A > A*(S — 1), which means that a semi-perimeter of S — 1 is not
achievable for a group size of A.

Consider the following sequence of rectangles.

Area S()
Qo: 0x0
Q:: 1x0
Q: 1x1 1 2
Qs: 2x1 2 3
Qu: 2x2 4 4
Qs: 3x2 6 5
9 6

Qe: 3x3

We call these rectangles “quasi-squares” since the dimensions of each rectangle
differ by at most 1. Note that the areas of the quasi-squares in the sequence are

strictly increasing after the second, the area of the ith quasi-square Q; fori > 2

19

is A*(i) (from theorem 5), and the semi-perimeter for the quasi-squares increases
by 1 at each step. The areas of these quasi-squares are the points at which the
lower bound on the semi-perimeter increases by 1.

For an arbitrary .A, there is a unique smallest quasi-square @; whose area is
at least A. Since the area of Q; is at least A, by selecting A cells from Q; a
semi-perimeter of at most S(Q;) is achievable for A cells. Since the area of Q;—1
is smaller than A, a semi-perimeter of S(Q;-1) = 8(Q;) — 1 is not achievable for
A cells. Therefore the smallest semi-perimeter achievable for any tile of A cells is
S(Q;). Tt is easy to see that each dimension of @; is either [.Al/ 2J or {Al/ 21 and
that S(Q;) is exactly the semi-perimeter bound in the statement of the theorem.
|

The functions S* and A* are partial inverses in the sense that A*(S*(n)) = n,
A*(8*(n) - 1) < n, and §*(A*(n)) = n, relationships which can be derived from
the function definitions. In the following lemma we present a perimeter optimality

test for any group of cells.
Lemma 7

S(g) = S*(lg)
if and only if

A*(S(g) - 1) < gl - (1)

Proof: If (1) holds, it is not possible to achieve an area of |g| via any group
with smaller semi-perimeter, since the maximum achieveable area for any such
group is less than |g|. On the other hand if (1) does not hold, then by theorem 6
there is a group § with |g| = |g| and 8(g) < S(g). |

Lemma 7 can be used to show that S*(A) can also be written in closed form.

20

Theorem 8 S*(A) = [2 Al 2] :

Proof: To see that I-Z AY 2] is a lower bound on S*(A), recall that semi-
perimeter is the height plus the width of the smallest rectangle enclosing the group.
Therefore a lower bound on semi-perimeter is min{h+w|hw > A} = 242, Since
h and w must be integers, we can round up to the next integer to get {2 AY 2] .

Since S* yields the best possible lower bound, we need only show S*(A) <
[2/11/ 2]. Let S be the semi-perimeter of some group of A cells. We show that if

S = 8*(A) then S = [2412].

S = [2/11/2]
= S-2472 < 1
= S—1 < 2412,
From lemma 7 we have
S = S*A)
= A*(S-1) < A
@[8_1]7"[5“1J2“T<L 2

where 7 = (S — 1) mod 2.

If 7 = 0 then t%‘—lj = $-1 50 (2) becomes

() < 4

2
—_ S-1 < 2A4Y2,

If =1 then [%’lj =% —1and I-‘—s—zf—l-‘l = £ 50 (2) becomes

(5-1)§ < A
= S§?2-25 < 4A

21

Since both sides of the last inequality are even integers, we may add 1 to the LHS

and maintain the inequality.

S§?-285+1 < 4A.
= (S —1)° < 44
VRSN S—1 <2AY2
E

Rosenberg [16] showed in the context of graph partitioning that [Z.Al/ 2] is a
lower bound (as a corollary to a more general result), and formulated the tight
lower bound as the closed form expression: |_A1/ 2J + hz’li/q], without realizing
that the two actually co-incide.

Table 1 contains minimumn semi-perimeter values for areas up to 56 constructed

via theorem 6.

2.2 Minimum-perimeter and 2-perimeter groups

In this section we discuss the characteristics of groups which have minimum 2-
perimeter and perimeter for their size. The notation P*(.A) denotes the minimum
perimeter of all groups of A cells. In the following lemmas we present 2-perimeter

and perimeter “optimality tests” for any group of cells.

Lemma 9 A group of cells has a minimum 2-perimeter if and only if it has a

minimum semi-perimeter.
Proof: Follows directly from lemma 4. |

Lemma 10 A group of cells has a minimum perimeter if and only if it is slice-

convez and has a minimum semi-perimeter.

12
16
20
25
30
36
42
49
56

min semi-perimeter (S*(A)) | area (A)

2 1

3 2

4 3 -
5 5 -
6 7T -
7 10 -
8 13 -
9 17 -
10 21 -
11 26 -
12 31 -
13 37 -~
14 43 -
15 50 -

Table 1: Minimum perimeters

22

23

Figure 5: translating tiles to decrease perimeter

Proof: Slice-convexity and a minimum semi-perimeter are sufficient to guar-
antee a minimum perimeter by lemma 2. A minimum semi-perimeter is necessary
because for any semi-perimeter S achievable with group size .A, there is a slice-
convex group of size A with a perimeter of 2S. Slice-convexity is also necessary
for a minimum-perimeter because the cells of a non-slice-convex group can be
rearranged into a slice-convex group with a lower perimeter. |

It is also necessary for a group to consist of a single tile (i.e., a single maximal
connected set), in order for it to have a minimum perimeter. Consider a group of
cells containing two disconnected tiles denoted by Ty and Tp. By translating T3
it is always possible to connect 7; and T (see figure 5), thereby decreasing the
perimeter of the group of cells by at least 2.

We may classify tile shapes according to two independent characteristics. Tiles
are either nearly square (dimensions differing by at most 1) or non-square. In ad-
dition, tiles are either regular (complete rectangles) or irregular. Figure 6 depicts
examples of minimum-perimeter tiles in each of the four categories induced by
these characteristics. The proof of theorem 6 implies a construction technique
for “perimeter-optimal” tiles, i.e., tiles with minimum perimeter. An optimal tile
of any area A can be constructed by arranging A cells into 2 partial square as

follows. Start with a complete square with sides of length I_.Al/ 2J. Add cells to

24

nearly square non-square

regular

irregular

Figure 6: Categories of tiles

&1l in new 1-dimensional faces (completing a face before starting on a new one)
until the total number of cells is A. The resulting partial square will have sides of
length [Al/ 2J and [Al/ 21, and will measure [.Al/ 2] in as few dimensions as pos-
sible. By theorem 6, it will have minimum semi-perimeter. If the partial squares
are constructed to be slice-convex then by lemma 10 they also have minimum
perimeter. This construction technique is a special case of a technique described
in §2.2.2 for constructing all minimum-perimeter tiles of a given area.

In figure 7, we show some perimeter-optimal partial squares constructed in

this manner with areas ranging from one to sixteen.
Lemma 11 P*(A) = 25*(A).

Proof: Follows from the fact that there is a minimum semi-perimeter slice-

convex group of every size. |

Figure 7: Partial squares with minimum perimeter

25

26

2.2.1 Optimal rectangles

Using the results from the previous section, we can characterize the rectangles

which have minimum perimeter.

Theorem 12 An z x (z + k) or an (z + k) x z rectangular block is perimeter-

optimal iff

kis even and 1+ 5(£—-1) <=z
or

k is odd and 1 + (@_;_1_)2 <z

Conversely, an z x (z -+ k) or an (z+k) x z rectangle is perimeter-optimal iff the

rectangularity increment k is at most
max {2 round(z'/?), 2 I_wl/z - 1J + 1}
where round(z) rounds © to the nearest integer.

Proof: To prove the first part of the theorem, we simply apply the optimality
test. By lemma 7, an z X (z + k) block is optimal iff

[2x+k—-1"lrl2m+k—l

2—-r
2
5 5 J <z +kz (3)

where r = (2z + k — 1) mod 2.

If k is even, (3) reduces to

[2m+2k—1'l [2x+2k—1-l < 2 +kz
= (@E+He+i-1) < P’+kz

= Ek-1) < =

The integrality of both sides of the inequality allow us to derive the desired result.

27

If k is odd, (3) reduces to

2
[—i——:"“ Zk"IJ < zl+kz
2
= (w—i—%l) < z*+kz
2
To prove the second part of the theorem, we show that 2 l(.L‘ - Y 2J +1 and
2 round (ml/ 2) are the largest odd and even integers respectively satisfying (3).

To prove the result for the odd numbers, we start with the expression for z in

terms of odd k. , \
(%—1) +1 < T
= kL < (z—1)Y2

Since the LHS of the last inequality is integer, we may take the floor of the RHS.

< l(m - 1)1/2J
= k < 2|@-)"|+1L

Since the RHS of the last inequality is an odd integer, k£ = 2 [(a; —1)Y 2] +1is
the largest odd integer satisfying (3).

To prove the result for the even numbers we write £'/2 in the form z'/2 =7+ f
where 7 is the integer part and f € [0,1) is the fractional part. If f < then
2 round (:cl/ 2) =2r. If f > 1 then 2 round (wl/ 2) = 2r + 2. (For integer z, f is
never 3 so round (:L'l/ 2) is uniquely defined for integer z.)

If f < ; and 2 round (ml/ 2) = 2r then k = 2r satisfies (3) because

g(g——l)=T(7‘—1)=7‘2——7‘<7‘2+2f7‘+f2=:1:

and k = 2r + 2 violates (3) because

k
‘2“(’2“1)+1=(T+1)'r+1=r2+7”+1>7‘2+2fr+f2=:1:.

28

If f > 1 and 2 round (ml/ 2) = 2r + 2 then k = 2r + 2 satisfies (3) because

k(k
'2‘('2“'"-])=(T+1)7‘=T2+7‘<7‘2+2f7'-{—f2:::1;

and k = 2r + 4 violates (3) because

k(k
5(5“’1) —(r+2)(r+l)=r+3r+2>r +2fr+ fP =1

Therefore k = 2 round (wl/ 2) is the largest even integer satisfying (3). B

Note that the first part of the theorem shows that if a particular two-dimension-
al rectangle is optimal, then by increasing both dimensions by the same amount,
the resulting larger rectangle is also optimal. Figure 8 shows the dimensions of all
rectangles with 2 < 30 that have minimum perimeter. The integral points on the
diagonal line in the figure represent the squares, and the outer boxes represent the
most-skewed rectangles with optimal perimeter. All integer points between (and
including) the boxed points correspond to rectangles with minimum perimeter.
Table 2 lists dimensions of the most skewed optimal rectangles corresponding to

the boxed points above the diagonal.

2.2.2 Optimal Irregular Tiles

In order to characterize irregular optimal groups of cells we prove a simple but
powerful theorem giving another necessary and sufficient condition for the perime-

ter optimality of any group of cells.

Theorem 13 A group of cells of A cells has minimum perimeter if and only if

it is slice-convez and its minimum circumscribing rectangle has semi-perimeter

S*(A).

29

e ¢
40F 7 ' ' ! e 0 5 SR
.E:::O::O:OOQO«»
Py (2 - e o e x XD
[2030 8.8 B L 5 K5
35___ "'00.0000000000000
o o e T ob o
'-.-:::::0::0.00.000
y & Q90 0 105 151 0% %0 0 0
I R R RERRILRLLL LT LR
o S
30"‘ '30000005000000000000'
'.«oooooooooooooo'ooo-~.
W Rt Eia g
LR 0 R R AR X K B SR
— e 350 105 3058 120 100 303 0 1030 1030 e 31 w00 i K PP]
25 .'0000000000000000..
hyhoge 0 0100 00 KR Kt K e e x Kx Ku P
. e R S e e R R
helghtzo_. L 53R 05 2% 105 5 0 0% 50 2 xR0 0 K KU RAP]
'ozoo:o::o::ozoo‘
P (AR v K2) P Y
.,.wooooooooooooo.«.
L SR RS
- b i 3k i K10 K 300 x X XU -
15 "-'000000000000..
AR % 00 0% L5 K S 0 S0 X P
.bOOOQOOQQQOQ'.‘
- [528 R eSSk]
]_ b R %0 %y
50 0 K5 K P
'!‘..90000‘.
0 2 S e Kok AP
5 OIRESRLRRT] -
[BSER
P
0 i]] 1 1]] I

width

Figure 8: Dimensions of rectangles with optimal perimeter

Proof: The theorem follows from the fact that a rectangle has the same
perimeter as any slice-convex group of cells of cells it minimally circumscribes.

Theorem 13 suggests a way to find all the minimum 2-perimeter and mini-
mum perimeter groups of cells for a given area .A. In this discussion we consider
two groups of cells to be equivalent if one can be transformed into the other
by rotation and/or reflection. Using the theorem, all the possible circumscrib-
ing rectangles for perimeter-optimal groups of cells of area A can be specified.
For each of these rectangles, any subset of A cells forms a minimum 2-perimeter
group, and any slice-conver subset of A cells forms a minimum-perimeter group
of cells. We say a cell is a corner cell of a group if it is not between two group
cells in any slice. By removing a corner cell from a slice-convex group, convexity

is maintained. Therefore, starting from a rectangle, a minimum-perimeter group

Most-skewed perimeter-optimal rectangles
k z X (z+k)
2] 1x3
3] 2x5
4| 3x7 | 4x38
51 5x%x10 | 6 x11
6| 7x13 | 8x14 | 9x15
7110x17 (11 x18|12x19
8 |13 x21|14x22[15x23|16x 24
9 |17x26|18x27|19x 28|20 x 29
1021 x31{22x32[23x33{24x34]25x%35
1126 %3727 x38[28x 39|29 x40|30x41

Table 2: Some most-skewed perimeter-optimal rectangles

can be constructed by iteratively removing corner cells. For example, given an

30

area of 10, the minimum-perimeter groups are generated as follows. §*(10) =7,

so the rectangles of semi-perimeter 7 are considered. The possibilities are 1 X 6,
2 x 5, and 3 x 4. A 1 x 6 rectangle cannot enclose 10 cells, so all minimum-

perimeter groups are circumscribed by either 2 x 5 or 3 x 4 rectangles. Therefore

all minimum-perimeter groups of area 10 are equivalent to the following groups:

31

The first five groups above represent all the possibilities for groups enclosed
by 3 x 4 rectangles: the first two are constructed by removing two corners from
the same column, the next two by removing two corners from the same row, and
the fifth by removing two corners from different rows and columns. There is only
one possible group of area 10 contained in a 2 X 5 rectangle.

By examining the above technique, we are able to identify the cases in which
there is a unique minimum-perimeter group of given size. Given an area A, if there
is a unique rectangle with semi-perimeter S*(A) and area > A, then all minimum-
perimeter groups of size A are circumscribed by that rectangle. Furthermore, if
the area of that unique enclosing rectangle is A or A + 1 then there is a unique
optimal group of area A, because all removals of either zero or one corner result

in equivalent groups. We also show that all other cases lead to non-uniqueness.

Lemma 14 There is a unique minimum-perimeter group of area A if and only if

A can be ezpressed as A= k?, k(k + 1), or k(k + 1) — 1 for positive integer k.

Proof: If A = k? then 8*(A) = 2k. The unique enclosing rectangle with
semi-perimeter 2k and area at least A has dimensions k x k (any other rectangle
with éemi—perimeter 9k has area less than k?). Similarly, if A = k(k + 1), or
k(k+1) — 1 and k > 2, then §*(A) = 2k + 1, and the unique rectangle with
semi-perimeter 2k + 1 and area at least .A has dimensions k % (k+1).

To show that these are the only classes of areas which have unique optimal

groups, consider the fact that such an area A must have only one possible enclosing

rectangle with perimeter S*(A). Since S*(A) corresponds to an enclosing square

32

or quasi-square, it follows that the unique enclosing rectangle must be this square
or quasi-square. This means that the area A is expressible as either k* — j or
k(k+ 1) — j for positive integer k and non-negative integer j. For areas expressed
as A = k?—j with j > 1, a (k-+1) x (k—1) rectangle is a second enclosing rectangle
with semi-perimeter 2k because (k +1)(k — 1) > k?* — j. For areas expressed as
k(k + 1) — j with j > 2 there can not be a unique optimal group because there
are at least two ways of removing j corners from a k x (k + 1) rectangle. |

The preceding argument proves that squares, quasi-squares, and quasi-squares
minus one corner are the unique optimal groups for their areas and that all other
areas have alternate optimal groups. Similar reasoning can be used to show that
for areas of the form k2 — 1 with k > 2, there are exactly two optimal groups: a
k x k square with one corner removed and a complete (k—1) x (k +1) rectangle.

Another interesting fact about the set of optimal groups of a given area is that
there can be at most one rectangular group in the set. To prove this we make use

of the following lemma.

Lemma 15 For (unordered) pairs of positive numbers, two distinct pairs with
identical pair sums have different pair products, i.e., for positive numbers 1, Y1,

T, Y2, Of T1 + Y1 = T2 + Y2 and {z1,11} # {z2, 2} then T1y1 # T2ya.

Proof: Write o as z1 + k. Then yo = y1 — k. Now assume z1¥y; = T2¥2-

Substituting into this last equation, we get
1 = (11,'1 + k)(y1 - k)

Simplifying, we get
k(y1 - Tl — k) = 0,

33

in other words k = 0 or k = y; — 21. In the first case z; = z2 and y1 = Y2, and in
the second case z; = ¥, and y; = Z2, a contradiction. [|

The lemma tells us that all rectangles with a given semi-perimeter have dif-
ferent areas and implies that if a rectangular group of area A is optimal then it
is the only optimal rectangular group with area A (any other optimal groups will

be irregular). Note that this is not true in three or more dimensions.

2.3 Optimal Tilings

The results of the previous sections provide an implicit lower bound for both the

minimum perimeter and minimum diversity problems.

Theorem 16 Given either a perimeter minimization problem or a diversity min-
imization problem in two dimensions and a specified number of cells Ay for each
of the processors, a lower bound on half the total perimeter or on the total slice

diversity 1s

;S*(Ap)-

Proof: Follows immediately from theorem 6 and lemma 11. |

It should be noted here that several methods for graph partitioning use spec-
tral information about the graph’s Laplacian matrix and the theory behind the
methods yields lower bounds on the number of cut edges as a byproduct. The
bounds, however, are based on continuous relaxations of integer problems and
are therefore of poor quality. Our bounds, on the other hand, are tight for large
classes of problems as will be demonstrated here.

In order to achieve the lower bound on total perimeter, each group must have

a perimeter of exactly P*(Ap). Thus, we wish to interleave perimeter-optimal

34

groups for all processors in order to fill the domain exactly. In order to achieve
the lower bound on total slice diversity, each group must have a 2-perimeter of
exactly 8*(Ap). Thus, we wish to interleave minimum 2-perimeter groups for all
processors in order to fill the domain exactly. In this section we exhibit classes of
domains for which such partitions can be constructed.

If a grid is tilable with minimum-perimeter tiles, then both the total perimeter
and total diversity are minimized by the tiling. Some grids may not be tilable with
minimum perimeter tiles, i.e., the lower bounds on perimeter are not achievable,
but partitions exist where the groups each have a minimum 2-perimeter. In such
cases, different partitions minimize total diversity and total perimeter respectively.
For example, the 5 x 5 grid is partition-able into 5 equal size minimum 2-perimeter
groups, but not into 5 equal size minimum perimeter groups. Figure 9 illustrates a
minimum diversity partition and a minimum perimeter partition. In the partition
on the left, each group has an optimal 2-perimeter of 5 for a total diversity of 25.
However, the perimeters are not minimal - several groups consist of two tiles; the
total perimeter is 60. In the partition on the right, groups 1,2,3, and 4 have a
minimum perimeter of 10, and group 5 has a perimeter of 12, for a total of 52.
The 2-perimeters are optimal except for group 5 which has a 2-perimeter of 6, for
a total diversity of 26. To see why the lower bound of 50 for the total perimeter is
not achievable, notice that an optimal tile of area five must be made upofa 2x2
block plus one more cell. Since it is impossible to fit five 2 x 2 blocks into a 5 X &
grid, the lower bound cannot be achievable. Since we have provided a partition
which achieves a total perimeter of 52, this must be optimal value. Thus, we have

and example of a case where the minimum total perimeter is greater than the

minimum total diversity.

35

1(414(5]5 1111444
111(2]5]5 1]1]5]4|4
11112123 1(5|5|5|3
31412123 212151313
3141453 21212]3}3

Figure 9: Minimum diversity and minimum perimeter partitions
2.3.1 Minimum-perimeter tilings

Corollary 17 Y P*(A4,) <> Py -
P g

Proof: Use theorem 6 and the fact that ¥4 Py = X, P(T5)- |
Clearly, if the tile for each processor has minimum perimeter (i.e., P(Ap) =
P*(A,) for all p), then the corresponding set of cell assignments achieves the
lower bound on the communication measure 3, Py, and is therefore an optimal

assignment.

In §2.3 we give classes of domains for which such tilings are possible.

Optimal Tilings with Rectangles

One class of problems that have easily obtainable optimal solutions are instances
in which the domain is a M; x M, rectangular grid that can be tiled with perimeter-
optimal rectangles. In particular, if N can be factored as fifo where f; divides
M., fo divides M, and %fil X —1‘]%’3 rectangles are perimeter-optimal, then such a
tiling is possible when all processors have equal loads. Below we demonstrate an
optimal assignment for such an instance: a 6 X 18 grid with 6 processors, each of

which has a load of 18.

36

1l1)tf1l1]1{2|2]2|2(2|2|3]3|3|3|3]|3
1l1l1f1)1]1|2(2(2|2]2]|2|3|3|3(3|3]|3
1l1(1]1]1]1{2]2|2|2(2}2|3|3|3|33|3
4444|414 |5|5|5|5|5(5|6]6|6|6|6]|6
414|4]4|4|4|5|5|5]5|5|5|6|6|6/6|6]|6
4(4|44|4|4|5|5|5|5|5|5|6|6/6|6|6]|6

However, it is not necessary that all the tiles be oriented in the same way. An

alternate optimal assignment for the same problem is shown below.

tl1l1l2]2l2]2|2|2|3|3|3|4(4|4]|4]|4|4
1l1l1]212]2(2|2|2|3|3|3|4]|414[4]4}4
1111222222333 |4|4]|4|4]|4)4
1l1l1l5|5|5|5(5|5|3|3|3|6|6|6|6|6|6
1l1l1l5|5/5]5|/5]5|3|3|3|6|6|6|6[6|6
1l1l1|5|5|5|5(5(5(3|3|3[6(6|6|6|6]|6

Figure 1 in chapter 1 is an example of a non-rectangular domain optimally

tiled with rectangles.

Optimal Tiling with Irregular Tiles

Irregular tiles can fit together to tile many grids. The example below shows how

irregular optimal tiles of area 10 fit nicely together.

37

1(1]1]1]4|4(4|4|5|5|6[6]|6
1]1(1]|1(4(4|4/(4]|5|5]|6]6]6
11112]2(3|3|4(4|5(|5|5|6|6
212121213333 |5|5(5]6]|6
21212121313 |3|3|8|8|8|7|7
8 8|8|7|7
8 |8|7|7|7
8 |8|7|7|7

This example also demonstrates the technique of optimally tiling by decomposing
the domain into subdomains which can each be optimally tiled by a proportional
subset, of the processors. The domain above can be split into four 5 x 4 rectangles,
each of which can be tiled optimally with two processors. Such a divide and
conquer approach to tiling is a method of constructing optimal tilings for large

domains with complex shapes.

2.3.2 Minimum diversity toroidal tiling

In this section we present an optimal solution technique for the diversity mini-
mization problem on a certain class of grids. These results are useful because they
provide a class of problems for which the optimal values are known, making this
class a good source of test problems for heuristics. The technique described here
was inspired by a method due to Schultz [10] which produces minimum perimeter
solutions for N x N grids, 4.e., problems where the grid is square and the number
of rows equals the number of processors. A description of Schultz’s method is
presented in appendix C. The new method is superior since it is proven to work

for a larger class of problems and is more intuitive. It differs from the previous

38

method by assigning all the cells for one processors at every step instead of as-
signing the cells along a diagonal to different processors. This aspect may allow
it to be modified to produce a heuristic for the minimum perimeter problem.
Since the groups of cells do not have to be connected in order to have minimum
2-perimeter, one technique for creating optimal partitions is to allow the tiles to
“wrap around” the top or side of the grid. We can therefore think of the domain
as lying on the surface of a torus, t.e., the top row of the grid is adjacent to
the bottom row, and the left-most column is adjacent to the right-most. The
perimeter of group g as measured on a torus, denoted by Pi(g), is in between
S(g) and P2(g). The lower bound ¥¢ S* (A,) is a common lower bound on total
perimeter, total toroidal perimeter, and total 2-perimeter. For any partition of

grid cells into groups, the following inequalities hold:

S8 (4,) < T Pile) < S PAo) < 5 T P)

1f 1 5, P(g) is equal to the lower bound, then ¥, 8*(Ay) = 325 P2(9) = $Y,P(9)
and the partition is optimal with respect to all three measures.

So we are interested in tiling toroidal domains with contiguous (in a toroidal
sense) minimum semi-perimeter tiles. Tilings of this form provide optimal solu-
tions to the diversity minimization problem.

Consider a N x N toroidal domain, with 4, = N, (p =1,2,...,N). Under
these constraints it is always possible to tile the domain with minimum-perimeter
tiles. Let r = I_\/Z—\/:J, s = max{k|lrk < N} and N =75 +1, 0 <t < s. Note that
s — 7 is either 0 or 1. Consider the partial square tile of area N (having minimum

perimeter), made up of an 7 x s block and a “tail” of length ¢.

39

tail

block

S

We describe how to tile the grid with these partial squares. If the tail is of
length 0, then the grid can be tiled in the regular way by 7 x s rectangular tiles.
(This is true because N =rs+0.)

If the tail length is not 0, then diagonal tiling (with wrap-around) partitions
the grid into tiles as follows. The first tile in the grid’s upper left corner is made

up of the set of cells:

tiley = { (1,1),(1,2),---,(L,1),
(2,1),(2,2), .-, (2,9),

(r+1,1),(r+1,2),...,(r+1,8)} .

The coordinates of the cells in the (i +1)st tile are obtained by adding ¢ to all the

row coordinates and is to all the column coordinates of the cells in tile; modulo

N, as shown below.

40

tilel

tﬂez

til€3

Theorem 18 The A tiles tiley, tiles, ..., tilea cover the grid completely with no

overlap.

Proof: Since each tile contains A cells and the grid has A? cells, it suffices to
prove that each each grid cell belongs to at least one of tile,, tiles,. .., tileyg, ..,

for any grid cell (z,y)
z =z +1 (modA)

and
y =y +is (mod A)

for some 0 < i < A—1, and some (z1,y1) € tile;. Assume by way of contradiction

that there exists some grid cell (z,y) such that for any (z1,y1) € tile;
T # z +1 (mod A)

or
y Z y1 +1s (mod A)
for i = 0,1,...,A— 1. For each (z1,91) € tiley, T = z1 + (z — 1) (A) so our

assumption forces the incongruence

y %y + (z — z1)s (mod A).

41

Therefore the following set of A incongruences (one for each cell in tile;) must

hold:
y £ t+(z—1)s (modA)

y # t—1+(z—1)s (modA)
y # 1+ (z—1)s (mod.A)

y # s+ (z—2)s (modA)
y # s—1+(z—2)s (modA)

y # 14 (z—2)s (modA)

y # s+(xz—r—1)s (modA)
y # s—1+(z—1—1)s (mod.A)

y £ 14+ (z—r1~—1)s (modA).
The right hand sides of the above incongruences form a sequence of A consec-

utive integers.
Thus, we have y # i (mod A),i=1,2,...,4, a contradiction. |
Figure 2.3.2 illustrates diagonal tiling on a 7 x 7 grid with 7 processors.

The result of theorem 18 can be generalized to rectangular grids where the

group size divides both dimensions.

Theorem 19 A toroidal domain can be tiled with partial square tiles of size A if

A divides both the number of Tows and columns evenly.

42

16|66 |7T|7]|7
111|277 7
1{1(1]212]2)}3
3134121223
313(414]4|5]3
516144459
5166|6753

Figure 10: Diagonal tiling of a square toroidal domain

Proof: Let the dimensions of the domain be JA x JA. Let r = [ﬂj, and
s = max{k|rk < A}, so that A=rs+1, 0=t <s.

Consider the partial square tile of area A (having minimum perimeter), made
up of an r X s block and a “tail” of length t. Diagonal tiling (with wrap-around)
partitions the grid into tiles by creating J diagonal strips of I.A tiles each as
follows. Tile; ; denotes the 7th tile in the jth diagonal strip. The first tile in the
j + 1st diagonal strip abuts the top row of the grid and consists of the set of cells

tile; ;= { (1, JA+1), (1, jA+2), ..., 1, JA+1),
(2, jA+1), (2, JA+2), ..., (2, jA+s),

(r+1,jA+1), (r+1, JA+2), ..., (r+1, jA+s)} .

The i+ 1st tile in a strip is obtained by adding i mod I A to the row coordinate
and adding is mod J.A to the column coordinate of each cell in the first tile of the
strip.

To prove that the procedure described above is a tiling of the domain, it suffices

to show that each cell of the domain is contained in one of the IJA tiles, i.e., for

43

any grid cell (z, y)
z =31, +1 (modIA)

and
y =1y ;+1is (mod JA)
for some 0 < i < I A, some 0 < j < J, and some (z1,, y1,5) in tiley ;.
Assume, by way of contradiction, that there exists some cell (z, y) that is not
contained in any tile. For each (z1,j, ¥1,;) in tiley 5, a cell in row z can be reached

by moving ahead d(z, ;) tiles in the strip where

T - X1,j if.’E—-iL‘l,j ZO
d(z, 1) = _
IA + z — x1,; otherwise,

ie., T =z ; + d(z, 21,;) (modIA). Therefore our assumption forces the incon-

gruence
y # 1,5+ d(x, 1,5)8 (mod JA).

Letting (1 j, ¥1,7) take on the coordinate values of cells in tile; ; for 0 < j < J,

44

our assumption forces the following set of incongruences:

(y# jA+t+d(z 1)s (modJA)

| y# jA+t-1+d(z, 1)s (modJA)
tail < '

| y# JA+1H+ d(z, 1)s (mod JA)

(g2 jA+s+d(z2s (modJA)

y# jA+s—1+d(z, 2)s (modJA)
row 1 < .

WE: jA+1+d(z,2)s - (modJA)

' y# jA+s+d(x,r+1)s (mod JA)

y# jA+s—1+d(z, r+1)s (mod JA)
TOW T < .

| ¥y # jJA+1+d(z, 7+ 1)s (mod J.A)

For a fixed value of j, the A right hand side values of the above incongru-
ences are unique modulo A, therefore when j varies, all the J.A right hand side
values are unique modulo JA. One of the incongruences must therefore not hold,
contradicting our assumption and finishing the proof. |

Figure 11 illustrates the diagonal tiling technique on a non-square grid. The

grid cells are partitioned into 15 groups of size 5.

45

10/10|11| 4| 4|5 |5 |6 |14|14 15|15
10)10f11|11]12| 5|5 |6 6|7 15|15
2 {3 |11|11|12|12|13| 6 |6 |7 |7 |38
9133412121313 |14| 77|38
10/ 3|3|4|4|5|13{13|14|14]15| 8

OO0 | OO | pmad] puad | p
QO O | = | | O
O NN O

Figure 11: Diagonal tiling of a rectangular toroidal domain
2 4 Lower Bounds as Functions of Problem Size

The lower bounds for the diversity minimization problem have some unusual prop-
erties as functions of the problem size. Consider the class of diversity minimization
problems where all the specified group sizes are either the floor or the ceiling of
the number of grid cells divided by N. Given a fixed grid, as N increases, the
lower bound on diversity generally increases. This general trend can be observed
by considering the extreme cases where N = 1 in which case each slice has a
diversity of one, and N = the number of grid cells in which case each slice has a
diversity equal to the number of cells in it. Contrary to what might be expected,
however, the lower bound (and in fact the minimal diversity) is not monotonic as
a function of N. Consider the example of a 9 x 9 grid with N = 8 and N=9
illustrated in figure 12. For the case of N =8, 7 of the groups will have a size
of 10 and one group will have a size of 11, yielding a lower bound on diversity of
7.7 +7 = 56. For the case of N = 9, all groups will have a size of 9 and there-
fore the lower bound will be 9-6 = 54. In the figure, optimal solutions for the
two problems which meet the lower bound are given. Therefore, adding another

processor to the problem can actually decrease the total diversity.

46

ocloji ool W] W]®
oclolololoalojw]| W
olvojlolaoalolowiw | W

2
2
2
)
5
5
8
8
8

oo loo ool ot ot DIl

T B I B B e
wlowlolo|lalolw ||

G B B IS B BN B B e B B e
NG IS B BN B N A S Bt B S

0w || ~]ooi~|~|0w|=3!-3
wiool~3low |~ |N]0 ||

il |l [w o | = im|e
gl jlomlwlwliw|m]l—]|m
e = = T B O O O O R
ololole ||l lin v
ololo s e s |0l
ol |oijoo | x>l 0|t |~

Lot ot w | W

il
©

Figure 12: Optimal solutions for N=8and N

2.5 Non-uniform Grids

Under certain assumptions, the tiling approaches discussed above can also be
used to deal with non-uniform grids which are important in many applications
(see e.g., Gropp and Keyes [13]). Considering the case shown in figure 13, sup-
pose that that N processors are available, that the amount of computation per cell
(regardless of cell size) is uniform, that total computing loads are to be nearly bal-
anced among processors, and, finally, to ensure relative simplicity and uniformity
of the computational procedure implemented on each processor, we impose the
constraint that the cells assigned to each processor be of uniform size (i.e., that the
tile associated with a processor lie entirely in subdomain D; or D,). In order to
first set up load balancing constraints, we would then partition the given number
of processors between the two domains so that the number of cells per processor
(rather than the area spanned by the Processor) was approximately equal. In the

second stage of this process, communication would be independently minimized

47

D, D,

Figure 13: A non-uniform grid

for each subdomain by tiling (using its pre-determined appropriate number of
processors) according to the procedures described above for minimum-perimeter
tilings. The shared boundaries of the subdomains, across which communication
would be required, would be automatically included in the objective function via
the boundaries of the individual subdomains. Of course, this two-stage approach
is easily generalized to provide a decomposition of arbitrary unions of subdomains

into single subdomain problems of the type previously considered.

Chapter 3

Many-Dimensional Theory

The bounds on semi-perimeter generalize to many dimensions yielding bounds on
multi-dimensional diversity minimization and on surface area minimization, the

three-dimensional analog of perimeter minimization.

3.1 Lower bounds on d-perimeter

Theorems 5 and 6 and lemma 7 from chapter 2 are generalized here for multiple

dimensions.

Let A%(P) be the function mapping d-perimeter P to the maximum size of a

configuration with d-perimeter P.

Theorem 20 Given d-perimeter P, the compacted form C(g) of any mazimum
size configuration with d-perimeter P is a d-dimensional hypercube with sides of
length P/d if d|P, and is a hyper-rectangle with sides of length [d/P] in T di-

mensions and length |d/P) in d — v dimensions (where T =P mod d) otherwise,

48

49

ie.,

=[5

Proof: Let PL,P% ..., P4 denote the dimensions of a compacted configura-
tion. The maximum load for which d-perimeter P is achievable is the optimal

value of the following problem.

“(P)= max Il;P* (4)
s.t. Zd Pd =P

P? a positive integer Vd.
A necessary optimality condition for (4) is that no two P®g differ by more than

1. Furthermore, only one (unordered) set of Pes satisfy this condition:

o Kl i e i

N N

r d-r

By “nverting” the function A3(P), we obtain a function P}(A) which maps

load A to the smallest d-perimeter achievable by a configuration of A cells.
Theorem 21 The minimum d-perimeter of all configurations of A cells is
Py(A) =5[] + (@~ 5) | A7)
where s is the smallest positive integer such that
{Audr lAl/de"s > A.

Furthermore, the lower bound on P is tight.

50

Proof: We may bound the d-perimeter of any configuration of A cells from
below by finding the smallest d-perimeter P that satisfies A*(P) > A, since this
implies A > A*(P —1), which means that a d-perimeter of P —1 is not achievable
for a load of A.

Consider the following sequence of d-dimensional rectangular blocks.

Qo : O0x0x...x0
Q@ : 1x0x...x0

QRq: I1x1x...x1
Qar1: 2x1x...x1
Qai2: 2%x2x...%X1

Qa4 : 2%X2X...%X2
Q2d+1l IX2%...%X2

We call these blocks “quasi-hypercubes” since the lengths of any two sides of
a block differ by at most 1. Note that the volumes of the quasi-hypercubes in
the sequence are strictly increasing after the dth, the volume of the ith quasi-
hypercube @; for i > d is A*(i), and the d-perimeter for the quasi-hypercubes
increases by 1 at each step. The volumes of these quasi-hypercubes are the points
at which the lower bound on the d-perimeter increases by 1.

For an arbitrary A, there is a unique smallest quasi-hypercube Q; whose vol-
ume is at least A. Since the volume of @; is at least A, by selecting A cells from
Q; a d-perimeter of at most P(Q;) is achievable for A. Since the volume of @Q;-1
is smaller than A, a d-perimeter of P(Q;-1) = P(Q;) — 1 is not achievable for A.

Therefore the smallest d-perimeter achievable for any configuration of A cells is

o1

P(Q;). Each dimension of Q; is either [Al/ dJ or [M.Al/ d-l so P(Q;) is exactly the

d-perimeter bound in the statement of the theorem. |

Lemma 22 A d-dimensional configuration of A cells with d-perimeter P has min-

imum d-perimeter iff

AP -1) < A. (5)

Proof: Same as the proof of lemma 7. |
It is interesting to note that the closed form version of the lower bound in

theorem 8 does not generalize to multiple dimensions as the next theorem points

out.

Theorem 23 [dAl/ d] < Pi(A) e, [dAl/ d] is a lower bound on d-perimeter but
for d > 2 is not tight.

Proof: To see that [d.Al/ d] is a lower bound on the d-perimeter of a config-
uration of A cells, consider any configuration g of A cells intersecting P cells in
dimension i, so that the d-perimeter of g is 54 , P;. The compacted form C(g) is

bounded by a d-dimensional box of volume 14, P;. Therefore
d
A<IIP:
i=1

Taking dth roots gives
A< (H Pz->
2=1
Because the arithmetic mean dominates the geometric mean (see Hardy et al[14])

1/d

d 1 d
AV < (sz) SEZR‘
F==1

52

whence

d
dAMYE <P
i=1
Since the right-hand-side of the last inequality is an integer, we may take the

ceiling of the left-hand-side to obtain the bound.

To see that [d.Al/ d] is not a tight lower bound, consider d = 3 and A = 37
where [3-37"/%] = 10 but from theorem 21 P§(37) =1-3+2-4 = 11 (this is the
smallest d and smallest A for which the bound is not tight). |

Notice that the bound l—d.A’*/ ‘q is tight infinitely often: whenever A = k¢ for

some positive integer k, the two lower bounds coincide.

3.2 Lower bound on surface area

Rather than minimizing perimeter in three dimensions, a related but different
problem is obtained by minimizing surface area. Specifically, consider the three-
dimensional problem of partitioning a three-dimensional rectilinear domain into a
specified number of configurations of specified volume so as to minimize the total
surface area of the configurations. This models minimization of interprocessor
communication subject to load balancing constraints for three-dimensional domain
decomposition on parallel systems. The bound on semi-perimeter from chapter 2

is useful in obtaining a surface-area bound.

Theorem 24 The smallest possible surface area for a configuration of A cells is

min, 2 (max; {s;} +X;S5*(si))
such that the s; form a partition of A
ie., 3,8 =A, and

s; are positive integers

53

Proof: First notice that the surface area of any configuration will be an even
number since each cell face contributing to the surface area has a corresponding
parallel face on the the other side of the configuration which also contributes. We
will therefore bound the number of these pairs or the “semi-surface-area”. As
one way of calculating the semi-surface-area of a configuration of cells, consider
the two-dimensional slices of the configuration along one dimension. Each slice
contributes an amount at least as big as its semi-perimeter to the semi-surface-
area. This takes care of the semi-surface-area in two of the dimensions. In the
third dimension, the contribution to the semi-surface-area is at least as big as the
area of the projection of the entire configuration onto the plane in that direction,
which is at least as big as the maximum slice volume. If the ith slice is of size
s;, then its minimum possible contribution to semi-surface-area in two of the
dimensions is S*(s;). Therefore max; {s;} + %; 8*(s:) is a lower bound on the
semi-surface-area of the configuration. Clearly any configuration of A cells may
be partitioned into slices, inducing a partition {s;} of the integer A. Therefore
the minimum max; {s;} + ¥; S*(s;) over all partitions {s;} of A must be a lower
bound on semi-surface-area.

To show that the bound is tight, we show that given any partition {s;} of A it
is possible to construct a corresponding configuration of A cells with semi-surface-
area exactly max; {s;} + ¥; *(s:). The configuration is constructed so that each
slice is a partial square of area s;, and the slices are ordered from smallest to
largest with maximum overlap between each slice and its neighbor (the amount of
overlap will be the equal to the area of the smaller slice). The slice-convexity of

the individual slices and the overlap property guarantee that the semi-surface-area

54

is exactly equal to max; {s;} + 2; S*(s:)- B

The d-dimensional analog of surface area can be defined recursively using the
reasoning from the proof of theorem 24. Define the d-surface-area of a configu-
ration of grid cells in d dimensions to be the number of (d — 1)-dimensional cell
faces on the exterior of the configuration. For d = 2 this is the perimeter of the
configuration and for d = 3 it is the surface area. Let S3(A) denote the minimum

d-dimensional semi-surface area achievable by a configuration of size A.
Theorem 25 The d-surface-area for a configuration of A cells must be at least

2 - min, (ma,xi {s;i} + 2 S;_l(si))
such that the s; form a partition of A
i.e., Zz 8; = A

s; are positive integers

Proof: For any d-dimensional configuration, each 1-dimensional slice through
it intersects at least two (d—1)-dimensional cell faces on the exterior of the config-
uration. (The coordinates of cells in a 1-dimensional slice are fixed in d—1 of their
dimensions while the remaining coordinate varies.) Therefore, the d-surface-area
is bounded by twice the number of 1-dimensional slices intersecting the configura-
tion. In order to count these 1-dimensional slices, partition the configuration into
(d — 1)-dimensional slices (select any one of the d dimensions to partition along).
Let s; denote the volume of the ith (d — 1)-dimensional slice. The number of 1-
dimensional slices intersecting the ith slice in the d —1 unconstrained dimensions
is at least as big as the minimum possible (d — 1)-semi-surface-area for a slice
of volume s;. Therefore the total number of 1-dimensional slices intersecting the

configuration in the dimensions orthogonal to the slicing is > ¥.; Sj_1(si). The

55

number of 1-dimensional slices intersecting each slice in the constrained dimension
is s;, therefore the number of 1-dimensional slices intersecting the entire configura-
tion in that dimension is at least max; {s;}. In total, the number of 1-dimensional
slices intersecting the configuration is at least max; {s;} + %; Si_1(s3) |
In order to prove that the bound of theorem 25 is tight, it is necessary to
show that minimum (d — 1)-surface-area slices can be “stacked” together with
minimum overlap. This requires some geometric information about such slices,
which is lacking for d > 3. Unfortunately the bounds of theorems 24 and 25 are
not efficiently computable, since it requires the generation of all partitions of A.
The number of partitions of the integer n is asymptotic to emV/2n/3 [7].
Rosenberg [16] proved that the d-semi-surface-area of a configuration of size
A is at least l-dAl”l/ d] (but did not show that this expression is in fact tight for
d = 2). This bound is not tight however for d > 3, as demonstrated by the example
in which d = 3 and A = 5 where |-3 . 52/31 = 9 and min,, max; {s;}+X; S*(s:) = 10
(this is the smallest such example when d = 3). For d = 3 the minimum surface-
area appears to always be attained by a “partial cube”, i.e., a configuration of
cells which is as close to a cube as possible for its size. The conjecture has been
computationally verified for A up to 300 by a program which computes the bound
by enumerating the partitions for a given A. For each A, one of the partitions
minimizing max; {s;} + ¥; S*(s:) is a set of slice sizes for a partial cube. If the

conjecture is true, it would make the bound of theorem 25 tight for d = 4.

Chapter 4

Heuristics

In this chapter we use the geometric information about good solutions of both
diversity and perimeter minimization to develop heuristics for both problems. We
then combine the problem-specific techniques with genetic algorithms to create a

robust method.

4.1 A Diversity Minimization Algorithm

The diversity minimization problem can be solved in a rough sense by placing
optimal or near-optimal tiles for each processor in the given grid, allowing splitting
of tiles along horizontal or vertical lines. This forms the basis for the heuristic
solution technique presented below. Algorithm TILE is presented in figure 4.1.
Each of the major steps in the algorithm will be described in detail below.

The first step of the algorithm is to generate the set of optimal blocks. As
described in chapter 2.2.2, each optimal tile can be inscribed in a rectangle with
optimal semi-perimeter. Given the area of the optimal shapes, it is easy to gen-

erate the dimensions of the possible circumscribing rectangles. Among the tiles

56

generate all optimal blocks

pick an optimal shape for each processor

for p=1toN /* blocks placement */
place the block for processor p

for p=1toN /* fringe placement */
place the fringe for processor p

for s = 1 to swap.limit /* swapping */

pick a pair of cells (c1,c2)

if swapping assignment of cl and c2 improves diversity then

swap cl and c2

Figure 14: Algorithm TILE

87

58

which can be inscribed in these rectangles the algorithm restricts itself to those
which are made up of a rectangular “block” of cells plus a single row or column
of “fringe” cells. Rather than explicitly representing each possible placement of
fringe cells, a block implicitly represents all tiles constructed by adding on the
appropriate number of {ringe cells to that block. For example, the tiles of area ten
considered by the algorithm would be described by the categories: a 3 x 3 block
plus one fringe cell, a 2 X 5 block (plus no fringe cells), and a 2 x 4 block plus 2
fringe cells. If the number of grid cells is not evenly divisible by N, then two sets
of optimal shapes must be generated for the two different tile areas.

The next step in the algorithm is to pick one of the block shapes for each
processor in the problem instance. In effect, this causes the algorithm to focus a
particular category of optimal tiles for each processor. The algorithm places the
block and the fringe portion of each tile separately into the grid. This approach is
reasonable since the semi-perimeter of a tile is not affected if the fringe is placed
far away from the block. If the complete block for a processor does not fit into the
empty space in the grid the algorithm tries to fit it in by splitting it and fitting
in the resulting smaller pieces without increasing the semi-perimeter. If only part
of a block will fit, the remaining part is dealt with as fringe cells.

Once the blocks are placed, the algorithm places the fringe cells. They are
placed in rows of the vertical strip containing the block and/or in columns of the
horizontal strip containing the block. The fringe for a tile is placed optimally if
and only if it fits into one such row or column. Any fringe cells which can not be
placed as described above are placed arbitrarily after the fringes for all other tiles
are placed.

By the end of the fringe placement step, a feasible assignment of grid cells to

processors has been created. The assignment is not necessarily optimal however,

59

so the algorithm has a final step which looks for pairs of cell assignments to
swap. A limit on the number of swaps which the algorithm evaluates is given
as input to the algorithm. Swaps which either decrease the diversity or do not
increase the diversity are actually performed. Experiments show that performing
non-increasing swaps is necessary in order to find decreasing swaps.

In figures 15, 16, and 17 the results after each step of algorithm TILE are
illustrated for the example of a 17 x 17 grid with N = 17, and using a 4 x 4 block
plus a fringe of one as the optimal shape for each processor. The blocking step
places sixteen 4 x 4 blocks into the grid. The seventeenth block will not entirely fit,
therefore TILE places as much of the block as will fit into the remaining free space.
The fringe placement step then places the fringes of size one for the first sixteen
processors and the fringe of size 13 for the last processor. The small fringes are
all placed optimally, i.e., they increase the 2-perimeter of each processor by only
one. The large fringe for the last processor can not be placed optimally because of
the shape of the grid, and the last processor has a 2-perimeter of 18 (9 more than
the minimum value) at the end of this step. The swapping step then examines
possible swaps and performs those which do not increase total diversity. For this
example, if the limit on the number of swaps examined is set to 1.7 million, the

result is a solution with optimal diversity.

4.2 Data Structures

The block and fringe placement steps of the algorithm work with rectangular
blocks of grid cells. The basic computation in these steps is to assign a rectangular
group of grid cells to a processor. In these steps, the grid does not have to

be represented as a two-dimensional array of grid cells. Instead, the (partial)

60

> b = > R SR RS S B B o Bl
< <+ | < © o J|I|I|I|E|E|E|S|X
<t < | < o0 o | [/ |G |E |82
< < | < o0 o | VW |JIE|IE|E S|
< < | < o0 o | V|| |Z|E|EIE "X
o ™ | o b~ S Bl Bl Bl el RO R R R R
R ™| m >~ S el ol Bhan l b) B S il R e
o el r~ St [el s el =) =l =G s
™ e) r~ Dl ol ois|g|erex
™ ™| e © N R I N R T I I i) i
o~ ~ e © oSS |SIFIT 3|
o ™| e © ol |G|22 |3 | I~
™ SR © eSSl I| I ™
i —] 10 wlo|lojlo|lao|RR312|S
— S, — e wlo|lolo|o|RIRIRIR 5
— N 0 wlo|lojola|R 2R3
— — | 0 wlololo|lo|R|B218|3| 5

Figure 15: After block placement step of TILE

61

~| oo SEIEIRIENEIEIE
D Tl Il Jlals|g|e|9| 2|85
Il Il gialajajele|glals
D Tl Bl glals|g|elg| 28|85
| s R E T
| oo SIS
i B B Alzl=l=e| e8] B]s
il Bl Bl =l =i = =) AR
w|w| o] Al=l=lm|=n]2]8)5
il SISIEIEINMEEIEE
ale)o) e 2lels|e| 2|2 2|25
S| SISIEIEINEIEIEIE
|| zlels|s| 2|22 25
il Bl st B olo|o|jeia|a|a 2|5
i el Rall e SRR EEIEE
Bl Rl B olo|o|oj2|2| 2|35
Bl el B olo|ole|a|2|3|2)|5

Figure 16: After fringe placement step of TILE

62

. e en | on |~

Mlw|lole® ~lolo|lojo| R | BB S
(o] (] (o] © Ne) NeZ Ne] Ne

Dl B R o | i8IS 2| RlAl=]l=]T

D~ I~ b~ 0 0 o < o <o e Nel Ne] ©o D~

— | = - el Bl el Rl s B il il P
[m] [o o] © e} e el

A R S o0 TN O N B B i i (e el B

< | W | 0 clololojeo |88 I8«

P~ D~ D~ i © i — i gund Y] Yool 0 10 ~

— = -] - i ISR RS IR B iy Qa iy i) QU R
— —_ | o~

<] SN i B T (T A et ek e R B

e~~~ ol =] ===l wlw0n| -

—_] o=] o o3 BREnES B B B Rhvi gl sl e e

~ | b~ = - | = Yoo S T Ven SN I Vo N [Yon T [

—_] =] ™™ 32N I AN BRAR RSC R ey puun g et il e e R
[en) o o (o) Al o o o

NN N el Slglalalal Al a]=| S
o [< < ~H ~f ~f <

I I B ~| S8 ISl s|lm|m =] =S

— o]l eom |2l I prl B B
[] o3 o o <t ~H < <fi

NN ol Q188N =l =]~ S

o | wio|lo|lojlo| Bl BB~
[a] [] (o] [aY] ~f < ~f ~H

o e W S S SE A | == -]

Q|| m mlo|lojo|e | BB 22|
o o (] o o o o o

S R e Vo I B el IR A (i) R e S

Figure 17: An optimal solution resulting from the swapping step of TILE

63

assignment of grid cells is represented as a list of assigned rectangles and free
rectangles. This data structure allows an efficient implementation of the the first
two steps of the algorithm.

Consider the problem of finding free space in a partially filled grid in which
to place a fixed-size block. With a cell-based representation, the time required
to determine if a particular block position is valid is proportional to the size of
the block (the status of each grid cell in the candidate area must be checked).
Furthermore, the number of candidate positions for the block which must be
checked is proportional to the number of free grid cells. In contrast, with a
rectangle-based representation, the location of a valid block position requires only
finding a free rectangle which is at least as big as the block. Therefore a block can
be placed by comparing its height and width to the heights and widths of each of
the free rectangles. To guarantee that a block will be placed whenever possible,
it suffices to represent the free space as a list of the mazimal free rectangles in the
grid.

In order for such a list to be an efficient data structure for block and fringe
placement, its size must be reasonable. Clearly each rectangle (assigned or free)
can be represented in constant space: four integers (height, width, and coordinates
of the upper left corner) suffice to represent a rectangle regardless of its size. Each
tile in the assignment is represented by one rectangle for the block and one or more
rectangles for the fringe, therefore the length of the list of assigned space is roughly
linear in the number of assigned blocks.

Initially, the free space is represented by a single rectangle comprising the
entire grid. After n blocks have been placed in the grid, a theoretical upper
bound on the length of the list is O(n*), but in practice the lists are sublinear in

the number of processors in the problem. Figure 4.2 illustrates one instance of

64

Figure 18: An example with O(n?) maximal free rectangles

a class of examples which create O(n?) maximal free rectangles by placing O(n)
rectangles. In the figure, 10 rectangles have been placed and there are 36 maximal
free rectangles (one for each pair of opposing inner corners). Similar examples may
be constructed of any size with the number of inner corners linear in the number
of rectangles placed and hence a quadratic number of maximal free rectangles.
To bound the number of maximal free rectangles by O(n*), observe that after
placing n rectangles, both the horizontal and vertical dimensions of the grid are
partitioned into < 2n + 1 intervals determined by the coordinates of the corners
of the n rectangles. This partition effectively defines a coarser grid of dimension
at most (2n + 1) x (2n + 1). Every non-maximal free rectangle in the grid can
be extended in each dimensions until it hits the edge of some partition, therefore

every maximal free rectangle is comprised of cells of the coarse grid. The coarse

65

60 T | X T |
32 x 31 grid ©—

50 65 x 16 grid -+— -
Maximum 40 .
number of
maximal 30 7
free
rectangles 20 + -
10 -
O | i i | i
0 50 100 150 200 250 300

. . 2n + 2
grid contains at most |

= 4n* + 12n® + 13n? + 6n + 1 rectangles (choose 2
horizontal and two vertical boundaries to define a rectangle), therefore the number
of maximal free rectangles is bounded by O(n*).

In actual runs of algorithm TILE, the length of the free list is small and appears
to be independent of the number of processors in the problem instance. Figure 4.2
shows the maximum list length as a function of the number of processors for a
number of problem instances. The maximum size of the list does not seem to
grow as n® or even n’ in any of the experiments. These empirical results show
that the free recténgle list is a very efficient data structure compared to the explicit
representation of each grid cell.

The independence of N and the maximum list length is interesting because it

shows that worst case behavior does not occur in practice. This is due to the fact

that the program always places blocks and fringes in the upper left corner of a

maximal free rectangle, keeping the shape of the free space relatively simple.

66

Chapter 5

A genetic algorithm

Algorithm tile described in the last chapter uses knowledge about optimal tilings
extracted from the theory of minimum semi-perimeter groups. However it leaves
unanswered the question of which combinations of optimal block shapes are promis-
ing for creating good assignments. Algorithm tile expects as input a collection of
optimal block shapes which determines the resulting assignment. If an instance of
the two-dimensional minimum diversity problem has N processors and a library of
optimal block shapes with s entries then there are sV possible inputs to algorithm
tile for that problem instance. We may consider the problem of finding the best
input to algorithm tile as a combinatorial optimization problem. As a technique
for obtaining good solutions to this problem, i.e., inputs to algorithm tile which
produce good assignments, we use the genetic algorithm (GA) paradigm.

The genetic algorithm is a search method for a large discrete search space which
is motivated by concepts from biology and genetics. The basic idea is to simulate
the effects of natural selection on an evolving population of points in the search
space, hopefully producing over time the “best” points in the search space. The

basic components of a genetic algorithm are a “fitness function” which provides a

67

63

way of evaluating the desirability of the points in the search space, and methods
for combining points to produce new ones. Usually the points in the search space
are represented in the GA as strings of integers called “individuals”, and several
genetic operators called “selection”, “crossover”, and “mutation” are defined to
combine and alter individuals to create new ones. The individuals correspond to
chromosomes and the genetic operators correspond to natural selection, mating,
and mutation in biological populations. In the next section we we present a high

level view of the GA and describe the genetic operators in detail,

5.1 A generic GA

Given a representation of points in the search space as individuals, a fitness func-

tion, and genetic operators, the generic genetic algorithm has the following form:

create initial generation
while not done
evaluate fitness of each individual in current gen
select a mating pool
perform crossover among mating pool members to get new gen

perform mutation on each individual in new gen

Each of the components of the above algorithm comes in several flavors. The
initial generation can be created randomly or information from the underlying
application can be used to make an intelligent guess at good individuals for the
initial generation. Evaluation of fitness for the individuals requires that a subrou-

tine which computes the fitness function be available. A fitness computation may

69

be very fast or may require large amounts of time and memory depending on the
application. The selection step in the algorithm involves using the fitness of the
individuals as a criterion for participation in crossover. From among the current
generation, a number of individuals are chosen for the “mating pool”. Individuals
with good fitness values have a high probability of being selected and those with
bad fitness have a low probability. The new generation is formed by combining
the mating pool members, so selection determines which individuals pass on their
genes. The crossover operator combines two individuals to produce two offspring.
The operation may be simple or complicated depending on the application. In
some cases, simple crossover produces offspring which do not correspond to fea-
sible points in the search space, necessitating some post-processing to maintain
feasibility. Once the new generation has been created, mutation occurs in each
offspring, maintaining diversity in the population and adding randomness to the
algorithm. The creation of new generations continues until some stopping criteria
are met, such as an optimal or near-optimal individual is found, or computing

time is exhausted.

5.2 A minimum diversity GA

Our GA is a search method over the space of inputs to algorithm tile and our fit-
ness function uses algorithm tile to compute feasible assignments. Several factors
motivate this two-level approach to solving the minimum diversity problem. The
space of possible inputs to algorithm tile is significantly smaller than the space of
feasible partitions of a grid, the input to algorithm tile encodes high-level informa-
tion about a partition, there is a simple encoding of the inputs which allows the

standard genetic operators to work without any modification, and a method for

70

picking good inputs is necessary for algorithm tile to be practical. In this section

we lay out the details of our GA.

5.2.1 Encoding

The obvious way to represent the input to algorithm tile as a string of integers is
to assign an index to each optimal block shape and represent the input as a list of
these indices. This encoding works well because the length of the individuals and
the range of values for each string position are both reasonably small. The length
of individuals in the GA under this encoding is equal to N, the number of groups
in the problem instance. The allowable range of values in each position depends
on the specified group size corresponding to that position, and is bounded by
[2A1/ 2] /2 where A is the group size. On all of our test problems we choose the
group sizes to be as similar as possible so the range of values in each position is

similar to the others.

5.2.2 Fitness Function

The fitness function is a map from the space of individuals to the non-negative
reals. The computation of the fitness an individual has two parts. First algorithm

tile is used to create a feasible partition derived from the individual. The fitness

value F is then calculated as
F=U-(d-B))+aR+b

where d is the diversity of the partition generated by the heuristic, B is the lower
bound on the minimum diversity, U is the largest d — B value in the current

generation, R is the range of diversities among the population, and a and b are

71

scalar parameters. Similar scaling of fitness values is advocated by Ferris et al.
to control convergence [1, 4]. We found our GA to perform well with parameter

settings a = 0.2 and b = 1.

5.2.3 Initial Population

We experimented with two techniques for creating the initial generation for our
GA: individuals made up of either uniform or of random values. By uniform
we mean that if the range of allowed values is [1,7], approximately 1/rth of the
individuals in the initial population have all alleles equal to 1, 1/7th have all alleles
equal to 2, etc. By random, we mean that each allele in the initial population is a
random integer in the range [1, r]. In our experiments, better results were obtained
when starting with uniform individuals. This is explained by the observation that
many optimal or near-optimal solutions use the same block shapes for all the
groups. It is also a good idea to evaluate the fitness of all of the possible uniform
individuals because this will determine whether there is an optimal solution made

up entirely of rectangles.

5.2.4 Genetic Operators and “Survival” Policies

Three primary genetic operators (selection, crossover and mutation [11]) are pre-

sented, followed by the various survival policies that we considered.

Selection
The individuals in the mating pool are selected by a roulette wheel strategy. That
is, the probability that each individual is chosen is proportional to its fitness. An

individual with high fitness may have several copies in the mating pool.

72

Crossover

Crossover provides a powerful exploration capability by exchanging portions of
the internal representations of two parents. We use three types of crossover: one-
point crossover, two-point crossover and random crossover. Two-point crossover
treats the string as a ring. Two points are selected at random to break the ring
into two portions. The parents exchange either portion to produce two children.
If we look at the front end of the string as a break point and select the other break
point, then we have one-point crossover. In uniform crossover, each gene of the
first child is inherited from either parent with equal probability, while the second
child inherits those genes not inherited by the first child. The crossover rate, the
probability that each mating pair actually performs crossover, was set between

0.7 and 0.9 in our tests.

Mutation

Mutation creates new individuals by modifying several gene values of an existing
individual to maintain the diversity of the population. The process of mutation
comes after selection and crossover. Instead of mutating each gene with some
fixed probability, which requires the generation of many random numbers, we
achieve a similar effect by picking a random number of genes to mutate. The
expected number of mutated genes when using the standard mutation scheme is
the mutation rate p.,, times the string length N. We therefore randomly choose
m, the number of genes to mutate, in the range [0, [2Np,,]]. We then randomly
choose m positions in the child string and randomly change their values. We tried

various mutation rates and settled on p, = 0.01 for our experiments.

Survival policies

A survival policy is a non-standard step in the GA in which each offspring from the

73

crossover step is compared to the previous generation to determine if it survives
to participate in the selection step. If a particular offspring is judged too poor
to participate in selection, it is replaced by a member of the previous generation
in order to maintain a fixed population size. Five survival policies are described
below. Two of the policies use the notion of the “incumbent” diversity value,

defined to be the smallest value obtained so far by the algorithm.
1. pure: both children are placed in the new generation.

2. keep-incumbent: if the best diversity value of all the children does not im-
prove on the incumbent value, then the children of parents with the incum-
bent value do not survive and each is replaced in the new generation by its
better parent. This policy maintains the condition that the best values in

the generations are monotone.

3. no-worse: if a child is not as good as the worst of all the individuals in
the previous generation then that child is replaced probabilistically by one
of its parents. (If the probability that a “worse” child survives is pp, then
py ~ 1 is essentially the same as pure survival.) In our experiments, pp = 0,
which maintains the condition that the worst values in the generations are

monotone.

4. keep-incumbent and no-worse: a combination of the above two policies.

5. best-two: from each parent-child 4-tuple, choose the best two. This policy

maintains the condition that both the best and worst values in the genera-

tions are monotone.

Chapter 6

Computational Results

We implemented our GA on a Thinking Machines Corporation Connection Ma-
chine CM-5 in the Computer Sciences Department at the UW-Madison. This
machine consists of 64 SPARC processors each with 32 megabytes of local mem-
ory connected by a “fat tree” network [19]. In MIMD mode, which we used, the
processors run asynchronously and communicate via calls to the routines in the
TMC message passing library CMMD (CMMD release 2.0 Beta 2, September 16,
1992).

The high-level structure of the parallel implementation of our genetic algorithm
is presented in figure 19. We use the host-node programming paradigm in which
there is a host processor which coordinates the node processors working in parallel.
In the GA, the genetic operators Crossover, mutation, and survival as well as
ftness function evaluation can run for all individuals in parallel since they require
no global information. A processor performing selection must have available all
fitness values for the current '

generation, hence the host processor does selection. For each generation, the

selection operation picks out the best individuals, and the crossover step combines

74

75

in parallel on node processors:
create initial generation and evaluate fitness of individuals

send fitness values of initial generation to host

while convergence not reached do
on host processor:
receive fitness values from nodes
select a mating pool

coordinate distribution of mating pool between node processors

in parallel on node processors:
receive two mating pool individuals (possibly from other nodes)
perform crossover
perform mutation on Crossover results
run algorithm TILE on each offspring
scale diversity values to get fitness values
apply survival strategy to get two new individuals per node

send fitness values of new generation to host

Figure 19: The Parallel Genetic Algorithm

76

pairs of selected individuals producing a new generation of offspring. Each off-
spring is mutated, and the resulting individual is evaluated using algorithm TILE.
Finally, a survival strategy determines the makeup of the new generation using
the selected individuals and the new offspring as candidates. The final result is a
new generation with the same number of individuals as the previous generation.
The processors of the CM-5 are split into partitions, with a separate control pro-
cessor coordinating the jobs on each partition. The partition size available on our
CM-5 is 32 nodes, so we designed our genetic algorithm with a population size of
64 (two individuals per processor).

We report below tests of our GA on fifteen different problems. Table 3 shows
the dimensions, number of 0-1 variables (rows x columns X processors) and num-
ber of constraints (rows x columns -+ processors) in a fixed-charge transportation
formulation, and lower bounds for the test problems. The computing time per
generation varies from 0.4 seconds to 600 seconds on the test set. Problems B1-
B11 come from the database application of diversity minimization and are the
result of the MAGIC partitioning strategy on the Wisconsin Benchmark rela-
tions [2]. B1-B8 are problems on a 32 x 31 grid and B9-B11 are problems on a
65 x 16 grid. These benchmark problems were used as test problems for Ghande-
harizadeh’s diversity minimization heuristic [9], which is roughly comparable to
the block placement step of algorithm TILE. Our GA produces solutions which
are at least as good as Ghandeharizadeh’s heuristic on his benchmark problems
B1-B1l. The new test problems K1-K4 are interesting because of their size and
because their optimal values are known to be equal to the lower bounds.

Our computational experiments were designed to test how well the GA can
do on the test problems, how the quality of its solutions are affected by varia-

tions in the program parameters, and how efficiently the program runs on the

7

grid | procs(N) | # variables | # constraints | lower bound
B1 32 x 31 8 7,936 1,000 184
B2 32 x 31 10 9,920 1,002 200
B3 32 x 31 16 15,872 1,008 256
B4 32 x 31 20 19,840 1,012 292
B5 32 x 31 32 31,744 1,024 384
B6 32 x 31 64 63,488 1,056 512
B7 32 x 31 128 126,976 1,120 768
B8 32 x 31 256 253,952 1,248 1,024
B9 65 x 16 8 8,320 1,056 184
B10 65 x 16 32 33,280 1,072 384
Bi1 65 x 16 128 133,120 1,105 768
K1 101 x 101 101 1,030,301 10,302 2,121
K2 142 x 71 142 1,431,644 10,153 2,414
K3 128 x 128 128 2,097,152 16,512 2,944
K4 | 1,000 x 1,000 1,000 | 1,000,000,000 1,001,000 64,000

Table 3: Test problems and their lower bounds

78

CM-5. To establish baseline values for the parameters in the GA, we performed
many trial-and-error runs on the million-variable problem K1. Using pr,, = 0.01,
p. = 0.9, an initial generation of uniform individuals, one-point crossover, and
the best-two survival strategy, the GA solved K1 to optimality in 14 generations.
We therefore define the above parameter settings to be the baseline. In the ex-
periments reported here, we fix all but one parameter to the baseline values and
vary the remaining parameter. To asses the quality of the solutions computed by
the GA, we measured the relative distance from the solutions to the theoretical
lower bounds. For all of the test problems the GA obtained solutions within 9%
of the bound (the solutions, of course, may be closer than this to the optimal
value, which is unknown for theses problems except for BS and B8). For several
problems, including the million-variable problem K1, the solutions were provably
optimal, i.e., the relative distance was 0.

Figure 20 plots the progress of the GA on a run which is cut short by the
appearance of an optimal individual. In the graph, the minimum, maximum and
mean distance from the lower bound over the entire population is plotted for each
generation. The steep drop in the first few generations is typical of our GA. The
utility of the lower bound is evident here — the program was able to terminate
after only fourteen generations.

Figure 21 shows an optimal partition obtained by our genetic algorithm for the
million-variable problem K1. Each processor is represented by a different shade of
gray (color visualization in which a different color is associated with each processor
index is even more useful in this context). In the figure, the blocks and fringes

are visible, as are several scattered cell assignments resulting from swapping.

79

i [

maximum —— -
mean —-—

minimum — |

10 12 14

generation

Figure 20: The GA on K1 with baseline parameters

6.1 Interprocessor Communication

In figure 22, the percentage of total running time spent on communication for the
problems B1-B11 is plotted as a function of N. The problems on a 32 x 31 grid
are grouped on one curve and the problems on a 65 x 16 grid are grouped on the
other curve. In order to ensure that algorithm TILE was performing the same
amount of work for each problem size, we set a limit on the number of cell swaps
that are examined in the swapping step of the algorithm. This limit was set to
0.2% of the number of possible swaps, so that the same proportion of possible
swaps was considered for each problem. In the GA, the individuals (whose length
is N) are exchanged between processors via message passing, therefore the length
of the inter-node messages is proportional to N. This causes the amount of time

spent on interprocessor communication to increase with N. On the other hand,

80

Figure 21: An optimal partition of a 101 x 101 grid among 101 processors

the running time of algorithm TILE increases with N. The graph indicates that
the increase in computation time dominates the increase in communication time,
since the fraction of time spent on communication decreases with N. For problems
K1, K2, K3, and K4, the fractions of time spent on communication are less than
0.0015, 0.0013, 0.0006, and 0.0012 respectively. For the K4 experiment, it would
take an unreasonable amount of computing time to examine 0.2% of the total
possible swaps, so we set the swap limit to 300,000 (a larger limit than for any
of the other problems). These results indicate that as the problem size grows,
the communication ratio tends to zero, making the GA an efficient method for

large-scale problems.

81

0.03 T ¥ T
| 32 x 31 grid ©—
0.025 | 65 x 16 grid —+—
0.02 _
Comm. B
ratio 0.015 %
0.01 - -
0.005 -
0 i i N 1 |
0 50 100 150 200 250 300

Figure 22: Fraction of time in communication for problems B1-B11

6.2 Effect of random seed

Selection, crossover, mutation, and survival all require random number generators
to simulate random variables. We found that the seeds used to initialize the
generator can considerably affect the performance as figures 23 and 24 show. The
results in the figures were obtained by making 10 runs for each test problem with
10 different random seeds using the baseline parameter settings (there are not
10 distinct stars in each column because some random seeds produce identical
solutions). The range of solutions obtained with different seeds suggests that a
good way to use the GA is to make several runs with different random seeds and

take the best one.

82

0.12
*
0.1+ -
* *
0.08 |- =
*
d-B B _
- 0.06 ; .
r %
0.04 - * * % ¥ -1
v x ¥ *
0.02 | | ¥] * .
* *

0 % ¥ ; x
Bl B2 B3 B4 B5 B6 B7 B8 B9 B10BIl

Problem name

Figure 23: Effect of random seed for problems B1-B11

6.3 Effect of survival strategies

In figure 25, we compare the performance of different survival policies. The hori-
sontal axis indicates the eight different test problems and the vertical axis indicates
the diversity relative to the lower bound: (d — B)/B where d is the best diversity
obtained by the genetic algorithm after 100 generations, and B is the lower bound
for the problem. Note that for problems Bl through B11, the optimal diversity
may not be equal to the lower bound, hence the solutions we obtained may be
optimal; for K1 through K4 the optimal diversity and the lower bound are known
to be equal. The values shown are the best values in ten runs with different ran-
dom seeds. In these tests, no particular survival policy is clearly superior. The
no-worse, keep-incumbent and no-worse, and best-two policies all were best for

at least one problem. On the other hand, the pure and keep-incumbent policies

83

0.04
» * .
0.035 :
0.03 F % -
0.025 |]
d—B
= 0.02 - ; .
0.015 * N
0.01 - * -
0.005 * * -
*.
0 *
K1 K2 K3 K4

Figure 24: Effect of random seed for problems K1-K4

did not outperform the others on any of the problems. These results suggest that

these simpler survival strategies should not be used in our GA.

6.4 Effect of crossover and mutation rates

The effects of varying both the crossover rate and the mutation rate were not as
pronounced as was expected. The quality of solutions obtained in 100 generations
of the GA was relatively constant for crossover rates at least 0.5 (see figures 23
and 24 for solution qualities when p, = 0.9), and slightly poorer for p, < 0.5. In
another set of trials, the mutation rate was varied between 0.001 and 0.10. The
results showed good solutions for values under 0.02 and slightly poorer solutions

for the higher values of py, (the results for p, = 0.01 are shown in figures 23

d—-B

d-B

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0.035
0.03
0.025
0.02
0.015
0.01
0.005

pure &

keep incumbent +

no worse [

keep incumbent & no worse X

best two A

B

s B

9

g O B 4

B

?

Bl B2 B3 B4 B5 B6 B7 B8 B9 B10 Bll

. &
L +
i &
&
K1 K2 K3

Figure 25: Effect of survival policies

84

85

and 24). These findings combined with the results of our trial-and-error runs on

problem K1 indicate that high crossover rates combined with low mutation rates

lead to the best solutions.

Chapter 7

Conclusions and Future Research

Directions

7.1 Summary and Conclusions

Minimizing communication and achieving a good load balance are two competing
goals that designers of parallel algorithms and systems weigh against each other
in the quest for efficient implementations. Assigning all the computational tasks
to a single processor will minimize the interprocessor communication at the ex-
pense of the load balance (and hence the efficiency and computing time), while
naively splitting up the computation over all the processors may necessitate a
large volume of interprocessor communication which also decreases efficiency. In
this dissertation, the problem of minimizing communication given a grid-oriented
set of tasks and communication requirements and a fixed set of processor loads is
discussed. This work has provided both an elegant theory and an efficient method

for computing optimal and near-optimal solutions.

86

87

The two NP-hard problems of diversity minimization and perimeter minimiza-
tion (arising from various parallel computing applications) have been investigated
and a common theory has been built which characterizes good solutions to both
problems. The theory provides lower bounds on the objective functions of both
diversity and perimeter minimization in two dimensions, and also extends to diver-
sity minimization and surface area minimization in many dimensions. The lower
bounds yield geometric sufficient conditions for optimal configurations of compu-
tational tasks and/or data for individual processors in the system. By showing
that these configuration fit together to tile grids, these results are used to derive
actual closed-form optimal solutions for certain classes of problems.

A heuristic for the diversity minimization problem has been developed based
on the theory. The set of possible inputs to the heuristic forms a large discrete
space which is searched via a high-level genetic algorithm. A combination of the
genetic algorithm and the heuristic produces good solutions for various diver-
sity minimization test problems. A parallel implementation of the method on a
Thinking Machines CM-5 produces solutions within 7% of the optimal value on
all test problems and achieves better solutions than another heuristic by Ghan-
deharizadeh. The implementation has been shown to be efficient with respect to
its ratio of communication to computation. Several experiments have been per-
formed to investigate the effect of various algorithm parameters on the quality
of solutions produced. The results of these experiments will help users to tune
the parameters, and provide insight into which components of the algorithm are

critical to the quality of solutions.

88

7 9 Future Research Directions

The work in this thesis can be extended in several directions, both theoretical and
computational. The computational complexity of both diversity minimization and
perimeter minimization when restricted to the class of rectangular grids remains
unknown. The proof of NP-hardness or the discovery of a polynomial-time al-
gorithm for perimeter minimization on rectangular grids would be an interesting
result in graph theory. o

The lower bounds on d-perimeter are tight, but they do not take into account
the shape of the grid. Ad hoc methods have been successful in showing that
the diversity and perimeter bounds are not tight in certain instances, but more
general results are needed. A lower bound on diversity based on the shape of the
grid for the class of “elongated” grids was developed by Meyer and Schultz [10]
and is summarized in appendix D. The lower bounds also assume that fixed load-
balancing constraints are provided. An interesting variation of the problem which
needs to be explored is minimizing diversity or perimeter subject to a constraint
on the maximum load-imbalance.

The two-dimensional optimal configurations are well studied, but a complete
study of optimal configurations for d > 2 has yet to be done. This could include
characterizing the dimensions of optimal d-dimensional hyper-rectangles, which is
complicated by the fact that unlike the two-dimensional case there exist multiple
hyper-rectangles with the same volume and the same d-perimeter. For example,
the three-dimensional rectangles with dimensions 5 x 8 X 9 and 6 x 6 x 10 both
have a volume of 360 and an optimal 3-perimeter of 22 (these are the smallest
such pair of hyper-rectangles in the smallest number of dimensions).

The lower bounds on surface area can be improved on several fronts. By

89

proving the conjecture that all “partial cubes” have minimum surface area or
by finding some other minimum surface area class of shapes, an efficient method
of computing the optimal surface area for a given volume would be obtained
(evaluation of the current bound requires exponential time). The lower bound on
d-surface-area for general d is not known to be tight for d > 3, and a constructive
proof might also provide an efficient method for computing the bound.
Algorithm TILE minimizes diversity. The same basic approach could be ap-
plied to perimeter minimization, perhaps merging the block and fringe placement
steps in order to keep the cells for each processor close together in the grid. TILE
could also be modified to create heuristics for the three-dimensional diversity and
surface area minimization problems. Various modifications to the genetic algo-
rithm and TILE can be evaluated, including alternate representations of genetic
individuals and inclusion of backtracking in the TILE algorithm. The genetic
algorithm should scale to parallel machines with larger numbers of processors by
simply increasing the population size. Another possible modification is to have
each pair of parents produce k offspring (instead of two) and use k processors to
evaluate the fitness of the offspring in parallel. Finally, a parallel asynchronous
genetic algorithm is possible in which the selection-crossover-mutation-survival
cycle, guided by global best and worst fitness values, runs independently on the

Processors.

Appendix A
Problem Variations

The main body of the thesis is devoted to the investigation of the diversity mini-
mization and perimeter minimization problems. For each of these problems there
are several variations on objective functions and constraints which are also of inter-
est. Each section of this appendix explains one or more variations and summarizes

what is known about solving the modified problem(s).

A.1 Nonlinear objective functions

For the problem of assigning database fragments to processors, the partitions
that minimize overhead (i.e. diversity) also, under certain assumptions, minimize
the sum of the response times for the queries. DeWitt et al. [6] found that
a reasonable model for the response time r as a function of n, the number of
processors used, is r(n) = On + Q/n where O is the overhead incurred by using
each additional processor, and Q is the time needed to process the query on a single
processor. In the absence of any constraints, the number of processors per query

that minimizes response time is (Q/ O)Y/2. The results developed in chapter 2

90

91

show that under load balancing constraints, the minimum number of processors
achievable per query is about N@=1/4 in the case of a d-dimensional grid in which
each dimension is partitioned into N intervals and N is the number of processors
in the system. If Q/O < N¥¢1/d then the partition with the lowest possible
overhead also attains the lowest response time. This condition holds exactly when
the time to process the query on a single processor is dominated by the overhead
incurred by using N@-1/¢ processors. For example, if d = 2, the condition holds
when @ < NO or when the system is “broadcast limited” - it costs more to start
up all the processors than to process the query on a single processor. For larger d
the condition holds under a weaker assumption that a larger hypothetical system
of N2@-1/d processors would be broadcast limited. These results suggest that
in many real world applications, a minimum response time may be achieved by

minimizing the overhead.

A.2 Minimizing maximum diversity

An alternative goal in the database application is to minimize the maximum
diversity value (over all slices) so that the worst case overhead is as small as
possible. In this case, the objective function measuring total diversity is replaced
with one measuring the maximum diversity. Clearly the maximum diversity must
be at least as large as the average, hence the lower bounds on total diversity
provide bounds on the maximum. In many cases a solution that minimizes total
diversity also minimizes maximum diversity. For example, the minimum diversity
solution illustrated in figure 2.3.2 has a diversity of 3 for each slice. Since the
total diversity is minimized and each slice has the same diversity, the maximum

diversity must also be minimized. In [10], we derived a lower bound of [N (d-1)/ d]

92

on the maximum diversity under equal load balance assumptions. Notice that

this bound is independent of the grid size and shape.

A.3 Relaxed load balancing

In the statements of the diversity and perimeter minimization problems, the pro-
cessor loads are strictly specified. In some applications it may be satisfactory to
minimize the objective subject to the constraint that the loads differ by no more
than some specified tolerance. If the tolerance is zero or one then the loads for
the processors are fixed and the lower bounds presented above apply, but when
the tolerance is greater than one, many possible sets of loads will satisfy the con-
straint. Notice that each processor’s load must be at least the average load minus
the tolerance. The average load is simply the number of grid cells divided by
N. Using this underestimate for each processor load, loose lower bounds may be

obtained (see [10]).

A.4 Weighted versions

In the distributed database application of diversity minimization, the assumption
is made that all slices of the grid are accessed with equal frequency via database
queries. This may not always hold: for example the records of the employees in
the EMP relation who earn less than 10K might be accessed more frequently than
the high level managers who earn more then 40K because of more frequent inter-
departmental changes, salary changes, etc. This property can be incorporated
into the formal problem statement by assigning a weight to each slice according

to its frequency of access and then minimizing the weighted sum of the diversities.

93

Another simplifying assumption that was made in the problem formulation is that
each grid cell (database fragment) contains about the same number of tuples, and
therefore assigning the same number of cells to each processor distributes the
tuples evenly among the processors. This assumption may not hold: for example
in the EMP relation, the older employees may tend to make more than the younger
ones, causing the tuples to cluster along the diagonal of the grid. To take this
type of situation into account, a weight can be associated with each grid cell and
the load balancing constraints of the problem can be modified so that the weighted
sums of the grid cells assigned to each processor are specified. This last variation,

of course, makes even the the computation of a feasible solution an NP-complete

problem.

A.5 Target diversities

In some cases the database designer does not wish to minimize diversity, but rather
seeks to achieve a target diversity for each grid slice in order to minimize response
time for the corresponding query. The techniques for minimizing diversity may
be used to achieve this goal if the target diversities are larger than the minimum
possible. The heuristic described in this thesis may be used to construct a nearly
minimum diversity solution. By appropriate modifications to this solution, the
slice diversities may be increased to approximate their targets. In the extreme
case where each target diversity is N, i.e., the total diversity is to be mazimized,
the problem is relatively easy to solve. For example, in any d-dimensional grid
where N divides each of the grid dimensions, it is possible to achieve a diversity

of N in every slice of the grid by placing each processor along a grid diagonal.

94

A.6 More general variations

The database application involves striking a compromise between the two con-
flicting goals of diversity minimization and load balancing. Up to this point the
problem has been stated in terms of minimizing the diversity subject to (approxi-
mately) balancing the load. Another way to approach the problem is to minimize
the difference between the loads subject to the constraint that the diversity is be-
low a specified limit — in effect switch the roles of objective function and constraint.

Two more variations on this theme are:

o find a solution where the loads differ by at most some specified tolerance
and the diversity is at most some specified limit (i.e., two constraints and

no objective)

o minimize some function of the load differences and the diversities (é.e., an

unconstrained problem)

In this last type of problem, the objective function should be chosen so that
its minimizers provide good compromises between the conflicting goals of the

application.

Appendix B

Integer Programming Models for

Diversity Minimization

The diversity minimization problem may be formulated as a fully dense trans-
portation problem with integrality constraints and an objective function which is
the sum of a large number of fixed-charge functions, or as a mixed integer linear
program. Let d denote the number of dimensions of the given grid, C denote the
number of grid cells, s denote the number of (d — 1)-dimensional slices in the grid,
and N denote the number of processors in the problem instance.

The transportation network corresponding to an instance of diversity min-
imization has N sources each with supply equal to the floor or ceiling of the
number of cells divided by the number of processors to be assigned, and C sinks
each with a demand of one, and arcs from each source to each sink. Let z;;
be a zero-one variable denoting the flow on the arc from source i to sink j, let
Yis = Ljeslice s Tiyj denote the total flow from processor 4 into the cells of slice

s (the y’s are not variables in the formulation, rather they appear as convenient

95

96

shorthand), and let
g My <1
fis(z) = Yoo B ¥ =
1 otherwise
be a fixed-charge function which has value 0 if processor i does not appear in
dlice s and value 1 if it does. Then diversity minimization may be formulated as

follows:

min ;s fis(®)
such that >0 Tij = supply, Vi
YiTi;=1Vj
z;; € {0,1} Vi Vj
The fixed-charge functions may be replaced by a linear objective function by intro-
ducing extra variables and constraints in the formulation. Define a new continuous

variable z; ; for each pair of processor i and slice s and add the constraints

zis > Ti;Vj € slice s.

The diversity for slice s is then bounded above by Y; z; s and the total diversity
is at most 3, > Zis- Minimizing 3, 3.; #i,s Will then minimize total diversity.

The number of variables in the nonconvex transportation formulation is CN
(there is a decision variable for each pair of processor and grid cell), and the
number of constraints (not counting integrality constraints) is N+C. In the mixed
integer LP, there are SN additional continuous variables, and an additional CdN
constraints.

Thus, in the two-dimensional “square” case of an N x N grid of cells to be
assigned to N processors, there are N 3 0-1 variables, N2+ N network constraints,

and 2N? fixed-charge terms in the objective function. Note that the number of

97

feasible solutions to this problem is

)) - G

The number of optimal solutions is at least N, since any optimal solution ma;
Y

be transformed into an alternate optimal solution by a row permutation followed
by a column permutation followed by a permutation of the processor indices.
Specifically, in the case of N = 5, there are more than 623 X 10!? feasible
solutions and at least 1,728,000 optimal solutions. The difficulty of treating even
a small problem like this by conventional optimization techniques is illustrated by
an attempt to solve small problems via the GAMS ZOOM module: the largest
N x N problem that was solvable in under an hour on a workstation was the
5 x 5 problem and the solution time grew exponentially with N. In contrast, the
genetic algorithm described below was able to solve to optimality a problem with

N = 101 in about 70 seconds on a 32-node partition of a CM-5.

Appendix C

A Diagonal-based Solution

Technique

This technique was developed by Schultz and produces minimum diversity solu-
tions for N x N grids by successively assigning cells on the grid diagonals. Given
an integer p € {1,..., P}, the technique produces a solution so that there are
exactly p processors in each row and [N/p| processors in each column. We then

show that the resulting solution is optimal for this problem if p= [\fﬁ 1,

A Diagonal Solution Technique

Define the jth diagonal of the grid to be the set of cells (i,k) that satisfy
k—i=jmodN. (6)

Note that there are exactly N cells in each diagonal. An algorithm for com-
puting an assignment is given in figure 26. This algorithm is given inputs N
and p € {1,..., N} and assigns one diagonal at a time, using the procedure as-

sign.single.diag. The procedure assign.single.diag is given an “initial processor

98

99

Procedure assign.single.diag(p, j)
g—p (initial processor index is p)
k«— j (initial column index is j)
Fori=0,...,N -1
cell(i, k) « ¢
k — (k+ 1) mod N
g« (g+1)mod N

Algorithm assign.diags(N, p)
For j « 0,...,N—1
assign.single.diag(j mod p, §)

Figure 26: The diagonal-based algorithm

index” p, and a column coordinate j, and then assigns each cell in the jth diag-
onal to a different processor. Note that the algorithm assign.diags takes O(N?)
operations, which is optimal since it makes each cell assignment in constant time.
Figure 27 shows the portion of the assignment created by assign.diags(7,3) after

the first two calls to assign.single.diag. Figure 28 shows the complete assignment.

(a)

Figure 27: (a) After 1 diagonal assigned; (b) After 2 diagonals assigned

0|1
1
3
3
5
5
0
(b)

ol1}2]0|1(2]|0
1{1}2(3(1]2]|3
412121314123
41513134153
41516{4(4(5]|6
0/5(6{0|5|5|6
0(1|/6|0]|1(6]6

Figure 28: An optimal assignment of ZZ%”) with 7 processors

100

Appendix D

Elongated Grids

We say that a d-dimensional grid is elongatedif the size of one dimension dominates
the sizes of the others by at least a factor of V. In citeGMSY we showed that
there is a closed form optimal solution for such problems when all the A, are
equal. This result follows from the fact that the total diversity may be written as
a linear function of the average diversities in each dimension, and that the product

of these average diversities is at least IV -1,
Let Dy denote the average diversity over all the slices in dimension d and let

the dimensions of the grid be My x My X «-- X M. Then the total diversity is
given by

" M/Da

d
Since each Dy must be between 1 and N, and (from the previously mentioned
result) [1g D, > N1 alower bound on diversity is given by the solution to the

nonlinear optimization problem (with variables Da):
min S MyDasuch that 1 < Dy < N and [[Ds > Né-L
d d
When one dimension dominates the others by a factor of at least N, then the

101

102

optimal solution of the above problem has D, =1 for the dominating dimension
and D, = N for the others. If N divides the dominating dimension, this bound can
be achieved by dividing the grid into N blocks along the dominating dimension
and assigning one block to each processor. The resulting optimal solution has
diversities of 1 for the slices in the dominating dimension and diversities of N for

all other slices.

Bibliography

[1] K. Bennett, M. C. Ferris, and Y. E. loannidis. A genetic algorithm for
database query optimization. In Proceedings of the Fourth International Con-

ference on Genetic Algorithms. Morgan Kaufman, 1991.

[2] D. Bitton, D. DeWitt, and C. Turbyfill. Benchmarking database systems: A
systematic approach. In Proceedings of the 1983 VLDB Conference, October
1983.

[3] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Danforth, M. Franklin,
B. Hart, M. Smith, and P. Valduriez. Prototyping Bubba, a highly parallel
database system. IEEE Transactions on Knowledge and Data Engineering,

9(1), March 1990.

[4] M. Cao and M. C. Ferris. Genetic algorithms in optimization. The Journal

of Undergraduate Mathematics and its Applications, 12(1):81-90, 1991.

[5] R. DeLeone and M. A. Tork-Roth. Massively parallel solution of quadratic
programs via successive overrelaxation. Computer Sciences Technical Report

1041, University of Wisconsin - Madison, Madison, WI, August 1991.

103

[6]

[7]
8]

[14]

104

D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H. Hsiao, and
R. Rasmussen. The Gamma database machine project. IEEE Transactions

on Knowledge and Data Engineering, 2(1), March 1990.
L.E. Dickson. History of the Theory of Numbers. Chelsea, 1971.

S. Ghandeharizadeh. Physical Database Design in Multiprocessor Database
Machines. PhD thesis, University of Wisconsin - Madison, 1990.

S. Ghandeharizadeh. Physical Database Design in Multiprocessor Systems.
PhD thesis, University of Wisconsin - Madison, 1990. Computer Sciences

technical report #964.

S. Ghandeharizadeh, G. L. Schultz, R. R. Meyer, and J. Yackel. Optimal
balanced assignments and a parallel database application. Computer Sci-
ences Technical Report 986, University of Wisconsin - Madison, Madison,

WI, December 1990.

D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.

G. Graefe. Volcano: An extensible and parallel dataflow query processing sys-

tem. Computer science technical report, Oregon Graduate Center, Beaverton,

OR, June 1989.

W. D. Gropp and D. E. Keyes. Domain decomposition methods in compu-
tational fluid dynamics. Technical Report 91-20, ICASE, February 1991.

G.H. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge, 1959.

[15]

[16]

[17]

[21]

105

P. Helman. A family of NP-complete data aggregation problems. Acta In-

formatica, 26:485-499, 1989.

A. L. Rosenberg. Encoding data structures in trees. JACM, 26(4):668-689,
October 1979.

R.J. Schalkoff. Digital Image Processing and Computer Vision. John Wiley
& Sons, Inc., 1989.

Tandem Performance Group. A benchmark non-stop SQL on the debit credit
transaction. In Proceedings of the 1988 SIGMOD Conference, Chicago, IL,
June 1988.

Thinking Machines Corporation. The Connection Machine CM-5 Technical
Summary, October 1991.

J. Yackel and R. R. Meyer. Minimum-perimeter domain decomposition. Com-
puter Sciences Technical Report 1078, University of Wisconsin - Madison,

Madison, WI, February 1992.

J. Yackel and R. R. Meyer. Optimal tilings for parallel database design. In
P. M. Pardalos, editor, Advances in Optimization and Parallel Computing,

pages 293-309. North-Holland, 1992.

