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POL is a combination of elements from three domains: object-oriented programming, logic programming, and database. POL
integrates these domains using a shared data model and a close coupling of an existing object-oriented language, C++, with a
logic-programming language called Congress. We describe the components of POL, with particular emphasis on the interaction
between the object-oriented features of C++ and the logic-based features of Congress. We then illustrate the power of POL. with
three sample applications: a C++ program database, a bibliographic database, and a Unix-compatible file system for software
configuration.

1. Introduction

POL (Persistent Objects with Logic) is a mixture of three styles of programming languages: object-oriented,
logic-based, and persistent. Each style has features that make solving certain problems easier: Object-oriented
languages encapsulate state and behavior and support extension by inheritance; logic programming languages allow
programmers to concentrate on describing what a solution is rather than how to find it; persistent programming
languages relieve the programmer of the burden of saving and restoring data. By combining features from all three
domains, POL provides an environment in which application programmers can take advantage of the particular style
that best suits the problem at hand.

POL derives its object-oriented features from C++ [9] (§2.2), persistence from the Exodus database toolkit
[5] (§2.3), and logic-based features from Congress—a new language derived from Prolog [6] and LOGIN [1] (§2.4).
POL integrates these components with a common data model and a close coupling of Congress with C+.
(Although we make specific references to C++, any object-oriented language that has the essential features of
encapsulation and inheritance could be used.)

The data model provides a common abstraction for the logic-based and object-oriented features of POL.
From the perspective of logic programming, database objects are interpreted declaratively and are used to construct
programs and queries. From the perspective of object-oriented programming, database objects are class instances
sharing a common interface.

*This work was supported in part by the Defense Advanced Research Projects Agency under ARPA Order No. 8856 (monitored by the
Office of Naval Research under contract N00014-92-3-1937).
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The coupling between C++ and Congress is a two-way embedding: Each language appears to be an embedded
sublanguage of the other. Each language retains its own style; the embedding does not alter the syntax or semantics
of either language. Moreover, new data types that encompass both a procedural and declarative aspect can be
defined and used in both C++ and Congress as long as they conform to the abstract data model.

The object-oriented features of C++ play an important role in making the embedding possible: Abstract
classes are used to represent Congress data and procedures and the dynamic state of the Congress interpreter is
encapsulated in a class. These abstractions provide a tighter degree of integration than is possible with a simple
embedded interpreter and make the access to the other language more natural in that many of the differences are
hidden by the abstractions.

Each database element has a unique identity. Object identifiers are first-class values that may be embedded in
objects to create complex data structures. Manipulating the identity of objects is natural in a language with pointer
types such as C++. To achieve a similar effect in Congress, we have extended the “value-based” semantics of Pro-
log and provided Congress the ability to access the identity of database objects. For example, Congress has an
assignment operator that allows “database facts” to be updated in place. Thus updates to the database can be made
either from C-++ or Congress, whichever is more convenient.

The remainder of this paper is organized as follows. Section 2 describes the data model and each component
of POL. Section 3 contains more detail on the embedding of the logic and object-oriented languages. Section 4
illustrates the utility of POL with three applications: a lint-like tool for C++, a document and bibliography format-
ting system, and an attributed filesystem. Related work is discussed in Section 5. We conclude with a report on the
current status of POL, and our plans for the future.

2. Components of POL

This section describes the major components of POL and the relationships between them. We start with the
data model and then present in turn the object-oriented, persistent, and logic based facets.

2.1. Term Space

The common basis for all of POL is a global database called the term space, which is a directed graph with

labelled nodes and arcs. The label associated with a node is called its functor' and the label associated with an arc is
called its selector. No two arcs leaving the same node may have the same selector. A ferm is the subgraph of the
term space reachable from a node, called the root of the term. We occasionally identify a term with its root node,
when the meaning is clear from context. For example, the “functor of a term” means the functor of its root node.

The term space is “identity-based”: Two nodes with identical contents are nonetheless considered to be dis-
tinct. Nodes are explicitly created, and updates to a node do not change the node’s identity. In this way POL differs
from “value-based” Prolog and relational databases, and more closely resembles so-called “object-oriented” data-
bases. The term space is partitioned into program and data subspaces, with no arcs between them. The program
subspace is read-only from Congress.

All terms in the term space are persistent. POL assists with managing changes to the term space by support-
ing multiple versions of the term space called worlds using an algorithm devised by Driscol et. al. [7]. POL has
operations to save the current term space as a world, and to reset its state to any previously saved world. A save
operation does not copy the entire term space, but only an amount of data proportional to the changes made since
the previous save.

"This unfortunate choice of terminology is inherited from Prolog.
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2.2. C++

C++ is a strongly typed object-oriented language derived from C. C++ classes encapsulate both data and
operations on that data. C++ supports multiple inheritance and information hiding via explicit public/private
declarations. Subclasses can override methods of their super-class as well as add new data fields and operations.
We assume the reader has a basic reading knowledge of C++. Our examples will avoid the more exotic features of
the language. Excellent texts on C++ have been written by Stroustrup [25] and Lippman [17].

C++ classes are used in POL to provide a concrete realization of term space nodes and arcs. All classes are
derived from the abstract base class Term which represents a node and its outgoing arcs. Subclasses are Atomic
and InternalNode. Atomic nodes have no outgoing arcs. They are further classified according to the data
types of their functors: integers, real numbers, printable strings, byte strings (arbitrary binary data) or “yariables.”
(Variables are explained in Section 2.4.) An internal node contains a functor (which must be a printable string) and
a table of references to other nodes indexed by distinct printable strings. Internal nodes are similar to C structs, Pas-
cal records, SNOBOL tables, CLOS objects, and AWK associative arrays. Unlike structs or records, the number
and names of “fields” may vary dynamically and their contents are restricted to be non-null pointers to nodes. C++
subclass derivation is used to add additional behavior and restrictions to classes of internal nodes. We shall return to
this point in Sections 3 and 4.

2.3. Exodus

Exodus [5] is a toolkit for creating custom database systems. POL uses two components of Exodus, a low-
level storage subsystem called the Exodus Storage Manager and a persistent dialect of C++ called E. The Exodus
Storage Manager provides efficient access to arbitrary-sized untyped persistent arrays of bytes called “storage
objects,” which are identified by unique object identifiers (“OIDs™). The Storage Manager supports concurrency
control with two-phase locking, and serializable transactions with full recovery from hardware and software
failures. The B programming language [22] is an extension of C++ that supports persistent data—data that retains
its state between runs of a program. E syntax extends C++ with a “db” version of each primitive type and type con-
structor (dbint, dbclass { ... },etc.). Instances of db types can be either transient or persistent depending on
how they are created. Pointers to persistent dbtypes are represented by OIDs. When a db pointer is dereferenced,
the corresponding object is fetched from disk and the pointer is “swizzled” to a memory address. The object is
flushed back to disk and pointers to it are unswizzled at the end of a transaction. POL implements the term space
with persistent data structures.

Throughout this paper, all references to the C++ programming language should be understood as referring to
the E dialect of C++.

2.4. Congress

The heart of POL is a new language called Congress. Congress may be described as a logic programming
language, a deductive database query language, an embedded query language, or a library of classes for convenient
database access, depending on one’s point of view. Since Congress is implemented as a library of classes, any C++
program can use Congress as a “higher level” alternative to or enhancement of the raw C++ term interface.

As a logic-programming language, Congress is a dialect of LOGIN [1], an extension of Prolog supporting
cyclic terms. It provides transparent persistence, and extends the valued-based semantics of Prolog with the ability
to manipulate the identity of (data) nodes.

The following paragraphs briefly describe the syntax and semantics of Congress and compare it with Prolog;
Section 3 discusses features, such as update semantics, that derive from Congress’ embedding in C++. The reader
who is familiar with logic programming may skim this section.
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Congress programs are built from terms in the POL term space. A program is a set of procedures, a pro-
cedure is a sequence of clauses, and a clause is a sequence of terms. A clause consists of a single term called its
head and a sequence of zero or more additional terms called its body. The predicate of a clause is the functor of the
root node of its head term. A procedure is a sequence of clauses with a common predicate, referred to as the name
of the procedure. A program is a set of procedures with distinct names.

Congress has a character-string textual representation that may be used to enter or print programs or frag-
ments of programs, or to enter queries from the keyboard. A term # may be denoted f(s;=>t; - ,8,=>1,),
where £ is its functor, s; **° , s, are the selectors of the arcs with £ as their tail, and t; --- , t, are textual
representations of the terms at the heads of the corresponding arcs. A variable is denoted “@.” A rag (an
alphanumeric string starting with a capital letter) is used to indicate shared subtrees or cycles. For example, the
term

person
guardian

age

name father

person
29 Elizabeth

name
George

may be denoted?

F:person(
name=> "Elizabeth",
age=> 29,
father=> G:person{ name => "George", child => F ),
guardian=> G

).

A clause with head t, andbody t;, ..., t,isdenoted “ty :—ty, ..., t,.” The textual representation
also supports infix representation for common functors suchas + and * and Prolog notation for lists. For example,
the expression [a, b | Tail] denotes the same term as the expression cons(car => a, cdr =>
cons (car => b, cdr => Tail)). A missing selector implies an edge labelled with an integer and “:@”
following a tag may be omitted. For example, f (a,X) represents the same termas f (l=>a, 2=>X:@).

With these abbreviations, the set of textual representations constitutes a superset of the syntax of Prolog.
Congress is like Lisp—and different from most Algol-like languages—in that the abstract syntax (the term-space
data structure) is considered the “true” representation and the concrete or “surface” syntax (the textual representa-
tion) is treated as a crutch for entering program fragments or displaying them. This distinction is particularly impor-
tant in the context of the embedding of Congress in C++, where it is much more convenient to manipulate Congress
terms as data structures than character strings. The mapping between terms and expressions is not one-to-one in
cither direction. On one hand, a term may have many textual representations differing in the order of arguments, the
spelling of tags, or the unrolling of cycles. On the other hand, one textual expression may describe two isomorphic

2A functor that contains non-alphanumeric characters or starts with an upper-case letter must be quoted.
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terms with distinct identities.

Congress extends Prolog in two important ways. First, the successors of a node are indicated by keyword

rather than positional notation. This extension helps avoid programming errors.’ For example, the Congress expres-
sion employee(age=>25,salary=>30) is more readable than the corresponding Prolog expression
employee (25,30). Second, while Prolog terms are trees (except for identification of multiple occurrences of
the same variable), Congress allows arbitrary graphs, including cycles. Variables serve two purposes in Prolog:
They represent “wild cards” for pattern matching and they indicate sharing. Congress uses the functor “@” for a
wild card, while sharing is represented directly in the data structure and indicated textually with tags.

The operational behavior of Congress is defined by the same recursive backtracking search as in Prolog. A
goal (or “query”) consists of a term. It is called (evaluated, proved) by searching for a clause ty :—ty, ..., ty
whose head t, “matches” the goal. If no such clause is found, the call fails. Otherwise the first matching clause is
chosen and each of the terms t;, ..., ty iscalled in turn. When a call fails, the interpreter backs up by undoing
all of its actions since the last “choice point” (the point at which a clause was chosen) and chooses another clause.
The process continues either until all goals and subgoals have been successfully called, in which case the original
call succeeds, or until all alternatives have been exhausted, in which case it fails.

The heart of this process is the definition of “matching” between terms, called unification.* Congress uses a
variant of unification that supports cyclic terms [1]. The goal of unification is to determine if two terms are iso-
morphic, or can be made isomorphic by substituting terms for variables. Two terms unify if their roots match (have
the same functor) and corresponding successors (recursively) unify. That is, if both roots have arcs with the same
selector leaving them, the nodes reached by these arcs must also unify. As mentioned in §2.2, some nodes are
designated as variables; a variable matches any node. A side effect of a successful unification is an equivalence
relation that records which nodes were matched. Missing selectors do not prevent unification. If a selector appears
in one term but not the other, an edge to a new variable node is added an labeled with the missing selector. For
example the terms ¢ =f (a=>g,b=>@) and 1, =£ (b=>h, c=>1) unify, yielding the equivalence relation {{f,,
fz}’ {g, @2}, {@0, h}, {e,, i}}, where £, and f,are the roots of #; and #;, @, is the explicit variable node in £,

and @ and @, are new variable nodes added to ¢ and £,, respectively.

Computation takes place in a non-persistent extended term space, which contains copies of terms from the
persistent term space as well as an equivalence relation representing the result of unifications. The evaluation of a
call adds a copy of the matching clause to this extended term space and extends the equivalence relation with the
result of unifying its head with the query,5 The terms of the body are called in this modified space. If an
equivalence class in the extended term space contains exactly one data node, its identity is be the object identifier of
that data node. Classes that have no data nodes or more than one data node have no identity. (This concept is used
to define the assignment operator in Section 3.4.)

3. Embedding

This section describes the bridge between C++ and Congress. Each language can be viewed as an embedded
sublanguage of the other. Section 3.1 describes C++ access to the data and control structures of Congress. Access

31t also has a rather subtle effect on the definition of unification. See the LOGIN paper {1] for details.
“Background material on unification can be found in many logic programming texts and in an excellent survey by Knight [15].

SCopies are used to preserve the meaning of clauses as universally quantified formulz. This copying is called “renaming the variables
apart” in logic-programming literature.
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to the data and control structures of C++ from Congress is described in Sections 3.2 and 3.3, respectively. Section
3.4 investigates updates from Congress in more detail.

3.1. Embedding Congress in C++

The embedding of Congress in C-++ is straightforward: All of the major data structures of Congress are C++
classes, and the Congress
clauses, procedures and
the Congress interprete

rpreter and its control state are encapsulated by a class. Since Congress terms,
.5 are class instances, they can be accessed directly from C++, independently from
rpple, the (abstract) class Term, which implements the nodes and arcs of the term
Figure 1. (All figures appear in §3.5 starting on Page 9. Some details are omitted
“ns are shown.) The first three methods are for “direct manipulation” of terms by

space, has the interface s
and only public membez

C++ programs, such as
are used by both C++ programs and the Congress interpreter to access the state of a term. The last three methods

ssion-language parser and an interactive browser/editor. The next three methods

support updates. They are discussed in Section 3.3.1.

During the evaluation of a query, the interpreter makes copies of the terms appearing in the program and
records the results of unifications as an equivalence relation among the nodes of the copies (see §2.4). These copies
are instances of class ExtendedTerm (Figure 2). The first three access functions are similar to those of Term.
Union is used by the unification algorithm to record that two extended-term nodes have been matched, while
Deunion is used while backtracking to undo bindings. ~ Find returns a representative member of the equivalence
class containing this ExtendedTerm; tl and t2 are identified by the current equivalence relation if and
only if t1.Find()==t2.Find(). An equivalence class may contain variables and non-variable nodes with
equal functors. Realize generates a new transient term by copying the node and all nodes reachable from it,
choosing from each equivalence class a non-variable node if possible. Identity returns the identity of this
equivalence class if any (as defined in §2.4).

The volatile state of the Congress interpreter, including storage allocation and backtracking information, is
encapsulated in an instance of class Context (Figure 3). To invoke the interpreter, a C++ program creates a new
instance from a query and a program. Since each invocation of the interpreter is a separate object, it is possible for
multiple invocations to exist concurrently. It is even possible for the interpreter to invoke itself recursively.
Eval () runs the interpreter. If the top-level call succeeds, Eval () returns true and PrintResult () or
Result () can be used to access any bindings that were created. Subsequent calls to Eval () attempt to satisfy
the query in other ways. For example, given the program

p(X) - g(X).
pla).
g(b).

and the query p(Y), Eval() will succeed twice and fail on the third call. PrintResult () will print p(b)
after the first call, and p (a) after the second.

Result () materializes a copy of the query after applying all bindings generated by the call to Eval ().
For example, a C++ programmer could use the code in Figure 4 to find all the answers to a query and collect those
that passed a filter into a list.

3.2. Embedding C++ in Congress

From the Congress programmer’s perspective two features are needed for embedded access to C++: the abil-
ity to access C-++ class instances and the ability to call C++ procedures and methods. With multiple inheritance, any
C++ class can be made a subclass of Term, thereby making its instances available for use in Congress programs.
Access to C++ functions is provided through a feature called an external predicate (EP), which is a pair of C++
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procedures that behave similarly to a Congress procedure (see Section 3.3).

An instance of any descendant of class Term can be accessed by a Congress program. Depending on the
application, such classes can either hide all of their internal structure or present some of it as subterms. The sim-
plest approach is to make an object appear {0 Congress as a leaf term. This approach is useful for representing non-
term data such as binary images. For example, a class implementing Unix-like files might be defined as in Figure 5.
A Congress program can access the internal structure of these “opaque” objects only by calling external predicates.

In other cases, it may be appropriate to expose some of structure of an object as edges pointing to other
objects. By overriding the default edge methods, a subclass can define what its internal data looks like as a term and
control the ability to modify its data. For example, suppose a Unix directory object is implemented as a hash table.
A definition that makes it conform to the Term interface is shown in Figure 6.

3.3. External Predicates

Although a Congress procedure is represented as a list of clauses, each of which is a list of terms, the
Congress interpreter only requires that it conform to the abstract interface Procedure, shown in Figure 7. When
the interpreter needs to evaluate a query term Q, it looks up Q’s functor in a table of procedures associated with the
program to find the corresponding procedure and invokes its Call method, passing Q as the first argument. The
cal1l method for Congress procedures attempts to unify the query with the head of each of its clauses. If success-
ful, it returns the corresponding body in the result parameter continuation. The value/result parameter
workspace is nil on the initial call. The value returned in workspace by each call is passed back in the next
call. A Congress procedure uses workspace (o keep track of its place in its list of clauses. When no more
clauses will unify with the query, Call returns false. The procedure Backtracks () indicates whether this
procedure can backtrack. For Congress procedures, it returns true when there is more than one clause. It is used
by the interpreter for important optimizations that can only apply to procedures that do not backtrack.

Class Procedure has two subclasses: the class CongressProcedure just described and Exter-
nalProcedure. An ExternalProcedure contains pointers to a pair of C++ functions that implement
Ccall() and Clean(). A programmer who needs to perform a function that is more conveniently implemented
in C++ than in Congress need only write a pair of procedures with the appropriate interface and install them as an
external predicate in the current Congress program. An EP that needs to maintain state for backtracking can allo-
cate a block of storage and return a pointer to it in the workspace parameter. When a procedure that can back-
track returns false (indicating that no more answers are available for the current argument), the interpreter calls

the Clean function so that the EP can clean the workspace and delete it.®

Construction of external predicates is illustrated by a database of documents. Deriving class Document
from Term allows a Congress program to manipulate documents as Congress terms. If, moreover, the Docu-
ment class is implemented in a manner similar to the Unix directory example above, attributes such as title, list of
authors, publisher, etc. can be manipulated as subterms. A Congress procedure to check whether a particular per-
son is an author of the document with a given title might be written as

ig_author (T,A) :- document (title=>T, authors=>L),
member (A, L).

While simple and easy to understand, this procedure is inefficient. It exhaustively searches all documents, testing
each one to see if the supplied title and author match. The cur predicate could be used to halt the search once a

5The interpreter may also call Clean in certain other situations when it knows no more calls will be made.
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matching title is found, but the predicate may still search the entire database in the worst case. Suppose there is a
B-tree index mapping titles to document objects. Assume that the B-tree object exports a procedure
Lookup (char *title), whichreturns an Iterator object that iterates through all Document objects with
a matching title. If title is ALL_DOCS, Lookup returns an iterator that iterates through all Document
objects. We can add an external predicate doc_with_t itle by writing the procedures shown in Figure 8 and
installing them with the statement

TnstallEP("doc_with_title", doc_title_call, doc_title_clean, true);
(the last argument indicates that this EP may backtrack). The Congress procedure is_author becomes

is_author (T,A) :- doc_with_title(document (title=>T, authors=>L)),
member (A, L).

Note how doc_title_call uses the unify method of the Context object passed to it to compare the
remaining attributes in arg to each candidate object returned by the index. If arg contains any variables, they
will be be bound as a side-effect of the unification.

The new version of is_author still has the property that if the first argument is an unbound variable, it
will find any document by the named author, but if a specific title is supplied, it will use the index to avoid consider-
ing irrelevant documents. A slightly more complicated version could take advantage of an index on author names as
well.

External predicates have proven to be extremely useful. They are used to implement all of the built-in “non-
logical” predicates usually found in Prolog implementations, such as arithmetic operations, forall, and print,
as well as database operations and other functions that are awkward or impossible to implement directly in
Congress. Examples of the latter sort of operation are file system access and invocation of other programs. The
Congress interpreter is itself an external predicate so Congress programs can invoke the interpreter recursively.
Implementing built-in procedures separately from the interpreter has two advantages: Different algorithms can be
easily prototyped and application-specific code and data structures can be used.

3.4. Updates

A clean semantics for update operations appears to be difficult to specify for database query languages in gen-
eral and for logic-based languages in particular. In Prolog, updates are performed by the buili-in predicates assert
and retract, which add and remove clauses from the current program. Since Prolog does not distinguish program
from data (database facts are simply program clauses with empty bodies and no variables), these operations also
serve to update the “database.” Congress makes a clearer distinction between program and data. Although both the
program and data spaces are built from the same kinds of objects (Term and its subclasses), they are kept separate.
To support the identity-based semantics for the data space, it provides operations operations for creating and des-
troying data objects, and for updating an object in place.

To support the backtracking search used by Congress, each node has both an update method and an un-update
method (Figure 1). The update method of a term overwrites its state with values taken from the new_value argu-
ment (its functor and outgoing edges), saving enough information in the undo_record to allow the update to be
undone.

POL contains three EPs for modifying the data portion of the term space, create, destroy, and :=
(assignment). The EP create (term=>T) is similar to Prolog’s assert; it creates a copy of T and adds it to
the current program as a new data fact. The inverse of create, destroy (term=>T), is similar to Prolog’s
retract. It removes the data term identified by T from the current program and deletes its nodes from the data
term space. Assignment (: =) is similar to assignment in an imperative language. It invokes the Update method
on the identity (§2.4) of its left-hand side extended term with a copy of its right-hand side. (The assignment
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operation fails if the left-hand side extended term does not have a defined identity.) In both cases, the copy is
created by traversing the extended term, replacing all program nodes with new nodes allocate in data space. Using
the identity of the left-hand side is necessary to ensure that a clause such as

set_salary (Name, Amt) :- employee (name=>Name, salary=>Sal), Sal := Amt.

updates the data term matched by the first term in the body, rather than updating the (program) term itself. The copy
operation is needed so that the call

2- set_Salary("Solomon", 120000).

changes the Employee record to point to a copy of the atomic node 120000 contained in the query, rather than the
query itself.

Just as unifications are undone during backtracking, assignment saves the previous state of a node so that, if
backtracking occurs, any changes are undone. Changes made by assignments can be frozen by preventing back-
tracking, either by accepting the result at the top level call of the interpreter or by use of the cut predicate [27].
Because assignment changes the (data) term space immediately, the semantics of a program that contains an assign-
ment depends on the depth first search order followed by the interpreter. We are investigating a semantics that is
more “denotational” and less bound to implementation details through introduction of an explicit “sequential opera-
tor” similar to that of Warren and Manchanda [18] or by delaying the visibility of updates using the versioning
mechanism of POL.

3.5. Figures

dbclass Term {
public:
// Construction
Term{char* functor); // create a term with no outgoing edges
virtual Boolean AddEdge (char* selector, Term* child)
virtual Boolean RemoveEdge (char* selector)

// Access
virtual char* Functor();
virtual void Selectors(StringSet &label_set);
virtual Term* Edge(char* selector); // traverse an edge

// Updates
virtual Boolean IsDatal();
virtual Boolean Update (Term* new_value, TermUpdate &undo_record);
virtual void UnUpdate (TermUpdate &undo_record);

Figure 1
Interface for class Term
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class ExtendedTerm
{
public:
// Constructor (from a plain Term)
ExtendedTerm(Term* t);

// Access
char* Functor ();
void Selectors(StringSet &set)
ExtendedTerm* Edge(char* selector);

Page 10

Term* Identity(); // return the "identity" of this eqguivalence class

Term* Realize(); // return copy of current value as a Term

// Unification
void Union (ExtendedTerm* t, UndoStack &merges) ;
void Deunion {UndoStack &merges);
ExtendedTerm* Find();

Figure 2
Interface for class ExtendedTerm

class Context
{
public:
// Constructor
Context (Program* prog, Term* query);

// Running the interpreter

Boolean Eval(); // find next answer

void PrintResult (File* out); // print gquery with bindings applied

Term* Result(); // copy of query with bindings applied
// Support for External Predicates

void Mark(); // "mark" the unify-undo stack

Boolean unify (ExtendedTerm *, Term *);

void ResetToMark(); // undo unifications done since "mark"

Program* CurProgram();

Figure 3
Interface for class Context
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typedef Boolean Predicate(Term* t);
void find_all/{

Page 11

Predicate *filter, // acceptance criterion
Program* prog, // pointer to program instance
Term* query, // pointer to query

TermList &answerlist) // list to hold answers

Context context (prog,query);
while (context.Eval(})) {
Term* answer = context.Realize();
if (filter (answer))
answerlist .Append (answer) ;
else
delete answer;

Figure 4
Calling the Congress Interpreter

dbclass UnixFile : public Term {
public:
// override Term methods used by unification
virtual void Selectors(StringSet &lab_set) { lab_set = EMPTY;
virtual Term* Edge(char* selector) { return nil; }

virtual Boolean AddEdge (Term* ) { return false; }
virtual Boolean RemoveEdge (char* ) { return false; }
virtual char* Functor(); { return filename; }

// Unix-File methods

virtual int Size();

virtual int Read(int offset, int length, char* buffer);

virtual Boolean Write(int offset, int length, char* buffer);
private:

dbchar* filename;

dbvoid* contents;
}i

Figure 5
A Term Representing a Unix File

}
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dbclass Directory : public Term {
public:
Directory (Directory* parent) : Term("dir")
{ contents.add(".",this); contents.add("..",parent);
// Term interface
virtual Term* Edge (char* name)
{ return contents.lookup (name); }
virtual Boolean AddEdge (char* name, Term* t) {
if (contents.lookup(name) return false;
contents.insert (name, t);
return true;
}
virtual void Selectors(StringSet &lab_set)
{ contents.all keys(lab_set); 1}

// Unix directory methods
Booclean link(char* name, Term* entry)
{ return AddEdge (name, entry); }
Boolean unlink(char *name);
{ return RemoveEdge (name); }
// etc
private:
HashTable contents;
}i
Figure 6
A Term that Emulates a Unix Directory

Page 12

}

dbclass Procedure {
public:
virtual char* Name();

virtual Boolean Call (ExtendedTerm* query, FxtendedTerm* &continuation,
void* &workspace, Context* dynamic_state);

virtual void Clean(void* workspace);
virtual Boolean Backtracks();
}i
Figure 7
Interface of class Procedure
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Index DocsByTitle;

Boolean doc_title_call (ExtendedTerm* arg, void* &work, Context &context)

{

Tterator* docs = (Iterator*) work;
if (docs == nil) { // first time

ExtendedTerm* title = arg->Edge("title"”);
if (title != nil && !IsVariable(title))
// A title was supplied, so use index
docs = DocsByTitle->Lookup(title);
else
docs = DocsByTitle->Lookup (ALL_DOCS) ;
work = (void*) docs; // remember iterator for backtracking

}

Term* candidate = docs->Next();
while (candidate) {
context .Mark(); // mark unify undo stack
if (context.unify(arg, candidate))
return true;

else {
context .ResetToMark () ; // undo unifications

candidate = docs->Next ();
}
}

// no more candidates
delete docs;
return false;

}

// clean up code for doc_with_title EP
void doc_title_clean(void *work)
{

delete {(Iterator*) work;

}
Figure 8

doc_with_title External Predicate

4. Applications

To illustrate the power and flexibility of the POL approach, we describe three typical applications. The first
example is a database of type and class information for C++ programs coupled with a language for specifying pro-
perties of classes and relationships between classes. The second application is a text document database with sup-
port for bibliographic citations. These two applications have been designed but not actually implemented. The third
example is an actual working system, the attributed filesystem used in the CAPITL software development environ-
ment. It is outlined here and described in considerably more detail elsewhere [2].

4.1. C++ Design Constraints
The first example is inspired by a system called Clear++ [8]. In the authors’ words,

C-++ is an expressive language, but it does not allow software developers to say all the things about their systems that
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they need to be able to say. In particular, C++ offers no way to express many important constraints on a system’s
design, implementation, and stylistic conventions.

Clear is described as a greatly expanded version of the Unix tool Lint. Lint processes each source file of a C pro-
gram looking for questionable constructs such as unreachable statements, type violations, and unportable code. It
produces diagnostic messages and a file summarizing the type signatures of symbols imported and exported. A
second pass compares these summary files looking for type mismatches between modules. As the authors of
Clear++ point out, the flexibility of Lint is limited by the fact that the constraints it checks are wired in to the code.
Thus, for example, it is not possible to check local coding conventions.

Clear++ translates C-++ programs into an object-oriented database of summary information. Programmers
annotate programs with constraints written in an ad hoc constraint language called CCEL, which is based on first-
order predicate calculus. A separate tool applies these constraints to the database, looking for violations. Two
examples constraints are

e Every class name must begin with a capital letter.

e Every base class must have a virtual destructor.”

The functionality of Clear++ would be easy to implement in POL. We would use the same database of summary
information as Clear++. Each program component (class, member, function, etc.) is represented by an object. For
example, a class definition is represented by an object of type Class with attributes including its name, list of
superclasses, and list of methods. Instead of an ad hoc constraint language, we would simply use Congress. Data-
base objects can be made accessible as Congress terms as described above. An example class definition, expressed
as a term, might be

class {
file=> "button.h"
begin_line=> 140
end_line=> 159
name=> "CheckBox"
super_classes=> [ TextButton, ... ]
methods=> [ Press, ... ]

(The tags TextButton and Press represent references to other objects, of type Class and MemberFunc-
tion, respectively.)

Constraints written in Congress are easy to write and understand. The two constraints mentioned above can
be easily expressed in Congress.

o Every class name must begin with a capital letter.

class_name_constraint {class (name=>N}) :-
substr (string=>N, pos=>1, len=>1, substr=>I), is_capital(I).

7A base class is one with at least one subclass. The name of the destructor methed of a class is the class name preceded by a tilde. Any
method can be declared to be virtual. Subtle errors can occur if the virtual keyword is omitted in this context.
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where substr and is_capital are external predicates for manipulating strings.
e Every base class must have a virtual destructor.

virtual destructor_constraint (C:class) :-
is_base_class(C), !, has_virtual_destructor(C).
virtual destructor_constraint (C).

is_base_class (B:class) :-
class (super_classes=>S5), member_of (B,S) .

has_virtual_destructor(Class(methods:>M, name=>ClassName)) :-
strcat (strings=>[""", ClassName], result=>DestrName),
member (method (name=>DestrName, is_virtual=>true), M).

A query that prints all violations of the latter constraint is

?- class(C), not({ virtual_ destructor_constraint (C) ), print(C), fail.

An advantage to using a general-purpose system like POL, is that the information is available for other pur-
poses beyond constraint checking. For example, someone trying to understand a complex program may want a list
of all methods of a class, including methods defined in the class and methods inherited from superclasses. A query
that produces such a list is easy to express in Congress.

all_methods (class (methods=>M, superclasses=>S), Result}) :-
add_methods (M, S, Result) .

add_methods (M, [First | Rest], Result) :-
all methods (First, Inherited),
union (M, Inherited, M1},
add_methods (M1, Rest, Result).

add_methods (M, [1, M).

where union(L1,L2,Result) merges the lists L1 and L2 eliminating duplicates.

4.2. Document Database

Computerized document formatting systems often come with tools for looking up citations and generating
bibliographies. Examples under Unix include Refer, Bib, and BibTeX. They allow citations in the body of a docu-
ment to be specified as a list of keywords. The tool scans the document, looking up each such citation in a biblio-
graphic database. If a citation does not match any document, or if it matches multiple documents, the tool reports an
error. Citations are replaced by annotations such as superscripts or bracketed numbers, and the cited references are
collected and listed in a bibliography at the end of the paper. The bibliographic database is intended to be shared by
many papers, perhaps written by different authors.

Musliner ez, al. [20] have pointed out problems with these systems. First, the bibliographic “database” is not
a true database. It lacks such database facilities as concurrency control, recovery, and distributed access. Second,
references can become “stale” over time. A common problem experienced by users of these systems arises when
they attempt to process a document they wrote some time ago. Because new items have been added to the database,
citations that were perfectly fine when the document was written have become ambiguous. This problem can be
avoided by saving the document with the citations already processed, but then the document will not track improve-
ments in the database, such as error corrections, or updated references (for example, progression from “submitted
for publication” through “to appear” to “September 1993, pp. 213-245”).
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A document formatting system built using POL could solve these problems. The persistent component of
POL provides concurrent network access, locking, and recovery; hence sharing a database is easy. Congress, with
its matching capabilities, is good for searching the database given imprecise information, and C++ is useful for
state-based programming such as formatting, /O, and index maintenance.

In such a system each document would be represented by a term with attributes authors, title, etc., as
well as contents (the actual text of the document). Documents not stored in the database but referenced from it
would missing the contents attribute. Citations could be represented as direct pointers to document objects, or
as predicates, describing the intended target. For example, a database entry that would be represented in Refer as

[

oe
oN4ga P

Paul Adams
Marvin Solomon
An Overview of the CAPITL Software Development Environment

Fourth International Workshop on Software Configuration Management
Baltimore, MD

May, 1993

oe

@ 0P

o

might appear in POL as

doc (
title=>"An Overview of the CAPITL Software Development Environment"
authors=> [
person(last=>Adams, first=>Paul),
person (last=>Solomon, first=>Marvin) ]
contained_in=>SCM4,

contents=>text{...),

cites=>[
citation (keywords=>["Ait", "Kaci", "LOGIN"]},
citation (keywords=>["Adams", "Solomon", "CAPITL"]),

]
)

SCM4: conference(

name=>"Fourth International Workshop on Software Configuration Management',
cshort_name=>"SCM 4",

publisher=>IEEE,
date=>date (month=>May, year=>1993),
location=>"Baltimore, MD."

).
IEEE: publisher( ... )

In this example the conference containing the paper is denoted by a pointer (indicated by the tag SCM4) to a
separate term. Although not necessary, storing items such as conferences as separate, shared entities ensures that all
documents will have consistent information, such as abbreviations and dates. Formatting tools could take advantage

of this detailed information to support a choice of formatting styles. This mechanism is analogous to Bib string
macros, but more structured and more flexible.

We have shown the citation information represented as a separate attribute. The contents could be created by
an ordinary text editor with citations indicated as they are for Refer or Bib. (See the next section for a mechanism
that allows existing text editors to access attributes of POL objects directly.) A simple tool would scan the contents
of the document looking for citations and replacing them by indices into the citations list. Another tool could
generate a bibliography from the citations. To avoid the problem of stale references, one could easily write a
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Congress program that would check that each citation identifies a unique document, and add a pointer to that docu-
ment to the citation term. Other forms of citations are also possible, including more complicated predicates
than simple keyword matching.

As in the previous example, storing information in a POL database allows it to be used for other applications,
such as a citation index. For example, a Congress query to find all the documents co-authored by “Paul Adams” and
at least two other authors is easily specified.

72~ D:doc (authors=>AList), member_of (person{last=>Adams) , AList),
AList = [Al,A2,A3|Tail], print (D), fail.

4.3. The CAPITL Object-base

We have used POL. to build a database of objects or object-base as part of the CAPITL (Computer Aided Pro-
gramming In The Large) [2] project. The CAPITL object-base can be considered an enhanced version of the Unix
file system: More types of objects are supported, the set of attributes of an object is extensible, complex relation-
ships among objects can be represented directly, and versioning of the entire database is efficiently supported.

Each object in CAPITL. can be viewed as a “heavier weight” term that has certain fixed selectors with built-in
semantics. Additional methods support Unix filesystem operations such as permissions, reading and writing. Other
selectors are added by CAPITL. to describe properties of each object necessary for software development such as an
object’s type.

CAPITL extends the set of POL base classes with special purpose internal node classes used to represent dif-
ferent filesystem objects. All CAPITL objects inherit from the class Object which contains the integer attributes
owner, group, permissions, mtime, at ime, and ctime, interpreted as in Unix, as well as name (the

final component of the pathname) directory (the containing directory),® and contents.

Objects are further classified as directories, symbolic links, and files. A directory object is similar to a Unix
file-system directory. Its contents atiribute is a list of references to other objects. Its implementation is similar
to the example in Section 3.2. The contents ofa symbolic link is a pathname.

File objects are further classified as plain, delta, term, and composite. The contents of a plain file object
is a byte-string atom. It has exactly the same semantics as a Unix “plain” file (see §3.2). Delta files have additional
operations to “compress” and “uncompress” their contents. Delta files represent consecutive versions of their con-
tents as delta lists using an algorithm similar to RCS [26]. The contents of a term file is an arbitrary Congress
term. A composite file, like a directory, contains a list of references to other objects, but it does not emulate all the
behavior of a Unix directory, nor is it constrained to be part of a strict tree structure.

CAPITL uses the versioning mechanism of POL to maintain multiple snapshots of the database. Each opera-
tion accessing the CAPITL database is done in the context of a designated current world, and any changes made by
an operation affect only this world. A world is either modifiable or committed (read-only). There are mechanisms
to choose a current world, commit a world, and spawn a new world as a child of an existing committed world.

There are two means to access the CAPITL object-base: an X-based browser and a Unix compatibility inter-
face called Emulated File System (EFS) [24]. The X-based browser uses the C++ interface of terms to display CAP-
ITL objects and to navigate the object-base. The browser supports visiting any object or directory and uses type-
sensitive displays to depict the contents attribute of an object; other attributes are displayed using the Congress
expression language (82.4).

8CAPITL does not support the equivalent of Unix “hard” links. Thus each file has a unique name and a unique containing directory.
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EFS allows programs to access CAPITL objects as if they were Unix files. It is based on the Network File
System (NFS) facility [23], which is included in most versions of Unix. The EFS daemon efsd emulates an NFS
server, treating a CAPITL, database as a mounted file system, and allowing its objects to be manipulated by standard
system calls (open, read, write, seek, 1link, stat, etc.) as if they were actual Unix files, directories,
and symbolic links. Neither client programs nor the Unix kernel need be modified in any way. Thus standard edi-
tors such as vi or emacs can be used to edit the contents of file objects, and standard tools such as cc or Id can mani-
pulate them.

Congress is used in CAPITL in two ways. As a query language, Congress allows objects to be selected by
arbitrary predicates on their attributes, rather than forcing a strict hierarchical classification. As a programming
language, Congress is used to construct tools that build and maintain configurations of software objects. The
descriptive properties associated with CAPITL objects are used to ensure consistency of the configurations.

5. Related Work

There are three dimensions of Congress that interact: persistence, object-oriented programming and logic pro-
gramming. While many researchers have concentrated on combining object-oriented and logic programming, or
logic programming and persistence, few have tried to tie all three together. For completeness we consider some non
object-oriented imperative languages when it is clear that their integration technique would work in an object-
oriented setting.

One approach to combining logic and object-oriented programming is to add object-oriented features to a
Jogic programming language. For example, Prolog might be extended with built-in operators for declaring classes
and inheritance and explicit send and receive predicates for method invocation[10,28]. An advantage of this
approach is that it uses Prolog implementations, but it is unable to blend the procedural mechanisms of traditional
object-oriented languages with the backtracking search of Prolog.

An alternative is to add logic programming features to an object-oriented language by extending the behavior

of the object-oriented language’® with Horn clause predicates [4, 12, 14]. This extension allows a tighter integration
of the languages in which class methods may be written in a logic style.

A third alternative is to take two existing languages and create a bridge between them. The power of this
approach is constrained by the bridge. For instance, the bridge described by Koschmann and Evans [16] imple-
ments function calls between LOOPS and Prolog, so LOOPS programmers can write methods in Prolog and Prolog
programmers can access LOOPS objects. However, their bridge does not permit backtracking between the two
languages and relies on the special hardware of a Lisp/Prolog machine.

Quintus Prolog [21] provides a software bridge to other programming languages, including C, Fortran, and
Pascal. In Quintus Prolog programmers can call “foreign language procedures” (or FLPs) and pass terms as both in
and out parameters. Library functions are used in the FLP to access terms and build new terms. For example in C,
there are QP_put_xxx and QP_get_xxx for atoms, lists, and other Prolog data types. These functions are analogous
to the methods of the class Term in Congress. The Quintus foreign language interface also allows FLPs to call the
interpreter and receive solutions one at a time. Although quite powerful, their foreign language interface does not
have the abstraction and encapsulation that an object-oriented language provides and hence programmers cannot
extend the behavior of terms using inheritance.

9.4+ does not allow such extensions without changing the compiler; languages such as Smalltalk-80 or LOOPS allow a programmer {o
add new meta-classes, which is analogous to altering the interpreter for a language.
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Our embedding lies between the bridge approach and a complete integration of logic programming with C++.
The embedding of Congress in C++ is similar to the FLPs of Quintus: Instances of Congress classes such as Pro-
gram, Procedure, and Context form a bridge to C++ via their methods; C++ programmers can call the
interpreter to solve queries. In addition, however, the inheritance of C++ allows a term interface to be added to
existing data structures enabling access from Congress programs.

Through its use of E, POL gets the database features that Exodus provides: persistence, identity, and con-
currency control. None of the other approaches for combining object-oriented and logic programming have these
features.

Persistence has been added to logic programming languages in many different forms. One approach focuses
on the logic capabilities of the language and usually restricts the data types to avoid function symbols. Here the key
idea is to extend relational databases with inferencing. A good survey of this approach can be found in Gallaire et
al[11]. Simpler approaches use a relational database as a repository for facts and couple that repository with an
existing Prolog implementation [13]. Our approach is closest to that of Moffat and Gray [19] who implement Pro-
log in the persistent language PS-ALGOL[3]. We differ from them by giving external predicates the possibility of
backtracking.

6. Status and Future Work

A prototype of POL is working and has been tested extensively during the construction of CAPITL. POL’s
extendible data model, versioned term space, and embedded logic programming language provided a good platform
on which to explore the logic-based approach to software development used by CAPITL.

The ideas in POL originally grew out of the database and programming needs of CAPITL, a purpose which it
has served well. We are intrigued by the potential of applying the POL approach to a much wider range of applica-
tions. Two examples are outlined in Sections 4.1 and 4.2. These applications have been designed but not yet imple-
mented. We need to produce working prototypes of these applications to verify the practicality of the approach and
search for additional applications to explore its generality.

In addition to finding new applications, there are number of extensions that would make POL better and easier
to use.

Performance. The speed of Congress programs appears to be a bottleneck in CAPITL. Known compilation tech-
niques and interpreter optimizations for Prolog have not yet been applied to Congress. Adding some of these tech-
niques to Congress is “simply a matter of programming.” Others may conflict with the circular unification and
object identity that are essential features of Congress. Additional research may be needed before they can be
applied.

Congress Programming Environment. Currently a Congress programmer has little support for constructing
working programs. There is a primitive trace facility, but it is verbose and awkward. A simple profiler that counts
procedure calls is also available. We would like to add an interactive debugger and better profiling capabilities.
Better support for writing EP’s is also needed.

Updates Although updates from Congress programs have been used successfully in CAPITL, they require
significant programming skill to be used effectively. One problem is the current update operator does not have a
“logical” semantics. We are exploring other approaches, as indicated in Section 3.4.
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Logical Semantics The semantics of Congress are specified operationally. We would like to construct a denota-
tional semantics, perhaps based on minimal-model techniques. Some of the groundwork has been laid by Hassan
Ait-Kaci. Techniques from modal logic as suggested by Manchanda and Warren may be appropriate to modelling
assignment.

C++ Methods Congress programmers can call C++ methods by writing an external predicate for each method call.
Such EP’s are simple to write, but tedious. We would like to extend the syntax of Congress to support method calls
and add to the compiler the ability to generate the necessary EP’s automatically.
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