CENTER FOR PARALLEL OPTIMIZATION ## ERROR BOUNDS FOR INCONSISTENT LINEAR INEQUALITIES AND PROGRAMS by O. L. Mangasarian Computer Sciences Technical Report #1166 July 1993 ## Error Bounds for Inconsistent Linear Inequalities and Programs O. L. Mangasarian* Technical Report # 1166 July 1993 #### Abstract For any system of linear inequalities, consistent or not, the norm of the violations of the inequalities by a given point, multiplied by a condition constant that is independent of the point, bounds the distance between the point and the nonempty set of points that minimize these violations. Similarly, for a dual pair of possibly infeasible linear programs, the norm of violations of primal-dual feasibility and primal-dual objective equality, when multiplied by a condition constant, bounds the distance between a given point and the nonempty set of minimizers of these violations. These results extend error bounds for consistent linear inequalities and linear programs to inconsistent systems. Keywords error bounds; linear inequalities; linear programs The primary purpose of this work is to show, for the possibly inconsistent system of linear inequalities $$Ax \le b,$$ (1) that the residual $$\|(Ax-b)_+\|,\tag{2}$$ when multiplied by a condition constant $\sigma(A)$, bounds the distance to a closest point in the set of points that minimize some norm of $(Ax - b)_+$. Here A is an $m \times n$ real matrix, b is a vector in the m-dimensional real space R^m , $\|\cdot\|$ denotes any norm on R^m , and $(Ax - b)_+$ denotes the vector (Ax - b) with all its negative components replaced by zeros. When the system (1) is consistent, it is well known [2, 11, 5, 8, 3] that $$||x - p(x)||_{\infty} \le \sigma(A)||(Ax - b)_{+}||$$ (3) Here the projection p(x) is a closest point (using the ∞ -norm for simplicity) in the solution set $$X = \{x | Ax \le b\} \tag{4}$$ to the point x and $\sigma(A)$ is the condition constant [8] $$\sigma(A) := \max \left\{ \|w\|' \middle| \begin{array}{l} \|A^T w\|_1 = 1, \ w \ge 0, \text{ rows of } A \\ \text{corresponding to nonzero elements} \\ \text{of } w \text{ are linearly independent} \end{array} \right\}$$ (5) ^{*}Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, WI 53706, email: olvi@cs.wisc.edu. This material is based on research supported by Air Force Office of Scientific Research Grant AFOSR-89-0410 and National Science Foundation Grant CCR-9101801. Here the superscript T denotes the transpose, and $\|\cdot\|'$ is the dual norm to the norm on R^m used in (3), that is $||u||' := \max_{||v||=1} v^T u$. The norms $||u||_p$ and $||u||_q$ are dual norms for $1 \leq p, q \leq q$ ∞ , $\frac{1}{n} + \frac{1}{n} = 1$. It is interesting to note that if the constraint $w \ge 0$ in (5) is omitted, and the norm $\|(Ax^{r}-b)_{+}^{r}\|$ in (3) is taken as the ∞ -norm, then $\sigma(A)=\|A^{-1}\|_{\infty}$, for nonsingular A. In order to handle the case of an empty feasible region X, we define the nonempty set X^1 of minimizers of $||(Ax-b)_{+}||_{1}$, that is $$X^{1} := \arg\min_{x} \|(Ax - b)_{+}\|_{1}$$ (6) We also need to define a new condition constant as follows: $$\tau(A) := \max_{w,\gamma,s} \left\{ \|w\|' \middle| \begin{array}{l} \|A^T w\|_1 = 1, \ w - e\gamma + s = 0, \ (w,\gamma,s) \ge 0, \\ \text{rows of } \begin{bmatrix} A & I \\ 0 & -e^T \\ 0 & I \end{array} \right\} \text{ corresponding to nonzero }$$ $$\text{components of } (w,\gamma,s) \text{ are linearly independent}$$ $$(7)$$ Here I denotes the identity matrix and e a vector of ones, both of appropriate dimension. We immediately note that $\tau(A)$ is a well defined finite real number. In fact the set of feasible (w, γ, s) satisfying the constraints of (7) is compact. Obviously, the set is closed. It is bounded, otherwise there would exist fixed subsets J and K of $\{1,\ldots,m\}$ and a sequence $\{(w_J^i,\,\gamma^i,\,s_K^i)\}$ such that $$\{\|w_J^i,\,\gamma^i,\,s_K^i\|\} o \infty ext{ and rows of } \left[egin{array}{cc} A_J & I_J \ 0 & -e^T \ 0 & I_K \end{array} ight] ext{ are linearly independent, where subscripts } J ext{ and }$$ $\left\{ \| w_J^i, \, \gamma^i, \, s_K^i \| \right\} \to \infty \text{ and rows of } \left[\begin{array}{c} A_J & I_J \\ 0 & -e^T \\ 0 & I_K \end{array} \right] \text{ are linearly independent, where subscripts } J \text{ and } K \text{ denote subsets of rows. Hence a subsequence } \left\{ \frac{(w_J^{i_j}, \gamma^{i_j}, s_K^{i_j})}{\| w_J^{i_j}, \gamma^{i_j}, s_K^{i_j} \|} \right\} \text{ converges to } (\bar{w}_J, \, \bar{\gamma}, \, \bar{s}_K) \neq 0$ satisfying $\bar{w}_J^T A_J = 0, \, \bar{w}_J^T I_J - \bar{\gamma} e^T + \bar{s}_K^T I_K = 0, \, \text{ which contradicts the linear independence of the } \left[\begin{array}{c} A_J & I_J \\ A_J & I_J \end{array} \right]$ rows of $\left[\begin{array}{cc} A_J & I_J \\ 0 & -e^T \\ 0 & I_{\kappa} \end{array} \right].$ We are ready now to state and prove our principal result. Theorem 1 (Error bound for possibly inconsistent linear inequalities) For any x in \mathbb{R}^n $$||x - p_1(x)||_{\infty} \le \tau(A)||(Ax - b)_+|| \tag{8}$$ where $p_1(x)$ is the projection of x (using the ∞ -norm) on the error minimizing set X^1 , and $\|\cdot\|$ is an arbitrary norm on \mathbb{R}^m . **Proof** Let $\bar{z} = (A\bar{x} - b)_+$ where \bar{x} is any point in the nonempty set X^1 , and let x be an arbitrary fixed point in \mathbb{R}^n . Hence $p_1(x)$ is a constituent of the solution $(p_1(x),\,\varepsilon(x),\,z(x))$ of the following solvable linear program: $$(p_1(x), \, \varepsilon(x), \, z(x)) \in \arg\min_{p,\varepsilon,z} \left\{ \varepsilon \, \middle| \, \begin{array}{c} Ap - b \leq z, \, z \geq 0, \, e^T z \leq e^T \bar{z} \\ -e\varepsilon \leq p - x \leq e\varepsilon \end{array} \right\}$$ (9) The dual of this linear program is solved by some $(w(x), \gamma(x), u(x), v(x), s(x))$, that $$(w(x), \gamma(x), u(x), v(x), s(x)) \in \arg\max_{w, \gamma, u, v, s} \left\{ -b^T w - (e^T \bar{z}) \gamma + x^T (u - v) \middle| \begin{array}{l} A^T w - u + v = 0 \\ w - e \gamma + s = 0 \\ e^T u + e^T v = 1 \\ w, u, v, \gamma, s \ge 0 \end{array} \right\}$$ (10) Assuming that $\varepsilon(x) > 0$, else $x - p_1(x) = 0$ and (8) holds trivially, it follows from the complementarity condition $$u(x)(p_1(x) + e\varepsilon(x) - x) + v(x)(-p_1(x) + e\varepsilon(x) + x) = 0$$ that u(x)v(x) = 0. Hence from the constraint conditions $$A^{T}w(x) - u(x) + v(x) = 0, \quad e^{T}u(x) + e^{T}v(x) = 1$$ we have that $||A^Tw(x)||_1 = 1$. By the basic feasible solution theorem [9], there exists a solution $(w(x), \gamma(x), u(x), v(x), s(x))$ such that the columns of the matrix $$\left[egin{array}{ccccc} A^T & 0 & -I & I & 0 \ I & -e & 0 & 0 & I \ 0 & 0 & e^T & e^T & 0 \end{array} ight]$$ corresponding to nonzero components of $(w(x), \gamma(x), u(x), v(x), s(x))$ are linearly independent. Hence so are the columns of the matrix $$\left[\begin{array}{ccc} A^T & 0 & 0 \\ I & -e & I \end{array}\right]$$ corresponding to nonzero components of $(w(x), \gamma(x), s(x))$. Consequently it follows from (7) that $$||w(x)||' \le \tau(A)$$ We then have $$\varepsilon(x) = \|x - p_1(x)\|_{\infty} = -b^T w(x) - e^T \bar{z} \gamma(x) + x^T (u(x) - v(x))$$ $$= w(x)^T (Ax - b) - e^T \bar{z} \gamma(x)$$ $$\leq w(x)^T (Ax - b)_+ \qquad \text{(Since } w(x) \geq 0, \ e^T \bar{z} \geq 0, \ \gamma(x) \geq 0\text{)}$$ $$\leq \|w(x)\|' \|(Ax - b)_+\| \qquad \text{(By generalized Cauchy-Schwarz inequality)}$$ $$\leq \tau(A) \|(Ax - b)_+\|$$ We turn our attention now to the pair of dual linear programs $$\max_{x} c^{T}x \qquad s.t. \ Ax \leq b, \ x \geq 0$$ $$\min_{x} b^{T}u \qquad s.t. \ A^{T}u \geq c, \ u \geq 0$$ (11) neither of which may be feasible. This pair is equivalent to the skew-symmetric linear complementarity problem (LCP) $$Mz + q \ge 0, \ z \ge 0, \ z(Mz + q) = qz \le 0$$ (12) where $$M = \begin{pmatrix} 0 & A^T \\ -A & 0 \end{pmatrix}, \quad q = \begin{pmatrix} -c \\ b \end{pmatrix}, \quad z = \begin{pmatrix} x \\ u \end{pmatrix}$$ (13) $$Z^{1} := \arg\min_{z} \left\{ \left\| \begin{pmatrix} -Mz - q \\ -z \\ qz \end{pmatrix}_{+} \right\|_{1} \right\}$$ $$\tag{14}$$ By applying Theorem 1 to the LCP (12) representing the dual linear programs (11) we obtain the following error bound result. Theorem 2 (Error bound for possibly infeasible linear programs) For any $(x,u) \in R^{n+m}$ $$\|(x,u) - p_1(x,u)\|_{\infty} \le \tau \begin{pmatrix} -M \\ -I \\ q \end{pmatrix} \|(Ax - b, -x, -A^T u + c, -u, -cx + bu)_+\|$$ (15) Here $p_1(x,u)$ is the projection of z=(x,u) (using the ∞ -norm) on the error minimizing set Z^1 defined by (14), $\|\cdot\|$ is an arbitrary norm on $R^{2(m+n)+1}$ and τ is defined by (7). We conclude by noting that the idea of an error bound for inconsistent linear inequalities derived here can be extended to unsolvable linear complementarity problems in a manner similar to that of [7, 6] for solvable LCPs. It may also be possible to establish convergence rates for iterative methods for approximately solving unsolvable LCPs similar to the results of [10, 4] for solvable LCPs. It is also worth noting that the error bound inequality (8) can be sharpened to the following, by using the 1-norm in (8), by not dropping the term $-e^T \bar{z} \gamma(x)$ from the string of inequalities at the end of the proof of Theorem 1, and by noting that $\gamma(x) \ge ||w(x)||_{\infty}$: $$||x - p_1(x)||_{\infty} \le \tau(A)(||(Ax - b)_+||_1 - ||(A\bar{x} - b)_+||_1), \quad \bar{x} \in X^1$$ (16) This inequality can then be interpreted as the residual $\|(Ax-b)_+\|_1$ having a weak sharp minimum in the sense of [1]. However this inequality is not useful as an error bound without dropping the unknown term $\|(A\bar{x}-b)_+\|_1$. Thus although our results could have been derived as a consequence of weak sharp minimum theory, our approach here gives an explicit expression (7) for the condition constant $\tau(A)$, which in general is not given by weak sharp minimum theory. ### References - [1] J.V. Burke and M.C. Ferris. Weak sharp minima in mathematical programming. SIAM Journal on Control and Optimization, 31(5), 1993. - [2] A. J. Hoffman. On approximate solutions of systems of linear inequalities. *Journal of Research of the National Bureau of Standards*, 49:263–265, 1952. - [3] W. Li. Sharp condition constants for feasible and optimal solutions of a perturbed linear program. Technical Report TR91-14, Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529, 1991. To appear in Linear Algebra and Its Applications. - [4] Z.-Q. Luo and P. Tseng. Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem. SIAM Journal on Optimization, 2:43–54, 1992. - [5] O.L. Mangasarian. A condition number for linear inequalities and linear programs. In G. Bamberg and O. Opitz, editors, *Proceedings of 6. Symposium uber Operations Research*, Augsburg, 7-9 September 1981, pages 3-15, Konigstein, 1981. Verlagsgruppe Athenaum/Hain/Scriptor/Hanstein. - [6] O.L. Mangasarian and J. Ren. New error bounds for the linear complementarity problem. Technical Report 1156, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706, June 1993. - [7] O.L. Mangasarian and T.-H. Shiau. Error bounds for monotone linear complementarity problems. *Mathematical Programming*, 36:81–89, 1986. - [8] O.L. Mangasarian and T.-H. Shiau. Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems. *SIAM Journal on Control and Optimization*, 25(3):583–595, May 1987. - [9] K.G. Murty. Linear Programming. John Wiley & Sons, New York, 1983. - [10] J.S. Pang. More results on the convergence of iterative methods for the symmetric linear complementarity problem. *Journal of Optimization Theory and Applications*, 49:107–134, 1986. - [11] S.M. Robinson. Bounds for error in the solution of a perturbed linear program. *Linear Algebra* and Its Applications, 6:69–81, 1973.