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ABSTRACT. The first result of this paper is a lower bound on mean response time, under a very general workload
model, per class of multiprogrammed parallel processor allocation policies. This bound is derived from the mean
response time of the optimal uniprocessor scheduling policy that uses the same workload information as the class of
parallel processor allocation policies. The derivation of the bound also suggests how tighter bounds can be obtained
on a per policy basis in some cases. Key features of the workload model include general job demands, available
parallelisms, execution rates, and inter-arrival times, with arbitrary dependencies among these workload variables.
The second result is that for linear execution rates (i.e., perfect speedups) and for iid. exponential job demands
that are independent of everything else, the Preemptive Smallest Available Parallelism First policy is optimal among
policies that use no explicit information about job demand. Likewise, among all processor conserving policies the
Preemptive Largest Available Parallelism First policy is pessimal. For the same assumptions it is also shown that the
performance of a processor conserving policy is best when every job can make use of all processors and is worst when
all jobs are fully sequential. This third result leads to easily computable bounds on mean response time. The second
and third results are shown to be sensitive to the assumption of exponential job demands. Finally, some quantitative
results are given that illustrate the use and tightness of the derived bounds.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiprocessors - Parallel Processors; C.4
[Computer Systems Organization]: Performance of Systems - Modeling Techniques; D.4.1 [Operating Systems]:
Process Management - Multiprocessing/Multiprogramming, Scheduling; D.4.8 [Operating Systems]: Performance -
Queueing Theory, Stochastic Analysis

General Terms: Performance

Additional Keywords and Phrases: Parallel System Performance, Uniprocessor Performance, Response Time
Bounds, Optimal Scheduling Policies, Sample Path Analysis

1 Introduction

The problem of finding processor allocation policies that minimize the mean response time of parallel jobs
on a general purpose parallel processor system has remained unsolvable to date. For example, determining
the optimal schedule to minimize the mean response time of a set of parallel jobs with arbitrary task graphs
and known task processing times is an NP-complete problem [16]. As a result, it is desirable to obtain
performance bounds against which one can compare the performance of a given processor allocation policy.

For example, a lower bound on mean response time for a class of policies is a good reference point against
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which one can compare the performance of a given policy in that class. A lower bound for a class of policies
may not be tight for all policies under all workloads. If we make specific assumptions about the workload it
may be possible to obtain tighter bounds. For example, a previous study [9] compares the performance of
several policies against the optimal policy under a restricted set of workload assumptions.

The main result of this paper is a lower bound result on the mean response time per class of parallel pro-
cessor allocation policies under very general workload assumptions, where class is defined by the information
structure of the policy. The bound is obtained from the mean response time of the optimal uniprocessor
scheduling policy that (1) has the same workload information as the class of parallel processor policies and
(2) schedules the workload on a uniprocessor of power equal to the total processing power of the parallel
processor system. The result holds for processor allocation policies that make use of explicit job demand
information as well as those that do not. The lower bound result is derived for a very general workload model
that includes general distribution of job demand, general distribution of available job parallelism, general job
execution rates (that model communication and synchronization overheads as well as load imbalance), and
general inter-arrival times, with arbitrary dependencies among these workload variables!. The derivation of
the bound also suggests how tighter bounds can be obtained on a per-policy basis in some cases.

The next set of results in this paper consists of tighter response time bounds for policies that do not make
use of explicit job demand information, under more restrictive workload assumptions. The upper bounds in
this case hold for a class of policies that we call processor conserving policies that do not leave processors idle
if jobs can make use of them. Given linear job execution rates (i.e., perfect speedups) and i.i.d. exponential
job demands that are independent of all other workload variables, we first derive the optimal and worst case
policies. We then show that under the same assumptions the performance of a policy is best when every
job can make use of all processors and is worst when all jobs are fully sequential. This leads to computable
bounds for the mean response time of any policy in the class that we consider. These results are sensitive
to both assumptions of linear execution rates and exponential demands; we give counterexamples to show
that the results do not hold for nonexponential demands, thereby implying that the qualitative behavior of
processor allocation policies is sensitive {o the assumptions about job demand distribution.

In addition to the above results, the techniques in this paper, which are based on sample path analysis,

may be of interest to the reader. The proof of the main result (lower bound for general workload model)

1'We define job demand to be the service time of the job on a single processor and available job parallelism to be the maximum
number of processors that the job can productively use during its lifetime.



is the simplest. It is based on constructing a uniprocessor policy over every sample path such that every
job completes no later in the constructed policy than in the original policy, and then showing that the
mean response time of the constructed policy is bounded below by the mean response time of the optimal
uniprocessor policy that uses the same information as the original policy. To prove the other results of this
paper, suitable coupling between sample paths is required, which leads to more complex proofs than the
proof of the main result.

We know of only two previous papers that contain mean response time bounds for parallel processor
scheduling policies. First, Leutenegger and Nelson [9] show that PSNTTF (Preemptive Smallest Number of
Tasks First) is the optimal policy for a set of parallel jobs (no external arrivals) with 1.i.d. exponential task
service times. The related result in this paper is that PSAPF (Preemptive Smallest Available Parallelism
First) is the optimal policy for a system with i.i.d. exponential job demands and linear job execution rates
up to the job’s available parallelism, under a general arrival process. Second, Sevcik [17] shows that for a
workload in which each job can make use of all processors with perfect speedups (linear execution rates)
and job service demands are known to the scheduler, the LWF (Least Work First) policy is optimal when
there are no external arrivals, and the LRWT (Least Remaining Work First) is optimal in the case of Poisson
arrivals. Also, the LEWF (Least Expected Work First) policy is optimal, either with no arrivals or with
Poisson arrivals, if preemption is disallowed and only the expected amount of work is known for each job.
As a special case of the main result in Section 3, we show how the counterparts of LRWF and LEWF in the
uniprocessor domain (i.e., Shortest Remaining Processing Time and Shortest Expected Processing Time)
can be used to obtain lower bounds for two different classes of parallel processor allocation policies.

The remainder of this paper is organized as follows. In Section 2 we present the system model and
assumptions. Section 3 derives a lower bound on mean response time under general workload assumptions
as well as tighter bounds for specific policies. Section 4 derives optimal and worst case processor allocation
policies under i.i.d. exponential job demands that are independent of all other workload variables and under
linear job execution rates, given that the policy has no explicit information about job demand. Under
the same assumptions computable response time bounds are derived in Section 5 using results for optimal
and worst case available parallelism. Sections 3, 4, and 5 each contain experimental data to illustrate the
applicability and tightness of the derived bounds under specific demand and parallelism workloads. Finally,

Section 6 summarizes the conclusions of this paper.



2 The System Model

Consider an open parallel processor system comprised of P identical processors and a central job queue. A
stream of parallel jobs i = 1,2, ... arrive at the system as shown in Figure 1. In this section we define the

workload model and the classes of processor allocation policies for the system.

Processor 1

O Job Queue

Processor P

Parallel Jobs

Figure 1: Open System Model

2.1 Workload Model

Each job 7 has the following five characteristics:
(1) Arrival time 4;,
(2) Total service demand (execution time on one processor) D;,
(3) Available parallelism N; € {1,2,..., P},

(4) Execution rate function E;() : [0, P] — [0, P], Ei(z)==for 0 <z <1, Ei(z) < = and nondecreasing

inxfor 1 <z <N;, and Ei(z) = E;(N;) for Ny <z < P.
(5) External class C;.

The system operates as follows. Upon arrival each job joins the central job queue, At each timet > 0,

the P processors are allocated to jobs present in the queue according to some processor allocation policy



. If a;(t) processors are allocated to job 7 at time ¢, then its demand is satisfied at rate Fi(a;i(t)). Job i
leaves the system upon completion of its total demand, D;. The available parallelism N; is the maximum
number of processors that job i can productively use during its lifetime. That is why Ei(x) = E;(N;) for
Ny <z <P.

{(A;, Di, N, E;(), Ci),1=1,2, .. } are the primitive workload variables from which other parameters can
be computed, e.g., mean demand D. For the result in Section 3 we allow arbitrary marginal distributions
of these primitive variables with arbitrary dependencies between them. That is, we permit any arbitrary
joint distribution of these primitive variables. This workload model extends the workload model in [12] by

permitting multiple job classes and arbitrary dependencies among the workload variables.

2.2 Processor Allocation Policies

In order to precisely define what we mean by processor allocation policy we need the following notation.

a; (1) = number of processors or processing power (possibly fractional) allocated to job 7 at time t.
A(t) =  set of jobs that have arrived up to time ¢ (= {1 : A; < t}).

Xi =  departure time of job 7 (= inf{t > 0: foi Ei(ai(s))ds = D;}).

X (1) = set of jobs that have departed by time ¢ (= {7 : X; < t}).

a(t) = set of jobs in the system at time ¢, {k1, k2,. .., kjo)} (= A(t) — X(2)).

Let I(t) be the information available to a processor allocation policy up to time ; that 1s,
1(t) = {JA@®), {(A:, Di, Ni, (), Ci) :i = 1,2, ., JA@ ]} } (1)

We define a processor allocation policy, ¥, to be a right-continuous process (with left hand limits) that for
each time t > 0 determines how the P processors are allocated amongst the various jobs in the system based

on the information available till time ¢. More precisely, ¥ is a mapping

L (l’ I(t)) — (ar, (1), - -, ak]g(:))(t))»

such that



Note that processors are only allocated to jobs present in the system, ie., a;(t) = 0 for ¢ € Q(t). The
scheduler may also have external information about jobs in class Cj, e.g., external priority, mean demand,
or average parallelism, which is omitted in the above notation.

We define the following classes of processor allocation policies.
e Il is the class of policies as defined above.

o 11, is the class of policies where {D; : i € Q(#)} are not explicitly known. That is, I(t) is replaced by

Io(t) given by
Io() = {JA®)], {(A;, Ni, Ei(),C) -i=1,2,. ., JA@)I}, X(), {Di i€ X()}} (3)

Note that Io(t) is derivable from I(t) (since X'(¢) can be obtained from I(t) for all ¥ € IT) and
hence Il ¢ IT. Although Iy(t) contains no explicit information of D;, i € Q(t), it may have partial
information about I); by means of the other primitive variables. For example, C; may have information
about the mean demand, type of demand distribution (e.g., IFR), or distribution of demand (e.g.,

exponential).
. HOC c T is the class of processor conserving policies in Il that have the additional constraint
0 <ap,(t) <Ny, 1=1,2,..,1Q(1)

and also have constraint (2) strengthened to

20! l2(1)]
ap,(t) = min | P, Z Ny,
i=1 i=1

Informally, a processor conserving policy does not allocate more processors to a job than the job can

productively make use of, and it does not leave a processor idle if any job can make use of that processor.
In Sections 3 to 6 we will frequently refer to the following policies in Hg:

FCFS: The FCFS policy allocates processors to jobs on a first-come-first-serve basis. Each job is allocated
processors as they become available up to a maximum of its available parallelism. Processors released
by a departing job are first allocated to the job in service (if any) whose allocation is less than its

available parallelism and then to jobs waiting for service.



EQ: The equipartitioning policy allocates an equal fraction of processing power to each job in the system
unless a job has smaller available parallelism than the equipartition value, in which case each such job
is allocated as many processors as its available parallelism, and the equipartition value is recursively

recomputed for the remaining jobs.

PSAPF: Preemptive Smallest Available Parallelism First. The central job queue is a preemptive queue
that is ordered in ascending order of available job parallelism. Jobs with the same available parallelism
are served in first-come-first-serve order. As in the FCIFS policy each job is allocated processors as
they become available (or preempted) up to a maximum of its available parallelism, and processors
released by a departing job are first allocated to the job in service (if any) whose allocation is less than

its available parallelism and then to the jobs waiting for service.

PLAPF: Preemptive Largest Available Parallelism First. Like PSAPF except that the central job queue is

ordered in descending order of available job parallelism.

For any given policy ¥, the mean response time is given by

n e
R‘\Il = lim Ei:l(/\i - Al)
T nseo n
whenever this limit exists. In this paper we are interested in obtaining upper and lower bounds on Ry for

various classes of policies and in identifying the best and worst policies.

2.3 Additional Notation

For the rest of this paper we use the following notation:

E?:l Di

e D denotes mean job demand, i.e., D := lim whenever this limit exists.
n—oQ n
Y (52%)
= . . . . — . i=1 \ E;(N;) Lo .
o S denotes mean job service time, ie., S := lim —————"> whenever this limit exists.
n—00 n
e N = k denotes the special case that N; = k, : = 1,2,.., i.e, every job has a constant available

parallelism of &k, where 1 <k < P.

L, () denotes an execution rate function that is linear up to NV;, i.e., Ly, (z) = ¢ for 0 <z < Ni, and
LNi(ﬂU) = N;forz < N; <P,

Lp() denotes a linear execution function up to P, i.e, Lp(z) =z, 0 <z < P.

e G/G/1p denotes a G/G/1 queue with a server of power P.



2.4 Workload Assumptions for Numerical Results

We make the following workload assumptions in the experiments that test the tightness and illustrate the
use of the bounds in this paper:

o Jobs arrive according to a Poisson arrival process with rate A.

o {D;}%2, are i.i.d. and independent of everything else, with mean D and coefficient of variation Cp. *
We use the random variable D to denote total job demand.

o {N;}2, are i.i.d. and independent of everything else, with mean N and coefficient of variation Cy.
We use the random variable N to denote available job parallelism.

o Job execution rates are linear up to N, i.e., Ei() = Ln,()-

In some cases we consider exponential demands; in other cases we consider hyperexponential demands.
In all experiments we set 1) = P. (Thus p = AD/P = X.) For most of our experiments we use the
following bounded-geometric distribution for available job parallelism (similar to the distribution in [1op,
with parameters Pp.p and p

P with probability Pmas .
N = where X = Geometric(p).
min(X, P) with probability 1 — Pras,

We consider three specific bounded-geometric distributions for N, which are given in Table 1. More details
of these workloads are given in [12].

Table 1: Three Bounded-Geometric Distributions for N

Symbol | Parallelism | Pmaz p P=20 P=100
N | Cn N | Cy
H High 0.9 1.0 18.10 | 0.31 90.10 | 0.33
M Moderate 0.1 | 1/(0.4P) | 870 | 0.77 || 43.14 | 0.80
L Low 0.1 0.9 3.00 | 1.89 11.00 | 2.70

3 Lower Bound for Mean Response Time under General Workload

Assumptions

In this section we derive a lower bound on the mean response time per class of parallel processor allocation
policies in terms of the mean response time of the optimal uniprocessor policy that uses the same workload
information as the class of parallel processor policies and schedules the workload on a uniprocessor of power P

(if such an optimal policy exists). The lower bound is attained by first carefully constructing a uniprocessor

scheduling policy that allocates at least as much processing power to each unfinished job as the parallel

27The coefficient of variation of a random variable is the ratio of the standard deviation to the mean of the random variable.



allocation policy. The mean response time of the constructed policy lower bounds the mean response time of
the parallel allocation policy, and is in turn bounded by the optimal uniprocessor policy that uses the same
information structure. We present the lower bound result in Section 3.1, and in Section 3.2 we give examples
of how to compute the bound for specific cases as well as examples of tighter bounds on a per-policy basis
that are suggested by the proof of the lower bound result. We also provide experimental data to illustrate

the use of the general lower bound and the tightness of the per-policy bounds.

3.1 The Lower Bound Result

Throughout the remainder of this paper when we speak of a uniprocessor we mean a uniprocessor of power P.
That is, the uniprocessor processing power is the same as the total processing power of a parallel system with
P identical processors each of unit power. When considering the uniprocessor system, the execution rate for
job i when allocated processing power z at any time will be Fj(z), where we assume that Ei(z) < Fi(z) <z,
for all 0 < z < P. We assume that F;() is derivable from F;(), Ny, and Cj. Typically, F;() will be equal to
Lp(); however, any function that satisfies the given constraints (e g, F,() = E;()) is valid. We restrict our
attention to the class of nonidling uniprocessor policies II' which allocate the entire processor of power P
to the jobs in the system. More precisely,

Y al) =P lgaiwi>o

ie@(t)

where a}(t) and Q!(¢) for the uniprocessor system have the same interpretation as a;(t) and Q(t), respectively,
and 1(|Ql(t)l>()) is the indicator function that there is at least one job in the uniprocessor system at time ¢.
The information structure of 11", I'(t), is the same as I(t) as defined by (1). Note that N; and E;() in the
information structure of " no longer have the same interpretation as they did for the parallel processor
system. They provide auxiliary information to the uniprocessor scheduler.

We prove the lower bound result by means of Lemma 3.1 and Theorem 3.1 below for the class of policies
IT,, which includes most of the practical parallel processor policies including those that use partial informa-
tion about service demand characteristics. Lemma 3.1 and Theorem 3.1 also hold for II and thus the lower
bound result is true for policies that have complete knowledge of job demand characteristics (e.g. Preemptive
Smallest Cumulative Demand First [11]). In the remark after Theorem 3.1 we comment on the applicability

of Lemma 3.1 and Theorem 3.1 for any arbitrary subset ' cIL



The proof of the lower bound is based on sample path analysis. For a parallel processor policy ¥ € Il
we construct a uniprocessor policy, ¥! € Hé - 1" such that the response time of each job under ! is less
than or equal to its response time under ¥, for every sample path. The information structure of Hé is given
by

13(t) = {JA@], {(Ai, Ni, Bi(), C) i = 1,2, JAWD]Y, X1@), {Di i€ (1)}, (4)
A'1(t) being the set of jobs that have departed the uniprocessor system by time ¢. The key feature of vl
is that it allocates at least as much processing power to each unfinished job as ¥ does. This construction
is given in Lemma 3.1 below. The mean response time of the constructed uniprocessor policy is in turn

bounded below by the mean response time of the optimal policy in H(l) which leads to the lower bound in

Theorem 3.1.

Lemma 3.1 Given any parallel processor policy W € Iy, there exists a uniprocessor policy ¥ € H(l) such
that

al(t) > ai(t), i€ Q\(t), V20, (5)

where a}(t) and a;(t) are the processor allocations to job i at time t under policies Ul and ¥, respectively.
Moreover, for any such policy U1,

Ry > max(S, Ry1).

Proof. The proof of this lemma is established pathwise by letting the uniprocessor and parallel proces-
sor systems have the same primitive workload variables {(A;, D;, N;, Ei(), Cy),© = 1,2,...}. Consider the
uniprocessor policy W! obtained by

P = ieqiqailt)

j for 7 1 . '
!Ql(t)i > Gz(t) fi €Q (t), in(tN >0 (6)

Clearly W! satisfies (5) and Ziegl(t) a}(t) = P - 1qgi(t)|»0)- In order to establish that ¥' € H(l) it remains
to verify that () = (al(t) : 1 € Q'(t)) defined as above is a valid policy, i.e., it is a function of I3(t) given
by (4). The difficulty is that a}(¢) is defined in terms of a;(t) which in turn is a function of Io(t) given by (3).
If we can establish that X1(t) D X(t) then we can show that Io(t) is derivable from I} (t), and consequently

W'(t) will be a function of I# () as required®.

3To show that Iy(t) is derivable from I} (t) if X1(2) D X (t) we need only show that X(t) is derivable from I} (¢). This can be
done by simulating ¥ from ¢ = 0 onwards (note that {D; : i € X (¢)} is known to the simulator) and progressively constructing
X(s), 0 < 5 < i, in the simulation, by checking if fov Ei(ai(u))du = Dy, i € X1(1).

10



We now show that any uniprocessor policy that satisfies (5) also satisfies X1 (¢) D X(t) or equivalently
Q(t) C Q(t) (since Al(t) = A(t)). Consider any i € Q'(t). By (5) we have that af(s) > a;(s) for s € [4;,1].

Hence,

D; >/0 Fi(a}(s))ds:‘/‘Fi(a}(s))dszfv Ei(a}(s))dsZ‘/A‘Ei(ai(s))ds:/o Eiai(s))ds, i€ Q'(1),
(M)

where we used the fact that Fy() > Ej() and F;() is nondecreasing. Since ¢ € Q'(t) has not departed by
time ¢t under ¥! it follows from (7) that it has not departed under ¥ either. Hence i € Q(t), and therefore
Q(t) C Q(1), as required.

Finally, note that X'1(t) 2 X(t), t > 0, implies that X} < X;, i =1,2,... Therefore, R} = X} — 4; <
X; — A; = Ri, i = 1,2,..., which implies that Rg: < Rg. The lower bound of the lemma follows since

Ry > S. n

Lemma 3.1 leads to the following lower bound:

Theorem 3.1 For any parallel processor policy ¥ € Il,

Rg > max {3 inf I_%g,x} > max {3, inf Rg:[F() = Lp()]} ,
viell, wiell] _

where Lp(z) =z, 0 <z < P, denotes the linear execulion rate funclion up to P.

Proof. The first lower bound follows because in{_Il Ry is less than or equal to the bound in Lemma 3.1.
viell,

The second lower bound follows because Fj(z) < Lp(z), 0 <2z < P. | |

Remark: While Lemma 3.1 and Theorem 3.1 have been established for parallel processor policies ¥ € IT,,
these results can be extended to classes IT C IT that have other “partial” information structures (i.e., subsets
of I(t)). The key step is to show that there exists a uniprocessor policy ¥' € II" = II' N 1T’ satisfying (5).
This can be done by appropriately modifying ¥ as done in Lemma 3.1. However, the main hurdle in showing
that W' € IT" is to show that I'(t) is obtainable from I*/(t), i.e., at any given time ¥' has at least as much

information as ¥ does*. This verification is quite straightforward for several different partial information

4For example, only partial information about E;() might be available in I'(t), say only Ei(1) = 1. In this case a parallel

11



structures. In particular for the case of complete information
Ity = 1(t) = {|A@L {(Ai, Di, Ny, Ei(),Ci) i = 1,2, LA}
and Lemma 3.1 and Theorem 3.1 continue to hold.

3.2 Applications of the Lower Bound Result

In this section we give applications of Theorem 3.1 by first examining how known optimality results for
uniprocessor policies can be used to bound the mean response time of particular classes of parallel processor
policies. We then give experimental results to illustrate how the general lower bound can be used as a
reference point for comparing the performance of parallel processor policies. In Section 3.2.3 we then examine
cases where tighter bounds can be obtained on a per-policy basis directly from Lemma 3.1 and in Section 3.2.4
we present experimental data to illustrate their tightness. Since uniprocessor results have been obtained for

linear job execution rates, the applications in this section assume that F,()=Lp(),i=1,2,...

3.2.1 Optimal Policy Bounds

From Theorem 3.1 we observe that the same lower bound holds for all parallel processor policies that share
the same information structure (e.g., II, Il). Consider, any ¥ € JI. 1t is well known that the Shortest

Remaining Processing Time (SRPT) policy is optimal over all uniprocessor policies [2,14]. As a result,
— = =l
Ry > max(S, Rggpr), V¥ eIl

We use the superscript 1 to denote that the policy is a uniprocessor policy. For Poisson job arrivals we can
compute MR}SRPT from the analysis in [13].

The SRPT policy uses complete knowledge of job demands. We can obtain tighter bounds if only
restricted job demand information is available to the scheduler, e.g., policies in IIy. First consider cases
where {D;}%2, are i.i.d. and independent of everything else. If D; has an increasing failure rate® (IFR)
distribution then the FCFS policy is optimal in H(l) [5], and if D; has a decreasing failure rate (DFR)

distribution then the Foreground-Background (FB) policy is optimal in Hé [8,156]. (The FB policy gives

processor policy can allocate one processor continuously to job i and thus obtain D; when job i exits. However, since all
uniprocessor policies being considered are nonidling, it may not be possible to ensure that a} (#) = 1 for all time until job ¢ exits
in which case D; will not be known to the uniprocessor scheduler even after job i departs.

5 A nondiscrete distribution F has increasing (decreasing) failure rate iff for any ¢ > 0 we have that (F(t+¢) —F(t))/(1 - F(t))
increases (decreases) with ¢ for all ¢ > 0 and for 1 — F(t) > 0 [8].

12



highest priority to the job that has attained least amount of service and processor shares only jobs of the

highest priority.) Thus we have,

rers), VU elly, D;~IFR,
}?B)» vo ell,, D;~ DFR.

Ry > max(

S,
Ry > max(S,

R
R
Next, consider cases where D; is exponentially distributed with rate p;, where y; is known to the scheduler,
i=1,2,. .. The rate y; is known either through external information about Cj, or because it is an explicit
function of N; (e.g., mean demand is positively correlated with available parallelism through some known
function). We assume that the scheduler has no other information about D; upon arrival of job 7. For such
a workload the preemptive Shortest Expected Processing Time first (SEPT) policy is optimal in H(l) [8,15],
and therefore

Ry > max(S, EEEPT), v e lly, Di~exp(p)

3.2.2 Application of the Optimal Policy Bounds

The general lower bound provides an upper bound on the ratio of the mean response time for a given policy
and the best achievable performance. To illustrate how the general lower bound is useful as a reference
point for policy comparison, we assume that {D;}2, are ii.d. and independent of everything else and let [
denote the random variable for job demand with mean D = P and coefficient of variation Cp. We compare
the PSAPF, FCFS, and EQ policies in Iy assuming a Poisson job arrival process with rate A, a two-stage
hyperexponential (H>) distribution for D, and linear job execution rates (E;() = Ln,() and Fi() = Lp()).
Since the Hy distribution is DFR the general lower bound is given by ﬁ: = max(S, R;B). Rpsapr, Rrcrs,
and Rpq were estimated by discrete event simulation®, and R;B was obtained from the analysis in [8].
Figure 2 plots the ratio Ry /_R; versus p = AD/P for the H, M, and I parallelism distributions given in

Table 1 and P=20. Note that the Y-axis of the figure has a log scale. We observe the following:
e EQ has a significantly lower response time ratio than FCFS and PSAPF for each workload.

e PSAPF is not the optimal policy for this job demand distribution (it is optimal for exponential demands

as will be shown in Section 4).

6 All simulation experiments in this paper have 95% confidence intervals with less than 5% half-widths. We used either
the regenerative method of simulation or the method of batch means, depending on how time-consuming it was to obtain
regenerative cycles.
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. REQ is less than twice the lower bound for all three parallelism workloads, whereas the ratios for FCFS
and PSAPF are as high as 16. For the given workloads, the distance between the EQ policy and the
best achievable performance in Iy is guaranteed to be less than or equal to the observed ratios for

Rrq/R;.

Ormpt OHmr 0udsoTuoRX

Figure 2: Ry /R;, ¥ € {PSAPF, FCFS, EQ}
P=20,D~Hy Cp=5

3.2.3 Tighter Per-Policy Bounds

In the general case, a policy ¥! that satisfies the constraints of Lemma 3.1 with respect to a parallel processor
policy ¥ may be (nearly) as complex to analyze as ¥. However, for certain parallel processor policies or
under certain workloads we can obtain a W! that is either easy to analyze or the analysis is already known,
and thus it is possible to compute the mean response time bound of Lemma 3.1. We give two examples to
show how known uniprocessor policies can be used directly in Lemma 3.1 to provide a tighter bound than
Theorem 3.1 for specific parallel processor policies.

Consider ¥ = RREP € Hff, where RRP stands for the Round-Robin-Process policy [11]. Under RRP
there is a global queue of processes and all processes are served in round-robin order. This is like the
process scheduling mechanism in the Sequent multiprocessor if we assume that all processes have the same

priority [19]. When the quantum size goes to zero the processor allocation to each job is directly proportional
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to its available parallelism and is given by (see [9]),

a;(t) = min | N; —-—&——P , e Q).

> N
jeQ)

It is easy to verify that RRP € HochOW consider ¥! = DPS € Hé, where DPS stands for the Discrimina-

tory Processor Sharing policy [6]. The allocation of processing power under DPS is given by

a; (t) P, i€Q'(t),

_ i
> 4
jear()

where 0 < g; < oo is the discrimination weight of job i. If we set the discrimination weight g; = N;, we

obtain

alt) = P ieQ'@)

>N

jeQr(t)

> min M-—ﬁL—P if Q'(t) C Q1)

ZN;’

j€Q(1)

= ai(t).

By induction over time it is straightforward to obtain that Q'(t) C Q(t) and thus al(t) > ai(t), i € Q).
Using Lemma 3.1 we obtain

Rarp > max(S, Rj)PS(gi = Ni)).

-1 . . . . . .
Rp,pg for arbitrary g;’s can be obtained assuming a Poisson arrival process from the analysis in [3].

As the second example, consider ¥ = EQ € HOC and a workload with N; > P/2,¢=1,2,.... For this

workload the processor allocation under EQ is given by

: P .
ai(t) = min (]Vi7 m) s IS Q(t)
"To verify that RRP € Hg we observe that if Zjeg(t) N; < P then a;(t) = Ny, for all i € @(t), and thus Zieg(t) a;(t) =
ZieQ(t) N;i; whereas if Z_;‘eg(t) N; > P then a;(t) = NP/ E]EQU) Nj, for all < € Q(t), and thus Zieg(t) ai(t) = P.
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It is easy to verify that this allocation is processor conserving. Now consider the Processor Sharing (PS)

policy in Hé, in which the allocation of processing power is given by

ai(t) = EHOI i€ Q(t)

Clearly a}(t) > a;(t) if |@*(?)] < |Q(t)| which can easily be shown by induction over time. Thus Lemma 3.1
yields

Rpq(N > P/2) > max(S, Bps),

where N > P/2 denotes N; > P/2,i=1,2,...

3.2.4 Tightness of the Per-Policy Bounds

To test whether the per-policy bounds for the EQ(N > P/2) and RRP policies are significantly tighter
than the general lower bound, we make the same assumptions as in the experiment of Figure 2, except that

we set P=100 and for the EQ policy we let N =Uniform[50,100] so that N > P/2. Rpg was estimated
using simulation and R};S is the mean response time of an M/G/1p PS queue, which equals (D/P)/(1 - p)

(see [8]). Rrrp was estimated using discrete event simulation and —R})PS was computed using the analysis
in [4] (which shows how the analysis of [3] can be simplified for hyperexponential demand distributions).

First consider the EQ policy, where Rpg(N > P/2) > max(S, R};S). Figure 3a plots Rpq, the PS bound
and the general lower bound for the stated workload. From Figure 3a we observe that the PS bound is
appreciably better than the general bound at utilizations above 0.5. At very low utilizations the PS bound
is simply S and is thus equal to the general bound. However, at high utilizations ﬁ};s is very close to Rpq
because as shown above the EQ(N > P/2) policy reduces to the PS policy when there are two or more jobs
in the system (which is very likely at high utilizations). Thus, for this workload the PS bound serves as an
accurate estimate for Rpg at very high utilizations. (We have observed similar results for other workloads
with N > P/2.)

Now consider the RRP policy, where Rgrp > max(S, —RZPS), the job discrimination weight in DPS being
equal to its available parallelism. In addition to the Uniform[50,100] parallelism workload we also consider
the H and M workloads for N. (Recall that the DPS bound for RRP holds for all distributions of N, not

just N > P/2.) Figure 3b displays Rrrp, the DPS bound and the general lower bound for the H workload,
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Figure 3: Per-Policy Bounds
P=100,D~ Hy,Cp =5

and Figure 3¢ presents the same results for the Uniform([50,100] workload. Comparing Figures 3b and 3c
we observe that the DPS bound is considerably tighter for the Uniform[50,100] workload than for the H
workload. The DPS bound is looser for the M workload (not shown) than for the H workload. The reason
for the looseness of the bound under the H and M workloads is that processors are idle under RRP if there
are only a few jobs in the system, each with low parallelism. As shown in Table 1, 10% of the H workload
consists of sequential jobs (N=1). For the M workload it can be shown that slightly more than 10% of the
jobs have an available parallelism of 5 or less. Low parallelism does not affect the processor utilization under
DPS because whenever there is one or more job in the system DPS achieves 100% processor utilization.
This causes Rpps to be significantly lower than Egrrp for the H and M workloads. On the other hand
Rpps is much tighter for the N =Uniform[50,100] workload because all processors are fully utilized under
RRP for this workload if there are two or more jobs in the system (every job has an available parallelism
of at least P/2). The above suggests that uniprocessor bounds may not be tight for workloads that have a
substantial fraction of jobs with low parallelism. We note, however, that these experiments have assumed
linear execution rates. For sublinear execution rates the bounding uniprocessor policy will not efficiently
utilize the entire processing power, particularly when there are very few jobs in the system. This could

improve the tightness of the uniprocessor bounds.
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4 Response Time Bounds for Exponential Demands: Optimal and

Worst Case Policies

In Section 3 we derived a general lower bound for parallel processor policies. We saw that this bound is quite
loose for certain policies under specific workloads. This motivates the search for tighter bounds under specific
workloads. In this section and in section 5 we consider policies in Il (policies that do not have explicit

knowledge of job demands) and we derive tighter bounds under the following set of workload assumptions:

A1l. The total service demands {D; }{2, are i.i.d. exponential with parameter p = 1/D, and are independent

of everything else.
A2. The execution rate function of job i is linear up to N, i.e., Ei(z) = Ln,(2), 0<e < P, i=1,2,...

In Section 4.1 we determine the processor allocation policy in Il that has the smallest mean response time
under assumptions Al and A2, and also determine the processor allocation policy in HOC that has the highest
mean response time under these assumptions. We thus obtain achievable lower and upper bounds on mean
response time for all policies in Iy and HGC, respectively. Section 4.2 gives applications of the PSAPF and
PLAPF bounds under assumptions Al and A2. In Section 4.3 we provide counterexamples to show that

these bounds do not hold when assumptions Al and A2 are violated.

4.1 Optimal and Worst Case Policies Under Al and A2

To motivate the optimal and worst case policies under assumptions Al and A2, consider the behavior of a
system I'y with processor allocation policy ¥ € Hg. If a job in Ty is allocated processing power ‘a’ then
its residual lifetime is exponentially distributed with rate ap. If there are k£ > 0 jobs in I'y with the ji* job

having a processor allocation of a; then the time to the next departure from I'y is exponentially distributed

with rate 3°

J=

L ajp. Therefore, as long as all processors are busy in I'y, departures occur with rate Pp. At
other times the departure rate of jobs is less than Pp.

Let us compare two processor allocation policies ¥y and Wa, ¥y, ¥y € HOC, under assumptions Al and
A2. If we start out with zero jobs in the system, ¥; and ¥y have the same behavior until all processors are
occupied. Once all processors are occupied job departures occur at the same rate of Pu under each of ¥y

and ¥,. Departures continue to occur at rate Py in both systems until the total processor utilization drops
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to less than P under one of ¥; or ¥,. From this point onwards the departure rate of jobs need not be the
same under ¥; and ¥, (unless job arrivals cause all processors to be busy once again). In fact, the departure
rate of jobs is higher for the system that has a higher number of processors busy. Thus whenever a queue
builds up it is better for overall policy performance to serve the jobs with high amounts of parallelism last,
to keep as many processors busy as possible.

Given this background we now show that under assumptions Al and A2 the PSAPF policy defined in
Section 2.2 performs better than any other policy ¥ & T, and likewise the PLAPF policy performs worse
than any other policy ¥ € HOC, PSAPF assigns low priority to jobs with high parallelism. Thus whenever
there are many jobs in the system (such that all processors are busy) jobs that have low available parallelism
are likely to depart under PSAPF whereas jobs with high available parallelism are held for later. Once the
number of jobs in the system falls down to a small value, the jobs with high available parallelism begin
execution and thereby keep more processors busy as compared to any other policy in II,. We prove the
optimality of PSAPF by means of the Theorem 4.1 below. The proof of this theorem is not as simple as

the proof of the general lower bound. Readers who wish to skip this proof on first reading can move on to

Theorem 4.2 (which shows that PLAPF is pessimal in Hff) without loss of continuity.

Theorem 4.1 Under assumplions Al and A2,
Ry > Rpsapr, Y¥ellp.

Proof. Let Tpsapr be asystem with the PSAPT policy and I'y be a system with any other policy ¥ € I1,.
Let Qo(t) equal the number of jobs in T'e at timet, © € {PSAPF,¥}. We prove this theorem by suitably
coupling sample paths for Tpsapr and 'y, and showing that for every sample path Qpsapr(t) < Qu(t),
Vt, from which it will follow that Rpsarr < Rg.

For the purposes of the proof we assume that there is a list of jobs in T'e at time ¢, distinct from the job
queue, sorted in increasing order of available parallelism®, with jobs of the same available parallelism in FCFS
order, ©® € {PSAPF,¥}. Let o2 (t) denote the job in position i of T'e’s list at time £, i = 1,2, .. L Qelt),
© € {PSAPF,¥}. To provide less cumbersome notation let ME(t) = Nge (1) denote the available parallelism

and b2(t) = a?@(t)(t) the processor allocation at time ¢ of job o®(t). Define MP(t) := 0 and M2 (t) := oo

8 Although this corresponds to queue ordering under PSAPF, it need not correspond to queue ordering under .
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for i > Qe(t). These boundary values will be useful during list insertions. Let

a®(t) = P (; MEW) o1 Qo). ©c{PSAPET).

Thus, job 0@ (t) completes at rate o (t) Pp from I'e. Note that b () < M2(t) for © € HOC, but this is not
the case for every policy in Ily (e.g., a fixed partitioning policy that allocates more than N; processors to
job j).

Coupling of Sample Paths in Tpsapr and I'y

Fix {Aj,Nj,C'j}f?:l as the same for both I'psapr and T'y. Fixing N; automatically determines E;(),
j=1,2, . since execution rates are linear up to Nj. Consider that potential job completions [20] occur atb
jumps of a Poisson process with rate Pu. Fix the same potential completion instants {T; }}";1 in both 'psapr
and I'y. To generate actual job completion times in I'psapr and Ty let {U; }JO';I be i.i.d. Uniform[0,1)
random variables. At the j** potential completion instant T}, the job in position k of I'e’s list (i.e., job

o2 (T;)) departs from T'g if
k
a? =), > (T, > © € {PSAPF,¥}. (8)

This ensures that the probability that o2 (7}) departs from T'e is of ( "), ® € {PSAPF,¥}.

Sample Path Analysis

Using the above coupling of sample paths we show by induction over time that for every pair of coupled

sample paths, for all ¢ > 0
Qpsapr(t) < Qu(t), and MPSAPF() > MP(t), i=1,...,Qpsaprr(t). )
The second inequality implies that

aPSAPF (1) = MFPSAPE (1) S min (b7 (t), M;" (1))

=a¥ =
5 > 5 =a; (), i=1,2,...,n(t), (10)

where n(t) = max{j=1,...,Qpsaprr(l) : pPSAPE () = MPSAPE()Y > | when Qpsapr(f) > 0. Note that
J j
af(if‘PF (t) is the job with the maximum index in Upsapr’s list at time { to receive as many processors as

its available parallelism.
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We carry out the induction over arrival instants and potential completion instants since no jobs depart in
between these event times. Let {¢;}%2, be the sequence of arrival and potential completion times arranged
in increasing order. Let both I'psapp and T'y start out with zero jobs each. Then clearly (9) is satisfied at
{ = to. Assume that (9) is true for all ¢t < ¢;. Since no jobs arrive or depart in (¢;,%;41) (9) is satisfied for
all t < tj41. We now prove that (9) is true at ¢ = ¢;41. Consider all possible events at time #;;.

1. Arrival of Job m:

By the induction hypothesis it follows that

Qprsapr(tis1) = Qrsapr(t;) +1 < Qu(t;) +1=Qu(tj+1).

Let & be the position in T'psspr’s list where job m is inserted at ¢4y (ie., m = UfSAPF(th)).
Then MFPSAPT (t;) < Npw < MEPSAPE(1;). (Recall that in the sorted list jobs with the same available
parallelism are maintained in FCFS order.) Since M (t;) < MEISAPF(4;) < Ny it follows that
m = o} (t;41) for some £ > k. Thus,
MPSAPE (4 01) = MPSAPE(45) > MP(t;) = MY (tj41),  i=1,...,k—1,
MEPSAPE (1500) > N > M (tj41),  i=k, . .4,

MEPSAPE (1500) = MEPSAPE (1) > M2, () = M (1), i=C0+1,..,Qrsarr(tjs).
2. Potential Completion:

(a) No departure from each of I'psapp and I'y: The induction hypothesis continues to be true at
{= tj+1‘
(b) Departure from I'psapr but not from I'y:

Qprsapr(tjt1) = Qrsarr(t;) — 1< Qu(ly) — 1= Qu(tj+1) — 1 < Qultj+1)-

PSAPF( )

Suppose ¢ departs from I'pgappr. Then
k

MPSAPE (5 0) = MPSAPE (1) > MY (t;) = M¥(tj41), i=1,.. k=1,

MPSAPE (4 0) = MESAPT () > MPSAPP(145) > MY (1) = M (1), i=k, ., Qrsapr(tjt1)
(c) Departure from each of I'psapr and I'y:
Qprsapr(tj+1) = Qpsapr(t;) =1 < Qu(t;) — 1= Qu(tj+1)
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Let UPSAPF (tj41) and ¥ (tj41) depart from Tpsapr and T'y, respectively. Consider the following

two cases:
(1) k<m:
MPSAPE (1540) = MPSAPE (1) > M (1) = M (t41), i=1,.. k=1
MPSAPE (¢ 1y = MESAPT (t;) > MPSAPT (4;) > MP(1;) = M (t41), i=k,...,m—1
MFPSAPE (15 1) = MESAPE (1) > M, (4) = M (t541), i=m,...,Qpsapr(tit1)
(ii) & >m:

This case is infeasible. To see this assume that & > m. Let tj41 = Ty, the r'" potential

completion instant, 1 < r < j+ 1. From (8) it follows that

U, el; and U, € I, (11)
where
m—1
L= Z (t541)) Zo‘f(iﬁl ) and I = [ZO‘PSAPF@]M ZO‘PSAPF t]_+l)> :
£=1
Since UPSAPF(tJ ;) departs from I'psapr, k —1 < n(t J+1) = max{j : beAPF(tj"H) =
]\/[PSAPF( 1)}. Applying (10) we have,

m

,\Il PSAP[‘ PSAPF —
> ol (G <Za ><Za (),
£=1

which means that intervals I; and I, are disjoint, thereby contradicting (11).

(d) Departure from I'y but not from [psapr:

This implies that

Qu(t;) Qrsaprr(ts)
U- e |0, Z oy ( t)], and U € Z fSAPF(tJ‘H) 1], (12)
=1

where tj41 = T}, the 7t* potential completion instant, 1 < » < j+ 1. Hence,

Qrsapr(t;) Qu(ty)
ST et < Y el (), (13)
=1 L=1

22



Using (10) we also have

Qrsaprr(li) Qrsapr(t;)
PSAPF (4~ B
Z ap SAPT (7)) > Z ap () (14)
=1 =1

(13) and (14) together imply that

Qpsaprr(tj) Qpsarr(tj) Qu(t;)
T, PSAPF /,— T -
Z ap (t741) < E ey (tj41) < Z ag (t41), (15)
=1 =1 =1

which shows that Qpsapr(t;) < Qu(t;). Hence,

Qprsapr(tjs1) = Qrsarr(t;) < Qu(t;) — 1 = Qu(tj41).
From (12) and (15) it also follows that U}‘f (t;) departs I'y for some k > Qpsapr(t;). Hence,
MESAPE (4;00) = MPSAPE () > M (1) = M¥(tj41), i=1,...,Qpsapr(tj) = Qprsapr(tj+1).

This completes the proof by induction. Thus we have shown for every sample path that Qpsapr(t) <

Qu(t), Vi > 0. Hence for every sample path

= 1 1 .
@psapp = lim z/ Qpsapr(s)ds < lim m/ Qu(s)ds = Qy,
[ —+ OO 0 0

t—s00 {

from which it follows by Little’s Law [18] that Rpsapr < Ry for every sample path. Now uncondition on

{A]yNJ»CJ:CZ}>UJ}}>O:1 N

The arguments in the above proof can easily be reversed to show that PLAPF has the worst performance

among all policies in HOC when assumptions Al and A2 hold. We need to restrict our attention to HOC instead

of Il because PLAPF is a processor conserving policy.

Theorem 4.2 Under assumptions Al and A2,

Ry < Rppapr, WO ellf.

Remark: Even though PSAPF is optimal under the above assumptions on the workload, it may not be a
desirable policy for other practical considerations. In particular, knowledge of this policy could influence

user behavior and create complex effects in the workload.
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4.2 Applications of PSAPF and PLAPF bounds under Al and A2

In this section we obtain the range of policy performance in HOC for specific distributions of available par-
allelism, by comparing the PSAPF and PLAPF bounds for these distributions. We then compare specific

policies in Hf against the optimal PSAPF policy and also against the general lower bound under Al and
A2. As mentioned in Section 2.4 we assume that jobs arrive according to a Poisson arrival process with rate
) and that mean job demand D = P. The mean response time estimates for all parallel processor policies

in this section are obtained using discrete event simulation.

4.2.1 Range of Policy Performance in Hff

Since PSAPF is optimal and PLAPF is pessimal in HOC, under Al and A2, the ratio of Rprapr to Rpsapr

measures the range of policy performance in HOC, Figure 4 plots this ratio versus p = /\E/P for the H, M,
and L workloads of Table 1 at P=20 and P=100. We note that the difference between PSAPF and PLAPF

decreases as workload parallelism decreases. For P = 20 and P = 100 the difference between PSAPF and

PLAPFT for the I workload is very small which means that in this case any scheduling policy in HOC performs
nearly as well as the optimal PSAPF policy (when Al and A2 hold). For the M and H workloads the

difference between PSAPF and PLAPT is larger at P=100 than at P=20, indicating that for workloads with
at least moderate parallelism the range of policy performance in HOC increases with system size. (Note that

for P =1 all policies in HOC have the same performance under Al and A2.)
Another observation from these figures is that the ratio of PLAPF to PSAPT decreases as p goes to 1.
(The dashed lines meeting at p = 1 are extrapolations from the simulation data points.) To explain this

behavior we note that at very high utilizations there is a high probability of all P processors being occupied.

Recall that under assumptions Al and A2, departures occur with rate Py for all policies in Hg when all P

processors are occupied, and thus as p — 1 the system behavior approaches that of a saturated G/M/1p

queune. Hence the performance of all policies in Hff tends to converge as p — 1.

4.2.2 Comparison of Specific Policies w.r.t. PSAPF and General Lower Bound

Figure 4 depicted the range of policy performance in HOC for particular parallelism workloads, under assump-

tions Al and A2. We now illustrate where specific policies in HOC, namely FCFS and EQ, lie within this
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Figure 4: Range of policy performance in II;? under Al and A2

range by comparing them with the PSAPF lower bound under Al and A2, for the H, M, and L parallelism

workloads. We then examine the performance of these two policies with respect to the general lower bound
under the same workloads.
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Figure 5: Ry/Rpsapr and R\y/ﬁ: under Al and A2

¥ € {FCFS, EQ}, P=100

In Figure 5a we compare Rpcrs and REQ against the achievable PSAPF bound for the H,M, and L

parallelism workloads. This figure clearly shows that Rrers and REQ are nearly identical to the optimal

Rpsapr for all three workloads at all utilizations, under A1 and A2. Figure 5b shows that if we instead
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compare REQ and Rpcrs against the general lower bound, R—:, we again see that FCFS and EQ have nearly
identical performance for the H, M, and L workloads under Al and A2, but we cannot determine how close
these policies are to the optimal. Thus, knowledge of optimal policy performance (in Figure 5a) yielded
useful information. Both Figures 5a and 5b show that Rpcrs is almost identical to REQ for the H,M, and
L, workloads, under Al and A2. However, Figure 2 showed that ﬁEQ is significantly smaller than Rpcrs
under the same parallelism workloads when D has an Hy distribution with Cp = 5. Thus the qualitative

behavior of processor allocation policies is sensitive to assumptions about job demand distribution.

4.3 Counterexamples

We have shown that PSAPF is the optimal policy in Ilg and PLAPT the worst policy in ng under assump-
tions Al and A2 The following counterexample shows that this is not the case for nonexponential demands
(i.e., assumption Al is no longer true). Note that Figure 2 showed that PSAPT is not optimal under specific
parallelism workloads when job demand has an H, distribution with Cp = 5, but there was no mention
about PLAPF in that counterexample. After the following counterexample we also give a counterexample
to show that PSAPF is not optimal when A2 is violated.

Consider the following assumptions:

(a) {D;}52, are i.i.d. (nonexponential) and independent of everything else, with mean D and coefficient

of variation Cp.
(by N=P,ie,N;=P,i=12,...
(c) Linear job execution rates (assumption A2).
(d) Jobs arrive according to a Poisson process with rate A.

Let p = AS = AD/P. Under assumption (b) there is just one priority class under PSAPF and PLAPF and
therefore both policies reduce to the FCFS policy, for which the mean response time under assumptions
(a)-(d) is the same as the mean response time of an M/G/1 queue with a processor of power P (ie.,
S = D/P) [12]. Under assumptions (a)-(d) we therefore have

D p(1+Cp)

et 1s)

Rpsapr = Rprapr = Ryjcjip =
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where the expression for RA’[/G/lp is obtained from [7]. Now consider the EQ policy. The mean response
time of the EQ policy under assumptions {a)-(d) is equal to the mean response time of an M/G/1p processor
sharing (PS) queue [12]. From [8] we note that 'f—ﬁM/G”P ps = —RM/M/lP. Thus,

D/P

Rpg = RM/G/LD Ps = RJ\/]/]\/I/lp = 1—:—p (17)

Comparing (16) with (17) shows that under assumptions (a)-(d) Rpsapr > Rgg when Cp > 1, and
Rprapr < EEQ when Cp < 1. Hence PSAPF is no longer optimal in Iy when job demand has a higher
variance than the exponential distribution, and PLAPF no longer has the highest mean response time in
ng when job demand has a smaller variance than the exponential. This counterexample exploited the
first-come-first-serve ordering within PSAPT of jobs that have the same available parallelism. It can also
be shown that for any other ordering of jobs with the same available parallelism (e.g., processor sharing)
PSAPF is not optimal when Al is violated.

The above counterexample assumed that A2 is true. When A2 is false it is easy to see that PSAPF is
no longer optimal in Iy even when Al is true. For example, if N; = P and Ej(P)=c< P,i=1,2,..,
then Rpsapr = oo for A > c/vﬁ On the other hand, for the static policy in Iy that allocates exactly one
processor to each job in FCFS order the stability condition is A < P/D, and thus its mean response time is

smaller than Rpgapr for ¢/D < A< P/D.

5 Response Time Bounds for Exponential Demands: Optimal and

Worst Case Parallelism

The bounds in the previous section were derived from the optimal policy in Il and the pessimal policy in
HOC under assumptions Al and A2, where assumption Al states that {D;}{2; are ii.d. exponential with
parameter u and independent of everything else, and assumption A2 states that E;() = Ln,(), i = 1,2,...
In general, it is difficult to compute the mean response time of these policies (PSAPF and PLAPF), even
under assumptions Al and A2. In this section we derive computable, but weaker bounds on mean response
time. In Section 5.1 we derive mean response time bounds in Il and HOC under assumptions Al and A2
from optimal and worst case parallelism results. In Section 5.2 we show that these bounds can be computed

for certain types of arrival processes. Section 5.3 tests the tightness of the these computable bounds against
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the achievable PSAPF and PLAPF bounds under Al and A2 and also compares the performance of specific
policies under specific workloads against the mean response time under optimal parallelism. In Section 5.4
we give a counterexample to show that these bounds do not hold when assumption Al is violated (i.e., jobs

have nonexponential demands).

5.1 Parallelism Bounds Under A1l and A2

Under assumptions Al and A2 we first derive a lower bound on mean response time for any policy ¥ € 1l

by showing that Ry > Re(N = P), VO € th The notation Re(N = P) stands for the mean response

1

time of © when N; = P, i=1,2,.... We next derive an upper bound on mean response time for © € Hg
by showing that Re < Re(N = 1), i.e., policy performance is worst when N = 1.

The following lemma will be used in the bounds that follow.

Lemma 5.1 Under assumptions Al and A2
Ro(N = P)= EG/}\{/lP, and Re(N=1)= Rg/j\/[/p, YO € HOC

Proof. Let I'g denote a system with policy © € HOC, Under assumptions Al and A2, when N = P jobs
depart from I'e with rate Pp as long as there is at least one job in the system. Hence the number of jobs
in the system and consequently the mean response time of I'e are stochastically the same as that of the
G/M/1p queue. Likewise, when N = 1 jobs depart I'e with rate min(Qpu, Pp) when there are @ jobs in the
system which is how the G/M/P queue behaves. |
Lemma 5.1 shows that R@(N = P) and R@(N = 1) do not depend on © for © € HOC, Just like Rg/ﬂ/[/c
for a G/M/c queue does not depend on the scheduling policy as long as it is work-conserving and does not
make use of job demands. Therefore under assumptions Al and A2, all policies in HOC have the same mean
response time when N = P and also the same mean response time when N = 1.

We now present a lower bound for the mean response time of policies in Iy that is derived from the

optimal parallelism value for HOC under assumptions A1 and A2.

Theorem 5.1 Under assumptlions Al and A2

Ry > max(S, Re(N = P)) = max(S, Rg/n/1,), V¥ €lly, VO e HOC~



Proof. From Theorem 3.1

Ry > max {?, inf Rg:[F() = Lp()]} ,
well;

where ¥! is a nonidling uniprocessor policy. Under assumption Al and when F;() = Lp(), i = 1,2,..,
(ie., execution rate function Fy(z) = =, 0 < @ < P), the system under W' behaves like a G/M/1p queue,
Yol e Hé. Hence

Ry > max(S, Ra/nm/1p)-

The theorem follows since from Lemma 5.1 we have ﬁg/M/lp =Re(N=P),0¢ HOC. |

Theorem 5.1 can also be proved independently of Theorem 3.1 by first coupling sample paths between I'y
(a system having policy ¥ € Il and a workload with general N;, ¢ = 1,2,...) and I'e (a system having policy
Q€ Hoc and a workload with N; = P, ¢ = 1,2,...) so that {4;,C;,T;}32, are the same for both systems,
where T; are potential job completion instants at jumps of a Poisson process with rate Pu. In system I'e a
potential completion is an actual job completion if there is at least one job in the system because N = P,
but this is not necessarily the case in I'y. As a result, it can be shown by induction over time that for every
sample path, Qe(t) < Qu(t), Vt, from which Theorem 5.1 follows.

An implication of Theorem 5.1 is that under Al and A2 the performance of any policy in Hg is best
when N = P. We now show that the reverse is true when N = 1 by means of Theorem 5.2 below. The proof
of this theorem is more complex than the proof of Theorem 5.1. Readers who wish to skip this proof on first

reading can skip to Section 5.2 without loss of continuity.

Theorem 5.2 Under assumptions Al and A2
Ry < —R@(N =)= Rg/]\/[/p, Y¥,0 € Hg

Proof. Let I'y be a system having policy ¥ € HOC and a workload with no restrictions on {N;}{2,. Let I'e
be a system having policy © € HOC and a workload with N; = 1,1 =1,2,.... Sort the jobs in 'y at time
t in any fixed order, ® € {¥, O} (for instance, in increasing order of available parallelism as in the proof of
Theorem 4.1). Using the same notation as the proof of Theorem 4.1 job o () departs I's with rate a2(t) Py,

where o2 (t)P is allocation of processing power at time ¢ to job o (t), k = 1,...,Qs(t), ® € {¥,0}.
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Coupling of Sample Paths in I'y and I'g

Fix {4;,C;, T]};";l as the same in both 'y and I'e where T; are potential completion instants generated
by a Poisson process with rate Pu. Fix a sequence {N;}$2, for I'y. By assumption A2 this automatically
determines {£;()}52, for I'y. In Te all jobs have an available parallelism of 1 and this also automatically
fixes their execution rates. To generate actual completions from I'y and T'g let {U;}52, bei.i.d. Uniform[0,1)
random variables. At the j** potential completion instant T; there is a departure from I'g if

Qa(T5)

Upe |0, Y of(1y)|, ®e{v,0}
{=1

Sample Path Analysis

Using the above coupling of sample paths we show by induction over time that for every pair of coupled
sample paths, for all ¢ > 0

Qe (t) < Qolt). (18)

We carry out the induction over arrival instants and potential completion instants since no jobs depart in
between these event times. Let {¢;}52, be the sequence of arrival and potential completion times arranged
in increasing order. Let both I'y and T'e start out with zero jobs each. Then clearly (18) is satisfied at
t =to. Assume that (18) is true for all ¢ < ;. Since no jobs arrive or depart in (¢;,%;41) (18) is satisfied for

all t < tj11. We now prove that (18) is true at ¢ = ¢;4;. Consider all possible events at time ;1.

1. Job Arrival:

By the induction hypothesis it follows that
Qu(tj+1) =Qu(t;) + 1< Qo(t) +1=Qo(tjs1)
2. Potential Completion:

(a) No departure from each of 'y and T'e:
Qu(tj+1) = Qu(ty) < Qolty) = Qo(tjy1)-
(b) Departure from I'y but not from I'e:
Qultit1) = Qu(t;)) =1 < Qolt;) — 1= Qoltj+1) — 1 < Qoltj+1).
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(c) Departure from each of I'y and I'e:
Qu(tj1) = Qu(t;) — 1< Qo(t;) — 1= Qaltjt1):

(d) Departure from I'e but not from I'y:

This implies that

Qo(t;) Qu(t;)
0, > af(t5y,)], and U € | D af(t5) 1], (19)
=1 =1

where t;41 = T}, the rt* potential completion instant, 1 < r < j -+ 1. Hence,

Qu(ty) Qo(t;)
Z (t;+1) Z a?(t;}—l)‘ (20)
£=1 =1

From (19) it follows that there are idle processors in I'y at time ¢; ;. Thus at 7 ; job o} (tie1)
has as many processors as its available parallelism, & = 1,...,Qu(t;), because ¥ is processor

conserving. As a result,

- 1 -
O‘Zp(tjﬂ) 2 P > O‘?(t1+1)> =1,...,Qu()- (21)
(20) and (21) together imply
Qu(t;) Qu(ty) Qa(ty)
Z a?(tj_+1) < Z (t]w+1) Z a?(t]+1)
£=1 =1 =1

which shows that Qu(t;) < Qe(t;). Hence
Qu(tj+1) = Qu(t;) < Qo(t;) —1 = Qoltjt1).

This completes the proof by induction. Thus we have shown for every sample path that Qg(?) < Qelt),

Yt > 0. Hence for every sample path

1
Qg = lim —/ Qul(s <  lim l/o Qo(s)ds = Qo,

f—+ 0O t—o00 f

from which it follows by Little’s Law that Ry < Re for every sample path. Now uncondition on {4;, N;, C;, T}, U; }f‘;l

From Lemma 5.1 we also know that Re = ﬁg/M/p since N=1inTg. [ |

31



5.2 Computation of Parallelism Bounds
From the two theorems of this section and from the theorems of Section 4 we have the following corollary.

Corollary 5.1 Under assumptions Al and A2

Ry > Rpsapr > max(S, Rg/mj1p), V¥ ellp and

>} ) o3 (o)
Re < RPLAPF < R(;/M/p, Ve € H() .

We refer to the lower bound maz(S, Rg/j\/[/lp) as the N = P bound and the upper bound Eg/AJ/P as
the N =1 bound. The N = P and N = 1 bounds are looser than the Rpsapr and Rprapr bounds, but
they are useful because they can be computed exactly for certain arrival processes, which is not necessarily
the case for Bpsapp and Rprapr. For example, for a Poisson arrival process the bounds in Theorems 5.1

and 5.2 reduce to

D/

Ry > max <§, 1 p) . v el,, and Re < RM/M/}:, VO € th (22)

The second term within the max() in the lower bound is simply the mean response time of an M/M/1p queue
with mean service time D/P. When the arrival process is GI but not necessarily Poisson the parallelism

bounds can be computed using the analysis of the GI/M/c¢ queue [7,21].

5.3 Experimental Results

In this section we first compare the computable parallelism bounds (N = P and N = 1 bounds) against
the achievable PSAPF and PLAPT bounds, for specific distributions of N. We then illustrate the use of
the Rg(N = P) (¥ € HOC) result by comparing the performance of the PSAPF, FCFS and EQ policies for
specific distributions of N against the performance of the same policies under fully parallel workloads. As

before we assume that jobs arrive according to a Poisson process with rate A and that D=P.

5.3.1 Comparison of Computable versus Achievable Bounds

Recall that under assumptions Al and A2 the general lower bound is equivalent to the N = P bound and

we therefore refer to it as the “general, N=P” bound. For P=100, Figure 6 presents plots of the general N=P

bound and the N = 1 bound as well as the PSAPF and PLAPF bounds for the H, M, and L workloads.
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The results for P=20 (not shown) are qualitatively the same. The difference between Rprapr and Rpsapr
gives another view of the range of policy performance in Hg that was discussed in Section 4.2.1. Comparing

the computable N = 1 upper bound versus the achievable PLAPF upper bound for HOC, we observe that
among the H, M, and L workloads the N = 1 bound is tightest for the L workload (as expected). However,
the N = 1 bound is generally loose with respect to Rprapr for all three parallelism workloads except at

very high utilizations.

100 _/ 100 / 100 i
M N=1 bound M N=1 bound M PLARE PSAPE -+ I
a a a R o i p==?
" 80 F " g0 T g0 general N=P bound
R { R R
e H e e
s ! s s
5 60 / 5 60 5 60
0 / 0 [+
s PLAPE/ s s
5 3 s s
e 40 pa e 40 PLAPE] e 40
» |
T ' T A T
i o rsar i PSAPF i
e = E TG cpeserc0en 0 e Py e
general N=P bound general N=P bound
0 0 . 0
00 02 04,06 08 10 00 02 04,06 08 10 00 02 04,06 08 10
(a) H workload (b) M workload (¢) L workload

Figure 6: Response time bounds under Al and A2
P=100

One implication of these results is that under assumptions Al and A2 the performance of any policy in
HOC is much better under parallel workloads than under fully sequential workloads. However, in Section 5.4
will show that this observation can be sensitive to assumptions Al and A2 for specific policies in HOC.

Comparing the computable general, N=P lower bound versus the achievable PSAPF lower bound, we
observe from Figure 6 that for the H and M workloads the general, N=P bound is reasonably tight, particularly
at low to moderate utilizations as well as at very high utilizations (p > 0.9), and the location of the knee of
the PSAPF curve is predicted quite well by the general N=P curve. For the L workload, the general N=P
bound is tight for most of the range of utilization, but is loose at the knee of the PSAPF curve. Based on
the results of Section 4.2.2 shown in Figure ba, the FCFS and EQ curves would lie very close to the PSAPF

curves in Figure 6.
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5.3.2 Comparison of PSAPF, FCFS, and EQ against Rg(N = P)

We compare the mean response time of particular policies in H.OC under specific distributions for N against
the mean response time when N = P, to get an estimate of the benefits of full parallelism in the workload.
We consider the PSAPF, FCFS, and EQ policies which were shown in Figure 5a to have almost the same
performance for the H, M, and L workloads under assumptions Al and A2. Figure 7 plots the ratio of
Rpq to Rpo(N = P), under assumptions Al and A2, for the H, M, and L workloads; P=100. The
curves for PSAPF and FCFS are almost identical to the curves for EQ. Since D = P for this experiment
Rpq(N = P)=D/P =1 at p =0, and thus the ratio Rpq/Req(N = P)=5/1 =35 at p = 0. For the
workloads in Table 1, S is lower for the M workload than for the H workload. Note, however, that there are
many workloads with moderate N (not shown) that have higher mean service time than the H workload.
Each of the curves in Figure 7 starts at S at p = 0 and decreases linearly with p until it reaches the limiting
value of 1.0 at p = 1. (The dashed lines leading to 1.0 at p = 1 are extrapolations from the simulation data
points.) The reason for the decrease is that an increase in processor utilization causes departures to occur
at higher rates under assumptions Al and A2, until they reach the limiting rate of Py at p = 1. Though
all curves in Figure 7 converge at p = 1, the figure shows that a substantial improvement in mean response

time is possible, even at high utilizations such as p = 0.9, by making each of the workloads fully parallel;

this is particularly true for the L workload.

12.01
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. 1
ReQ ‘,‘
Rpg(N=P) '
6.0 |
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Figure 7: Rpg/REq(N = P) under Al and A2
P=100
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The above results are derived under assumptions Al and A2. We next discuss the sensitivity of the

parallelism bounds to these assumptions.

5.4 Counterexample for nonexponential job demands

We have shown that

Ro(N =P)<Re <Re(N=1), vOellf, (23)
when jobs have i.i.d. exponential demands independent of everything else, and execution rates are linear.
It is easy to see that these bounds are violated for some policies in HOC when assumption A2 is false. For

example, for the FCFS policy with N = P and E;(P) < P, for all 7, the system will become unstable at
lower arrival rates than when N = 1 (under which execution rates are linear). We now give a counterexample
to show that (23) does not hold for all policies in HOC when assumption Al is false. Consider the following

assumptions:

(a) {D;}%2, are i.i.d. with distribution B (given below) and independent of everything else. The distribu-

tion B is a generalized exponential distribution (see [1]) defined by

0, t <0,
1—Be ™ t>0

where 0 < <1 and a > 0.
(b) Linear job execution rates (assumption A2)
(¢) Jobs arrive according to a Poisson process with rate A.

Denote the mean of the distribution B by D and let p = AD/P. Consider the FCFS policy in Hg. Under
assumptions (b) and (¢) when N = P the mean response time under FCFS is that of an M/G/1p queue

and when N = 1 the mean response time under FCFS is that of an M/G/P queue [12]. Under assumptions

(a)-(c) and for P = 2 it follows (see [1]) that

Rrcrs(N = P =2)= Ruyc/, > Bujeyr = Rrers(N =1), iff p > _F

1-p5’
which violates (23) when 8 < 1/2. Hence the parallelism bounds of this section do not hold for all policies

. c C . L c
in II; under nonexponential job demands. (They may, however, continue to hold for some policies in I1;
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even under nonexponential demands.) This again shows that the qualitative behavior of scheduling policies

is sensitive to the assumptions about job demand distribution.

6 Conclusions

We have developed a general lower bound for the mean response time of a general purpose parallel processor
system with a central job queue. The lower bound for parallel processor policies is derived for a general
workload model from the optimal nonidling uniprocessor policy that uses the same information as the parallel
processor policy. We have also given examples of how tighter bounds can be obtained on a per policy basis.
Key features of the workload model are general distributions of demand and available parallelism, general
nonlinear job execution rates, and general inter-arrival times, with arbitrary dependencies between these
variables.

Under a restrictive set of assumptions that includes exponential i.i.d. job demands independent of all
other workload variables, and linear job execution rates, we have shown that when job demand is not
explicitly known to the scheduler the PSAPF policy is optimal and the PLAPF policy is pessimal over all
processor conserving policies. We have also given a counterexample to show that PSAPF optimality does
not hold for distributions with higher variance than the exponential. Under the same set of assumptions,
we have shown that the mean response time of any processor conserving policy is lowest when every job can
make use of all processors and is highest when all jobs are fully sequential. We have given a counterexample
to show that these parallelism bounds are violated when job demand is not exponential.

We have given some experimental data to illustrate the applicability and tightness of the derived bounds
under specific demand and parallelism workloads. These experimental results show that the general lower
bound serves as a useful reference point to compare the performance of parallel processor policies in a
given class, especially when the optimal parallel processor policy in the same class is unknown for the given
workload assumptions. The data also indicates that per-policy bounds can be considerably tighter than the
general lower bound for certain workloads, but they may not be much tighter for workloads that have a
substantial fraction of jobs with very low parallelism. Under exponential job demands and linear execution
rates the data provided examples of processor conserving policies that perform nearly as well as the optimal
processor conserving policy for specific workloads of available parallelism. Under the same assumptions the

data have also shown that substantial improvements in mean response time are possible by making specific
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workloads fully parallel. Note that this last result will hold for specific policies under more general demands

and linear execution rates, if the performance of such policies is insensitive to demand distribution.
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