CENTER FOR
PARALLEL OPTIMIZATION

SERIAL AND PARALLEL BACKPROPAGATION CONVERGENCE
VIA NONMONOTONE PERTURBED MINIMIZATION

by

0. L. Mangasarian and M. V. Solodov

Computer Sciences Technical Report #1149

April 1993

SERIAL AND PARALLEL BACKPROPAGATION CONVERGENCE
VIA NONMONOTONE PERTURBED MINIMIZATION

O.L. MangasariauﬂL and M. V. Solodov!

Technical Report # 1149
April 1993

ABSTRACT

A general convergence theorem is proposed for a family of serial and parallel nonmonotone
unconstrained minimization methods with perturbations. A principal application of the
theorem is to establish convergence of backpropagation (BP), the classical algorithm for
training artificial neural networks. Under certain natural assumptions, such as divergence
of the sum of the learning rates and convergence of the sum of their squares, it is shown
that every accumulation point of the BP iterates is a stationary point of the error function
associated with the given set of training examples. The results presented cover serial and
parallel BP, as well as modified BP with a momentum term.

t Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madi-
son, WI 53706, U.S.A. Email : olvi@cs.wisc.edu, solodov@cs.wisc.edu. This material is based
on research supported by Air Force Office of Scientific Research Grant AFOSR-89-0410 and
National Science Foundation Grant CCR-9101801.

1 Introduction
We consider the following unconstrained optimization problem

min f(2) (1.1)

where f : ®* — R is a continuously differentiable function from the n-dimensional real space
R" to the real numbers R.

We start with a nonmonotone convergence theorem for unconstrained optimization al-
gorithms (Theorem 2.1 below). This result generalizes the monotone Theorem 2.1 of [11]
by adding perturbations to the algorithms that result in a nonmonotone sequence of func-
tion values. This is a key generalization that allows the proposed theorems to apply to a
wider class of algorithms including backpropagation. We shall establish that every accumu-
lation point of the sequence generated by such perturbed algorithms is a stationary point for
the minimization problem (1.1). We further show that algorithms based on appropriately
perturbed gradient directions fall within the presented framework (Corollary 2.1).

Of particular interest for us will be the special case when the function f(z) is given by a

summation of a finite number of functions f;(z),j =1,..., N for some N > 1. That is

N
f(z) = z_jlfj(fv) (1.2)

We note that this is exactly the case for the BP algorithm for training artificial neural
networks ([10]), where N is the number of examples in the training set.

Motivated by the parallel BP we present a parallel version of Corollary 2.1 (Theorem 2.2).
In particular, we consider the case when the functions f;(z),j = 1,... , N are distributed
among k processors. Under the same assumptions as those of Corollary 2.1, convergence of
the gradient of the objective function of the problem (1.1) to zero is established (Theorem
2.2).

We note that a primary goal of this paper is the convergence analysis of the classical BP
algorithm ([15],[7],[16],[8]). BP has long been successfully used by the artificial intelligence
community for training artificial neural networks. Curiously, there seems to be no published
deterministic convergence results for this method. The primary reason for this seems to

be the nonmonotonic nature of the process. Every iteration of on-line BP is a step in the

1

direction of negative gradient of a partial error function associated with a single training
example (e.g. fij(z) in (1.2)). It is clear that there is no guarantee that such a step will
decrease the full objective function f(z), which is the sum of the errors for all the training
examples . Therefore a single iteration of BP may, in fact, increase rather than decrease
the objective function f(z) we are trying to minimize. This difficulty makes convergence
analysis of BP a challenging problem that has currently attracted interest of many researchers
([51,[6],[91,[41,[17])-

In [17] White by using stochastic approximation ideas ([1],3]) has shown that, under
certain stochastic assumptions, the sequence of weights generated by BP either diverges or
converges almost surely to a point that is a stationary point of the error function. More
recently, stochastic analysis was also used in [4]. We emphasize that our approach is purely
deterministic. In fact, we show that BP can be viewed as an ordinary perturbed gradient-
type algorithm for unconstrained optimization (Theorem 3.1). We give a convergence result
for serial and parallel BP as well as the modified BP with a momentum term. There seems
to be a consensus in the artificial intelligence community that the use of a momentum term
generally yields superior computational results than pure BP ([15],6])-

The paper is organized as follows. In Section 2 we establish the serial and parallel
versions of our nonmonotone convergence theorem for unconstrained optimization. We also
show that this theorem can be applied to the analysis of a family of optimization methods
with perturbed gradients. In Section 3 we concentrate on the BP algorithm for training
neural networks, and apply the results of Section 2 to establish its convergence. Section 4
contains some concluding remarks.

We briefly describe our notation. All the vectors are column-vectors. For z in ®", xT
denotes its transpose. Throughout the paper, ||-|| denotes the two-norm, that is |[z|| = (zTz)?
for ¢ in ®". For a differentiable function f : ®* — R, Vf will denote its gradient. If a
function f is continuously differentiable on ®”, we shall write f € CY(R™). If f has Lipschitz
continuous partial derivatives on ®™ with some constant L > 0, that is

IVf(y) = Vi) < Lly -2l Va,yeR,

we write f € LCL(R™). R, will denote the nonnegative real line, that is z € R and @ > 0.

2 Convergence of Algorithms with Perturbations

We start with a convergent nonmonotone algorithm theorem for the solution of the uncon-
strained minimization problem (1.1). Our result is much in the spirit of ([11]), except for
the key difference of nonmonotonicity. We first define a forcing function.
Definition 2.1. A continuous function o : Ry -+ R, such that 0(0) = 0,0(t) > 0 fort > 0,
and such that t* > 0 and {o(t)} — 0 imply that {t'} — 0, is said to be a forcing function.
Some typical examples of forcing functions are ct, ct? for some ¢ > 0.
We now state a classical lemma ([13],p.144, [14],p.6) that will be used later, as well as
another lemma used in the proof of Theorem 2.1.

Lemma 2.1. Let f € LC}(R™) , then

(6) ~ f(2) = V@ (v -)] < Fly = o Vaye®

Lemma 2.2.([2]) Let {a'} and {€'} be two sequences of nonnegative real numbers with
@ € <00 and 0 < at? <at+é fori=0,1,..., then the sequence {a'} converges.
We are now ready to state and prove our first result.
Theorem 2.1. Let f € CY(R") and let infoegn f(z) = f > —o0. Start with any 2° € R".
Having z* stop if Vf(z*) =0, else compute z*™ = 2t + nid* according to a direction d* and
stepsize n* chosen as follows
Direction d' :
= Vf(@)'d 2 o(IVF()) — N (2.1)
where A\; > 0 and o(+) is a forcing function .
Stepsize n;

f@@') = f(@) 2 =0V (&) d —vi, 1> 0,120 (2.2)
If
Zni = 00, Z)\im < 0, Zyi < 00 (2‘3)
=0 i=0 i=0

then the sequence {f(z%)} converges, and inf; ||V f(z)|| = 0. If, in addition, f € LCI(R")
and ||d|| < ¢, Vi, ¢>0, it follows that {Vf(z')} — 0, and for each accumulation point
point Z of the sequence {z'} , Vf(z) = 0.

Proof. If Vf(z') = 0 for some ¢, then the algorithm terminates at a stationary point.
Suppose now that it does not terminate.
Combining (2.1) and (2.2) we have

F(@') = f(@) = no(IVF(E)) — A — v (2.4)
Hence
0< fle™) —F< f(@) = F+Ami+wi

By (2.3) and Lemma 2.2, the sequence {f(z*) — f} converges, and so does the sequence

{f(=)}.

Applying (2.4) to the first summation below we obtain

. i_l . .
@ -F = (=% - f(") =Z(f(fv”)—f($”“))
gl
> Zm IV f(z)]]) - Z(/\jm"*"'/j)
i1 i—1
> 0<1Téf la(HVf(:BJ ” an 2)‘1771 Zl/j (2.5)

By letting ¢ — oo we obtain

6 = 7 2 oIV D S~ 3o = v (26)

Since the left-hand-side and the last two terms of the right-hand-side in (2.6) are finite
numbers, it follows from the divergence of 372, n; that inf; o(||V f(z%)]|) = 0. By Definition
2.1 of the forcing function we immediately have that

inf |V ()] = 0 2.1)

Now assume that f € LCi(R™) and ||d']| < ¢, Vi, ¢ > 0. Suppose the sequence {V£(zh)}
does not converge to zero. Then there exists some € > 0 and some increasing sequence of
integers {¢;} such that ||V f(z%)|| > € for all I. On the other hand, (2.7) guarantees that

€

for every [there exists some j > i; such that ||V f(z7)| < 5. For each [let j(I) denote

4

the least integer which satisfies these conditions. By the triangle inequality, the fact that
f € LCL(R™) and (2.3), we have

IV £ = IVF D) < IV f(@*) = V(D))
FIORS! j)-1

< Lot - PO <L Y nldl < Le Y m

t=1; t=1y

IA

€
2

Hence

i(h-1 €
Z ’I]t = 2[6 c>0 (28)

t=1;
By making use of (2.4) and (2.8), we have

in-1 i(h)-1

f@) = f(@@D) 2 3 mo(IVFE) = 2o e + 1)

t=1; t=1;

> e inf o(IVIEO) - 3O+)

Since the sequence {f(z*)} converges and the last summation above converges to zero as

[— o0, it follows that

lim a(IIVf(z)]) =0 (2.9)

l—r00 zl<t< (l) 1

However, by the choice of 4; and j(I), |[Vf(z%)| > &, Vt:4 <t < j(l). This contradicts
(2.9) since o(+) is a forcing function. Hence the assumption that V f(z') does not converge
to zero is invalid. Taking into account continuity of the gradient of f, we conclude that if @
is an accumulation point of {z*}, then V f(Z) = 0. The proof is complete.

Remark 2.1. Assumptions (2.1),(2.2) and (2.3) can be combined into the following simpler
and more general condition, where 6; replaces A;m; + v;

f(@) = f(@) > nia(|VF(@)]) = 6

5

Zmzoo, 20i<oo

1=0 1=0
These new conditions also guarantee that the assertions of Theorem 2.1 hold. However,
we have chosen to state Theorem 2.1 in a direction — stepsize form because it is easier to
implement. See [11] for specific instances of directions d* and stepsize n; choices without

perturbation terms.

We now show that Theorem 2.1 can be applied to the analysis of the perturbed gradient-
type methods. It is important to point out that the assumptions (2.10) below of Corollary
2.1 of boundedness of f from below, and the Lipschitz continuity and boundedness of V f
are all satisfied in the context of BP, the convergence of which is established in Section 3.

Corollary 2.1. Let
feLCLRY), [Vf(@)| <M, f(z)= f Yz e®R" (2.10)

for some M > 0 and some f. Start with any z° € R". Having @, stop if Vf(z') =0, else

compute

! = o 4 pd (2.11)
where
d'=—-Vf(z')+eé (2.12)
for some et € R*, n; € R, n; > 0 and such that
Soni=o00, Yni<oo, ymlell <oo, [lef <y Vi, v>0 (2.13)
1=0 1=0 1=0

It follows that {f(z%)} converges, Vf(z*) — 0 and for each accumulation point T of the
sequence {z'}, Vf(z)=0.
Proof. It suffices to show that conditions (2.1)-(2.3) of Theorem 2.1 are satisfied. We first
note that, by (2.10), (2.12) and (2.13), ||| < M + ~ for all 3.

By the Cauchy-Schwartz inequality, (2.11) and (2.10), we have with o(s) = 52,

—Vf@E)Td = IV - Vi)
> o(|VFE)) = IVFE)IE
> a(|IVF()l) = Ml (2.14)

6

By Lemma 2.1, (2.11) and (2.12), it follows

j é N (i i _ Ly i
f@) = f@*) 2 =V f(a") (@™ - 2') - 5 lle |
. . L .
= -0V f(a)'d - Snilld|”
L
> —niVf(@)Td — oni(M +1)° (2.15)

Relations (2.14), (2.15) and (2.13) establish the assumptions (2.1)—(2.3) of Theorem 2.1 with
Ai = M||€]|, vi =%(M + ~)*n?. The proof is complete. =

Remark 2.2. Under appropriate assumptions, other well known direction choices, such as

conjugate and quasi-Newton directions ([14]) can also be perturbed similarly as in Corollary
2.1.

Remark 2.3. Similar to [11], a parallel version of Theorem 2.1 can be established where
portions of the gradient are distributed among the processors. However, having in mind the
analysis of the BP algorithm, we shall instead here concentrate on parallel distribution of

the objective function in the form (1.2).

We now turn our attention to the case when the objective function of the problem is repre-
sented by the sum of a finite number of functions as in (1.2). Suppose that we have k parallel
processors, k > 1. Let J; be a partition of {1,..., N} such that J; C {1,...,N}, Uf,J; =
{1,...,N},; Jy0J, =0 for Iy # ly. Let N; be the number of elements in J;. We define
the function f’ associated with J; as follows

fi(z) =3 file) (2.16)
JEJ
With this definition we have .
f(z) = Zfl(:v) (2.17)
=1

We are now ready to state and prove a parallel version of Corollary 2.1.

Theorem 2.2. Let each f;, 3 =1,..., N, satisfy the assumptions (2.10) of Corollary 2.1.
Start with any z° € R*. Having z*, stop if Vf'(z') =0 for alll =1,...,k. Else compute

£+ as follows:
(i) Parallelization. For each processorl € {1,...,k} compute
yitt =2’ + id]
where
d=-Vfi(a')+e, m>0
(it) Synchronization. Let
1& it
et
If for some v > 0
Zﬂi = 00, 27722 < 00, anllem < 00, ”6?” < Ys VZ? [= 17- . -ak
=0 =0 1=0
all the conclusions of Corollary 2.1 hold.

Proof. We shall establish assumptions (2.11)-(2.13) of Corollary 2.1.
By (2.17) and (2.18)—(2.20), we have

i+1 7 1 k i+1 1 i 2 2'
Mg = LYo LS) s
=1 I=1
1 i i
= EZ nidy = E(V(') + €))
=1
- 2ot

Now, in view of (2.21), Corollary 2.1 applies with €' = Sk . el and the proof is complete.

Remark 2.4. Theorem 2.2 can be easily generalized such that each processor takes an
arbitrary but finite number of steps before any synchronization is made. The changes needed
to extend Theorem 2.2 to these asynchronous methods are straightforward, and are thus

omitted. See [11] for details.

Remark 2.5. A similar parallel version can be stated for Theorem 2.1.

8

3 Convergence of the Backpropagation Algorithm

We now turn our attention to the classical BP algorithm for training feed-forward artificial
neural networks with one layer of hidden units ([15],[7],[16],[8]). The number of hidden units
is assumed to be fixed.

Suppose we have N training examples and k processors with N >1land k> 1. Ina
manner similar to that of Section 2 we consider a partition of the set {1,..., N } into the
subsets J;, [= 1,...,k, so that each example is assigned to at least one processor. The
variables of the problem here are the weights associated with the arcs of the neural network
and the thresholds of the hidden and output units. The objective is to minimize a certain
error function ([10]) which for our purposes here is the same as (2.17), that is

k k
mip f(@) = 2 (@) =3 3 ()

=€ 1=1j€J;
where J; C {1,...,N}, I=1,...,k, uk_ Ji = {1,...,N}. Wenote that this function is the
sum of individual error functions each of which is associated with a single training example.
Each component f; of the objective function is a squared composition of the sigmoid and
linear functions ([10]), and therefore satisfies the assumptions (2.10) on any bounded set.

Each iteration of the serial BP algorithm consists of a step in the direction of negative
gradient of an error function associated with a single training example. In the parallel BP
each processor performs one (or more) cycles of serial BP on its set of training examples.
Then a synchronization step is performed that consists of averaging the iterates computed
by all the k processors.

Below we state a parallel BP algorithm with an added momentum term which consists
of the difference between the current and previous iterates. For simplicity and in a similar
manner to the method of conjugate gradients ([12]) we reset this term to zero periodically
(see Algorithm 3.1). It has been observed that introduction of momentum term usually leads
to faster convergence and adds stability to problems with noisy data ([8)-

We now summarize and describe our notation for stating and establishing convergence
of the parallel BP algorithm with a momentum term :

i=1,2,...: Index number of major iterations of BP, each of which consists of going
through the entire set of error functions fi(z),..., fn(z). This is achieved serially or in
parallel by k processors with processor [handling the error function f'(z), I=1,....,k.

9

j =1,...,N;: Index of minor iterations performed by parallel processor [, [=1,..., k.
Each minor iteration j consists of a step in the direction of negative gradient —V f,’n(j)(zli’j)
and a momentum step, where m(j) is an element of the permuted set J;. Note that in
general the map m(-) depends on the index i and processor . For simplicity, we skip this
dependence in our notation. Recall that N, is the number of elements in the set J;.

x® : Tterate in ®" of major iteration 2 = 1,2,....

z,i’j . Tterate in R™ of minor iteration j = 1,..., N;, within major iteration ¢ = 1,2,.. .,
computed by processor [=1,...,k.

By n; we shall denote the learning rate (the coeflicient multiplying the gradient),
and by a; the momentum rate (the coeflicient multiplying the momentum term). For
simplicity we shall assume that the learning and momentum rates remain fixed within each
major iteration.

We are now ready to state and prove convergence of the parallel BP algorithm.

Algorithm 3.1. Parallel BP with Momentum Term.
Start with any z° € R". Having @', stop if Vf(z*) =0, else compute 1 as follows :
(i) for each processorl € {1,...,k} do

Z;’j+1 — Z;YJ — UZfoﬂ‘(J)(z;’J) -+ (,YZAZ;’],] = 1, veey Nl (31)

wherezf’lzxi, O<m<1l, 0<a<l

o ifj=1
Azz"] = - .. 3.2
! { 2yt - zl”"1 otherwise (3:2)
(i) Synchronization
. 1 K
$z+1 — E Z Z;,NH-I (33)
l=1

We note that for k = 1, Algorithm 3.1 becomes the serial BP, while the choice of o; =0
reduces it to the simple BP.

To the best of our knowledge there are no published deterministic convergence proofs for
either the parallel or serial BP algorithm. In [17] it is proven that the sequence of weights
generated by the serial BP either converges to a point that is almost surely stationary or it

10

diverges. In contrast, our approach is deterministic. We were largerly motivated by [5] where
stochastic gradient ideas were used. Our proof which is based on the deterministic results
of Section 2, covers both serial and parallel cases as well as the computationally important
methods with a momentum term. We point out that the assumptions that we make to prove
convergence of the gradient of the error functior to zero are weaker than those in [5]. We
note the equivalence of BP to a deterministic perturbed gradient algorithm.

We are now ready to apply the analysis of Section 2 to backpropagation.

Theorem 3.1. Let f;, j = 1,..., N satisfy the assumptions (2.10) on a bounded set. Let

>_mi =00, dYoni<oo, Dain < oo (3.4)

i=0 i=0 i=0
For any bounded sequence {z'} generated by the BP Algorithm 3.1 it follows that {f(z")
converges, ||V f(z')|| — 0, and for each accumulation point T of the sequence {2}, Vf(z@)=
0.
Proof. We shall show that the assumptions of Theorem 2.2 are satisfied.
Using (3.1) and (3.2), for any cycle ¢, any processor [, and any j such that 2 <7 < Ni+1

we obtain
B i g i _j—l itHl it
20— = 2 T "Z(zl ‘“Zz)
t=1
j_l . .
= Z(‘mvﬂz(t)(z;’t) + iz
t=1
j-l . . . 1
Z,t (2% Z
= —m) fon(t)(zz)+ i’ —aY) (3.5)
t=1
j=1 » -2 7 1y S .
2, —1-s 1,t .
= VG -n s (VA E) 60
t=1 s=1 t=1

where (3.6) is obtained by repeated use of (3.5) with j replaced by j — 1, j —2,...,2. By
(3.5) and (2.16), for j = N; + 1 we have

) . N .))
N e = o V) + el o)
t=1
‘ ;. Yigi -
= —-m(Vf’(:v’)JraH-n—,b[) (3.7)

11

where

N ‘
Y (V=) »(z*) (3.8)
t=
and
b =o' — N (3.9)
Let
i i Qg
& = —a — P (3.10)

Now, in view of Theorem 2.2, assumptions (3.4) and (3.7), all we have to do is to verify that

Zml]eﬂl < 00, }le}}l <79, v>0,1=1,...,k (3.11)

=0

By (3.8), (3.6), (2.10), the triangle inequality and «; < 1 it follows

- Nl .
laill < Y IVine(a) = Vi, @) < LZ ||z
t==2

N, t—1 t—2
<13 (mz 197 () 47 5 (EO W\ TAE >n))
r= s=1
< L?],(N, M+ NEM) = ey (3.12)

Similarly, by (3.9), (3.6), (2.10), the triangle inequality and a; < 1, we have
N N1 . N2 Nt
7 i, 7 1,k -8
loill = lzp™ =<'l < (Z varln(i)(zl I+ Z (. vafvln(t))”))
t=1 s=1

N; N -2
< (E M + Z MN[) < ni(MN +MN12) = CT}; (3.13)

t=21 s==1

By (3.10), (3.12), (3.13) and the triangle inequality, we obtain
leill < e + caes

The latter combined with (3.4) implies (3.11), and the proof is complete.

12

4

Concluding Remarks

A general theorem for the nonmonotone convergence of a family of unconstrained optimiza-

tion methods has been presented. It was established that the serial or parallel backpropaga-

tion algorithm with or without a momentum term for training feed-forward artificial neural

networks with one layer of hidden units can be viewed as a deterministic perturbed gradient

method. Each accumulation point of the sequence of weights generated by BP is shown to

be a stationary point of the error function associated with a given set of training examples.

References

[1]

[2]

C. C. Blaydon, R. L. Kashyap & K. S. Fu: “Applications of the stochastic approximation
methods”, in Adaptive, Learning, and Pattern Recognition systems, J. M. Mendel &
K. S. Fu (eds), Academic Press, 1970.

Y. C. Cheng: “On the gradient projection method for solving the nonsymmetric linear
complementarity problem”, Journal of Optimization Theory and Applications 43, 1984,
527-541.

Yu. Ermoliev & R. J.-B. Wets (editors): “Numerical Techniques for Stochastic Opti-
mization”, Springer-Verlag, Berlin, 1988.

W. Finnoff: “Diffusion approximations for the constant learning rate backpropagation
algorithm and resistance to local minima”, 1992 Conference on Neural Information
Processing Systems, Denver, Colorado, November 30-December 3, 1992.

A. A. Gaivoronski: “Convergence analysis of parallel back-propagation algorithm for
neural networks”, to be presented at Symposium on Parallel Optimization 3, Madison
July 7-9, 1993.

13

[6] L. Grippo: “A class of unconstrained minimization methods for neural network train-

ing”, to be presented at Symposium on Parallel Optimization 3, Madison July 7-9,
1993.

[7] J. Hertz, A. Krogh & R. G. Palmer: “Introduction to the Theory of Neural Computa-

[8]

[13]

[14]

[15]

tion”, Addison-Wesley, Redwood City, California, 1991.

T. Khanna: “Foundations of Neural Networks”, Addison-Wesley, Reading, Mas-
sachusetts, 1989.

Z2.-Q. Luo & P. Tseng: “Convergence analysis of back-propagation algorithm for neural
networks with arbitrary error functions”, to be presented at Symposium on Parallel
Optimization 3, Madison July 7-9, 1993.

O. L. Mangasarian: “Mathematical programming in neural networks”, Computer Sci-
ences Department, University of Wisconsin, Madison, Technical Report # 1129, De-
cember 1992.

| O. L. Mangasarian: “Parallel gradient distribution in unconstrained optimization”,

Computer Sciences Department, University of Wisconsin, Madison, Technical Report
1145, April 1993.

G. P. McCormick & K. Ritter: “Alternate proofs of the convergence properties of the
conjugate gradient method”, Journal of Optimization Theory and Applications 13, 1974,
497-518.

J. M. Ortega: “Numerical Analysis: A Second Course”, Academic Press, New York,
New York 1972.

B. T. Polyak: “Introduction to Optimization”, Optimization Software, Inc., New York,
New York 1987.

D. E. Rumelhart, G. E. Hinton & R. J. Williams: “Learning internal representations
by error propagation”, in “Parallel Distributed Processing”, D. E. Rumelhart, J. L.
McClelland eds., MIT Press, Cambridge, 1986, 318-362.

14

[16] P. K. Simpson: “Artificial Neural Systems”, Pergamon Press, New York, 1990.

[17] H. White: “Some asymptotic results for learning in single hidden-layer feedforward
network models”, Journal of the American Statistical Association, vol.84, No. 408, 1989,
1003-1013.

15

