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Abstract

In this paper we analyze the mean completion time of a fork-join barrier synchronization for a parallel program
model proposed in previous literature. The task service times in the model are derived from the total job demand by
ratios of uniform random variables. We first compute an analytic expression for the mean time to barrier completion,
S(n), for jobs that have n tasks. This expression is an alternating series of combinatorial terms that is numerically
unstable for large values of n if summed in straightforward manner. We next derive an alternate method of computing
S(n) that consists of an infinite series of positive terms that sums to less than 1. We obtain error estimates for
truncated sums of this series and using the error estimates compute S(n) to a desired level of accuracy. Finally,
we compare estimates of the mean time to barrier completion with other common models of parallel program task

execution times. The main emphasis of this paper is on the techniques used to derive and compute S(n).
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1 Introduction

Analytic models for parallel programs often assume programs to be of the fork-join type where a program
forks into n tasks that synchronize (join) at a barrier. The time to completion of a single barrier is the time
for the last task to reach the barrier. To compute the mean time for barrier synchronization we need to
know how total job demand! is divided among the tasks of the fork-join program. One model of division of

total demand amongst tasks is as follows. Consider a fork-join program with n tasks and total job demand

D. The service requirement of the jth task, j = 1,2,...,n is given by the random variable
U,
Tj = —D, (1)
> U
i=1
where Uy, . .., U, are independent and identically distributed random numbers uniformly distributed between

0 and 1. This model has been used in two previous simulation studies of the performance of multiprogrammed
parallel processor allocation policies [5, 3]. Note that the randomness in the above division of demand reflects
the fact that different programs with n tasks will in general have different divisions of demand amongst their
tasks, rather than randomness in task service times. In fact, a recent paper by Adve and Vernon [1] makes
a strong case that for a given parallel program one can essentially treat task service times as deterministic
and include just the mean communication overhead into the task service time. In the above model this is
represented by fixing the values of U, j = 1,2,...,n for a given program.

The mean service time (barrier completion time) of a fork-join program with n tasks is given by
S(n) = Elmax{T1,...,Tn}], (2)

where we assume that all tasks execute in parallel, each on its own processor. The simulation studies
mentioned above did not analytically compute the mean service time for the model given by (1) because
they were interested in computing the mean response time of a multiprogrammed system under certain
workload conditions. In this paper we are concerned with the problem of how to analytically compute the
mean service time of the program model given by (1). This will yield insight into how easy is it to analyze
the model for performance evaluation of a multiprogrammed system. Moreover, estimates of S(n) will also

determine how well this model compares to the best case of linear speedups under which S(n) = D/n, and

1'We refer to job demand as the total execution time on a single processor.



how well it compares to other models for a mix of parallel programs.

We first compute an analytic expression for S(n) using the model given by (1). This expression is an
alternating series of combinatorial terms and is numerically unstable for large values of n if summed in
straightforward manner. We next derive an alternate method of computing the same expression for S(n)
that is numerically stable for large n since it consists only of positive terms rather than alternating terms.
This derivation involves techniques that should be of interest to numerical analysts and mathematicians.
Using this alternate derivation we compute the mean barrier completion times as a function of the number
of tasks in the program (assuming that each task runs on its own processor). We also discuss how the
estimates of mean barrier completion times compare with other models of program behavior.

The rest of this paper is organized as follows. Section 2 derives an analytic expression for S(n). Section 3
demonstrates the limitations of a straightforward computation of S(n). In Section 4 we derive an alternate
way to compute the same expression for S(n). Section 5 studies the numerical stability of the alternate
method, and finally Section 6 plots S(n) versus n using the derivation from Section 4 and then compares

the estimates of S(n) with two other models of task service times..

2 Analytic Expression for S(n)

In this section we compute S(n) given by equation (2) where the task service times 7}, j = 1,2,...,n are
given by equation (1). For the sake of convenience we set total job demand D = 1, which means that

0 < S(n) < 1. By definition we have

Un
S(n) = // /max< 1W,~~~,Z?:1Ui> duy ...du,
// /max(ul,,w,un) duy . du,

>

/ / / Un duy . dupoydun. (3)

Zuz

The last equation follows by symmetry of the integrand in the n dimensional hypercube [0,1]" (each of

U1, ..., Un is maximum in a particular region of [0, 1]™ and the value of the integral is the same in each such
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region.) For example, when n = 2 we have

1 pug 1 1
5@ = / / max( u1,u2) dujduy = 2/ / U duyduy = 2/ / Uy dusdus.
Uy + Uz o Jo U1tu2 0 Jup U1+ U2

We will use equation (3) to obtain the following expression for S(n).

Theorem 2.1

u:

(n) 2),Z< )( in—i"%In(n—1) n=2,3,... (4)

Note that S(1) = 1 by definition (since D = 1).
In order to prove Theorem 2.1 and also for the purposes of Section 4 we will make extensive use of the

following proposition.

Proposition 2.1 For any real numbers a, b, and c

S (7)) =0, 2201 mot ®)

Proof.

-

i ( )( )i (a+blc—i)" = io <T> (—1) [';:7 {e(a+b(c—~i))x}

i=0 1=

dl a c:L'm m i, —~bri
— W[e(+b)z<i>(~l)eb:l

i=0 =0

_ [(a+bc)x( __e-bx)m}

d’L‘ z=0

= 0, £=0,1,...,m— 1L

The last equality is true because the £th derivative of the expression (£ < m) has (1 — e~y ~L as a factor,

which evaluates to zero. |

We will also make use of the following equation (which is obtained by integration by parts).

jna s m_Mi nia T ]
/(a+ba:)l(+b)d = S (1(+b) +1> (6)



We are now in a position to prove Theorem 2.1 which follows almost immediately from the following

Lemma. We will use the notation o » to denote ug + urp1+ .. .4+ up, 1 <k <n (where o = up).

Lemma 2.1 Let

Uy Unp
Xj(un):/ / Un durduy...duj, j=1,2,...,n—1L
0 o0 Oin

Then
Xj(un) 1),Z< ) Di(0jp1n+ (G = Dun) P In(ojprn+ (G = un), §=12,...,n=1. (7)

Proof. We prove this Lemma by induction on j.
1. Basis step: Consider j = 1. By definition

Up=u

Un o,
Xi(up) = / % du; = [u, In o1nlyi 20"
0 Oin

= up(In(oz,n + un) — Inoy ),

which satisfies (7).
2. Induction Hypothesis: Assume (7) to hold for j =1,2,.. .k, k <n—1.

3. Show that (7) holds for j =k + 1: We have

Xeg1(un) = / Xj (un)duga
0

Up k
= ) Z ( ) Hopgrn+ (k= Dun)* " In(opy1,n + (k= un) dugyr

i

k
u k
e (=1 1n+(k—1iup ln(a 1o+ (B —Dug) dug
(k—l)!iz:%(z) )/ @1+ (k= Dun) ™ (11,04 (b = Dun) duiis

We evaluate this integral using equation (6) (set @ = 41,0, b = (k—1), & = un, and j = k — 1) to get

Upp1=Un

Kin(vn) = @%;0 (]Z>(_1)i [(UHM_I_IEL fon)” <ln(¢7k+1n+( Z)un)"lﬂ

Uga1=0

- E}YIZ (’?)(_1)1' {(am,n b (k41— d)up)* (m(am,n 4 (k41— i)up) — %) -



(Crs2n + (b= Dun) <hl(0k+2,n + (k = fun) — %)]
_ fé( ) ~1) [fie1 — £,

where

fi = (Organ + (k= i)ug)* (ln(0k+2,n + (k= 1Jun) = %) ”

The above readily simplies to

Xig1(un) = ufll -f‘l + g:l(_l)iﬂ {(li 1) * <]:>}f1 - (_l)kfk]

L i=0

u ot E+1 ]

= T |f + D 1)'“( >fz + (D
L i=0

i=0
k41
= -E!_Zz_;(_l) ( . )(ak+2,n+(k+1—z)un)’“ <ln(0k+2,n+(k+l—z)un)— E)

Comparing this equation with (7) for j = k + 1, we note that the only difference is that the —1 [k term

is missing from (7). Hence it remains to show that

L+1

"—z 1)( >0'k+2,n+(k+l—~i)un)k:0

This readily follows from Proposition (2.1) by setting m =k +1, a = op42n, b =un, c =k +1, and

£=1Fk < k -+ 1 in the Proposition.



The proof of Theorem 2.1 easily follows from Lemma 2.1.
Proof of Theorem 2.1:

From equation (3) and Lemma 2.1 we have
1
S(n) = n/ Xn-1(un) dug
0

= n/ol (—7;%”—2? tg: <n: 1) (—1)i((rn,n +(n—1- i)un)”_2 In(onn+(n—1—1u,) du,

un((n — Dun)" 2 In((n — D)un) dug

1
1)i(n —4) 2/ " Y(Inu, + In(n —19)) du,
0

n n Upz=1
-2 [u" <ln Up — —1—> + E'iln(n — z)]
n n n

Up==0

n-1
(=1)i(n— )" 2In(n — &) — 1_ Dl > (": 1>(——1)"(n—i)”“2
1==0

= mE Y; ("‘Z“ 1> (=1)(n = )"*In(n — 1) — 0

The last summation evaluates to zero by virtue of Proposition 2.1 (set m=n—1,a=0,b=1, c=n, and

L=n—-2<n-1) |

3 Numerical Instability of Straightforward Summations

This section explores two straightforward ways of summing the right hand side of equation (4). We show
that both these methods are numerically unstable for n > 25. In both cases the instability results from
subtracting two large numbers that are almost equal to each other resulting in significant loss of precision.

In fact, both methods produce negative values for S(30) which is clearly impossible since S(n) >0, Vn.



To begin with we note from (4) that S(n) simplifies to

n-1
1 i *\ 7 2 .
S(n) = (n—l);m(~l) (n—19)""% In(n —1), n>1
n-—1 ) i n—i n—1—i n—1i
= (n—l)Z(——l)’ln(n—i) H( . > H ( - >
=0 j=1 J j=2 J
The first method of summation (called A1) that we examine does precisely what the above expression states.
That is,
n-1 i
AL: S(n)=(n—-1) > (-1)'f(D),
1z=x0
where

s = min -0 TT (%) I (=)
e A = R
We computed S(n) using method Al on a DECstation 3100. The method was coded in C using double
precision arithmetic. Figure 1 depicts the values of S(n) that were obtained using this method. Note the
anomalous behavior of $(n) after n = 25. By definition S(n) is nonincreasing and positive (see equations (1)
and (2)). However, Figure 1 shows that 5(29) > S(28) > 5(26) > S(25), and furthermore S(30) < 0. This
clearly reveals that method A1l is numerically unstable after n = 25.

To obtain insight into the numerical instability of this method we note that the computation proceeds with
(—1)! f(¢) being added to the partial sums at every step i. If the partial sum is close to f (7) in magnitude then
this will result in loss of significance if the partial sum up to step 7 has an opposite sign to that of (=1¥f(3). A
closer examination of the partial sums obtained using method A1l confirms our conjecture. Table 1 tabulates
some of the partial sums s(k — 1) versus (—1)* f(k) for n = 30 where s(k—1) = Zf;ol(——l)if(i). This partial
sum is added to (—1)* f(k) at the k" step. From the table we see that the partial sums s(k — 1) are quite
close to (—1)F f(k) in magnitude but opposite in sign for k& < 25 and the cumulative effect of the loss of
significance up to k = 25 shows its impact after k = 25 when the values of f(k) are almost zero. The loss of
significance due to the previous additions has caused the partial sum at k = 25 to take on a negative value
of approximately —0.05 which causes the resultant value of S (30) to be negative. We therefore need a better

way of summing (4).
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Figure 1: S(n) versus n: Method Al

k

s(k—1)

(=DFf(k)

1
)
10
15
20
25
26
27
28
29

8.800111e+10
2.429620e+13
-1.273704e+13
1.796136e+10
-2.553012e4-04
-4.971860e-02
-4.971876e-02
-4.971876e-02
-4.971876e-02
-4.971876e-02

-9.778774e+11
-5.999811e+13
1.821735e+13
-2.024436e+10
2.608123e+04
-1.610562e-07
4.128240e-11
-1.154056e-15
6.102735e-22
-0.000000e4-00

30

35

Table 1: Comparison of partial sums and sequence terms for n = 30: Method Al



Since the previous method of summation caused errors due to the addition of numbers that were close to
each other in magnitude but opposite in sign, the second method that we examine (method A2) simply adds
the positive terms of the series first, then the negative terms and finally adds these two summands. More

precisely, we have

L(n=1)/2] l(n=1)/2)-1
A2 S()=(n-1)¢ > f@i- > J@i+1)y,
1=0 =0

where f(4) is as defined before. Figure 2 plots S(n) versus n as computed by method A2 on a DECstation
3100 using double precision arithmetic (the method was coded in C). We see that method A2 fares no better

than method Al. The reason for this is as follows. By definition 0 < S(n) < 1, n > 1 (since D = 1 in
equation (1)). Consider the values of the summands in method A2, that is, s.(n) = Z}(:%_l)/zj f(2i) and

so(n) = Z}zrg_l)/zj'l f(2i 4+ 1), corresponding to sum of even terms and sum of odd terms respectively.
Table 2 displays s.(n) and s,(n) for various values of n, and we clearly see that both terms are very much
greater than 1 which is the upper bound on S(n). In computing each of s.(n) and s,(n) there has already
been some loss of precision which is insignificant for the values of s.(n) and s,(n) themselves, but when

we take their difference the loss of precision creates a significant impact. As a result we observe the same

anomalous behavior in Figure 2 as we did in Figure 1.

n se(n) s0(n)
1.579812e+01 | 1.571134e+4-01
10 | 5.161556e+03 | 5.161535e+03
15 | 2.020793e+06 | 2.020793e+06
20 | 8.776530e+08 | 8.776530e+08
25 | 4.060365e+11 | 4.060365e+11
30 | 1.959499e+14 | 1.959499e+14

Table 2: Sums of even and odd terms: Method A2

The lessons to be learned from this section are twofold. First, we should not use an alternating series in
which the partial sum is close to the next term in the sequence. Second, we should not rearrange the series
such that large numbers that have to be subtracted from each other to estimate (4). In the next section we
propose an alternate method to evaluate the RHS of (4) in which each term in the summation is positive,

and thus we eliminate the problems of this section.

10



-3.0 | | ] ] | | |
0 5 10 15 20 25 30 35

n

Figure 2: S(n) versus n: Method A2

4 Alternate Method of Summation

In this section we explore an alternate method for summing (4). Rather than summing (4) as an alternating
series of positive and negative terms we express it as a sum of positive terms only as given by the following

theorem.

Theorem 4.1

where

il 1 i=0

d? = e n>0, and dY=
].Z:(:) AR ' 0 otherwise

Note that (8) is an infinite series; we will study its numerical properties in Section 5 where we observe how
quickly the series converges to its limit.

Proof of Theorem 4.1:

11



To prove this theorem we start out with the expression for S(n) as given by equation (4). That is,

S(n) (n_2),2<""1> ) (n —i)* *In(n - i).

In order to obtain a series of positive terms only we need to remove the (—1)¢ from the series. However, it
is not possible to simplify the series directly because of the presence of the In(n — 7) term. As a result we
first write In(n — ) as In(n(1 — i/n)) = Inn +In(1 — i/n), where In(1 — i/n) will be rewritten using a power

series expansion. We have,

s = s <"';1><-1f<n-—i>“*{m+1n<1~%>}

_ (—n—-_l?)-!lnng (” - 1>(w1)i(n —irt 4 5 (" B 1) (=1)(n =" In <1 B ;;)

1=0 j=

- o (7 e (- '>“ln<1—~:;>)

where the first summation is zero by virtue of Proposition 2.1 (set m =n—1,a =0,b=1,¢c = n, and

t=n—-2<n—1). Let p(z) = —(1 — )"~ % In(1 — z) so that

S(n) = -@”—:_;—), zj (”; 1)( D p(i/n).

Taking the power series expansion of p(z) we get
p(z) = —(1—2z)""? In(l - z) Za]aﬂ

Note that ag = 0 because p(0) = 1.In1 = 0. We will determine the coefficients a; once we simplify S(n) a

bit further. We now have

sw = S S (e ek

i=0 j=1




By Proposition 2.1 the inner sum evaluates to zero for j < n — 1. Therefore,

o = o 5 85 e

nt—? 2 An 14t it gy | 1)i+t a1+t 9
(n—2)! Z -+t i (0 h ¥
£=0 i=0

The last equation was obtained by substituting £ = j—n—1,j > n—1 We now determine the a;’s for

j > n—1. Expanding each of the terms of p(z) as a power series, we get

pe) = —(l-2)"?In(l-2)

n-—-2 n— oom
B O(j> ,;T

oo n—2 -.'Ej+k
— A
- 1 ()
=1

j=

o0 min(n—2,m~1)
_ m n—2 Ty 1
= Zr Z ( j )( 1) m- 3’
m=1

i=0

.

where we substituted m = j+k. Since k > 1, j < m—1 which means that j < min(n—2,m— 1). Comparing

this expansion of p(z) with p(z) = Y °_, ™ am, we have

min{n-2,m-1) ) 1
m = . _‘1j T = 1l,2,....
a Z < j )( ) —— m=1,2

j=0

Since we are only interested in obtaining a,, for m > n — 1, we have

n—2
n-—2 ; 1
oo = L ()i e

n—2 1
= Z (n B 2) (-1y / gn+i-i=2 dg
j=0 J 0

1on _ ' _
= / at (n , 2) (=1Y " de
0 : J

-2
j=0
13



Il

1
/ gtz —1)""* dz
0

= (—1)”_2 /01 (1 - ac)"'z dz

I

The last equality holds because

1
Bi) = [ @1y =

0 (n—2)!

(=1" 2(n+£~ Hr

DG _ (- DIG -1

L(i+g7)  (+5-1!

B(i, §) is called the beta function. (See [2].) Substituting the above expression for ap_14¢ in (9) we get

S5(n)

The power series expansion of (e® — 1)*~!

o0

ha

Fal n—1
n—2 K z+1 n—1+4£
Z —1) (n+£-1)! n“’l Z( ) !

)i+l in—l—H,

< £ 1 o~ (n-1 n—14i n—1+L
g(nH_l)! YN ; < i >(—1) i
= 2! 1« ( 1) i et

. -1 g - +£
g(n-i—e—l)! nttl ; )
= 14 1 o~(n-1 i

i 1\ 1—1 e'®
; (n+L£-1)! nttl g < >( ) [dz’” 1+2° }I:O

> £
z:o(n—l-é—l)!

2

1 dn—1+£ = ne1—1 zr
pbtl dgn-1+e [Z< >( b

=0

1 dn- 144

Nk

L

1]
o

T n—1
(n+€—1)! ntt! dgn-1+¢ {(6 -b ]z:O"

yields

1)71 1 Z(wn 1 k+n 1

14
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where C{;—l > 0. As a result,

Hence

© 1 o
Ste) = Z(n—&—é—l)! g S(etn-niepTt

N
= Zne+1 o (10)

It now remains to determine C’E"_P Since

(e - 1) Zm+” ept,

it readily follows that (by setting n = 1 and n = 2)

1 k= 1
Cr = and C} = ] 1
¢ { 0 otherwise FT (k4 1) (11)

In general we have
(=1 = (" =1)(e" = 1)~

o~ ettt -1 1
o nM+7 - T ™
= Z (+ 1) Z z Cm

£=0 m=0

_ f: i ,Um+£+n Crr:z_l
B ' £+ 1)

where we substituted k¥ = m + £. Comparing this form for (e — 1)* with

(e - 1) = Z'El“'*'”("k



we obtain

1

k
Cﬂ
Z (k+1—m)! (12)

0

This recursive formula for C thus enables us to compute S(n) as a sum of nonnegative terms given by (10).

A somewhat simpler form of S(n) is obtained from equation (10) as

5(n)

1
(]
3
Tl
AN
&3
AR

where

: crot i! il
= O = ! g ———-—————: E ! n—-l___ = E L A — :
i =t Cy =i — (i+1—m)! m! Cn m! (i +1—m)! dm mi(i+1—m)V’ n>0, (13)

m=0 m=0

and

1 i=0

0 otherwise.

5 Numerical Evaluation of the Infinite Series

The infinite series (8) can be used to provide accurate values for S(n) provided that good error estimates

are available for the truncated series. The next lemma provides estimates for the coefficients d7'.

Lemma 5.1

’ _
< — g™ > 1, >0 (14)

CP <=, n2>1 i20 (15)

16



We prove this by induction on n. From (11) we note that C} = 1/(i + 1)! which shows that (15) is true for

n=1,1> 0. Assume that (15) holds for n = 1,2, ..

Proof.

ct o=

7

A

IA

¢ (]C— 1)k—1+m
Z (k=14 m) (i+1-m)!

m=0

k41

(ﬁrg)(k—i—m—l) (k-

w5 (e

j=k-~1
1 E ki,
Erml e

(k— 1+ 1)k+

from (12)

.,k —1. We show that it also holds for n = k. We have

induction hypothesis

1)k+m—1

(k+ 1)
kk+z’
T (k4
which completes the proof by induction. E
Using Lemma 5.1 we now estimate the remainder of the series (8) defined by
=N dP
R([/, n) = ; ni‘l"l
Theorem 5.1
L!
<U(L,n) = ————(n—1)""11-1/n)". 16
R(L,m) S UL = gy = D70 = /) (16)
o dn_l
R(L,n) = Z nitl
il (n— 1)nTiH
< Z m Lemma 5.1

=¥

17



n——ZOO 1 n—1414
DD DY ey s v oy | Gl VA0 M

< n—2 1_~1 n—1i+4:
=" (n-1—!~[,~ (L+1; /)
= ——L-!——n”‘2(1 — 1 /)it i(l —1/ny
(n+L—1)! =
L 9 1
—_ n-=2(1 . n+Il—1
ntL-D" (1=1/n) 1-(1-1/n)
L n—1 n—1 L
which simplifies to (16). |

Theorem 5.1 provides us with an upper bound on the number of terms needed for the truncated series to
achieve any desired accuracy ¢. Thus summing (8) up to M terms guarantees an absolute error of less than ¢
in S(n), where M = min{L —1 > 0:U(L,n) < ¢}. Since U(L, n) in (16) contains factorials and high powers
of n we can alternatively check if g(Z, n) = In(U(L, n)) < In(¢). We need not compute g(L, n) separately for
each value of I since we can recursively express g(L,n) in terms of g(L — 1, n) as shown below. This enables
us to check for termination while computing the partial sums of (8). To establish the recursion in g(L,n)

we proceed as follows:

!

U(L,n) = m‘(n——l)n 1 —-1/n)F
= f::[l(l—l/n)U(L,n), L>1.

g(L+1,n)=In(U(L +1,n))

In (i:) +1n(1 = 1/n) + In(U(Z, n))

18



= g{(L,n)~1In <72—:-I11> — In (ni 1) ., L>1,

where

g(1,n) =In(U(1,n)) = ~In(n!) + (n — 1) In(n — 1) + In(n — 1) ~ In(n) = — Zln(i) +n ln(n — 1) — In(n).
i=2

Algorithm 1 presents pseudo-code for estimating (8) within an absolute accuracy of e. The algorithm starts

out with L = 1 and stops at the value of L for which U(L,n) (denoted by remainder) is less than or equal to

a prespecified €. To compute dz"l it is necessary to have obtained all d?'Q, j=0,...,L, as seen from (13).
The algorithm computes d, i = 1,2,...,n— 1 at each step [ and thus when it is time to compute di'l,
the previous d;‘“Q, j=0,...,L, have already been computed.

ALGORITHM 1

begin
L :=1; Sn := 1/n; product := n;

remainder := n % In(n — 1) — In(n) — Zln(i);
—

tn := In(n/(n — 1)); { temporary variable }
eps := In(e);
while (remainder > eps) do
begin
4} = 1/(L+D);
fori:=2ton—1do
begin
dyt = L
sum := dj %
for j := L — 1 downto 0 do { compute d% using nested multiplication }
sum :=sum *(L+1-j5)/(G+1)+ d;'l;
v = sum/(L+1);
end;{for}
product := product * n;
Sn := Sn + d}~!/product;
Li=L4+1;
remainder := remainder — In{(rn + L)/(L + 1)) — tn;
end;{while}

M:=L-1;
writeln(’Sn = ’,Sn,” number of terms = ’,M);
end.
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Table 3 presents estimates of S(r), n = 20,40, 60, 80,100, along with the number of terms, M, in
the truncated series, as computed by Algorithm 1. We observe from Table 3 that M increases with n
implying that as we increase n a larger number of terms are needed to obtain an absolute error of less
than ¢. This is because the expression for U(L,n) in (16) contains a high power of n, ie., (n — 1)"~L
For example, consider the first error estimate U(1,n) = 1/n! (n — 1)(*=1) (1 — 1/n). For n large, we can
ignore the (1 — 1/n) term and use Stirling’s approximation (n — 1)! ~ V2(n - D)m(n —1)"~1/e""1, to get
U(l,n) =~ e”‘l/(nM) > 1. However, we know that S(n) < 1 by the problem definition and thus
R(L,n) < 1, which shows that U(1,n) is an extremely pessimistic bound for R(1,n), when n is large. The
factor (n — 1)"~*! also dominates the error estimates at L = 2,3, and so on until we reach a sufficiently large
I, so that the (n+ L — 1)! term in the denominator of U(L,n) reduces its impact. The extremely pessimistic
estimates at low values of L causes the overall estimate of M to be rather pessimistic. We observe from
Table 3 that the estimates of S(n) are the same for ¢ = 1072 and € = 1078 at each value of n, even though
the values of M are not the same for these two ¢’s. Hence for ¢ = 107° the truncated series has already
converged much before the estimated number of terms for this value of ¢. Nevertheless, from a computation
point of view we note that even for n = 100 and € = 10~° the time required by Algorithm 1 was less than
1 second on a DECstation 3100 (the code was written in C and used double precision arithmetic) and thus

the pessimistic estimates of M did not pose computational limitations.

n € S(n) M
20 | 1073 | 0.096667 | 19
106 | 0.096667 | 31
40 | 1073 | 0.049167 | 33
10~ | 0.049167 | 39
60 | 1073 | 0.032963 | 41
1078 | 0.032963 | 49
80 | 10=3 | 0.024792 | 52
105 | 0.024792 | 60
100 | 1073 | 0.019867 | 63
1076 | 0.019867 | 71

Table 3: Estimates for S(n),n = 20,40, 60, 80, 100
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As noted above the upper bound on the remainder seems quite pessimistic since the error estimates at
low values of I, are unbelievably large. We now plot the partial sums S(L, n) versus L in Figure 3 to test the
actual convergence rate of the partial series as opposed to the estimates provided above. The partial sum

S(L,n) is defined by

L dr-bwl
S(I/,n) = Z T:i‘f-l .

1=

From Figure 3 we note that S(L,n) converges quite rapidly with L, for all values of n in the figure, and
within L = 10 — 15 it reaches its limiting value. This suggests that a tighter bound on R(L,n) exists than
the one in (16), specially for low values of L. Although we have obtained a tighter bound on d7 for low L
it yielded only a weak bound on R(L,n), which was useful only for high values of ¢ like 0.1 — 0.01 and it

resulted in the same bound as (16) for more typical values of € like 1074 — 106,
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Figure 3: S(L,n) versus L

6 Mean Barrier Completion Times of the Model

Using the results of Section 5 we computed the mean barrier completion time S(n) versus n for n = 3 to

n = 100 (the curve is almost flat for higher values of n and for n =1 and n = 2 we simply use S(1) =1
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and S(2) = In2 as seen from equation (4)). We evaluated the partial sums to an accuracy of ¢ = 1076,
The value of 10~ for ¢ is reasonable within the range of n from 2 to 100 since we know that S(n) > 1/n
(equal task service times result in S(n) = 1/n and the unequal task times given by (1) result in a higher
value for S(n)), which means that S(n) > 0.01 for n = 100 resulting in a relative error less than or equal to
1076/10=2 = 10~* or 0.01% for all n between 1 and 100. We compare these values of S(n), n =1,2,...,100
against mean barrier completion times for two other program models below.

Figure 4 plots mean barrier completion time on n processors versus n forn=1,2,...,100; the curve for
the model analyzed in this paper is labelled as "uniform”. The curve labelled “linear” corresponds to mean
barrier completion times for equal task service times (T; = D/n, i = 1,2,...,n) or linear speedups (ie.,
S(n) =1/n,i=1,2,...,n, assuming D = 1). The curve labelled “exponential” corresponds to mean barrier
completion times for independent and identically distributed (i.i.d.) task service times from an exponential
distribution (73 = exp(p), i = 1,2,...,n), a model that has been frequently used in the literature (for

example in [7, 6, 4, 8]). For i.i.d. exponential task times T; = exp(p), i =1,2,...,n, we have (cf. [7, 6])
S(n) = Elmax(Ty, ..., Tx)] = n/p+(n—=1)/p+. .. +1/p = Hy/p, (17

where H, is the harmonic sum Y 7, 1/i. The interpretation of the above equation is that time to first
task completion is the mean of the minimum of n exponentials which equals n/u, and then the recursion
continues with the remaining n — 1 tasks and so on, by virtue of the memoryless property of the exponential
distribution. In Figure 4, for the exponential model we have divided S(n) = H,/u by the mean job demand
n/p to compare it on the same scale as the linear and uniform models of parallel programs (for which demand,
D, is set to 1).

We see from Figure 4 that the model analyzed in this paper results in mean completion times in between
those of the exponential task service times model and those of the equal task service times model. Thus,
the estimates obtained for the uniform model in this paper are less pessimistic than the estimates for the
exponential task service times model. Interestingly, the two simulation studies of multiprogrammed parallel
processor allocation policies by Majumdar et al. [5] and Leutenegger [3] mentioned that their qualitative
results of policy comparison were more or less the same for the uniform model and the equal task service
times model.

Besides yielding more optimistic estimates than the exponential model the uniform model also has the

desirable feature of allowing one to test the impact of job demand characteristics on mean response time.
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From (1) we note that each task service time is derived from the total demand D) and thus various distri-
butions of total job demand can be used to study the sensitivity of scheduling policies to higher moments
of demand than just the first moment (for example, the variance of demand is an important characteristic
that determines the performance of uniprocessor and multiprocessor policies). On the other hand such a
sensitivity study is not possible from the exponential model because the distribution of job demand is fixed
for a given number of tasks (since total job demand for n tasks is a sum of n exponentially distributed
random variables, or an n stage Erlang distribution).

This paper also sheds light on why the exponential model has been used so often in the past even
though the exponential model does not provide much flexibility in terms of studying the impact of demand
characteristics on response time. As seen from equation (17) obtaining S(n) for the exponential model is
extremely simple and there is also no numerical problem in computing it. On the other hand the uniform
model, which appeared simple to state, turned out to be complex to analyze and even to compute a simple
estimate like mean barrier completion time, S(n), detailed rearrangements had to be done. This seems to
indicate a tradeoff between representation of characteristics of parallel workloads and ease of analysis. Some

implications of this observation in terms of future models are:

1. Use approximate analysis instead of exact analysis. We saw in this paper that exact analysis to compute
S(n) for the uniform model is rather complex. Obtaining mean response time estimates for a parallel
workload will be considerably more complex than estimating mean service time estimates like S(n) and
even a closed form solution may not exist for the mean response time estimates. This motivates the

use of approximate analysis for future models that are as complex to analyze as the one in this paper.

2. If one prefers to do exact analysis for a model like the one in this paper, then one should be careful to
ensure that the solution does not become numerically unstable as the number of processors increases.
We hope that the techniques developed in this paper will useful in this regard, besides being of interest

from a mathematical point of view.

3. Search for simpler models for parallel programs than the uniform model, that retain the essential

characteristics of parallel workloads.
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