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ABSTRACT

We study equations of the form (o« = ) which are single axioms for groups of
exponent 4, where a is a term in product only. Every such a must have at
least 9 variable occurrences, and there are exactly three such « of this size, up
to variable renaming and mirroring. These terms were found by an exhaustive
search through all terms of this form. Automated techniques were used in two
ways: to eliminate many a by verifying that (a = ) true in some non-group,
and to verify that the group axioms do indeed follow from the successful (a = z).

§0. Introduction. If n > 1 is an integer, a group of ezponent n is a group in which
z™ is the identity for all elements z. We study equations of the form (o = z) which are
single axioms for groups of exponent n, where « is a term in product only.

First, some notation on terms. We shall use the binary function symbol ¢ to denote
the group product. We shall also sometimes use standard infix algebraic notation as an
abbreviation, with products associating to the right. Thus, for example, z - y - 2 and Yz
both abbreviate the term t(z,t(y,2)). We use exponentiation as a, further abbreviation,
with 2! abbreviating z and g"+! abbreviating z - z". Let RA(a) result from associating
all products in & to the right; thus, for example RA(t(t(:c,y),t(z,u))) is (z, t(y, t(z,u))),
which is the same as zyzu by our conventions on algebraic notation.

Because of the finite exponent, we can express all the group axioms in terms of product
only. Thus, we say, a group of exponent n is a model for the following set of three axioms:

Gl #(z,1(y,2)) = t(t(z,y), )
G2. " =qy"
G3. z-y"=2

The variables z,y, z are understood to be universally quantified. For n — 1, G2 reduces
to ¢ =y, so the only model is the trivial 1-element group. For n > 1, G2 says that z™ is
some constant, e. Then, by G2, we have z” = e, and, since z” is really the term z - g1,
we have a right inverse, "1 for each z. G3 says that e is a right identity, so G1,G2,G3
are equivalent to the usual statement of the axioms for groups of exponent 7.

If a is a term constructed from ¢ and variables, then we say that the equation (o = z)
is a single aziom for groups of exponent n iff (o = z) is valid in all groups of exponent n
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and every model for (a = ) satisfies G1,G2,G3. Neumann [8] proved that such a exist,
but his single axioms were quite large, and it is natural to ask whether simpler ones exist.

Let V(a) be the number of variable occurrences in a. Since we only have the one
function symbol, ¢, we shall take V(a) as a measure of the size of a, which will then have
V(a) — 1 occurrences of ¢t. In §2, we shall prove the following result, which establishes a
minimum size for such a:

0.1 Theorem. Suppose (a = x) is a single axiom for groups of exponent n > 1.
Then

a. V(a) = kn + 1 for some k > 2.

b. f V(a)=2n+1,and n > 3 is even, then RA(a) is of the form y"zz", where y, z
are two distinct variables other than z.

In particular, then, V(&) > 2n + 1. The single axioms produced by Neumann [8] had
V(a) =n*—2n+n+1 (see §5), which is quite a bit larger than this minimum. However,
it is known that for n = 2 (Meredith - Prior [7]) and for n odd (McCune - Wos [6]), there
are single axioms with V(&) = 2n + 1. The situation for even n > 2 remained open.

In this paper, we settle the question for n = 4 by showing that there are single axioms
of minimal size (V(a) = 9):

0.2 Theorem. Each of the following is a single axiom for groups of exponent 4:
A0.  t(y,t(¢(y, t(t(y,y),t(w,z))),t(z,t(z,z)))) =z
ALty 1), ), t(t(H(y, t(z, 2)), 1(2, 2)),2)) = @
820 4ty 11Ky, ), ), 8z, 2)), 2)) (2 2)) =

This theorem may be verified using the automated reasoning program OTTER, developed
by McCune [3,4], along with a few tricks, described in §3.

We found these axioms by doing an exhaustive search through all possible candidates
with 9 variable occurrences. One curious outcome of the search is that, up to variable
renaming and mirror symmetry, A0,A1, and A2 are the only single axioms of this size. By
mirroring, we mean reversing the order of ¢; formally, let (e, )™ be ¢(8™, a™), and let
V™ be V if V is a variable. Then (a = z) is a single group axiom iff (™ = z) is. This
mirror symmetry was also exploited by McCune and Wos [5, 6]; it cuts the search space in
half. A renaming of an equation is an equation obtained by changing the names of some
(possibly all, or possibly none) of the variables. The statement that A0,A1,A2 are the only
single axioms of this size can be stated formally as:

0.3 Theorem. Suppose that (o = z) is a single axiom for groups and V(a) = 9.
Then some renaming of (a = z) or of (a™ = z) is one of A0,A1,A2.

In contrast, McCune and Wos [6] found 14 different single axioms of minimal size for
exponent 5 groups, and we do not know if there are any more. This indicates that single
axioms for even exponent groups are rarer than those for odd exponent groups, and it is
not clear whether there are small single axioms for groups of any even exponent greater
than 4.

We remark that exponent 2 is a special case, since all groups of exponent 2, the
Boolean groups, are Abelian, and short single axioms for Boolean groups have a special
form; see the discussion in §2 following the proof of Theorem 0.1.

2



In 81, we describe three classes of non-group counter-models which were useful in
defeating large numbers of a in our exhaustive search. In 84, we describe the details of
the search itself, and the proof of Theorem 0.3. All the candidates except for the three
successful single axioms are true in one of the classes of models described in §1.

§1. Summary of counter-models. We describe three classes of non-group models
which can be used to eliminate many candidates for single axioms. We also comment on
how these models can be used in an automated search. The first two classes were also used
in [2], but there are some changes from [2], which considered terms using inverse as well
as product. The third is an application of the Knuth-Bendix [1] method.

The first result is taken directly from [2], and applies more generally to terms using
inverse (i) and identity (e) as well as product.

1.1 Theorem. There is a finite structure § = (Gita,ig,eq) for the language of
group theory such that
1. tg is not associative (so G is not a group).
2. If (@ = B) is any equation valid in all Boolean groups, where «, 8 are built from
t,1,€,2,y, then (a = ) is valid in G.

The proof in [2] shows how to build a model by adjoining one element to a Steiner
triple system.

If n is even, then any Boolean group has exponent n, so this Theorem implies that
(o = z) cannot be a single axiom for groups of exponent n unless « has at least 3 distinct
variables. Theorem 0.1 places much more stringent requirements on the « we consider.
However, Theorem 1.1 will still be very useful in eliminating many a which conform to the
requirements of Theorem 0.1, such as

((¥)Wy)) - (((w2)2)2)2) =2,

which cannot be a single axiom for groups of exponent 4 because it is derivable from the
set of all 2-variable equations valid in all Boolean groups.

One might eliminate candidates by checking their validity in a G satisfying Theorem
1.1; such a model, of size 10, is described in [2]. However, in practice, such a check would
be rather slow. We found it quicker to use a purely syntactic approach. We treated z,y, z
as constants and deleted all & which can be reduced to z by demodulating with:

t(e,6) =6
t(6,e) =6
1(61,62) = ¢

t(t(61,7),62) = 7

t(t(r,61),62) =7

1(62,t(61,7)) =7

1(62,t(r,61)) =1
where 7,6 are any terms, and § 1,62 are any terms which can be reduced to each other by
just applying commutativity of . We accomplished this demodulation by a simple Prolog

program, which reads a file of candidate  and eliminates the ones which reduce to z. One
could also use OTTER for this.



Another class of models, the ring models, eliminates a large number of potential single
axioms. Suppose that A = (4;+,-,0,1) is a ring with unity. If we fix b,k € A, we let
R(h, k, A) be the structure whose domain of discourse is A, in which t(z,y) is interpreted
as h -z + k-y. This is a group only in the trivial case in which it reduces to the additive
group of the ring;:

1.2 Lemma. If R(h,k, A) is a group of exponent n, then A=k =1and n =0 in A.

Proof. Assumeit is a group of exponent n. Let us use z* to denote the i-fold ¢ product
(not the ring product), so, for example, z? = hz + kz. By induction on i, 0 = 0 for all ¢;
since z" is independent of z, we have 2™ = 0 for all z. Using t(y,z") = t(z™,y) = y, we
may set y =1 to get h = k = 1. So, t(z,y) = z + y, whence 0 = 2" = nz; taking z = 1,
we have n = 0. =

Suppose we are trying to show that (o = z) is not a single group axiom. Rather than
trying to look through all rings, it is simpler to extract from « a set of algebraic equations
in h, k which, if satisfied in some ring A, guarantee that R(h, k, A) is a model for (o = 2).
As a preliminary pass, one may check these equations in Z, for small values of p (say,
from 3 to 13), running through all possible values of h,k. We found in our search that
this eliminated most of the a. We now describe two examples of a which did not yield to
this preliminary pass. In both cases, the ring was actually a field. The existence of such a
field model is decidable algorithmically, as our examples illustrate. In fact, we did this by
hand, instead of writing a program for it, since in our search we did not have many such
cases to consider.

For the first example, consider (« = z) where « is

1y, y), ty, t(t(y, 1z, 2)), (2, 1(z, 2)))))

If, in (@ = =), we replace #(z,y) by h-z + k -y, and expand, and then equate the
coefficients of z,vy,z, we get the three equations, kkhkh = 1, hh + hk + kh + kkhh = 0,
and kkhkk + kkkh+ kkkkh+ kkkkk = 0. In a field, the first equation is simply A%k3 = 1,
and we may let A = v*® and k = v™2, where v # 0. This automatically solves the first
equation and the next two reduce to f(v) = 0 and g(v) = 0, where f(v) = v° + v + 2
and g(v) = v” + 205 + 1. Of course, these have the common solution v = 1 in a field
of characteristic 2, which corresponds to the model R(1, 1, Z,), which is a group, but we
wish to see if there is any other solution. The Euclidean algorithm, applied in the field
of rationals, computes a greatest common divisor, h(v), along with polynomials a(v) and
b(v) such that h(v) = a(v) - f(v) + b(v) - g(v). If h(v) is not a constant, then we are done;
we may simply take a root in the complex numbers. If h(v) is a constant, as is the case
in this particular example, then the polynomials f and g are relatively prime over the
rationals, and thus have no common root in any field of characteristic 0. However, now
multiplying through by some integer, we obtain k = &(v) - f() + b(v) - g(v); here, A is an
integer and & and b are polynomials with integer coefficients. Then the polynomials can
only have common solutions in a field of characteristic p where p is a prime divisor of h,
and a complete description of these solutions can be obtained by applying the Euclidean



algorithm in Z,. In the particular case in hand, we find a common solution, v = 19 in
Z103, whence h = 61 and k = 2.
For the second example, consider (o = z) where « is

t(ya t(t(ya y)7 t(t(yv t(xa z))7 t(z7 t(z, Z)))))

The three equations obtained now are kkhkh = 1, h + khh + khk + kkhh = 0, and
kkhkk + kkkh 4 kkkkh+ kkkkk = 0. Again, in a field, the first equation is A2k® = 1, and
we follow the same procedure, but now f(v) = v> +v* + v® 4+ 1 and g(w) = v +20% + 1.
The Euclidean algorithm shows that f,g are relatively primie in every field except for
fields of characteristic 2, in which the greatest common divisor is v* + v2 + v + 1 =
(v+1)(v® +v?+1). As explained above, we discard the root v = —1 = 1. The polynomial
v +v? 41 is irreducible over Zs, but adjoining a root, ¢, of this, we move to GF(8), where
h=c=c?+landk=c?=c+1.

It is not true in general that the existence of a ring model implies that the ring may
be taken to be a field. Consider, for example, (o = ) where a is

8y, 1y, 1y, (y, Uz, 2)))), H(H(, ), 2)))

The three equations obtained now are khkkkh = 1, h + khh + khkh + khkkh = 0, and
khkkkk + kkhh 4+ kkhk + kkk = 0. In any commutative ring, these are equivalent to
R?k* =1, 1 + hk + hk? + hk® = 0, and hk3 + k2 + hk + h = 0. These have the solution
h =k =>5in Zs. However, in a field, the first equation implies that h = +k~2; then, the
next two equations imply that the field has characteristic 2 and h = k = 1.

Finally, we turn to models constructed by a special case of the Knuth-Bendix [1]
method.

Suppose that « is any term written with a binary ¢ and variables. Call o free iff
whenever § is a sub-term of a other than a variable or « itself, and §' is a renaming
of & with distinct variables, then o and B’ are not unifiable. For example, t(z,y) and
t(z,t(y,y)) are free, but ¢(y,t(z,y)) is not, since it is unifiable with t(z1,yl).

Now if « is free, then (a = z) cannot imply the associative law except in a few trivial
cases, such as when « is #(z, y).

1.3 Lemma. If o is free and contains the variable z, and V(a) > 3, then there is a
non-associative model for (a = z).

Proof. Let A be the set of all ground terms formed by using ¢ and constants a,b,c.
If 6 € A, call 6 reduced iff it cannot be demodulated with (a = z). For any § € A4, we may
demodulate 6 with (o« = ) until we obtain a reduced term, and, since « is free and contains
z, any sequence of these demodulations will result in the same term, which we call red(é).
Let B be the set of all reduced terms in A. On B, we may define the product of two terms
7 and 6 to be the term be red(t(v,¢)), and verify that this is a model for (a = z). By
V(a) 2 3, red(t(a,t(b,c))) cannot be the same as red(t(t(a, b), c)), so associativity fails.

The Knuth-Bendix method could be automated as part of a search, but we did not
actually do so, since it was only needed to refute the two equations:
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A3, t(y, t(t(y, ), t(t(y, 1z, t(2, (2, 2)))), 2))) = @
Myt ), )t 1 7)) 2, ) = @
The « in both these are free, as can easily be verified, either by hand or with the aid of

OTTER.

§2. Easy restrictions. Throughout this section, n denotes an integer greater than
1. We describe some syntactic restrictions on a if (& = z) is to be a single axiom for
groups of exponent n.

2.1 Lemma. If (& = 2) is valid in all groups of exponent n, then & occurs kn + 1
times in « for some integer k, and for every variable y other than z, y occurs kn times in
a for some integer k (depending on y).

Proof. Otherwise, (a = z) would not be valid in the additive group Z.,. =

Since all groups of exponent 2 are Abelian, the condition of Lemma 2.1 is sufficient
as well as necessary for n = 2. Thus, for example, (yzzyz = z) is valid in all groups
of exponent 2. However, although (yyyzy = z) satisfies the condition of Lemma 2.1 for
n =4, it is valid in only the Abelian groups of exponent 4, and not all groups of exponent
4 are Abelian. Similarly, (yyzyy = =) is valid in all Abelian groups of exponent 4, as well
as some (for example, the quaternion group), but not all (see below), non-Abelian ones.

2.2 Lemma. If n > 3,0 < ¢ < n, and j = n — 4, then there is a group of exponent n
in which the equation (y‘zy’ = z) is not valid.

Proof. This is equivalent to saying that if n > 3 and ¢ is not divisible by n, then
there is a group G of exponent n and an a € G such that @’ is not in the center of G. We
begin with a few observations showing that it is sufficient to produce examples in a few
special cases.

First, it is enough to consider the case where i|n. For in general, if j = ged(i,n),
then j|n. Say we produce a G of exponent n and an a € G with a’ not in the center. If
j = st +tn, and b = a®; then b = a’, so we have an example for n,: as well. Now, it
enough to consider the case where ¢ = n/p for some prime p. For, in general, if i|n, we
may choose p such that ¢|(n/p); say n/p = ri. If we get G with a®/? not in the center and
b=a", then b* = a"/?,

Next, if n is the least integer for which the Lemma fails for some i, then for every
prime factor ¢ of n, either n/q < 2 or (n/q)|i. For otherwise, the Lemma applied to n/q
would say that there is a group of exponent n/q (and hence of exponent n) containing an
a with a* not in the center. But now, we have just seen that we may assume that i = n/p
for some prime p. In this case, if ¢ is any prime factor of n other than p, then n/q cannot
divide ¢, so we have p <n/q <2,s0 p=n/g=2, so n=2q. Of course, it is possible that
p is the only prime factor of n. So, we have only two cases to consider: either n = 2¢ and
¢t = ¢ for some prime ¢ > 2 orn = pk and ¢ = p*~! for some prime p (possibly equal to 2).

In both cases, we may obtain G as a sub-direct product, of the form G = Z, x, H,
where r|n, H is an Abelian group of exponent n, and ¢ is an automorphism of H with o”

the identity; we write both Z, and H as additive groups, and the product operation on
2 X4 H is then defined by

(Sax) ’ (t7y) = (3 +t,z+ Us(y))
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A sufficient condition that G has exponent n is that whenever ¢ € H and s is any integer,

Z o’*(z)=0 . (*)

u<n

Furthermore, it is sufficient to verify (*) when 0 < s < r and s|r; if s = 0, (%) simply says
that n -z = 0, which is true in H, and if s > 0, (*) follows from () applied to ged(s,r).
To satisfy the Lemma, we need also that o* is not the identity automorphism, so that
(1,0) = (3,0) is not in the center.

Now, in the case where n = 2¢ and 7 = ¢ for some prime ¢ > 2, we let G = Zy X Ly,
where o(z) = —z. Then ¢ = ¢ is not the identity (since i = ¢ is odd), and the only case
for which (*) needs to be verified is s = 1, where it is easy.

In the case that n = pF and i = p*~! for some prime p, we let G = Z, X, H,
where H = {z € (Z,)" : Yz = 0}; here elements = € (Z,)" are sequences of n elements
of Z,, 3,z denotes the sum of these elements (mod p), and o is cyclic permutation:
o(Zoy. -y Tn-1) = (T1,.+.,Tn--1,T0). We must verify (%) for s = p/ and 0 < j < k; but for
J = 0,8 = 1, this follows from the definition of H, and for j > 0, it follows from the fact
that H has exponent p. Finally, we need an z such that o0*(z) # z. Sincen > 2, fix £ < n
such that £ 5 0,i; let zp = 1 and z; = 0 (so that o%(z) # 2); let 2, = —1 and let z; = 0
forall y #0,i,f (sothat z € H). =

Proof of Theorem 0.1. For a: By Lemma 2.1, V(a) = kn+1, and k = 0 is obviously
impossible. We show that k£ = 1 is also impossible. Note that = cannot be the left-most
variable in «, since otherwise (o = ) would be valid in every model for (#(z,y) = z).
Likewise, z cannot be the right-most variable in a. Thus, if k = 1, then « is of the form
y'zy’, where 0 < i < n, and j = n — 4. But then, by Lemma 2.2, the equation (a = z)
would not be valid in all groups of exponent n unless n = 2. But if n = 2 (or is any other
even number), then every Boolean group is of exponent n, so by Theorem 1.1, if (a = z)
is valid in all groups of exponent n, it must be valid in some non-group as well.

For b: By the above argument, plus Lemma 2.1, we see that for some variables vy, z
other than z, @ must contain 1 occurrence of z and n occurrences each of y and z. Say the
left-most variable of « is y. If some occurrence of y is to the right of the z in «, then, by
Lemma 2.2 (letting z be the identity), we see that (a = z) would fail to be valid in some
group of exponent n. So, all occurrences of y are to the left of z. Likewise, all occurrences
of z are to the right of z, so, RA(«) is y"zz". =

For n = 2, Theorem 2.3(b) is false, since

(((y-2)-2)-(y-2)) ==)

is a single axiom for Boolean groups, found by Meredith and Prior[7] (see p. 221; they use
‘E’ for ‘.’); others like this were found by McCune [5]. In fact, by the method of §4, for
no a with RA(a) of the form y%z2? is (a = z) a single axiom for Boolean groups; even
without a computer, one may easily verify that any such (a = z) will be valid in either
the model described in Theorem 1.1 or the model R(2,2,Zs) (see §1).



§3. Verifying a single axiom. Suppose that RA(a) is y"zz". Then (o = z) is
clearly valid in all groups of exponent n, so to see that it is a single axiom, we should verify
that it implies equations G1,G2,G3 in §0. But in fact, G1 (associativity) is sufficient:

3.1 Lemma. If RA(«) is y"z2" and (@ = z) implies the associative law, then (o = z)
is a single axiom for groups of exponent n.
Proof. We have

mn:wn.wn'(yZ)n__:(wZ)n.yn.yn=yn ,

which yields G2, and

:I:y”=m"-wyn-y"=w"-w-(y2)"=z ,

which yields G3. =

Theorem 0.2 claimed that
80 #(y, 1(t(y, 1(t(y, v), U=, 2))), (2, 12, 2)))) = =

is a single axiom for groups of exponent 4. This can be proved using OTTER, but the
proof seems a bit more difficult than similar verifications in earlier work along this line
[5,6,2]. If we just run with axiom A0 in the sos, we get a few other equations of the same
length as AO (see below), but nothing shorter. However, A0 may easily be verified by a
sequence of four short OTTER runs, as we describe now.

A binary function is called left injective iff it satisfies the axiom,

t(y,z2) ANt(z,2) > y==2
and right injective iff it satisfies the axiom,
tz,y) At(z,2) >y==2

Our proof involves establishing as lemmas that ¢ is left and right injective. Once left
injectivity is established, we can express it in OTTER by putting the two clauses:

-(t(y,x) = t(z,x)) | (y = 2).

-(t(y,x) =w | ~(t(z,x) =v) | (y = z).
into the usable list. We set ur_res so that the two clauses can be used to derive new
equations. Logically, the second clause is equivalent to the first, but it is useful because
if & and f# are long terms, and v and ¢ are short terms, then once we have (t(«,v) = §)
and (t(8,v) = §), we can derive (o = ) without having to first construct the longer
intermediary (t(a,v) = t(8,~)). Likewise, right injectivity is expressed by:

-(t(x,y) = t(x,2)) | (y = 2).

~(tx,y) =w | ~¢t(x,2) =u) | (y =2).

When using injectivity, we set the two OTTER switches para_into_units_only and
para_from_units_only so that we do not generate any non-unit clauses in the search. On
all runs, we set para_into, para_from, order_eq, dynamic.demod, and back._demod. The
weight limit is probably not very important here; we set the max_weight to 40 and the
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pick_given_ratio to 3. The axiom A0 was always in the sos and the demodulator list
and (x = x) was in the usable list. We describe the four runs below, which were done on
OTTER version 2.2xa, giving the run time on a DECstation 5000 and the clause number
at which a unit conflict was found.

1. Prove left injectivity by adding (t(b,a) = t(c,a)) and (b '= c) in the sos.
Unit conflict at 0.07 seconds, clause number 10. Note that left injectivity is really trivial
because of the (z, z) in A0.

2. Proveright injectivity by adding (t(a,b) = t(a,c)) and (¢ '= b) in the sos, and
the two clauses expressing left injectivity into the usable. Unit conflict at 3.44 seconds,
clause number 135.

In the next two runs, the four clauses expressing left and right injectivity were always
added.

3. Prove that Jz(¢(z,z) = z) (an idempotent exists) by adding (t(x,x) != x) into
the sos. Unit conflict at 3.80 seconds, clause number 223.

4. Prove the associative law by adding (t(a,t(b,c)) != t(t(a,b),c)) into the sos.
We called the idempotent e and added (t(e,e) = e) into the sos and demodulators. For
this run only, we decreased the max_weight to 20. Unit conflict at 93.11 seconds, clause
number 405. Now, by Lemma 3.1, we are done.

Running with just equation A0 in the sos, we very quickly produce 4 other equations
of the same size:
Bl. t(t(z,4(i(2,2),1(t(2, 2),¥))), t(y, 1y, y))) = =
B2. t(t(za Z), t(t(z7 t(t(z7 :L'), t(ya t(ya y))))v y)) =z
A3, iy, t(i(y, v), t(t(y, 1z, 12, 4(2, 2)))), 2))) = z
B4. t(t(z,t(t(2,1(t(2, 2),2)), t(y, t(y,y))),y) ==
These equations, or their mirrors, also turned up in the search described in §4. It is now
natural to ask whether they are also single axioms.
Now B1 and B2 are also single group axioms — the easiest way to verify this on OQTTER
is to show that they imply A0. A3 and B4 are not, as explained in §1, where A3 and A4
(the mirror of B4) were given as examples of Lemma, 1.3.

Proof of Theorem 0.2. We have just verified A0,B1,B2, and A1,A2 are the mirrors
of B1,B2.

§4. The exponent 4 search. We prove Theorem 0.3 by searching through all
associative variants of y*zz*. This search is similar in spirit to the ones described in [2].

We can figure out ahead of time how many terms to expect in such a search. Let ay,
be the number of ways to associate a product of n terms. So, for example, a4 = 5, since
wazyz can be associated in the 5 ways:

w((zy)z) w(z(yz)) (we)(yz) (waly)z (wlzy))z

By considering the various possibilities for the top level product, we see that a, satisfies
the recurrence:

n-—1
ay=1; ap= Zaian——i (n>1)
=1
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It is easy to compute the values of a, directly from this; for example, the value which is
relevant here, ag = 1430. One may also solve the recurrence to derive the closed form,
an = 7—11-6’ (2n — 2,n — 1); this may be proved either by induction or by using generating
functions.

We may immediately cut the 1430 candidates in half, to 715, by using mirror symme-
try, as did McCune and Wos [5, 6].

Proof of Theorem 0.3. First, form a file consisting of all 1430 « such that RA(«)
is y*z2*; this can easily be done with the aid of OTTER. Since = occurs exactly once in «,
we can implement mirroring by keeping only the 715 « in this file which have a sub-term
of the form t(z, é), and deleting the 715 with a sub-term of the form (4, z).

Next, we can delete from the 715 all those a such that a can be demodulated to z
using 2-variable equations true in all Boolean groups, as described in §1; 169 remain.

Then, as described in §1, we can delete from these 169 all & such that (e = z) is valid
in a ring model of the form R(h,k,Z,), where p is member of the list [3,5,7,8,23,103].
This was done with the aid of a Prolog program which reads terms from a file and, for
each term, looks through all p on a given list of integers and all A,k < p. The actual list
used was obtained by some preliminary hacking. We first ran it with the list of all integers
between 3 and 13. The number of survivors was small enough that we could look through
their equations by hand, as explained in §1, to see which values of p should to be added
to the list. We also removed from the list those values of p which were not used.

After these deletions, only 10 candidates remain. These are the equations A0 — A9
listed below. We have also listed their mirrors, BO — B9.

20.  t(y, t(t(y, t(t(y,y), t(z, 2))), tz, (2, 2)))) = @

BO. t(t(t(t(2, 2), 2), t(t(¢(2, ), 1 (y,¥)),¥),y) = =
ALttty ), ), t(t(t(y, t(x, 2)), 12, 2)), 2)) = @

BL. t(i(,t(t(z, 2),t(t(=, z),v))), Uy, t(y,y))) = =
A2 t(t(y, (Y, y),y), t(z, 2)), 2)), H(2,2)) = @

B2. t(t(z,2),t(t(2,t((=,7), t(y, t(y,¥)))),¥)) = =
A3. iy, t(t(y, v), 1y, Uz, Uz, U2, 2)))), 2))) =

B3. t(t(t(=, t(t(t(H(2,2), 2),2),¥)), (Y, ), y) =
A, t(y, t(EE(E(y, v), ), H(H(=, U(2, 2)), 2)),2)) = @

B4. t(t(z,t(t(2, (t(z, 2),2)), t(y,t(y,y)))),y) =z
A5, t(y, t(t(y, ), t(t(y, 1z, 2)), 12, (2, 2))))) =

B5. (t(t(t(t(2, 2),2),t(t(2, ), ¥)), t(y y)y) =z
A6, t(t(t(t(y, y), v), t(t(y, t(z, 2)), 2)), 12, 2)) = @

B6. t(t(2,2),t(t(2,t(t(2,2),9)), t (v, t(y,9)))) = =
AT, (Y, y),y), t(t(y, t(t(z,t(2, 2)), 2)), 2)) =z

B7. t(t(2 t(t(2, t(t(2, 2), %)), ¥)), (y, 4y, 9))) = =
A8, t(y,t(t(y, t(t(y,y), t(z, t(2,4(2, 2))))), 2)) = =

B8. t(t(zat(t(t(t(t(za Z),Z),w),t(y,y)),y)),y) =z
a9, t(y, t(t(t(H(t(y,y) ¥), H(z, 2)),8(2,2)),2)) = =

B9. #(t(2,t(t(2, 2), t(t(z, =), t(y, t(y,¥)))))y) = =
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Now, A0,A1,A2 are indeed single axioms, by Theorem 0.2. A3 and A4 fail to be single
axioms by the Knuth-Bendix method; see Lemma 1.3 and the following discussion.

A5 is not a single axiom, since, as we showed in §1, it has a ring model using GF(8).
One may verify that the same ring model, possibly interchanging the values of A, k, will
also satisfy all of A5 — A9 and B5 — BO. Or, one may use OTTER and avoid the algebra
as follows. If one runs OTTER with A5, plus left and right injectivity, as explained in §3,
one soon derives equations B6,B7,A8,B9. Since injectivity holds in the ring model, this
implies that the same model satisfies B6,B7,A8,B9, so these equations, and their mirrors,
fail to be single axioms.

Now, only A0,A1,A2 and their mirrors remain. =

§5. Neumann’s single axiom. If one is concerned just with the existence of single
axioms, rather than their size, then Theorem 3 of Neumann [8] is much more general than
the results presented here. He considered inverse (?) and product as basic symbols, and
showed that if § is any term in product and inverse, the variety of all groups in which § is
the identity can be axiomatized by the single axiom (a = z), where « is:

v Z'(<(z'( iW)iw)e) ) - 2) - ilyz)) - (5 “5'))>

Here, z,y,z,u are variables which do not occur in 0, and &' denote a renaming of §
using new variables. In particular, to axiomatize groups of exponent n, we may take §
to be w™. To get a term in product only, we may replace each i(8) by f"~!. Then,
V(i(8)) = (n — 1)V (B), from which we easily compute V(a) =n*-2n24n+1.

With the aid of OTTER, one can verify Neumann’s result as follows. First, it is easy
to see (even by hand) that (a = z) is valid in all groups in which ¢ is the identity. The
main difficulty is to see that every model for (o = z) is a group. Once this is done, then
(even by hand) we can see that every model for (o = z) satisfies (§ = 6'); then, fixing all
the variables in §' to be the identity, we get that ¢ is the identity in these models.

To prove that every model for (a = z) is a group, we may proceed as follows. Let
B be the term obtained from a by replacing both § and ' by the constant d. Note that
every model for (a = z) may be considered to be a model for (8 = z), since we may fix all
the variables occurring in § and §' to be the same ob ject. We now do a sequence of three
OTTER runs. On the first run, we derive {(i(2), t(z,y)) = t(i(2),4(2,y)) from (B = z),
which means that the value of ¢(i(z), ¢(z, y)) only depends on y; call this h(y). Then, on the
second run, we can add in (#(i(z), (z,y)) = h(y)) and derive (t(i(h(2)), 2) = t(i(h(y)),v)),
which means that t(¢(A(y)),y)) is a constant; call it e. On the third run, we may forget
about h and simply add in (¢(i(¢ (i), t(z,y))),y) = e); from this we derive t(z,e) = z,
t(z,i(z)) = e, and t(¢(y, 2), u) = t(y,t(z,u)). So, we have right identity, right inverse, and
associativity.

Using this method of verification, it seems likely that schemata simpler than Neu-
mann’s could be discovered.
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