Towards Practical Multiversion
Locking Techniques for On-Line
Query Processing

Paul M. Bober

Technical Report #1160

November 1993

TOWARDS PRACTICAL MULTIVERSION LOCKING TECHNIQUES
FOR ON-LINE QUERY PROCESSING
by

PAUL M. BOBER

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN — MADISON
1993

ii

ABSTRACT

Query processing is becoming an increasingly important function of on-line transaction processing (OLTP)
systems. The concurrency control algorithm found in most commercial database systems, two-phase locking
(2PL), however, does not efficiently support on-line query processing. This is because 2PL causes queries to lock
large regions of the database for long periods of time, thus causing update transactions to block. To solve the
query/update data contention problem, multiversion extensions to two-phase locking have been proposed. In
multiversion two-phase locking (MV2PL), prior versions of data are retained temporarily to allow each read-only
query to serialize before all update transactions that were active during any portion of its lifetime. Queries do not
contribute to data contention in MV2PL since they do not set or wait for locks. This form of versioning, where
old copies of data are retained temporarily for concurrency control purposes, is sometimes referred to as transient
versioning.

In the thesis, techniques for the efficient implementation of multiversion locking are proposed and evaluated.
In the first part of the thesis, an efficient scheme for organizing multiple versions of tuples on secondary storage is
proposed. The results of a simulation study are then presented that clearly demonstrate the benefits of this
scheme. In the second part of the thesis, a number of options for extending single-version index structures to han-
dle transient multiversion data are outlined, and the results of a performance study comparing them are presented.
Finally, in the last part of the thesis, a new multiversion locking algorithm, multiversion query locking (MVQL),
is proposed and evaluated. MVQL generalizes MV2PL by providing queries with a range of consistency forms
(the strictest being that provided by MV2PL). The thesis describes how each successively weaker form of con-
sistency can reduce query execution cost as well as version storage cost, and the results of simulation experiments
are presented that quantify these cost reductions.

VL

iii

ACKNOWLEDGMENTS

It has been my distinct privilege to work under the direction of Michael Carey. Mike has given me superb techni-
cal guidance and a great deal of encouragement and support. I have the deepest respect for him both as a profes-
sor and as an individual.

I 'am grateful to David DeWitt for the encouragement he has given me during my years in the department, and for
the interest he has shown in me.

I would also like to thank the other members of my committee: Parmesh Ramanathan, Jeff Naughton, and espe-

w4-:clally Miron Livny. I'had many conversations.with Miron, and I both enjoyed and benefited from them.

I also benefited from my interaction with Dan Dias with whom I worked for a summer at IBM Research. I'd like
to thank Dan for taking the time to work with me, and for his encouragement.

Mike Litzkow deserves special thanks for keeping condor up and running, and for his prompt handling of my bug
reports and requests. I would also like to thank the lab staff for their excellent assistance.

Thanks to Sheryl Pomraning, Lorene Webber, Susan Dinan, Lynn White, and Ralph Rodriguez for their friendly
help with administrative matters, and for making the department a more interesting place to work.

I"d also like to acknowledge Bruce Hillyer for having introduced me to computer science. Bruce devoted a lot of
time to me when I was in high school, and provided a role model for me by subsequently pursuing a Ph.D.
Throughout the years I've been glad to keep in touch with him, and he never ceases to impress me.

At Wisconsin, I was fortunate to have made a number of good friends in the department who helped make gradu-
ate school more enjoyable: Mike Franklin (with whom I drank countless cups of coffee), Beau Shekita, Manish
Mehta, Shaul Dar, Dan Lieuwen, Kurt Brown, Jonathan and Lisa Yackel, Trip and Lexie Lazarus, Scott Vanden-
berg, Kristin Bennett, V. Srinivasan (Srini), Sarita and Vikram Adve, Scott and Lisa Leutenegger, Mike Zwilling,
Molly Peebles, and others. I'd like to give special thanks to Vikram Adve for answering my many questions on
analytical performance modeling.

My daughter, Katje, has brought me so much joy and happiness during the past 16 months. She deserves a spe-
cial acknowledgement for delaying her arrival into the world until my VLDB paper was completed (but just
barely!).

Finally, I would like to thank my wife, Barbara. She has given me an incredible amount of love and support, and
I sincerely doubt that I would have been able to finish this thesis without her.

iv

TABLE OF CONTENTS

ABSTRACT .ttt esne sttt s st et saesats st sa b e s e s s b s s s s e an s be s R e s Rt s eas s sa st enbssasnsasssansasansasanessens ii
TABLE OF CONTENTS ..ottt eeeteneteseseeassaeeseste st ase st et s st sstosesssssestsssasssssssrnsasessassassasassssnasasses iv
Chapter 1: INTRODUCTIONooiiiiiiiiirecnesim e sessses st s et sesssesasesssstssesassssesss st sescrsssas snasasiensns 1
11 MOUIVALION «.uueeeereiieceeeceresnes e ete e st sesertesesestenesaenasaassaesaesebass saneasssntsabssbsasssnnsrsessnnasesssessasnnsssansssssans 1

1.2 TRESIS PLEVIEW et eeeeeee ettt eet sttt sscsse s e stsstas e s s sesassasesbessassb s saa s sassasssastsssassssssnassnss 2
1.2.1 Efficient Version Management Techniques 2

1.2.2 Multiversion INAEXINGcccveeorreeereerirnierinntieesnirisesinscsscssesssssssssssssssnssssasssssassasssssssesassasesens 2

1.2.3 Multiversion QUEry LOCKINE ...ccccererrirrerriitarinticincninssisninsi it ssnssnnsesessaess s mnesssssssssssasssas 3

1.3 Thesis OIZAMIZAtIONccocecveriereernrerieererissteneesissisiesesesssesessessessesssssssessessasaassassssssssessessasesasatosessssns 3
Chapter 2: RELATED WORK ...ttt seseten ettt s s s ersensessasessstssssasstnstannssesssatasess 5
2.1 Multiversion Concurrency Control AIZOTIthINSc.ccocviiiinnrisnniininniniinrein e et ete st st sssessseas 5

2.2 Multiversion Two-Phase Locking (MV2PL)cc.cocimirniiiiinmnininirnsineressnscessssnesissssssssssssssssnaces 6

2.3 The CCA Version Pool OrganizZationc.cceeecccerieniiniinisscsscsssssesssismissssssssssesessssssssssstssssssessnssses 7
Chapter 3: EFFICIENT VERSION STORAGE MANAGEMENT ...t 10
3.1 INLPOUCHION 1ecurirrereeieecaestreseaeseassntaesseasussraestesasesstesasesaeeseannessaessassasbosssesasisstassts sessassssesssanssnasnsassmssesans 10

3.2 On-Page Version CAChingcoimmiiiniincotintiiniitintinseessssssessesessassesssssssssesasssassens sucsssnssonssssens 10
3.2.1 Garbage Collection with On-Page Version Cachingcoccciieeeinnieiiininnnnenicencescncnicsninnnins 13

3.3 VEIEW SHALING ...veenieirieiniiiienicstiniistnt et it s st s b e s s s s e sbesae s s sesbesae s st e s ssstasasatsatesesassnsonsnsas 15

3.4 The Simulation MOMEL ...ttt st e s s s assrss s sses e asssassssaanassassasass 16
3.4.1 The Application MOMEL ...ttt s stesn e sa s st ane st s s sasassba s 16

3.4.2 The System MOodel oo e s st s 18

3.5 Experiments and RESUIESccouivirioimieniieneeeeieiet sttt s nsns s st ss s snectstsasetssnsaca s sae s enee 20
3.5.1 Experiment 1a: Base Experiment — Clustered Index SCansoowoveoinieevnecninccinnniscnnnne 23

3.5.2 Experiment 1b: Base Experiment -— Unclustered Index Scanscovveueveinniincnennnnciiennennns 27

3.5.3 Experiment 2: Cache Write Policy Tradeoffscooveevememmnincnec e 28

3.5.4 Experiment 3: Skewed UPAALescccovuiirmnieiiunrinnieicenteeeseee e esesssssasnesessssenescessasesssassans 31

3.6 CONCIUSIONS ..uruerireeeeeiriereaetesstesatseusseeseestasesesesssaestseaeseteessesas ebesbaerssstasssrbnsssss sabesasassassnsssansnassenness 34
Chapter 4: MULTIVERSION INDEXING ALTERNATIVES ...t cesensenenensssssiaes 35
4.1 INETOQUCHION .vrreiereereeeeetesieieseeeesssetenessseee e seesteseasessesastestetasasstonsesssasssessssssssssnnasassnssassastensassassasesas 35

4.2 Multiversion Indexing APPIOAChESccecvvieiiicriieininetisiise ettt s s asa e saseaes 36
4.2.1 Chaining (CH) ..ceeueeeiieeeerecrecescesreeeten et tessass s sssstas sassss s ese e sasssesssssassassnsssssassosssestasnasiassss 37

4.2.2 Data Page Version Selection (DP) ...t et snsssssssans 40

4.2.3 Primary Index Version Selection (PI)cocoviinnieiinieicieninie e cessesassestessscsesnsasene 42

4.2.4 All Index Version SeleCtion (AI) .icveeiiviiiieeiesieeerecreesssasscasasesnareosessses e sussssssssesssssesnassassaness 44

4.2.5 Summary of Multiversion Indexing Approachescccceierniiieiesineseesensienesssssessesnecene 44

4.3 The SIMUIAtON MOAELeeeiieiteeerectreecte s reeereesie st ese s st stestesssssssssesssssessensesassassaassasassssssnse 45

4.3.1 The Application MOGEL ..ottt ssa e ss s a s sena nas
4.3.2 The SyStem MOEL ...ttt e ssessrssasasa s s sens sane
4.3.3 Discussion of Model ASSUMPLIONS ..coveevvueeinientiniiiterineerecsecsenseetraessestessesseersersessessesssssossssssasnsens
4.4 Experiments and RESULES ..ottt st st s
4.4.1 Experiment 1: Basic Indexing Tradeoffs ...ttt s
4.4.2 Experiment 2: Effect of On-Page Cachingc.oovvimrecieeieccticccc e
4.4.3 Experiment 3: Effect of Buffer POOl Size ..o
4.4.4 Experiment 4: Unclustered Index Scan QUETIEScocwemvvieviiieoreccietcter e sesnesss e
B.4.5 DISCUSSION ..cvenueerarreerereeseriesisteseeseatasessessestssessesssssessssmssatostestestensstastssansessassessesonssrsasssstsssnsases
4.5 CONCIUSIONS ...enreiereeiereeeenesseiecesestessesesssesenesasenssesasssessesssssessssssssanssesansssesmesssessasesssnseesastessessesasssssernsss
Chapter 5: MULTIVERSION QUERY LOCKINGccuiieiemtiiretninencscsnressea e enssesssnsssssessssssssassnsns
5.1 Why Another ALZOTIthIN? ..ot e s s s s s s s et saaes
5.2 Eorms of QUery CONSISIENCYcoucviireniniirnrnssensssiiidinnmnnnensesaesnessissssesiesessessesssssssssssesnssassnssssssnsns .
5.3 Multiversion Query Locking (MVQL)
5.3.1 Varying ConsiStency Levels ...ttt snsa s e saes
5.3.2 Implementing the AFTER Set Insertion Rules ...
5.3.3 Implementing the AFTER Sets ettt eee et eessesseressssseris
5.3.4 Garbage COUECLIONcccoiuicuiieiniiniicnciriete et tes s s ess s et sassse s s s nenssnesaesnesnasansens
5.3.5 Further MVQL REfNEINENLS ...ecoeueieiarienearreieceneecteeacssssnnesaaneesesseesasessessaasesseesesseessasossesons sins
5.3.5.1 Early Garbage COLIECHONccvmvieiiiniirieieteetrenet ettt ssse s s n e nss e sae s en
5.3.5.2 COnSiStENCY GIOUPS ...covevirinrirririntiininisnertssnesssresnesnsssssessssessssesassssssssasssesessessessassasessensens
5.3.5.3 Distributed MVQL ..c..ouiiiiitiictetnntie ettt e esssaesesesstesesessnenesesssassssnssenssaes

5.4 The Simulation MOGELcccovecercnnininiiitiiien et sbessestessssasssseesasssssressssnsssassnasnes
5.4.1 The Application MOGELcoeeeiirimieecrce ettt be s s s s s b s s snss
5.4.2 The System MOEL ...ttt ettt e s sensanasasesnas
5.5 Experiments and RESUILScoeveueeeeieieeeeee ettt s s s e s
5.5.1 Experiment 1: Effect of Query SEleCtiVItYoeimeoiemiierereteetitcteccevee et nensans
5.5.2 Experiment 2: Effect of Update Transaction SiZeccvmeeerereiinirinnccsneesiensnessesessnsssns
5.5.3 Experiment 3: Effect of Query Multiprogramming Levelc..ovrmriinineieieeeeecenne
5.5.4 DISCUSSION «veverrererreereeserneseaessessesseesesassestsssessessestestsssssssssstosessessasstatestassasesnesesestsasssssessasssessssesses
5.6 CONCIUSIONS ..voeveereeeeeeterirseressesessensseetestsessesesss st sassesstosnosesnsssssessessesaessesssssssssensonsssssasssessessssssnsssans
Chapter 6: THESIS CONCLUSIONSooiiincniirnseretesssesstsnsiissesessssssssssasssassessssssssssssssesssssssssssess
6.1 Directions fOr FUIIE WOTK ...cccuveeirerieertererene s renscssestessestssesseesssasssesesasansnsesseesesssstssssseassssesasssnes
BIBLOZIAPRY: ...ttt s e et e b e s R b bR et ent

46
48
49
50
52
56
57

238&

62

.- 63

69
70
72
73
74
74
75
75
76
77
77
79
82
&3
88
91
92
93
95
96
98

CHAPTER 1

INTRODUCTION

1.1. Motivation

Due to the adoption of relational database technology and the increasing ability of database systems to
efficiently execute ad-hoc queries, query processing is becoming an increasingly important function of on-line
transaction processing (OLTP) systems. The concurrency control algorithm found in most commercial database
systems, two-phase locking (2PL) [Eswa76], however, does not efficiently support on-line query processing. This
is because 2PL causes queries' to lock large regions of data for long periods of time, thus causing update transac-
tions to suffer long delays due to data contention with queries. As a result, users are often forced to make
compromises in either the consistency or timeliness of queried data. One such compromise is to run queries
without obtaining locks or using only short-term locks, allowing the queries to see transaction-inconsistent
answers [Gray79]. These approaches are commonly referred to as GO processing and cursor stability locking
[Pira90], respectively. A different compromise is to maintain two separate databases, one for OLTP transactions
and another for ad-hoc queries [Pira90]. In this latter approach, the OLTP database is periodically extracted and
copied to the ad-hoc query system. Disadvantages of this approach are that the disk storage requirements are dou-
bled, the additional cost of copying the database periodically is incurred, and queries must run against a database

that can be many hours or even days old.

To solve the query/update data contention problem while providing consistent answers to queries, a multiver-
sion extension to two-phase locking was proposed and implemented in a system developed at Prime Computer
Corporation in the early 1980s [DuBo82]. This extension was also used in a system developed at Computer Cor-

poration of America (CCA) in the same time frame [Chan82, Chan85], and it has been incorporated in DEC’s

! Unless otherwise stated, the term query in this thesis refers to a long-running read-only transaction (possibly containing many SQL
statements), rather than a single SQL statement.

Rdb relational DBMS product as well [Ragh91]. In multiversion two-phase locking (MV2PL), a timestamp
mechanism is used in conjunction with the temporary retention of prior versions of data so that a read-only query
can serialize before all update transactions that were active during any portion of its lifetime. In MV2PL, read-
only queries do not contribute to data contention since they do not have to set or wait for locks. This form of ver-
sioning, where old copies of data are retained temporarily for concurrency control purposes (as opposed to long-

term retention for historical queries), is sometimes referred to as transient versioning [Pira90].

1.2. Thesis Preview

In this thesis we propose and investigate techniques for the efficient implementation of multiversion locking
to support on-line query execution in high performance transaction processing systems. The thesis is subdivided

into three major parts, each of which is now previewed briefly.

1.2.1. Efficient Version Management Techniques

A decision that must be made before building a multiversion locking system is how to arrange the transient
multiversion data on secondary storage. In the CCA prototype, current versions of data pages were stored as they
would be in a single-version database, and prior versions of data were appended to a sequential log-like version
pool [Chan82, Chan85]. This scheme supports the efficient creation of new versions as well as inexpensive gar-
bage collection. Since accesses to the version pool are random, however, the scheme disrupts the inherent
sequentiality of query access. To improve query sequentiality, we propose and evaluate a tuple-level refinement,
called on-page version caching, that reserves a small portion of each data page to cache prior tuple versions; the
version pool is thus used only for versions that overflow from page caches. Lastly, we introduce a view sharing
mechanism that has the potential for reducing the storage cost of versioning by running several queries together

against the same transaction-consistent view of the database.

1.2.2. Multiversion Indexing

Since indexes are important for good performance in database systems, it is important to determine how they

may coexist with multiversion locking. Indexing in a multiversion database is more complicated than indexing in

a single version database because tuples can have potentially many versions, each having different indexed attri-
bute values and physical locations. In this thesis, we outline and evaluate four different options for extending
single-version indexing schemes to handle multiversion data. The schemes are all capable of supporting certain
important query optimizations, and they differ in where they place version selection information (i.e., references

to individual tuple versions).

1.2.3. Multiversion Query Locking

Because update transactions typically have stringent response time constraints, storage systems for transient
versioning usually optimize access to current versions of data at the expense of making access to older versions
more expensive. Thus, a query’s execution cost is related to the age of the versions that it reads. In this thesis,
we outline several query consistency forms, and we show that each successively weaker form can reduce query
execution cost as well as version storage cost by allowing queries to read younger versions. We then present a
generalization of MV2PL, called multiversion query locking (MVQL), that can be tailored to provide each of
these forms (with standard MV2PL providing the strictest form). Even the weakest of the consistency forms
guarantees that queries at least see transaction-consistent dataj; this is in contrast to approaches that avoid version-
ing altogether, instead allowing queries to see inconsistent data (e.g., GO processing, cursor stability locking, and

epsilon-serializability [Wu92]).

1.3. Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 covers related work. In this chapter, we
briefly survey the relevant multiversion concurrency control literature, and we describe both the basic MV2PL

algorithm and the CCA multiversion storage organization scheme in detail.

The first research chapter, Chapter 3, is devoted to efficient storage management techniques for versions. In
this chapter, we identify some of the performance problems of the initial CCA storage management scheme, and
we then present the on-page caching refinement to this scheme. We also introduce view sharing, and we show

how it may be used with on-page caching to reduce storage cost. Finally we present the results of a set of experi-

ments that clearly demonstrate the benefits of on-page caching.

The next chapter, Chapter 4, is devoted to multiversion indexing. In this chapter, we outline four options for
extending single-version index structures to handle transient multiversion data. We then explore the tradeoffs

between the four approaches via simulation.

The final research chapter, Chapter 5, is devoted to MVQL. In this chapter, we first explain the various forms
of consistency that are provided by MV2PL and MVQL, and we then derive the new MVQL algorithm as a gen-
eralization of MV2PL. Finally, we present the results of a series of experiments that compare the performance

and storage overhead of MVQL to that of MV2PL.

Finally, we conclude with a summary of the main lessons of the thesis in Chapter 6, and we close by discuss-

ing some possible directions for future work.

CHAPTER 2

RELATED WORK

In this chapter, we set the stage by reviewing the work that served as a takeoff point for the results presented
in this thesis. We begin by surveying the relevant literature on multiversion concurrency control. We then
review the basic MV2PL algorithm and the CCA version pool scheme for managing storage for multiple versions

of data.

2.1. Multiversion Concurrency Centrol Algorithms

As mentioned earlier, MV2PL is the starting point for the work reported here. MV2PL is only one of a
number of multiversion concurrency control algorithms that have been published in the literature. We are pri-
marily interested in MV2PL in this thesis because it is a direct extension of the de facto industry standard, 2PL.
For completeness, however, we wish to identify some of the other proposals here. To the best of our knowledge,
Reed’s distributed timestamp ordering scheme [Reed78] was actually the first multiversion concurrency control
algorithm proposal; it can be viewed as a multiversion extension of basic timestamp ordering (BTO) [Bern81].!
Reed’s scheme is not ideally-suited for use with long-running read-only queries, however, as read-only queries
can sometimes cause update transactions to abort. Furthermore, operations issued by read-only queries must

update timestamp information that is physically associated with each object (possibly turning reads into writes).

Several 2PL-based algorithms that retain at most two versions of data in order to reduce blocking due to
read/write conflicts have also been proposed [Baye80, Stea81]. Again, however, these schemes are not ideally-
suited for use with long-running read-only queries. They either allow update transactions to abort queries, or they

allow queries to block or abort update transactions, neither of which is particularly desirable in an OLTP setting.

! The development of Reed’s scheme actually preceded that of basic timestamp ordering, however.

A number of multiversion concurrency control algorithms have been proposed that employ an existing
single-version concurrency control algorithm to serialize the execution of update transactions, while using a com-
bination of versioning and timestamps to provide queries with a prior transaction-consistent state of the database.
In fact, Agrawal and Sengupta [Agra89] describe how this may be done in a modular fashion (i.e., separating con-
currency control and version management) using any existing single-version conflict-based concurrency control
algorithm. Queries and update transactions cannot cause each other to block or abort in these algorithms, as each
query serializes before all update transactions that arrived prior to its start. As a result, these algorithms are
potentially well-suited for on-line query processing. In addition to MV2PL, which we have already mentioned,
examples of such algorithms include multiversion optimistic algorithms [Robi82, Care83, Lai84, Agra87], mul-

tiversion timestamp ordering [Agra89], and the multiversion tree protocol [Silb82].

A compensation-based query processing technique has recently been proposed as an alternative to multiver-
sion concurrency control for relational queries [Srin92]. It can be viewed as a form of semantic versioning since a
query essentially creates its own consistent version of the relevant underlying data while executing [Srin92]. A
high-level description of the approach is as follows: In the first phase of this two-phase approach, queries do a
"fuzzy" scan of the base relations using cursor-stability locking, and a set of temporary relations is created. In
addition, a special compensating record is generated for each update during this phase that could be necessary to
bring the temporary relations to a transaction-consistent state. During the second phase of the approach, query
execution is completed using the temporary relations, with compensating records being applied on-the-fly as
needed to provide the query with a transaction-consistent view of the relevant data. A limitation of the approach,
however, is that it is specific to individual queries that use relational style set-oriented operators. Thus, it is not
directly applicable to the execution of long-running application programs that may involve several queries, the

use of cursors, and so on.

2.2. Multiversion Two-Phase Locking (MV2PL)

In MV2PL, each transaction T is assigned a startup timestamp, Ts(7), when it begins to run, and a commit

timestamp, T(T), when it reaches its commit point. Transactions are classified at startup time as being either

read-only or update transactions. When an update transaction reads or writes a page, it locks the page, as in
traditional 2PL, and then accesses the current version. Update transactions must block when lock conflicts occur.

When a page is written, a new version is created and stamped with the commit timestamp of its creator; this

timestamp is referred to as the version’s create timestamp (CTS).2 When a read-only query Q wishes to access a
page, on the other hand, it simply reads the most recent version of the page with a timestamp less than or equal to
Ts(Q). Since each version is stamped with the commit timestamp of its creator, Q will only read versions written
by transactions that committed before Q began running. Thus, Q will be serialized after all transactions that com-
mitted prior to its startup, but before all transactions that are active during any portion of its lifetime — as though
it ran instantaneously at its starting time. As a result, read-only transactions never have to set or wait for locks in

MV2PL.

When an update transaction deletes a page in MV2PL, the prior versions of the page must remain in the data-
base until all queries that might require them have completed. Deletes may thus be handled by assigning a delete
timestamp (DTS) to the last version of each page. Initially, the DTS of the most recent version is infinite, signify-
ing that it is in the current database. Later, when a page is deleted, the commit timestamp of the deleter becomes
the DTS of the current version (denoting that it is no longer part of the current database). Update transactions
should access a page only if it has a current version, i.e., a version with an infinite value. Likewise, a query may
access a page only if the query’s startup timestamp is less than the DTS of the most recent version (i.e., only if the

page was not deleted as of the query’s arrival time).

2.3. The CCA Version Pool Organization

To maintain the set of versions needed by ongoing queries, the CCA scheme divides the stored database into
two parts: the main segment and the version pool. The main segment contains the current version of every page
in the database, and the version pool contains prior versions of pages. Before a main segment page may be

updated, the entire page must be copied to the version pool. The version pool is organized as a circular buffer,

2Actually, to reduce commit-time processing in the absence of a no-steal buffer management policy, the page is stamped with the
creator’s transaction id. A separately maintained list is then used to map from transaction ids to commit timestamps [Chan82].

much like a write-ahead log in a traditional recovery manager [Gray79]. In fact, the version pool was designed to
be used as a UNDO log for recovery, as well as a version storage structure for MV2PL. In the absence of a
separate write-ahead log for recovery (containing both UNDO and REDO log records), any main segment pages

that are updated by a transaction must be forced to disk at commit time.

The CCA design chains all of the versions of a page in reverse chronological order; thus, the desired version
of a given page is located by first starting at the current version of the page (in the main segment), and then fol-
lowing the version chain until the desired page version is reached. Three attractive properties of the CCA version

- pool approach are-that (i) updates are performed in-place, allowing clustering of current versions to be main-

tained, (ii) version pool writes are sequential (i.e., similar to log writes?), and (iii) storage reclamation is relatively
straightforward. Figure 2.1 depicts the main segment of the database, the version pool, the pointers used to
manage version pool space, and the version chain for a page X. Version pool entries between reader-first and last
in the figure contain versions that may be needed to satisfy read requests for ongoing queries. Entries between

update-first and last contain page versions recorded by ongoing (or recently committed) update transactions.

Main Segment

(current database) Version Pool
last —
%1
X update~first—s]
i
X 2
reader-first —

Figure 2.1: CCA Version Pool Organization

3 In contrast, DEC’s Rdb system stores old versions of data on "shadow" pages which must be first read and then written whenever an
update occurs [Josh93].

Garbage collection in the version pool is done when the oldest query finishes, thus allowing the reader-first
pointer to move. Garbage collection is simple due to the sequential nature of this deallocation process; however,
a problem with the CCA scheme is that a very long running query may hold up the reclamation of version pool
space. Another problem is that the ordinary sequential /O patterns of queries may become disrupted by random
/O operations to the version pool. Moreover, because a query must read successively older versions (relative to
the current database) as it ages, the number of version pool /O operations that it must make to read a given page
increases with time. As a result, queries may begin to thrash if they are sufficiently large [Bobe92a]. The on-

_page version caching refinement discussed in the next chapter was designed to alleviate these problems.

10
CHAPTER 3

EFFICIENT VERSION STORAGE MANAGEMENT

3.1. Introduction

As described in the previous chapter, the CCA MV2PL design employs page-level versioning and locking,
requires a page’s before-image to be copied from the main segment into the version pool before it can be updated,
and requires updated pages to be forced to disk at commit time — three strikes as compared to the high-
performance, log-based update schemes used in competitive OLTP systems. In order to make MV2PL useful for
transaction processing, we present several refinements in this chapter. First, to remove the force requirement, we
separate recovery from versioning by using the traditional write-ahead logging (WAL) approach to crash recovery
[Gray79, Moha89]. Second, to reduce storage overhead and increase potential concurrency, we make the
(straightforward) conversion from page-level to record-level versioning and locking. These two refinements are
used in DEC’s Rdb/VMS system as well [Ragh91]. Third, we use on-page caches for prior versions in order to
reduce I/O activity to the version pool. Last, we introduce the technique of view sharing, which is used to reduce
the number of snapshots that must be maintained by the system. The following sections describe the last two of

these refinements in detail.

3.2. On-Page Version Caching

One of the advantages of moving to a record-level versioning scheme is that it allows us to allocate a portion
of each data page for caching prior versions. Such an on-page cache reduces the number of read operations
required for accessing prior versions. In addition, versions may "die" (i.e., no longer be needed for maintaining
the view of a current query) while still in a page cache and thus not have to be appended to the version pool at all.
Figure 3.1 shows a data page with records X, ¥ and Z and a cache size of 3. All prior versions of these records are

resident in the on-page cache in the figure.

11

Cache

|

Data Page

Figure 3.1: A data page with a cache size of 3

With on-page caching, updates to records are handled in the following manner: When a record is updated, the
current version is copied into the cache before it is replaced by the new version. If the cache is already full, gar-
bage collection is attempted on the page. Garbage collection attempts to find prior versions in the cache that are
no longer needed to satisfy the request of any current query (i.e., that are not needed to construct the view of any
current query). If garbage collection is unsuccessful in freeing a cache slot, then some prior version is chosen for
replacement. The replacement algorithm chooses the least recently updated entry for replacement (i.e., the entry

which has resided in the cache the longest is moved to the version pool).

In addition to the cache replacement policy, there is also a write policy that determines when a version
located in a on-page cache is appended to the version pool. The write-one policy appends a tuple version when it
is chosen to be replaced in the cache. This policy attempts to minimize the size of the version pool by 1) keeping
.only one copy of each prior version and 2) allowing a prior version the maximum chance of being garbage-
collected before being written to the version pool. In contrast, the write-all policy appends all of the prior ver-

sions in a page’s cache to the version pool at once; this is done when a cache overflow occurs and the least

12

Cache

y ” Version Pool
1

Data Page

Figure 3.2: Write-one policy

recently updated entry has not yet been appended to the version pool. The write-all policy thus attempts to cluster

entries from the same data page together in the version pool.

Figure 3.2 shows the write-one policy being used when an update to record Z on the page from Figure 3.1
causes a cache overflow. Record version Y is found to be the least recently updated cache entry and is appended
to the version pool. Figure 3.3 shows how the same situation is handled with the write-all policy. In this case, the
entire cache is written to the version pool, but again only Y is actually replaced. Notice that the next two entries
to be replaced from the cache, X, and Y, have special pointers (represented by dashed arrows) into the version
pool; these pointers are used to locate version pool copies of the cached entries. When X is later replaced in the
cache, the pointer stored in its cache slot, represented by the dashed arrow, will be used to simply redirect X;’s
next pointer to the appropriate position in the version pool; thus, no version pool write will be needed for the later

replacement of X.

13

— x,
Y, —
a VA
— Y
7 Xo
("* Yy
N5 Zo ,
Cache — X [
YT, i Version Pool
Data Page

Figure 3.3: Write-all policy

3.2.1. Garbage Collection with On-Page Version Caching

Prior versions are no longer necessary once they become inaccessible by any currently executing query. In
the version pool, space is reclaimed sequentially when the oldest query finishes, allowing the reader-first pointer
to move [Chan82]. Because of the nature of this sequential deallocation process, versions may become unneces-
sary before they can be garbage-collected. One resulting problem is that a very long-running query may hold up

the reclamation of version pool space that is occupied by versions other than those that are in its view.

In contrast to versions that have migrated to the version pool, versions that still reside in an on-page cache
may be garbage-collected soon after they become unnecessary. Garbage collection is done whenever an update
occurs on a page whose cache is full, at which time each prior version in the cache is examined to determine
whether or not it is still needed. Note that this method of garbage collection is quite inexpensive, as the page
must already be resident in the buffer pool and will be dirtied anyway by the update that initiated it. Figure 3.4
shows an example of a page that is about to have garbage collection run on it. The numbers in parentheses are the

commit timestamps of the transactions that wrote each version. There are two queries executing in the system,

14

Q1 (with startup timestamp 100) and Q2 (with startup timestamp 200). Y is needed to satisfy a potential request
by Q1 and must remain in the cache. Y; and X, are not needed for either Q1 or Q2, however, so their space may

be reclaimed.

Note that garbage collection does not have to be done in chronological order to slots in the on-page version
cache. For example, Y, can be deleted even though the page contains older versions (of either the same or a dif-
ferent record) that are still needed (e.g., Yo). In contrast, if ¥ resided in the version pool instead of in an on-
page cache, its space could not be reclaimed until every version that was previously written to the version pool
also became unnecessary. The use of an on-page cache can therefore mitigate to some extent the large transient
storage requirements caused by long queries. In particular, while versions that are needed for maintaining the
view of a very long query will still migrate to the version pool, versions needed only for shorter queries will
(hopefully) remain in an on-page cache and be garbage-collected there when no longer needed. In comparison,

in CCA’s original version pool-only architecture, a very long query will hold up all garbage collection from the

1 X1 (50)
Yo (175)
Current Queries
Zy (0
Ts (Q1)=100
Tg (Q2)=200
Yo O ©
— Xo (0) J R
Cache — Garbage
Yy (125) e/ <
Data Page

Figure 3.4: On-page garbage collection

15
time when it becomes the oldest running query until the time when it finishes.

3.3. View Sharing

If several queries are grouped together and executed with the same startup timestamp, fewer logical
transaction-consistent views of the database must be maintained and thus potentially fewer versions must be
retained. To understand why, observe that when an update to a record occurs, the prior version of the record is
unnecessary if no currently executing query has a startup timestamp in between the timestamps of the prior and
current versions of the record. Once the transaction generating the new version commits, and thus its timestamp
is known, the prior version ma;! be garbagcg collected if it has remained in the ca;:;he1 We can increase the likeli-

hood that this will occur by grouping queries together and allowing them to share the same startup timestamp. In

this way, a query may elect to run "back in time" by reusing the startup timestamp of the youngest currently exe-
cuting query and thus share its view of the database.’

Figure 3.5 illustrates how view sharing works. In the figure, a query O, enters the system when the commit

timestamp counter is equal to t;. This query may either elect to share the logical view of query Q; and use the

time —-
g o I la 1. current
—f——+— |
Updates Xo X X,
el
. L 91
Queries i :
N Q2
I

Figure 3.5: View Sharing

1'We could discard the prior version when the update occurs (i.e., without waiting for the updating transaction to commit) if we knew
that no query will enter the system with a startup timestamp that is less than the commit timestamp of the updating transaction. This could
be accomplished by requiring that a new query register itself and wait for all currently executing updaters to finish before entering the sys-
tem. While the query is waiting, subsequently arriving update transactions would not be allowed to discard their prior versions before com-
mit.

2 Similar ideas, developed independently, are presented in [Wu91] and [Moha92].

16

same startup timestamp, t;, or it may decide to generate a new logical view and run with a startup timestamp of
t;. After the transaction begins, a transaction that has updated X (generating X») subsequently commits with a
timestamp of z,. If Q, decides to share 0 ’s startup timestamp, then the previous version of X (X ;) will become
unnecessary at this point and may be garbage-collected the next time that its associated on-page cache overflows.
On the other hand, the version that would have otherwise become unnecessary when Q; finished (X) will now
still be necessary until both Q; and Q, are finished. Hence, the tradeoff of view sharing is that fewer versions
are likely to be necessary beyond the commit of the transaction that overwrites them, but versions that are
retained are likely to be retained for a longer period of time. [Bobe92c] explores this tradeoff further using an

analytical storage cost model.

3.4. The Simulation Model

In this section, we describe the model that we used to evaluate the performance of our record-level MV2PL
design. The model was implemented as a collection of modules in the DeNet simulation language [L.ivn89]. The
simulator was derived from a single-site configuration of a simulator constructed for the Gamma parallel database
system [DeWi90] and used in studies of replication strategies [Hsai90] and complex query processing [Schn90].
We used this simulator as a starting point primarily to facilitate subsequent research on MV2PL extended for use
in a parallel DBMS environment. In addition, the basic Gamma simulator was validated against the actual
Gamma implementation [Schn90, Hsai90], so we knew that we were at least starting from something that

modeled reality fairly accurately.

In order to explain the model, we will break it down into two major components, the application model and

the system model. Each of these have several subcomponents that we will describe in this section.

3.4.1. The Application Model

The first component of the application model is the database, which is modeled as a collection of relations.
Each relation, in turn, is modeled as a collection of records. One clustered and one unclustered index exist on

each relation. We assume that there are NumKeys keys per index page and (for simplicity) that there is a one-to-

17

one relationship between key Qalues and records. Index entries reference the head of each record version chain;
the key value matches some version in the chain. We assume that each relation has RelSize records and that each
record occupies RecSize bytes. The data is physically organized as a series of <relation, clustered index,
unclustered index> triples that are laid out on the disk in cylinder order. The version pool is placed on the disk

following all of the primary data. The parameters for this portion of the overall model are summarized in Table
3.1.

The second component of the application model, the source module, is responsible for modeling the external

- workload of the DBMS. Table 3.2 summarizes the key parameters of the workload model. The system is

modeled as a closed queueing system with the transaction workload originating from a fixed set of terminals.
Each terminal submits only one job at a time and is dedicated to either the Update transaction class or the Query
transaction class. Query transactions execute relational select operations, while Update transactions execute
select-update operations. In each case, selections can be performed via sequential scans, clustered index scans, or

non-clustered index scans.

Parameter | Meaning

NumkFiles Number of files in database
RelSize; Number of records in file i
RecSize; Size of records in file i

NumKeys; Number of keys per index page in file i
Table 3.1: Database Model Parameters

Parameter Meaning

MPL 1455 Number of terminals (class is Query or Updater)

ThinkTime 5, Mean of exponential external think time for each class
NumScans Number of scans that a query does (constant)

AccessMeth,,, | Access method used by class

Selectivity .y Average selectivity (uniform)

UpdateFrac Fraction of selected tuples actually updated

HotSize Size of the hot region of each file as a percentage of the file size
HotUpdate Percentage of updates that go to the hot region of a file

HotLoc Location of hot region within the file (beginning, middle, or end)

Table 3.2: Workload Model Parameters

18

For each transaction type (Query or Update), an execution plan is provided in the form of a set of parameters.
In particular, both the access path and the mean selectivity for each relation are provided as execution plan param-
eters. The actual selectivity is varied uniformly over the range from 1/2 Selectivityses to 3/2 Selectivitycias.

The probability that a selected tuple is updated is UpdateFrac. It is assumed that indexed attributes are not

updated by the Update transactions.® The number of scans done by a Query is given by NumScans. For each
scan, a new file is chosen (with replacement), but the mean selectivity and access path are kept the same. In order
to model skewed data access, each file also has a hot region that consists of a percentage, HotSize %, of the file
size. The location of the hot region in the file is denoted by HotLoc, which may be either beginning, middle, or

end. The percentage of updates going to the hot region of a file is HotUpdate %.

We chose this workload in order to model a situation where there is a relatively large number of updates per
query and where queries do a significant amount of work. We felt that this workload model, while it is simple,
would be place sufficient demands on the version management system to highlight the important performance

issues and tradeoffs.

3.4.2. The Systern Model

The system model encapsulates the behavior of the various DBMS (and operating system) components that
control the logical and physical resources of the DBMS. The relevant modules are described in the remainder of
this subsection. They include the CPU module, the disk manager module, the buffer manager module, the lock
manager module, the version manager module, and the operator manager module. Table 3.3 summarizes the key

parameters of the system model.

The CPU module encapsulates the behavior of the CPU scheduler. Except for disk transfer requests from the
disk manager, which preempt other requests, the FCFS policy is used for CPU scheduling. Unless preempted
then, a transaction is granted the CPU until it requests a new page from the buffer manager. The disk manager

module encapsulates the behavior of the disk driver and controller, scheduling disk requests according to the

3 This assumption was made so that we could use single-version indexes in this study, leaving exploration of multiversion indexing to
the next chapter.

19

Parameter Meaning

CPURate Instruction rate of CPU

NumDisks Number of disks

DiskSeekFactor | Factor relating seek time to seek distance

DiskLatency Maximum rotational delay

DiskSettle Disk settle time

DiskTransfer Disk transfer rate

DiskPageSize Disk block size

DiskTrackSize Disk track size

NumBuffers Number of buffer frames in the buffer pool

DiskXferCPU Cost to transfer a page between memory and disk controller
BufCPU Cost for a buffer pool hash table lookup

LockCPU Cost for a lock manager request

VersionCPU Cost to traverse a version-chain link ‘
SelectCPU Cost to select a tuple

CompareCPU Cost to compare index keys

StartupCPU Cost to start a select or select-update operator
TerminateCPU Cost to terminate an operator

Table 3.3: System Model Parameters

elevator algorithm [Teor72]. The total service time is computed as the sum of the seek time, latency, settle time,
and transfer time. The seek time of a disk request is computed by multiplying the parameter DiskSeekFactor by
the square root of the number of tracks to seek [Bitt88]. The actual rotational latency is chosen uniformly over
the range from O to DiskLatency. Settle time is a constant and is given by the parameter DiskSettle. The last
component of the disk service time, transfer time, is computed from the given transfer rate, DiskTransfer. The
CPU cost of transferring pages betweén the disk controller and buffer memory is modeled by charging DiskX-

ferCPU instructions per page per transfer.

The buffer manager module encapsulates the details of an LRU buffer manager. The number of page frames
in the buffer pool is specified as NumBuffers, and they are shared among the main segment, index, and version
pool pages of the database. To improve sequential access performance, the buffer manager also supports requests
to read an entire track at a time. The CPU cost of searching for a page in the buffer pool hash table is modeled by
charging BufCPU instructions. If the page is not resident, an additional BufCPU instructions are charged to insert
the newly requested page in the buffer table. The lock manager module models a typical lock manager with

hierarchical locking, lock escalation, and deadlock detection. Locking is done at the page-level (except for a few

20

experiments where we also include results obtained using file-level two-phase locking). We chose page-level
over record-level locking in order to decrease the required simulation time; we felt that this decision would not
change the basic results because the update transactions are extremely short. The CPU cost associated with lock

management is modeled by charging LockCPU instructions for each lock manager request.

The version manager module encapsulates the operations of record-level versioning with on-page caching
and an overflow version pool, as was described in Section 3.2. The CPU costs of version management are

modeled by charging VersionCPU instructions each time the version manager must traverse a version-chain link.

The operator manager encapsulates the operations necessary to execute the transaction types in the workload
(i.e., select and select with update). As was previously described, the access methods supported are sequential,
clustered index, and non-clustered index scans. The CPU costs of the operators are modeled by charging
SelectCPU instructions to extract a single tuple from a disk page and CompareCPU instructions to compare two
index keys. The model employs the following execution strategy for non-clustered index scans: A list of record

IDs is generated using a B+ tree index, the list is sorted, and the records are then retrieved in physical order.

3.5. Experiments and Results

In this section, we present the results of three experiments designed to examine the performance and storage
characteristics of the new record-level MV2PL algorithm presented in this chapter. In order to get a basic under-
standing of the algorithm’s behavior, in Experiment 1 we look at the effects of varying the average query size
under several cache sizes. To explore the impact of versioning on record clustering, this experiment is divided
into two parts — one where the queries in the workload use clustered index scans and one where the queries use
unclustered index scans. In Experiment 2 we compare the the tradeoffs of using the write-all cache policy versus
the write-one policy. Finally, in Experiment 3 we look at the performance impact of introducing access skew in

the update transaction workload.

As a yardstick for comparison, we include performance results for GO processing in all of the relevant

21

graphs.4 In addition, we present results for standard two-phase locking to show why it is not suitable for use in a
transaction processing environment with long-running queries. Our primary performance metrics are updater
transaction throughput and query throughput. In addition, we are also interested in the storage cost necessary to
retain prior versions. To ensure the statistical validity of our results, we verified that the 90% confidence intervals
for response times (computed using batch means [Sarg76]) were sufficiently tight. The size of these confidence
intervals were within approximately 1% of the mean for update transaction response time and within approxi-
mately 5% of the mean for query response time. An exception to the latter is when queries exhibit thrashing
behavior (which-we explain later in the text); however, we discuss only performance differences that were found
to be statistically significant.

Table 3.4 contains the settings for the parameters that are used in the experiments. The system has a CPU
that executes 12 million instructions per second and a single disk with a page size of 8K bytes, a track size of 2
pages and a buffer that holds an entire track. With this configuration, typical disk access times were on the order

of 15 milliseconds and the system was I/O-bound for all of our experiments.

The database is composed of 4 files; each containing 5000 Wisconsin benchmark-sized records [DeWi90].
Each record contains 208 bytes of data and 19 bytes of overhead, for a total of 227 bytes. For MV2PL, records
contain an additional 8 bytes to store a transaction identifier and a version chain pointer. With this record size, 36

records fit on a page (or 34 for MV2PL). Each file contains both a clustered and an unclustered B+ tree index,

each with a node fanout of 450.

The workload consists of 12 update terminals and 4 query terminals. The query terminals wait an average of
one second between the termination of one query and the submission of the next query (the actual time is chosen
from an exponential distribution). To keep the load on the system high, update terminals do not have an external
think time delay. Queries complete four scans using either a clustered index or an unclustered index (depending

on the experiment). The query selectivity is chosen uniformly from 1/2 to 3/2 times the average selectivity,

4 We also ran experiments with cursor-stability locking (i.e., where queries obtain short read locks), but the results were almost ident-
ical to GO processing; therefore we do not include them in this paper.

Parameter Setting

CPURate 12 MIPS

NumDisks 1

DiskSeekFactor 0.78 msec

DiskLatency 0-16.67 msec (uniform)
DiskSettle 2.0 msec

DiskTransfer 2.0 MBytes/sec
DiskPageSize 8K

DiskTrackSize 2 pages

NumBuffers 150 pages

NumFiles 4

FileSize 5000 records

RecSize 227 bytes, including overhead (235 for MV2PL)
NumKeys 450 ’) e
MPLgyery 4

MP. LUpdater 12

ThinkTimegyery 1 sec. (exponential)
ThinkTime ypdater 0 sec.

NumScans 4

Selectivity guery ranges from 2% to 50%
Selectivity ypdaser 0.01% (1-3 records)
AccessMethod g, clustered or unclustered index
AccessMethodypgy,r | unclustered index
UpdateFrac 100%

HotUpdate 0%

HotSize 0%

HotLoc middle

DiskXferCPU 3600 instructions
BufCPU 150 instructions
LockCPU 150 instructions
VersionCPU 100 instructions
SelectCPU 400 instructions
CompareCPU 50 instructions
StartupCPU 10000 instructions
TerminateCPU 2000 instructions

Table 3.4: Parameter Settings

22

which is varied from 2% to 50%. Update transactions use a non-clustered index to select and then update 1-3
records in a single file. Both the updated file and the records accessed within the file are chosen uniformly G.e.,

HotUpdate and HotSize are 0%), except in Experiment 3 where the access pattern is skewed.

In our experiments, we vary the query selectivity over a wide range to show how the various concurrency
control and version management alternatives perform as queries increase in size. Size is a key factor here because

as the queries become larger, the version management system must maintain transaction-consistent views of the

23

database that are increasingly different than the current view. As an alternative, we could have achieved a similar
effect by varying the database update rate (e.g., by changing the number of update transaction terminals). We
should point out that even though we use a relatively small database in our experiments (to make simulations with
Jarge queries feasible), the algorithms should scale rougly linearly along with the database size. This is because
the update rate to individual pages (and tuples) decreases proportionally as the database size is increased. For
example, if the database size is doubled, a selection query with a given selectivity will have to read twice as many

data pages (and tuples); however, the update rate to each individual page (and tuple) will be halved.

3.5.1. Experiment 1a: Base Experiment — Clustered Index Scans

In this experiment, we study the performance impact of using record-level MV2PL with caching for our
clustered index scan query workload. Figure 3.6 shows query throughput over a range of average query selectivi-
ties and Figure 3.7 shows the corresponding updater throughput. The first thing to notice in the graphs is that 2PL

exhibits significantly better query throughput than the other algorithms at the expense of significantly worse

+ & MV2PL 0 cached Boge I Commmeen Connnmne a
»xMV?2PL 6 cached \
y +2PLFileLevel 1] M e
2 2PL Page Level V%
&N 3 SN
1010 260 NN
. " “ ‘
w \ N
2 =R BN
Tt N A
p 2
g §4 \‘q, ‘A\ “
0.5 = el B
5 e B
Ty
006153630 40 90 016503640 30
Average Query Selectivity % Average Query Selectivity %
Figure 3.6: Query Throughput Figure 3.7: Updater Throughput

Clustered Query Workload with Write-One Policy

24

updater throughput. This is because the update transactions in the workload are delayed due to long query lock-
holding times; the system resources are therefore largely devoted to the execution of queries. This confirms our
premise that 2PL is undesirable for running long queries in a OLTP system. For this reason we will not consider

2PL further in this paper.

Turning to the other curves in Figures 3.6 and 3.7 we see that GO processing provides better query and
update throughput than MV2PL. This is to be expected, as there must be some cost for providing serializability
through versioning. It is important that this cost be reasonable, however, and that the multiversion locking algo-
rithm satisfies our goal of minimal-OLTP interference of queries with update transactions. Figure 3.7 shows evi-
dence that MV2PL indeed satisfies this goal, as the update transaction throughput remains constant as query size
is increased. In addition, the throughput level is reasonable, being less than 10% below the updater throughput
for GO processing. This throughput difference for MV2PL can be attributed to the cost of writing records to the
version pool and also to a lower buffer pool hit ratio for update transactions. The latter effect occurs because the
database occupies more pages in MV2PL (due to the version chain pointers and on-page caches) and because of

competition for database buffer frames from pages of the version pool.

The cost of versioning in terms of query throughput has two components — the additional cost to scan a
larger database and the cost of performing disk accesses into the version pool. Figure 3.8 shows this clearly by
presenting the throughput of MV2PL with several dificrent cache sizes relative to the throughput of GO process-
ing. Examining the graph, we see that at 2% selectivity the throughput values line up in cache-size order -— cache
size 0 has the highest throughput, size 2 has the next highest, 4 has the next highest, and 6 has the lowest. At this
low level of selectivity, the first cost component, database size, is dominant because virtually all prior versions are
garbage-collected while they are still in an on-page cache (i.e., there is very little version pool activity). As
queries become larger, however, prior versions must be retained longer and there are more accesses into the ver-
sion pool. When this occurs, the second cost component, version pool access, becomes dominant and the
throughput relative to GO processing drops significantly. In Figure 3.8, we see that the 0 cache-size curve drops

before the 5% query selectivity point, the 2 cache-size curve drops at about 10% selectivity, and the 4 cache-size

25

1.0 0-0--{F---=-- Lh-meeem - Tr-mees S|

0.8

& MV2PL 0 cached
©MV?2PL 2 cached
4 MV?2PL 4 cached
3% MV2PL 6 cached
oGO

0.6

0.4-

Relative Query Throughput

0.2

-—@
10720 30 40 50
Average Query Selectivity %

0.0

Figure 3.8: Relative Query Throughput
Clustered Query Workload with Write-One Policy

curve drops off at about 30% selectivity. The 6 cache-size curve is almost flat up to 50% selectivity’; virtually

all of the prior versions accessed here are still in the on-page caches, so there are few, if any, version pool

accesses.

The preceding explanations of performance are supported by Figures 3.9 and 3.10, which show the maximum

version pool size during the simulation and the average number of (logical) pages read per quf::ry.6 The maximum

version pool size is a recording of the maximum distance between reader-first and last, in terms of records, during

the simulation execution. By comparing Figures 3.9 and 3.10 to the graph in Figure 3.8, we can see the relation-

ship between the drop off in query throughput and the increase of activity in the version pool as the average query

size is increased. Initially, the larger number of prior versions that must be retained for queries are absorbed by

the on-page caches; after some point, however, a significant level of version pool activity begins. Version pool

accesses are quite expensive, as one or more I/Os may be required to read a single record, which explains why the

5 Recall that the actual selectivities of individual queries range between 25 and 75% at this point.
5The 0 cache size curve dips slightly from 40% to 50% query selectivity in Figare 3.10. This is because so few queries finished with
a cache size of O that the actual number is not statistically significant.

Max Version Pool Size

26

150000+
£ 15000 &MV2PL 0 cached
5 ©MV2PL 2 cached

100000+ K 4 MV2PL 4 cachg¢
=)
7]
© 1000,
Q
&~
@
1)

50000 £
:.: 5004
O' 0 T - T T T 1
0 0 40 50 0 10 20 30 40 50
Average Query Selectivity Average Query Selectivity
Figure 3.9: Maximum Version Pool Size Figure 3.10: Pages Read per Query

Clustered Query Workload with Write-One Policy
curves in Figure 3.8 fall sharply once version pool activity begins (i.e., where the curves in Figures 3.9 and 3.10
rise sharply). In addition, there is a non-linear relationship between query size and response time that leads to
thrashing for queries: Increasing the query size requires that it must read more records and that it traverse version
chains further because it is running against an older transaction-consistent snapshot of the database. Moreover,
the additional I/Os that are necessary for traversing the version chains will make the query execute even longer,
thus making its view even older. Therefore, once version pool accesses begin to slow down the queries in the

workload, their response times and throughput degrade quickly.

Once queries begin to slow down due to significant version pool activity, the version pool can grow unrea-
sonably large. Without an on-page cache, the version pool will retain the prior versions from all updates that have
occurred during the lifetime of the longest-running query (since version pool space is deallocated sequentially).
Indeed, we see that the version pool for the 0 caching case becomes extremely large in Figure 3.9, illustrating this
point. As the cache size is increased, the version pool becomes less large at high selectivities. With a cache size

of 4, the version pool becomes about 25% larger than the database itself, and with a cache size of 6, the version

27

pool does not grow beyond approximately 10% of the database size. There are several reasons for this. Obvi-
ously, with a larger cache size more prior versions are stored on data pages and not in the version pool. More
importantly, however, a larger cache allows queries to complete faster. Another important factor is that a larger
cache provides more opportunities for prior versions to be garbage-collected soon after becoming unnecessary; in
contrast, if a prior version spills into the the version pool, its storage cannot be reclaimed until it (and all previ-
ously written versions) becomes unnecessary due to the sequential allocation and deallocation of version pool

space.

The results of this experiment clearly show the advantages of keeping prior versions clustered in the main
segment of the database (using caching) for a clustered index scan workload. Clearly, similar results would be
obtained for a workload containing full sequential scan queries, as clustered index scans are just partial sequentiai
scans. This experiment also showed that even when long queries begin to thrash due to accesses in the version
pool, they do not affect the throughput of update transactions. Next, we turn our attention to a workload where

queries access data through a non-clustered index rather than a clustered index.

3.5.2. Experiment 1b: Base Experiment — Unclustered Index Scans

In this experiment, we duplicate the previous experiment with the query workload changed from clustered- to
unclustered index scans. Figure 3.11 shows query throughput over a range of average query selectivities and Fig-
ure 3.12 shows the corresponding update transaction throughput. The results are similar to those seen for the
clustered index scan workload. The update transaction throughput curves remain flat for all of the cache sizes,
which again is evidence that our goal of minimal interference is satisfied. Turning to the performance of queries,
an examination of Figure 3.11 reveals that the throughput curves for GO processing and MV2PL with a cache size
of 6 drop off initially and then level off at about 10% query selectivity. This is because the unclustered index
scan access method retrieves records in physical order after obtaining a record-ID list and sorting it; by the 10%
mean query selectivity point, all of the pages in the database must usually be accessed in order to retrieve the
desired records. When the query selectivity is increased beyond this point, additional CPU processing 1is

required, but with the GO processing locking algorithm, no additional I/Os are necessary; Since the system is

Query TPS

28

- B e I Sy -0
[5| ——————
0.04- #MV2PL 0 cached
e MV?2PL 2 cached
a 4+ MV2PL 4 cached
B 101 %MV2PL 6 cached
8 oGO
o
b}
[=H
0.021)
5 .
0'000 5 10 15 20 25 00 5 10 15 20 25

Average Query Selectivity %

Figure 3.11: Query Throughput

Average Query Selectivity %

Figure 3.12: Updater Throughput

Unclustered Query Workload with Write-One Policy
/O-bound with our parameter settings, this additional CPU processing (to select additional records from each
page) does not affect throughput. On the other hand, the MV2PL algorithm has to do additional I/Os if the
desired versions of newly selected records are not resident on the page. The cache size 6 curve in Figure 3.11 is
relatively level across the selectivity range because the caches are large enough to hold the necessary prior ver-
sions; its performance is worse for queries than GO processing locking because of the lower buffer hit ratio and

the additional pages that must be scanned due to the on-page caches. With smaller cache sizes, however, version

pool accesses interfere with query performance as the query selectivity is increased, as we saw in Experiment la.

3.5.3. Experiment 2: Cache Write Policy Tradeoffs

In this experiment, we study the effects of changing the cache write policy from write-one to write-all with
the clustered index scan query workload. As described in Section 3.2, the write-one policy appends a version to
the version pool only when it is chosen to be replaced in the cache. In contrast, the write-all policy appends all of

the prior versions in a page’s cache to the version pool at once; this is done when a cache overflow occurs and the

Query TPS

29

L
£
9
2 2
0.2 5
S
[
2
= #MV2PL 0 caclied
4 @ MV2PL 2 caghed
‘é +MV2PL 4 cached
£ 4 »MV2PL >
0.11 2
ot
=
>
g .
=
=)
Ed
]
0.0 = 0
Y0100 20 30 40 50 = 10720 30 40 50
Average Query Selectivity % Average Query Selectivity
Figure 3.13: Query Throughput Figure 3.14: Throughput Improvement of Write-All
(Write-one: solid lines, Write-all: dashed) (Relative to Write-One)

Clustered-Scan Query Workload

least recently updated entry has not yet been appended to the version pool.

Figure 3.13 shows query throughput of both the write-one and write-all policies for the clustered-index scan
workload (write-one has solid lines, write-all has dashed). Figure 3.14 shows the throughput the of write-all pol-
icy, relative to write-one, for each cache size. With a cache size of 6, the write policy does not affect query
throughput over the range of selectivities that we have examined. This is to be expected since we determined in
Experiment 1a that accesses to the version pool were rare with a cache size of 6. For the smaller cache sizes, the
write-all policy improves the throughput of queries significantly for the higher query selectivities. For example,
write-all with a cache size of 4 provides nearly as good query throughput as a cache size of 6. This is because the
write-all policy writes a page’s entire cache to the version pool at once, causing the version pool to be better
clustered for queries that need to access it; this results in a higher query throughput. As in the previous experi-

ments, update transaction throughput was not affected by the choice of cache write policy, so the graph is not

shown.

Max Version Pool Size

61 &MV?2PL 0 cached
@ MV2PL 2 cached
& MV2PL 4 cached
¥MV2PL 6 cached

150000+

100000+

50000

0 ” 50 YTT0 20 30 40 50
Average Query Selectivity Average Query Selectivity

Write-all Max VP size relative to write-one

Figure 3.15: Maximum Version Pool Size Figure 3.16: Max Version Pool Size of Write-All
Write-one: solid lines Write-all: dashed (Relative to Write-One)

Clustered-Scan Query Workload

It is to be expected that the write-all policy will require a larger version pool size. There are two reasons for
this: First, there will be multiple copies of some versions, and second, prior versions will not be given the most
opportunity to be garbage-collected before being written to the version pool. Figure 3.15 shows the maximum
version pool size for both the write-one and write-all policies for the clustered index scan workload (write-one has
solid lines, write-all has dashed). Figure 3.16 shows the maximum size of the version pool for the write-all pol-
icy, relative to that of the write-one policy. For the region where the query throughputs of the write-one and
write-all policies were the same, the write-all policy generated a larger version pool, as expected. However, the
relative version pool size does not matter all that much in this region because the absolute sizes are quite small.”
Interestingly, in the regions where write-all had a higher throughput than write-one, its version pool was actually
smaller, as well. This is because the write-all policy completes queries at a faster rate, and thus needs to keep

around fewer prior versions.

7 This explains also why the cache size 6 curve is somewhat erratic.

31

This experiment has shown that the write-all policy is superior to the write-one policy in the presence of very
long queries for the clustered-index scan workload. This is a direct consequence of its improved clustering of ver-
sions for queries. For short-running queries, the write policy did not affect the query throughput, nor was there an
appreciable difference in the absolute sizes of the version pool. Therefore, write-all is a better policy to use in

general for a clustered-index scan query workload.

To explore the robustness of these results, we repeated this experiment for the unclustered index scan query
workload. We omit these results for the sake of brevity, but we summarize them here. For this workload, as
should be expected, we found a smaller improvement for write-all when the level of version pool activity was
significant. This is because the clustering behavior of write-all matters less here, as only a fraction of the records

on each page are accessed (up to an average of 25% in this experiment).

3.5.4. Experiment 3: Skewed Updates

In this experiment, we study the effects of a skewed update pattern. In order to do so we vary the HotSize
parameter from 1% (highly skewed) to 50% (no skew) while keeping HotUpdate fixed at 50%; HotLoc is set to
middle. Queries in this experiment use the clustered-index scan access method. Figure 3.17 shows the updater
throughput for a 25% average query selectivity across a range of hot region sizes, and Figure 3.18 shows the
corresponding query throughput. Starting from the right-hand side of the update throughput graph, we see that
updater throughput is fairly level for the largest hot region sizes (i.e., least skew) and then it increases as the hot
region size is made smaller. This is because the buffer pool hit ratio for the update transactions is highest when
the hot region size is smallest; for GO processing it varies from 52% to 72% across the range of hot region sizes

in the figure.

In the query throughput graph (Figure 3.18), we see that for GO processing, query throughput is also level at
the larger hot region sizes; it then increases as the hot region becomes very small (although it does so less sharply
than the corresponding update throughput curve). T his trend is directly related to the updaters’ buffer pool hit

ratio. When this hit ratio is high, the updaters utilize the disk less frequently, thus leaving more of the disk

32

30 e
! & MV2PL 0 cached o
e MV2PL 2 cached L
AMV2PL 4 cached o
h »MV?2PL 6 cached

- 0.10
%2 W
= &
g E
2 :
=) o

10 0.051

055530 @ 50 05T 30 40 30
Hot Region % Hot Region %
Figure 3.17: Updater Throughput Figure 3.18: Query Throughput

Write-One Cache Write Policy
25% Average Query Selectivity
Skewed Update Pattern (50% of updates to X% of each file)

resources for use by the queries. For the MV2PL curves, however, we see a somewhat different trend. As the
hot region is made smaller, moving from right to left in Figure 3.18, each throughput curve drops to a certain
point (between 5 and 10% selectivity) and then increzses, again (an exception is the cache size 0 curve, for rea-
sons which will be identified shortly.) These drops in query throughput are due to the overloading of the on-page
caches as the hot region becomes smaller and thus more concentrated. This is made more clear by Figure 3.19,
which shows the ratio of records that are garbage-collected while in an on-page cache to the total number of
updates. The MV2PL curves in this figure follow the same general pattern as the query throughput curves in Fig-
ure 3.18. As the hot region becomes smaller and more highly concentrated, the on-page caches become over-
loaded and the garbage collection ratio falls off due to versions spilling into the version pool. This does not affect
the cache size 0 curve, for obvious reasons, which explains why the 0 cache size throughput curve does not follow
the other MV2PL curves. Turning to the left hand portion of Figure 3.19, we see that the garbage collection ratio

begins to increase again as the hot region becomes small and highly concentrated. This is because the high

33

0.8
2
5
= 0.6
= .0
] & MV?2PL 0 cached
§ ©MV2PL 2 cached
K= 4+MV2PL 4 cached
9 04 »MV2PL 6 cached
g
=
Pt
3

0.2

0.0/8—8—f— g8y R)

Hot Region %

Figure 3.19: Garbage Collection Ratio
Write-One Cache Write Policy
25% Average Query Selectivity
Skewed Update Pattern (50% of updates to X% of each file)

frequency of updates to records in the small hot region results in the creation of more versions of many records
than are needed to satisfy the view of each query in the system. To understand why, recall what happens when a
particular record is updated twice between the entry of one query into the system and the entry of the next query;
the first update may be discarded because it is no longer necessary. The resulting increase in the garbage collec-

tion ratio here leads to a corresponding increase in query throughput.

This experiment has shown that there is a loss of query throughput due to cache overflows when a uniform
cache size is used in in the presence of non-uniform updates to pages. This suggests that the cache size on each
page should be perhaps determined based upon the update frequency of the page; how to accomplish this is an
interesting question for future work. This experiment has also shown that when particular records are updated fre-

quently, fewer overall versions must often be maintained, resulting in shorter version chains and higher query

throughput.

34

3.6. Conclusions

In this chapter, we have introduced a new storage management design for record-level, multiversion, two-
phase locking (MV2PL) and provided some insights into its performance. Our design utilizes on-page caching
and garbage collection of prior versions in order to reduce the number of accesses into the version pool. Our per-
formance results indicate that the design provides reasonable throughput, as compared to GO processing and
cursor-stability locking, when the size of the on-page caches are large enough to prevent significant version pool
activity. In addition, we have described the write-one and write-all policies for writing entries from the cache to
the version pool. We have found the write-all policy to be superior to the write-one policy in the presence of
very long queries. In situations where queries are relatively short, both policies have similar throughput, but the
write-one policy is more space-efficient in the version pool; the absolute size of the version pool in such situations
is minimal, however. Therefore, write-all is a better policy to use in general. Finally, we have also introduced the

concept of view sharing as a way to further reduce storage overhead for versioning.

This chapter has proposed and studied a scheme for organizing multiple versions of data on secondary
storage, without considering how the versions can be indexed. In the next chapter, we consider several options

for extending single-version indexing structures to handle multiversion data.

35

CHAPTER 4

MULTIVERSION INDEXING ALTERNATIVES

4.1. Introduction

Since indexes are important for good performance in database systems, it is important to to determine how
they may coexist with MV2PL. Conventional single-version indexing structures such as B+ trees and hashing are
not entirely compatible with MV2PL in their current forms, as they support searches on key value alonie (not on
both key value and timestamp together). Without timestamp information encoded in the index, a given query will
have no way of knowing if an entry with a matching key references a version that it should see without first
retrieving the version and examining its timestamp information. Thus, frequent false drops may occur since not
all retrieved tuples are actually needed. Furthermore since false drops are possible, the use of index-only plans, a

common relational query processing optimization that avoids retrieving actual tuples when only indexed attribute
values are needed, is ruled out.!

To support efficient query processing, it is clear that an MV2PL system must utilize an indexing scheme
specifically designed for multiversion data. One approach, taken in DEC’s Rdb system, is to treat index nodes
like data records at the storage level, including having MV2PL applied to them [Josh93]. While this approach
supports index-only plans, is not compatible with the use of high performance non-2PL B+ tree concurrency con-
trol algorithms such as those proposed in [Baye77, Lehm81, Moha90)]. Because (non-2PL) B+ tree concurrency
control algorithms are widely viewed as being important to achieving acceptable performance, we do not consider

the Rdb approach further.

A number of other multiversion indexing approaches have been proposed in the literature; examples include

[East86, Ston87, Kolo89, Lome89, Lome90, Moha92]. With the exception of [Moha92], however, all of these

1 Using an index-only plan, a query computing the average salary of a group of employees, for example, does not have to retrieve the
employee tuples if an index on employee salary exists; instead it can compute the average by simply scanning the leaves of the index.

36

proposed indexing schemes are designed to support historical databases, where out-of-date versions are retained
for an arbitrary length of time. In contrast to transient versioning databases, historical databases may have a large
number of versions of each tuple (some of which may have been migrated to tertiary storage, e.g., optical disk).
Because of this, the basic indexing design tradeoffs are different for the two types of versioning. For example,
while it might be reasonable in a transient versioning system to require a query to traverse the entire length of a
(short) linked list of the existing versions of a tuple, this would not be reasonable in a historical versioning sys-
tem. Furthermore, it is likely that a historical versioning system will be required to store pieces of its indexes on
tertiary store, as the indexes are apt to grow very large. Lastly, efficient garbage collection is very important ina
transient versioning system, as versions are not needed for very long once they have been replaced by a more

current version.

In this chapter, we compare a range of possible multiversion indexing approaches that are designed
specifically for use with MV2PL. Each of the multiversion indexing approaches that we study in this chapter are

integrated with on-page caching to present a complete version placement and indexing solution for MV2PL.

The remainder of the chapter is organized as follows: In Section 4.2 we describe four multiversion indexing
schemes, and in Section 4.3, we describe the simulation model that we will use to compare them. In Section 44,
we present the results of simulation experiments that compare the indexing schemes in terms of their I/O costs for

queries and update transactions. Lastly, we present ou. conclusions in Section 4.5.

4.2. Multiversion Indexing Approaches

Tn this section, we discuss options for extending single-version indexing schemes to handle multiversion data.
We outline four different approaches here: Chaining (CH), Data Page Version Selection (DP), Primary Index Ver-
sion Selection (PI), and All Index Version Selection (AlI). These basic approaches are largely orthogonal to both
the version placement scheme employed and to the underlying indexing structure (e.g., hashing or B+ trees). We
describe the approaches here as they would work with the on-page caching method for storing prior versions (as

described in Chapter 3) and the B+ tree indexing method [Baye72].

37

We used several criterion to select the schemes that we will be considering in this chapter. First, to be practi-
cal, we decided that the schemes should involve only relatively simple changes to proven indexing methods (i.e.,
we did not want to consider something so foreign that nobody would want to implement it). Furthermore,
because versions come and go rapidly in transient versioning, garbage collection should be relatively inexpensive.
Lastly, we decided that index-only plans should be supported since they are an important optimization in many

existing systems.

The multiversion indexing schemes that we consider differ in how they accomplish version selection, the
mechanism by which the appropriate version of a tuple is located in the collection of existing versions. Version
selection information is either placed with the data or with the index entries of one or more of the indices. In all
of the schemes, we assume that relations have a single primary key index and zero or more secondary key indices,
and that tuples are stored separately from the indices. For purposes of presentation, we further assume that pri-

mary key values cannot be updated.

4.2.1. Chaining (CH)

In the Chaining (CH) versioning selection scheme, each index leaf entry simply references the most recent
version of a tuple; the remainder of the versions are chained behind the current version in reverse chronological
order, as in the CCA scheme [Chan82]. The organization of data pages (with on-page caching) and the version
pool was discussed in the previous section. As described earlier, each version of a tuple has a create timestamp
(CTS) which is the commit timestamp of the transaction which wrote the version. The most recent version also
has a delete timestamp (DTS) which is the commit timestamp of the transaction which deleted the tuple; the value

of the field is infinite if the tuple exists in the current database.

Figure 4.1 illustrates this scheme by showing an example of how a single tuple is stored and indexed both on
the primary key and on a secondary key. Interior nodes of the index are not shown since they are identical to
those in a single-version B+ tree, as in all of the schemes that will be considered in this chapter. The tuple in Fig-
ure 4.1 has four versions: (a1, b1, ¢1) with CTS 25, (a1, b1, ¢2) with CTS 35, (al, b2, c2) with CTS 50, and

(a1, b2, c3) with CTS 60. The primary key index is built on the first attribute, with the secondary key index on

38

Primary Index

N cTS 25
AN AP (at, b1, c1)
Hessoprsm |||
. (al, b2, €3)-
Data |{] ‘ 55
Page r—‘" (al, b1, c2)
N o4 =35 -1 N (O ——
(a1, b2, c2)
““““““““““““ /\/\/\/\
o N
\\/ .. .
| S Version Pool
T]

active

startup

query timestamp
/ Q] 25
Secondary Index Q, 40
Q, 55
— —— denotes page boundary

Figure 4.1: Chaining (CH)
the second. Currently, there are three queries running in the system: 0 with a startup timestamp of 25, 0, with
startup timestamp 40, and Q3 with startup timestamp 55. The existence of these queries necessitates the retention

of all of the prior versions shown in the figure.

As shown in the figure, index leaf page entries in the CH scheme consist of a key, a tuple pointer, a create
timestamp (CTS), and a delete timestamp (DTS). The CTS field contains the timestamp of the transaction which
inserted the key into the index, and the DTS field contains the timestamp of the transaction which (logically)
deleted the key from the index. Together, the CTS and DTS fields represent the range of time over which an
index entry’s key value matches some version of the referenced tuple. For example, in Figure 4.1, the CTS and

DTS fields in the secondary index entry with key b1 denote that all versions of the illustrated tuple with

39

timestamps greater than or equal to 25 and less than 50 have b1 as the value of their second attribute; likewise the
CTS and DTS fields in the entry with key b2 denote that all versions with timestamps greater than or equal to an
50 have an indexed attribute value of b2. Note that the entries that reference a given tuple (from within the same
index) have non-overlapping timestamp ranges since each version may have only one key value at a time. Delete
operations do not physically remove leaf entries because they may be needed by queries to provide access paths to
prior versions of tuples. We will discuss shortly how the index is searched and how leaf entries are eventually

garbage-collected when they are no longer needed.

With the exception of having logical deletes (i.e., setting the DTS field instead of jmmediately removing an
entry), operations on the multiversion B+ tree parallel those on an ordinary B+ tree. A single insertion is made
into each index when a tuple is inserted into a relation; a single logical deletion is made in each index when a
tuple is deleted; both an insertion and a logical deletion are made in each affected index when a tuple is modified
(i.e., for each changed key value, the new value is inserted and the old value is deleted). Later we will see that

additional index operations are required in some of the other multiversion indexing schemes.

The multiversion index is searched just like a B+ tree, except that transactions filter out entries which do not
pertain to the database state that they are viewing. An update transaction, which views the current database state,
pays attention only to index entries whose DTS is infinity (inf in the figure). A query Q, which views the state of
the database as of its arrival, pays attention only to index entries whose CTS and DTS values satisfy the inequal-
ity CTS < T; (Q) < DTS. Such entries were inserted, but not yet deleted, as of Q’s arrival in the system. By fol-
lowing these rules, false drops do not occur, and therefore index-only plans may be utilized when applicable. In
the example shown in Figure 4.1, queries Q0 and O, must follow the secondary index entry with key b1, while

Q- must follow the entry with key b2.

As in all of the schemes that we will be discussing, garbage collection within an index leaf page is invoked
when the page overflows. Since the page is already dirty and pinned in the buffer pool at such times, index gar-
bage collection does not add any additional /O operations. The garbage collection process examines each logi-

cally deleted entry (i.e., each one with a finite DTS) to determine whether or not it is still needed for some active

40

query. Specifically, an entry is needed if there exists a query Q € {active queries} such that CTS < T Q) <DTS
(as described above). A logically deleted entry is physically removed if it is not needed for any active query; such
an entry can never be needed later for a subsequently arriving query, as such queries will be assigned startup

timestamps that are greater than or equal to the entry’s DTS.

To minimize the additional storage overhead due to versioning, compression of the timestamp information
(CTS and DTS) is possible. This will be especially important for indices with small keys. To this end, a single
bit may be used to encode a DTS value of infinity. Likewise, a single bit may also be used to encode any CTS
value:that is less than the startup timestamp of all active:queries, as all that matters is the fact that the entry:pre-
ceded their arrival. (In practice, these two bits together will require extending index entries by a whole byte.) If a
tuple requires only one leaf entry in some index, the entry may have both fields compressed. This occurs when
the index key value in the tuple has remained constant since the arrival of the oldest active query, which is likely
to be a common case. In the example in Figure 4.1, the CTS of the secondary leaf entry having key b1 may be
compressed, and likewise for the DTS of the entry having key b2. Thus, an index on an attribute that is rarely
changed will remain close in size to a single-version B+ tree. Furthermore, during periods when queries are not
run, the indices may be gradually compressed down to the size of ordinary B+ trees (with the exception of the
additional byte per entry) by merging pages during garbage collection; when queries reenter the system, the
indices will gradually expand as needed. The main disadvantage of compressing the timestamps is the added
overhead of maintaining growing and shrinking index entries, but code to handle this should already be part of

any B+ tree implementation that supports variable-length keys.

4.2.2. Data Page Version Selection (DP)

A drawback of the chaining approach used in CH is that a long-running query may have to read a large
number of pages to reach the version of a tuple that it needs. The data page (DP) version selection scheme is a
modification of CH that limits the number of pages that a query must read to two (exclusive of index pages). It

accomplishes this by recording the addresses and timestamps of each version of a tuple in a small table known as

41

a version selection table (VST).2 This table is located on the data page that contains the current version of the
tuple (or in the case of a deleted tuple, on the page that contained the final version). Rather than referencing the
current version of a tuple, an index leaf entry references the tuple’s VST. Figure 4.2 illustrates the DP scheme by
modifying the example used to illustrate the CH scheme. From the figure, it can be seen that a query must now
read at most two pages (a data page and a version pool page) to locate any tuple. In contrast, to locate the version

with CTS 25 in Figure 4.1 under the DP scheme, a query would have to read three pages.

Primary Index

- T . . CTS 25 DTS 35
AN r‘ (21, b1, c1) -
_L-[DTSinf |
_Llerspr | | pemmmmm——
Data 25
Page o L,% CTS35DT5 50
(a1, b1, c2)
L (at,b2,e2) || =]
~{fa. b2, <9 LA A
L/\.\\//»\\\/) e, \) Y . ’
L Version Pool
—]
DTS 50{ || | DTSinf
CTs25| || |CTS50
E‘?FY! b E g‘% b2 active startup
' query _ timestamp
Q, 25
Secondary Index Q, 40
Q, 55
--—— denotes page boundary

Figure 4.2: Data Page Version Selection (DP)

2For versions that are replicated under the write-all cache write policy, this scheme would list the version in the VST twice (i.e., once
for the on-page cache copy and once for the version pool copy).

42

A disadvantage of DP over CH is the additional room on data pages consumed by the VST entries of versions
that have migrated to the version pool. However, since VST entries are small, this is not likely to have a

significant impact unless the tuples themselves are small in size.

4.2.3. Primary Index Version Selection (PI)

The Primary Index (PI) version selection scheme is a modification of DP that stores the version selection
table together with the tuple’s primary index leaf page entry (instead of on a data page). It is similar to the

scheme presented in [Moha92], which is the only previously published indexing scheme for multiversion locking

that we are aware of.® Figure 4.3 illustrates the PI scheme by adapting the running example. Note that a versioned

tuple has only one entry in the primary index because primary index keys cannot be changed.

The motivation for placing VSTs in the primary index is that it enables queries to retrieve versions through
the primary index by reading only a single data page or version pool page. There are several drawbacks to this
approach, however. One drawback is that the pointer to a version from its VST must be updated when the version
is migrated to the version pool. If on-page caching is used, this increases the path length of update transactions
that need to free cache space in order to modify or delete a tuple. Another drawback is that the presence of the

VSTs on primary index leaf pages will lead to a larger primary index.

The largest drawback with placing the VSTs in the primary index is that secondary indices no longer provide
queries with direct access to the data. Instead, secondary indices provide a mapping from secondary key to pri-
mary key, with the data being retrieved through the primary index. As a potentially important optimization for
update transactions, however, a secondary index entry for the current version of a tuple can store the address of
the current version. This shortcut is illustrated in Figure 4.3 by the presence of the CURR field in each secondary
index entry. However, this optimization can be used only if the current version of a given tuple is always stored in

a fixed location (determined when the tuple is created). Furthermore, read-only queries cannot use this optimiza-

3The overall versioning scheme in [Moha92] differs somewhat in that it bounds the number of versions of each tuple by essentially
restricting the number of query startup timestamps in use simultaneously. This difference is orthogonal to the schemes that we are discuss-
ing here, however.

43

Primary Index

> CTS25 DTS 35
(a1, b1, c1)

CTS 35 DTS 50

Data _[CTS50 DTS 60
Page (a1, b2, ¢2)

CTS 60 DTS inf (a1, bi, c2)
(a1, b2, c3) -—t

Version Pool

CTs25 || [CTS 50
DTS50 |I|DTS inf .
g&g b: 1|SKEY b2 active :‘:ltna;rtutgm
al|] |PKEY at ue timestamp |
CURR- || |CURR _| ’q“ag“" 25
! 1
Q, 40
Secondary Index a, 55

—— - denotes page boundary

Figure 4.3: Primary Index Version Selection (PI)
tion because they cannot tell which version of a tuple to retrieve without first examining the tuple’s VST in the
primary index.

Finally, in terms of performance, requiring all read-only queries to access data through the primary index is
likely to be problematic unless most queries are primary index scans anyway or a large fraction of the primary
index remains resident in the buffer pool. Otherwise, if the buffer pool is not sufficiently large, a secondary index
scan will generate a random 1I/O pattern in the primary index; thus, even if the data were ordered (clustered) on
the relevant secondary index key, the query’s /O pattern would be partially random. As a result, it appears

unlikely that this scheme can perform well for queries using a secondary index.

44

4.2.4. All Index Version Selection (AI)

In the PI scheme, the primary index is an efficient access method for primary key queries because its leaves
contain the addresses of all tuple versions; secondary indices are inefficient for queries, however, because
accesses must additionally go through the primary index. The all index (AI) version selection scheme is a
modification of PI that places VSTs in the leaf entries of all indices (secondary as well as primary). This allows

direct access to the data from each index, thus removing the aforementioned inefficiency.

Figure 4.4 illustrates the AI scheme by adapting the running example one last time. The figure shows the
addition'of-a VST in each secondary index leaf entry, providing a direct access path for queries from the secon-
dary indices to the data. However, a drawback of this modification is that placing additional information in the
secondary indices increases the size of all indices. Another drawback of the Al scheme is the additional path
length that it imposes on update transactions when versions are created, or when they are migrated to the version
pool. In the AI scheme, when a new version is created as a result of a tuple modification, each secondary index
must be updated—even if the associated key value was unaffected by the modification. In contrast, in the other
multiversion indexing schemes, a secondary index does not have to be updated if the modification does not
change the indexed attribute value. For example, in Figure 4.4, the creation of the versions (a1, b1, ¢2), and
(a1, b2, ¢B) required placing their addresses in the secondary index VSTs; in the other multiversion indexing
schemes, the creation of these versions did not require updating the secondary index at all. Likewise, when a ver-

sion is migrated to the version pool, all of the references to the version must be updated.

4.2.5. Summary of Multiversion Indexing Approaches

In this section we have outlined a range of B+ tree based multiversion indexing schemes, with each scheme
differing in how it supports version selection. In CH, version selection is supported by chaining versions in
reverse chronological order, while in DP, version selection is accomplished via the use of a VST that is stored
together with the current version of a tuple. In PI, VSTs are stored in the primary index instead, and in AI, VSTs
are stored in all of the indices. The advantage of placing version selection information in an index is that it allows

queries to directly access the versions that they need from the index without having to go through one or more

45

Primary Index

o~ . CT525DTS 35
S VVAN (a1, bl, c1) e

CTS 35.0TS 50

Data CTS 50 DTS 60 J
(a1, b2, c2)
REa E:m's 50 DTS inf |=— (a1,b1,c2))
at,b2,¢3) (| W 0]

Version Pool

: active starty]
Secondary Index query umestgmp
Q 25
1
Q, 40
Q, 55
--—— denotes page boundary

Figure 4.4: All Index Version Selection (AI)
intermediate data pages for each version that has been migrated to the version pool. A drawback to placing ver-
sion selection information in an index is that when a tuple is modified (i.e., a new version of the tuple is created),
version selection information for the tuple must be updated in the index—even if the key value for that index was
not affected by the change. In the next section we describe a simulation model that we will use to compare these

alternative schemes, and in the following section we present the results.

4.3. The Simulation Model

In this section, we describe the model that we will be using to compare the performance of the different
approaches to adding versioning to B+ tree indexes. The model is designed to predict the I/O cost of update and

search operations issued by short update transactions and long-running queries, respectively. We consider update

46

operations including record insertions, deletions, and modifications, and queries execute index scans.

In contrast to the model in Chapter 3, the model in this chapter does not capture the details associated with
locking of the indexes and data; this is done to avoid the significant overhead that they would introduce in terms
of code complexity and simulation execution time. To insure that simulated transactions see a consistent view of
the meta-data (indexes, VSTs, etc.) in the absence of concurrency control, we execute record updates atomically,
and we handle each query’s initial index descent similarly (i.e., before it reaches the leaf level). It should be
noted that this modeling approach requires that we have only a single resource in our model (i.e., the resource that
. we:believe to be the bottleneck in a real system), as:multiple resources would not be utilized pereyly; .we thus

model a DBMS with a single disk.

As in Chapter 3, we break down the model into two major components, the application model and the system
model. Both of these have several subcomponents that will be described in this section. Table 4.1 summarizes

the parameters of the application model, and Table 4.2 summarizes the parameters of the system model.

4.3.1. The Application Model

The first component of the application model is the database, which for simplicity is modeled as a collection
of records (i.e., as one relation). The database initially contains NumRecs records, and each record occupies Rec-
Size bytes. An unclustered primary key index (P), clustered secondary index (CS), and unclustered secondary
index (US) exist on the data* We assume that the cardinality of the domain of the key for index i is
DomainCard,;, and that the index keys have a fixed size of KeySize; bytes. The actual key values are chosen from

a uniform distribution, with duplicate keys allowed in all but the primary index.

The second component of the application model, the source module, models the external workload of the
DBMS. Update transactions arrive in the system with rate ArrivalRate pqy,, While queries originate from a fixed

set of MPLg,,, terminals. Each of the query terminals submits only one job at a time, and there is no delay

4 In our view, primary keys do not usually have an interesting order (e.g., social security numbers, confirmation numbers, etc.), and
are unlikely to be used to specify a range scan. Thus, we model a database that is clustered on a secondary key rather than the primary key.

47

Parameter Meaning

NumRecs number of records in the database

RecSize number of bytes occupied by a record

DomainCard; cardinality of the domain of index i’s key

KeySize; number of bytes occupied by index i’s keys

ArrivalRateypiqe | update transaction arrival rate

MPLgyery number of query terminals

AccessPathger, access path to be used by queries

AvgSelpyery average query selectivity

Prodify probability that an update transaction will modify a tuple

Pipsert probability that an update transaction will insert a tuple

P jelete 1-P modify ~ Pinsert

ModifyProb, ...a | probability that a tuple modification will affect the un-
- | “clustered secondary index key R 1

Table 4.1: Application Model Parameters
between the completion of a query and the submission of the next query from the same terminal. For simplicity,
queries execute a single relational select operation, while update transactions execute a single tuple insert, delete,
or modify (i.e., select-update) operation.
The additional parameters which describe a read-only query include the access path, AccessPathg,,, (i.e., the
index to scan), and the average query selectivity, AvgSelpyer, (i.e., the fraction of tuples that are selected by the

scan). The actual selectivity for a query is chosen uniformly from 0.75 to 1.25 times AvgSelgyery-

For update transactions, the parameters Pyuoqip s Pinsers> a0 Pelete specify the distribution of update transac-

tions among the three operation types. Each tuple in the database has an equal probability of being chosen for

Parameter Meaning

10Cost service time of an I/0O request

PageSize number of bytes in a disk page

CacheFrac fraction of each data page devoted to its on-page cache
FillFactor initial data page fill factor

CachePolicy | on-page cache policy (WRITE-ALL or WRITE-ONE)
PrrSize number of bytes to hold a disk address

TIDSize number of bytes to hold a transaction identifier
SlotOverhead | number of bytes used for an object’s slot table entry
NumBuffers number of pages in the buffer pool

Table 4.2: System Model Parameters

48

modification (or deletion) by a given modify (or delete) operation. The tuple to be modified or deleted is always
indexed by its primary key value and located through the primary index. Modify operations change one attribute
value at a time, either changing a secondary index key value (with probability ModifyProb;,...4) or a non-

indexed attribute value (with probability 1 — ModifyProb,g.xeq)-

4.3.2. The System Model

The system model is designed to predict the I/O service time requirements of the various index operations in
a workload specified by the application model parameters. The system model is broken down into these subcom-

ponents: the transaction scheduler, the data manager, and the buffer manager. We describe these components in

the remainder of this subsection.

The transaction scheduler controls the timing of transaction execution. Because update transactions typically
have stringent response time constraints, the scheduler gives them priority over queries. As discussed in the
beginning of this section, update transactions are executed atomically, as are queries when they are initially des-
cending an index for a scan. Upon arriving in the system, an update transaction is queued if it cannot be pro-
cessed immediately. When the scheduler is invoked it examines the update transaction queue; if the queue is
non-empty it removes the first update transaction and executes its index operation to completion. If the update
transaction queue is empty the scheduler chooses to execute a portion of a query instead. For fairness, the query
that was submitted from the query terminal that has consumed the least amount of disk service time thus far is
chosen for execution; the scheduling policy thus allocates an equal fraction of the disk bandwidth among the
query terminals. When a query is chosen for execution, it is executed until it has made at least one disk request
and is beyond the initial descent phase of an index scan. Lastly, instead of modeling a disk arm in detail, we

assume that each disk request requires IOCost milliseconds.

The model component known as the data manager encapsulates the implementation details of the indexes,
data pages, and version pool. The following are the relevant parameters of the data manager. A fraction of each
data page CacheFrac is reserved for use as an on-page cache; the remaining portion is used for storing current

versions, and is initially filled to a fraction FillFactor of its total capacity. The cache replacement policy

49

employed is CachePolicy. PtrSize is the size of a disk pointer in bytes, and TIDSize is the size of a transaction

identifier in bytes. We assume that the usual slotted page organization® is used in the implementation, and Sloz-
Overhead is the overhead in bytes for each slot table entry (i.e., for versions, VSTs, etc.). We further assume that
the optional compression of TID fields described at the end of Section 3.1 is carried out whenever an index page

overflows.

The last component of the system model, the buffer manager, encapsulates the details of an LRU buffer
manager with "LOVE/HATE" hints (a la Starburst [Haas90]). The number of page frames in the buffer pool is
. -as§pecified as NumBuffers, and the frames are shared-among data, index, and version pool pages. Two LRU chains
are maintained for unpinned pages in the buffer pool, one for pages that were last unpinned with a HATE hint and
another for pages last unpinned with a LOVE hint. Because index pages have a higher rate of access than other
pages, the index pages are unpinned with a LOVE hint, while data and version pool pages are unpinned with a
HATE hint. The page replacement algorithm selects a page from the LOVE chain only if the HATE chain is

empty. Dirty pages are cleaned when they are being replaced from the buffer pool.

4.3.3. Discussion of Medel Assumptions

The model contains several simplifications that warrant further discussion. These include the absence of
locking, the modeling of a single disk, and the lack of modeling of a CPU. The first two simplifications are rea-
sonable since techniques for concurrency control and data placement across multiple disks are orthogonal to the
indexing tradeoffs that we are studying here (i.e., those details are unlikely to change the relative ordering of the
indexing schemes). The third simplification would be potentially problematic for predicting the performance of a
CPU-bound configuration; however, we believe that the qualitative results would be similar since the CPU
requirements of a given operation under each indexing scheme is roughly proportional to the number of disk
pages accessed. Also, given the relative trends in CPU speeds and disk speeds, we expect I/O to be the bottleneck

resource in future OLTP/decision support environments.

5Objects on a slotted page are always referenced through a small vector on the page (referred to as a slot table). In this way, objects
can be easily moved within a page without having to update external references to the object.

50

4.4. Experiments and Results

In this section, we present the results of a series of experiments designed to compare the performance of
MV?2PL under the various indexing approaches described in Section 4.2. As a baseline for comparison, we also
include the results obtained from GO processing using a single-version B+ tree index—this scheme is referred to
as SV (for single version). Recall that with GO processing, queries are subject to inconsistent answers since they
are run in a single-version database without obtaining locks. The primary performance metric employed in this

study is the amount of I/O time required to execute update and query transactions. Update transactions issue

. - either record insertion, deletion, and modification operations, while queries issue clustezed.or unclustered index

scan operations.

The multiversion indexing schemes that we compare in this study differ primarily in where they place version
selection information. As we described in Section 4.2, the indexing schemes place this information either with
the data or with the index entries of one or more of the indices. The advantage of placing the version selection
information in the indices is that it allows queries to directly access the versions that they need from a given index
without having to go through one or more intermediate data pages for each version that has been migrated to the
version pool. There are two potential drawbacks of this approach, however. First, when any attribute of a tuple is
modified, even an unindexed one, each index that contains version selection information for the tuple must be
updated. Second, the inclusion of version selection information in one or more of the indices will lead to larger
indices. This in turn may cause the buffer hit rate to drop, as the buffer pool will be able to hold a smaller frac-

tion of the index pages.

In this study, we are interested in quantifying the I/O cost impact of the different approaches to the placement
of version selection information under a range of operating conditions. In particular, we would like to determine
the degree to which including version selection information in the indices reduces query I/O cost, and the degree
to which it increases the I/O cost of modifying tuples. In addition, we would also like to determine the impact of
having version selection information in the indices on the buffer hit rate since this impacts the I/O cost of all

operations; thus, even though the basic page reads and writes involved in inserting or deleting a tuple do not differ

51

from a single version B+ tree in any of the indexing schemes, the costs of these operations are relevant in this
study since they will differ from scheme to scheme. Finally, we are interested in comparing the different

approaches used in DP and CH to placing version selection information with the data.

Tables 4.3 and 4.4 list the settings that we use for the application model and system model parameters,
respectively. Some of the parameters remain fixed throughout the study, and others are varied from experiment to
experiment. In our experiments, we vary the update arrival rate over a wide range to show how versioning
influences I/O cost as the level of update intensity increases. As update intensity is increased, the current database
state diverges more rapidly from the transaction-consistent prior.states that must be maintained for the active
queries. Furthermore, since update transactions compete for resources with queries, queries are left with a smaller
share of the disk resources as the update intensity is increased. Ultimately, the system will become unstable when

it can no longer handle the increased update load.

Parameter Value(s)

NumRecs 50,000

RecSize 208 bytes

DomainCard; 232 for primary key, 50,000 for secondary keys
KeySize; 8 bytes

MPLgyery 4

AccessPathgp,.r, clustered or unclustered secondary index
AvgSelpyery varies (1% to 50%)

Praodify/Pinser/Pactere | 60%/20%/20%

ModifyProb;, 5.4 20%

ArrivalRate e varies (4 per second to 26 per second)

Table 4.3: Values of Application Model Parameters

Parameter Value(s)
I0Cost 20 milliseconds
NumBuffers | 400-1000 pages
PageSize 8192 bytes
CacheFrac 0% or 10%
CachePolicy | WRITE-ONE
FillFactor 80%

Table 4.4: Values of System Model Parameters

52

We now turn to the results of our experiments. In the first experiment, we look at how the alternative
schemes perform under a base set of parameter settings. In the subsequent experiments, we will vary some of the

key parameters to explore their individual effects on performance.

4.4.1. Experiment 1: Basic Indexing Tradeoffs

Our base parameter settings include: no on-page caches, a buffer pool size of 500 pages, a query workload
consisting of clustered index scans with 50% average selectivity, and an update mix consisting of 60% tuple

modifications, 20% inserts, and 20% deletes. Most of the index pages can remain resident in the buffer pool with

its size ;)f 500 pages here; in subsequent experiments ;/e will examine the impact of changing the buffér poél
size. Figures 4.5 through 4.7 illustrate the results of this experiment. Figure 4.5 shows the average I/O cost of a
clustered index scan, Figure 4.6 shows the I/O cost to insert a tuple into the database, and Figure 4.7 shows the
/O cost to modify a non-indexed attribute of a tuple (i.e., create a new version of a tuple with indexed attribute
values that are the same as those of the previous version). We vary the update arrival rate between 4 per second
and 26 per second along the x-axis in the graphs; since the multiversion indexing schemes are not able to handle
the update load throughout this whole range, we truncate each scheme’s curve at its last stable point. We do not
show the cost of deleting a tuple from the database, nor do we show the cost of modifying an indexed attribute, as

in both cases the relative cost results were similar to those for insertions.

In Figure 4.5, we see that the query /O cost rises gradually with an increase in the update arrival rate under
SV, while it rises much more quickly under the four multiversion indexing schemes. The gradual rise in the case
of SV is caused by an increase in the fraction of dirty pages in the buffer pool as the update activity is increased
(and as query activity is correspondingly decreased).® Although the multiversion indexing schemes are also
influenced by this factor, the rapid rise in their query I/O costs is primarily due to a corresponding rise in the

number of version pool accesses. These version pool accesses quickly dominate the clustered index scan /O cost

6 At an arrival rate of 4 UPS (update operations per second), only about 8% of the pages that were replaced by query-requested pages
in the buffer pool had to be cleaned before the query could be given the page frame, while at 26 UPS nearly 50% of the replaced pages had
to be cleaned.

/0 Time

1500001
+8SV
®DP
#CH
&Pl
* Al
100000
O) L) T U T
0 5 10 15 20 25

Update Operations per Second

Figure 4.5: Clustered Index Scan
(NumBuffers =500, CacheFrac = 0%)

/O Time

150

100

504 -

53

~+SV
@ DP
& CH
4 Pl

KAl

5 10 15 20 25
Update Operations per Second
Figure 4.6: Tuple Insert
(NumBuffers =500, CacheFrac = 0%)

since versions are accessed randomly in the version pool (versus sequentially in the main segment). To select

25,000 records clustered on about 850 data pages under the DP scheme, for example, the average number of ver-

sion pool I/Os per query was approximately 54 at 4 UPS, rising to 280 at 10 UPS, and 1878 at 14 UPS.

The query 1/O costs for the different multiversion indexing schemes did not differ much under this workload;

however, Al was not able to operate above 10 UPS due to its higher update cost (which we will discuss shortly).

One notable difference between the remaining schemes is that PI rises in cost relative to DP and CH at an update

arrival rate of about 14 UPS. This increase is primarily a result of having to retrieve each individual tuple through

the primary index (rather than being able to go directly to the data from the clustered secondary index). This

extra step does not add additional I/O cost at lower arrival rates because the entire primary index is resident in the

buffer pool; at higher update rates, however, the primary index no longer fits in the buffer pool, as it contains

entries for the larger number of transient versions resulting from the higher update rate.

54

In this experiment there is not a significant difference between DP and CH in terms of the query 1/O cost.
This is because CH rarely required more than one version pool access to retrieve a particular version (i.e., it very
rarely had to retrieve a version that was not either the current version or the next most recent version of a tuple).
For example, at 14 UPS, where a slight difference is visible between the two schemes in Figure 4.5, CH required
a second version pool access to retrieve a given tuple less than 1% of the time. Likewise, we there is not much of
a difference between Al and the other multiversion indexing schemes over the range of update arrival rates where
Al is able to operate. On the surface this struck us as somewhat surprising, as the AI scheme is supposed to help
query performance by providing version addresses directly in the leaf pags of the indices; this allows a query to
read a version in the version pool without having to first read the data page that it originated from. However,
since the data pages of the relation are accessed sequentially in the case of a clustered index scan, eliminating a
few of what would have been repeated accesses to each data page will not reduce the number of I/O operations.
Thus, the Al scheme does not really help in the case of clustered index scans. For essentially the same reason,

having version addresses directly in the leaf pages of the primary index in the PI scheme does not help here either.

We now turn our attention to the I/O cost for updates, beginning with the cost of insert operations shown in
Figure 4.6. The insert cost differences in this figure are largely duc; to variations in the index sizes from scheme to
scheme, which arise from their different polices on where version selection information is located. The connec-
tion between I/O cost and index size is that larger indices permit a smaller fraction of the index pages to be
cached in the buffer pool; thus, the buffer hit rate decreases as index size is increased. Al, which has the highest
insert cost in Figure 4.6, includes VSTs in all of its indices; PI, which has the next highest cost, includes them
only in the primary index; DP and CH, which have the lowest insert cost of the multiversion indexing schemes,
do not include VSTs in any of the indices. Lastly, SV has the overall lowest cost since its indices only store

current versions (and thus have no timestamps either).

Now we turn to the cost of modifying a non-indexed attribute, shown in Figure 4.7. Al has the highest cost
for this operation since it has to install the address of a new tuple version in all of the indices. Moreover, ATl’s

cost for this operation will increase relative to the other indexing schemes as the number of indices on each rela-

55

150+ 150000+
-+ SV -+8V
@ DP @ DP
CH & CH
-4 PI Pl
> Al * Al
100+ 100000+
@ -]
E E
= Bt
S S
50+ 50000+
O 1 1 1 U T O T ¥ T U T
0 5 10 15 20 25 0 5 10 15 20 25
Update Operations per Second Update Operations per Second
Figure 4.7: Modify Non-Indexed Attribute Figure 4.8: Clustered Index Scan
(CacheFrac = 0%, NumBuffers=500) (CacheFrac = 10%, NumBuffers=500)

tion grows. PI must install the address of a new version in the primary index; however, the relevant leaf page will

already be pinned in the buffer pool since the primary index is used to locate the tuple being modified.” DP, CH,

and SV do not need to update any indices for this operation.

DP, CH, and PI have /O costs which are closer to SV in Figure 4.7 than they were in the insert case; this is
because the costs of all four of these schemes are now dominated by the cost of accessing the target data page.
The hit rate for data pages does not vary much between the indexing schemes since the overall number of data
pages is large; however, the costs of the multiversion indexing schemes in Figure 4.7 do rise somewhat at an
update arrival rate of 14 UPS due to a decreased buffer hit rate on the primary index (which is used to locate the

tuples that are updated). As we mentioned previously, an increase in the update rate leads to a decrease in buffer

hits for index pages because the indices become larger.

7PI’s cost dips slightly below that of SV in Figure 4.7 because the query retrievals though the primary index in PI cause a larger frac-
tion of its primary index pages to remain resident in the buffer pool.

/0 Time

56

4.4.2. Experiment 2: Effect of On-Page Caching

In this experiment we examine the effect on the results presented so far of introducing on-page version
caches that comprise 10% of each data page. Figure 4.8 shows the I/O cost of clustered index scan queries with
on-page caching. By comparing this figure to Figure 4.5, we can see the benefit of the on-page caches on query

performance. The presence of the caches reduces the number of read operations in the version pool, and thus
forestalls thrashing behavior.

In order to highlight the most important results, we do not show the corresponding update costs here, but they
can be sumitiarized as follows: The update costs for all of thie* multiversion indexing schemes are slightly lower ™
with on-page caches, as queries had lower /O costs, and thus complete faster. When queries complete faster,
fewer transient versions must be indexed, resulting in turn in a higher buffer hit rate on index pages. A drawback

of on-page caching with the PI and Al schemes is the potential for increase in the cost of migrating a version to

150000+ 150+
—+SV -+ SV
@ DP @ DP
& CH #CH
- PL -4 PI
»* Al Al
100000~ 100
@
E
e
=
=
50000+ 50+
O) 1 1 U 3 O 1 1 L] U U
0 5 10 15 20 25 0 5 10 15 20 25
Update Operations per Second Update Operations per Second
Figure 4.9: Clustered Index Scan Figure 4.10: Tuple Insert

(CacheFrac = 0%, NumBuffers=800) (CacheFrac=0%, NumBuffers=800)

57

the version pool, as any index references to a version being migrated must be updated. In this experiment, how-

ever, the benefits of on-page caching outweighed this additional cost.

4.4.3. Experiment 3: Effect of Buffer Pool Size

In this experiment, we increase NumBuffers to 800 so that we may examine the effect of a larger buffer pool
size on the results obtained in Experiment 1. In Figure 4.9, we show the average I/O cost of clustered index scan
queries, and in Figure 4.10, we show the average I/O cost to insert a tuple into the database. We omit the costs of
the other update operations since they are very similar to the insert cost here. Comparing Figure 4.10 to Figure
4.6, we see that the additional buffers s1gruﬁ<,antly reduce the cost of insertions. They algareduce the I/O cost
differences between the various indexing schemes since the indices in all of the indexing schemes fit entirely, or
almost entirely, in the buffer pool. At an update arrival rate of 10 UPS, the total index size ranged from 389
pages for SV to 526 pages for Al while at a rate of 20 UPS, the total index size ranged from 389 pages for SV to
836 pages for Al. When the indices fit entirely in the buffer pool, the differences in index size between the

schemes affect only the main segment and version pool hit rates; this is a secondary factor since the overall

number of data pages and version pool pages is relatively large.

Returning to Figure 4.9, we see that the increase in buffer pool size reduces the query 1/0 cost as well. To
some degree this is a result of increased buffer hits; however, it is primarily due to an increase in the fraction of
disk resources available to queries as a result of the lower update cost. With additional disk resources, queries are
able to make more progress in between the arrival of consecutive updates, and fewer (expensive) version pool
accesses are ultimately necessary for each query. Beyond approximately 16 UPS, however, all of the multiver-
sion schemes still begin to thrash as a result of excessive version pool accesses. It is only at this thrashing stage
that we see significant differences in the 1/O costs of the different multiversion indexing schemes. (It is unlikely,
however, that this would be an acceptable operating region since the query costs are very high in all of the

schemes; thus the differences there have limited significance).

To determine the robustness of these results, we also ran a set of simulations with only 400 pages allocated to

the buffer pool. For the sake of brevity, we do not present those additional results here. Briefly, those results

58

showed that, as anticipated, the effects of reducing the buffer pool size mirror the effects of increasing its size. In
particular, doing so increased the cost of both the update and query scan operations in all of the indexing schemes,
and it accentuated the cost differences between the schemes. Among the four alternatives, DP and CH delivered

the best performance, while PI and Al delivered lower performance.

4.4.4. Experiment 4: Unclustered Index Scan Queries

In the previous experiments, we explored tradeoffs between the indexing schemes under a query workload
consisting of clustered index scans. As we pointed out, the benefits of storing version selection information with
the indices (rather than with the data) are not significant for clustered index scans. To determine the regibns

where Al and PI might excel, we now consider a query workload consisting of unclustered index scans.

In designing this experiment, we explored a wide range of parameter values. We found that PI and Al out-
perform DP and CH when three conditions are simultaneously satisfied: queries are relatively long-running, the
update rate is sufficiently high, and the buffer pool is large enough to hold all, or nearly all, of the index pages.
Having a high update rate and long-running queries is necessary since version selection information in the indices
helps only if queries end up accessing a significant number of versions that have migrated to the version pool.
Furthermore, the buffer pool must be large enough so that the version selection information added to the indices
in PI and Al does not cause the index page buffer hit rate to degrade; otherwise, query performance is seriously

impaired because the update transactions require a larger share of the disk resources.

Figures 4.11 and 4.12 illustrate a situation where PI and Al indeed outperform the other multiversion index-
ing schemes. In contrast to the previous figures, we fix the update arrival rate at 20 per second here, and we show
/O cost as a function of the average query selectivity. We vary the selectivity up to 16% in the figures, even
though it typically pays to switch to a full file scan for selectivities above a few percent. We do this to model a
situation where a long-running query accesses data through a secondary index (e.g., this might arise in a real
application if a long-running query issues multiple SQL statements, the last of which generates an unclustered

index scan). Lastly, we use a buffer pool size of 1000 pages here. Figure 4.11 shows the average I/O cost of an

/0 Time

59

150+
“+-SV
300000+ ®DP
#CH
& P1
Al
100+
200000+
£
b=
e
=
50+
100000+
05 5 10 15 5 5 10 15
Average Query Selectivity Average Query Selectivity
Figure 4.11: Unclustered Index Scan Figure 4.12: Tuple Insert

(ArrivalRate=20/sec. CacheFrac = 0%, NumBuffers=1000) (ArrivalRate=20/sec., CacheFrac = 0%, NumBuffers=100C
unclustered index scans, and Figure 4.12 shows the average I/O cost to insert a tuple in the database.
In Figure 4.11, the unclustered index scan cost rises as expected as the query selectivity is increased. Among
the multiversion indexing schemes, DP and CH now have the highest scan costs since they must first access a data
page before being able to retrieve a tuple version that has been migrated to the version pool.
In Figure 4.12, we show the corresponding insert cost. We do not show the costs of the other update opera-
tions since they were again similar to the insert case. The curves in Figure 4.12 are flat and close together since
the large buffer pool is able to keep the index pages cached. As we pointed out in Experiment 3, when the buffer
pool is made sufficiently large, the /O cost of updates is limited mainly to the cost of accessing data pages, and

the data page hit rates do not vary much between the schemes.

4.4.5. Discussion

In this section, we have presented the results of four experiments comparing the query and update transaction
/O costs of the alternative indexing schemes. One goal of these experiments was to determine the conditions
under which placing version selection information in the indices reduces query I/O cost. On the positive side,
such information can be used by a query to directly access a tuple version from its leaf index entry without having
to go through one or more intermediate pages. However, placing the version selection information in the indices
causes them to grow larger. Moreover, it became apparent from our experiments that increasing the size of the
indices can have a large negative impact on update transaction /O cost since it reduces the buffer hit rate on
index pages.

In the first three experiments, queries executed clustered index scans. As we explained in Section 4.2, hav-
ing version selection information in the indices cannot benefit clustered index scans, so DP and CH were superior
to AI and PI in these experiments. DP showed a somewhat lower query /O cost than CH; however, this was seen
only when queries began to thrash. In the fourth experiment, queries executed unclustered index scans. Our
results showed that unless the buffer pool is large enough to hold all of the index pages, DP and CH still outper-
form PI and AL Only when the buffer pool is large enough to absorb the additional version selection information
in the indices, and when queries are sufficiently long-running to benefit from this information (i.e., when they

require many prior versions), do PI and Al exhibit a lower unclustered scan I/O cost than DP and CH.

In the experiments that were covered in this section, we did not vary parameters such as index key size or the
relative mix of update operations (i.€., Pinserrs Peetete and Pp,q). We have run some additional experiments that

varied these parameters, but they did not reveal any significant changes in the qualitative results.

4.5. Conclusions

In this chapter, we have compared four basic schemes for extending single-version indexing structures to
handle multiversion data. Although B+ trees were used to illustrate the schemes, they can all be combined with
any existing database index structure. The resulting multiversion indexing schemes differ in where version selec-

tion information is located. In the AI scheme, version selection information is placed in all of the indices,

61

whereas in the PI approach, the information is placed only in the primary index. In contrast, the DP and CH
approaches place version selection information with the data instead. DP and CH differ in that DP maintains a

table to locate all of the versions of a tuple, while CH chains the versions in reverse chronological order.

We conducted a simulation study of the alternative multiversion indexing schemes, and we analyzed the
results of this study. Despite having the advantage of direct references from index entries to individual versions,
we found that the PI and Al schemes have the same or higher I/O costs for queries when the buffer pool is not
large enough to hold all of the index pages. This is because the version selection information in the index entries
consumes critical buffer pool space, thus-lowering the buffer pool hit rate. As a result, the-1/O cost for update
transactions under PI and Al is higher than DP and CH under these conditions as well. Only when the buffer pool
is large enough to hold all of the index pages do the benefits of placing version selection information in the
indices begin to appear in terms of lower query /O cost; however, these benefits apply only to unclustered index
scan queries. Lastly, we saw that the I/O cost for queries under DP was somewhat lower than under CH, but only
when queries began to thrash. These results indicate that DP is the version indexing approach of choice, with CH
being a close second; PI and Al are not recommended due to their relatively poor performance under most condi-

tions.

62

CHAPTER 5

MULTIVERSION QUERY LOCKING

5.1. Why Another Algorithm?

A drawback to MV2PL is the storage cost that it imposes, as well as the additional costs for accessing prior
versions and for copying objects before they are updated (assuming that in-place updates are employed). These
costs were quantiﬁed for MV2PL in the preceding chapters. Towards the goai of making versioning more afford- A
able, a new multiversion two-phase locking algorithm, multiversion query locking (MVQL), is introduced in this
chapter. MVQL enables a tradeoff to be made between query consistency and performance; it supports several
weaker forms of consistency for queries than that provided by MV2PL. We review these forms of consistency in
Section 5.2, but we wish to emphasize here that they still guarantee that queries see transaction-consistent data.
This is in contrast to approaches that avoid versioning altogether, instead allowing queries to see transaction-
inconsistent data. For example, under cursor-stability locking, queries may release locks before acquiring new
ones (violating the two-phase rule), and under GO processing [Pira90], queries do not obtain any locks at all
(except latches to guarantee page consistency). In the terminology of [Gray79], the former provides degree 2 con-
sistency, and the latter, degree 1. Other examples include epsilon-serializability algorithms, which accept incon-

sistent schedules as long as they are within some number of inversions from a serializable schedule [Wu92].

Because MVQL provides weaker consistency than MV2PL, it can allow queries to read more recent versions
of objects. Performance savings are gained because it is typically less efficient for queries to read older versions
of objects rather than younger (or current) ones. Depending on the particular storage organization employed, this

may be true for any of the following reasons:

(1) If the current versions of objects are clustered together, accessing an older version of an object will
degrade sequential scan performance that would otherwise be available using prefetch.

(2) If the versions of an object are chained in reverse chronological order (as in [Chan82]), accessing an older
version will require additional I/O operations.

63

(3) Using older versions to construct a query’s view will require that additional prior versions be retained for
the query (thus delaying their garbage collection and increasing storage cost).

All of these effects were evident in the simulation results presented so far in this thesis.

The remainder of this chapter is organized as follows: Section 5.2 reviews the various forms of consistency
that are provided by MV2PL and MVQL. Section 5.3 presents the new MVQL algorithm as a generalization of
MV2PL. Section 5.4 describes the simulation model used to study the performance of MVQL. Section 5.5
presents the results of experiments that compare MVQL to MV2PL in terms of update transaction performance,

query performance, and storage cost. Lastly, Section 5.6 presents our conclusions for this chapter.

5.2. Forms of Query Consistency

In the introduction of this chapter, we argued that performance advantages may be gained by relaxing the
level of consistency provided to queries. In this section, we review four forms of consistency which all guarantee
that queries see a transaction-consistent database: strict consistency, strong consistency [Garc82], weak con-
sistency [Garc82], and update consistency. An underlying requirement that we impose is that the execution of
update transactions alone must be serializable; this is guaranteed in MV2PL and MVQL by having update tran-
sactions run using dynamic 2PL. This prohibits serialization graph cycles that contain only update transactions
(update transaction cycles).! Throughout the chapter we assume that update transactions read all objects before
modifying them. We now give definitions for the various forms of consistency of interest here, proceeding in

decreasing order of strictness. Table 5.1 summarizes the consistency forms that are being defined.

A query is said to see strict consistency if it is serializable with respect to all transactions, and it observes a
serial order of update transactions which agrees with the order in which they committed. This form of con-
sistency is characterized by an acyclic serialization graph where the order of update transactions is consistent with

their commit order. Having the update transactions observe 2PL guarantees that, in the subgraph consisting of

1A serialization graph consists of nodes, which represent transactions, and edges, which represent constraints on equivalent serial ord-
erings. A path (T;,..., T;) in the graph means that transaction T; must come before transaction T; in any equivalent serial order. A directed

edge of the form (T, T;) is placed in the graph if either 7', attempts to read a version written by T, T attempts to create a version of an
object that will replace one read by T'y, or T, reads a version that was already replaced by T',.

Forms of Consistency

Name

Description

Serialization Graph Constraints

strict
consistency

each query sees a serial order of up-
date transactions that is consistent
with their commit order

update transaction (partial) order is
consistent with their commit order;
cycles are prohibited

strong
consistency

each query sees a common serial
order of update transactions (not
necessarily consistent with their
commit order)

cycles are prohibited

weak
consistency

each individual query sees a serial
order of update transactions (not
necessarily the same as other con-
current queries)

single query cycles are prohibited;
update transaction cycles are prohi-
bited

update
consistency

each query sees a tramsaction-
consistent database (i.e., it serializes
with all update transactions that it
sees)

single query cycles are prohibited if
they cannot be broken by removing
a single read-write edge between
update transactions; update transac-
tion cycles are prohibited

Table 5.1: Forms of Consistency

64

d e f g h i J

RX)RTYIW(X,)

RXDRY)W(Y,)

U; R(Wy)

R(Zy))W(Z})

RWWW,)

0 R(Xy)

R(Y()R(Zo)

0, R(Zp)

R(¥o)

R(Zy)

R(Wy)

Figure 5.1: A Schedule and Serialization Graph Dlustrating Strict Consistency for Queries

only the actions of update transactions (and not those of queries), the partial order of update transactions will

agree with their commit order. The addition of query read actions further constrains the partial order so that it

may no longer agree with the commit order; strict consistency algorithms prevent such a disagreement by assign-

ing appropriate versions to query read steps.

65

The schedule and corresponding serialization graph in Figure 5.1 provide an example of strict consistency.
The schedule shows the operations of four update transactions and three queries, with time progressing from left
to right. We assume that the last operation of each transaction in the schedule also marks its commit point. To
identify each operation in the schedule, we label it with a lower case letter; these letters are then used to label
each edge in the serialization graph with the operations that generated the edge. For example, the edge between
0, and U, was generated because 0, read X, (step b) and U, wrote X; (step g). In the serialization graph, we
observe that the partial order of update transactions induced by the serialization graph is indeed consistent with
their actual commit order (e.g., Uy < U, and U3 < Uy). The cost of providing strict consistency is the cost of
accessing the prior versions of the data items W, X, Y, and Z (instead of the current versions) and the cost of

retaining these versions until all of the queries complete.

We illustrate the remaining forms of consistency by incrementally modifying the example in Figure 5.1 by
substituting current versions for prior ones in one or more query read operations. This will have the effect of rev-
ersing the direction of certain edges in the serialization graph. To highlight these changes, we place an asterisk
next to each such reversed edge. As the constraints on consistency are relaxed, we will see that queries are

allowed to access more recent data.

The next form of consistency relaxes strict consistency by eliminating the requirement that the serial order of
update transactions be consistent with their commit order. A query is said to see strong consistency [Garc82] if it
is serializable with respect to all transactions.? This form of consistency is characterized by an acyclic serializa-
tion graph, and is provided by algorithms that guarantee multiversion serializability [Bern83, Papa84, Hadz85].
Since the previous restriction on the commit ordering of update transactions is relaxed here, strong consistency
may produce apparent anomalies in query results if users are somehow cognizant of the commit order of update
transactions. The schedule and corresponding serialization graph in Figure 5.2 provide an example. The schedule

differs from the one in the strict consistency example in that 0 reads Z; instead of Z,. This reduces the cost of

2This definition of strong consistency is slightly different than the one presented in [Garc82]. In their definition, a strong consistency
query is required to serialize only with the update transactions and other strong consistency queries. We discuss how MVQL can support
this definition of strong consistency in Section 5.3.1.

66

#* Denotes Change from
Preceding Example

U, R(X)R(Y)W(X)
U, R(X)R(Y)W)
Uz R(Wy) R(Zy)W(Z,)
Uy R(WW(W,)
0, R(Xo) R(Yo)R(Z)
0, R(Zy) R(Yp)
0s R(Zy) R(Wo)

Figure 5.2: A Schedule and Serialization Graph Illustrating Strong Consistency for Queries
executing Q 1, and it potentially allows Z, to be garbage-collected before O completes (i.e., because 0, will
never need it). As a result of this change, O serializes after U3, but before U and Us; this is despite the fact that
U, and U, actually committed before Us. O is allowed to see this order since neither U; nor U, execute any

conflicting operations with U3, and no other query has seen an order that is contradictory.

The next form of consistency relaxes strong consistency by allowing each query to serialize individually with
the set of update transactions. A query is said to see weak consistency if it is serializable with respect to update
transactions, but possibly not with respect to other queries. This form of consistency, which was first introduced
in [Garc82] for use in replicated databases, still ensures that queries see transaction-consistent data. However, it
permits cycles in the serialization graph that contain multiple queries plus one or more update transactions
(multiple-query cycles). Cycles involving a single query and one or more update transactions (single-query
cycles), and cycles involving only update transactions (update transaction cycles), are both still prohibited. The
queries in a multiple-query cycle see mutually inconsistent orderings of the update transactions in the cycle (i.e.,
one query will perceive a different serial ordering of update transactions than another query); the relative order of

two update transactions may be transposed if they have not issued any conflicting operations. The schedule and

67

% Denotes Change from
(Preceding Example

U, RXoR(TIW(X,)

U, R(XDRF)W(Y)) .

U; R(Wy) R(Zy)W(Z,)

U, R(Wo)W(W) ,

o, R(Xo) ' R(Yo)R(Z,)

o, R(Zyp) R(Y;)

Qs R(Zo) R(Wo)

Figure 5.3: A Schedule and Serialization Graph Tllustrating Weak Consistency for Queries
corresponding serialization graph in Figure 5.3 illustrate this form of consistency. The schedule differs from that
of Figure 5.2 in that Q, reads ¥ rather than Yo, thus reducing Q,’s cost and potentially allowing Yo to be
garbage-collected earlier than it would have been under strong consistency. This execution introduces a
multiple-query cycle involving Qy, @2, Uy, Uz, and Us. This cycle indicates that O has seen the serial order-
ing (Us, Q1, U1, Ua), while Q, has seen the ordering (Uy, Ua, @2, Us). Thus, Uy and U3 (as well as U, and

U) are ordered differently in the two queries’ observed schedules.

The last form of consistency considered here relaxes weak consistency by also allowing certain single-query
cycles. The effect of this relaxation will be described shortly. A query is said to see update consistency if it seri-
alizes with the set of update transactions that produced values that are seen (either directly or indirectly) by the
query. Even though an update consistency query may not serialize with the complete set of update transactions, it
is guaranteed to see a transaction-consistent database state. Recall that a transaction-consistent database is
assumed to satisfy a set of static integrity constraints, and each update transaction is assumed to take the database
from one transaction-consistent state to another (possibly through one or more inconsistent intermediate states)
[Gray76]. In order to observe a transaction-consistent database, a query must not see the partial effects of any

update transactions; for each update transaction, it must see either all of its effects or none of its effects.

68

Update consistency permits multiple-query cycles in the serialization graph, as well as permitting single-
query cycles if they can be broken by removing a read-write edge between two update transactions. An edge (T'y,
T,) is a read-write edge if it was formed due to a read operation by T'; followed by a conflicting write operation
by T,. Of course, it is important to remember that, as for all forms of consistency here, the full serialization graph

is not permitted to contain update transaction cycles.

The schedule and corresponding serialization graph in Figure 5.4 illustrate update consistency. A single-
query cycle is introduced between Uj, Uy, and Q3 because Q3 now reads W; rather than Wy. This cycle is
-allowed-under update consistency (but not under higher forms of consistency) because it does not persist when the
read-write edge from U3 to U, is removed. In the execution, Q3 sees all of the effects of U4, but none of the
effects of /3. The query nevertheless sees a transaction-consistent database since the output of U3 has no bear-
ing on the the execution of U.

While update consistency guarantees that queries see a transaction-consistent database state, it allows them to

see a state that might not be logically consistent with the current state of the database. For example, in Figure 5.4,

O3 sees a state of the database that would have existed if U3 had never executed (or if it had aborted). Because

* Denotes Change from
(Preceding Example

U, RX R)W(X,)

U, RXDR(Yo)W(Y,)

Us R(Wp) R(Zy)W(Z,)

U, R(Wo)W(W,)

0 R(Xy) R(Yo)R(Z,)

) R(Zp) R(Y,)

0O R(Zy) R(W)

Figure 5.4: A Schedule and Serialization Graph Illustrating Update Consistency for Queries

69

of the read-write conflict between U3 and Uy, it is not possible to assume that U5 was executed logically after
U,; Us might have an entirely different effect if it were executed after U,4. For example, suppose that U; is a
transaction that adds a passenger (Mr. Smith) to a flight manifest (Z), and U, is a transaction that registers the
flight’s departure in the relevant flight record (W). Furthermore, assume that a transaction will not add a
passenger to a flight manifest if the flight has been registered as departed (checking this requirement is the source
of the read-write conflict). In this scenario, it will appear to query Q5 that the flight has departed and that there is
no Mr. Smith registered as a passenger (which is indeed a potential transaction-consistent database state). Also,

_the fact that the flight has dg:p_ag;gd would seem to imply that Mr. Smith could not later be added to the passenger
list; however, later queries will reveal that Mr. Smith was indeed a passenger on the flight. Despite the presence
of this type of anomaly, update consistency may be useful in situations where degree 1 or 2 consistency is
insufficient (e.g., checking integrity constraints).

To the best of our knowledge, almost all previously proposed multiversion concurrency control algorithms
provide only strict consistency for queries. The only exception that we are aware of is distributed MV2PL, where
weak consistency arises among queries at different sites due to inconsistent global state information [Chan85]. In
contrast, MVQL deliberately introduces weaker forms of consistency among queries by allowing them to read
newer versions of data for performance reasons. In the next section, we describe the MVQL algorithm and show
how it can be used to provide queries with either update. weak, strong, or strict consistency (as desired by a given

application).

5.3. Multiversion Query Locking (MVQL)

In this section, we describe the basic MVQL algorithm, and in the next section, we describe some
refinements to the basic algorithm. MVQL generalizes the startup timestamp in MV2PL to provide queries with
the range of consistency forms discussed in the previous section. The startup timestamp assigned to a query in
MV2PL is used to define the transaction-consistent state that it sees. More specifically, it serves to concisely
divide the set of update transactions into two subsets, the set of update transactions which come before the query

in the serial order, and the set of update transactions which come after the query; we will refer to these sets of

70

-

update transactions as the query’s BEFORE set and AFTER set, respectively. The query sees the correct state by
~ always reading the most recent version of an object written by a transaction that belongs in its BEFORE set (i.e.,

by one whose commit timestamp is less than or equal to the query’s startup timestamp).

Under weaker forms of consistency, each query defines its own interpretation of the serial order. As a result,
a single-valued timestamp is insufficient to represent the AFTER and BEFORE sets of a query in MVQL. Rather,
one of the two sets must be represented explicitly. (It is not necessary to represent both explicitly since they are
complements of each other.) The details of set representation will be discussed shortly. To locate the correct ver-
sion to read of a-given tuple, a query scans the tuple’s.VST. (or traverses its version chain) until it reaches.the
most recent version that was written by a committed update transaction not in its AFTER set. Because update
transactions follow 2PL, there is a total ordering of versions; thus, there is no ambiguity as to which version

should be chosen.

As discussed in the beginning of this chapter, the goal of adopting weaker forms of consistency is to allow
queries to read more recent data, thus reducing the cost of versioning. MVQL will therefore place an update tran-
saction in a query’s AFTER set only when necessary to prevent a violation of the desired form of consistency. A
query always begins with an empty AFTER set. For purposes of explanation, the rules for placing update transac-
tions in the AFTER sets of queries for each form of consistency will be presented in the order: strict, update,
weak, and strong. Recall that Table 5.1 sunmarizes these forms of consistency. In the next subsection we

describe how these rules may be efficiently implemented.

5.3.1. Varying Consistency Levels

For strict consistency, which is the most restrictive form, all update transactions running during any portion

of a query’s lifetime are placed into the query’s AFTER set. This makes the algorithm identical to MV2PL.

For update consistency, which is the least restrictive form, an update transaction U is placed into the AFTER

set of a query Q under any of the following conditions (which comprise Rules 1-3):

3 MVQL is therefore directly compatible with all of the indexing schemes considered in the preceding chapter.

71

(1) U attempts to write lock an object that has been already read by Q.

(2) Qattempts to read an object that is currently write locked by Ut

(3) U reads an object version (always the current one) that was written by another update transaction U’, and
U’ is currently a member of Q’s AFTER set.

Recall that update consistency guarantees that queries do not see the intermediate effects of an update transaction;
the query sees either all or none of its effects. Rules 1 and 2 guarantee that a query will not see the partial effects
of an update transaction directly, and Rule 3 guarantees that it will not see them indirectly. It should be noted that
Rule 3 is sufficient to recognize indirect partial effects passed through any number of update transactions. This is
true for two reasons. First, the algorithm always recognizes that an update transaction.should come after a query
in the serial order while the update transaction is still uncommitted; thus, if a committed update transaction is at
some point not in a query’s AFTER set, it never will be. Second, an update transaction reads only committed
data. Thus, when an update transaction reads a version, it knows immediately for each active query whether the

version’s creator came before or after the query.
For weak consistency, which is the next more restrictive form, the following rule is added to the update con-
sistency rules (Rules 1-3):

(4) An update transaction U is placed into the AFTER set of a query Q if U overwrites an object version
(always the current one) that was read by another update transaction U’, and U’ is currently a member of
Q’s AFTER set.

This rule is necessary to recognize read-write dependencies between update transactions, and along with the first
three rules it prevents single query cycles in the serialization graph.’ The additional consistency comes at the

expense of making query AFTER sets larger (thus requiring that queries read older data).

For strong consistency, which is even more restrictive, the following rule is added to the weak consistency

rules (Rules 1-4):

“Alternatively, it is possible instead to block Q behind U. This may make the implementation easier, and will probably not have a
significant performance impact if update transactions are short. On the other hand, doing so could cause significant delays for queries if up-
date transactions are long.

SNote that this rule would be unnecessary in a closed transaction workload if a read-write conflict between two update transactions is
known to exist only if there is also a write-read conflict between the transactions. Also, a workload that does not satisfy this property ini-
tially might easily be modified so that it does. For example, in flights example in Section 5.2, this property would be satisfied if the tran-
saction registering the flight’s departure (U,) was required to read the seat count (located in the flight manifest Z).

72

(5) A query is considered to have read an object (for the purposes of Rules 1 and 2) if either it has read the
object explicitly, or if some younger query has read the object explicitly.

In other words, a read by one query is treated as though it were made by all older queries as well; in the next sub-
section, we describe how this may be done efficiently. With the addition of this rule, multiple query cycles are
eliminated since the AFTER set of an older query will always subsume the AFTER sets of all younger queries.
This prevents a path in the serialization graph from a younger query to an older query; any multiple query cycle
would have to contain such a path. The avoidance of multiple query cycles means that all queries will see a con-
sistent serial ordering of update transactions; however, this additional consistency comes at the expense of mak-

et o

ing query AFTER séts still larger (thus requiring that queries read even older data).

5.3.2. Implementing the AFTER Set Insertion Rules

Determining when an update transaction should be inserted into the AFTER set of a query under strict con-
sistency is straightforward: When a query enters the system, all currently executing update transactions are
placed into its AFTER set. All subsequently arriving update transactions are also placed into this set. Determin-
ing when the rules apply under the other forms of consistency is less straightforward, however. In order to deter-
mine when Rule 1 applies, we need a mechanism for determining whether or not an active query has read an
object that an update transaction now wishes to write lock. This can be handled by adding a new, non-conflicting
lock mode to the 2PL lock manager called a read-only lock. A query must obtain a read-only lock on each object
that it reads; note that it obtains locks on objects, not on object versions. As with'traditional locks, a query
releases all of its read-only locks when it finishes. When granting a write lock on an object to an update transac-
tion, the lock manager will respond with a list of the object’s current read-only lock holders. The applicability of
Rule 2 can be easily detected when a query obtains a read-only lock; the lock manager will respond to a read-only
lock request by returning the identifier of the current write lock holder (if there is one). Furthermore, the applica-
bility of Rule 3 may be easily checked by an update transaction since each version is stamped with the identifier
of its creator. Specifically, when an update transaction reads an object, it can check to see if the creator of the

current version is a member of the AFTER set of any active queries.

73

Rule 4, added for weak consistency, may be enforced by requiring that each query inherit the read locks of all
committing update transactions in its AFTER set (converting them to read-only locks in the process). This lock
inheritance will cause a subsequent update transaction to be inserted into the query’s AFTER set if it later issues a
write operation that conflicts with a read operation by an update transaction already in the set. Rule 5, the rule
added for strong consistency, may be enforced when a query requests a read-only lock on an object by automati-

cally acquiring the lock for all older active queries as well.

5.3.3. Implementing the AFTER Sets

AFTER sets must be stored in a space-efficient manner, as in the V\;orst case there may be an entry iﬁ a
query’s AFTER set for each update transaction that runs during its lifetime. In addition, the implementation of
AFTER sets must support efficient access, as insertions and lookups occur quite frequently. For example, when
an update transaction reads an object, as just described, the update transaction must check to see if the current

version’s creator is a member of the AFTER set of any currently executing query.

The scheme that we propose for representing each query’s AFTER set is a bitmap indexed by the sequence
numbers (transaction identifiers) that are assigned to update transactions when they enter the system. Operations
on an AFTER set will then require only the testing or setting of bits in this bitmap. Since a query’s AFTER set
contains only update transactions which ran sometime during its lifetime, the first entry of a query’s bitmap is
assigned an index that is equal to the sequence number of the oldest update transaction running when the query
entered the system. Furthermore, the bitmap may have a fixed size, as it is possible to assume that any update
transaction whose sequence number falls beyond the end of the bitmap is automatically a member of the query’s
AFTER set. This assumption will not affect the correctness of the algorithm, merely its ability to exploit lesser
forms of consistency. As an extreme, a bitmap of size zero, represented only by the sequence number of the last
update transaction to commit prior to the start of the query, would cause the reduced consistency variations of

MVQL to degenerate to strict consistency (i.e., to MV2PL).

74

5.3.4. Garbage Collection

We discuss two alternative approaches for removing unnecessary versions in MVQL (and MV2PL as well).
A version is unnecessary if, for every active query, there is a more recent committed version of the object that was
created by an update transaction that is not in the query’s AFTER set. The first alternative is a sequential garbage
collection scheme, as proposed in [Chan82], where prior versions z;re stored in a sequential log-like version pool;
before an object is updated, it is appended to the version pool. In this approach, there are three pointers that mark
regions in the version pool. Last marks the tail of the version pool (i.e., the most recent version), update-first
marks the version that was appended least recently by an uncommitted update transaction, and reader-first marks
the head of the version pool. When a query enters the system, it records the current value of update-first. When it
exits the system, if it is the oldest query, it sets reader-first to the position it previously marked. The drawback
of this approach is that is possible for a long-running query to hold up the garbage-collection of a potentially large

number of prior versions, leading to a high storage overhead [Bobe92].

As an alternative to the sequential scheme, a sifting garbage collection scheme can be used in conjunction
with a heap-based organization for storing prior versions. In this approach, when a update transaction completes,
it assigns each prior version that it replaced to the youngest query that requires the version. When this query
completes, it must sequence through its list of assigned versions and reassign them to the next-youngest query
that requires the version.® If there 1s no such query, then the version may be garbage-collected. Compared to the

query’s overall path length, sequencing through a assigned list of versions should be relatively inexpensive.

5.3.5. Further MVQL Refinements

In this section we discuss several refinements to the basic MVQL algorithm. We present techniques for
reducing storage cost and providing more control over consistency. In addition, we present a distributed version

of MVQL that can be used in a shared-nothing parallel DBMS.

SDetermining if a query requires a version may be done by simply checking its AFTER set; this adds only a small amount to the path
length of update transactions since, as described above, AFTER set operations are inexpensive. Furthermore, maintaining a query’s list of
assigned versions is also inexpensive since the entries are small and the list may be spooled to secondary storage if necessary.

75

5.3.5.1. Early Garbage Collection

One way to reduce the storage cost of MVQL is to allow queries to specify that a particular object will not be
accessed again; a new type of read-only lock mode may be introduced for this purpose, with read-only locks being
downgraded to this new mode when appropriate. If the version of such an object seen by a query is a prior ver-
sion, it could be garbage-collected either immediately or when other active queries no longer need the version.
Likewise, if such a version is a current version, it will not have to be retained for the query when a newer version

is created. In principle, a query optimizer could pass the information that would be needed to generate the lock

modification calls:to the access methods of a DBMS. Of course, this may not be feasible for queries written.. ...

partly in a general-purpose programming language (e.g., a C program containing several SQL queries).

5.3.5.2. Counsistency Groups

A single form of consistency may prove to be too loose for some queries and too strict for others. In order to
provide different levels of consistency for differeht queries, it is possible to extend MVQL with the notion of con-
sistency groups. A set of queries which belong to a strong consistency group serialize with both the update tran-
sactions and each other, but not with other queries outside the group. This is useful for situations where a set of
queries must be run together as part of some sort of complex data analysis which is independent of other con-
current queries. A strong consistency group may be implemented by modifying Rule 5 in Section 5.3.2 to include
only the queries that are part of the group. Similarly, a strict consistency group requires not only that the queries
in the group serialize among themselves, but that the queries see a serial ordering of the update transactions that is
consistent with their commit order. This may be implemented by having the queries in the group follow the strict
consistency algorithm discussed in Section 5.3.2. Queries that do not belong to either a strong or a strict con-
sistency group may decide independently to see either update or weak consistency by subjecting themselves to the

appropriate set of rules (i.e., Rules 1 through 3 for update, or Rules 1 through 4 for weak).

76

5.3.5.3. Distributed MVQL

In recent years, shared-nothing parallel database systems have begun to replace centralized mainframe data-
base systems [DeWi92]. In this section we discuss a distributed version of MVQL that is applicable to parallel

DBMSs. We do not consider at this time more general distributed database systems containing replicated data.

In the distributed MVQL algorithm, we logically replicate a query’s AFTER set at each processing node that
is executing the query. Thus, we need an efficient way to update all of the copies of a query’s AFTER set so that
the query will see the same serialization order at each node. Clearly, a correct but inefficient solution is to

“*somehow update all of the copies atomically“(so'that each copy is always séen to be identical).We'choose a more
efficient solution, however, which is to piggyback the AFTER set insertions of a given update transaction on the
messages exchanged during the transaction’s commit processing. We assume that the two-phase commit (2PC)
protocol [Gray79] (or some other suitable commit protocol) is used to guarantee the atomic commitment of
update transactions.” Specifically, the vote messages of 2PC are used to inform the coordinator of any local query
AFTER set insertions involving the update transaction being committed, and the vote-reply messages are used to
propagate these local insertions to each node participating in the transaction’s execution. Upon receiving a vote-

reply message, each node applies these AFTER set insertions before releasing the committing update
transaction’s locks.®

We argue that our piggybacked AFTER set update method is correct by showing that, where it differs from
the atomic update method, the differences do not affect the correctness of the algorithm. Our update method
differs from the atomic update method in the following three ways: (i) it propagates the insertions involving an
update transaction only to nodes where the transaction executed, (ii) it delays the insertions until commit time,

and (iii) it does not propagate insertions from a node if they occur there after the update transaction’s vote

"The centralized 2PC protocol (which is one version of 2PC) works as follows: In the first phase, each node participating in a distri-
buted transaction votes to either commit or abort the transaction by sending a message to the coordinator node. In the second phase, the
coordinator responds to each participating node with either a commit or abort reply; the transaction is committed if all of the nodes voted to
commit, otherwise it is aborted.

%In the ordinary 2PC protocol, the vote-reply message is usually not sent to sites where the transaction only read the database since
there are no further commit or abort steps to be taken at these sites. In the distributed MVQL algorithm, we must send the vote-reply mes-
sages to these sites in order to inform them of any AFTER set insertions.

71

message has been sent. The first difference does not affect correctness because MVQL will never check query
AFTER set membership for a given update transaction at a node where the update transaction did not execute.
Rule 3 requires knowledge of the AFTER set membership of update transactions that have modified a record
locally, and Rule 4 requires knowledge of the membership of those that have read a record locally; the remainder
of the rules do not require any knowledge of AFTER set membership. The second difference does not affect
correctness either, as even with delayed propagation a query will not be able to see the effects of an uncommitted
update transaction; thus, the arrival at a node of a propagated insertion may occur at any point up until the update
transaction releases its locks at the node. The third difference does affect t}}g‘:(ﬁciqyrecmess of the algorithm; how-
ever, we can eliminate this difference by adopting a small change in the MVQL algorithm. The required change
is that a query must now block behind an update transaction if it attempts to read an object that is write-locked by
the transaction while the transaction is in the second phase of 2PC (i.e., after it has sent its vote message). This

change is made by modifying Rule 2 in Section 5.3.2 to read as follows:

(2’) U is placed into the AFTER set of a query Q if Q attempts to read an object that is currently write locked by
U and U has not yet sent its vote to the two-phase commit coordinator. Otherwise, if the vote has already
been sent, Q must block until U releases its lock on the object.

5.4. The Simulation Model

In this section, we describe the model that we used to compare the performance of MV2PL and MVQL. The
model captures the details of page-level versioning implementations of each of these algorithms. Since we are no
longer focusing on the storage organization details of individual pages, we chose to model page-level versioning
in this chapter to reduce the complexity of the simulation program, and to enable longer-running simulations. As
in the models used in Chapters 3 and 4, the model used in this chapter has two major components, the application
model and the system model. Each of these has several subcomponents that will be described in this section. The

model was implemented in the DeNet simulation language [Livn89].

5.4.1. The Application Model

The first component of the application model is the database, which is modeled as a collection of files. Each

file, in turn, is modeled as a collection of records. One clustered and one unclustered index exist on each file. We

78

assume that each index has IndexFanout keys per index page and (for simplicity) that there is a one-to-one rela-
tionship between key values and records. Each file has FileSize records, and each record occupies RecSize bytes.
The overall database is physically organized as a series of <file, clustered index, unclustered index> triples that
are laid out on the disk in cylinder order. Prior versions of pages are stored in a version pool following all of the
primary data. We discuss the version pool organization in more detail in the next subsection. The parameters for

this portion of the overall model are summarized in Table 5.2.

The second component of the application model, the source module, is responsible for modeling the external
workload of the DBMS:=Table 5.3 summarizes the key parameters of. the workload model. The system is
modeled as a closed queueing system with the transaction workload originating from a fixed set of terminals.
Each terminal submits only one job at a time and is dedicated to either the update transaction class or the read-
only query transaction class. Query transactions execute relational select (range-query) operations, while update
transactions execute select-update operations. In each case, selections can be performed via sequential scans,

clustered index scans, or non-clustered index scans.

For each transaction type (query or update), an execution plan is provided in the form of a set of parameters.

The parameters include an access method and a mean selectivity for each file (AccessMethejass s and

Parameter Meaning

NumFiles Number of files in database

NumKeys g, Number of keys per index page for file
FileSize g, Number of records in file

RecSizeg, Size of records in file

Table 5.2: The Application Model Parameters

Parameter Meaning

MPL 5 Number of terminals (class is query or update)
AccessMeth jas 5re | Access method used by class for file
Selectivity yass fle Mean selectivity for class for file
SelectivityDistr,,,, | Distribution of actual selectivities
UpdateFracg, Fraction of selected tuples to update

Table 5.3: The Workload Model Parameters

79

Selectivity jqss fie» Tespectively). The actual selectivity for a given run is chosen from a distribution,
SelectivityDistry,s. For update transactions, UpdateFracg, specifies the fraction of selected records to actually
update. It is assumed that indexed attributes are not updated by the update transactions. This assumption was
made so that we could use single-version indexes in this study, leaving further exploration of indexing for future

work.

We chose this workload model in order to capture situations where there are a relatively large number of
updates per query and where queries do a significant amount of work. This workload model, despite its simplicity,
- splaces-sufficient demands on the version management:system to highlight the important performance issues and

tradeoffs.

5.4.2. The System Model

The system model encapsulates the behavior of the various DBMS and operating system components that
control the logical and physical resources of the DBMS. The relevant modules are described in the remainder of
this subsection. They include the operator manager module, the concurrency control module, the buffer manager
module, the CPU module, and the disk manager module. Table 5.4 summarizes the key parameters of the system

model.

The operator manager encapsulates the operations necessary to execute the transaction types in the workload
(i.e., select and select with update). As was previously described, the access methods supported are sequential,
clustered index, and non-clustered index scans. The CPU costs of the operators are modeled by charging
SelectCPU instructions to extract a single record from a disk page and CompareCPU instructions to compare two
index keys. In addition, StartupCPU and TerminateCPU instructions are charged to start and terminate an opera-
tor, respectively.

The concurrency control manager encapsulates the operations of the MVQL and MV2PL algorithms. It con-

sists of two subcomponents: the lock manager and the version manager. The CPU costs of concurrency control

are modeled by charging LockCPU instructions for each lock request. This includes both the traditional 2PL read

Parameter Meaning

NumBuffers Number of page frames in the buffer pool
CPURate Instruction rate of CPU

NumDisks Number of disks

DiskSeekFactor | Factor relating seek time to seek distance
DiskLatency Maximum rotational delay

DiskSettle Disk settle time

DiskTransfer Disk transfer rate

DiskPageSize Disk block size

DiskTrackSize Disk track size

PrefetchNum Number of pages to prefetch

CacheSize Size of disk prefetch cache

SelectCPU Cost to select a tuple

CoinpareCPU Cost to compare index keys =T
StartupCPU Cost to start a select or select-update operator
TerminateCPU | Cost to terminate an operator

ccCPU Cost for a lock manager request

BufCPU Cost for a buffer pool hash table lookup
10_CPU Cost to initiate an I/O operation

Table 5.4: The System Model Parameters

80

and write locks as well as the read-only locks introduced by MVQL. Both locking and versioning are both sup-
ported at the page level. We chose page-level versioning to simplify the implementation of the simulator and to
reduce the length of simulation runs. The basic MV2PL and MVQL algorithms are compatible with record-level

versioning; schemes for record-level versioning are discussed in [Bobe92, Moha92].

The version manager divides the database into two segments: the main segment, containing the current ver-
sions of pages, and the version pool, containing prior page versions. This organization is similar to the one
described in [Chan82], except that we arrange the version pool as a heap of disk tracks rather than as a circular

(log-like) buffer. This change alleviates the problems of sequential garbage collection discussed in Section 5.3.4
while still providing good write performance (as write operations to the version pool are done a track at a time).”
Access to prior versions is provided through a memory-resident index that maps a current page number and the

AFTER set of a query to the location of the appropriate prior version of a page. The memory-resident index is

91t should be noted that the decision to use a heap-based version pool rather than a circular buffer is orthogonal to the basic MVQL
and MV2PL algorithms; we could have chosen to use the circular buffer organization instead.

81

another departure from the scheme in [Chan82], where prior versions of a page were located by chaining back
from the current version. We chose the directory approach in order to present the performance differences of the
algorithms relatively conservatively. With reverse chaining, the MVQL algorithm would appear even more

attractive than MV2PL, as queries tend to access younger versions under MVQL than MV2PL.

The buffer manager module encapsulates the details of an LRU buffer manager. The number of page frames
in the buffer pool is specified as NumBuffers, and the frames are shared among the main segment, version pool,
and index pages. Version pool pages that are inserted into the buffer manager by the version manager are not
assigned physical disk addresses-until they are written out to disk; this is done to:eliminate fragmentation prob-
lems on tracks due to versions that can be garbage-collected while still in the buffer pool. When a dirty version
pool page reaches the end of the LRU chain, a track’s worth of dirty version pool pages are written to a free track
on disk. The CPU cost of searching for a requested page in the buffer pool hash table is modeled by charging
BufCPU instructions. If the page is not resident, an additional BufCPU instructions is charged to insert the page

in the table; IO_CPU instructions are then charged to initiate an I/O operation.

The CPU module encapsulates the behavior of an FCFS CPU scheduler, granting transactions the use of the
CPU until they request a new page from the buffer manager. The disk manager module is designed to model the
behavior of a disk controller and driver. The controller schedules disk requests according to the elevator algo-
rithm [Teor72]. The total service time is computed as the sum of the seek time, latency, settle time, and transfer
time. The seek time of a disk request is computed by multiplying the parameter DiskSeekFactor by the square
root of the number of tracks to seek [Bitt88]. The actual rotational latency is chosen uniformly over the range
from O to DiskLatency. Settle time is a constant and is given by the parameter DiskSettle. The last component of
the disk service time, transfer time, is computed from the given transfer rate, DiskTransfer. We assume that the
disk controller has a prefetch option that may be selected on a per-request basis to optimize sequential access per-
formance. In addition to reading the requested page, the prefetch mechanism will load the next PrefetchNum
pages into a FIFO cache contained within the disk controller; subsequent requests for these pages will then not

require physical I/O operations. The controller contains room for a total of CacheSize prefetched pages.

82

5.5. Experiments and Results

In this section, we present the results of three experiments that compare the performance of MV2PL and
MVQL. As a yardstick for comparison, we also include the results of GO processing; recall that GO processing
allows queries to run without setting locks at all. The primary performance metrics employed in this study are
query throughput, update transaction throughput, and storage cost for maintaining older versions of pages. Addi-
tional metrics are used in the analysis of the experimental results. To ensure the statistical validity of our results,
we verified that the 90% confidence intervals for response times (computed using batch means [Sarg76]) were
sufficiently tight:. The size of these confidence intervals were within approximately 1% of the mean for update ...
transaction response time and within approximately 5% of the mean for query response time in almost all cases.

Throughout the chapter we discuss only performance differences that were found to be statistically significant.

Table 5.5 lists the settings for the system model and the application model parameters. The system has a CPU
that executes 12 million instructions per second and a single disk with a page size of 8K bytes and a track size of
5 pages. The disk controller can prefetch up to 4 pages following a requested page;!? the controller contains a
256K byte cache for storing prefetched pages. This model was patterned after the Fujitsu M2266 disk drive

[Fuji90], which is as an example of a current generation disk drive. With this configuration, typical disk access

Parameter Setting Parameter Setting

CPURate 12 MIPS NumFiles 4

NumDisks 1 IndexFanoutg, | 450
DiskSeekFactor | 0.617 msec FileSizeg, 25000 records
DiskLatency 0-16.67 msec (uniform) || RecSizeg, 227 bytes, including overhead
DiskSettle 2.0 msec SelectCPU 400 instructions
DiskTransfer 3.07 MBytes/sec CompareCPU 50 instructions
DiskPageSize 8K StartupCPU 10000 instructions
DiskTrackSize 5 pages TerminateCPU | 2000 instructions
CacheSize 32 pages LockCPU 150 instructions
PrefetchNum 5 BufCPU 150 instructions
NumBuffers 600 pages 10_CPU 1000 instructions

Table 5.5: System and Application Model Parameter Settings

10The prefetch option is used for main segment read requests by the sequential and clustered index scan access methods. To prevent
disk bandwidth from being wasted as a query shifts from a sequential access pattern in the main segment to a random pattern in the version
pool, a query stops requesting the prefetch option once it observes a disk cache hit ratio of less than 60% from its prefetch requests.

83

times were on the order of 15 milliseconds and the system was I/O-bound for all of our experiments.

The database is composed of 4 files, each containing 25,000 Wisconsin benchmark-sized records. Each
record contains 208 bytes of data and 19 bytes of overhead, for a total of 227 bytes (as is the case in the Gamma
system [DeWi90]). With this record size, 36 records fit on a page. Each file contains both a clustered and an
unclustered B+ tree index, each with a node fanout of 450. The CPU costs of executing transactions in the work-

load include various instruction charges that are detailed in Table 5.5

The parameter settings for the workload model were varied from experiment to experiment. These settings

-

are listed in Table 5.6, and are described with each experiment.

5.5.1. Experiment 1: Effect of Query Selectivity

In this experiment, we study the effect of query selectivity on each of the alternative concurrency control

algorithms. A transaction workload is initiated from a set of 12 update transaction terminals and 1 query termi-

nal; the terminals do not involve an external think time delay.!! Update transactions use the non-clustered indexes
to select and then update 2 randomly selected records in the database, while queries use clustered indexes to scan
a randomly selected region of each of the 4 files in the database. The query selectivity is kept constant within the

same simulation run (across both files and queries), but is varied from 10% to 90% between runs. We vary the

Parameter Experiment 1 Experiment 2 Experiment 3

MPLgyry 1 query 1 query 1 to 5 queries

MPLypdae 12 updaters 12 updaters 12 updaters

Selectivity ypaater, file 2 records 1 to 32 records 2 records

SelectDistr gyer, constant constant uniform over 2/3 to 4/3 of mean
SelectDistr, piae constant constant constant

UpdateFrac 100% 25% 100%

Selectivity yery, file 10% to 90% 25% 40%

AccessMethodg,ry clustered index clustered index clustered index
AccessMethody, e, | unclustered index unclustered index | unclustered index

Table 5.6: Workload Model Parameter Settings

1IThis captures the average behavior of a system with a larger number of terminals that do involve an external think time delay. By
abstracting the model in this way, we were able to reduce the variance in the statistics and obtain tight confidence intervals without exces-

sive simulation lengths.

84

query selectivity over a wide range to show how versioning influences system performance as queries increase in
size; size is a key factor here because as the queries become larger, the version management system must main-
tain transaction-consistent states of the database that are increasingly different than the current state. As an alter-
native, we could have achieved a similar effect by varying the database update rate (e.g., by changing the number

of update transaction terminals).

Figures 5.5 through 5.8 show query throughput, fraction of query accesses to current versions, average
storage cost, and update transaction throughput for each of the algorithms over a range of query selectivites. Note
that for a single-query:workload, weak and strong consistency are identical: Also, since update transactions
modify each record that they read, weak consistency and update consistency are the same here as well. This
explains why there is only a single curve in the graphs for MVQL in this experiment. We start by considering
query throughput. In Figure 5.5, we see that the highest query throughput is observed with GO processing, while
the lowest is observed with MV2PL. An exception to this occurs below approximately 20% query selectivity,
where a slightly higher query throughput is achieved with MVQL than with GO processing.!? At lower query
selectivities, MVQL’s query throughput is close to that of GO processing, and at higher selectivities it approaches
that of MV2PL. The reasons for the differences in query throughput between the algorithms are illustrated by the
graph in Figure 5.6, which shows the fraction of query accesses that go to the current version of a page. Recall
that when queries access the current versions of pages, sequential access is preserved; thus the prefetch option
may be used to read five pages from the disk with a single arm movement and rotational delay. GO processing
achieves the highest query throughput since only current versions of pages are accessed. At the opposite side of
the spectrum. MV2PL achieves the lowest query ﬂﬁoughput since, to maintain strict consistency, queries access
the fewest current page versions. As queries become larger with both MVQL and MV2PL, the fraction of

accesses to current page versions drops since queries see a state of the database that becomes increasingly older

12This exception is caused by the garbage-collection of page versions in the buffer pool. With versioning, an update transaction must
copy a page in the buffer pool before updating it. This may require cleaning the buffer frame at the end of the LRU chain. I the prior ver-
sion is garbage-collected when the update transaction commits, the update transaction will contribute this clean buffer to the next transac-
tion that requests one. Some fraction of the time, a query will be the recipient of a page cleaned by an update transaction in this manner.
Thus, when garbage collection in the buffer pool is frequent, a small amount of work will be shifted from the queries to the update transac-
tions. As we will see shortly, garbage collection in the buffer pool is common with MVQL at low query selectivities.

85

than the current state. This happens more quickly with MV2PL than with MVQL since MVQL does not place all
update transactions that arrive during a query’s execution into its AFTER set (i.e., some of these transactions seri-
alize before the query). The rate at which concurrent update transactions are placed into a query’s AFTER set
starts out low and then increases steadily as the query ages and acquires more read-only locks; the reason for this
can be seen by reviewing Rules 1 through 3 in Section 5.3.1. Specifically, in this experiment (but not shown in
the graphs displayed), an average of about 10% of all update transactions that ran during the lifetime of a 10%
select query were placed into its AFTER set in MVQL. This percentage increased to just over 40% at a query
selectivity of 30%, to about 80% at a selectivity of 69%,?:gnd to_nearly 90% at a selectivity of 90%Th1s ggcplains
why, as the query selectivity is increased in Figure 5.5, the query throughput of MVQL approaches that of

MV2PL.

We now consider storage cost. Storage cost is also dependent on query selectivity, as the multiversion algo-
rithms must keep transaction-consistent states of the database that with time become increasingly different than
the current state. This can be seen by the graph in Figure 5.7, which shows the average number of prior page ver-
sions observed for MV2PL and MVQL during each simulation run; note that the curve for GO processing is con-
stant at 0 since GO processing does not retain prior page versions. Recall that a query always accesses the most
recent version of a page that was written by a transaction not belonging to its AFTER set. Thus, with a query
MPL of 1. the version pool must contain the prior version of the first update to each page by a transaction in the
currently executing query’s AFTER set, and multiple updates to the same page during the lifetime of a query do
not increase the storage cost. This explains why the slopes of both the MV2PL and MVQL curves decrease as
query selectivity is increased. If the query runs long enough, each page in the database will have been updated by
some transaction in its AFTER set; when this occurs, the version pool will contain an entire copy of the database.
Notice that MVQL has a considerably lower storage cost than MV2PL. This is because the version pool grows at
a slower rate with MVQL, and, as was discussed previously, queries complete faster under MVQL than MV2PL.
In order to see why the version pool grows at a slower rate with MVQL than MV2PL, recall that to maintain strict

consistency, MV2PL places all update transactions that run during a query’s lifetime into its AFTER set, while

Queries Per Second

Avg, Number of Prior Versions per Page

86

0.0201 ©GO 1.0
& MVQL (UPDATE, WEAK, STRONG)
- MV2PL (STRICT) 2
2
£ 038
0.0151 >
S
=
3
2 0.6-
8
0.010- §
]
< 04
2
B
-
0.005 - =
£ 02
§ 6 GO
= # MVQL (UPDATE, WEAK, STRONG)
4 MV2PL
0 J T T .0 Y T 1) T
0 OO(\O 20 40 60 80 0 C 20 40 60 80
Query Selectivity Average Query Selectivity
Figure 5.5: Query Throughput Figure 5.6: Current Version Access
(MPLgyery = 1, MPLypgs = 12, update transaction size = 2)
1.0y e GO 20+
MVQL (UPDATE, WEAK, STRONG) —@ 60— —8—&—6—0—0
< MV2PL (STRICT)
0.8 e
2 154
1~}
g @GO
b # MVQL (UPDATE, WEAK, STRONG)
0.6 - £ MV2PL (STRICT)
g
£ 10
=1
&
0.4+ &
b=t
L
o
-
5 3
0.2
.0-+— 0 7 v v r
0 OO 20 40 0 80 0 20 40 60 80
Average Query Selectivity Average Query Selectivity
Figure 5.7: Storage Cost Figure 5.8: Update Transaction Throughput

(MPLyyer, = 1, MPL,p 40 = 12, update transaction size = 2)

87

MVQL does not.

Finally, we turn our attention to the update transaction throughput, shown in Figure 5.8. The differences
between the algorithms here were caused by the number of updates to the version pool. GO processing does not
maintain a version pool, so it provides the highest update transaction throughput. Both of the remaining curves
vary along with query selectivity. The drop in MVQL’s update transaction throughput between 10% and 40%
selectivity can be explained by the increase in the rate at which concurrent update transactions are placed in the
AFTER set of the active query as it ages. Initially, when the query is young, MVQL places the majority of update
transactions that-arrive in the system before the query in the serial order. As noted previously, an average of only
about 10% of update transactions that ran during a 10% selection query’s lifetime were serialized after it. When
an update transaction that serializes before all active queries commits, the prior versions of its updates can be
garbage-collected. Since update transactions were short in this experiment, such prior versions were almost
always garbage-collected while still in the buffer pool (and thus were never written to the version pool on disk).
Garbage collection of versions in the buffer pool increases the availability of clean buffers, thus helping to

increase update transaction throughput relative to MV2PL at low query selectivities.

When a query becomes older, the rate at which concurrent update transactions can be serialized before the
query drops. Again, as we noted previously, slightly over 40% of the update transactions that ran during the life-
tine of a 25% select query were serialized after the query. This resulted in an increased rate of updates to the ver-
sion pool, and explains MVQL’s drop in update transaction throughput. MV?2PL had no such drop in its update
transaction throughput since all update transactions that run during the lifetime of a query serialize after it. In
fact, update transaction throughput rose as selectivity was increased. This rise, and the rise in the MVQL
throughput after 40% selectivity, results from pages being updated multiple times during the lifetime of the
currently active query; at most one version of each page must be written to the version pool for this query. As the
query selectivity is increased, the MV2PL and MVQL update transaction throughputs both approach that of GO
processing. The reason is that the cost of incrementally writing a copy of the database to the version pool for each

query is amortized over increasingly longer query executions.

88

This experiment has shown the clear advantages of the MVQL algorithm over MV2PL in terms of query
throughput, storage cost, and to a lesser degree, update transaction throughput. The performance benefits are larg-

est for smaller sized queries, and they decrease as the query size is increased.

5.5.2. Experiment 2: Effect of Update Transaction Size

In this experiment, we look at the effect of update transaction size on the algorithms. Update transaction size
affects the MVQL algorithm the most, as each additional lock request by an update transaction increases the
chance that it will be placed in the AFI‘ER set of an active query. This may be seen by reviewing the rules in
Section 5.3.1. To study the effect of update transactlon size, we vary the number of recorda‘;lect operatmns by
each update transaction from 1 to 32. Update transactions use non-clustered indexes to select 1 to 32 records
(varied across simulation runs), updating an average of 25% of the records selected. Queries, on the other hand,
use clustered indexes to scan 25% of each of the four files. Since we again consider a single query workload,

weak consistency is identical to strong consistency; weak consistency and update consistency are not identical in

this experiment, though, since update transactions modify only a fraction of the records that they read.

We begin by considering query throughput, shown in Figure 5.9. The first thing that we wish to point out is
that there is only a small difference between the two MVQL curves (update consistency vs. weak and strong con-
sistency); this was found to be true across the entire range of possible UpdateFrac values. This indicates that lock
inheritance, introduced due to Rule 4 in Section 5.3.1, has little impact on the size of query AFTER sets. In other
words, the rate at which a query receives new read-only locks through inheritance is much lower than the rate at
which it requests them explicitly. For simplicity of explanation, we will not distinguish between the MVQL

curves for the remainder of this experiment.

Moving to a comparison of MVQL with MV2PL and GO processing, we notice that the query throughput for
both GO processing and MV2PL rises as the update transaction size is increased. This rise is caused by a
decrease in the system resource demands by update transactions due to increased lock waiting; recall that the pro-
bability of lock conflict is proportional to the square of the transaction size [Gray81, Tay85]. So that we may

concentrate on the most important results, we do not show the update transaction throughput here. On the other

89

hand, MVQL query throughput drops initially, and then rises. The rise is also caused by reduced resource com-
petition from the update transactions. The initial drop (as the update transaction read size is varied from 1 to 16)
is due to an increase in query AFTER set sizes. The AFTER set size increases because each additional lock
request by the update transactions increases the chance that the transaction will be placed in the AFTER set of the
query. As we explained in the discussion of the previous experiment, increasing the AFTER set size reduces the
number of current version accesses. Specifically, for an update transaction size of 1, an average of only 4% of the
update transactions that ran during the lifetime of a query were placed into its AFTER set (not shown in the
graphs displayed). With an update transaction size of 8, however, this percentage rose to 40%, and at a size of 32,
it rose to over 80%. This caused the percentage of accesses to current versions to drop from nearly 100% to 90%
for MVQL. Note that for MV2PL, this percentage stayed relatively constant at around 85%. As for query size in
the previous experiment, increasing the update transaction size causes the query throughput of MVQL to become

closer to that of MV2PL.

We now turn our attention to storage cost. Figure 5.10 shows the average storage cost observed for both
MV2PL and MVQL during each simulation run. The difference between update consistency and weak (or strong)
consistency for MVQL is again rather small so we do not distinguish between them. In the graph, we see that the
storage cost of MV2PL drops from about 30% to 17% of the database size. This corresponds to the drop in
update transaction throughput that is caused by increased lock countention as the update transaction size is
increased. In contrast, we see in Figure 5.10 that MVQL’s storage cost starts out extremely low, rising until an
average update transaction size of approximately 20 is reached, and then it decreases again. The initial rise is
caused by the increase in the average query AFTER set size; the storage cost starts out low because of the small
query AFTER set size with small update transactions. Recall that the connection between the AFTER set size
and storage cost is that prior page versions need to be retained only for updates made by transactions in an active
query’s AFTER set. The AFTER set size also influences storage cost indirectly by influencing the query response
time; as discussed in the previous experiment, increasing the AFTER set size degrades the sequentiality of query
access, and thus increases query response time (and consequently storage cost). The drop in MVQL storage cost

as the average update transaction size increases past 20 is due to the lock contention discussed already.

For the sake of presentation, we do not show the update transaction throughput results for this experiment,

but we summarize the results here. MVQL achieved an update transaction throughput that ranged between 98%

Queries Per Second

0.0204 0.3+
o
0.015+ ?5.
=7
g 02
2
5
N””— >
0.010- £
GO o
MVQL (UPDATE) s
A MVQL (WEAK & STRONG) 2 01 ©GO
0005, - MV2PL (STRICT) g & MVOL (UPDATE)
) b 4 MVQL (WEAK & STRONG)
z < MV2PL (STRICT)
0 OOO() 10 20 30 0.0) 10 20 30
Update Transaction Size Update Transaction Size
Figure 5.9: Query Throughput Figure 5.10: Storage Cost

(MPLyyery = 1, MPLyyp g0 = 12, Selectivitygyery = 25%)

to 32). In the range of update transaction sizes from 1 to 8, MV2PL had a slightly lower update transaction
throughput than MVQL; the largest difference amounted to approximately 8% of MVQL’s update transaction

throughput at a size of 1.

In the first experiment we saw that the performance of MVQL in terms of query throughput, storage cost, and
update transaction throughput is close to that of GO processing when queries are small, and it approaches MV2PL
as queries become larger. In this experiment we have seen a similar result occur when update transaction size is
increased instead. The connection between these results lies in the AFTER set sizes of queries. Increasing either
the query size or the update transaction size decreases the opportunities for serializing update transactions before
concurrently executing queries. In addition, we have seen that the additional I/O and storage costs for providing

weak consistency over update consistency are quite small.

91

5.5.3. Experiment 3: Effect of Query Multiprogramming Level

In this experiment, we vary the query multiprogramming level from 1 to 5 queries in order to study its impact
on the relative performance of the weak and strong consistency variations of MVQL. Update transactions use
non-clustered indexes to select and then update 2 records, while queries use the clustered indexes to scan an aver-
age of 40% of each of the four files. Since we again consider a workload where update transactions write each
record that they read, update consistency is identical to weak consistency here. In order to stagger the start and
commit times of queries from different terminals, we vary the actual selectivity across queries uniformly between

2/3 and 4/3 of the average selectivity. -

In Figure 5.11, we see that the query throughput for all algorithms rises as the number of query terminals is
increased, while in Figure 5.12, there is a corresponding decline in update transaction throughput. The rise in
query throughput is due to the system shifting its effort from update transaction processing to query processing;
the system is devoting 1 out of 13 terminals to query processing at the left-hand side of the graph, while it is
devoting 5 out of 17 terminals at the right-hand side. The bulk of the increase in query throughput is a direct
result of the increase in the overall fraction of terminals devoted to query processing. The remaining increase in
query throughput is due to a reduction in the number of dirty pages in the buffer pool, which leads to a reduction

in the amount of buffer cleaning work that must be done by queries.

In Figure 5.11, we also see that the query throughput of strong MVQL diverges from that ot weak (and
update) MVQL as the number of query terminals is increased. The separation is caused by the additional rule for
strong consistency (Rule 5 of Section 5.3.1) that causes a query’s AFTER set to subsume the AFTER sets of all
younger queries. The separation is not as large under this workload as one might expect, however. The reason is
that the AFTER sets of older queries are already likely to subsume those of younger queries due to the enforce-
ment of Rules 1 through 4; relatively few AFTER set insertions will occur as a result of Rule 5 alone, especially
at low MPLs. This reasoning also explains why the storage cost of strong MVQL, shown in Figure 5.13, diverges

only very slightly from that of weak (and update) MVQL as the number of query terminals is increased.

Queries Per Second

92

0.037.¢.GO 20+
MVQL (UPDATE & WEAK)
X MVQL (STRONG)
<-MV2PL (STRICT)
B 151
g
0.02+ &
5
B
g
2
g 107 GO
z # MVQL (UPDATE & WEAK)
5 % MVQL (STRONG)
0.01- 2 4-MV2PL (STRICT)
3
5 s
e T i L§ 1 1 0 T 1 T T 1
0 000 1 2 3 4 5 0 1 2 3 4 5
Query MPL Query MPL
Figure 5.11: Query Throughput Figure 5.12: Update Transaction Throughput

(MPL 4o, = 12, Selectivityg,er, = 40%, update transaction size = 2)
In this experiment, we have seen that the cost of providing strong consistency is not considerably higher than
that of providing weak consistency. As we discovered, enforcing Rule 5 is not as detrimental to performance as

one might initially expect.

5.5.4. Discussion

In this section, we have presented the results of a performance analysis of the MVQL algorithm. We investi-
gated a workload combining small transactions, each performing record-select/update operations. with large
queries executing clustered index scans. We did not consider queries with random file accesses (i.e., through an
unclustered index) since we were interested in higher selectivity scans. To avoid re-reading pages, medium and
large selectivity scans on an unclustered index attribute can be executed by first obtaining a list of the IDs of
matching records from the index, sorting the list according to disk address, and then sequentially scanning the

data using the record-ID list [Moha90]. Our results indicate that MVQL should also provide a lower cost alterna-

93

201eGO
MVQL (UPDATE & WEAK)
»MVQL (STRONG)
-4 MV2PL (STRICT)
1.51
2
o
-]
=]
&
z 1.0+
&
5
>
<
0.5

RS GUNNE SN S

Query MPL

v

Figure 5.13: Storage Cost
(MPLyp o = 12, Selectivityguery = 40%, update transaction size = 2)

tive to MV2PL for these sorts of workloads. Finally, the benefits of MVQL should be even more significant when

versions are located by reverse chaining rather than through a memory-resident directory (as we assumed in this

study).

In order to make simulations with large queries feasible, we used a relatively small database in our experi-
ments; however the update intensity to individual pages was quite high. We feel that the results should scale to a
larger database with a proportionally lower update intensity, as the number of updates that fall in the path of a

query will remain the same.

5.6. Conclusions

In this chapter, we have presented a new multiversion locking algorithm that has a lower versioning cost than
the MV2PL algorithm that several commercial systems use. Our new algorithm, MVQL, reduces the cost of ver-
sioning by providing weaker forms of consistency for queries than that provided by MV2PL. To introduce the

new algorithm, we reviewed four forms of consistency which all guarantee that queries see transaction-consistent

94

data: update consistency (the least restrictive form), weak consistency, strong consistency, and strict consistency
(the most restrictive form). We showed that the increasingly restrictive consistency forms require that queries
read older versions of data, and we argued that this will increase the cost of executing queries. We then we
presented the MVQL algorithm as a generalization of MV2PL. MV2PL provides only strict consistency, while
MVQL can provide either update, weak, strong, or strict consistency; in the case of the latter, it is equivalent to

MV2PL.

We also conducted a detailed simulation study of the algorithms, and we analyzed the results of this study.
The results show that MVQL can provide performance that is close to that of GO processing at small to medium
query selectivities or update transaction sizes; it provides performance closer to that of MV2PL as the query

selectivity and update transaction size are increased.

95

CHAPTER 6

THESIS CONCLUSIONS

This thesis has explored the use of multiversion locking for on-line query processing. Multiversion locking
allows queries to be run on-line, against transaction-consistent data, without contributing to data contention. A
drawback of multiversion locking is the overhead that it imposes to store, maintain, and access prior versions of

data. ‘This thesis has proposed and evaluated techniqq&s{ that attack each of these sources of overhead.

In Chapter 3, we presented a new record-level storage management design for MV2PL. The design utilizes
on-page caching and garbage collection of prior versions in order to minimize query execution cost, reduce the
storage overhead for versions, and reduce the costs incurred by update transactions. The results of a simulation
study, described in the chapter, indicate that on-page caching indeed provides significant performance gains.
Finally, we have also introduced the concept of view sharing as a way to further reduce storage overhead for ver-
sioning.

While on-page caching is an efficient scheme for organizing versions on secondary storage, it does not
address the question of how to index the versions for efficient associative access. In Chapter 4, we described
several options for extending existing single-version indexing structures to handle multiversion data, and we
integrated each of the approaches with on-page caching to provide a complete version placement and indexing
solution for MV2PL.. The alternative indexing approaches differ in where they store version selection information
(i.e., the references to individual versions). The results of a simulation study presented in the chapter indicate that

placing the version selection information with the data, rather than in the indices, is generally the best approach.

Finally, in Chapter 5, we argued that a query’s execution cost will be reduced if it accesses fewer prior ver-
sions. This led to the development of a new multiversion locking algorithm, multiversion query locking (MVQL),
that allows queries to access younger versions of data. In exchange, the queries are subjected to seeing weaker

forms of consistency than that provided by MV2PL; however, even the weakest form of consistency ensures that

96

queries will see only transaction-consistent data. The chapter reviewed several interesting forms of consistency
and then showed how MVQL can be used to achieve each of those forms. The results of a simulation study
presented in this chapter show that both query execution cost and version storage cost can be significantly lower

with the weaker consistency forms.

6.1. Directions for Future Work

This thesis has opened up a number of interesting avenues for future work. To begin with, several possibili-

ties remain in the area of storage management for versions. One possibility is to consider differential versioning

[Moha92], where prior tuple vérsions are represented by storing only that porti(;ﬁi of each version that differs from
the next most recent version. When combined with on-page caching, differential versioning would clearly reduce
the rate of overflow to the version pool, and could thus further improve query performance. Another possibility in
the area of storage management is to examine alternative version pool representations. While the CCA circular
buffer pool organization allows versions to be created inexpensively, the clustering of versions in the version pool
leads to thrashing for long-running clustered index scan queries. This is because the versions are clustered
according to the time they were appended to the version pool, and not according to the clustering of the main seg-
ment. Thus, an interesting question is how to organize the version pool to balance the version creation cost

against the clustered index scan cost.

Another avenue for future work is resource allocation and load control for queries. As we observed in this
thesis, the cost of query execution rises with query age. Thus, from a throughput perspective (and possibly a
response time perspective as well), it might be better to restrict the query multiprogramming level. This would

allow fewer queries to run simultaneously, but each query would proceed at a faster rate.

A comparison between compensation-based on-line query processing [Srin92] and multiversion locking is
yet another avenue for future work. In addition, it would be interesting to see how some of the ideas of
compensation-based on-line query processing could be applied to multiversion locking. For example,
compensation-based on-line query processing examines the selection predicate on each base relation of a query to

determine if a given update is relevant to the query. Combining this idea with multiversion locking might enable

97

a more generally applicable strategy to be developed, one where only the relevant portions of the database would
be versioned for use by queries.
Finally, in order to validate the techniques presented in this thesis, an implementation in the context of an

actual DBMS (or storage manager) would clearly be useful.

[Agra87]

[Agra89]
[Baye77]
[Baye80]
[Bern83]
[Bern87]
[Care82]
[Care86]
[Bobe92a]
[Bobe92b]
[Bobe92c]
[Chan82]
[Chan85]
[DeWio0]
[DeWi92]
[DuBo82]
[East86]

[Eswa76]

98

Bibliography

Agrawal, D., A. Bernstein, P. Gupta and S. Sengupta, "Distributed Multiversion Optimistic Con-
currency Control with Reduced Rollback," Journal of Distributed Computing, Springer-Verlag, 2(1),
January 1987.

Agrawal, D., and S. Sengupta, "Modular Synchronization in Multiversion Databases: Version Control
and Concurrency Control," Proc. 1989 SIGMOD Conference, 1989.

Bayer, R., and Schkolnick, M., "Concurrency of Operations on B-trees," Acta Informatica, September
1977.

Bayer, et al., "Parallelism and Recovery in Database Systems," ACM Trans. on Database Sys., 5(2),
June 1980.

Bermnstein, P., and N. Goodman, "Multiversion Concurrency Control: Theory and Algorithms," ACM
Transactions on Database Systems," 8(4), December 1983.

Bemnstein, P., V. Hadzilacos, and N. Goodman, "Concurrency Control and Recovery in Database Sys-
tems," Addison-Wesley Publishing Company, 1987.

Carey, M. J., Modeling and Evaluation of Database Concurrency Control Algorithms, Ph.D. Thesis,
Comp. Sci. Dept., Univ. of California, Berkeley, 1983.

Carey, M., and W. Muhanna, "The Performance of Multiversion Concurrency Control Algorithms,"
ACM Transactions on Computer Systems," 4(4), November 1986.

Bober, P. and M. Carey, "On Mixing Queries and Transactions via Multiversion Locking," Proc. of
the Eighth IEEE Data Engineering Conf., 1992.

Bober, P. and M. Carey, "Multiversion Query Locking," Proc. of the Eighteenth International
Conference on Very Large Databases, 1992.

Bober. P. and D. Dias. Storage Cost Tradeoffs for Multiversion Concurrency Control. Research
Report RC 18367, IBM T.J. Watson Research Center, Yorktown Heights, NY, July 1992.

Chan, A., S. Fox, W. Lin, A. Nori, and Ries, D., "The Implementation of an Integrated Concurrency
Control and Recovery Scheme,” Proc. 1982 ACM SIGMOD Conf., 1982.

Chan, A., and R. Gray, "Implementing Distributed Read-Only Transactions," IEEE Trans. on
Software Eng., SE-11(2), Feb 1985. ‘
DeWitt, D., et al., "The Gamma Database Machine Project," IEEE Transactions on Knowledge and
Data Engineering, 2(1), March 1990.

DeWitt, D., and J. Gray, "Parallel Database Systems: The Future of High Performance Database Pro-
cessing," Communications of the ACM, 35(6), June 1992.

DuBourdieu, D., "Implementation of Distributed Transactions," Proc. 6th Berkeley Workshop on Dis-
tributed Data Management and Computer Networks, 1982.

Easton, M., "Key-Sequence Data Sets on Indelible Storage," IBM Journal of Research and Develop-
ment, May 1986.

Eswaran, K., J. Gray, R. Lorie, I. Traiger, "The Notions of Consistency and Predicate L.ocks in a
Database System," CACM 19(11), 1976.

[Fujig0]
[Garc82]
[Gray76]
[Gray79]
[Gray81]
[Haas90]

[Hadz85]

[Hsia90]

[Josh93]
[Kolo89]

[Lai84]
[Livn89]
[Lome89]
[LomeS0]
{Lehm81]

[Mohag9]

[Moha90a]

99

M2266S/H Intelligent Disk Drive Technical Handbook, Publication FS810125-01 rev. B, Fujitsu
America, August 1990.

Garcia-Molina, H., and G. Wiederhold, "Read-Only Transactions in a Distributed Database,” ACM
Transactions on Database Systems, 7(2), June 1982.

Gray, 1., et al., "Granularity of Locks and Degrees of Consistency in a Shared Data Base," in Model-
ing in Data Base Systems, North Holland Publishing, 1976.

Gray, J., "Notes on Database Operating Systems," in Operating Systems: An Advanced Course,
Springer-Verlag, 1979.
Gray, ., et al., "The Recovery Manager of the System R Database Manager," ACM Computing Sur-
veys, 13(2), June 1981.

Haas, L., et al, "Starburst Mid-Flight: As the Dust Clears," IEEE Transactions on Knowledge and
Data Engineering, 2(1), March 1990.

Hadzilacos, T., and C. Papadimitriou, "Algorithmic Aspects of Multiversion Concurrency Control,"
Proceedings of the Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
1985.

Hsiao, H., Performance and Availability in Database Machines with Replicated Data, Ph.D. Thesis,
Computer Sciences Department, University of Wisconsin-Madison, Sept. 1990.

Joshi, Ashok, Personal Communication.

Kolovson, C., and M. Stonebraker, "Indexing Techniques for Multiversion Database," Proc. of the
Fifth IEEE International Conference on Data Engineering, 1989.

Lai, M., K. Wilkinson, "Distributed Transaction Management in Jasmin," Proc. of 10th International
Conference on Very Large Database Systems, 1984.

Livny, M., DeNet User’s Guide, Version 1.5, Computer Sciences Department, University of
Wisconsin-Madison, 1989. . .

Lomet, D., and B. Salzberg, "Access Methods for Multiversion Data," Proc. 1989 ACM SIGMOD
Conf., 1989.

Lomet, D., and B. Salzberg, "The Performance of a Multiversion Access Method," Proceedings ACM
SIGMOD Conference, 1990.

Lehman, P., and Yao, S., "Efficient Locking for Concurrent Operations on B-trees," ACM Transac-
tions on Database Systems, 6(4), December 1981.

Mohan, C., et al., ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking and
Partial Rollbacks Using Write-Ahead Logging, DBTI Research Report RJ7341, IBM Almaden
Research Center, 1989.

Mohan, C., et al., "Single Table Access Using Multiple Indexes: Optimization, Execution, and Con-
currency Control Techniques," Proceedings International Conference on Extending Database Tech-
nology, 1990.

[Moha90b] Mohan, C., "ARIES/KVL: A Key-Value Locking Method for Concurrency Control of Multiaction

[Moha92]
[Papa84]

[Papa86]

Transactions Operating on B-tree Indexes," Proceedings of the Sixteenth International Conferences
on Very Large Data Bases, 1990.

Mohan, C., H. Pirahesh, and R. Lorie, "Efficient and Flexible Methods for Transient Versioning of
Records to Avoid Locking by Read-Only Transactions," Proc. 1992 ACM SIGMOD Conf., 1992.

Papadimitriou, C., and P. Kanellakis, "On Concurrency Control by Multiple Versions," ACM Tran-
sactions on Database Systems, 9(1), March 1984.

Papadimitriou, C., The Theory of Database Concurrency Control, Computer Science Press, Rockville
Maryland, 1986.

[Pira90]

[Ragh91]
[Reed83]
[Robi82]
[Sarg76]
[Schn90]
[Silb82]

[Stea81]

[Ston87]
[Tay85]

[Teor72]

[Wud1]

160

Pirahesh, H., et al, "Parallelism in Relational Database Systems: Architectural Issues and Design
Approaches," IEEE 2nd International Symposium on Databases in Parallel and Distributed Systems,
Dublin, Ireland, July 1990.

Raghavan, A., and Rengarajan, T.K., "Database Availability for Transaction Processing,” Digital
Technical Journal 3(1), Winter 1991.

Reed, D., "Implementing Atomic Actions on Decentralized Data," ACM Transactions on Computer
Systems, 1(1), February 1983.

Robinson, J., Design of Concurrency Controls for Transaction Processing Systems, Ph.D. Thesis,
Comp. Sci. Tech. Rep. No. CMU-CS-82-114, 1982.

Sargent, R., "Statistical Analysis of Simulation Output Data," Procedings of the Fourth Annual Sym-
posium on the Simulation of Computer Systems, 1976.

Schneider, D., Complex Query Processing in Multiprocessor Database Machines, Ph.D. Thesis,
Computer Sciences Department, University of Wisconsin-Madison, September 1990.

Silberschatz, A., "A Multi-Version Concurrency Control Scheme with No Rollbacks,” ACM-
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, August, 1982.

Stearns, R., and D. Rosenkrantz, "Distributed Database Concurrency Control Using Before-Values,"
Proc. of the 1981 ACM SIGMOD Conf., 1981.

Stonebraker, M., "The Design of the Postgres Storage System," Proc. Thirteenth International
Conference on Very Large Database Systems, 1987.

Tay, Y., N. Goodman, and R. Suri, "Locking Performance in Centralized Databases,”" ACM Transac-
tions on Database Systems, 10(4), December 1985.

Teorey, T., and T Pinkerton, "A Comparative Analysis of Disk Scheduling Policies," Communica-
tions of the ACM, 15(3), March 1972.

Wu, K.-L., et al.; Dynamic Finite Versioning for Concurrent Transaction and Query Processing, IBM
Research Report RC 16633, IBM T.J. Watson Research Center, March 1991.

