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Abstract

Maintaining consistency among distributed processes in the presence of failures and
reconfigurations is a difficult problem, especially when the processes may synchronize with one another
in complex ways and execute for a long period of time. Atomic transactions are commonly used to
simplify the management of concurrency and failure by preserving serializability and failure atomicity.
The major drawback of preserving these properties is that they restrict the types of synchronization that
can be specified. This thesis focuses on a general set of correctness conditions for preserving consistency

based on a general synchronization model of process interaction.

Instead of extending established but inappropriate concepts used in atomic transactions, this thesis
explores three more fundamental questions: (1) How can consistency be maintained without enforcing
serializability and failure atomicity? (2) How can applications be specified that will assist the system
maintain consistency automatically? (3) How can we implement mechanisms for managing

synchronization, recovery and dynamic reconfiguration uniformly?

To preserve consistency in the presence of a failure or reconfiguration, we introduce a general set of
conditions that guarantee the correctness of recovery and dynamic reconfiguration of applications that
need not be serializable or linearizable. These conditions are based on a basic definition of interactive
consistency. Existing recovery techniques, including those that exploit application-specific semantics,

satisfy these conditions.

We present algorithms for automatically checking these conditions from application behaviors
specified in a hierarchical finite-state machine model. These correctness conditions, defined as properties
of finite-state machine graphs, enable us to improve recovery efficiency by exploiting the permutation
and substitution of operations allowed by the behavior specification. They also permit combinations of

different types of recovery methods to be used in a recovery.

We have separated the policy information for maintaining consistency from the mechanism that
implements them. We exploit this in an implementation of a uniform set of control mechanisms that use

these information to maintain consistency in the presence of concurrency, failure, and reconfiguration.
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Chapter 1

Introduction

In many distributed applications, processes synchronize with one another in a complex way and
execute for a long period of time. Furthermore, these applications may involve frequent recovery from
exceptional conditions as well as regularly scheduled reconfiguration or installation of new modules.
Distributed applications with these characteristics include computer-aided automated manufacturing
[19,23,26,41, 73], multi-transaction database activities [27,83], network service applications [74, 821,

and process control [76].

A major problem in these applications is maintaining consistency in the presence of concurrency,
failure and reconfiguration. Atomic transactions are commonly used to simplify the management of
concurrency and failure by preserving serializability and failure atomicity. Each transaction can be
viewed as a sequential execution whose intermediate results are not visible to other concurrent
transactions. The drawback of preserving the serializability and failure atomicity properties is that they
restrict the types of synchronization that can be specified. The mismatch between the properties of
atomic transactions and the characteristics of general distributed systems is discussed in [13]. Instead of
making incremental extensions to transactions, this thesis explores a new approach based on a general
synchronization model of process interaction. It allows software designers to specify general interactive
behavior. We introduce a novel set of correctness conditions for ensuring consistency that do not require
applications to be serializable or atomic. These conditions allow semantics of applications to be exploited
to enhance concurrency and the control of recovery and dynamic reconfiguration. Existing recovery
techniques, including those that exploit application-specific semantics, satisfy these conditions for

correctness of recovery.

In this thesis, we concentrate on applications such as automated manufacturing where distributed
computerized control systems are increasing in number and complexity [23,26,41]. This work is also
applicable to other application domains. Consider an automated manufacturing system that requires
coordination of several workstations and material handling robots to produce a family of products from

streams of raw material. Systems like this pose many challenging problems. First, concurrent
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operations may be non-serializable. Operations of the workstations and robot movement must be
synchronized in complex ways to avoid interference and enforce cooperation. Second, backward recovery
may be impossible if failure involves non-recoverable physical effects; forward recovery may be the only
option. Failure may occur in various components: machine tools, equipment, robots, computer control
system, etc. In a factory environment, failure is more a routine than an exception. Third, the
configuration of these systems often changes over time. From an economic standpoint, these machines
should maintain continuous operation as much as possible. For manufacturing facilities to maintain the
competitive edge, it is important to provide the capability for automated manufacturing applications to
be dynamically reconfigured to meet the rapid fluctuation in market demands for a range of existing and
new products. Configuration change may also result from regularly scheduled maintenance and from
periodic upgrades because of improvement in technology or design. Conventional synchronization and
recovery schemes, as well as existing automated manufacturing software, provide poor support for

reconfiguration.

Consider the following example of a manufacturing cell (Fig. 1.1) that consists of a cutter, two

milling machines, an assembler, and a robot. A workpiece is first cut, then each piece is milled according

Milling
Center 1

_
~
(éutting // ~ E[:D]
tation Industrial \ s
D[ !!—] / Robot

Workpiece Out

Workpiece In
==# D

{ I
E \\
\ N /j Assembly

N )/ Station

Milling
Center 2

Figure 1.1. A Manufacturing Cell
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to different specifications, and finally the pieces are assembled together. The robot is responsible for
transporting the workpieces from one machine to another, constrained by the timing of the operations
and conditions of the machines. Each machine operates for a long period in a cyclic manner, i.e.
repeatedly waiting then performing its function. This example will illustrate our synchronization,
recovery, and reconfiguration goals. First, we need to synchronize the cyclic operation of the individual
machines to obtain correct behavior. For example, the cutter must have finished before the robot tries to
grab a workpiece, and the milling machine must be idle before the robot tries to deliver one. Next, we
must provide for the inevitable failures or exceptions that will arise during an operation. If a tool breaks
during a milling operation, we must recover the group of machines to an acceptable state, which may
mean discarding the otherwise unaffected piece being processed by the second milling machine. Finally,
and critically in the automated manufacturing domain, the programs controlling each machine must be
replaceable without shutting down the whole group of machines. Such program changes are common for
many reasons: improvements in production processes, engineering design changes, or quick switches to
producing a different part in a family of related parts, etc. Today’s automated manufacturing software is
poor at reconfiguration without downtime. Approaches in [65,85] require the manufacturing system to
be stopped for newly generated software to be installed and initiated. They do not address the problem of
maintaining consistency of other components that interact with the changed components. All the
changes just mentioned must be managed in the context of a larger factory, where our example cell is

just one part of a production system and the workpiece is a part of a larger job.

Our approach to solve these problems has the following important characteristics. First, it
automatically determines those processes that are unaffected by the failure or reconfiguration and allows
them to continue their normal operations. For example, a machine in a manufacturing cell can be
upgraded or replaced without shutting down the entire group of machines. In the presence of failure and
reconfiguration, the system maintains consistency by automatically analyzing how the application
behaves under various conditions and the dependency between operations. Designers are relieved of the
burden of checking for consistency. Second, processes need not be prevented from interacting with
others within well-defined boundaries (e.g. begin and commit transaction). Furthermore, in the presence
of failure or reconfiguration, processes may be recovered to some intermediate execution points. Third,

synchronization, recovery, and dynamic reconfiguration is controlled in a unified way based on an open




model that allows combination of different recovery or reconfiguration techniques to be implemented.

1.1. Fundamental Problems and Thesis Goals

A fundamental problem in managing these general, reliable and reconfigurable distributed systems
is maintaining consistency in the presence of failure and reconfiguration. A good solution to this
problem should possess three important properties: (1) it should allow general interaction patterns
among concurrent processes, (2) it should check for consistency automatically, and (3) it should exploit
semantics of the application to enhance recovery and affect the fewest processes. This thesis explores a

novel solution with all these properties.

Existing reliability techniques do not possess all these properties. Techniques based on message-
logging and checkpointing, either the pessimistic or optimistic approach, do not allow semantics of the
applications to be used to improve message logging, checkpointing, and recovery. Furthermore, they
often involve high overhead because of the cost of message logging to stable storage as well as cost of

correlating independent message logs of distributed processes.

Atomic transactions simplify the problem of preserving consistency by allowing concurrency and
failure (or abort) of other transactions to be ignored when checking for consistency of a particular
transaction. This is made possible since every concurrent transaction execution is equivalent to some
serial execution and every committed serial transaction is consistent. Unfortunately, this property is
often inappropriate for application with irregular interactions. The key problem can be illustrated as

follows.
Consider two concurrent activities, A and B, representing the following sequences of operations:

A=<a,,ag, ..., 0>
B=<by,bg, ., b>

Suppose the actual interleaving of the execution of the operations is S:
S=<ay, by, b2 a2,y Gn, b3,y ooy bi>

If the properties of the operations b; and b, permit them to commute with all the operations a;, where

1<i <n, then S is equivalent to a serialized sequence S”:

S’ =<y, By ey Uny 01,025 o0y b>
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However, in many general distributed applications, b, may need to be synchronized after a, and a, after
b,. In such cases, A and B cannot be serialized and it would be inappropriate to define A and B as
transactions (or sub-transactions of a nested transaction) since transactions (and sub-transactions) must
be serializable. One solution to this problem is defining each individual sub-operation a; (and b;) as a
transaction. This would however increase the overhead of beginning and ending transactions.
Furthermore, some committed sub-transactions may be affected by a failure and the top-level
transaction may need to be rolled back entirely. Unless the system analyzes the dependency of other
sub-transactions on the recovered ones, which existing recovery techniques do not, then all sub-
transactions which may interact with the recovered ones must also be recovered. Another solution to
this problem is to define cooperating (nested) transactions with A and B as sub-transactions whose
intermediate results are visible to each other. However, failure of a sub-transaction, say A, would
require rollback of both sub-transactions and may cause large amount of computation and physical work
of B to be wasted. A better solution, explored in this thesis, is to recover to some intermediate state that
is consistent, e.g. after @, is executed, without incurring overhead to ensure recoverability of every

operation. This approach does not require either serializability or failure atomicity to be preserved.

The main goal of this thesis is to define and maintain consistency among distributed processes in
the presence of failure and reconfiguration, without requiring them to be serialized with one another.
They may synchronize with one another in complex ways and execute for a long period of time. We are
interested in reducing wasted computation and physical work during concurrent execution, failure
recovery and dynamic reconfiguration. To achieve this, we define two sub-goals. The first sub-goal is to
define the general conditions for preserving consistency of distributed processes in the presence of
concurrency, failure and reconfiguration. They should allow more general interaction patterns and
permit higher concurrency than approaches that enforce serializability and failure atomicity. The
second sub-goal is to explore a way to specify distributed applications so that their semantics can be
easily exploited for automatic checking of all properties necessary for maintaining consistency. For
example, dependencies in the above example may be checked automatically. The conditions should allow
an application to recover to an intermediate state that is consistent when a failure occurs, thus avoiding
destruction of some of the previous work. A secondary goal of this thesis is to show that a common set of

control mechanisms can be used to manage synchronization, recovery, and dynamic reconfiguration in a
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unified way, whereby different techniques for recovery and dynamic reconfiguration can be easily

incorporated.

1.2. Summary of Approach and Results

Our approach exploits the semantics of the application defined by a behavior specification. It is
general in the sense that it allows irregular interactions among the processes. This sub-section presents

an overview of this approach and the main results.

We use a partial-order model because it permits more general behavior of distributed processes
than those requiring sequentiality which restrict the pattern of interactions. Although sequential
models can define partial order by permitting two orderings, say <a,b> and <b,a> of non-conflicting
atomic operations a and b, this definition depends on which operations are considered to be atomic!. Itis
more appropriate to reason about operations that execute for some duration and analyze their
interactions. Furthermore, sequential models cannot easily define partial orders based on condition
synchronization and event triggers, where a process may wait for some condition to be satisfied or an

event to occur. Arbitrary partial ordering of operations may be possible.

We first define consistency based on a partial-order model of concurrency. We use a fundamental
notion of consistency that is preserved when every process uses only information or conditions,
established by another process, that are not removed by exceptional events, such as failure or recovery.
Based on this notion of consistency, we introduce a general set of conditions that guarantee the
correctness of recovery and dynamic reconfiguration. Existing concurrency and recovery correctness
conditions based on some notion of sequentiality [10,51] preserve consistency in a conservative way by
isolating intermediate results of atomic operations. This is inappropriate in many distributed
applications where intermediate results of a process may be visible to other processes and their

operations may not be serialized.

In our model, software designers specify the behavior of applications with a hierarchical finite-state
machine that permits direct automatic checking of the conditions for preserving consistency of

applications. We present an algorithm that automatically determines dependencies between pairs of

1 If sub-operations of @ and b interact with each other, their sub-operations must be made atomic although a and b are not.
In practice, this may not be possible, e.g. when failure modes of a or b may affect their completed sub-operations.
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operations from a behavior specified in the model. These dependencies are used by a second algorithm
that automatically checks the correctness conditions and finds a correct sequence of operations for
recovering an application from a failure. Checking the fundamental consistency conditions directly from
the specified behavior of applications permits us to improve recovery efficiency by exploiting the
permutation and substitution of operations allowed by the application semantics. Recovery of a failed
process may not affect another process if the other does not actually depend on the failed process (though
there may be apparent dependencies). Other approaches that allow general and irregular interaction
patterns, such as message-logging and checkpointing [39, 79], do not exploit semantics of the application
to improve recovery in the presence of failure and aborts. By analyzing the behavior of applications, we
can also improve efficiency by checkpointing only states that would be most important for recovery

purposes.

We extend the above correctness conditions appropriately to preserve consistency during dynamic
reconfiguration where the behavior of an application may be changed. We present an algorithm for
finding a correct sequence of reconfiguration operations in which these correctness conditions are
automatically checked. Intermediate behavior of the application during reconfiguration is derived from
the current and desired configurations and is used for controlling normal executions of processes

unaffected by the reconfiguration.

The behavior of the application specified by the designer and the results of the analyses of correct
recovery sequences are used to control the execution of the application. Since the conditions for
preserving consistency can be checked automatically solely from the behavior specification, we can
separate the common control mechanism from the (policy) information that maintains the behavior and
consistency of distributed applications. The advantage of this over mechanisms with built-in policies is
that we can then control synchronization, recovery and dynamic reconfiguration in a uniform way. This
separation also enables different techniques of recovery and dynamic reconfiguration to be specified by
changing the policy that affects the selection of recovery and reconfiguration operations without any
change to the control mechanism. It also simplifies reasoning about various techniques for restoring

consistency.




1.3. Scope and Assumptions

In this thesis, we restrict our scope to applications with finite-state behavior to simplify automated
checking of dependency and consistency. The finite-state machine model is useful in many distributed
applications such as computer control of automated manufacturing [23,67]. Systems with infinite state
behavior, such as unbounded FIFO channels and other systems described in [70], will require an
extension to the analysis described here. However, the definition of consistency and the conditions for

preserving consistency are applicable to infinite as well as finite-state systems.

Most applications in our target environments permit modular design. Each module can be designed
to involve only a small set of local operations. The interaction of a group of modules is defined in their
parent module wh;ch then presents only an abstraction of the group operations to a higher parent
module. With hierarchical design, we can limit the size of the finite-state machine describing the
behavior of each module. This assumption is reasonable in automated manufacturing where control is
clustered in groups at each level in the factory hierarchy: workstation, manufacturing cell, shop floor,
factory, and corporation [41]. Applications can be modularly specified whereby only abstracted behavior
of each module is visible to higher level modules. Each module should contain few processes whose
collective behavior can be specified by a reasonably small finite-state machine. The behavior of a module
that is visible to other modules is an abstraction of its internal behavior. We assume that this
abstraction represents a behavior with a substantially smaller finite-state machine than that of the

internal behavior.

We focus mainly on the issue of maintaining state consistency of distributed applications in the
presence of concurrent execution, failure and dynamic reconfiguration. We concentrate on the
framework and the algorithms for defining and maintaining consistency during failure recovery and
dynamic reconfiguration. We will not concentrate on other aspects of designing distributed systems,
such as linguistic support and efficient implementation of monitoring and control mechanisms. We will

not address the issue of maintaining type consistency during dynamic reconfiguration.

We assume that communications and the execution control managers are reliable. Failures of
communication and the manager can be handled by known solutions, such as using replication and

election. By avoiding these issues, we simplify our discussion on the novel aspect of this work.



1.4. Plan of the Thesis

Maintaining consistency is the key issue in three major inter-related aspects of distributed
systems: synchronization, failure recovery and dynamic reconfiguration. In Chapter 2, we summarize
the approaches of other work on each of these aspects. In discussing other work on synchronization, we
concentrate on work related to failure recovery and reconfiguration. We also mention work that provides
a uniform framework for managing different recovery techniques with our wider goal of combining the

management of these three aspects under a uniform framework.

In Chapter 3, we introduce our approach by first defining a more fundamental notion of consistency
than those based on sequentiality. This notion of consistency captures the partial-order semantics of
concurrent execution. We show the advantage of this over other notions of consistency, particularly

serializability and linearizability.

We choose an appropriate model of computation and specification - a hiera;'chical finite-state
machine model — that will enable us to exploit this notion of consistency. In Chapter 4, we discuss how
we can model the behavior of applications, including synchronization, failure and recovery. (The model
for dynamic reconfiguration is discussed in Chapter 10.) We also present the analysis of the
specification, which includes detection of various synchronization problems. This analysis plays an
important role in defining certain failures and managing recovery. In Chapter 5, we describe how we
can provide a uniform mechanism for controlling synchronization, recovery and reconfiguration using
policy encapsulated in the specification defined in this model. We discuss how a specification is compiled
and analyzed. The results of analysis are then used by a consistency control manager to control

synchronization, recovery and dynamic reconfiguration.

While the finite-state machine model allows us to specify the behavior of application, it does not
allow us to reason about the actual execution. In Chapter 6, we introduce the model of execution
sequences that is crucial for analyzing consistency in the presence of failure and reconfiguration. We
describe how the execution sequence model is related to the FSM behavior specification as well as failure

and recovery events.

Chapter 7 discusses the correctness conditions in terms of the finite-state machine model. We also

present recovery algorithms that check for these correctness conditions and exploit the semantics of
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applications derived directly from their specifications. In Chapter 8, we discuss implementation issues of
recovery techniques that will enable these conditions to be satisfied as well as improve efficiency.
Various recovery techniques can be implemented as different recovery policies that are separated from

the control mechanisms.

In Chapters 9 and 10, we generalize our scope to include dynamic reconfiguration. In Chapter 9, we
first augment our model to deal with dynamic reconfiguration. We then discuss the framework and
mechanics of dynamic reconfiguration that will allow processes unaffected by the reconfiguration to
continue executing normally. As in failure recovery, consistency must be maintained during
reconfiguration. This requires generalizing the correctness conditions to such cases where the
configuration or behavior of the application may be changed. In Chapter 10, we discuss the

implementation of the mechanisms and the policies for managing dynamic reconfiguration.

In Chapter 11, we summarize our results, the significance of our contributions, and some of our

experiences. We then discuss some possible further work.



Chapter 2

Related Work

In this chapter, we summarize related work in each of the three important aspects of distributed
systems: synchronization, failure recovery and dynamic reconfiguration. We compare them with our
approach and focus mainly on the capability and ease of preserving consistency. We also discuss other
work that provides uniform support for different recovery techniques and compare with our goal of

uniformly supporting these three aspects of distributed system.

2.1. Synchronization

Several state-transition approaches to specifying distributed applications have been used in the
past. Lam and Shankar [50] use a finite state machine model for specifying and verifying
communication protocols from a user’s description of the properties. Clarke, et. al. [21], use another
approach for automatic verification of concurrent systems using temporal logic [59] specifications
provided by the users. CCS [62] is suitable for detecting deadlock but not starvation or livelock without
requiring users to specify these properties using modal logic [84]. SPANNER (1-3] allows detection of
deadlocks but requires users to specify the liveness properties in terms of finite state machines to verify
them. Our approach differs from these approaches in that we provide automatic verification of limited
but useful properties, such as freedom from deadlock and possible starvation or livelock, without
requiring users to provide the specifications of the properties, and in providing runtime support for
failure recovery and system modification. A similar approach for verifying liveness has been used by
Gouda, et. al. [29, 30], although they did not discuss the general case where only a subset of the machines

is involved and did not allow the problems to be avoided dynamically.

Our basic interpretation of finite-state machines is similar to [52] in that states are clean-points
(instantaneous) and transitions represent operations requiring some time. This contrasts with the
traditional interpretation of finite-state machines where machines may be in a state for a duration of
time (possibly executing some operations) and transitions are instantaneous. However, our model

contains additional features that enable software desigers to characterize the behavior of applications in

11
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the presence of failure, recovery and dynamic reconfiguration. We also allow hierarchical composition of

finite-state machines.

Other models such as Petri nets [68] have been successfully used to model distributed systems.
Petri nets have operational semantics and behavior specifications that cannot be easily used for checking
consistency. We choose the finite-state machine model because it enables us to analyze consistency in
the presence of failure automatically. Furthermore, we can describe hierarchies of finite-state machines
using abstraction and composition more easily than with Petri nets. The ability to express abstraction

and composition also distinguishes our work from path expression [5, 17].
2.2. Failure Recovery

There are two major classes of techniques to reliable distributed systems: physical redundancy,
implementing multiple copies of hardware or software; and time redundancy, re-executing operations of

failed and affected processes.

An example of physical redundancy is replicated servers. Despite the failure of some servers, the
service will still be provided as long as at least one server is functional. ISIS/Meta [12,60] provides
mechanisms and an environment for monitoring and controlling fault-tolerant distributed applications
using replicated servers. In [75], a state machine model has been used for designing reliable distributed
systems based on replication. There are two main problems with the replication approach. First,
accesses to replicated servers need to be synchronized correctly to maintain consistency. Second, the cost

of replicating very large objects can be prohibitive.

Techniques based on time redundancy include transactions and various forms of checkpointing.
Physical redundancy and time redundancy methods are orthogonal to each other; time redundancy is
usually implemented using some physical redundancy, such as logs and checkpoints. Here we will only

discuss approaches based on time redundancy.

There is a spectrum of reliable distributed systems that preserve consistency in the presence of
failure. At one extreme are systems that allow general synchronization but have less efficient recovery
management while at the other extreme are those based on atomic transactions with simpler recovery
management but have restrictive concurrency control. A good system should allow general

synchronization and at the same time provide efficient recovery.
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A common approach to reliable distributed systems is rollback recovery based on message-logging
and checkpointing [39,44,72,79]. Interactions through messages are used to determine a consistent
recovery line; that is, a set of checkpoint states of each process. Determining a consistent recovery line
solely from interaction information is too conservative because some interactions may not be crucial to
the execution of some processes. For instance, most messages from sensor probes do not exceed some
threshold value and do not affect the operations of the receiving process. There is then no actual
dependency between the process controlling the sensors and the receiving process, although there is an
apparent dependency from analyzing the messages. The drawback of not determining actual
dependency is that this technique is inefficient and causes more processes to recover than necessary.
Whether an interaction is crucial can only be determined from the semantics of the application and not
from the interaction history alone. The cost of logging messages to stable storage and the analysis
required to merge independent message logs can be prohibitive, especially for distributed applications
involving many messages. Other variations [42,43,71] of this recovery technique also do not exploit

semantics of the application to detect actual dependence.

Another common approach to reliable distributed systems is based on atomic transactions
[22,56,57,77,78] that preserve the following properties: all-or-nothing, consistency, isolation, and
durability [32]. The all-or-nothing property guarantees that either the transaction completes or it has no
effect even though it may have failed. This property is sometimes called recoverability [31] which allows
uncommitted transactions to be aborted without invalidating the semantics of committed ones. The
consistency property ensures that when the system starts in a consistent state, a transaction will bring it
to another consistent state. The isolation property ensures that within the boundary of a transaction
there is no interaction with other transactions. Durability guarantees that the effects of a committed
transaction are not lost by a failure. It is debatable whether all these properties are essential or merely
convenient for designing reliable distributed systems. The all-or-nothing and isolation properties are too
strong for the class of systems in which we are interested. We would like to be able to recover to
intermediate execution points of a process while allowing it to interact with others. Isolation is enforced
in transactions to simplify recovery but it restricts the range of permissible synchronization. Even in
implementations of transactions, recovery methods have been known to affect concurrency control

[6,31,88]. In more general applications, we believe the right approach is to allow general
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synchronization and yet provide appropriate mechanisms to control recovery.

While some work [7,28,35,77,87] extends the traditional transaction concept by exploiting
semantic knowledge to provide more concurrency, we have started from a general synchronization
environment and made it reliable. There is a limitation on extending transactions because all
transactions must eventually satisfy the serializability or recoverability criteria. This is inappropriate
for many distributed applications that usually involve non-serializable and non-recoverable operations as
will be discussed in Section 3.4. Atomic abstract data types [77,87] require transactions to be
serializable after non-dependent operations are commuted. In atomic abstract data types, as in ACTA
[20], the burden of analyzing commutativity (or dependency) between operations is placed on the
programmers. Optimistic approaches [35,49] also require committed transactions to be serializable.
Cooperative transactions [7] extend basic nested transactions [63], but still require the partial order of
lower level nested transactions to be equivalent to a total order of operations invoked by subtransactions
of the cooperating transaction. Although a protocol, i.e. a set of rules that restricts admissible execution,

may allow nonserializable execution, it is unclear how recovery from a failure can be done efficiently.

In contrast, our approach does not require concurrent processes to be serializable. They may
involve non-commutatable interactions. When failure occurs, processes may recover to some
intermediate execution points, i.e. the all-or-nothing property need not be preserved. Consistency is
preserved by automatically checking for all operations dependent on those recovered operations and

recovering them.

In our model, we exploit FSM specifications of the behavior of applications to increase concurrency
and improve efficiency of recovery. We check for dependency by analyzing properties of the FSM
specifications. Furthermore, the FSM model allows us to generalize failure recovery to processes with
non-sequential behavior that is visible to other processes. In contrast, only sequential visible behavior!
is permitted in transactions. We achieve this flexibility for handling reliability in a general
synchronization environment without much compromise on modularity. The behavior of each process

can be programmed independently without considering how other concurrent processes might be

1 Any non-sequential behavior of a transaction is internal and is not observable by external processes. This is true even in
"non-serializable” transactions [46,87] if we commute non-dependent operations.
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affected. Allowable interactions between processes are defined separately in a composite specification for
the group of processes. We allow groups of processes to be hierarchically composed. The specification of
a group of processes can be used for composing higher level groups where individual process behavior is
hidden at higher levels. As will be discussed in Chapter 4, a composite specification has the power of
predicate path expressions [5,17] or serializability constraints to synchronize independently

programmed processes.

2.3. Dynamic Reconfiguration

Durra [8] and HPC [55] deal primarily with the problem of structural reconfiguration, where
groups of modules can be recomposed via links, but did not deal with the problem of maintaining state
consistency. HPC provides the mechanisms for users to define abstraction and composition of processes.
This thesis supplements systems like HPC and Durra by preserving state information during exceptional

operations such as dynamic reconfiguration and recovery.

Conic [47,48,58] differs from HPC and Durra by managing state consistency correctly during
dynamic reconfiguration. It allows user to create and dynamically interconnect modules through well-
defined interfaces. Since it is based on transaction concepts, dynamic reconfiguration is done only at
"quiescent” states of modules. We avoid this limitation by allowing users to reconfigure modules at

arbitrary legal states as long as appropriate recovery and reconfiguration transitions are defined.

Bloom [16] built a dynamic reconfiguration facility over the transaction mechanism of Argus. It
provides a framework for analyzing the legality of replacing objects and managing states of replaced
objects. This work is however limited in the sense that the behavior of the new configuration can only be
the same as (or a superset of) the behavior of the old configuration. The analytical framework is not
appropriate for cases where the behavior of the new configuration differs from that of the old
configuration, which is common in flexible manufacturing systems. Our work also allows more general

synchronization and interaction between objects than client-server transactions.

Other aspects of dynamic reconfiguration has been addressed in other work and are omitted here.
Dynamic reconfiguration, implemented in Polylith [69], addressed the practical problem of capturing and
restoring states although they did not address the issues of maintaining state consistency. In [33],

Hailpern and Kaiser mainly address the problem of maintaining type consistency during dynamic
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reconfiguration. In this paper, we will not address those aspects of reconfiguration that relate to safety,

protection, and heterogeneity.

2.4. Uniform Support Framework

A support framework for distributed applications should have two important characteristics. First
it should manage normal concurrent operations as well as failure recovery and dynamic reconfiguration
in a uniform way, through common control mechanisms. Second, it should allow different
implementations and techniques of recovery and reconfiguration to be used easily, possibly in
combination. The framework should be responsible for maintaining consistency and making it

transparent to the software designer.

Two existing systems that provide a uniform framework are based on transactions and have the
restrictions discussed in Section 2.2. The first is the Argus transaction mechanism [56,57] with the
extension of dynamic reconfiguration mechanism by Bloom [16]. Argus, however, does not provide
support for incorporating new recovery techniques, such as compensation used in forward recovery.
Furthermore, the reconfiguration mechanism has the limitations discussed in Section 2.3. Conic [47,48]
gives only a partial framework; providing support for dynamic reconfiguration but little support for
recovery management. We have separated the control mechanism from the recovery and reconfiguration
policies that ensure preservation of consistency. This allows uniform control of the normal execution as

well as different techniques for failure recovery and reconfiguration.

Other work has concentrated on allowing designers to customize a limited set of application-
specific techniques only for recovery management. Several researchers [15,34,57,78] support
customizable recovery techniques by separating the underlying mechanisms from the policies that are
associated with various recovery techniques and options. These systems provide the basic mechanisms
for supporting transactions, e.g. transaction creation and commit, logging, and recovery management.
They differ in the level at which the recovery management primitives are exposed. Black [15] proposed
an approach of exposing the mechanism for implementing and selecting abstractions that characterize
transactions, such as atomicity, consistency, isolation and persistence. QuickSilver [34] exposes a set of
primitives that is at a lower level than most other systems, such as Camelot [78] and Argus [57], and

permits servers to implement their own recoverable storage and log recovery. While these systems are
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based on concepts of transactions, we include other recovery techniques, such as compensation and
exception, as well as reconfiguration operations in distributed applications with general and non-

serializable inter-process interactions.




Chapter 3

Maintaining Consistency

In this chapter, we define a fundamental notion of consistency in concurrent processes. This
definition of consistency is more general than that based on serializability or linearizability. It also
differs from message-based consistency by eliminating some apparent dependences due to coincidental

message timing.

8.1. Aspects of Consistency

We distinguish between two different aspects of consistency. In distributed systems, the

consistency of the state of a process includes both internal consistency and interactive consistency.

Internal consistency denotes conformance to user-defined predicates on information manipulated by
processes when each executes in the absence of other concurrent processes. An example is conformance
to data integrity specifications. The process manipulating a set of data must leave it in conformance
with the data integrity specifications if it originally satisfies them. The programmer must ensure that

all processes always preserve internal consistency, even in the absence of other concurrent processes.

Interactive consistency® is the condition where a process may depend on an interaction with other
processes only if all processes involved in the interaction are in a state subsequent to the interaction.
For example, to preserve interactive consistency in message-based systems, a process may receive or
process a message only if the sender of the message has not been recovered to a state before sending that
message. For the purpose of this definition, an interaction may range from a synchronization event
signaling some implicit precondition to a full exchange of arbitrary data to be processed. Dependence on
an interaction means the interaction is still relevant to a process’s future behavior. We need to consider
only information relevant to synchronization and to the level of abstraction in which the process and

interaction are defined. Our notion of interactive consistency is at a higher semantic level than the

1 We use the term interactive consistency in a different technical sense from other literature [53,80). We chose to use these
words because they accurately describe our intended concept. Throughout this thesis, we will use the term in the sense defined
here.

18
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notion of global state consistency described in [18,39,44], which is defined at the level of message
communication abstraction. By examining the specified behavior of an application, we can determine ifa

process is semantically dependent on information or conditions established by another process.

Ensuring internal consistency is the responsibility of the programmer but ensuring interactive
consistency can be the responsibility of the system. In this chapter, we will examine different ways in
which consistency of distributed processes can be preserved. In the remainder of the thesis, we will use
the term "consistency” to mean interactive consistency and assume the programmer has ensured that

every program is internally consistent.

3.2. Serializability

A simple criterion for preserving interactive consistency is to enforce sequential ordering of the
operations. A weaker (and more efficient) criterion than strict sequential ordering is to ensure that the
interleaved execution of operations is equivalent to a sequentially ordered execution. Sequential
consistency is defined in [51] as, "The result of an execution is the same as if the operations had been
executed in the order specified by the (sequential) program.” (While this notion of consistency originated
in the context of multiprocessors, it is also applicable to distributed systems.) This notion of sequential
consistency does not place restriction on the time interval in which operations may be moved. It is thus

weaker than serializability and linearizability discussed below.

In much work on databases and distributed system, a similar criterion used for transactions
(sequences of operations) is serializability [9,10,31,66]. Two sequences of transactions are equivalent if
the dependence relation between every pair of transactions in both sequences are identical [24,66]. A
transaction T is dependent on Tj if T; writes a data item whose value is then read by T;. In general, the
notion of dependence between operations is derived from the history log and the conflict table: an
operation X is dependent on Y if and only if Y is recorded before X in the history log and X and Y conflict
with each other. From the actual interleaved sequence of operations, an equivalent sequential ordering

can be derived by commuting operations that are not dependent on one another.

Serializability maintains consistency in the presence of concurrency but not in the presence of
failure and abort. Transactions must be made recoverable by ensuring that states of committed

transactions can be restored and intermediate results of uncommitted transactions can be removed. The
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serializability property of transactions simplifies the mechanism for failure atomicity because the

intermediate results of uncommitted transactions are not visible to other transactions.

The major disadvantage of preserving serializability is that it is too conservative, allowing only
interactions that will result in some equivalent serialization of processes. For example, processes that
involve non-serializable interaction (Section 1.2) cannot be implemented as transactions. Many research
projects have concentrated on improving concurrency by commuting operations using application
semantics or abstract data type specifications [28,77,86]. Even in these approaches, commuted

operations must eventually satisfy the serializability criteria.

3.3. Linearizability

The linearizability criterion removes some of the restrictions of the serializability criteria by
allowing concurrent executions of operations that access shared data objects as long as the results do not
violate the semantics of the abstract data types [36,37]. It provides the illusion that each operation

appears to take effect instantaneously at some point in time in the interval in which it was executed.

For example, consider three processes A, B and C in Figure 3.1(a), where time flows from left to

right and a horizontal line shows the duration of the operation. Eng(a) (Deq(a)) is an operation that

A Eng(a)
B Enqg(b)
c Deq(a)

(a) Linearizable Executions

A Eng(a) .
B Eng(b)
c Deq(a)

(b) Equivalent Sequential Executions

Figure 3.1. Operations of a FIFO queue
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inserts (removes) an item a into (from) a particular FIFO queue. Although the three operations Enq(a),
Eng(b), and Deq(a) overlap in time, they are linearizable (though not serializable) because their
concurrent execution is equivalent to a legal sequential history (Figure 3.1(b)) which does not violate the
semantics of a FIFO queue. At each instant of time, there is a set of possible values of the objects that
represents a set of possible legal sequential executions. For instance, after invoking Enq(b) (but before
completing it), the set of possible values of the queue is {[]1, [al, [bl, [a,b], [b,al}. A dequeue
operation that returns an a is thus legal since it assumes one of the sequential executions. To ensure
linearizability, enqueue and dequeue operations must be implemented using special techniques and

operators, e.g. atomic swap operations.

As mentioned in [37], linearizability is applicable only for maintaining consistency of concurrent
execution and not failure recovery since there is no counterpart of failure atomicity. The traditional
techniques for concurrency control and recovery of transactions would involve excessive overhead

because in linearizable applications each operation on shared data is viewed as a transaction.

3.4. Partial-Order Semantics

Both serializability and linearizabilty simplify the analysis of concurrent executions by
transforming problems in the concurrent domain into simpler problems in the sequential domain.
Despite permitting more concurrent execution, linearizability still restricts the interaction pattern of
processes because concurrent operation executions must all preserve the linear semantics of the shared
objects. In applications where such transformation is not possible (or would cause inefficiency in
execution or recovery), a more appropriate approach is to reason about the problems in the concurrent
domain with partial-order semantics and to use smarter analytical techniques. In the following
discussion, we compare this approach with linearizability although the discussion applies also to

serializability.

We first illustrate a non-linearizable behavior by a pattern of interaction. Then we show that this
interaction pattern exists in many distributed applications. Consider the executions of three processes
A, B, and C (Figure 3.2) in which the sequence of operations is restricted by the information flow shown
by dotted arrows. The operation executions are not linearizable because b initiated ¢ before a but b sees

¢’s result after it has seen and used a’s result.
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Figure 3.2. Non-Linearizable Executions.

The above example of a non-linearizable behavior can be found in many distributed applications.
For example, processes A, B, and C may represent those that control operations in a manufacturing cell
(Figure 1.1) of a factory application. Processes A and C control the operations of milling machines 1 and
2 respectively. Process B controls the overall cell operation for the workpiece and ensures that the
workpieces are correctly cut, milled and assembled. It includes control of the cutter and assembler
operations, although these may be managed by different processes. Operations in one milling machine
may affect the concurrent operations in the other milling machine, since they are part of the final
product. When an operation of milling machine 1 fails, process A may need to be aborted if the
workpiece cannot be repaired. If process B can be restarted at state S, then process C can continue
normally since it is independent of the effect of the restart and is thus unaffected by A’s failure.

Otherwise, if B must be recovered to state S, then process C must be recovered since it is dependent on

B.

Another example of a non-linearizable behavior in manufacturing applications is the assembly of
workpieces by multiple cooperating robots. Figure 3.3 shows the precedence graph [38] of the various
assembly operations (picking and placing) on the following workpieces: sideplates, levers, shafts, locking
pins. For instance, operations E and F must be completed before operation H begins. Depending on the
precedence relation, some operations may be done simultaneously, e.g. operation H and L can be
executed simultaneously. When an operation fails, e.g. while placing the locking pin at position 12, it
may damage another workpiece, e.g. the spacer placed at position 05. This may affect other concurrent
operations and require appropriate recovery, e.g. operation H must be aborted and operation E must be

re-executed. The overall operation that controls the assembly of the workpieces (which may also control
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Figure 3.3. Precedence Graph of An Assembly.
(after Figure 6.7 of [38])

operations A and K) is not linearizable with either the concurrent operations H or E.

Yet another example is a manufacturing assembly system that involves several manufacturing cells
in a factory floor. Figure 3.4 shows the precedence diagram of the assembly system [73] with multiple
assembly cells. The nodes represent operations and the directed edges represent the precedence
relations between operations. Nodes are partitioned into groups of operations to be executed in each
robotized assembly cell: R;, By, B3 and R4. As in the previous example, failure of an operation in one

cell may affect other concurrent operations executed in another cell.

The pattern of interaction can also be found in another class of applications: multi-transaction

database activities. For example, the processing of a purchase order (i.e. an activity) in some company
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S

Figure 3.4. Precedence Graph of An Assembly System with Multiple Cells
(after Figure 10.4/b of [73])
involves a collection of steps: phone call, enter order, billing, inventory, shipping [27]. The activity starts
with a phone call to order certain merchandise. The order is entered into the database and the system
then initiates concurrent processing of billing and inventory. Shipping is initiated only when both billing
and inventory processing are completed. The overall operation for processing a purchase order (which
may include operations "enter order" and "shipping") cannot be linearized with the billing and inventory
operations without degrading performance due to loss of concurrency. A failure in inventory processing
would affect the processing of billing, e.g. abort billing the customer when there is insufficient

merchandise in the inventory.
L

In the above applications, operations like b in Figure 3.2 must be treated as a unit when analyzing
for recovery because the effects of the sub-operations at the beginning of b can still be destroyed before b
is completed. Even if some applications can be made linearizable by splitting b into smaller operations,
linearizability would depend on the granularity of the operations and designers would need to analyze
the application carefully to select the appropriate granularity. The major disadvantage of a smaller
granularity is the high overhead of beginning and committing transactions. A straightforward but
unsatisfactory solution to reduce this overhead is by defining these sub-operations as cooperating
transactions in a nested transaction model [7], where intermediate results of cooperating transactions

are visible to each other. When a sub-transaction fails, all cooperating transactions within the parent
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transaction must be aborted, resulting in wasted computation and physical work.

In our approach, we allow operations to recover to an intermediate execution state without
excessive overhead of maintaining checkpoints at beginning of each sub-operation. We use the semantics
of the applications to select only important states to be saved for recovery purposes. Recovering to an
intermediate state requires analysis of actual dependencies from the partial-order semantics of the
distributed application. We can determine actual dependency more accurately than in transaction
management which can only determine dependency conservatively based on conflict tables, defining
either commutativity [87] or recoverability [6]. Furthermore, by analyzing the application semantics, we
can also preserve consistency for non-rollback recovery operations, such as corrective operations,

compensation and reset.

The above examples show the importance of dealing with the partial-order semantics of many
distributed applications. A specification of a distributed application can define its partial-order
semantics by defining the states at which operations can execute concurrently and those at which they
must execute serially. In other words, we allow designers to define general synchronization rather than
restricting applications to serializable or linearizable behaviors. Since we no longer depend on a notion
of sequential execution for preserving consistency, we need to consider a more general set of conditions
that will preserve interactive consistency in applications with general synchronization. Here, we will
first examine the problem of preserving consistency during recovery management. In Chapter 10, we will

generalize it to dynamic reconfiguration.

There are three fundamental conditions that must be satisfied to ensure the consistency of a
recovery state. First, recovery operations obey synchronization constraints. Since we allow recovery
operations to execute concurrently with operations of unaffected processes, we must ensure that recovery
operations and normal operations are synchronized appropriately. Second, the state recovered to must
preserve the specified behavior of the application (or some of its behavior) had the failure not occurred.
The transactional approach preserves the behavior by maintaining a history log of the actual execution
and allowing only re-ordering of commutable operations. On the other hand, we do not need to maintain
a history log, but rather preserve the behavior by analyzing the application semantics and ensuring that
the behavior after recovery is equivalent to the behavior before failure (or some of its previous behavior).

Third, operations that are dependent on conditions (or information) established by a recovered operation
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must themselves be recovered. The third condition preserves consistency because when an operation is
recovered, no external process should be able to perceive it had ever been executed before. Sequential
behavior of individual processes and the synchronization constraints among processes define the
potential behavior of the application. We can exploit the behavior specification of the application in
checking for actual dependency among operations to maintain consistency of the application during
concurrent execution, failure recovery, and dynamic reconfiguration. This more accurate dependency
analysis allows higher concurrency and more efficient recovery than dependency analysis from conflict

tables in transactions.

In Chapter 8, we will define these conditions more precisely in terms of our finite-state machine
model. We will also describe how these conditions can be checked automatically from the behavior

specification of the application.

These conditions allow flexibility in enforcing consistency during recovery. In atomic transactions, a
nvirtual” block structure is required to enforce isolation and recoverability. The isolation property
restricts interaction among uncommitted transactions. Unlike transactions, our conditions for consistent
recovery do not restrict the synchronization mechanism. While transactions use an avoidance strategy,
we use a detection and recovery strategy. Instead of using block structures and enforcing isolation and
recoverability, we deal with operation dependencies by detecting all operations dependent on an aborted
process and forcing them to recover. Thisis a generalization of the restorability property [64] where all
operations that depend (transitively) on a recovered operation must themselves be recovered. This
definition does not assume a particular recovery method, i.e. recovery methods include not only rollback
recovery but also forward compensating and corrective recovery. It can be satisfied without resorting to

a strict block structure as imposed by transactions.



Chapter 4

The Behavior Model

We model distributed processes as finite state machines (FSM’s). Each FSM operates
independently but may interact with others. To help designers specify the behavior of groups of
processes, we propose a hierarchical FSM model that includes mechanisms for abstraction and
composition. This hierarchical model enables us to control the runtime behavior of processes in a
modular manner. It also enables us to analyze specified behaviors of applications, e.g. for preserving
consistency. Furthermore, this model avoids three problems that make the traditional FSM model
inadequate for representing a large group of independent processes. First, the traditional model is a flat
representation. The behavior of a group of processes is modeled by a product of their FSM’s. As the
number of processes increases, the product machine grows extremely large and becomes more difficult to
analyze and understand. Second, the traditional model does not model concurrent operations very well.
Third, a large number of transitions must be used to explicitly represent some simple actions, such as

interrupts and failures, because these actions may occur in any state.

The hierarchical FSM model described below overcomes these shortcomings. The abstraction of a
composite machine limits the scope of analysis and projects away uninteresting or illegal states. This
makes the system scalable. We may model concurrent operations by an appropriate set of constraints or
by means of composite machine transitions that represent sets of concurrent transitions of the
component machines. The programmer may specify failure states that may be entered from a set of

normal states without explicitly specified transitions.

4.1. Basic Definitions

We allow software designers to break a complex system into manageable pieces by specifying
independent basic modules and a sét of constraints controlling their interactions. We use a Cartesian
product of the specified individual modules to verify the feasibility and correctness of their composition.
A group of modules may be composed with other groups by higher level composite specifications. Thus,

designers can hierarchically structure their distributed applications. We now discuss the basic
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definitions of the model and illustrate them in Figure 4.1.

Basic Machines.

We model the behavior of each process (or resource) by a FSM, known as a basic machine (or basic
FSM). Basic machines are the independent lowest-level modules. Each basic machine consists of a pre-
defined set of states and set of transitions from state to state. A basic machine state represents a clean,
internally consistent state of the process. We do not intend an FSM to model all possible program states;
only those states representing important points in the process execution, such as synchronization points,
consistent checkpoints, a unit of work, etc. The programmer provides the many-to-one mapping from
program states to states in the FSM’s. A basic transition represents a procedure or an action, often a
physical operation, that moves a machine from one basic state to another. Basic transitions take a finite
time to complete and are non-atomic, i.e. failure may occur in the midst of them. Our interpretation of
finite-state machines is similar to Lamport’s model [52] in that states are clean-points and transitions
represent operations requiring some time. Software designers specify basic machines purely in term of
their own sequential operations without describing synchronization with other basic machines. Each

basic machine executes independently but may interact with others.

Product Machines.

When several basic machines interact with each other in a group, we model their group behavior by
a product machine that is formed by taking the Cartesian product of the basic machines executing in the
group. Product machines are automatically generated to assist in the analysis of composite machines
(discussed below). A product state is a tuple of concurrent states of the component basic machines. There
is a product state for every combination of the basic machine states, some of which may be forbidden in
practice. A product transition moves the product machine from one product state to another!. Several
product transitions can execute concurrently at a product state S if every permutation of those
transitions maps to a legal path from S. When two product transitions execute concurrently, the product

state that the application enters depends on which transition completes first. Each product transition

1 This does not necessarily imply that product transitions are sequentialized. In Section 4.6, we describe an equivalent asyn-
chronous representation for specifying concurrent execution. Although we discuss various concepts in terms of the synchronous
representation, the discussions are also applicable to the asynchronous representation.
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maps to one basic transition. There is a one-to-many correspondence from basic transitions to product
transitions. We use the term "basic transition" in the context of the product machine graph to mean the

set of all product transitions that map to the same basic transition.

Composite Machines.

Software designers specify a composite machine by specifying its composite states, composite
transitions, and a set of constraints on the behavior of a group of basic machines. Composite machines
are abstractions maintained by the runtime environment and do not correspond to actual processes. A
composite state is an arbitrarily specified set of product states. The composite states in a composite
machine must be pairwise disjoint. A composite machine is in a composite state A when either its basic
machines together are in a product state belonging to A or the basic machines are in some transitions
between product states comprising the composite state A. As with basic states, a composite state
represents a consistent state of the group of modules. Internally, the composite machine may be in some
transition between the product states, but to an external observer, it will always appear to be in the
well-defined composite state. A composite transition does not necessarily correspond to a particular
product transition, but instead, it may represent a set of concurrent product transitions, a sequence of

product transitions, or a combination of both.

If a composite machine is in composite state A, it remains in that state as long as product
transitions take it to another (or the same) product state in A. The composite machine leaves state A
when a product transition takes it from a product state in the set A to one that is not. The composite
machine enters composite state B when a product transition takes it from a product state not in B to one
that is in B. A composite transition A — B moves from a composite state A to a composite state B and
maps to a subgraph such that all states and transitions in the subgraph are in some path that leaves a
product state in A and enters a product state in B without leaving or entering any composite state except
through the first and last product transitions in the path. We define a legal state (transition) as a
product state (transition) that is either contained in a composite machine state or a composite transition,
and is not explicitly disallowed by a synchronization constraint specified by a software designer. A
restricted product machine is a product machine that consists of only legal states and transitions. The

effect is that software designers can erase (i.e. forbid) any set of product states and product transitions to
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express arbitrary synchronization constraints.

Example

Figure 4.1 shows an example of two basic machines given by a software designer, the product
machine generated from them, a composite machine also given by a programmer and the restricted
product machine. Basic machine A consists of states a; and a,, and transitions v and w. Basic machine
B consists of states b;, b, and b3, and transitions x, y and z. The product machine of A and B is shown
in Figure 4.1(c). The composite machine consists of the states ¢, and cg, and a transition u from ¢, to cz.

The software designer defines the composite state ¢, (cg) to contain a product state a;b; (e2b3). The

by
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(e) Restricted Product Machine

Figure 4.1. Examples of Machines
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transition ¢;—¢2 can then be automatically mapped to the graph shown in Figure 4.1(e) which, in this
example, is also the restricted product machine with all illegal states and transitions eliminated. Since
there is no composite transition into ¢, = {a,b,), all transitions into @b, in the product machine are
eliminated. Similarly, since there is no composite transition out of ¢z = {@2b3), all transitions out of a b3

are eliminated.

4.2. Modeling Synchronization

We provide several forms of synchronization constraints in addition to the composite transition

constraint described above. Composite transitions are useful for defining abstraction.

Preventing physical interference between machines is a common problem in automated
manufacturing. Specification writers may use a second form of constraint to explicitly prohibit the
product states (transitions) that represent interference between machines. In general, forbidden states
or transitions define conflicts or exclusive states and prevent inappropriate behavior. There may be
unsafe product states that are legal states but inevitably lead to some illegal state. Unsafe states are
automatically detected. Such information is useful to programmers for correctly specifying composite
machines and to the consistency control manager (described in Section 5.2) in controlling execution. We
define a region as a set of connected product machine states. We may identify safe regions as those that

do not contain any unsafe or illegal states.

Coordinating the operations of various autonomous physical equipment is also a common problem
in automated manufacturing. A third form of constraints allows programmers to specify mandatory
transitions that ensure that before entering a product state, a set of basic machines are required to start

from some specified states. Mandatory transitions enforce cooperation between machines.

4.3. Specification of Composite FSM

The programmer defines a composite machine by specifying the composite states, composite
transitions, and constraints on states and transitions. In practice, the low-level constraint expressions
discussed in this section may be generated from constraints expressed in higher-level structured

language constructs that ensure ease and correctness of programming distributed applications.
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Composite machine states are specified using first-order logical expressions over basic machine
states in the following form:
S:e(s1,82,. .+ ,8n)
S is the name of the composite state that contains all the product states that satisfy the logical

expression e (sy,82, . - . ,5») on the basic states s1,52,...,8a-

Composite transitions are defined using composite states in the following form:
T: (S 1-—9S 2)

T'is the name of the composite transition that moves from composite state S, to S,.

Constraints on the legality of product states and transitions can be specified in first-order logical
expressions on basic machine states and transitions over a specified scope. The scope of a constraint is
the set of composite transitions originating from a specified composite state. State constraints are
specified in the following form:

S:f(s1,8S2, .-+ ,8n)
S is a composite state where the state constraint applies to all paths from S to next (unspecified)
composite states. If S is *, the state constraint applies globally to all product states. fis a function on the
basic machine states s;,82,...,5,. The effect of a state constraint is that if S was the last composite state
entered, no product state satisfying f (s;,82,...,5,) may be entered until'another composite state is

entered.

Transition constraints are specified as either forbidden transitions or mandatory transitions.
Forbidden transition constraints have the following form:
S: (o—P)

where S is a composite state as described above, a=f(S1,52,,Sp) and B=g 1, t2,..,0m)- fand g are

first-order logical expressions on basic machine states. The effect of a forbidden transition constraint is

that if S was the last composite state entered, none of the product transitions in oo — B may be taken

until another composite state is entered.

Intuitively, a mandatory transition constraint ensures the sequence of execution of transitions by
forcing one product state to be entered before another. Mandatory transition constraints are specified in

the following form:



33

S pla—Pp)
where o= f(s1,52,...,5,) and P=g(y,ts,...,tm). To properly specify the start and end state of each
process involved, basic machines mentioned in B should be in the set of machines mentioned in o. The
mandatory transition constraints allow programmers to enforce the requirement that certain transitions
must be taken before a certain product state is entered. The constraint ensures that for the application
to enter B, the following three conditions must be satisfied when S has been entered and before another
composite state is entered: (1) o must have been entered since the previous time B was entered, (2) along
the path since exiting o, the basic machines mentioned in o and B must pass only through basic states in

o and B, and (3) the path from o to B contains no cycle involving machines specified in o.

Examples of Composite FSM Specifications

To illustrate how composite machines are specified, consider the dining philosopher problem where
N philosophers are seated in a circular table and each philosopher repeatedly cycles through the states T
(thinking), L (has left fork), R (has right fork), and E (eaten). The operations entering each of the above
state are d (replace forks), [ (grab left fork), r (grab right fork), and e (eating), respectively. Figure 4.2(a)

shows the basic machine representing a philosopher. A philosopher shares a fork each with his left and

(a) Basic Machine of Each Philosopher

8,

O"/\-——;) eater

no_eater

(b) Composite Machine of N Philosophers

Figure 4.2. Basic and Composite Machines of Dining Philosophers
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right neighbors. No two philosophers can pick up the same fork simultaneously?.

The composite machine consists of N philosopher basic machines where the composite states are
expressed in terms of concurrent states of each philosopher, P;.0, where 1<i<N and a € {T\L,R,E}.

The composite states, no_eater and eater, are defined as follows.

no_eater: Vi(1<isN = P.T'v P..L)
eater: 3i (1<i<N A (P;.R v P.E))

The composite transitions, 8, and 8, are defined as follows:

81: no_eater —> eater
3y  eater — no_eater

Figure 4.2(b) shows the composite machine of N philosophers with its composite transitions. When a
philosopher has entered the state R, he has acquired both forks and can take the transition e that

corresponds to the eating operation.

A constraint on states reachable from all composite states is as follows. (* means the constraint

applies to all composite states.)
*. -3 (Pi.L A Pleﬂ(i)'R)

This invariant disallows neighboring philosophers from picking up the same fork. It is intrinsic to the
synchronization problem. (In Section 4.7 and 5.3, we discuss the algorithms used to detect the possibility

of deadlock or starvation in this example.)

To illustrate behavior involving complex interaction that cannot be sequentialized, we describe an
example of a manufacturing application from [67]. There are two die-stamping machines and a
conveyor-based workpiece-replacement mechanism (Figure 4.3). By assigning appropriate values to its
actuators, each die-stamping machine stamps a workpiece held between two stops at the conveyor. The
workpiece in each machine rests on different section of the same conveyor and must be restrained by
stops controlled by their corresponding actuators. The single conveyor is used to replace stamped

workpieces with unstamped workpieces in each machine. To introduce workpieces to be stamped (and

2 For clearer illustration, we simplify the problem by fixing the order of picking up the left fork before the right; we can ex-
tend this to a more general solution by simply specifying alternative transitions from T that allow a philosopher to grab a right
fork before a left one, Similarly, we can specify different transitions for putting down each fork. However, we use a simpler exam-
ple for clarity in illustrating important concepts without losing generality.
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removing stamped workpieces), the stops and the conveyor must be synchronized in an appropriate way.

Our model allows the designer to specify the control operation of each die-stamping machine
individually as shown by the basic machines in Figure 4.4(a) and (b). The basic FSM for controlling DIE
1 consists of four states: an idle state (I,), a loading state (L), a ready state (R ), and a terminated state
(T,). The transition s; represents operations to start the stamping cycle and the transition ¢,
represents those that end the cycle. In the transition ¢y, the raising and lowering of the stops are
coordinated with the conveyor movement to remove stamped workpieces and introduce unstamped
workpieces. The transition d, represents the operations that extend the die and retract it after some
delay. The FSM for DIE 2 is similar. To synchronize the operations of both DIE 1 and DIE 2, the
designer need only disallow the product state, L,L 2, where both control process are in the loading state

and the conveyor will be subject to conflicting motion. The resulting restricted product machine is shown

; (o)
Unstamped pieces for —
Die 1 introduced here - D
E:] N4 L4
STOP1 ©
A4 w »
STOP2 O o o
DIE 1
Ea
Stamped pieces from
Die 1 removed here  + B3
]| Unstamped pieces for
Die 2 introduced here
[::l v A4
STOP3 o 2
v W »
STOP4 © o o
[ ]
Stamped pieces from
Die 2 removed here < [ ]
CONVEYOR
MOTION
o Acuators
w Sensors

Figure 4.3. A Manufacturing Application
consisting of two stamping machines and a conveyor system

3 We really want to disallow the concurrent execution of ¢, and ¢,, which can only be specified in the asynchronous model
(Section 4.6). Since we are using a synchronous model here, disallowing the product state L, L, effectively achieve the same effect.
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Figure 4.4. FSM Specification of the Manufacturing Application

in Figure 4.4(c). In contrast to the approach used in [67], our approach does not require the designer to

specify the complete global flow control of the operations and is less susceptible to human error.

This example also illustrates how we can express any arbitrary interaction that can be expressed in
path expressions. Using path expressions, all sequential and non-interfering operations of each die-
stamping machine must be explicitly specified, whereas in our model, the designer only needs to disallow

interferences.

4.4. Modeling Failure and Recovery

In a factory environment, machines frequently break down, often with external real-world side-
effects on the interrupted piece of work. This requires the system to use not only conventional rollback

or backward recovery but also more general forward recovery defined for each specific application.

In the preceding, we described a normal model, with normal states and transitions, which
characterizes the behavior of applications during normal execution, i.e. in the absence of failure. We now
augment the FSM model to characterize behavior involving failure and recovery. In discussing the
failure and recovery model, as in the synchronization model, we consider two levels. The first level
concerns failure and recovery of each individual basic machine. The second deals with groups of basic
machines where their synchronization and consistency constraints can determine the allowable or

necessary sequence of recovery transitions.
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Failure

To the states of the normal model, we add a set of failure states. We consider only fail-stop failures.
Software designers may define the failure states for each individual basic machine (in addition to some
system default failure states). When considering a group of basic machines, a failure product state is a
product state that contains at least one failure basic state. For example, Figure 4.5 shows the failure
states, ®, Ry and R;®,, in the manufacturing application. ®;R, (R,®;) may represent a failure while
removing or introducing a workpiece during the execution of transition ¢, (c2). We distinguish external
failure, e.g. a breakdown or an unspecified behavior of an equipment or device controlled by a process,
from process failure, e.g. an abort by an end-user, a program crash, prevention from progress by other
processes and deadlock. (Methods for analyzing process failure both statically and dynamically are
described in Section 4.7 and Section 5.3.) There may be other classes of failure, but we only deal with
these. When the consistency control manager (described in Section 5.2) detects an external or process

failure, it forces the process into a failure state.

Recovery Transitions

To the normal model, we also add recovery transitions from failure states to normal states.
Recovery transitions are distinct from normal transitions and represent operations that must be

implemented either by the basic machine designer or the consistency control manager. During recovery,

Figure 4.5. Examples of Failure States and Recovery Transitions
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the consistency control manager forces a failed or affected process to take a recovery transition. For
example, Figure 4.5 shows the recovery transitions, p; and pg, where p; (pz) may represent a recovery
action that removes the stamped workpiece and introduces a new workpiece between the stops at DIE 1

(DIE 2).

We distinguish between two classes of recovery transitions: reinstate and non-reinstate recovery.
We define a reinstate recovery transition as any operation that eliminates the effects of a transition
execution. Two examples of reinstate recovery are restore and undo. Each reinstate recovery transition
is associated with the normal transition (or sequence of normal transitions) that it reinstates. Non-
reinstate recovery transitions include operations that correct for errors and also operations like reset that

simply move the process to another (possibly initial) state.

The designer defines failure states and recovery transitions for each individual basic machine
independently. Reinstate recovery transitions defined by the designers ‘should affect only the normal
transitions of the same basic machine. Recovery operations may conflict with other normal operations.
Synchronization constraints can control recovery transitions in the same way as normal transitions. For
a group of basic machines, we can generate the appropriate recovery path, defined as a sequence of
recovery transitions from a failure state to a normal product state called a recovery state. A recovery
path may contain recovery transitions from more than one basic machine. In Chapter 7, we will discuss
the conditions that must be satisfied for the recovery path to preserve consistent behavior of the affected

processes.

4.5. Hierarchies of Composite Machines

We allow machines to be hierarchically composed. Each composite machine may be used as a basic
machine by a higher level consistency control manager (discussed in Section 5.2). where individual basic
machine states and transitions are hidden from composite machines at higher levels. Figure 4.6 shows a
two-level hierarchy of composite machines. Only level A composite states and transitions are visible to
the level B composite machines; lower-level basic machine states and transitions are transparent to the
level B composite machines. Composite machines at level B view composite transitions (states) at level A
as basic transitions (states) although they may represent sequences of lower-level basic transitions (sets

of lower-level basic states).
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Level B Composite Machines

Level A Composite Machines

Basic Machines

Figure 4.6. A Hierarchy of Composite Machines

The capability to specify hierarchical composite machines assists application programmers in
building large and complex distributed systems by grouping together smaller modules at each level.
Each composite machine defines a limited scope in which the behavior of a group of machines can be
independently analyzed and controlled. We restrict the scope of composite machines at each level to

enable analysis and control of hierarchical composite machines to be manageable.

4.6. Synchronous and Asynchronous Representations

Only basic and composite machines are visible to the designer; product machines are an internal
representation solely for analysis and use by the consistency control manager and are hidden from the
designer. Although we use a synchronous representation to simplify discussion in this thesis, the system
may use an internal asynchronous representation, particularly for restricted product machines. In the
synchronous representation, all states are clean points, transitions take some (substantial) finite time,
and when a machine leaves a state it is generally not known which outgoing transition it is executing
until it reaches the next state. The properties useful to people are different from those useful to
programs. The synchronous representation is easier for programmers to reason about synchronization
and recovery because its clean-point states allow programmers to describe the state of each machine
unambiguously. Internally, product machines may be taken from the asynchronous representation. In
the asynchronous representation, states can be either clean-point states (corresponding to states in the
synchronous machine), or operations (corresponding to transitions in the synchronous machine). All
transitions are instantaneous moves between states. We refer to a machine in the asynchronous
(synchronous) representation as a asynchronous (synchronous) machine and the states and transitions of

asynchronous (synchronous) machines as asynchronous (synchronous) states and transitions.
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From a synchronous composite machine specification, we can generate the asynchronous restricted
product machine that is used by the consistency control manager for dynamic analyses and control
purposes. The asynchronous representation is more suitable than the synchronous for the actual
implementation of the consistency control manager environment for three reasons. First, it captures the
concurrency of basic transitions with an asynchronous product state that contains asynchronous basic
states representing overlapping basic transitions. Second, it models the state of uncertainty where
several basic transitions may be taken when a machine leaves a (synchronous) clean-point state. Third,
it simplifies handling of asynchronous events because an asynchronous machine is always in a well-

defined state.

The synchronous representation can be easily converted to the asynchronous representation using
the following algorithm. For each synchronous state create a corresponding asynchronous clean-point
state with the same label. For the set of synchronous transitions (T'y, ..., Ty} leaving synchronous state
A, create one asynchronous operation state for each non-empty subset of (T, ..., Tv}. Create an
asynchronous transition from A to the operation state (T'y, ..., Ty}, create an asynchronous transition
from each singleton state (T;) to the asynchronous clean-point state corresponding to the target of the
synchronous transition T, and create asynchronous transitions from each asynchronous operation state
with set S to asynchronous operation states with proper subsets of S. Figure 4.7(a) (Figure 4.7(c)) shows

a simple synchronous machine and Figure 4.7(b) (Figure 4.7(d)) shows its asynchronous representation.

The asynchronous product machine in Figure 4.7(e) illustrates the use of the asynchronous
representation to capture concurrency of basic transitions. An asynchronous product machine is
produced by first converting each synchronous basic machines to asynchronous basic machines and then
taking a Cartesian product of these asynchronous basic machines. The asynchronous product state uv
represents a concurrent execution of synchronous transitions u and v. If the asynchronous product
machine were produced by first taking the product and then converting to the asynchronous
representation, the concurrent transition state uv would not be generated. Hence the order of conversion

and product is important.

The basic machine in Figure 4.8 illustrates the use of the asynchronous representation to handle
uncertainty during transition. When the synchronous machine leaves state A, we may not know for a

substantial time which transition it is taking. The asynchronous representation allows us to capture all
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Figure 4.7. Asynchronous Product Machine

the information available about the machine’s commitment to some future state. For example, when the
state [x,y) is entered, there is a commitment to reach either b orc, and synchronization conflicts based on

the possibility of reaching d can be disregarded.

The number of asynchronous transitions may be reduced by creating transitions between operation
states only when their sets of synchronous transitions differ by one. Figure 4.8(c) shows the reduced
asynchronous machine. At runtime, elimination of several destinations (e.g. a move from (x,y,2} to {x})

must be mapped to serial elimination of one destination at a time.

4.7. Detecting Synchronization Problems

Synchronization constraints may cause certain types of failure, such as deadlock, starvation and
livelock. Here we discuss how these synchronization problems are detected using a graph-theoretic
approach where properties of composite machines are inferred from properties of their restricted product
machine graphs. In what follows, we first introduce the notion of reachability within each composite

transition. Then we outline the algorithms for detecting synchronization problems using the complete
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restricted product machine graph. We also discuss some strategies for preventing these problems
statically. Techniques for detecting and recovering from these problems dynamically will be discussed in

the next chapter.

4.7.1. Feasibility of Composite Transitions

The purpose of analyzing each composite transition individually is (1) to report to the software
designer if any composite transition is not feasible, and (2) to assist the consistency control manager
(described in the next chapter) in controlling executions of basic machines. An important property to
check is whether a product state in a composite state is reachable from a product state in another
composite state. We first define two basic concepts that will help us check for reachability. The basin of
a product state P is the set of product states that allow the composite machine to enter P without
entering a composite state that does not contain P. (We may leave or remain in a composite state.) The

well of a product state P is the set of product states that force the composite machine to enter P without
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entering a composite state that does not contain P. The basin of a composite state A consists of all
product states in A and the union of the basins of all the product states in A. The well of a composite
state A consists of the union of the wells of all the product states in A and also product states that belong
to only basins of states in A but not to a basin of a product state not in A. Basins and wells provide
useful restrictions on the product graph for analysis and runtime control. A legal transition must remain
within the basin of a composite state at the head of some composite transition. A transition that leaves
the permitted basins can be removed from the product graph. A request to make an illegal transition at

run time will not be granted.

Using the notion of basin and well, we define the feasibility of composite transitions and
reachability of composite states as follows.
Definition 1: A composite transition A — B is feasible if and only if some product state

in A is in the basin of some product state in B.

Definition 2: A composite state B is reachable from a composite state A if and only if

there is a feasible composite transition A — B.
We adopt this definition of reachability since it is the weakest of the useful variations and it gives
software designers flexibility in defining composite transitions and states. A much stronger definition is:
a composite state B is reachable if every product state of composite state A is in the basin of every product

state in B for all composite transitions A > B. We however choose the less restrictive definition.

4.7.2. Deadlock

A deadlock is a situation in which each process is waiting for a resource held by the next process in

a cycle. Our definition of deadlock is based on reachability in the restricted product graph. First,
consider the case where all basic machines are deadlocked. This is represented by a product state D from
which none of the basic machines can make any basic transition. In more general cases, only a subset of
the basic machines are deadlocked. We use the following definition instead.

Definition 3: A product state s is a deadlock state for a set P of basic machines if no

path from s involves any transition representing an action of any basic machine in P.
There may be other basic machines that are not deadlocked and are free to make normal transitions

within the set of deadlock product states (or deadlock region).




Static Deadlock Analysis

Before discussing the algorithm to find deadlock regions, we introduce the notion of inhibition from
leaving a state. A basic machine M is permanently inhibited from leaving a (non-terminal) basic state s
if the application executes in a strongly connected region R of the restricted product graph with the
following properties: (1) M can only be at state s in R, (2) M does not have a transition leaving a product
state in R, and (3) there is no path involving other machines to another region that contains transitions

of M.

The algorithm to find deadlock regions identifies strongly connected components (SCC) in the
restricted product graph in which one or more basic machines are inhibited from leaving their state in
that region. A deadlock SCC need not be a sink SCC since the paths from one deadlock SCC to another
may not contain any transition of the deadlock basic machines. The outline of the algorithm is as
follows.

(1) Identify all SCC, Cy, ..., Cy, in the restricted product graph G using Tarjan’s algorithm [81]. (For
this algorithm, each node not in any strongly connected component forms a singleton SCC.)
Generate a strong reduction graph G’ as follow: nodes of G’ are SCC’s of G and an arc C; — C;
exists in G’ if and only if there is a transition x—y such thatx e C;andy € C;.

(2) Label each C; with the set S; of basic machines that have a single (non-terminal) state in the
region. (S; may be empty.)

(3) From each node C; in G’ after all its out-going arcs are traversed, for each in-coming arc C; - C;

update S; to S; N S;. (Sinks in G’ do not have out-going arcs and are computed first.)

When the algorithm terminates, deadlocked regions are those SCC’s with non-empty labels. The

labels indicate those basic machines that are deadlocked within each region.

Our model provides a simple and declarative way to prevent deadlock. If static analysis identifies
deadlock regions, the software designer can add additional constraints to the composite specification to
prohibit them. (We remark that separation of synchronization (policy) from basic machine specification
allows deadlock to be prevented in this way.) Upon recompilation, the problem areas will be removed
from the restricted product graph. Traditionally, software designers select a resource allocation policy or

make some adjustment to an algorithm to statically prevent deadlock.
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4.7.3. Starvation

Traditionally, starvation is defined as a situation where a process continues to be denied access to a
resource although that resource is being allocated to other processes. To define starvation, we first
introduce the notion of significant basic machine states, which are states where useful some application-
specific works are completed, e.g. a philosopher eating after picking both forks. Significant basic states
are explicitly specified by software designers. Each basic machine should enter its significant states
infinitely often when unconstrained, but may be suspended by the manager when executing as a member
of a composite machine. A composite state is significant if it contains at least one significant basic
machine state or a software designer explicitly designates it to be significant. We define starvation in
terms of properties of the restricted product machine graph:

Definition 4: A product state s is a possible starvation state for a set P of basic machines
if s is in a strongly connected region R (with some infinite path from s) containing no
significant state of any basic machine in P and there is at least a path from R to
another region with significant states of all basic machines in P such that all

transitions leaving R do not belong to any basic machine in P.

Actual starvation depends on the behavior of the machines able to cause a transition out of the
possible starvation region. A starved basic machine must be able to reach a state where useful work is
done in the absence of operations of other basic machines that prevent it from leaving the starvation
region. We assume the manager implements a fair queuing policy for request from basic machines to

make transitions (discussed in Section 5.2). This fair queuing policy eliminates one cause of starvation.

Static Starvation Analysis

First, we introduce the notion of local inhibition from entering a basic machine state. A basic
machine M can be locally inhibited from entering its basic state s in a strongly connected region R if (1) s
is not in any product state in R, (2) there is no transition (or path), belonging to M, leaving a product
state in R to a product state containing s, and (3) there is a path involving transitions of basic machines
other than M to another region that contains product state containing s. If M is locally inhibited from

entering a set of its significant states in a region R, then M might be starved in R.
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The algorithm to find potential starvation regions identifies strongly connected components in the
restricted product graph where one or more basic machines are locally inhibited from entering their
significant states. We need to analyze one basic machine at a time because there may be a starvation
region of a basic machine M within a strongly connected component of the restricted product graph

containing an M’s significant state.

First, label all states with an empty set. Then, for each basic machine M, unmark all states and
transitions and do the following:

(1) Mark product states containing M’s significant states and all transitions to and from these states.
Propagate backward from these states along M’s transitions only, marking the states and
transitions along the path. Mark all transitions to and from these newly marked states.

(2) Using only unmarked states and transitions, identify all SCC’s, Cj, ..., Cy, using Tarjan’s
algorithm.

(3) Starting from each product state with M’s significant state, propagate backward (ignoring marks)
to all reachable restricted product states. For each C; that is reachable, add M to the label of

each state in C;.

The potential starvation regions are those SCC’s containing states with non-empty labels.
(Potential starvation regions of different basic machines may overlap.) The labels indicate the basic

machine that may be starved.

Static starvation prevention requires that software designers modify the specification so that
starved processes may break the cycle followed by the processes that are getting the resources, i.e.
introduce or allow transitions of the starved machines out of the potential starvation region. However, it
is not always easy to modify specifications to break all potential starvation cycles. In Section 5.3, we will

discuss how starvation is dynamically detected and recovered.

4.7.4. Livelock

Traditionally, livelock is defined as a situation in which each process repeatedly decides whether to
access some resources (or perform some activity) but fails to reach a decision while continuing to
consume computational resources in making those decisions. We define livelock in terms of properties of

the restricted product graph:
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Definition 5: A product state s is a possible livelock state for a set P of basic machines if
it is a possible starvation state except that each basic machine B in P has a transition
leaving the strongly connected region R and leading to another region containing a

significant state of B.

Livelock is a non-deterministic property, as is starvation, contingent on the scheduling of the
operation of each livelock machine. While the composite machine cycles indefinitely within a non-
significant region, it merely performs subsidiary (synchronization) operations of the livelocked machines
and none of their significant work. Livelock differs from starvation in that all basic machines involved in
a livelock can break the livelock by selecting different operations or suspending some of their operations,

whereas starvation can only be stopped by some basic machine (or the manager) that is not starved.

Static Livelock Analysis

The algorithm to find potential livelock regions is similar to that for finding starvation regions. It
identifies eyclic regions in the restricted product graph where a set of basic machines is locally inhibited
from entering their significant state and where they can make infinite number of transitions in eycles.
Again, we analyze the general case where other basic machines not involved in the livelock are free to
operate normally in the livelock region. The outline of the algorithm which uses the restricted product
graph is as follows. (We do not consider self-loop transitions around non-significant states.)

(1) First, label all states with an empty set. Then, for each basic machine M:

(a) Mark all transitions belonging to M except those adjacent to a product state with a
significant state of M.

(b) Using only marked edges, find all SCC’s, C,, ..., Cy, using Tarjan’s algorithm.

(¢) Starting from each significant state of M, propagate backward to all reachable restricted
product states. For each C; that is reachable, add M to the label of each state in C;.

(2) Using only states with non-empty labels, find all SCC’s, Dy, ..., Dy, using Tarjan’s algorithm.
Relabel each D; with the union of all its states’ labels. For each D; containing only one machine
in its labels, set the label to empty.

(3) For each basic machine M do:

(a) Starting from each of its significant states, propagate backward along M’s transition until
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we reach a deadend or a D; containing M in its labels. Mark the first state(s) in each D;
reached.

(b) For each marked state, if there is no transition of any machine in its label leaving it and
entering another state with the same label, then remove M from all state labels in D;,
otherwise mark M in the label.

(4) For each D; with unmarked M in its label, remove M from it.
(5) For each D; and for each machine M in its label, if there is no state in D; with a disallowed M’s

transition leaving it, then remove M from all state labels in D;.

The possible livelock regions are those SCC’s with non-empty labels. The labels indicate those basic

machine that may potentially engage in a livelock.

As in starvation, it is often not easy to prevent livelock statically by modifying the composite

machine specification. In Section 5.3, we discuss the dynamic prevention of livelock.



Chapter 5

Uniform Framework: Architecture

We use the model just described in Chapter 4 to statically specify and analyze the behavior of
distributed applications separately from the behaviors of their component processes. We can also use the
model to dynamically enforce the specified behavior and provide automated failure recovery as well as
dynamic reconfiguration of running applications. The runtime mechanism that performs these task is
independent of the policies software designers may specify through the model. The well-known
separation of policy and mechanism [40,54] has not been previously applied to synchronization,

reliability and reconfiguration of distributed systems.

Figure 5.1 shows an overview of how the model is used, particularly, how basic and composite
machine specifications are compiled statically and how a consistency control manager provides the
common control mechanism. While Section 4.7 describes the algorithms for static analysis of
synchronization problems, Section 5.3 describes dynamic detection and recovery of synchronization

problems. Chapters 6 to 10 describe support for failure recovery and dynamic reconfiguration through
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Figure 5.1. Overview of Compiler and Consistency Control Manager
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automatic analysis of dependencies and selection of recovery states and reconfiguration paths.

As a first step, the programmer generates basic machine descriptions and a composite machine
specification. These specifications are given to a compiler for static analysis, resulting in a report of
regions in the graph that result in deadlock or possible starvation or livelock. The programmer may add
constraints to the specifications to avoid these synchronization problems. When a satisfactory behavior
is specified, the compiler produces a restricted product machine graph (with information on reachability,
potential starvation and livelock) and a set of recovery paths from any (unrestricted) product state to the
restricted product machine. After compilation, processes are initiated for the basic machines, and the
manager is started to monitor them. The manager uses the compiler output to control synchronization
and recovery of the basic machines. In the following subsections, we discuss the compiler and manager

in greater detail, illustrating some of the features with examples from the dining philosopher problem.

5.1. Composite FSM Compiler

The composite FSM compiler accepts programmer specifications of basic and composite machines
(Figure 5.2). It first makes several diagnostic checks:
e syntactic correctness
e overall graph connectivity of each machine

o feasibility of each composite transition

Invariant constraints specified on product states and transitions are checked to verify that they are
consistent with each other. Overlaps between different constraints can be detected by checking every
state in the finite-state product machine. The composite machine specification should also be consistent
with the model as defined in Section 4.1. For example, the specification violates the model definition if
any two composite states overlap. Complete graph connectivity is important since some product machine
states will be unreachable if there are disjoint connected components in the restricted product machine
graph. In addition, all specified composite transitions must be feasible, i.e. there must be some product
states in the destination composite state that are reachable from at least one product state in the start

composite state. Problems are reported to the programmer for correction.

If the input is acceptable, the compiler then applies the algorithms described in Section 4.7 to
identify:



Basic Machine
Specification

Diagnostic Behavior
Checker Analyzer

Composite Machine
Specification

Problems
Report

Restricted Product
Machine with
Feasibility Information

Recovery Plan

Figure 5.2. Composite FSM Compiler

e sets of legal product transitions for each composite state and transition

e deadlocked product states

e potential livelocked and starved product states
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The compiler determines regions in the restricted product machine that lead to deadlock or possible

livelock or starvation. Each product state and transition is labeled to indicate its legality, the composite

states that are reachable, the composite states it belongs to (if any), and the composite states that inhibit

it. Product states are also labeled if they are in a region that may deadlock, potentially livelock, or cause

starvation.

Figure 5.3 shows an example of the restricted product machine of the dining philosopher problem

with two philosophers. Each basic machine should be able to visit its eating (E) state infinitely often. If

the composite machine enters the state (L,L), then there is a deadlock since there is no other product

state to which it can move. To prevent deadlock without using some specific algorithm like waiters or a

dining room ticket, the programmer may simply disallow deadlock states by adding the following state

constraint to the specification in Section 4.3.

* ViP.L)
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Figure 5.3. Restricted Product Machine of Two-Dining Philosopher Problem

Once the compiler identifies all the illegal, deadlocked, and potentially livelocked or starved
product states, it may provide means to recover from them. In addition to these problem states, other
unacceptable states from which the composite machine needs to be recovered include failure of a basic
machine, unconditional reset or abort by the end-user, erroneous or unspecified basic transition, and
failure of a basic machine to cooperate with the manager. The compiler computes a path through the
product machine (including failure states) from each illegal and problem state to acceptable states in the
restricted product graph. This set of paths is the recovery plan. These paths can include recovery
actions (such as basic machine reset) that are not available during normal operation. The recovery plan

|
is used by the manager whenever it must force the composite machine into an acceptable state.

Figure 5.4 shows an example of a recovery plan for the dining philosopher problem with two
philosophers. The programmer specifies the failure states for individual basic machines: @, for
philosopher 1 and ®; for philosopher 2. The compiler then generates the failure product states (®,,H),
(®,,L), (H,®,) and (L, ;). (®,H) is entered when the basic machine P, fails after the composite
machine has left the states (L,H), (R,H), or (E,H). The recovery transition from (®,,H) to the product
state (H,H) represents the recovery action of P;. There are similar recovery plan for failure states

((I)I,L), (H, @2) and (L, @2).

5.2. Consistency Control Manager

After compilation and analysis, a consistency control manager is created for each composite

machine. The manager controls scheduling, enforces synchronization control, implements recovery,
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Figure 5.4. Recovery Plan of Two-Dining Philosopher Problem

manages reconfiguration, and takes the role of a basic machine when the composite is used in a higher-
level group. Managers are not customized for each composite machine. Instead, the separation of policy

and mechanism lets them be driven by the output of the compiler’s behavior analyzer.

Figure 5.5 shows how a manager interacts with the basic machines and a higher level manager.
There is a communication channel between each basic machine and the manager and this interface has
only a few features. The manager communicates with the basic machines through messages. There are
two modes of interactions — autonomous and exception. In autonomous mode, a basic machine requests
permission to make a transition and the manager responds by granting or denying the transition
depending on the synchronization constraints. The manager can also query the current state or
transition of a basic machine. It can force basic machines into exception mode when failure occurs. In
exception mode, the manager forces the basic machine to follow specific transitions. In both modes, a
basic machine reports when it has finished a transition and reached a state. When the basic machines

are recovered from the failure, the manager forces them back into autonomous mode!.

Basic machines and managers may interact with an external semantic information facility that

maintains information that is not easily represented by a finite-state machine model, such as counters,

1Tt is possible to improve the fault-tolerance of the centralized consistency control manager through various replication tech-
niques [14, 75]. However, we will not focus on this aspect of the work here.
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timers, and arbitrary predicates. We will not explore this facility further in this thesis.

Synchronization

The manager controls synchronization by repeatedly listening and serving requests from all basic
machines. When each basic machine is instantiated, it first calls announce to announce its initial state.
To request permission to move to a destination state, it will then call request_permit (implemented as a
remote procedure call to the manager). Subsequently, each basic machine always calls request_permit

before making a transition.

The manager examines the restricted product machine graph to determine if the requested
transition violates synchronization constraints or will lead to some problems. A transition is acceptable
if it will not enter an illegal, unsafe or problem state. To improve concurrency, two or more product
transitions are permitted to execute concurrently at a product state S if there is a legal path from S for
every permutation of those transitions. If acceptable, the manager authorizes the transition by returning
GRANTED to the pending request_permit call. Otherwise, it returns HOLD. The basic machine may then

decide to make an alternative transition. However, if the basic machines decides to wait for the
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transition to become acceptable, it calls block_request. The manager then puts the request in a
pending list and returns GRANTED when the transition becomes acceptable, i.e. after other basic machines
have made some transitions. (The manager always authorizes the oldest request that is currently
acceptable, eliminating one cause of starvation.) When a basic machine has reached its destination
state, it may call announce to announce its new state. Instead of calling announce, it may simply make
another call to request_permit and pass its current state and a requested destination state as the
parameters. The manager is thus notified of the completion of the basic machine’s previous transition.

Figure 5.6 shows the pseudocode of the manager for serving basic requests from basic machines.

Consider the two-philosopher problem, where the composite machine is in state (H,R) and basic
machine P, requests permission to make a transition to state L. The manager consults the restricted

product machine graph (Figure 5.3) that indicates product state (L,R) is illegal. The manager returns

/* Consistency control manager interface for basic request */

entry request_permit(current_state, destination_state) {
if caller’s request is acceptable
return GRANTED;
else
return HOLD;
announce(current_state);

}

entry block_request(current_state, destination_state) {
if caller’s request is acceptable
return GRANTED;
else
put request on pending list;
announce(current_state);

)

entry announce(current_state) {
scan pending list {
if caller’s current state enables a pending request
return GRANTED to pending requester;

Figure 5.6. Pseudocodes for Serving Basic Requests for Permission
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HOLD to inform P, to wait. P; may then request to block until it receives permission. Meanwhile, Py
makes transitions to E and H, taking the composite machine to state (H,H). At that point, the manager
returns GRANTED to allow P, to make the transition to L. If deadlock were not eliminated statically, the
manager would be responsible for dynamic avoidance of deadlock (discussed in Section 5.3). Suppose the
composite machine is in state (H,L), and P, requests the transition to state L. From the restricted
product machine graph, the manager knows that leads to the deadlock state (L,L). The manager avoids

deadlock by informing P; to hold until P; is done eating.

There are two ways in which the number of message can be reduced. First, a basic machine may
present to the manager a list of alternative states in order of decreasing preference by calling the
function select permit. The manager returns the index of the first state in the list that the basic
machine is allowed to execute. The function select_permit avoids the additional messages required for
repeatedly requesting permission to execute different transitions after the previous request is
disallowed. Second, a basic machine may call select path to present a list of paths in decreasing order
of preference. Each path represents a request to reserve a sequence of transitions in the paths. If one of
these paths exists in the restricted product machine and is compatible with other concurrently executing
transitions, then permission will be granted to the basic machine. The function select_path avoids
messages required to request permission to execute transitions in sequence. Figure 5.7 shows the

pseudocode of the manager for serving batched reqﬁests from basic machines.

A basic machine may receive other unexpected responses from the manager while waiting for a
response from the manager after making a request through request permit, block request,
select_permit, Or select_path. Furthermore, a basic machine may also receive unexpected messages
from the manager when it is idle or when it is executing a long operation without interacting with the
manager for an extended time period. (For each basic machine, the system may create a separate thread
that waits for unexpected messages from the manager.) There are three types of unexpected messages
from the manager. First, a basic machine may receive an exception message (through a force_mode
call) when the manager wants to force the basic machine into an exception mode to recover from a
failure. The basic machine then goes into an exception mode and waits for further instruction from the
manager. The manager then sends an instruction to execute a mandatory transition. The basic

machines executes the mandatory transition and discards its previous request for permission, if any.
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/* Consistency control manager interface for batched request */

entry select_permit(current_state, state_list, number_of_states) {
for i from 1 to number_of states {
if transition to state_list[i] is acceptable
return i;
else
return HOLD;
)
announce(current_state);

]

entry select_path(current_state, path_list, number_of_paths) {
for i from 1 to number_of_paths {
if all transitions in path_list[i] are acceptable
return i;
else
return HOLD;
)

announce(current_state);

Figure 5.7. Pseudocodes for Serving Requests for Batched Permission

Second, the manager may sometimes query the status of the basic machine. The basic machine then
answers the query and continue to wait for the previously expected response if there is a pending
request. Third, the manager may send a checkpoint message to force the basic machine to checkpoint
itself. The basic machine then completes the checkpoint, returns the result to the manager and waits for

response to its previous request, if any.

If static analysis had not been done, the manager must analyze the restricted product machine
graph dynamically to determine the safety of transitions. The manager can construct an operating sub-
graph consisting of all reachable states within a fixed distance of the current product state. The greater
the distance, the better the analytical results, at the expense of higher computational cost. The manager
can analyze the operating sub-graph for potential synchronization problems using the same algorithms
as the compiler would apply to the complete product graph. There is a tradeoff between static and

dynamic analysis. For large restricted product graphs, static analysis is time consuming and only a
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small part of the results may be used in the actual execution. Selective analysis at run time may be more
officient in such cases. However, dynamic analysis slows down the manager. Furthermore, some

problem regions may not be detected if the operating sub-graph is not large enough.

Recovery

If the composite machine violates its concurrency and sequencing constraints for any reason, the
manager initiates exception mode. Examples of such violations include failure of a basic machine action,
erroneous or unspecified basic transition, failure of a basic machine to cooperate with the manager, or
dynamic detection of a synchronization problem (e.g., deadlock). The manager may also be forced into

exception mode by a manager of a higher-level composite.

Since the consistency control manager monitors the state of each basic machine during normal
execution, it knows the normal product state entered just before the failure. From the recovery plans in
the restricted product machine, it determines the appropriate recovery path. It then forces each affected
process to recover by taking a mandatory transition. Each basic machine then performs the mandated
recovery operations and notifies the manager on successful completion. When all affected basic
machines have successfully completed, the manager sets all basic machines back to autonomous mode.

Details of the recovery mechanisms are described in Section 8.1.

Dynamic Reconfiguration

Software designers or system administrators may initiate dynamic reconfiguration through the
consistency control manager. The old restricted product machine is replaced by a desired restricted
product machine. From the current product state, the manager determines the appropriate
reconfiguration path. It then forces the affected basic machines into exception mode and instructs them
to take the mandatory transitions (either recovery or reconfiguration transitions). When the manager is
notified of successful completion of these transitions, it then sets these basic machines back to
autonomous mode. The restricted product machine representing the new configuration is then used for

controlling all future executions. Details of the mechanisms are described in Section 10.1.
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5.3. Dynamic Synchronization Problems Detection and Recovery

In the Section 4.7, we discussed how synchronization problems are detected statically. If these

problems are not prevented statically, they must be detected dynamically and recovered appropriately.

Deadlock Avoidance

When the application is executed, the composite machine may still contain deadlock regions. The
consistency control manager is then responsible for dynamic deadlock avoidance by suspending basic
machines if their autonomously requested transitions will enter a deadlock region. Other basic machines
may later take the composite machine to another region so that it will be safe again for the suspended
machines to make their requested transitions. This is similar to the traditional approach where the
operating system delays resource allocation to avoid deadlock dynamically. We however provide an

automatic and integrated mechanism.

Deadlock Detection and Recovery

Deadlock prevention or avoidance might not be implemented if the designer decided complete static
analysis was too costly. In that case, the manager must dynamically analyze the current operating sub-
graph (which may not be large enough to detect some deadlock regions). The composite machine may
enter a deadlock region before the manager detects it. To recover from deadlock, the manager forces all
affected basic machines into a failure mode. The manager then determines the failure state of the
composite machine. Recovery of deadlock is done by forcing one or more victims to make mandatory
transitions and recover to a state where other deadlocked machines are able to continue with their
pending transitions. The recovery state selected should involve the minimum undo operations. After the

recovery state is reached, the manager resumes the normal mode of operation.

Starvation Detection and Recovery

The consistency control manager performs dynamic starvation detection and recovery by
monitoring the number of cycles the composite machine spends within a starvation region. A composite
machine may enter a starvation region without any immediate problem. Only when the composite
machine cycles in the region indefinitely while an inhibited machine has pending request will starvation

occur. When the number of transitions spent within a region exceeds a threshold ¢, the manager
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suspends the active basic machines. (A default value of ¢ is pre-defined although a software designer
may define an more appropriate value of t.) Their suspension may be delayed until they reach a state
(automatically identified by static analysis) with transitions from the starvation region to another region

in which a starved machine may enter its significant state.

Consider the dining philosopher problem with five philosophers and an additional condition that a
philosopher can pick up its left fork only when neither of its neighbors has picked up its right fork and is
ready to eat. Figure 5.8 shows a subgraph of the restricted product graph showing some transitions of
only three of the philosophers with their states indicated in the product state as (P,, P2, P3, ..). The
cyclic region represented by bold edges represents the operating region where philosopher 2 can be
starved by a conspiracy by his neighboring philosophers 1 and 3. In order to prevent starvation, the
manager will monitor the number of times that philosophers 1 and 3 have repeated the significant eating

state. If that exceeds the threshold value, the manager will suspend one of them, e.g. philosopher 1 when

(HHE,..)

)

(HHR,.)

(HHL,.)

?H,H.H,..) (HRH,.) (HEH,.)

(II,I‘:II:--)

-------- >
LHH.) (LLH.)

(E,HH,.)

Figure 5.8. Example of a Starvation Region
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it reaches the state H. Any move by philosopher 2 will then take the composite machine out of the

starvation region.

Livelock Detection and Recovery

The consistency control manager performs dynamic livelock detection and recovery by monitoring
the number of non-significant cycles the basic machines make in the livelock region and change the
schedule for granting permission, e.g. suspending one machine at a product state where another

livelocked basic machine may make a transition out of the region.

To illustrate livelock, consider the dining philosopher problem where a philosopher will put down
his left fork if he cannot access his right fork immediately after picking up the left. Figure 5.9(a) shows
the modified basic machine of a philosopher and Figure 5.9(b) shows the restricted product machine with
two philosophers. The analysis algorithm identifies states (H,H), (L,H), (L,L), and (H,L) as a potential
livelock region. During execution, if the manager detects that composite machine cycles in that region a
specified number of times, it can suspend philosopher 1 when it reaches state H (identified automatically
by static analysis). This will allow philosopher 2 to pick up the left and then the right forks. Philosopher

1’s request will be granted the next time it is legal.

(a) Modified Philosopher Basic Machine (b) Modified Restricted Product Graph

Figure 5.9. Modified Two-Dining Philosopher Problem




Chapter 6

The Execution Model

A FSM specification in the behavior model defines an allowable behavior, i.e. the set of transition
sequences that can be executed repeatedly. While the behavior model is concerned with the sequences of
operations that can or cannot be executed, it does not contain information on their actual execution by
the application. The analysis of failure and recovery requires information on operation executions,
particularly information on interrupted and past executions. The behavior model deals with operation
behavior while the execution model deals with the effects of operation executions. An operation behavior
can be thought of as a type that specifies the set of operation sequences that can be executed repeatedly,

whereas an operation execution refers to an instance of such execution.

To analyze the effects of failure and the correctness of recovery, we need information about actual
executions that may not be found in the FSM abstraction. However, global states are usually large, and
most of the state is not relevant to the analysis. We use two principles to identify the relevant features
of an execution. First, we assume the software designer has explicitly specified all important restrictions
on behavior. When two transitions have no mutual constraints, they are treated as independent
operations during recovery, as well as normal execution. On the other hand, transitions with a common
constraint may be treated as dependent, where recovery of one may require recovery of another. Second,
we assume that all information about a global state needed for a correct recovery is captured by the
corresponding execution sequence. This requires the software designer to explicitly distinguish as FSM

states and transitions any global states or operations that could affect failure recovery correctness.

We use execution sequences only for reasoning about the properties of augmented FSM’s that will
guarantee correctness of recovery. Once we have identified these properties, we do not need execution
sequences for analyzing a particular application. Instead we use the behavior FSM specification for
analyzing the correctness of recovery using a suffix of the execution sequence. This approach contrasts
with most other works [9, 31,45, 64] that use a history log for analyzing and verifying the correctness of

recovery of individual applications.
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In this chapter, we describe the notion of execution sequences, equivalence between execution
sequences, how they are modified by normal and recovery operations and how they are used to analyze
recovery from a failure. We discuss how consistency is preserved despite modifications of an execution
sequence during recovery. Dependencies between pairs of operations are analyzed from the behavior

specification of the application to ensure that modified execution sequences preserve consistency.

6.1. Execution Sequences

A transition execution is an instance of executing a transition in a FSM specification. An execution
sequence is a sequence of transition executions in order of completion (as viewed by the consistency
control manager). It represents a function that returns the current global state when applied to an

initial global state. An execution sequence may contain transition executions of several processes.

An execution sequence maps to a path in the behavior of the application defined by the restricted
product graph. Two execution sequences are equivalent if the corresponding paths in the restricted
product graph are equivalent. We use the notations <S;, S;> and <S;..S,..S;> to denote paths from a
state S; to a state S; in the restricted product machine. The first form denotes any path from S; to S;. In
the second form, we require the path pass through the intermediate state S,. We can similarly use

transitions instead of states to define paths.

We define path equivalence as: every path in <S,, S;> is equivalent in effect since they all move the
application from the original state S, to the destination state S;. All operations following S, will not
depend on which path in <S,, Sg> is used since the behavior of an FSM depends solely on its current
state and does not depend on how it arrives at that state. The principle of path equivalence implies both
the principle of substitution of one operation for another and the principle of permutation (reordering) of
a sequence of operations. By the principle of substitution, two different set of operations of a basic
machine with identical source and destination states are equivalent. By the principle of permutation,
two paths that have identical source and destination states but contain different ordering of the same
transitions are equivalent. For example, consider three product transitions a, b, and c. Two distinct and
legal paths <a,b,c> and <c,b,a>, that exist between the product states S, and Sy, are equivalent although
@ and b do not commute (similarly b and ¢). On the other hand, all operations that commute can always

be permuted. Thus, permutativity property subsumes commutativity property that is described in [87].
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The notion of execution sequence is similar to history in [31,45, 64, 87]. We however use execution
sequences only for reasoning about the properties of the augmented FSM’s that will guarantee
correctness of recovery. The main difference between the two approaches is that an FSM is an abstract
behavior model that includes both general synchronization constraints and dependency relations
whereas analysis using history logs requires additional information from conflict tables to define mutual

exclusion and commutativity of operations.

6.2. Modification of Execution Sequences

Execution sequences may be modified by various actions during normal execution, failure and

recovery. The following axioms define how execution sequences are affected by these actions.

(A1) If an execution sequence maps to a legal path in the FSM specification, then the execution sequence

is legal.

(A2) During normal execution, an execution sequence can only be appended with new operation

executions.

(A3) When a failure occurs, the system always records an execution sequence up to the last product

state before the failure.

(A4) Reinstate recovery operations may delete operations from an execution sequence, not limited to the

tail of the sequence.

(A5) Non-reinstate recovery operations only append to execution sequences and do not delete any

previous operation execution.

Axiom Al is justified by the normal interpretation of FSM’s that an execution sequence is legal
according to the FSM specification if and only if it is accepted by a FSM specification (we assume every
state is an accepting state). Since normal execution progresses only in the forward direction, axiom A2 is
justified. The consistency control manager (Chapter 5) will have a record of a valid execution sequence
before the failure, justifying axiom A3. In practice, the size of an execution sequence can be limited by

setting it to empty whenever a firewall state (Section 7.1) is reached.

While normal executions only append to an execution sequence, recovery operations may modify an

execution sequence if they involve reinstate operations (axiom A4). The set of erased executions is empty
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when a recovery is complete and normal operations resume. When reinstate recovery operations are
used during a recovery the set of erased executions is non-empty. After a reinstate recovery erases some
operation executions of a process, all other processes should perceive the erased operations of the first
process as if they were never executed. A recovery involving only non-reinstate operations does not
modify an execution sequence (Axiom 5) since non-reinstate operations move the applications to some

future states without affecting previous executions.

Since recovery operations may erase operations from an execution sequence, consistency of the
global state may be affected. In the following sub-sections, we first define a notion of dependence

between pairs of operations and then describe how interactive consistency can be preserved.

6.3. Analysis of Dependence from Behavior Specification

Synchronization constraints defined by software designers may restrict the order in which basic
transitions can take place. This sequencing constitutes control dependencies among the processes. To
describe these dependencies, we define two relations on basic transitions: "can precede" (—) and
"necessarily precede” (p). These relations are defined in a scope [S;, S;], a subgraph of the restricted
product graph, with source S;, sink S;, and free of cycles involving both S; and Sj, where such cycles are
broken by removing outedges (in those cycles) from S;. To simplify the discussion, we refer to the start

and end states as singleton states — we can easily extend the analysis to sets of states.

We first define two predicates: Occur on basic transitions and Legal on paths. [S;, S;] Occur(4) is
true if basic transition A occurs in a path in the scope [S;, S;1. Legal(<S;,S;>) is true if <S;, S;>is a legal
path in the restricted product machine graph.

[S:,S;1A — B denotes that the basic transition A can precede B in the scope [S;, Sj], i.e.
38, (Legal (<8;..8}..8;>)ALS;,8,10ccur (A)ALS,,S;10ccur (B)). The incidental precedence relation "—" does
not require the two transitions to be immediately adjacent. For example, in Figure 6.1(c), [I113, R1L]

d, — sg is true. We use the notation [S;,S,] A-5 B to denote —([S;,S,]JA—B).

[S:,S;1A b B denotes that the basic transition B occurs in [S;, S;] and the basic transition A must
always occur before it along every path from S; to B, ie. [S;,S;10ccur(B) a
~38,(Legal (<8;..S..8;>)AS;,8,(B—>AAA-H B)). We say A necessarily precedes B if the relation A b B

holds. The p relation holds between two basic transitions if and only if the second must be synchronized
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Figure 6.1. FSM specification of the Manufacturing Application

after the first in the subgraph [S;, S;], justifying the following axiom,

(A6) If [S;, S;1A B holds, then B depends on the conditions (or information) established by A in the

scope [S;, S;l.

This dependence relation encapsulates all forms of control dependence including those that results
from mutual exclusion mechanisms, conditional synchronization and triggers. As discussed earlier,
software designers explicitly specify these important restriction on the behavior of the application. For
example, in Figure 6.1(c), in the scope [I,I5, R;L.], the transition s, depends on ¢, since enforcing the

mutual exclusion requirement of the application results in the relation {I,I5, R1L2] ¢ b s being true.

The notion of dependence in [45,64,87] is based not only on the ordering in a history log (which can
be incidental) but also on a separate synchronization arbitrator, such as a conflict table. For example, if
a transaction T',’s write to data x is recorded before T';’s read of data x in the history log and write and
read operations are incompatible in the conflict table, then T’ is dependent on T;. In comparison, we
combine the two types of information in the restricted product machine graph and hence we can extract
dependence information solely from the graph. The restricted product machine graph also contains more
complex synchronization constraints that cannot be expressed in conflict tables, e.g. conditional
synchronization and triggers. While conflict tables prevent any pair of operations from executing
concurrently, it cannot enforce sequencing of operations. In a restricted product machine, sequencing

can be enforced by removing paths that would allow them to be executed in a different order. The
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limitation of the FSM approach is the additional cost involved in analyzing the restricted product graph
to determine the dependencies between transitions. In Section 7.4, we discuss the algorithms for

detecting dependencies and the time complexity of the algorithms.

Another difference in our notion of dependence is that a larger scope may have fewer dependencies
than a small one because of the greater number of alternative equivalent paths. This is possible if a
dependent process can reach a state (in a larger scope) regardless of whether the transitions it depends
(in the smaller scope) had occurred. For example, in Figure 6.1(c), in the scope [1,I;,R L], the relation

¢1 b s holds, but not in the larger scope [1,1,,R;R,].

6.4. Effects of Modifying Execution Sequences on Consistency

From the definition of interactive consistency in Section 3.1, consistency is preserve if information
established by a process that enable another process to execute some operations is not erased by some
recovery operations. This notion of consistency is similar to those in [18,39,44]. To analyze consistency,
we must rely on the actual executions of the processes represented by an execution sequence. We cannot
analyze consistency solely from the behavior of the application represented by a restricted product
machine because although the behavior defines the allowable transitions it does not provide information

on the actual execution.

Modifying execution sequences by appending executions does not affect consistency if the
executions conform to the allowable transitions of the FSM (Axiom Al). However, reinstate recovery
operations that erase executions from the execution sequence may remove information on which another
process depends, e.g. values of condition variables. Suppose an operation execution of a process
establishes a precondition that enables another process to execute some operations. If the operation
execution of the first process is subsequently erased by a recovery operation, then the precondition
established earlier is also erased. The executions of the second process that depend on the precondition

are then no longer valid since it is based on an information that no longer exists.

To determine if an execution may depend on information established by another process, we use the
notion of dependence described in the previous section. Dependencies between operations are determined
from the restricted product machine of the application. We define an execution of a basic transition A to

be invalidated in a scope [S;, S;] if (1) the execution of A has been erased by a recovery operation (e.g.




68

rolled back), or (2) it is dependent on an invalidated execution of basic transition B, such that [S;, S;]
B A. We can only use properties of the FSM model conservatively to define how transition executions
are invalidated. When a basic transition execution is erased, we conservatively mark as invalid all
previous execution of the product transitions (in the scope [S;, S;1) that map to the basic transition. The
second clause in the definition of invalidation is conservative in that A may be dependent on another
execution of B that is not invalidated. We need to assume this since we do not use a history log of the
actual execution. (We can certainly improve on this initial simple approach by using a short history log
for resolving any uncertainty of which product transitions were erased by the recovery action. In many
applications, the additional gain in recovery efficiency may not be worth the additional cost of
maintaining a history log.) Thus, execution invalidation can be determined from a dependence analysis

of the behavior of the application.

We can now redefine interactive consistency using the notion of equivalence between execution
sequences and execution invalidation. Interactive consistency is preserved at a product state S; if S;
results from an execution sequence (or one equivalent to it) that does not contain invalidated operation
executions in a scope [S;,S;], where S; is a known consistent product state. Since there is no operation
that is dependent on the erased executions, then the state of each process at the product states S; does

not depend on information established by the erased executions.

This definition of interactive consistency is used for defining the correctness of recovery described
in the next chapter. In Section 7.2.3, we will show that if all operation executions in an execution
sequence are not dependent on executions erased by some recovery operations, then we can find another
equivalent sequence such that the erased executions occur after those non-dependent executions. If no
such equivalent execution sequence can be found and dependent operations are not erased during a

recovery, then the recovery state is inconsistent.

While we use execution sequences to reason about the conditions for correctness of recovery, we do
not use them to analyze the recovery of a particular application. Instead we only use the abstract FSM
specification to derive equivalent execution sequences and to analyze transition execution invalidation

(based on necessary precedence) for ensuring that a particular recovery is correct.
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Recovery Using Behavior Specification

In recovery management, we are primarily concerned with how to automate an efficient recovery of
a group of processes, which may interact in arbitrarily complex ways, from the failure of one or more of
these processes. Because failure of a process may cause inconsistency, the goal of recovery is to place all
affected processes in a globally consistent state again where they may continue with their normal
execution. The recovery state selected must be a legal product state in the FSM specification. It must
also preserve interactive consistency. In addition, actions taken to reach the recovery state must obey

the behavior constraints of the FSM:

In this chapter, we first define the three conditions in terms of the behavior and execution models.
We then describe a method for computing dependencies efficiently from the FSM specification. We

finally present the algorithms for detecting dependencies and computing a recovery state.

7.1. Basic Definitions and Notations

Historical basic states are those reached in the actual execution of a process. Historical product
states are those collectively reached by the group of processes. We assume the existence of at least one
consistent (firewall) historical state S, of the restricted product machine, e.g. a designer-defined initial
state or a global checkpoint state. S, serves as a firewall during recovery because an application may
never be required to recover to states that precede S,. Figure 7.1 shows a consistent historical state S,

in a sub-graph of a restricted product machine.

The point of failure S, is the last normal state entered before a failure occurs. As described in
Chapter 5, the consistency control manager monitors all states entered by each basic machine. The
manager can then determine the state S, afier a failure, although it need not keep the complete state

information of processes it monitors.

From a particular S,, we can determine a restricted set of potential future states, #, reachable from
S,. The path from S, to any of these future states may not enter S,. In this discussion, let Sy be a state

in # Figure 7.1 shows some future states in a restricted product machine. S is similar to a future final
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Figure 7.1. A Sub-Graph of a Restricted Product Machine

state defined in [61] with two exceptions. First, we consider not just the final states but any state in any
path from S, to the final states. The set of future states may be restricted to significant states, i.e.
states where useful application-specific work has been performed. Significant states are explicitly

defined by the designer. Second, we consider states reachable from S, instead of from the initial state.

We refer to S, as the recovery (normal) state that is reached by a recovery path from S;. The
recovery path consists of first the instantaneous transition to a failure state followed by a sequence of
recovery transitions. We include transitions to the failure state in a recovery path to simplify the
discussion. S, may be anywhere in the restricted product machine, so long as there exists a legal

recovery path that can reach it.

7.2. Correctness of Recovery

The main task of failure recovery is to find an appropriate recovery path through the restricted
product machine that preserves consistency invariants. We do not rely on correctness conditions that
transform problems in a concurrent domain into simpler problems in the sequential domain, such as
correctness conditions based on serializability and linearizability. Instead we reason about correctness

in the concurrent domain with partial-order semantics.

Using the behavior model, we now define more precisely the three conditions, described at the end
of Section 3.4, that ensure recovery states are consistent. The recovery of finite-state processes is correct

if the following three conditions are satisfied,
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(1) there must be legal path from the point of failure S, to the recovery state S, (legality

condition),

(2) the recovery state S, is in a legal path from a consistent historical state S, to a future

state Sy (continuity condition), and

(8) there is a legal path from the consistent historical state S, to the recovery state S,
that contains no reinstated operation or dependent on a reinstated operation

(dependency condition).

The legality condition ensures that recovery operations obey synchronization constraints. The
continuity condition ensures that the behavior at the recovery state preserves some of the behavior
before the failure. It prevents the problem of recovering to a state that is not reachable from a historical
state. In Section 8.2, we will discuss how it can be strengthened for specific recovery policies. The
dependency condition ensures that all operations dependent on recovered operations are themselves

recovered. The following sub-sections discuss these correctness conditions in more detail.

7.2.1. Synchronization Consistency

The first condition ensures that actions during recovery are subject to the same sequencing and
synchronization constraints as normal activity. For example, in a manufacturing cell, when we recover a
robot arm to a specific location, the arm movement should not interfere with the normal operation of

another equipment or robot. This is enforced by requiring a legal path from S, to S,.

If there is a legal path <S,, S,> from a failure state S, to a recovery state S,, then the recovery
operations in <S,, S,> obey synchronization constraints. Since legal paths contain only legal transitions
that are not removed by the synchronization constraints (Section 4.2) on the normal and recovery

transitions, then all recovery operations in the legal path <S,,S,> obey the synchronization constraints.

7.2.2. Continuity

The second condition ensures that the behavior after recovery is related to the behavior before a
failure in an appropriate way. This is the concept of continuity that can be captured by legal paths in the
restricted product graph. To show that the continuity condition preserves some of the behavior before a

failure, we first introduce some basic concepts and notations.
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Let E, be an actual execution sequence up to the point of failure. Since processes never recover to a
product state before S, we assume E. begins at S,. E. maps to a legal path in the restricted product
graph from S, to S,. We define an Ey as E, concatenated with a legal path to some future state. Since
only the operations in Ey before S, are really executed, Efis a "projected” execution sequence. We define
the behavior of a group of processes at a particular product state as a set of sequences of transitions that
they can execute beginning at that product state. For each product state, the legal set of transition
sequences can be derived from the restricted product graph. The behavior before the failure (at S;) is a
set of legal paths to the states in 7. Since we know the actual execution sequence E,, the behavior at S,
contains the set of Efs. If a recovery results in an execution sequence (possibly projected) that is a prefix
of an E, then some of the behavior before the failure is preserved. For a recovery state S,, E, denotes a
sequence Ej (or one equivalent to Ey) delimited by S, and S,. (Although S, may be in a path that also
leads to a state not in 7%, some future states of S, are in %) Figure 7.1 illustrates the execution sequences

E, and E, and a set of Ef’s.

Theorem 1.
If the recovery state S, is in a legal path from a consistent historical state S, to some future state
S, then some of the behavior of the processes before the failure is preserved.

Proof.
We consider the behavior of the processes at S, that contains the set of Ef¢s. The behavior at S,
includes the behavior before the failure (at S,) which is a set of legal paths to those states in # If
S, is in a legal path from S, to some Sy, then some future states of S, are also future states of S;.
Since the set of sequences of transitions <S,..S,..Sp> is equivalent to some Ep, then some of the

behavior of the processes before the failure is preserved. [

We can improve recovery by using execution sequences that are equivalent to Ef, whenever
possible, and decreasing the length of the suffix E; — E,. We can exploit the principle of substitution
discussed in Section 6.1 to improve efficiency of recovery by replacing a set of operations that was
executed with another set of operation that have fewer dependent operations. The principle of

permutativity can be exploited by using operation ordering that will avoid recovering other processes.
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To simplify the mechanical detection of consistent recovery state, we modify the continuity
condition as follows: there is a legal path from S, to a future state S;. Continuation of behavior is
preserved partly by the modified continuity condition that ensures there is a legal path <S,,Sp>, and

partly by the dependency condition that ensure there is a legal path <S,,S,>.

7.2.3. Recovery Involving Dependency

The dependency condition is based on the definition of interactive consistency in Section 6.4,
specifically applied to recovery. Recovery operations may affect the execution sequence and consequently
the consistency of the global state. To avoid inconsistency, the dependency condition ensures there is at
least one legal path <S,,S,> that does not contain any invalidated transition. However, there may be
several other paths from S, to S, that contains invalidated transitions. Theorem 2 states how
interactive consistency can be preserved in the presence of failure and recovery operations. We first
define a proper execution sequence E, as a prefix of an execution sequence E (or one equivalent to it) that
contains no reinstated operations or operations dependent on them.

Theorem 2.
A recovery state preserves interactive consistency if and only if there exists a proper execution

sequence to the recovery state.

Proof.
We prove the "if* part by considering an equivalent and proper execution sequence E,, resulting
from a recovery. Then the effects of the recovery only eliminate executions that happen after E,.
Since all transitions in E, happen before the eliminated executions, they can be executed without
being dependent on conditions or information from those eliminated executions. Thus, by the

definition of interactive consistency (Section 6.4), the recovery state is consistent.

To prove the "only if" part, we note that a recovery satisfies the continuity condition and thus the
recovery state is on a path equivalent to some execution sequence E;. If the recovery state S,
preserves interactive consistency, then by definition of interactive consistency, none of the
operations from the historical state S, to S, is eliminated or depends on conditions established by

eliminated operations. Thus <S,,S,> is a proper execution sequence. O
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We can restate the dependency condition using the p relation as follows. Let Ay be a transition
execution of a basic machine M that is reinstated and By be any transition execution of another basic
machine N(N=M). We use the notation [S;, S;1 (A} B) to denote —([S;, S;] (A p B)). The dependency
condition can be rewritten as follows: VMVNVAyVBy (Ay € <S, , Sp> A By € <Sp, §i> = [Sp, Scl Ay
¥ By). From the definition of the p relation, we observe that if [Sp, S/l (Ay b By), then — [S,, Sfl
Occur (B) v 3S,(Legal (<S,..Sp..Sp>) A [Sp,S71 (By—Ay A Ay By)). This means that a basic transition
By can precede an occurrence of Ay in a path <S,..5,..S/>. We can thus find a recovery state S, such
that <S,,S,> contains By but not Ay. The dependency condition ensures the global state is consistent

after a recovery by disallowing unerased executions to be dependent on erased executions.

7.3. An Algebraic Method for Computing Dependency

We now discuss a method for computing p relations in a given scope. We also describe how to
transform a subgraph into an equivalent one that gives the same p results. In particular, we are

interested in transforming cyclic subgraphs into acyclic subgraphs in order to compute p efficiently.

7.8.1. Computing p of Subgraphs in Series and Parallel

At each node and transition, we record three important sets: 4, € and p. A is a set of transitions
that occur in all the paths from the source S; of the scope to that node or transition. E is a set of
transitions that occur in at least one path from S; to that node or transition. (Since 4 ¢ E, only one set
needs to be maintained, with appropriate markings to indicate those members that belong to ) For
each transition T, we maintain a set T of those transitions that depend on T, i.e. U is in T} at state S;
if [S;,S;XT bU). b is a set of T} for each T e ‘E. (In the following discussions, the scope may be omitted

if it includes the entire subgraph under consideration.)

Recording these sets at a node means that the information are true for all paths from the source to
that node while recording them at a transition means that they are true for all paths to the tail of the
transition appended with that transition. At the source of the scope S;, 4= 0, E={ and b = {J. We next

consider how the sets 4, E and p of two subgraphs G; and G, can be combined in series and parallel.

The expression F;G denotes that a subgraph F is merged in series with subgraph G, as Figure

7.2(a) shows. The sets Ap.g, Er;c and Thr,c of F;G is computed as follows.
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Figure 7.2(b) shows a special case of a series merge where a subgraph F is merged in series with a
transition a, resulting in F;a. From the above set of formulas, we can derive for this special case the

formulas for computing Ag.,, Er,, and Thr,, of F ;a as follows.

Ap,a = Arola)
Er,a = Epula)
Thp if Te Ap Anac Ep

T, ={Thrula) ifTeAr naé Er
Thr-l@)  ifT¢ A
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bl";a = {TPF;a | Te 1EF;a]

The expression F || G denotes that a subgraph F is merged in parallel with subgraph G as Figure
7.3 shows. F and G have common source S; and sink S;. The sets A g, Er ¢ and Thr e of F I1G is
computed as follows.
Arc = AN A
Erc = BrVEg
Tbr )6 = [Thr A Eg—Ep)l N [ThaU(Er~Eg)]
= [Thp-Egl U [The(Thp(Ee—Er))]

bric=Tbrc | T€Erya)

We derive Tppye in the parallel merge above by expansion and elimination, i.e.
[Thp I Eg—ERINTE e A Er—Eg)] = (Er—E)NTHp N Eg—ErNUTHe(Thp N Eg—Er))] =
[Thr—Ecl U [The(Thru(Eg—Er)]. Thus, Thryc in the parallel merge is identical to Thr;c — THp, in

the series merge.

In graph composition expressions where parentheses are omitted, ";" and "||" are evaluated from

left to right, e.g. F;G | H I = ((F ;G H);1.

S:
i Sy, PriG
® FlG A6
Er G
Pa
G

Figure 7.3. Merging in Parallel
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7.3.2. Graph Transformation that Guarantees p-Equivalence

The above formulas allow us to compute the sets 4, E and p> of series and parallel combinations of
subgraphs where the resulting graph contains no cycle. To compute those sets for cyclic graphs, we first
transform cyclic graphs into acyclic graphs that give the same results for 4, € and }>. We first define a
source of a strongly connected component (SCC) as a node with incoming transitions (defined as input
transitions) that do not belong to the SCC. A sink of an SCC is a node with outgoing transitions (defined
as output transitions) that do not belong to the SCC. Two graphs are p—equivalent if they produce the
same results for 4, E and b at each corresponding sink, given identical values for 4, € and p> at the input
transitions. The cyclic to acyclic graph transformation makes use of several important properties of p in
SCC’s. The p's of nodes in an SCC depend on the source nodes but not the sink nodes. In any SCC, j> is
identical at all its nodes regardless of the number of sources.

Theorem 3.

b at all nodes of a strongly connected component are identical.

Proof.
Let a b at one node X in a strongly connected component, where @ and b are transitions. Assume
that a b at another node Y. There are two cases at Y: either b¢ Ey or there is some path
containing b whose prefix does not contain a. The first case cannot occur as E is (obviously)
identical at all nodes in a strongly connected component. For the second case, take that path,
append to it any path to X and conclude that a b at X. Therefore, by contradiction p at all nodes

of a strongly connected component are identical. [

Since by Theorem 3, p> at all nodes of an SCC are identical, we introduce a virtual sentinel node X
that is reachable from every node of the SCC and contains the > of the SCC. We will first discuss SCC’s

with only one source and later extend the results to SCC’s with more than one source.

Transforming Strongly Connected Components with One Source
We transform a cyclic graph into a p-equivalent acyclic graph using the following three steps.

(1) Transform the SCC, using depth-first search, into a spanning tree with additional back edges,

forward edges and cross edges. The source of the SCC is the root of the spanning tree.
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(2) Create a sentinel node . Modify all back edges to point to Z instead of an ancestor node. (We
omit forward and cross edges for now and discuss them later in the section.) We will show that

b is the p of the SCC.

(8) Duplicate the resulting graph and create an ¢ transition from I to the root of the duplicated
subgraph. (We may omit € and collapse its head and tail nodes.) Input transitions to the source
and all output transitions at the sinks of the SCC are also duplicated. Remove all output

transitions in the original subgraph, the duplicated sentinel node I’ and all edges to Z'.

We now show that the computation of 4, E and p at the sinks of the transformed graph is
equivalent to that of the original graph. The duplication in the third step is to propagate the computed

sets Ag, Ey and by of the SCC to all nodes of the duplicated subgraph, particularly the sinks.

We first consider a strongly connected component with a simple cycle consisting of only one back
edge, one source and one sink where the source and sink are identical. For example, Figure 7.4(a) shows
a strongly connected component that consists of a single acyclic path F from X back to itself, where X is
both the source and sink. A subgraph I merges in series at node X through an input transition. (Output
transitions are omited from the figure.) We show that Figure 7.4(b) is p-equivalent to Figure 7.4(a).
Lemma 1.

Let a subgraph I merge in series at node X with a strongly connected component that consists of a

single acyclic path F from X back to itself. At node X, briam =brr Enyam = Erp and

Aryaswy = A
1 1
X & X
F
o)
z

(a) A strongly connected component
(b) p-equivalent graph

Figure 7.4. A Simple SCC with a Single Source
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Proof.
We can compute Ap, Er and py independently. When we merge 4 and A in parallel at X, we
get 4 N App = Ay, since A ¢ Ay p. Merging E and ;. in parallel at X, we get Er U Ep;r = Eryps
since E; = Fy . Next, we prove that pryg;m = brr. We show this by proving Thrya;r) = Ty for
each T € Epa.m)-
Thrar) = [Thr A Err—ED] O [Th1p(E-Ep 7))

= [Ty AE—ED] N Thyp

=Thrr
We can derive the third line from the second because Ty < [ThrN(Er~Ep)]. To show that this
relation is true, we need only consider four cases for each transition ¢ € EqU%Ep. First, if t¢ ‘Er the
relation is true because ¢ will not increase the size of Th;. Second, if t¢E;, the relation is true
because Tbrr c [ThUEr]. Third, if te E, te Ep and te Tp;, then the relation is true whether
t € Thrp or t ¢ Thyp. Fourth, if te F and te Er, but téTh;, then t¢ThrF, in which case the

relation is true. [0

From Lemma 1 and Theorem 3, the set b of each node in a simple cycle (involving only one back
edge) is always equal to p;» where I is the subgraph in series with the cycle at a single node X, and F is
the path from X to itself. The set € at each node is always equal to E;,r. The set Ay is always equal to
4;. A may be different at each node in the cycle but for each node N in the cycle, 4y is always the same
regardless of the number of times the cycle is traversed. Thus, each of the three sets, b, € and 4 of the
simple cycle can be computed from the p-equivalent graph shown in Figure 7.4(b) and is independent of

the number of times the cycle is traversed.

In the remainder of our discussion, we use the notation br O b to mean Thp O Thg for each

T e EpuEg where O may be any of the following operators: ¢, 2, U, N, =, o1 —.

Lemma 2.
Let a graph contain a simple cycle with a back edge c to a node V. Next modify the graph such
that ¢ points instead to X, an ancestor of V. Then p¢ in both graphs are equivalent, where bc is

the b computed at c.
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Proof.
Consider the graph with a simple cycle in Figure 7.5(a) and a modified graph with a moved back
edge shown in Figure 7.5(b). In both cases, from Lemma 1, E computed at ¢ are identical.
Similarly, 4 are identical for each corresponding node. In the case shown in Figure 7.5(a),
be =buaiden e =Priap;. (Lemma 1), where I is the subgraph traversed before entering X through
i. In the case shown in Figure 7.50), bc =brsap ) =Prapye- Thus, bc is identical in both cases.
(>x may be different since b and ¢ do not affect by in Figure 7.5(a)). O

Lemma 3.

Let F:G:;F be a series merge of the subgraphs shown in Figure 7.6. Then Egayr = Erc,

Ag.eyr = Arc and be,eyr =bric-

Proof.
From the series merge formula, we derive Er.oyr = (ERVEVEr = ErVEg = Er- Similarly,
Ar.eyr = (ApVA)Ar = Arc. Next, we prove that bw.er = brc. First we show that

brbr.c cbrig. Consider first the case for each transition te 4. Then, from the series formula,

br.c = b A Eg—EnulbrEglulbenbri(Ec—Er)]. Thus, brobrg = br U br-Egl U erbrl

L
a
v
¢ b
w

(a) A strongly connected component (b) Modified Graph

Figure 7.5. Moving the Head of a Back Edge to An Ancestor Node

F G F

5 Q)
6]

0, O
w Z

Figure 7.6. Merging Repeated Subgraphs in Series
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br.c. Similarly, for the second case where t¢ Ap, Brrbr,c = br—Ec]l U berbrl cbr,g. Therefore,

brobr,g  bry in both cases. Finally, be,eyr =brie U brie—Erl U brrbricl =bric. O

Using both Lemma 1 and Lemma 2, we can show that even if some back edges enter a descendent
of the source X, i.e. overlapping cycles, the graph with all back edges redirected to X will still allow us to
compute p of the SCC correctly at £. For example, Figure 7.1(a) shows a strongly connected component
containing a single source X. A descendent W of X contains two branches where one branch has a back
edge to X and the other has a back edge to a node V in the path from X to W. There is no cross or
forward edge between the branches. We show that the graph, Figure 7.7(c), resulting from the
transformation steps is p-equivalent graph to the original graph in Figure 7.7(a). Using Lemma 3, we
can then show that E and p at the sinks of the duplicated subgraph are identical to Er and ps
respectively.
Theorem 4.

Let a strongly connected component contain a single source and two back edges, one entering the

(c) b-equivalent graph

(b) Modified Graph

Figure 7.7. An SCC with Overlapping Cycles




82

source and another entering a descendent of the source. Then, the three transformation steps
produce a p-equivalent graph. 4 can be computed by ignoring all the back edges Parallel merge
of E and > at head of the back edges in the original graph is equivalent to parallel merge of E and

b at the sentinel . ‘Eand p> at all duplicated nodes are identical to Ez and by respectively.

Proof.
Consider the subgraph in Figure 7.7(a). br (i.e. b computed at /) may modify the value of by (i.e. p
computed at e). From Lemma 2, identical br can be computed by redirecting f to point to X instead
of V (Figure 7.7(b)). Furthermore, the results of pr are merged at X through c and e. After
redirecting the back edge f to X, we can transform the graph into an equivalent graph shown in
Figure 7.7(c) where all the back edges enter Z. Since there is no cross edge between the branches,
cycles within one branch do not affect another branch. From Lemma 1, Ey in the original graph
(Figure 7.7(a) is identical to E; (Figure 7.7(c)). Also, Ay = A; (where I is the graph traversed
before entering X) and is independent of the back edges. The proof that by is equivalent to bt
follows directly from Lemma 1; parallel merge of by with by at X does not change the value of by,
regardless of the number of times X is entered. By Theorem 3, b at all nodes in the strongly
connected component is identical to by. By Lemma 3, - = Ex and by =bg. Similarly for Y° and
Z°. By Lemma 1, Az =4; and 4 at each duplicated node can be computed by ignoring the

backedges. [

Transforming Strongly Connected Components with Multiple Sources

Next we consider strongly connected components with more than one source. The main problem
with multiple sources is that p of input transitions to each source may mutually affect one another. To
account for this mutual effect, we add an additional step between step 2 and 3 of the procedure for

transforming the cyclic graph with one source:

(27  Replicate the resulting graph and collapse the root of the replicated subgraph with Z. Input
transitions at all the sources are also replicated (but not the output transitions at the sinks). The

sink of the replica is X',



83

Step 3 of the transformation then duplicates only the original graph, as before, but with an ¢
transition from X’ to the root of the duplicated graph. Output transitions exist only in the duplicated
graph created by step 3. We will show that the transformed graph is p-equivalent to the original graph
by first considering the case with two sources and then the more general case with more than two
sources. In the first case, we consider an example of a strongly connected component containing two
sources X and Y and edges shown in Figure 7.8(a). Using transformation step 2’ (and omitting step 3 for
now), we generate a modified graph shown in Figure 7.8(b). We show that py of the graph in Figure
7.8(b) is identical to p of the strongly connected component. We exclude cross (and forward) edges in
Lemma 4 and Theorem 5 and later show how cross (and forward) edges may be handled.

Lemma 4.
Let a strongly connected component contain two sources. Using transformation step 2" (and

omitting step 3), then E and b at the sentinel node Z’ of the resulting graph is identical to E and p

(c) Reduced graph

Figure 7.8. An SCC with Two Sources
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of the SCC. The set 4 at each node is equivalent to that computed in the replicated graph with X

as the source.

Proof.
Consider the SCC in Figure 7.8(a). Let the original subgraph from X to ¥ (i.e. @) be F and the
subgraph from Y to X (i.e. b) be G. We can compute A, Er and pp (also Ag, Eg and pg)
independently. Let I () denote the subgraph traversed, including i (j), before entering X (¥). At
node X of the graph in Figure 7.8(a), merging % and EgpyJxe in parallel, we get
F v Eqryeie = Bapngse- This is identical to Z;. At node T in Figure 7.8(c), we derive
A = Aggywon = (AUANNANVAGING = [(AVAINANNAIAANT) = (A;0A:)0 A
which is identical to Ax of the original graph in Figure 7.8(a). Similarly, at node Y’, Ay =

ArryaensFng = AaFng = Ar-

To compute p, we must account for the effects of 4; and A, on all the transitions in the strongly
connected component. Let P = (I;F)I1J);G) I I;F. We now prove that baennennr = bewne =
bp = by which is the b of the SCC; traversing the SCC more times will not change the result of
bp. We observe that bp c (bsU(Ep—E,)) because if a transition £ is such that te Ep, te E; and
tépy, then tébp. Thus, bpys = [bp U (E~Ep) N by AE—E))] = bp N by U(Ep-EN)] = bp.
Similarly,
bpe = bp U bp U (E6—Ep)) N (e Ep—Ep))]
= bp U [bp N GeU(Er—Es))]
= bp.
bpur = e U (E—Ep)l 0 A Ep-ED)] = bp.
bpr = bp U (p U (Ep-Ep)) 0 GrAEp-E)] = bp.
Therefore by ymunr = Peiny = bp = br ; ie. P represents the minimum number of cycles
the SCC must be traversed and traversing the SCC more times will not change the value of b of

the SCC. O

From Lemma 4, we note two important properties for any SCC C with multiple sources. First, ¢
must always include E; of each input transition i at each source. For example, in Figure 7.8(a), the set E

of the SCC is E.p)1sy6 Which includes E; and ‘E;. Second, we must ensure that the p-equivalent graph
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G for computing P¢ is such that every input precedes every transition in C. In other words, for each
transition ¢ in the SCC, there must be a subgraph F;T of G, where ¢ is in T and i is in F for each input
transition i of the SCC. (If G = F;T, we say F precedes T.) For example, in Figure 7.8(a), the b of the
SCCis bya.maye i where both I and J precede both F and G.
Lemma 5.
Let H be a graph that is p-equivalent to a strongly connected component C with multiple sources.
Then for each transition ¢ in C, there is a subgraph F;T of H such that ¢ is in T and i is in F for

each input transition i of C.

Proof.
We prove this by contradiction. Consider the SCC shown in Figure 7.8(a) where I, J, F and G are
as defined in Lemma 4. Suppose we can use a subgraph from X to X for computing the b of the
SCC. Let @ = ((;F)11);G) || where there is no subgraph containing both I and J that precedes F.
Then by = pg. But bg.r may remove some transitions in bo because Ay = (VAN A € A .
Since by Theorem 3 that states all nodes in a SCC must have identical p, then bz is not the b of
the SCC. O

For SCC’s with two sources, it is sufficient to replicate only the spanning tree with one source as
root minus the subgraph with the second source as root. Figure 7.8(c) is a reduced graph of Figure 7.8(a)
where by =py. We can reduce the replicated subgraph because the computation of b at the subtree with
the second source as root would have included the 4, ‘E and p values from incoming transitions at the

first source.

By replicating using step 2, we can transform SCC’s with more than two sources into a p-
equivalent graph. We consider a strongly connected component C (Figure 7.9(a)) that contains N sources
where N > 1. We now show that a graph (Figure 7.9(b)) generated using the transformation steps with
the additional replication step is p-equivalent to the original graph.

Theorem 5.
Let a strongly connected component C contain N sources where N > 1. Then the graph generated

using the transformation steps with the additional replication step is p-equivalent to C. The set 4

at each node is equivalent to that computed in the replicated graph with X as the source. The sets
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(a) An SCC with four sources

(b) A p-equivalent graph

Figure 7.9. An SCC with More Than Two Sources

£ and p of the SCC is equivalent to £ and > at the sentinel node ¥, respectively. ‘E and p> at all

duplicated nodes are identical to £y and by respectively.

Proof.
Consider, without loss of generality, the SCC in Figure 7.9(a) (there may be more than two
branches). Using the transformation steps with the additional replication step, a p-equivalent
graph shown in Figure 7.9(b) is generated. From Lemma 4, 5 is equivalent to the E of the SCC
since Ey includes all transitions in the SCC and £ from replicated input transitions do not add
new transitions to Ey. Also using a proof similar to that of Lemma 4, 4 of each node is equivalent
to that computed at the corresponding replicated node. To compute p, we consider two different
cases: (1) sources that are on the same branch, e.g. Y and Z, and (2) sources that are on different
branches, e.g. W and Y. We show that the transformed graph is p-equivalent to the original graph
for both cases. Case 1 is similar to Lemma 4. In case 2, we must account for the effects of the
sources in one branch on the sources in another branch. Let P = (A 1:BIK),C and
Q = (D | H);E where A to E represent the subgraphs that contain the transitions a to e respectively

and H to K represent the subgraphs traversed before entering W to Z respectively. (I;PY U ;@)
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then contains all the input subgraphs to the SCC. Since by = brypmaseip1 i ka1, then
(I;P)||(I;Q) precedes both P and Q. From Lemma 4 and 5, by is the p> of the SCC. From Lemma 4,

Ey = Ep and py- = by Similarly, for W° and Z°. O

We now discuss how cross and forward edges in SCC’s can be handled using the replication rule of
transformation step 2’ for SCC’s with multiple sources. (We will use "cross edge" here to mean both
cross and forward edges.) A cross edge affects the computation of > in a SCC C only if the cross edge
enters a SCC C’ within C that does not contain the tail (or its ancestor) of the cross edge. If C’ contains
the tail (or its ancestor) of the cross edge, the p> of the cross edge does not affect p¢- since by Theorem 3,
b is identical for all nodes of C’. If the tail (or its ancestor) of the cross edge is not in C’, we replicate C’
using the replication rule of transformation step 2. Back edges within C’ are changed to point to the
corresponding node in the replica of C’ while the back edges of the replica of C’ points to the sentinel
node . We can omit replicating the part of C’ that is a subtree rooted at the head of the cross edge since
the computation of b at that subtree includes the > of the cross edge. The above transformation step for
cross edges is performed after the transformation steps 1 and 2. Using the new graph, we then perform

step 2" and 3.

Figure 7.10(a) shows an SCC with a cross edge b (shown in Figure 7.10(b)) that enters a SCC ¢’
involving nodes W and Z (though another spanning tree may be constructed with fas a forward edge, the
results are the same). We replicate C’ by replicating the node W and setting the back edge ¢ to point to
the replicated node W’. The edges d and e are then set to point to Z. The resulting graph for computing
A, E and p of the SCC is shown in Figure 7.10(c). Note that replicating the entire SCC instead of C’ does
not resolve the problem of a cross edge because Ay of that replica still contains f while Ay- in Figure

7.10(c) does not.

7.4. Computing Recovery Paths Automatically

We can compute recovery paths automatically from the restricted product graph (with failure
states and recovery transitions) based on the correctness conditions described in Section 7.2. We first
describe an algorithm for detecting dependencies between pairs of transitions within a specified scope,
using the method described in the previous subsection. For detecting dependencies, we use the graph

consisting of only normal transitions and states and ignore recovery transitions and failure states.
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(a) An SCC with cross edge (b) A Spanning Tree

(¢) Modified graph for computing 2, £and b

Figure 7.10. An SCC with a Cross Edge
However, for computing recovery path, we include recovery transitions and failure states.

7.4.1. Algorithm for Detecting Dependency

Given a scope, we wish to determine from the restricted product machine graph whether there is a
dependency between any two transitions. We proceed by extracting the subgraph defined by the scope
using the Algorithm 7.1 described below. Then we transform the subgraph into an acyclic one and apply
a diffusion method for computing dependencies at each node using the formulas discussed in the

previous sub-section.

As defined in Section 6.3, a scope [S;,S;] is a subgraph of the restricted product machine graph with
source S;, sink S; and free of cycles involving both S; and S;. The function extract_scope takes three
input parameters S;, S; and E. The graph G is first set to NULL and all nodes in the original graph R
are marked "new". The function then uses the procedure df_search to derive the subgraph G of the

scope [S;,S;] by traversing the original graph from S; in depth-first order. As it traverses the graph, it



89

Given : Nodes S; and S;, and graph R.

Compute : G, the scope in R with source S;, sink Sj, and free of cycles involving both

S,‘ and S e
Method :
1: function extract_scope(S;,S;,R) {
2 set G to NULL;
3 for all node u in R mark u "new";
4: df_search(S;,S;,R);
5: return G;
6: )
7: procedure df_search(v,w,R) (
8 mark v "old";
9: for each transition <v,x> in R {
10: if (w is reachable from x) {
11: add transition <v,x> to G;
12: if (x is marked "new") (
13: mark x "old";
14: add x in G;
15: df search (x,w,R);
16: )
17: )
18: }
19: ]

Algorithm 7.1, Extract subgraph G defined by the scope [v,w]

adds all nodes that can reach S; and all traversed transitions to these nodes. It makes use of a function,
reachable (x,w), that checks if w is reachable from x. (The compiler of the restricted product machine
pre-computes for each node a set of reachable nodes.) Since each node and transition in the scope [S;,S;]
is traversed only once, the time complexity of df _search is O (n; +1, ), where n, (t,) is the number of nodes
(transitions) in the scope [S;,S;] of the restricted product machine graph. The space complexity is also

O (ng + &,).

Since a subgraph G of a scope may contain cycles, we need to transform @G into an acyclic p-
equivalent graph. This algorithm is based on the algorithm for computing strongly connected
components described in [4]. The main procedure transform performs a depth-first search through G
and transforms strongly connected components into acyclic subgraphs as they are found. Strongly

connected components are detected using depth-first number £, low link number L and a stack STACK
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as described in [4]. At each node v, we add two stacks v.B that records all back edges originating at the
descendents of v and v.C that records all cross and forward edges originating at the descendents of v. At
lines 13 to 16, where w.k < v.k, we determine if <v,w> is a back edge or a cross edge by maintaining a
current path from the root to v. If w is in the path, <v,w>is a back edge and is pushed into the stack v.B.
Otherwise, it is a cross edge and is pushed into the stack v.C. The current path from the root is omitted
from the procedure transform for clarity. If w.k > v.k and w is on the STACK, then <v,w> is a forward
edge and is also pushed into the stack v.C. The time complexity of this part of the algorithm is

O(n, + t,), similar to the algorithm for detecting strongly connected components.

When a strongly connected component is found at line 22, we begin reconstructing it by first
creating a sentinel node X, and changing the head of all the back edges to point to X, (line 28). By
Theorem 4, the computation of p at Z, is equivalent to that computed using the original back edges (in
the absence of cross or forward edges). For each cross or forward edge <x,y>, we replicate (in lines 30-35)
the largest subgraph with a back edge from a node that is a descendent of the y (or y itself) such that the
head of the back edge is not an ancestor of x (or x itself). All incoming edges to this replica are also
replicated. Back edges from the descendents of y are then modified to point to the corresponding node in
the replicated subgraph. the sentinel node . By Theorem 5, the computation of b at the sentinel node of
the replicated subgraph is equivalent to that in the subgraph with multiple sources where there is an

incoming transition (through cross or forward edge) as well as from the root of the spanning tree.

The time complexity of this part (lines 27-35) of the algorithm is O(# +£,(ns+ t)), where t;, (¢;) is
the total number of back edges (cross edges) of all the strongly connected components in the scope and ny
() is the total number of nodes (transitions) of the subgraph entered by the cross edges. Since nyis a

fraction of n, and ¢, t, and ¢ are also fractions of t,, then the worst-case time complexity is O ((n; + £,)t).

The modified acyclic graph of the original strongly connected component is finally replicated in
lines 37 and 38 to account for the effects of multiple incoming transitions to the strongly connected
component (Theorem 5). The acyclic graph is again replicated in lines 39 and 40 to propagate the
computed values of 4, E and b of the SCC to all the nodes in the SCC. The time complexity for this part
of the algorithm is O (n, + ;). By summing the three parts, the worst-case time complexity of Algorithm
7.2 is O (ng+ts) + O((ng + t)ts) + O (ng + ) = O((ns + t,)t,). Since the space required is proportional to the

size of the scope, the space complexity is O (n, +£,).
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procedure transform(v) {
mark v "old"; i« i+1; v.k «i; v.L «i; pushv into STACK;,
for each valid transition <v,w> { /* where w is not marked "removed" */

if w is marked "new" {
transform(w);
v.L « MIN(v.L,w.L);
v.B « APPEND(.B,w.B);
v.C « APPEND@.B,w.C);
}
else {
if w.k <v.k and w is on STACK {
v.L « MIN(w.k,v.L);
if IS_ BACKEDGE(Q,w)
push <v,w > into v.B;
else if IS_CROSSEDGE(v,w)
push <v,w > into v.C;

}
else if w is on STACK
push <v,w > into v.C; f* <v,w> is a forward edge */
)
)
ifvL=v.k{
repeat
pop x from top of STACK and mark x "removed";
until x = v;

create a new sentinel node Z,;
for each backedge <a,b> in v.B
replace <a,b> with <a,X,>;
for each crossedge <x,y> in v.C {
get a backedge <a,b> in y.B with minimum b.k
where b is not an ancestor of x;
replicate subgraph with b as source and X, as sink
and all input transitions to that subgraph;
for each backedge <a,b> in y.B
replace <a, %, > with <a,b’>; * b’is areplica of b */
)
G’ « replicate subgraph from v to £, and all input transitions;
create an ¢ transition from Z, to v’} /* v’ is areplica of v in G'*/

G « replicate subgraph from v to X, and all input and output transitions;

create an ¢ transition from X, to v°; *v° is a replica of v in G°*/
remove all outgoing transitions from the original subgraph;

Algorithm 7.2. Transforms a Graph into a p-equivalent Acyclie Graph

The entire algorithm for generating p-equivalent acyclic graph is given in Algorithm 7.3 that uses

the procedure transform.
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Given : A directed graph G = (V,E) and a source S;;

Compute : A b-equivalent acyclic graph;

Method :

1: procedure make_acyclic(G,S;) {

2: i« 0;

3 for all node v in G do

4: mark v "new" and initialize v.B and v.C to empty;
5: initialize STACK to empty;

6 transform(S;);

7: )

Algorithm 7.3. Algorithm for Generating p-equivalent Acyclic Graphs

Given the transformed p-equivalent acyclic graph, we use a centralized diffusion method in
Algorithm 7.4 for computing the p relations between pairs of transitions in the scope. Each node and
transition of the p-equivalent graph is visited only once. At each node and transition, the p relations of
pairs of transitions traversed so far and other important information ( 4 and ‘E) are computed and

stored.

The algorithm begins with the source of the scope S; which has empty 4, E and p. The sets 4, E
and p> of all outgoing transitions from a node u are computed (at lines 13-16) using the formulas for series
merge discussed in Section 7.3. We use the notation A, ,; (similarly %, and P01 to denote the value
of 4 (E, ) computed at transition <u,v> for the subgraph from S; to <u,v>. Let n, (£,) be the number of

nodes (transitions) in the p-equivalent graph. Let the total number of basic transitions in the scope be t;,

N
= Y't;, where t; is the number of transitions of basic machine i in the scope and N is the number of basic
i=1

machines. Then ¢, is of order t:”. During series merge, the running time of union operations on sets
with the maximum size of ¢, is O(f,). There is only a union operation in each of the series merges
Aycup> and By > While there are £, union (or difference) operations in by, ,>. Since each transition
is merged once, the worst-case time complexity of the algorithm involving the series merges is

Ot ty) + O (taty) + O t,t3) = O (t,t3).
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Given : A subgraph G defined by the scope [S;,S;].

Compute : p> at each node and transition of G.

Method :

1: function compute_dependency(G,S;,S;) {
2; copy G into G’;

3: make_acyclie(G’,S));

4: for each node © in G’ do

5: u.count « number of incoming transitions;
6: initialize @ to contain S; only;

7: while @ is not empty (

8: remove u from head of @;

9: /* do the following for n incoming transition to u */
10: A, |1 A

11: s || % Fruurs

12: '>u «~ ” ?:1 I>[w‘,u];

13: for each transition <u,v>in G’ {
14: ﬂ[u,u] &« ﬂu;<u,u>;

15: 1:[1",,] « 1:1;;<u,v>;

16: fu,w] € l>u;<u,u>;

17: decrement(v.count);

18: ifv.count =0

19: insert v at the tail of @;
20: }

21:

22: return pg;;

23: }

Algorithm 7.4. Using a Centralized Diffusion Method to Compute p
at Each Node and Transition

When all incoming transitions to a node v have been computed, v is placed at the tail of the queue
Q. When v is removed from the head of @, the parallel merges }>, 4 and E of all incoming transitions at v
are computed (lines 10-12). The notation ||’ Ay, 41 is used to mean a parallel merge of Ay, . at all
incoming transitions from w; to u for i=1 to n where n is the number of incoming transitions. We use the
notation || %) Fp, 41 and |2 bp, . in similar ways. For each pair of transitions, there is only a union
(intersection) operation in each parallel merge |[}o A, u) (%1 Fw,u1) while there are two union
operations and an intersection operation for each transition in |} bp,,4). Since each transition is
involved in a parallel merge only once, the worst-case time complexity of the algorithm involving the

parallel merge is O (t,2,) + O (£,2,) + O (£,22) = O(2,t2).
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The overall worst-case time complexity of the entire Algorithm 7.4, including running time of
make_acylic analyzed earlier, is then O(,t3) + O(ng +t)t) = O(ng + (s + t$)t,). At each node and
transition, the space required (omitting make_acyclic) for recording the sets 4, E and b is of order

2t, + 7. Then, the space complexity of the algorithm is O ((ng+,)2tp + 1)) = O ((ng+£,)t3).

The algorithm is guaranteed to terminate because the p-equivalent subgraph G’ of the scope is
acyclic and the number of incoming and outgoing transitions at each node is finite. When the algorithm
terminates, the set > at the sink S; of the scope contains T for each transition T € G. Each Thg is a
set of transitions U in G that satisfy the relation [S;,S;] T bU. That is, each transition U is dependent on

T in the scope [S;,S;1.

7.4.2. Algorithm for Computing Recovery Paths

A recovery path is a sequence of recovery operations that will move the application to a recovery
state. Our objective here is to find a correct recovery path when one or more processes fail. The
correctness conditions are satisfied by an algorithm that iteratively searches for a recovery path <S;,S,>
and a path <S,,S,> that contains no invalidated transitions. It also ensures that there is a legal path
<S;,Sp>. We remark that this»algorithm does not require a history log, i.e. an execution sequence. As
discussed in Section 6.4, the notion of execution sequence is used only for reasoning about the

correctness conditions for recovery.

For a given set of failed processes, all legal recovery paths involving recovery transitions of only the
failed processes can be obtained from the restricted product machine. We need only consider recovery
paths within the scope [S;,Sy] since we assume there exists a firewall recovery state S,. That is, the

algorithm will return the recovery state S, in the worst case.

The basic strategy for computing a correct recovery path is given in Figure 7.11. It first sets the
variable U to the set of transitions invalidated by a recovery path (which may not satisfy the dependency
condition) for the failed processes. It then finds a new recovery path that recovers all transitions in U.
To recover transitions in U, the recovery transitions may use corrective, compensating and other special
recovery operations, in addition to reinstate recovery operations. Since the new recovery path may
reinstate transitions not in U, all new reinstated transitions must be added to U. Next, U is set to the

closure of all transitions dependent on the transitions in U. If the new recovery path covers all
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U «- transitions invalidated by a partially-correct recovery path for the
failed processes.
do {
find a new recovery path R covering U,
add new transitions invalidated by R to U;
U « closure of U b;
) until R covers U;
return R;

Figure 7.11. Outline of Strategy for Computing a Recovery Path

transitions in U, the algorithm returns the recovery path since it satisfies all three correctness
conditions. Otherwise, it repeat the above steps. The algorithm will always terminate since there is a

state S, to which all processes can recover, U increases monotonically and the size of the scope is finite.

We first describe Algorithm 7.5 that finds a recovery path that recovers the given set of invalidated

transitions. First, the algorithm traverses the graph G breadth-first from S; to S; along only transitions

Given : A point of failure S, a scope [S;,S;] and its subgraph G with invalidated transitions
marked.

Compute : The shortest partially correct recovery path that recovers the given invalidated

transitions.
Method :
1: function shortest_potential_recovery_path(S,,S;,S;,@ (
2: unmark all states in G;
3:
4: traverse @ breadth-first from S; along non-invalid transitions
5: until S; is reached, marking those traversed states;
6:
7: traverse G breadth-first from S, along only recovery transitions (
8: if a marked state S, is reached
9: return the recovery path <S.,S,>;
10: )
11: )

Algorithm 7.5. Find the Shortest Recovery Path
that Recovers a Given Set of Invalidated Transitions
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that are not invalidated and mark those states traversed. It then traverses G breadth-first from the
point of failure S, along only recovery transitions. When a marked state is reached, it returns the
recovery path. Let ¢, (n,) be the number of recovery transitions (failure states). Let#; =t, +¢. andn; =
n, +n,. Since the algorithm traverses each normal and recovery transition and node only once, the time

complexity is O (n; +¢;). The space required is also O (n; + ).

The algorithm finds the shortest recovery path since the breadth-first traversal along recovery
paths is done after the traversal along valid transitions from S,. Although the recovery path returned
by the algorithm recovers all the given invalidated transitions, it may further reinstate additional
transitions. It is thus the responsibility of the main program to ensure that any further reinstated

transitions are recovered by another recovery path found in the next iteration.

Algorithm 7.6 uses the basic strategy in Figure 7.11 to compute a recovery path that satisfies the
three conditions of correctness. First, the algorithm pre-computes the dependency between processes in
the scope [S,,S/] and store it in be. It then unmarks all transitions in the scope. Next, from the given
set of failed processes, it finds a recovery path @ for the failed process without satisfying the dependency
condition, i.e. it may invalidate the operation executions of other processes. U sing the set pg, it then
finds and marks as "invalid® (lines 7-10) all transitions invalidated by each of the transition execution
removed by Q. It then finds a new recovery path that recovers all invalidated transitions. The new
recovery path itself may removed more transition executions and cause further transition invalidation.
The search for another recovery path is repeated until the algorithm finds a recovery path that recovers
all invalidated transitions.

Theorem 6.

Algorithm 7.6 returns a correct recovery path that satisfies the correctness conditions.

Proof.
The legality condition is satisfied since the function shortest _potential_recovery_path searches only
legal recovery paths in the given scope of the restricted product machine. The modified continuity
condition is satisﬁed because within the scope in which the correct S, is searched, every state may
reach the state Sy. The algorithm is guaranteed to exit from the repeat loop (lines 12 — 20) for two

reasons: (1) every process has at least a recovery path to S, and (2) the number of transitions in
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Given : A set of failed processes, a restricted product machine graph R, a point of failure S,
and a scope [S;,S¢l.

Compute : A recovery path of the group of processes.

Method

G « extract_scope(S,,Sf,R);

pe ¢~ compute_dependency(G, Sp,8¢);

unmark all transitions in G;

Q « shortest partially correct recovery path to recover only the failed processes;
/* the recovery path need not satisfy the dependency condition and */
/* need only be within the scope [S,,,Sf] */

U «- all transitions removed by @; /* U is a set of invalidated transitions */

for each transitiont e U

UeUutbg; /*tl>G={x]t|>Gx)*/
10: mark all basic transitions in U "invalid";

ORND N AN

11:

12: repeat {

13: R « shortest_potential recovery_path(Sc, SpG);

14: DIFF ¢ {all transition removed by R} —

15: V « DIFF; /*V is a set of new 1nvahdated transitions */
16: for each transitiont € DIFF

17: Ve Vutpg;

18: mark all basic transitions in (V - U) "invalid”;

19: UeUUYV; /* add new transitions invalidated by R to U */
20: ) until there is a path from S, to S, that contains no invalid transition;
21: returnR;

Algorithm 7.6. Compute a Recovery Path

for the Failure of More than One Process
the scope [S,,S/] is finite and the set of invalidated transitions maintained in U is monotonically
increasing since the recovery path returned by the function shortest_potential_recovery_path in
line 13 will always cover the set U from the previous iteration (although it may add more
invalidated transitions). The dependency condition is satisfied because on exiting the repeat loop,
the path <S,,S,> does not contain transitions that are invalidated by a recovery transition in

<S.,S>. O

The running time of the initial part of the algorithm (lines 3-10) in the worst case is of order t, + t£.
In the second part of the algorithm (lines 12-20), each normal transition in the scope can be invalidated
only once. When new transitions are invalidated in each iteration, the function

shortest_potential_recovery_path is executed. In the worst case, one transition is invalidated at each
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iteration and the time complexity of this part of the algorithm is O (¢,(ns+t;)). Hence, the worst-case time
complexity of the entire algorithm, including that for extracting the scope, computing dependencies, and
both parts of this algorithm is O (n, + ;) + O (n, + (¢, + 1)t;) + O () + O (%) + O (t,(ns+1;)). The number of
basic transitions #, is of the order t;"T (where N is the number of basic machines) and the number of
normal transitions ¢, (similarly n,) in the scope is a fraction of #; (n;) which includes recovery transitions
(failure states) in the scope. Then, the worst-case time complexity is O((n; +t,)t,). By similarly
considering each component, the upper bound of the space required by Algorithm 7.6 is

O (ny+t,) + O ((ng+t)t) + O (¢,) + O (ny+t,) which is O ((n,+,)t%).

The algorithm does not necessarily find the shortest recovery path, although its heuristics will find
the shortest recovery path in a local search region. To find the shortest recovery path would require
checking all possible recovery paths that will recover the failed processes and finding one that involves
the fewest additional invalidated transitions. This is not done because of the potentially high

computational cost.



Chapter 8

Uniform Framework: Recovery

The correctness conditions of recovery, discussed in the previous chapter, can be analyzed from the
restricted product machine graph. The analysis is independent of the mechanism that controls the
execution of the application. Thus we can separate recovery mechanisms from recovery policies. We
will first discuss the mechanisms for recovery management and then describe different recovery policies
that may be used without violating the correctness conditions. We also compare our approach with

existing recovery techniques.

8.1. Mechanisms

The recovery mechanisms discussed here are part of the mechanisms for controlling consistency
during normal execution, recovery and reconfiguration of distributed application as discussed in Section
5.2. We will first describe the basic interface and interaction between the basic machine and the
consistency control manager needed to recover from a failure. Then we describe in more detail some

important mechanisms and discuss related implementation issues.

8.1.1. Basic Mechanisms for Failure Recovery

When a basic machine detects a failure, it may notify the consistency control manager of the failure
immediately by calling announce with a failure state as its parameter. However, a process may fail
without informing the manager of the failure. When the manager has not received any request from a
process for an extended time period, the manager may query the process status by calling the function

query status.

If a basic machine announces a failure or returns a failure status to the query, the manager forces
the basic machine from an autonomous mode to an exception mode by calling the function force_mode
with the mode ExcEPTION. If a basic machine is unable to respond to the query, the manager then
initiates a restart of the basic machine and forces the new basic machine into an exception mode. From

the current states of each basic machine monitored by the manager during normal execution, the
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manager determines the normal product state just before the failure.

There are two approaches for determining the appropriate failure state: centralized and
distributed. In the centralized approach, the manager queries a damage assessor for the failure state
that the failed basic machine must enter. In the distributed approach, the basic machine queries the
damage assessor and requests a transition to the failure state (which is immediately granted). The
advantage of the centralized approach is that the manager can analyze the restricted product machine
to make a better selection of an appropriate failure state than the failed basic machine. The advantage
of the distributed approach is that the responsibility of determining failure states is distributed among

failed basic machines that remain autonomous in deciding the appropriate failure states.

A damage assessor is a process that assesses the extent of the damage due to a failure and
determines which recovery operations can repair the damage. (The failure state entered restricts the
recovery operations that can be executed.) The assessor may obtain the damage information from a
human operator or from an automatic damage assessment system. For example, a damaged workpiece
in a factory workstation may be assessed to be repairable and allowed to continue with its normal
operation after the repair. The selected failure state would allow the appropriate rework operations. In
the worst case, the assessor may give a conservative (default) damage assessment that does not require

human intervention: discard all affected computation and all external work that may be damaged.

After the manager has determined the appropriate failure state, it then executes Algorithm 7.6 to
compute a correct recovery path. Each basic machine with recovery transitions in the recovery path will
then be forced into exception mode. As each basic machine halts, it returns the status halt and
announces its current state. The manager then calls mandatory_transition to force the basic machines

through the recovery path.

On receiving a mandatory transition notification from the manager, the basic machine tries to
comply and responds by returning the status OKAY if the mandatory transition succeeds, and FAIL
otherwise. If the response is FAIL, the manager may attempt alternate recovery paths or report the
failure to the system administrator. After restoring the application to a recovery state, the manager
resumes normal operation by calling force_mode to set all basic machines back to auronoMous mode and

then grants permission for outstanding legal transitions. However, pending requests from basic
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machines that are forced to recover during the recovery are automatically cancelled.

To illustrate, consider the recovery plan of the dining philosopher problem in Figure 8.1. Suppose
philosopher P, is currently in state H and has requested permission from the manager to make the
transition to state L. Meanwhile, P, fails during transition from state L to R. The damage assessor may
determine that P, be moved to ®,, i.e. the failure product state is (H,®;). At that point, all normal
transitions are suspended. The manager then instructs P, to initiate recovery action to the state H.

After P, is restored to state H, the manager returns GRANTED to P, to move to state L.

8.1.2. Checkpointing Consistent Historical States

As described Section 7.1, we assume the existence of at least one consistent (firewall) historical
state S,. A state S, can be created using known techniques for checkpointing global states of the
processes, either conservatively [44] or optimistically [79]. S, may move with the normal execution
resulting in a reduction in the recovery scope and the length of the recovery path. Conversely, we do not
require every product state entered to be checkpointed. There are two approaches to selecting the
appropriate product states to be checkpointed: (1) supplied by software designers and (2) automatic

analysis of the restricted product graph. We discuss both approaches below.

Figure 8.1. Recovery Plan of Two-Dining Philosopher Problem




102

In the first approach, a software designer may explicitly define the initial basic state(s) as
checkpoint states when specifying a basic machine. He may also specify some intermediate states in
each basic machine as checkpoint states. In a restricted product machine, an initial (checkpoint) product
state is one in which all its component basic states are initial (checkpoints). A consistent historical state
S, is either an initial product state or a checkpoint product state. During normal execution,
checkpointing is done automatically by each basic machine when it reaches the pre-defined checkpoint
state. The manager needs not be involved in checkpointing of states. Software designers may implement
different methods for checkpointing each basic machine as long as it can always recover to its
checkpointed state. Checkpoint methods include dumping its entire execution state to stable storage and
maintaining write-ahead logs of the changes in conjunction with less frequent checkpoints. The

advantage of this approach is that checkpointing is performed independently of the manager.

The second approach requires the manager to analyze the restricted product graph to determine
the appropriate product states to checkpoint. The advantage of this approach is that more appropriate
checkpoint states (that will reduce the number of checkpoints) can be determined by analyzing the
restricted product machine. First, we make the restricted product graph acyclic by traversing it
breadth-first and avoid visiting any vertex more than once. (Cross and forward edges may exist.) Then
we find dominators of the restricted product graph. A dominator is a product state that must be entered
to reach a set of product states. If the dominated set of product states is large, many paths (to the
dominated states) in the restricted product graph would pass through the dominator. When a failure
occurs during some execution in those paths, then the dominator can be used as the firewall state. Thus,
we can reduce the number of checkpoint states by checkpointing dominators with large set of dominated

product states.

When checkpoint states are determined by the manager, the manager must enforce checkpointing
by forcing each basic machine to take checkpoint at the appropriate states. When a basic machine
requests permission to make a transition, the manager will check if its current state is a checkpoint
state. If so, it will call the function checkpoint to inform the basic machine to checkpoint its current
state. As in the first approach, different checkpointing methods may be defined at each basic machine by
a software designer. When the basic machine returns a message indicating a successful checkpoint, the

manager continues to serve the previous request of the basic machine.
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Cascaded rollback is avoided by specifying appropriate consistent historical states at important
execution points. When a failure occurs after a consistent historical state S,, operations before S, need
not be recovered. While existing approaches [32,43,72] to avoiding domino effect of cascaded abort are
based on recovery blocks, we analyze the semantics of the applications encoded in the restricted product
graph and determine the appropriate consistent historical states, e.g. using dominator states, in which
all processes take checkpoints. The advantage of our approach is that cascaded rollback can be avoided

even in applications designed with arbitrary interaction that does not require strict block structures.

8.2. Recovery Policies

The conditions for correct recovery defined in Chapter 7 must be satisfied by all types of recovery
methods. However, software designers may still select some continuity options. Both backward and
forward recoveries are possible. Here we show how these recovery policies are related to the correctness

conditions in some traditional recovery techniques.

8.2.1. Backward Recovery

Backward recovery requires that a recovery state be on a path from S, to S, i.e. Sf = S;. Our
definition of backward recovery provides opportunities for optimizing recovery. Any equivalent legal
path <S,, S;> may replace the actual execution sequence. For example, the path containing the fewest
invalidated operation executions may be chosen. Since equivalent paths and dependencies between
operations can be derived solely from the restricted product machine, detailed history logs need not be

maintained,

To illustrate backward recovery involving dependency, we consider a modified example of the
manufacturing application described in Section 4.3. The only change we make is to require the conveyor
to transport each workpiece stamped by DIE 1 to be stamped again by DIE 2. The region between DIE 1
and DIE 2 acts as a buffer for intermediate workpieces. DIE 2 can start only if there is a workpiece in the
buffer. Figure 8.2 shows the basic machine representing the behavior of this buffer. The restricted
product machine of DIE 1, DIE 2 and the buffer is shown in Figure 8.3. At the state R,I,E, when a new
workpiece is placed in the buffer, the application will be moved to the state B,IoN by the increment

transition .
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Figure 8.2. Basic Machine of Buffer for Intermediate Workpieces
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Figure 8.3. Restricted Product Machine of Manufacturing Application

Suppose the buffer is initially empty (I,I.E). DIE 1 then completes stamping a workpiece and
places it in the buffer (R,I;N). DIE 2 then initiates the placement (s and cg) of the intermediate
workpiece between its stops. Suppose the workpiece then drops off the conveyor in transit to STOP 4.
This is considered a failure that would invalidate the placement (i.e. by c;) of the intermediate workpiece
on the buffer, requiring c¢; to be erased from the execution sequence. The failure state is ®;LN. From
the restricted product graph we can determine the dependent transitions (in the scope [I;I,E, R,LyND,i
and sy, which also need to be recovered, i.e. [I{I;E, R1L,N] ¢, i and (I, I,E, RiL:N] c1bsg. A
recovery path <®;LoN, L 1E>, denoted by p, may be composed of three reinstate recovery transitions:

the first to the state R,I3N, the second to B I2E, and the third to L IE.

Consider another example where dependency is irrelevant. Let the application be at the state
R,R,N, when q; is first executed followed by d. Then while g, is being executed, some external
operation cause the effect of g, to be destroyed. However, there is a path <d,q32,q;> that is equivalent to

the actual sequence <q1,d,q2> executed. Using this equivalent path, we can then allow g9 to continue
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normally while g is recovered.

8.2.2. Forward Recovery

The continuity condition can be satisfied in two ways. First, the recovery state may be in a path
from S, to Sy, i.e. the recovery sequence may include operations that correct or repair the failure and
place the application in a state that makes some forward progress since the failure. Second, the recovery
state may be in a path from S, to Sy (but not S,), i.e. the recovery transition may represent operations
that compensate for some previous operation execution. We provide flexibility in managing recovery by
allowing each process to use different types of recovery, e.g. reinstate or non-reinstate operations. As
long as the system keeps track of the operations invalidated by reinstate recoveries, it can ensure that

recovery is correct.

We illustrate a forward recovery involving non-reinstate recovery by considering the
manufacturing application shown in Figure 8.3. Consider a failure that occurs as deseribed in Section
8.2.1. Suppose the transition ¢, has a non-reinstate recovery in which the dropped workpiece is
repositioned correctly in the conveyor (by a robot or human). This is represented by a recovery transition
that will move the control process of DIE 1 to the state B,. The transition ¢, may then proceed

normally.

8.2.3. Selecting the Recovery Scope

The flexibility to select recovery scope may allow us to reduce the number of dependent operations
and recover fewer processes. As discussed in Section 6.3, a larger scope may have fewer dependencies

than a small one. We can thus avoid recovering some transitions.

To reduce the amount of recovery needed, we can find and compare correct recovery paths for
increasingly larger scopes. The search begins with the scope [S,, S.]1 where S, is the most recent
consistent historical state and S, is the point of failure. There are two ways in which we can enlarge the
scope. We can use increasingly earlier historical states before the current S, and we can use
increasingly more distant future states Sy reachable from S,. The future states considered are those
significant states where useful application-specific work is done. The damage assessor may provide hints

about the appropriate future states to use since it has information on the failure state and the necessary
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recovery operations of the failed basic machine.

We may iteratively enlarge scope by alternating the direction of expansion. At each iteration, we
determine if enlarging the scope has improved the recovery. Using Algorithm 7.6 on different scopes we
may automatically select a recovery path that may be either of backward or forward recovery type.
Either type of recovery path may contain combinations of both reinstate or non-reinstate recovery

operations.

In most situations, the best recovery state (for a given Sy) is one that has the shortest path <S,,
Sg>, since the recovery involves the minimum amount of reinstatement of previous execution and
achieves the most forward progress. However, other metrics of evaluating recovery state may be used.
In manufacturing control, the cost of an operation is proportional with the cost of the external workpiece
(or equipment) affected, rather than the computational cost. Consider a failure in a manufacturing
process involving damage to a workpiece. A reinstate recovery operation may discard the workpiece and
a non-reinstate recovery operation may repair the workpiece. When the cost of the workpiece exceeds

the cost of a repair operation, a forward recovery path will be selected.

8.3. Comparison with Other Recovery Techniques

The advantage of our system is that it allows software designers to specify arbitrary
synchronization constraints without requiring processes to be serializable or linearizable. Furthermore,
recovery can be improved by exploiting permutations and substitutions of operations (Section 6.1)
allowed by the behavior of an application specified with partial-order semantics. The disadvantage of our
system is the additional cost of finding a correct recovery state from the restricted product graph that
has a worst-case running time of O((n, +1,)t;), where ¢; (n,) is the number of normal and recovery
transitions (states) in the scope and ¢, is the number of normal transitions in the same scope. With an
appropriate selection of checkpoint states, the size of the scope can be reduced. Furthermore,
applications can be designed using hierarchical FSM structures to reduce the size of the restricted

product graph at each level.

We only compare our system with other recovery techniques in the context of finite-state processes.
To model applications with infinite state behavior, such as unbounded FIFQ channels, would require

augmentations to our system where subgraphs of the restricted product machine are incrementally
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generated at runtime and recovery paths computed from the subgraphs. However, the FSM model is

useful for many distributed applications such as automated manufacturing [23, 67].

In the following, we compare the correctness conditions of existing backward and forward recovery
techniques with our correctness conditions. In Section 8.3.1 and 8.3.2, we show that two important
existing backward recovery methods [10,72,77,86], satisfy the conditions for correctness of backward
recovery. In Section 8.3.3 and 8.3.4, we describe how some existing forward recovery methods satisfy the

correctness conditions for recovery.

8.3.1. Restore and Undo

Traditional methods of transactional recovery based on restore and undo [10,64,88] satisfy the
correctness condition for backward recovery defined in Section 8.2.1. Restore can be represented by a
recovery transition that leaves the current basic state and enters a previous basic state that may be of
arbitrary distance away. Undo can be represented by a recovery transition that leaves the end basic
state of one normal transition and enters the start basic state of that transition. A sequence of undos in
the reverse order of the normal operation execution is equivalent in effect to a restore operation. To
satisfy the correctness conditions for backward recovery, the system finds a recovery state S,, whereby
the recovery path <S_, S,> represent a sequence of undo or restore operations. The legality condition for
recovery is satisfied by the enforcement of synchronization constraints. The continuity condition is
satisfied since recovery involves only undo and restore that are associated with normal transitions that
would reach the point of failure, S,, from S,. In transactional systems, restore and undo are performed
only on uncommitted transactions. By the isolation property, the intermediate results of a transaction
are not visible to other transactions. This implies no operation of a transaction is dependent on an

operation of another uncommitted transaction, satisfying the dependence condition.

8.3.2. Atomic Abstract Data Types

Various works [28, 77, 86] have exploited semantic information to increase the level of concurrency
among transactions and optimize failure recovery. We will take Weih!’s work [86,87] as a representative
one. In [87], applications are implemented in terms of abstract data types and semantics of abstract data

types are used to define two notions of commutativity between sequences of transitions. In the following
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definitions, the notation T'(s) = .L denotes that the sequence of transitions T is not defined in the state s.
Two sequences of transitions, R and S, of a state machine "commute forward if, for every state s in which
R and S are defined, R(S(s)) = S(R(s)) and R(S(s)) # L." On the other hand, "R and S commute
backward if R(S(s)) = (S (R (s)) for every state s." In our model, we can represent an abstract data type
as a basic machine. The restricted product machine, generated from these basic machines and the
synchronization constraints, determines the operations that can execute concurrently and those that
cannot. We represent forward commutativity of R and S, by the existence of two legal paths
<s.R(s)..S(R (s))> and <s..S (s)..R (S (s))> from every state s with legal outgoing transitions R or S, to a
legal state R (S (s)) (which is the same product state as S(R(s))). Backward commutativity of B and S is
represented by the existence of legal paths <s..R (s)..S (R (s))> and <s..S(s)..R (S (s))> from every state s
that can reach the legal state R(S(s)). Suppose R must be recovered. If S commutes with B such that S
occurs in a legal path <S,, S,>, then S is not invalidated and need not be recovered, satisfying the
dependence condition. (The legality and continuity conditions are satisfied in the same way as described

in Section 8.3.1.)

Our model permits more flexibility in recovery since it considers sequences equivalence with
respect to two specific product states and does not require the sequences to be commutable (or
equivalent) for every state, either with legal outgoing transitions (forward commutativity) or that can
reach some destination state (backward commutativity). As a result more commutativity is allowed on a
case-by-case basis. Furthermore, as discussed in Section 6.3, it allows the use of equivalent

permutations even when the transitions do not commute pair-wise.

8.3.3. Exception Handling

One form of forward recovery is exception handling. Exceptions may be treated as transitions to
some failure states. When the system detects a failure, an exception can be raised triggering a procedure
that may assess the failure and take corrective actions. For example, when a tool in the machining
center breaks, a procedure for handling this failure may take two steps. First, the system determines
the extent of the damage on the workpiece. If backward rollback recovery is inappropriate, e.g.
operations that involve external side-effects, forward corrective recovery must be used. Second, the

system initiates the recovery operations, such as repair operations if possible or rejection of the
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workpiece. The legality and continuity conditions are satisfied by the appropriate recovery operations

that move the application to a future state. The dependence condition is trivially satisfied.

8.3.4. Compensation

Compensation is a form of forward recovery which uses operations that eliminate or reduce the
effects of another (compensated-for) operation which cannot be rolled back. However, operations that
are compensated for may have affected other (dependent) operations, e.g. triggered or prevented these
operations. These dependent operations must either be similarly compensated or determined to be
semantically unaffected by the compensation. For example, in an assembly of workpieces, suppose
workpiece X is first placed at one position and workpiece ¥ must then be placed adjacent to it. If X must
later be repositioned (e.g. to compensate for some error), then Y which is dependent on X must also be
repositioned. In our model, the system automatically determines the actual dependence between

operations and finds the sequence of recovery operations to a consistent state.

A restricted form of compensation is compensating transactions defined in [45]. It is restrictive in
the sense that compensating transactions must be serializable with other transactions. Compensating
transactions are recovery operations that undo the results established by transactions that have been
committed and whose results may have been made visible to other (dependent) transactions. In this
discussion, we use the notion of "dependence” defined in [45]: a transaction A is dependent on B if A
reads data written by B. The behavior of compensating transactions is guided by three basic constraints:
(1) they undo all the effects of the compensated-for committed transactions, (2) all other transactions
must be serializable with respect to the compensating transaction, and (3) based on some consistency

predicates, they do not affect the results established by the dependent transactions.

We can satisfy the first constraint in our model by requiring that the compensating recovery
transition returns to the start basic state of the transition representing the compensated-for transaction.
The second constraint is satisfied by specifying serializable synchronization constraints on compensating
recovery transitions. In [45], the third constraint is satisfied by ensuring that the compensating and
dependent transactions commute (or R-commute with respect to some relation R on database states). We
can satisfy the third constraint by specifying the appropriate synchronization constraints on product

states and transitions based on some relation R on product states. The relation R defines a set of product
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states S which are equivalent with respect to R. In the restricted product FSM, a weaker form of
commutativity can be represented by the existence of equivalent paths from a product state to any state
in the set s. If dependent transactions happen before the compensated-for transaction, reinstating the
compensated-for transactions by the compensating transactions will not invalidate the dependent (by
their definition) transactions. We can thus find a recovery state that satisfies the dependence condition

for correctness of recovery.

In [45), compensation takes place when no dependent transaction is affected, with respect to some
relation R. In contrast, our model enables the system to detect dependent transactions that are not

commutable with the compensated-for transaction and force a recovery on those transactions.



Chapter 9

Dynamic Reconfiguration

Informally, a configuration is a set of processes with specific allowed behaviors. Reconfiguration is
the process of changing the current configuration to a new one, which may involve changing the set of
processes or their allowed interaction. Dynamic reconfiguration is one during which part of the
application may continue to execute. The general procedure for dynamic reconfiguration is simple: The
system administrator supplies the desired configuration and any constraints on transient behavior that
are not implicit in the current or desired configurations. From this, we can automatically generate a

sequence of reconfiguration operations.

Some of the challenges are to choose a reconfiguration sequence that obeys all consistency
constraints, avoids deadlock and allows old operations to continue when possible. Because of the
complex interaction between different possible behaviors and the consistency requirements, it is
important to provide tools for managing dynamic reconfiguration that are simple to use. Software
designers and system administrators should be able to specify the required change without the need to

analyze for inconsistency and synchronization problems themselves.

We have the following design goals to make dynamic reconfiguration mechanisms efficient and
general. First, processes should be allowed to interact arbitrarily without unnecessary restrictions.
Existing work on dynamic reconfiguration [11,16,47] is based on transactions as a model of process
interaction. As discussed in Chapter 3 and in [13], transactions restrict the way processes can
synchronize among one another. Second, we should not mandate quiescence of all affected processes
before dynamic reconfiguration can begin. The approach in [47] requires all affected processes to be in
quiescent states before a reconfiguration can begin. Some operations that take a long time to complete
will delay a reconfiguration unnecessarily. Furthermore, reconfiguration operations may take some time
to complete. Third, a new configuration should be unconstrained by the properties of the old
configuration. Bloom pioneered a work [16] dealing only with a special case of the dynamic
reconfiguration problem where the new configuration must be a superset of the old configuration. Her

legality conditions for dynamic reconfiguration (or replacement) do not allow the removal of any behavior
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in the old configuration. In some distributed applications, such as automated manufacturing, the new

configuration may be partially or entirely different from the old configuration.

9.1. Motivating Problem

Consider a manufacturing scenario where an urgent demand for a new product requires modifying
the manufacturing application of Section 8.2.1. The current configuration of the application consists of a
shared conveyor that transports each workpiece to the first pair of stops to be stamped by DIE 1 and
later to the second pair of stops to be stamped by DIE 2. The restricted product graph of this
configuration is shown in Figure 8.3. The new configuration requires Die 1 to be replaced by a drilling
machine. Figure 9.1 shows the basic machine representing the process controlling the drilling machine.
In this new configuration, each workpiece is drilled at the first pair of stops and then transported along
the conveyor to be stamped by Die 2 at the second pair of stops. The restricted product graph of the new
configuration is shown in Figure 9.2.
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Figure 9.1. Basic Machine Representing the Drill
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Figure 9.2. Restricted Product Machine of the New Configuration
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Our goal is to allow some operations in the old configuration, e.g. stamping by Die 2, to continue
while reconfiguration begins, thus improving concurrency during reconfiguration. A major problem is
ensuring that the state of DIE 2 is consistent when DIE 1 is being removed and replaced by the drilling
machine. For example, removal of DIE 1 may require the removal of some partially stamped workpiece
on the conveyor to avoid interference. The removal of workpieces may affect the DIE 2 process if it is in

a state ready to stamp on the removed workpieces.

The procedure for dynamic reconfiguration in this manufacturing scenario is as follows. The system
administrator specifies the new configuration shown in Figure 9.2. From the current and desired
configurations, the system may select a reconfiguration sequence that first removes DIE 1 and then adds
the drill. Suppose the removal of DIE 1 requires removal of some workpieces in the buffer. Then DIE 2
may need to be recovered to a state consistent with the modified state of the buffer. Thus an automatic
selection of reconfiguration sequence involves checking for consistency in addition to finding a
reconfiguration sequence that obeys synchronization constraints. The selected reconfiguration sequence

may include recovery operations.

9.2. Model of Reconfiguration

The reconfiguration model is the behavior model of Chapter 4 augmented by special reconfiguration
transitions. We represent a configuration by the restricted product machine of a set of processes. A
reconfiguration transition always moves from a product state in one configuration to a product state in
another configuration. There are two classes of primitive reconfiguration transitions: (1) process-
changing transitions that add or remove processes from the current configuration and (2) constraint-
changing transitions that add or delete normal and recovery transitions (constraints). Process-changing
transitions change the dimensions of a restricted product machine, while constraint-changing transitions
modify the allowed behavior of a fixed set of processes. A reconfiguration transition that removes a
process before it reaches a significant (goal) state also reinstates all transition executions of the removed
process. The intermediate results of the removed process should be eliminated since some of its state
information may not be made permanent (e.g. through checkpoint) leading to potential internal

inconsistency.
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Changing an application from one configuration to another may require a set of reconfiguration
transitions that is either supplied by a software designer or derived automatically from the current and
desired configurations given by the software designer. Every state in the current configuration is the
source of a graph sinked at a state in the desired configuration. This graph is a subgraph of the
Cartesian product of reconfiguration transitions. (We assume that in practice only a few reconfiguration
transitions are required to complete a reconfiguration.) There is a sequence of reconfiguration

transitions for each permutation of the transitions.

A reconfiguration sequence maps a state in the current configuration to a state in the new
configuration in the following ways. If the sequence contains only constraint-changing transitions that
add or delete constraints, then the proéﬁét state entered (which may be illegal) must be the same as that
at the beginning of the sequence. If the sequence contains a transition that adds (or removes) basic
machine B, then the product state entered must be the product state at the beginning of the sequence
with the state of B added (removed). The state of an added basic machine may be initial or transferred
from a removed basic machine. If a basic machine is added (removed), there is a one-to-many (many-to-
one) mapping from a product state in the current configuration to states in the new configuration. In the
case of adding basic machines, the one-to-many mapping may further be restricted by explicit designer-
provided maps. For example, if a state is transferred from a removed process to a replacement, a
software designer provides an explicit mapping from states of the removed process to corresponding

states of the added process.

During reconfiguration, processes may be added and there may be more concurrent processes than
either the current or target configuration contains. These concurrent processes may interfere with one
another, although there is no constraint restricting them in either the current or target configuration.
(Software designers need not specify constraints on processes that do not execute concurrently.) If
interference is possible, the system administrator must supply additional synchronization constraints on
their behavior that are not implicit in either the current or target configuration. Furthermore, since
reconfiguration transitions move between configurations, additional synchronization constraints on these
transitions may need to be specified to prevent interference between reconfiguration transitions and
normal transitions. All these additional synchronization constraints described above are called

transient constraints (Figure 9.3). Transient constraints apply only during dynamic reconfiguration and
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Figure 9.3. Stages of Dynamic Reconfiguration

remove disallowed reconfiguration transitions. For example, in the manufacturing application (Section
9.1), to prevent reconfiguration beginning while DIE 1 is in state L, a transient constraint may remove

all reconfiguration transitions leaving product states in which DIE 1 is in state L.

The introduction of new constraints may conflict with existing ones. A constraint may remove a
product state (transition) from a product machine, require a product state (transition) be in the machine,
or not care if a product state (transition) is legal or not. Two constraints conflict with each other if one
prohibits a product state (transition) while the other requires that feature be legal. Software designers
are responsible for ensuring (with the help of a compiler diagnostic checker described in Section 5.1) that
constraints in the new configuration are mutually consistent. Furthermore, they are also responsible for
ensuring that transient constraints do not conflict with constraints in both the current and new
configurations. Reconfiguration from an arbitrary configuration to another completely arbitrary
configuration, possibly with conflicting constraints, may be done in several stages through a series of
transient configurations. Transient constraints may be grouped for each stage to ensure that each group

do not conflict with constraints of its adjacent configurations.

To analyze reconfiguration, we define a reconfiguration graph as the current and new
configurations and the subgraph of reconfiguration transitions between the configurations. Transient
constraints remove disallowed transitions from the subgraph of reconfiguration transitions. We also

remove all transitions (and nodes) that are not in some path from a legal product state in the current
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configuration to a legal state in the new configuration.

A sequence of only reconfiguration transitions may not be adequate to complete a change from one
configuration to another. We may have to insert recovery transitions in the sequence to maintain or
restore consistency with the changing set of constraints. Such a sequence of mixed recovery and
reconfiguration transitions is a reconfiguration path. Any reconfiguration from a current to a desired
configuration can be done in one reconfiguration path. However, a reconfiguration path may be broken

into two consecutive reconfiguration paths.

In this (synchronous) model, normal transitions are allowed only between reconfiguration paths
(which may be short). However, the complete alteration of one configuration to another may involve
many alternating normal and reconfiguration paths, with transient configurations between
reconfiguration paths as Figure 9.4 shows. Normal execution remains within one configuration and
reconfiguration paths move between them (using recovery transitions to prepare processes for the next
reconfiguration transition). However, normal transitions of processes not affected by a reconfiguration
may execute concurrently with the reconfiguration transition. As with concurrent execution of normal
transitions (described in Section 4.6), a normal transition may execute concurrently with a
reconfiguration transition at a product state S if there is a legal path from S for each ordering of the

normal and reconfiguration transitions.

To illustrate, consider the reconfiguration of the manufacturing application described in the
previous section. The reconfiguration transitions are "remove DIE 1" and "add drill". The first
reconfiguration path may contain the "remove DIE 1" transition (and other recovery transitions), while

the second reconfiguration path may contain the "add drill" transitions. The transient configuration

reconfiguration path reconfiguration path
E‘ g " " i
!normali recover }/\/\/’{ recover | normal | necover}/\_/\/*o oo l recover | normalJ
T reconfigure ; E reconfigure E
' ' ! !
Current Transient Desired
Configuration Configuration Configuration

Figure 9.4. Alternating Normal and Reconfiguration Paths
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after the removal of DIE 1 is a restricted product machine composed of the basic machine of DIE 2 and
the buffer. DIE 2 may continue with its normal operation under the constraints of the transient
configuration. A transient constraint may be specified to prevent the drill from being added while DIE 1
is in place.

In the following, we introduce some basic definitions and concepts before discussing how

consistency is maintained during reconfiguration.

9.3. Basic Definitions

We define some important product states in the current and new configurations. As in Section 7.1,
S, is a consistent (firewall) historical state. S, is the last product state entered before a reconfiguration
is initiated. If reconfiguration cannot begin at S, because of some constraints, then some recovery
operations are needed to force some processes to specific states where a reconfiguration operation can

begin. S, is a recovery state reached by a recovery path from S; (Figure 9.5).

A sequence of reconfiguration transitions then moves from S, (or S, if recovery operations are not
required) in the current configuration to a mapped state S; (S;) in the new configuration. Since
reconfiguration transitions change the configuration of the application, other product states, such as S,

and S,, in the current configuration may also be similarly mapped to S, and S/ in the new configuration.

reconfiguration sequence

current configuration new configuration

Figure 9.5. A Reconfiguration Path from a Current to a New Configuration
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However, the path <S,,S;> (or <S/,5/>) may not be legal in the new configuration.

If further recovery operations are needed to restore consistency, then S, is the final state reached
by a second recovery path from S/ (or S; if no recovery transition is executed in the current
configuration). If no recovery operation is required, S/ (S;) is the final state reached by the

reconfiguration path.
9.4. Correctness of Dynamic Reconfiguration

Reconfiguring directly to S; may cause inconsistency in an application. To handle this problem, we
modify the correctness conditions for recovery (Section 7.2). The continuity condition is not applicable
here because the configuration is changed and the previous behavior of the application need not be

preserved. The legality and dependency conditions are meodified to account for the configuration change:

(1)  (legality condition) There is a legal reconfiguration path from a product state S, in the current

configuration to a product state S, in the new configuration.

(2) (dependency condition) There is a legal reconfiguration path from a historical consistent state S,

to the final reconfiguration state S,/ that contains no invalidated transition.

The legality condition ensures that reconfiguration operations obey synchronization constraints.
The dependency condition ensures that removal of transition executions by a reconfiguration path also
recovers any transition that depends on them. The main modification we make is the definition of
transition invalidation (Section 6.4) to account for the dynamic change in the configuration of an
application. A reinstated transition executed in the current configuration also invalidates
(conservatively) all product transitions in the new configuration that map to that transition. For
dependent invalidation, we use the dependence relation of the configuration where the product
transitions are located. We may consider dependencies between pairs of transitions in the new

configuration as well as in the old configuration.

9.4.1. Conforming to Synchronization Constraints

Reconfiguration operations do not belong to any configuration and are not subjected to constraints
in either the current or new configuration; they need only conform to transient constraints. A legal

reconfiguration path obeys synchronization and transient constraints since transitions that violate them
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are removed from the reconfiguration graph. For example, a transient constraint supplied by a software
designer may forbid a reconfiguration transition T' to begin at a particular product state S. Then, a

transition T leaving the state S is removed and cannot be included in any legal path.

9.4.2. Maintaining Interactive Consistency

The dependency condition ensures consistency is preserved by checking the dependency between
operations of processes that may execute in different configurations. The analysis is more complicated
than in failure recovery because dependence relations may change across configurations. There are two
ways in which dependence relations may change: (1) a dependence relation that exists in the old
configuration is removed from the new, and (2) a dependence relation that does not exist in the old
configuration is introduced in the new. We will show that the dependencyﬂcondition will preserve

interactive consistency in all cases, although in some cases, it is stricter than necessary.

There are two ways in which a dependence relation can be removed: (a) by removing the

synchronization constraints and (b) by removing a set of processes.

When a synchronization constraint is removed, the dependence relations in the new configuration
replace those in the current configuration and may be used for determining consistency. An invalidated
operation in the current configuration may not be invalidated in the new configuration and need not be
recovered. For example, consider a reconfiguration path <S,..S,..S;..S,;> and two transitionsx and y in a
path <S,,S,> such that x is reinstated by the recovery path <S,,S,> Suppose, in the current
configuration, [S,,S,J(x by) but in the new configuration [S;,S71x ¥ y). If there is a legal sequence of
reconfiguration transitions from S, to S, then y is not invalidated in <S,..Sp..8;> and need not be
reinstated. The dependency condition is conservative in that it requires a legal path from S, to Sy or
that some state S, in <S,,S,> has a legal path to Sy in the new configuration such that <S,,S;> and
<8¢,S;> do not contain any invalidated transition. (This requirement is conservative because
reconfiguration transitions do not change basic machine states and there is a map from each product
state in the current configuration to some product state in the new configuration regardless of the
existence of a legal path.) An example of removing a synchronization constraint is replacing exclusive
access to a shared object with non-exclusive access. An operation, dependent on a reinstated operation

that accessed the shared object in the current configuration, may not be required to recover if there is no
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dependency in the new configuration.

When a reconfiguration involves removal of processes, two cases are possible: (i) a removed
(dependent) process is dependent on another process with reinstated operations and (ii) another process
is dependent on the removed (supporting) process that has reinstated operations. (The other process in
each case is not removed.) If the dependence relation in the new configuration does not cause operations
to be invalidated, consistency need not be restored before removal of dependent processes. Consider a
transition y of a removed process P that moves from S; to S; and a transition x in a path <S;,S;> such
that x is reinstated by the recovery path <S,,S,>. Suppose, in the current configuration [Sp,S1x by)is
true. Since basic states of P are removed from product states of the new configuration, S; and S, both
map to S/ in the new configuration. All transitions of P are also removed from the new configuration. If
there is a legal sequence of reconfiguration transitions <S,S,> (or <8;,S;> for some S, in <S,,,S;>), then

there is a legal path <S,,..S,..S;..S/> that does not contain invalidated transitions of P.

When new dependence relations are introduced in the new configuration, the previous execution is
unaffected and need not be reinstated if the dependence relation does not exist in the old configuration.
For example, transition x is reinstated by the recovery path <SS,> In the new configuration
[Sy,S871x by), although in the current configuration [S,,S,/1x ¥ y). There is thus a legal path
<8Sp..8,..5;..S,> that does not contain invalidated transitions. Appropriate transient constraints may be

specified if more control over this situation is desired.

9.5. Computing Reconfiguration Paths and Transient Configurations

The conditions for dynamic reconfiguration enable us to automatically compute correct
reconfiguration paths. To permit more concurrency during reconfiguration, reconfiguration paths may
also be broken into shorter paths and transient configurations may be generated automatically from

these paths.

Software designers or system administrators specify the set of reconfiguration operations required
to change the application from the current to a new configuration. Additional synchronization (transient)
constraints to be enforced during reconfiguration may also be specified. We adopt this approach in
preference to a declarative approach where software designers or system administrators simply specify a

new configuration and the system derives the set of reconfiguration transitions automatically. Although
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the declarative approach might give better selection of reconfiguration transitions, it incurs substantial

cost in analyzing and comparing the current and new configurations.

9.5.1. Algorithm for Computing Reconfiguration Paths

Our objective here is to find a correct reconfiguration path from a graph generated from the current
and new configurations, reconfiguration transitions and transient constraints. To compute
reconfiguration paths from a current product state, we may need to use recovery transitions to force an
application into a state where legal reconfiguration may be started. Although recovery transitions may
cause inconsistency in the current configuration, consistency may be restored by further recovery in the

new configuration.

First, a new configuration must be generated by applying each of reconfiguration transitions to the
current specification using a function called generate_configuration. The function scans each of the
reconfiguration transitions and performs the operations to add (or remove) a basic machine or add (or
remove) a synchronization constraint. Since basic machines are independent, the order of applying these
transitions is irrelevant. At the completion of the scan, the result is a new set of basic machines and

constraints. A new restricted product machine is then generated by the compiler (Section 5.1).

Next, we generate a reconfiguration graph consisting of the current and new configuration and a
subgraph of reconfiguration transitions permitted by transient constraints. We derive a subgraph by
taking a Cartesian product of reconfiguration transitions from each legal state in the current restricted
product machine to its mapped legal state in the new restricted product machine. Transient constraints
are then applied and disallowed reconfiguration transitions are removed. The resulting reconfiguration

graph is then used to compute a reconfiguration path.

To compute a legal reconfiguration path that satisfies the conditions for reconfiguration, we modify
Algorithm 7.6 with appropriate changes for reconfiguration shown in Algorithm 9.1. The three major
differences between the algorithms are as follows. First, two sets of dependency are computed, one for
each configuration. Second, there is no failure and recovery operations are used only to move the
application to a product state where reconfiguration can begin. Third, the dependency condition is

checked on a reconfiguration path that moves from one configuration to another.
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Given : A graph H consisting of a current and a new restricted product machine graph R
and R’ respectively and legal reconfiguration transitions between them;
the current state S, and the scope boundaries S, and Sy, in R.

Compute : A correct reconfiguration path.

Method :

1: G « extract_scope(S,,Sf,R);

2: G« extract_scope(§p’ ,SHR;

3:  pg < compute_dependency(G,S,,Sp);

4: pg « compute_dependency(G’,S,,Sf);

5: unmark all transitions in H;

6: @ « Find a legal recovery path <S,,S,> such that there is a sequence of
reconfiguration transitions from S, to S;;

7 U « all transition reinstated by @; /* U is a set of invalidated transitions */

8

9

U« U;
. for each transitiont e U
10: Ue-UuUtbg; Fitbg={ |t bgx)*/
11: for each transitiont € U’
12: U U utbg; MFibe =& |t berx) ¥

13: mark all basic transitions ¢ € U in G "invalid”;
14: mark all basic transitions ¢ € U’ in G’ "invalid”;

15:;

16: repeat {

17: P «- shortest_potential_recovery_path(S;,S,,Sf,H);

18: DIFF « {(all transition removed by P} - U’;

19: V « DIFF; /¥ V is a set of new invalidated transitions */

20: for each transition ¢ € DIFF

21: Ve« Vutbg;

22: mark all basic transitions in (V - U’) "invalid";

23: Ue«UuV; /* add new transitions invalidated by P to U’ */

24: ) until there is a path <S,,,S,> that contains no invalid transition;
25: return <8S...S,..S/.S,;>;

Algorithm 9.1. Compute a Reconfiguration Path
for a Given Set of Reconfiguration Transitions
The scope [S,,Sy] for searching a reconfiguration path is either supplied by the software designer or
pre-defined by the system. We assume there exists some legal reconfiguration from the selected firewall
state S, in the current configuration. In the worst case, the initial product state of the current
configuration is used since any reconfiguration can always begin at that state. The mapped states Sy

and Sf are derived by applying the set of reconfiguration transitions on S, and Sy respectively.

In lines 1 to 4, a set of dependencies is computed for each configuration and is later used to

determine invalidation of transitions executed in each configuration. Unlike Algorithm 7.6, there is no
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failure. Instead, the purpose of line 6 is to find a state (which may be S.) from which there is a legal
reconfiguration sequence to the new configuration. Recovery path @ moves the application to the state
S, before reconfiguration begins. In this algorithm, we use the first recovery path that can be found by a
breadth-first search from S,. Consistency can always be restored by a second recovery, path in the new
configuration since in the worst-case there is always a recovery to S;. (As noted above, we may have to
choose a suitable S,.) We will not try to find optimal recovery paths because of the potentially high
computational cost. The algorithm then determines all transitions invalidated by @ in each
configuration by checking dependencies in that configuration (lines 7 -- 14). The purpose of lines 16 to 24
is to find a second recovery path <S/,S;> in the new configuration such that there is a legal
reconfiguration path <S,,S,>, from a consistent (firewall) historical state S, in the current configuration
to a final reconfiguration state S,/ in the new configuration with no invalidated transitions.
Theorem 6.

Algorithm 9.1 computes a reconfiguration path that satisfies the correctness conditions for

reconfiguration.

Proof.
The legality condition is satisfied since the recovery path <S.,S,> contains only legal recovery
transitions, the reconfiguration transition sequence <S,,S/> is legal and the function
shortest_potential_recovery_path searches only legal recovery paths in the new configuration. The
algorithm is guaranteed to exit from the loop in lines 16 — 24 for two reasons. First, every process
has at least a recovery path to S, and there is always a sequence of legal reconfiguration
transitions from S, to S,. Second, the number of transitions in the scope [S/,Sfl is finite and the
set of invalidated transitions in U is monotonically increasing. On exiting the loop, the
dependency condition is satisfied because there is a reconfiguration path <S,,S,> that does not

contain any transition invalidated by either recovery path <S,,S,> or <S,,S,>. [

The worst-case time complexity for extracting scopes in lines 1 and 2 is O (n, +%, +n; + t2), where n,
(t,) is the number of nodes (transitions) in the scope [S,,Sf] and ng (¢}) is the number of nodes
(transitions) in the scope [S,,Sf]. The worst-case time complexity for computing dependencies in both

configurations (lines 3 and 4) is O ((n, + (s + t])t,) + (] + (&) + 1,°)t7)), where #, (£) is the number of basic
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transitions in the scope [S,,S/ ([Sy,Sf). The running time for finding the recovery path <S,,S,> in the
worst case is of order #. (Finding an appropriate S, only requires that there is a legal reconfiguration
transition leaving S, because any transition that does not lead to a legal state in the new configuration is
removed from the reconfiguration graph H.) The worst-case running time for invalidating transitions in
lines 7 to 14 is of order 2 + #;2. Finally, the worst-case time complexity of finding the second recovery
path in lines 16 to 24 is O((n, + t.)t;), where t. =t + i +1n and n, = n, + n{ + n, such that ¢,, (n,,) is the
number of reconfiguration transitions (nodes) between the scopes in the current and new configurations.
After adding and simplifying, the worst-case time complexity of the Algorithm 9.1 is O((n, +tc)ts). By
similarly considering each component of Algorithm 9.1 individually and adding their space requirements,
the uppér’ bound on the total required space is
On, +1t, +n.+t) + O ((ng + )2 + (n] + %) + O (8) + O(ne +12.) which simplifies to

O((n, + )t} + (g + EDZ + Ny + 1)

9.5.2. Automatic Generation of Transient Configurations

For reconfigurations that take a long time to complete, it may be beneficial to break the
reconfiguration path into smaller segments with transient configurations between them. Unaffected
processes may execute in a transient configuration while reconfiguration is incomplete. The cost of

splitting reconfiguration paths is the additional recovery within transient configurations.

When a reconfiguration path is split, the transient configuration between the two segments should
include the following constraints involving any basic machine in the transient configuration: (1) the
synchronization constraints from both the current and new configurations, and (2) the transient
constraints. We conservatively include all synchronization constraints from both configurations to
prevent interference among the processes, although some condition synchronization constraints may be

unnecessary if a process involved in those constraints is removed.

Since constraints from different configurations are combined, there may be conflicts among the
constraints. Transient configurations with conflicting constraints are illegal and corresponding splits in

the reconfiguration path are disallowed.

Consider a reconfiguration path split into two segments. A basic machine must be added in or after

the reconfiguration sequence that adds all constraints involving it. (A constraint involves a basic
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machine B if the constraint specification contains a state or transition of B.) A basic machine must be
removed in or before a sequence that removes any constraints involving it. This guarantees that
machines are always properly synchronized. To avoid conflicting constraints in a transient
configuration, the algorithm must also ensure that all constraints introduced in the first segments do not

conflict with those in the current configuration.

Suppose we need to reconfigure from an arbitrary configuration to another completely arbitrary
configuration whose constraints may conflict with those of the first configuration. Since each
configuration should not contain conflicting constraints, the conflicting constraints in the current
configuration should be removed (in the first segment) before those in the desired configuration are

added (in the second segment).

Algorithm 9.2 partitions a set of reconfiguration transitions into two. It takes two arguments: Tg, a

Given : A set of reconfiguration transitions T and a set of transient constraints Kp.
Compute : Two partitions of reconfiguration sequences T’.

Method :
procedure partition (T, Kr, Ty, T2) {
(1) If t in Ty adds basic machine m, let C,, be ¢ and all transitions in Ty that add constraints in-
volving m.

(2) Let Ty be the set of transitions in T that add constraints which conflict with the current
configuration. Repeat until T is unchanged:
For all ¢t in Ty, if t adds a constraint involving machine m, add C,, to Ty.

(3) Generate a graph by taking a Cartesian product of transitions in Tk. Remove transitions
from the graph that are disallowed by transient constraints in Kp.

(4) Do the following two searches simultaneously (alternately). From the source, traverse for-
ward breadth-first along only transitions not in Ty. From the sink, traverse backward
breadth-first along any transitions. Stop when the two traversals reach a common node X.
Set T'; to a set of transitions traversed from the source to X and set T'y to a set of transitions
traversed backward from the sink to X. If the two traversals stop without meeting at any
node, set T'; to T'r and set T'; to empty.

Algorithm 9.2. Split a Set of Reconfiguration Transitions
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set of reconfiguration transitions, and Ky, a set of transient constraints; and generates two sets of
reconfiguration transitions T'; and T, such that T = T; U T, and Ty " Ty = {J. Step 3 generates a
graph with one source and one sink. By analyzing each step of the algorithm, we then compute the
worst-case time complexity to be O(t, + ;) + 0 ((n, +to)tq)+0(2t'“')+ 0 (2¥*), where tp, (tg) is the
number of process-changing (constraint-changing) reconfiguration transitions and ¢, (n,) is the number
of transitions (states) in the current configuration. By simplifying, the worst-case time complexity is
O((n, +t)tg + 2'%*) The upper space bound of the algorithm is O ((n, +¢, + tp +1g) + 2%, In practice,

the total number of reconfiguration transitions, ¢,+¢,, is small.

After partitioning Ty into T'; and T',, it may still be beneficial to partition T'; and T’y further. We
use a function exceed_split_threshold to determine if the benefit of splitting is greater than the cost of
splitting. The default heuristic used is to split if the length of reconfiguration transitions is greater than
the length of additional recovery paths required in the transient configuration between the partitions.
Software designers may define other heuristics that attach weights (representing computational time or
external cost) on reconfiguration and recovery transitions. The function exceed_split_threshold will
always return false if there is only one process-changing transition in Tk. In Algorithm 9.3, a set of
reconfiguration transitions is repeatedly partitioned when it is cost-effective to split. (The list RS is
initially empty.) The time complexity of the algorithm is dominated by the running time of Algorithm
9.2 that is executed on successively smaller set of reconfiguration transitions. In the worst case, there
are log(t,+t,) iterations and at each iteration, i, Algorithm 9.2 is executed 2' times using (z, +tq)/2i
reconfiguration transitions each time. The worst-case time complexity of Algorithm 9.3 is computed by

summing these execution times, i.e.
log (t,4,) _ o
Y 2 x0((n, + 1), /2 +24H%),
i=0
Since the set of reconfiguration transitions is largest when i = 0 and there are log(f,+t,) iterations, we
can then approximate this as O (((n, + )ty + X Jog(t, +¢,)). In both Algorithm 9.2 and 9.3, we do not

attempt to find an optimal partitioning or list of partitions because the computational cost may be high.

From the list of reconfiguration partitions 7';,T,..Ty, we can generate a sequence of transient
configurations. For example, with a set of transitions 7T';, transient constraints Ky and the current

configuration, a transient configuration is generated using the function generate_configuration described
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Given : A set of reconfiguration transitions Ty and a set of transient constraints K.
Compute : A list of reconfiguration sequences RS.

Method :

1: procedure generate_reconfiguration_list (Tr, Kr, BS) (
2 if exceed_split_threshold (Tg) {

3 partition(Tg, K7, T1,T2);

4: if T'y is not empty (

5: generate_reconfiguration_list (T',,Kr,RS);
6: generate_reconfiguration_list (T'y,Kr,RS);

7 )

8

9

else
: append T'; to RS;
10: }
11: else
12: append Ty to RS;
13: ]

Algorithm 9.3. Compute a List of Reconfiguration Partitions
for a Given Set of Reconfiguration Transitions
in Section 9.5.1. The complete reconfiguration graph is then generated with sequences of reconfiguration

transitions (as permitted by Kr) between the current, transient and new configurations.

The reconfiguration graph that is statically generated by a compiler is then supplied to the
consistency control manager. Given the current product state, the manager then computes correct
reconfiguration paths between any two configurations using Algorithm 9.1. In each transient

configuration, a reconfiguration path is computed at runtime based on the actual product state reached.




Chapter 10

Uniform Framework: Dynamic Reconfiguration

As in failure recovery, correct dynamic reconfiguration is determined by analyzing a graph. The
reconfiguration graph is generated from the current and new configurations, the set of reconfiguration
transitions and the transient constraints. Since the graph prescribes neither an implementation nor a
specific choice of reconfiguration path, we can separate mechanisms and policies from correctness, and
from each other. Here we will discuss possible mechanisms and policies in turn, then compare them

with other dynamic reconfiguration techniques.

10.1. Reconfiguration Mechanisms

To reconfigure an application, a system administrator supplies a set of reconfiguration transitions
and transient constraints to a compiler that generates a reconfiguration graph (described in Section 9.2).
The consistency control manager applies Algorithm 9.1 to the reconfiguration graph to compute a
reconfiguration path from the current product state. The manager determines the affected basic
machines involved in both the partial recovery path in the current configuration and the reconfiguration
transitions. It then forces all affected basic machines from autonomous mode to exception mode using
the function force_mode. When all basic machines have moved to exception mode successfully, the
manager calls mandatory transition to force the basic machines through the partial recovery path to a

product state where reconfiguration transitions may begin.

Reconfiguration transitions in the reconfiguration path are then executed by a (supervisor) process
that controls basic machines and has the privileges for killing and starting basic machines. This role
could be assumed by the manager itself. Constraint-changing reconfiguration transitions are used by the
compiler to generate the new (or transient) restricted product machine for controlling synchronization.
At runtime, these transitions require no further action. A process-changing reconfiguration transition
may be implemented by combining several of the following system-provided primitive mechanisms: save
(restore) states, and create (remove) and execute basic machines. (Software designers may implement

other mechanisms to suit particular applications, e.g. establishing and disconnecting communication
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links and saving and restoring undelivered messages.)

(1)

@

3

)

Save state: The saved state includes the internal state of the process and state information stored
on behalf of the process, e.g. opened file descriptors and undelivered messages in each open
communication link. The command for saving states is:
save (basic_machine_ id, state_location);

A basic_machine_id also contains the execution location. When a process is created, the system
assigns it a unique basic_machine_id. The saved state will be stored at state_location which
need not be where the basic machine executes. This command is primarily to record state when
one basic machine is to be substituted for another. (It may also be used to save state in a backup

processor to enable recovery from a processor failure.)

Restore state: If a basic machine is being replaced, the saved state is restored to a new basic
machine. States may be restored at the previous execution or another location. The command for
restoring state is:

restore (basic_machine_id, state_location, transformation_function);
A saved state at state location is transferred to the memory image of a new process
basic_machine_id. (Directory service may be needed to locate saved states of basic machines.) If
data structures of the state need to be modified to conform to the implementation of the new basic

machine, a transformation_function is supplied by the designer.

Remove basic machine: Basic machines are terminated, i.e. native process termination primitives.
The command is simply:

remove (basic_machine_id);
The command also removes the basic machine from the restricted product machine used by the

manager.

Create basic machine: The command for creating basic machines is:

basic_machine id = create ():
This command creates a new basic machine in an initial state. If the new basic machine replaces
a previously removed basic machine, a restore command may later be used to restore previously

saved state. The command also generates a new restricted product machine for the manager.
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(5) Execute basic machine: After a basic machine is created (and possibly a saved state restored), the
basic machine is executed using the following command:

execute (basic_machine id);

After successfully executing the reconfiguration transitions, a state in a transient or new
configuration is reached. The manager then calls mandatory transition to force basic machines
through the second recovery path in the transient or new configuration. If additional basic machines are
involved in this recovery path, the manager must force them into exception mode first. If the desired
configuration is reached, the reconfiguration is complete and the manager calls force_mode to force the
basic machines back into autonomous mode. If a transient configuration is reached, the manager
computes the next reconfiguration path from the current product state in the transient configuration
(where other unaffected processes may have moved to new basic states). On computing a new
reconfiguration path, the manager again forces the basic machines through the recovery paths and
reconfiguration transitions. In transient configurations, we adopt a conservative rule that basic
machines in exception mode are not forced back into autonomous mode since they may be required to
take more recovery or reconfiguration transitions. However, if it is determined that a basic machine will
not be required to take any more of these transitions, then the basic machine may be forced back into

autonomous mode where it may then resume normal operation.

10.2. Reconfiguration Policies

Section 9.4 describes the conditions for correctness of all types of reconfiguration that maintain
interactive consistency. However, software designers may still select appropriate policies to preserve the
semantics of an application. Policies may be selected in the following four areas: (1) a set of
reconfiguration transitions, (2) transient constraints, (3) criteria for partitioning reconfiguration
transitions, and (4) scope for recovery transitions required for maintaining consistency during

reconfiguration.

The policy for selecting a new configuration is the responsibility of either a software designer or
application-specific adaptation software. For example, by analyzing a failure, the adaptation software
may automatically select a new configuration that avoids the failed component and uses an alternate

software or processor [11]. However, here we will not address the problem of selecting a new
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configuration from an analysis of failure. Different types of reconfiguration may be specified by
designers or adaption software by selecting an appropriate set of reconfiguration transitions. For
instance, replacement of a basic machine with another requires reconfiguration transitions that save
(restore) process states and create (remove) basic machines. On the other hand, restructuring a group of
processes into one with a different behavior may not involve reconfiguration transitions that save or

restore process states.

Transient constraints are useful for preventing interference among reconfiguration and normal
transitions as well as specifying policies by disallowing reconfiguration at certain product states based on
the semantics of the application. For example, a basic machine state may indicate the equipment it
controls is in active operation. Reconfiguration at this state should be disallowed. Transient constraints
are also useful for defining conventions for adding and removing processes. For example, in the dining
philosopher problem, the following convention may be specified to ensure that there are correct number
of forks and philosophers in the new configuration: A philosopher can only be removed when it possesses
exactly one (left) fork and a philosopher can only be added if it possesses exactly one (left) fork. We can
implement this convention by simply specifying transient constraints that only allows a reconfiguration
transition to remove (add) a philosopher when the philosopher is (will be) in a state where it possesses a

left fork.

The policy for partitioning an end-to-end reconfiguration path from a current to a desired
configuration may be determined by how we consider the benefits and costs of splitting. Splitting
reconfiguration paths allows greater concurrency among unaffected processes since they may execute at
transient configurations between reconfiguration paths. However, splitting a reconfiguration path may
require additional recovery operations to restore consistency at the transient configuration. In
Algorithm 9.3, the function exceed_split_threshold defines the criteria for splitting reconfiguration paths.
Those criteria may be re-defined using heuristics based on the application semantics that attach weights
to reconfiguration and recovery transitions. For example, a reconfiguration transition requiring an
extended period of time to complete may be given a larger weight. A resulting split would then allow

some processes to execute while the reconfiguration is in progress.

An appropriate scope may be selected for the recovery operations that bracket a reconfiguration

sequence. Policies for selecting a scope are similar to those described in Section 8.2.
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Different policies may be selected to implement different types of dynamic reconfiguration. In the
following, we discuss three common types of dynamic reconfigurations: replacement, restructuring, and
relocation. The three types differ mainly in the selection of the set of reconfiguration transitions and
transient constraints. These types of reconfiguration may be used in any combinations. A software
designer may implement the failure recovery of a module by replacing it with an alternate module that

executes in a different processor. This reconfiguration combines replacement with relocation.

10.2.1. Replacement

Software modules often undergo changes to improve performance, remove bugs, or add new
functions. A new version of a basic machine may dynamically replace another basic machine. The
conditions for legal dynamic replacement discussed in [16] are as follows. First, the behavior of a
replacing basic machine must preserve the behavior of the replaced machine, i.e. the replacing basic
machine must allow any sequence of transitions that is allowed by the replaced machine. However, new
sequences of transitions may be allowed by the replacing machine. Second, the state S,/ at which the
replacing machine begins executing must correspond to the state S at which the replaced basic machine
stopped, i.e. the set of transition sequences from S, should be a subset of the set of transition sequences
from S,. Software designers should provide a mapping from states in the replaced basic to those states
in the replacing basic machines with the above properties. In addition to the above policy, our system
also allow other policies, such as permitting replacing basic machines to delete some of the function of
the replaced basic machine. However, the designer must decide on how such change may be handled.
For instance, clients to a modified server with a deleted function may be notified through an error

message and must modify their execution accordingly.

Dynamic replacement requires four steps. (Transient constraints may be specified to ensure
particular ordering of reconfiguration transitions.) First, a reconfiguration transition may be specified to
save the current state of a basic machine. Another reconfiguration transition then kills the replaced
basic machine. Next, a basic machine is created and the saved state restored. A final reconfiguration

transition executes the new basic machine.

The state of the replaced basic machine that is saved may either be a current, past or future state.

To save a past or future state, an appropriate recovery path in the current configuration must be
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executed. In a recovery to a past state, some transition executions may be reinstated and transitions

dependent on these reinstated executions must be rolled back as well.

10.2.2. Relocation

In relocation, a process that executes in a particular processor is migrated to a different processor.
Relocation is a special case of replacement where there is no change in individual or collective behavior.
i.e. the current and new configurations are identical. The reconfiguration transitions used are similar to
those in replacement: saving a state, halting the basic machine, restoring a state and starting up the
basic machine. However, relocation differs from replacement in two ways. First, the replacing basic
machine is started up on a different processor which involves a transfer of state information from the
existing processor to the target processor. Second, since there is no change in the behavior of the
application, reconfiguration may begin at any state and it is not necessary to recover before relocation.

No transient constraint is needed to restrict the state in which the relocation may begin.

However, when relocation is used to recover from a processor failure, previously saved states stored
in other functional (backup) processors may be used for restoring the state of the relocated basic
machine. This case may require recovery to reestablish consistency by selecting an appropriate

reconfiguration path.

10.2.3. Restructuring

An application may be restructured by adding (removing) basic machines and modifying the
synchronization constraints. Restructuring differs from replacement and relocation in that states of
removed basic machines need not be saved. New basic machines are started up in their initial state.
However, recovery operations that are necessary before removing a basic machine may reinstate some
executions and thus require some recovery operations to maintain consistency. An example of
restructuring is the reconfiguration described in Section 9.1 where a die-stamping machine in a
manufacturing cell is replaced by a drill. When removing the die-stamping machine some workpiece

may need to be removed which may require recovery of the second die-stamping machine.

If a reconfiguration transition changes only synchronization constraints, the resulting new

configuration contains the same basic machines but differs in the restricted product graph that controls
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their interaction. We may reconfigure without halting the basic machines if the new constraints allow

the concurrent executions permitted by the old configuration.

10.3. Comparison with Other Dynamic Reconfiguration Techniques

The two main advantages of our system are: (1) we allow dynamic reconfiguration of applications
that may interact in complex ways and (2) we allow greater concurrency, than other systems [16,58], by
breaking reconfiguration paths into segments to allow unaffected processes execute at transient
configurations between segments. (A reconfiguration path is partitioned only if the cost is outweighed by
the benefits of higher concurrency resulting from partitioning.) However, compared to those
transactional systems, we incur the additional cost of finding a correct reconfiguration path. Since the
cost depends on the size of the scope for reconfiguration and recovery, the cost can be reduced by
hierarchical design of an application and the selection of checkpoint states that reduces the size of a
scope. In the following, we compare our approach to other techniques only for applications with finite-

state processes.

10.3.1. Module Replacement in Argus

Bloom [16] introduced a framework for checking legality of dynamic module replacement based on
the transaction mechanisms of Argus [56,57]. Processes interact entirely through the client-server
model. The transaction mechanisms provided by Argus preserve interactive consistency. For example,
a sequence of transitions representing a replacement is implemented as an atomic transaction. We can
implement a replacement transaction by specifying appropriate recovery transitions that allow states
before the transaction to be saved and restored if the replacement fails. Recovery from a failure during a
reconfiguration is handled in a similar way as failure recovery during normal execution where the
recover transitions will restore the application to a saved state in the current configuration. We may
impose Bloom’s conditions for correctness of replacement described in Section 10.2.1 as follows. The first
condition can be satisfied in our system by implementing appropriate policies for selecting new
configurations. To preserve the behavior of the replaced module, the state after the recdnﬁguration must
be able to reach a set of future states in the new configuration that map to the future states in the
replaced configuration. This mapping is supplied by a software designer. The second condition is

satisfied by defining transient constraints that allow only reconfiguration transitions reaching a state in
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the new configuration that maps to a state in the replaced configuration.

While our system allows policies restricting new configuration as defined by Bloom, we also allow
policies that permit a new configuration that behaves differently from its predecessor. This is useful in
manufacturing applications where machine cells may be reconfigured with different behavior for making
a new product. Neither the reconfiguration mechanisms nor the application need be implemented as
transactions since consistency of states in the new configuration is preserved by analyzing dependencies

automatically.

10.3.2. Conic

Dynamic reconfiguration in Conic [47,58] is also based on transactions. It requires each process
that may communicate with those being reconfigured to be-at a quiescent state before reconfiguration
can begin. A quiescent state is one in which no process sends any message or expects a response from a
process being removed. In our system, we can impose the policy that only allows reconfiguration when
affected processes are at quiescent states by specifying transient constraints that disallow a sequence of
reconfiguration transitions to leave a product state S if either or both the following conditions are true:
(1) some transition of a removed process must be executed after S as a result of some transition
execution of another process before S, and (2) some transitions of another process must be executed after
S as a result of some transition execution of a remove process before S. In other words, processes must
not be synchronized with the process being removed at the state where reconfiguration begins. The
above constraint can be specified using the "necessary precede" relation p. Another way to restrict
reconfiguration only at quiescent states is to allow designers to specify sets of states representing
quiescent communication behavior. Transient constraints only allow reconfiguration to begin at these

states.

The main problem with permitting reconfiguration only at quiescent states is that the system may
need to wait some time for processes to reach a quiescent state through normal execution. We can
overcome this problem by forcing processes to recover to states where reconfiguration may begin.

Recovery of those processes being removed does not waste any computation.
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10.3.3. Others

Polylith [69] addressed the problem of capturing and restoring state but ignored the problem of
maintaining consistency of those states. They limit the amount of state information that needs to be
saved and restored by defining specialized encode and decode functions. The encode function uses
application semantics to determine the relevant state information to save, such as stack data structures.
Other variables such as loop counters need not be stored because they restrict reconfiguration only at
certain states, e.g. those with the same loop counter value. This is similar to the approach taken by
Conic of restricting reconfiguration to quiescent states. We can similarly use transient constraints to
allow only reconfiguration at states that contain certain variable values. In our system, software
designers may use new specialized oper;tions for saving and restoring limited application-specific states
in place of the more general commands for saving and restoring states supplied by the system. Software

designers must specify the states at which specialized save (restore) operations may begin (end).

Unlike the systems discussed so far, Durra [8] and HPC [25,55] do not deal with the problem of
transferring states but rather concentrate on the problem of structural reconfiguration where groups of
modules can be recomposed via modification of communication links. In our system, a software designer
may use the mechanism for removing and establishing communication links in conjunction with
reconfiguration transitions that create and remove basic machines. Changes in abstraction and
composition of processes in HPC can be implemented in our system by defining new configurations using

the hierarchical finite-state machine model.



Chapter 11

Conclusions

11.1. Summary

We make distributed applications reliable through automatic analyses of their behavior. These
applications may contain processes that synchronize in complex ways. We avoid both the restrictive
requirement that applications be serializable or atomic and the high cost of message-logging and
dataflow analyses. This thesis explored automatic recovery and dynamic reconfiguration in an approach
that exploits the semantics of application behavior specified as hierarchical finite-state machines to

preserve consistency and reduce wasted computation and external work.

The hierarchical finite-state machine model is an appropriate one for computing recovery and
reconfiguration paths automatically. It allows us to use graph-theoretic methods to analyze the partial-
order semantics of the application behavior, compute dependencies, and ensure correct recovery and
reconfiguration. Because the correctness conditions for recovery — legality, continuity, and dependency -
do not require atomicity or total ordering of transitions (or sequences of transitions), we can allow
recovery to intermediate states with some operations in progress or incomplete. Extending these
conditions to dynamic reconfiguration allows us to compute a consistency-preserving reconfiguration

path starting from any current state, not just quiescent states.

By integrating all information for controlling synchronization, recovery and reconfiguration in a
single model that does not prescribe an implementation, we designed a common framework with a
uniform set of control mechanisms for maintaining consistency. Policies affecting the selection of
appropriate recovery and reconfiguration paths may be changed for specific applications without

modifying the control mechanisms.

11.2. Contributions

Our primary contribution is a system of automatic recovery management suitable for applications,

such as automated manufacturing systems, where conventional approaches using atomic transactions
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are unsuitable. Our system allows complex, non-atomic interactions between long-lived, repetitive, or
cyclic processes without requiring designer-specified commutativity of operations or a limited range of
synchronization and sequencing constraints. Although some approaches also permit complex
synchronization constraints, such as message-logging and checkpointing [39, 79], they do not exploit the

semantics of applications to improve recovery.

We took interactive consistency, rather than serial execution, as the model for correct execution.
This allows recovery and reconfiguration of applications with partial-order semantics: a larger group

than serializable or linearizable applications.

As a by-product of this recovery system, we developed a method of extracting dependencies
(necessary precedeﬁcé) between processes automatically from the behavior specification, avoiding
reliance on conflict tables or dataflow analyses. Our definition of dependency is based on the properties
of the restricted product machine that may contain complex synchronization constraints that cannot be
expressed in conflict tables, e.g. condition synchronization and event triggers. We also introduced a
notion of equivalence between subgraphs with respect to dependencies and developed a method for

computing equivalent acyclic subgraphs.

The conditions for recovery and reconfiguration enable us to improve efficiency by allowing
permuting and substituting transitions whenever permitted by the behavior specification. By analyzing
specific product states in the (potential) behavior of an application, our method computes more accurate
dependencies than other work on transactions [28,77,87] which specifies only commutativity of
operations for all product states. Using more accurate dependencies reduces the "cascade” effect during

recovery, thus reducing wastage of computation.

We presented an algorithm for computing necessary precedence automatically from a restricted
product machine. Besides computing accurate dependencies, this algorithm frees software designers

from analyzing dependencies and commutativity between operations as in other work [20,77,87].

To check for some causes of failure, we presented algorithms for detecting synchronization
problems such as deadlock, possible livelock and starvation. We also presented an algorithm for
computing recovery paths that preserve consistency. These algorithms have a reasonable worst-case

running time, proportional to the square of the size of a recovery scope, that can be made small with
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proper design.

Our recovery management system extends to consistent dynamic reconfiguration and allows a
graceful transition from a current to a new configuration. During reconfiguration, designer-specified
transient constraints control reconfiguration transitions as well as conflicts between processes from both
configurations. We presented an algorithm to compute a correct reconfiguration path that preserves
consistency. Using a related algorithm, we can break a reconfiguration path into segments to allow
greater concurrency of unaffected processes at transient configurations between segments. Our
approach does not require processes to be quiescent before reconfiguration as in other systems [58, 69].
Furthermore, we allow applications to interact in complex ways, whereas other systems [16,58] only

permit reconfiguration of applications based on transactions.

11.3. Future Work

There are many areas of future research that will enhance the work presented here, e.g.
specification environment, analysis of more synchronization problems, linguistic support and tools,
compilation and performance tuning of implementations. However, in the following we discuss future

work of greater significance.

In this thesis, we have focused primarily on distributed applications with finite-state behavior that
is common in areas such as automated manufacturing. An important future task is to extend this work
to systems with infinite-state behavior, such as database systems and communication systems with
unbounded FIFO channels. This requires augmentations to our system where such applications can be
specified and dependencies can be analyzed in a small subgraph of the restricted product machine. We
must investigate how to generate appropriate subgraphs of recovery scopes incrementally at runtime
from the specification of basic machines and synchronization constraints. For example, the recovery
scope moves with the current execution state. As a new firewall state is entered, the previous subgraph
may be discarded and a new subgraph generated. To compute a recovery (or reconfiguration) path, we

need only analyze dependencies and preserve behavior continuity in a recovery scope.

Decentralizing the consistency control manager is another problem area. Although the manager as
described here is centralized, we can make the control of processes more efficient and robust by

decentralizing the manager. To avoid some redundancy of control information and distributing
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dependency analysis, a restricted product machine may be factored so that each manager controls basic
machines in each factor. We need to investigate how factorization can be computed and how

dependencies and recovery (reconfiguration) paths can be computed in parallel.

To improve recovery and reconfiguration further, we may refine the algorithms so that they
compute optimal recovery and reconfiguration paths. The main issue is to avoid enumerating all
possible paths while selecting one that involves the lowest cost according to some metrics, possibly by

pre-processing the graph to allow direct computation of optimal paths.

Other areas that need to be examined more fully are issues related to design of "hierarchical”
finite-state machines. First, sharing of basic machines by more than one composite machine is
important for capturing sharing of equipment in manufacturing cells. We must investigate how to
specify and control sharing of basic machines as well as their effects on recovery and reconfiguration
path computation. Second, a hierarchical model might further simplify our consistency control by

exploiting property inheritance, delegation and reflection.

Finally, an important long-term future task is the implementation of a general distributed
computing environment that supports reliable and dynamically reconfigurable distributed applications
based on the work here similarly to the way Camelot (Encina) [78] and Argus [56,57] support reliability

in general distributed applications based on transactions.



Appendix A

A Glossary of Terms

The following terms are given specific technical meanings in the thesis. Some terms may be used in
a different technical sense in the literature. The section number in parenthesis indicates where the term

is defined.

Basic Machine: A finite-state machine representing the behavior of a process. (§4.1)
Basic State: A clean, internally consistent state of a process. (§4.1)

Basic Transition: A procedure or an action, often a physical operation, that moves a basic machine

from one basic state to another. Basic transitions take a finite time to complete and are non-atomic.

(84.1)

Basin: The basin of a product state P is the set of product states that allow the composite machine to

enter P without entering a different composite state. §4.7.1)

Composite Machine: A finite-state machine representing the behavior of a group of processes. Software
designers specify a composite machine by specifying its composite states, composite transitions, and a set

of constraints on the basic machines. (§4.1)
Composite State: An arbitrary set of product states specified by a software designer. (§4.1)

Composite Transition: A transition that moves from one composite state to another and may represent
a set of concurrent product transitions, a sequence of product transitions, or a combination of both.

(§4.1)

Configuration: The specified allowed behavior of a group of processes represented by its restricted

product machine. (§9.2)

Consistency Control Manager: A supervisor that controls the scheduling of a composite machine,

enforces synchronization control, implements recovery, manages dynamic reconfiguration, and takes the
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role of a basic machine when the composite machine is used in a higher-level group. (§5.2)

Execution Sequence: A sequence of transition executions (possibly of several processes) in order of

completion. (§6.1)

Failure Basic State: A basic state that is entered when a process fails. Software designers specify the

failure basic state entered from a set of normal basic states. (§4.4)
Failure Product State: A product state that contains at least one failure basic state. (§4.4)

Internal Consistency: A condition where a process that manipulate some information, in the absence

of other concurrent processes, conforms to user-defined predicates on those information. (§3.1)

Interactive Consistency: A condition where a process may depend on an interaction with other
processes only if all processes involved in the interaction are in a state subsequent to the interaction.

§3.1)

Legal State (Transition): A product state (transition) that is either contained in a composite state or a
composite transition, and is not explicitly disallowed by a synchronization constraint specified by a

software designer. (§4.1)

Mandatory Precedence: The mandatory (or necessary) precedence relation p is defined as follows:
[S;,S;1A b B is true if and only if the basic transition B occurs in the scope [S;,S;] and a basic transition

A always occur before it along every path from S; to B. (§6.3)

Non-reinstate Recovery: Operations that correct for errors and also operations, such as reset, that

simply move a process to another (possibly initial) state. (§4.4)

Path Equivalence: Every path in <S,, S;> is equivalent in effect since they all move the application

from the original state S, to the destination state S;. (§6.1)

Product Machine: A Cartesian product of a set of basic machines executing concurrently in a group. It

represents all possible behavior of the group of processes. (§4.1)
Product State: A tuple of concurrent states of the component basic machines. (§4.1)
Product Transition: A transition that moves from a product state to another. (§4.1)

Reconfiguration Path: A sequence of mixed recovery and reconfiguration transitions. (§9.2)
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Reconfiguration Transition: A transition that moves from a product state in one configuration to a
product state in another configuration. It may include operations that add or remove processes and

operations that add or remove synchronization constraints. (§9.2)
Recovery Transition: A transition that moves from a failure state to a normal state. (§4.4)

Recovery State: A normal product state that is entered from a failure product state through a recovery

path. (§4.4)
Recovery Path: A sequence of recovery transitions from a failure state to a normal state. (§4.4)

Reinstate Recovery: Operations that eliminate the effect of a transition execution, e.g. restore and

undo. (§4.4)

Restricted Product Machine: A product machine that consists of only legal states and transitions.
(§4.1

Transient Configuration: An intermediate configuration between two reconfiguration paths that lead
to a final desired configuration. Normal transitions may be executed within a transient configuration.

(89.2)

Transient Constraints: Additional synchronization constraints, specified by a software designer, that

prevent interference during reconfiguration among normal and reconfiguration transitions. (§89.2)

Well: The well of a product state P is the set of product states that force the composite machine to enter

P without entering another composite state. (§4.7.1)




Appendix B

Process-Manager Interface Commands

This appendix summarizes the interface commands for communication between processes and the
consistency control manager. There are two types of commands: process commands, those that are used
by the processes, and manager commands, those used by the manager. The usage of these commands for
controlling synchronization, recovery, and dynamic reconfiguration were discussed in Chapters 5, 8 and

10.

B.1. Process Commands

code announce (current_state)

string current_state;

A process uses announce to identify its current state to the manager. The command announce is used
only when a process will be idle at a state. When the process intends to make another transition, it
instead identifies its current state by calling a command for requesting permission, e.g. request_permit.
The manager returns the code oxkay if the state reported is accepted and ERROR if it was found to be

inconsistent.

permit_code block_request (current_state, destination_state)
string current_state, destination_state;

A process may use block_request instead of request_permit to request permission to make a
transition when it is willing to block if the transition is unacceptable. The first string indicates the
current state of the process and the second the state to which it intends to proceed. If the current state
is inconsistent, the manager returns STATE_INCONSISTENCY immediately. If the transition is currently
unacceptable, the manager puts the request in a pending list. When the transition later becomes

acceptable, the manager notifies the process by returning the code GRANTED.
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permit_code request permit (current_state, destination_state)
string current_ state, destination_state;

A process uses request_permit to request permission from the manager to make a transition. The first
string indicates the current state of the process and the second the state to which it intends to proceed.
If the request is acceptable, the manager returns the code GRANTED otherwise it returns #oiD. If the

current state is inconsistent, the manager returns STATE_INCONSISTENCY.

code select_path (current_ state, path_list, number_of_ paths)

string current_ state;

path_list_type path list;

integer number_of_ paths;

A process may use select_path to specify a list of alternative paths it wants to execute, in order of
decreasing preference. The manager returns the index of the first path that contains all transitions that
are acceptable, if any. Otherwise, it returns HoLD. Both select_path and select_permit may be used

to reduce the messages between a process and the manager.

code select permit (current_state, state list, number of states)

string current_state;

state_list type state_list;

integer number of states;

select_permit allows a process to specify a list of alternative states to which it like to move, in order of
decreasing preference. The manager returns the index of the first state in the list that is acceptable, if

any. If none of the states is acceptable, it returns HOLD.

B.2. Manager Commands

code force mode (process_id, mode)

integer process_id;

mode_type mode;

The manager uses force mode to force a process, identified by process_id, into one of two modes,
EXCEPTION and AUTONOMOUS. When a manager forces a process into EXCEPTION mode, there are several
possibilities. If the process is executing a transition, it aborts and enters an exception mode at its

previous state. If suspended, the process cancels the transition request and enters exception mode at its

current state. Ifitis at a state or has failed, the process enters an exception mode at the current state.
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When in an exception mode, a process may not request a transition. After the manager forces it back to
AUTONOMOUS mode, e.g. after a successful recovery from failure, the process may then resume requesting

transition.

Once it enters an exception (or autonomous) mode, the process responds with a code Okay.

However, it returns FATLED if it cannot enter an exception (or autonomous) mode for some reasons.

code mandatory_ transition (process_id, destination_state)

integer process_id;

string destination_state;

When a process is in an exception mode, the manager may use mandatory transition to force it to
make a mandatory transition. The manager supplies the destination state to which the process must
make a transition. If the transition is not defined in the process’s legal set of (exception) transitions, it

returns ILLEGAL Otherwise, the process will execute the transition and on successful completion, it

returns okay. Ifit fails to make the transition, it returns FAILED.

status_code query status (process_id, timeout)
integer process_id;
timer_value timeout;

The manager uses query_ status to query the status of a process identified by process_id. The process

may return one of the following status:

Status Description

SUSPENDED Blocked awaiting a granted transition
IN_TRANSITION Executing a transition

AT STATE At a state in autonomous mode

EXCEPTION At a state in exception mode

FAILED Unable to proceed due to an internal failure.

The timeout value indicates the period of time the manager waits for a response for the process. If the

timer expires before any response is received, the process is then marked as failed.
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