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Abstract

For any system of linear inequalities, consistent or not, the norm of the violations of the
inequalities by a given point, multiplied by a condition constant that is independent of the
point, bounds the distance between the point and the nonempty set of points that minimize these
violations. Similarly, for a dual pair of possibly infeasible linear programs, the norm of violations
of primal-dual feasibility and primal-dual objective equality, when multiplied by a condition
constant, bounds the distance between a given point and the nonempty set of minimizers of
these violations. These results extend error bounds for consistent linear inequalities and linear
programs to inconsistent systems.
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The primary purpose of this work is to show, for the possibly inconsistent system of linear
inequalities
Az £ b, (1)

that the residual
[(Az — )], (2)

when multiplied by a condition constant o(4), bounds the distance to a closest point in the set of
points that minimize some norm of (Az — b);. Here A is an m x n real matrix, b is a vector in
the m-dimensional real space R™, || - || denotes any norm on R™, and (Az —b),. denotes the vector
(Az — b) with all its negative components replaced by zeros. When the system (1) is consistent, it
is well known [2, 11, 5, 8, 3] that

lz —p(@)llw £ o(A)lI(Az — b)4]] (3)
Here the projection p(z) is a closest point (using the co-norm for simplicity) in the solution set
X = {z|Az £ b} (4)
to the point  and o(A) is the condition constant [8]

|ATw|; =1, w 2 0, rows of A
o(A) := max\{ |w||' | corresponding to nonzero elements (5)
of w are linearly independent
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Here the superscript 7' denotes the transpose, and || - || is the dual norm to the norm on R™
used in (3), that is ||u]|’ := ﬁn“aoi vTu. The norms ||u||, and ||u|, are dual norms for 1 < p, ¢ <
[ HE=

1 1
00, — + p = 1. It is interesting to note that if the constraint w 2 0 in (5) is omitted, and the norm
l(Az — b),|| in (3) is taken as the co-norm, then o(A) = ||A™"||s, for nonsingular A. In order to
handle the case of an empty feasible region X, we define the nonempty set X' of minimizers of
[(Az — b)+ 1, that is
X!i=arg mwin [(Az = b)+ ] (6)

We also need to define a new condition constant as follows:
”‘A‘T/wlll = 17 w — ey +s= 0’ (U’,’)’a S) g Oa

A T
7(A) := max < ||w||'| rows of | 0 —eT | corresponding to nonzero (7
W,Y,8
0 I

components of (w, 7, ) are linearly independent

Here I denotes the identity matrix and e a vector of ones, both of appropriate dimension. We
immediately note that 7(A) is a well defined finite real number. In fact the set of feasible (w,~, s)
satisfying the constraints of (7) is compact. Obviously, the set is closed. It is bounded, otherwise

there would exist fixed subsets J and K of {1,...,m} and a sequence {(w}, 7%, s%)} such that
YAJ IJ

{Jlw?, 7%, s%l|} — oo and rows of | 0 —eT | are linearly independent, where subscripts J and
0 Ik

(’wz.]j s ’Yij ) 5?{)
w3, v, sl
satisfying WY Ay = 0, @%1; — ¥eT + §%Ix = 0, which contradicts the linear independence of the

K denote subsets of rows. Hence a subsequence { } converges to (W, ¥, §x) # 0

Ay I
rowsof | 0 —el
0 Ig

We are ready now to state and prove our principal result.
Theorem 1 (Error bound for possibly inconsistent linear inequalities) For any x in R"
z = p1(7)]le0 < T(A)(Az — D)4 ]| (8)
where py(z) is the projection of T (using the oo-norm) on the error minimizing set X', and || - || is

an arbitrary norm on R™.

Proof Let Z = (AZ — b), where Z is any point in the nonempty set X', and let & be an arbitrary
fixed point in R". Hence p;(z) is a constituent of the solution (p:(z), e(x), z(z)) of the following
solvable linear program:

. Ap—b<2 220, efz5elz
(@), &(z), =(a)) € argmin {s EniEh il ©)
The dual of this linear program is solved by some (w(z), v(z), u(z), v(z) s(zx)), that is
ATw —u+v=0
3T (T T, w — ey +s=0
(w(2),7(), u(e), (&), 5(@)) € axg_max §—HTw— (T +ow—v)| Uy TEE]
W, Uy U, Y, 8 = 0
(10)



Assuming that e(z) > 0, else z — p;(z) = 0 and (8) holds trivially, it follows from the complemen-
tarity condition

w(z)(pi(z) + ec(z) — z) + v(z)(~pi(z) + ec(z) + 2) =0

that u(z)v(z) = 0. Hence from the constraint conditions
ATw(z) —u(z) +v(z) =0, eTu(z)+elv(z) =1

we have that |ATw(z)|l; = 1. By the basic feasible solution theorem [9], there exists a solution
(w(z), v(z), u(z), v(z), s(z)) such that the columns of the matrix

AT 0 -I I 0
I —€ 0 0 I
0 0 eT e 0

corresponding to nonzero components of (w(z), v(z), u(z), v(z), s(z)) are linearly independent.
Hence so are the columns of the matrix

AT 0 0
I —e I
corresponding to nonzero components of (w(z), y(z), s(z)). Consequently it follows from (7) that
lw(@)l" < 7(4)

‘We then have
e(z) = llz — p1(2)|loo

—bTw(z) - eT2y(z) + 27 (u(z) — v(z))

= w(z)"(Az - b) - e"zy(2)
< w(z)T(Az - b), (Since w(z) 2 0, e72 2 0, y(z) = 0)
< Jw(@)| |[(Az — b)4]| (By generalized Cauchy-Schwarz inequality)
< 7(4) [I(Az - )4l
O
We turn our attention now to the pair of dual linear programs
max ¢’z st. Az <b, 220
mEn blu st. ATu>c,u20 (11)

neither of which may be feasible. This pair is equivalent to the skew-symmetric linear complemen-
tarity problem (LCP)

Mz4+qg20,220, 2(Mz+4¢)=qgz<0 (12)
where T
0 A —C x
—-Mz—q
Z' := arg min -2 (14)
7z +1

By applying Theorem 1 to the LCP (12) representing the dual linear programs (11) we obtain the
following error bound result.



Theorem 2 (Error bound for possibly infeasible linear programs ) For any (z,u) € R™™

-M
I(z,u) = pr(@, oo S 7| —I | II(Az = b, —z, —ATu+c, —u, —cz + bu) || (15)
q

Here pi(z,u)is the projection of z = (x,u) (using the co-norm) on the error manimizing set Z1
defined by (14), || - || is an arbitrary norm on R2m+m)+1 gnd 1 4s defined by (7).

We conclude by noting that the idea of an error bound for inconsistent linear inequalities derived
here can be extended to unsolvable linear complementarity problems in a manner similar to that of
[7, 6] for solvable LCPs. It may also be possible to establish convergence rates for iterative methods
for approximately solving unsolvable LCPs similar to the results of [10, 4] for solvable LCPs. It is
also worth noting that the error bound inequality (8) can be sharpened to the following, by using
the 1-norm in (8), by not dropping the term —e”Zy(z) from the string of inequalities at the end of
the proof of Theorem 1, and by noting that v(z) 2 |w(z)| e

Iz = pr(@)lleo £ T(A)(I(Az = D)4 ]l = (AZ = D)4 ]l1), Z €X' (16)

This inequality can then be interpreted as the residual |[(Az —b)4 ||, having a weak sharp minimum
in the sense of [1]. However this inequality is not useful as an error bound without dropping the
unknown term ||(AZ — b),|l;. Thus although our results could have been derived as a consequence
of weak sharp minimum theory, our approach here gives an explicit expression (7) for the condition
constant 7(A), which in general is not given by weak sharp minimum theory.
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