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Abstract

We present an approach for solving the path planning problem for a mobile robot
operating in an unknown. three dimensional environment containing obstacles of ar-
bitrary shape. The main contributions of this paper are (1) an analysis of the type
of sensing information that is necessary and sufficient for solving the path planning
problem in such environments, and (2) the development of a framework for designing a
provably-correct algorithm to solve this problem. No such analysis is currently available
for the case where the robot is able to freely move in space (i.e., has three degrees of
freedom in position). Working from first principles, without any assumptions about
the environment of the robot or its sensing capabilities, our analysis shows that the
ability to explore the obstacle surfaces (i.e., to make all their points visible) is intrin-
sically linked with the ability to plan the motion of the robot. We argue that current
approaches to the path planning problem with incomplete information simply do not
extend to the general three-dimensjonal case, and that qualitatively different algorithms
are needed. We also present a simple algorithm for solving the three-dimensional path
planning problem, under the assumption that an exploration algorithm is available to
the robot.

The support of the National Science Foundation under grants TRI-9022608 and TRI-8805943 is gratefully
acknowledged.






1 Introduction

The goal of our work is the development of strategies for real-time, purposeful, robust,
and provably-correct automatic motion planning in unknown environments where three-
dimensional reasoning and visual sensing is necessary. This type of reasoning is necessary
when a mobile robot must control its position for the purpose of reaching a desired location,
learning the shape of an unknown object, producing a map of a three-dimensional environ-
ment, or simply surveying it.

In this paper we consider the path planning or find-path problem, a problem fundamental
to the task of moving within a complex environment. We assume that the environment
1s three-dimensional space containing obstacles that are finite volumes bounded by closed
surfaces of arbitrary shape. We assume that the robot is a point and that it is equipped with
one or more sensors (e.g., a camera or a range sensor). Its goal is to plan a collision-free path
from an initial to a target location if such a path is possible, or to report that such a path
does not exist.

A crucial issue in motion planning is the type of information the robot has or is able to
recover about its environment through its sensors. Motivated by early artificial intelligence
approaches to problem-solving and planning, a large body of research in robotics considered
approaches following what could be called an act-after-thinking strategy. These approaches
emphasized the mutual independence between sensing and action and generated interest in
solutions to motion planning problems where complete information is available at the time of
robot action or decision making. The Piano Movers problem [1] was subsequently formulated
in order to solve the path planning problem in cases where the environment of the robot was
already accurately known.

The difficulties involved in recovering complete information about the environment a prior:



(e.g., about unstructured or cluttered terrains, or undersea and space environments) moti-
vated an alternative approach to robotic motion planning. Its underlying principle is that
intelligent behavior is the result of a collection of simple reactions to a complex world [2]. This
approach follows a purposive [3], act-while-thinking strategy [4]: Instead of trying to achieve
the general recovery goal, attack the motion planning problem directly by (1) using only the
sensor information necessary for planning the motion of the robot, and (2) considering robotic
motion planning as a continuous process where sensing and action are tightly coupled. The
approach advocates the need for real-time robot control with incomplete information [5] or
under uncertainty [6], and real-time spatiotemporal processing of the sensor input [7,8].

In this paper we study the path planning problem under the purposive, act-while-thinking
paradigm. The main contributions of this paper are (1) an analysis of the type of sensing
information that is necessary and sufficient for solving the path planning problem in an
unknown three-dimensional environment, and (2) the development of a framework for solving
the path planning problem in such environments. No such analysis is currently available for
the case where the mobile robot is able to freely move in space (i.e., has three degrees of
freedom in position).

Although the analysis we present is theoretical, its results have important practical con-
sequences. A major consequence is that assumptions about the capabilities of the robot and
its sensors currently used in path-planning algorithms for two-dimensional environments sim-
ply do not extend to the three-dimensional case. Furthermore, our analysis indicates that

visual sensing! is far more important for planning the motion of the robot in unknown and

1We use the term “visual sensing” in this context to characterize sensing mechanisms that allow us to
recover shape information about the portions of the obstacle surfaces that are visible to the robot from its
current position. These portions contain all points for which the open line segment connecting them to
the robot does not intersect any obstacle. In our discussion “visual sensors” include cameras, where only
information about the projected shape of the visible surfaces is directly available, as well as more powerful
mechanisms such as range sensors, that directly provide distance information for visible surface points within
a finite ball around the robot.



Figure 1: Motion planning on the surface of a building. The start position s is on the interior
surface of the building while the target position t is on the exterior surface. The interior and
exterior surfaces of the building are connected through the door and the window.

unstructured three-dimensional environments than previously thought (e.g., it provides the
robot with more powerful motion planning capabilities than tactile sensing). In particular, we
show that in order for the robot to be able to plan its motion in such environments it must be
able to visually explore them. This stresses the importance of solving the visual exploration
problem, which is the problem of making all points in the environment visible by planning
a finite-length path for the robot. In addition, these facts point to three-dimensional path-
planning algorithms that are qualitatively different from the algorithms currently employed
in robotics and that contain visual information processing as an important and indispensable
component.

Our emphasis is on developing deterministic strategies for solving the path planning prob-
lem that are not heuristic-based, but rather possess predictable properties (e.g., correctness
and bounded length of generated paths) even in geometrically-complex three-dimensional en-
vironments. The major problems that arise while trying to extend current approaches to the
cases we are considering are outlined below.

First, current approaches consider path planning as a problem independent of the visual
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exploration problem. An important consequence of our analysis in Section 2, which constitutes
the main part of this paper, is that in order to plan a finite-length path to an arbitrary
location in the environment or to determine whether that location is unreachable, the robot
must in general be able to visually explore the environment. An intuitive explanation of this
result can be given by considering the path planning problem in Figure 1. If the robot is
an “ant” constrained to move on the wall of the building, it must find either the window or
the door before it is able to reach the target position t. To do this it may need to explore
the entire interior surface of the building. This example is a manifestation of a deeper result
that follows from our analysis which states that the path planning problem is unsolvable, in
general, for a robot moving on an unknown surface for which the only information available
to the robot is the robot’s current three-dimensional coordinates and the coordinates of the
target location. Existing algorithms solve the path planning problem based solely on this
information only for the cases where the robot moves on a plane or on a surface for which
some geometrical information is available (e.g., that it is a torus [9]), or when known relevant
landmarks (e.g., a door) are available to guide the robot’s motion [8,10]. However, the
building example above illustrates that the path planning problem needs an approach very
different from current approaches when no shape information about the surface on which
the robot moves is available (e.g., a sunken ship or the ocean floor) and no landmarks are
present, requiring an exploratory process. This is also the case for a robot moving freely in
three-dimensional space cluttered with obstacles of arbitrary shape.

The results of our analysis in Section 2 establish the importance of addressing the visual
exploration problem in arbitrary three-dimensional environments, since solving this problem
is a fundamental requirement for solving the path planning problem. This leads us to the
analysis of the visual exploration problem. Even though the visual exploration problem has

been considered previously for the case where the robot moves in a three-dimensional space



cluttered with obstacles, only polyhedral obstacles have been treated. The algorithms rely
on the fact that the obstacles consist of a finite collection of planar faces, and produce paths
whose lengths diverge in the limit. For example, the exploration algorithm proposed by Rao
[11] has a complexity depending on the number of faces in the environment’s description. This
description, however, becomes infinite when the obstacles are bounded by smooth surfaces.
Consequently, exploration becomes an infinitely complex task even when the environment
contains geometrically simple surfaces (e.g., a sphere). On the other hand, previous work in
computer vision that addresses the visual exploration problem (e.g., [12]) has not formally
studied this problem and has not considered issues of correctness or convergence in arbitrary
environments.

The remainder of this paper is organized as follows. The next section presents the main
result of the paper, stating that the three-dimensional path planning problem requires in gen-
eral an exploratory process. The implications of this result are then discussed in Section 2.1.
Motivated by these results and by the limitations of current approaches to the path planning
problem, we consider this problem in conjunction with the visual exploration problem. To
this end, Section 3 presents a simple algorithm for solving the path planning problem in ar-
bitrary three-dimensional environments under the assumption that an exploration algorithm

is available to the robot.



2 Unsolvability of Non-Exploratory Path Planning in $*

In this section we show that, in general, path planning in three-dimensional environments
requires an exploratory process. We formally develop the notion of an “exploratory” algorithm
in an abstract setting, using an abstract definition of the sensing mechanism of the robot.
Without loss of generality we assume that the environment contains a single connected
surface S. Furthermore, we assume that S is closed, has an arbitrary shape, and bounds an
open, finite and connected volume Vs.? We define an automaton « able to plan its motion in

the space ®3 — Vs as follows:

Definition 2.1 (Sensing mechanism) The sensing mechanism of « is described by a func-
tion & assigning to each point z in ®3 — Vs a subset G(x) of R — Vs, such that when « is

positioned at z it can determine the three-dimensional coordinates of all points in &(z).

Definition 2.2 (Path of the automaton) The path p traced by the automaton is a con-
tinuous curve in ®% — Vs of finite length. The point s = p(0) is the start position of a. The

last point on p corresponds to the current position ¢ of the automaton.

Definition 2.3 (Memory of the automaton) Given a path p of the automaton, its mem-
ory M(p) is described by a subset of Uyep—1c}©&(2), such that when « traces path p it can

store the three-dimensional coordinates of all points in M(p).

The definition of the automaton’s sensing function expresses the automaton’s ability to
determine the three-dimensional coordinates for all points belonging to &(c). The idea behind
the definition of the automaton’s memory is that the automaton is capable of storing the

coordinates of some (or all) of the points it sensed from along its path.

2“Hollow” objects are not allowed under this definition, since this would imply that the surface bounding
the object is not connected.



Ezample 2.1 (Tactile sensing) If &(c) = {c} for ¢ € R — Vs, the automaton can only de-
termine the three-dimensional coordinates of its current position, an assumption used in the

path-planning literature (e.g., see [5]).

Ezample 2.2 (Range sensing) If S(c) = {¢z € R*|z € B(c,r) and z is visible from c}, the
sensing mechanism of the automaton corresponds to a range sensor that can determine the
coordinates of all visible points within a ball of radius r. Recall that a point z is considered

visible if the open line segment connecting it to ¢ does not intersect Vs.

Ezample 2.3 If S(s) = R® — Vs then the automaton has complete information about the

environment before it starts planning its path.

The above examples show that the definition of the sensing function & of the automaton
is very general (e.g., it does not restrict the sensing ability of the robot to purely “local”
sensing). This generality is intentional since our purpose is to identify those properties of the
sensing function that are crucial for determining the automaton’s ability to solve the path
planning problem. We are interested in sensing mechanisms that are less powerful than that
of Example 2.3.

The automaton can now be formally defined as follows:

Definition 2.4 (Automaton) An automaton « is a 5-tuple (&, M, A, 7, p) where

& is the sensing mechanism of the automaton
M is the memory of the automaton

A is the deterministic algorithm generating a new position for the automaton
7 is the input to algorithm A (defined below)

p is the path in R3 traced by the automaton.



In order to define the path planning problem we also need to define the notion of point

reachability:

Definition 2.5 (Reachable points) Two points z,,z; € R? are reachable from each other
iff they can be connected by a continuous curve that does not intersect Vs. Equivalently,

1, z2 are reachable iff they both belong to 2 — V5.

An automaton that solves the path planning problem is an automaton such that (1) when
its current position is ¢, algorithm A accepts as input Z the tuple (s, t, &(c), M(p)), where
p is the path already traced by the automaton, s € R — Vs is the initial position of the
automaton, and t is the target position, (2) if t is reachable from s, then a path p(s — t)
connecting s to t can be generated by A, and (3) if t is not reachable from s, then A terminates
after it has generated a finite-length path.

We now focus on a property of algorithm A that is crucial to our analysis below.

Definition 2.6 (Exploratory algorithm) We call A ezploratory iff for any surface S we

can choose a positive number Mg such that the following two conditions are satisfied:

1. For any path p generated by A, if length(p) > Mg then for all open sets U C S,

TEp

Un [U G(x)} # 0
2. At least one path of length greater than Mg can be generated by A.

We call A non-exploratory if at least one of these two conditions is not satisfied.

This definition of an exploratory algorithm states that the automaton is capable of sensing
all points on the surface (except for pathological sets) if a sufficiently large, but finite, path
is generated. Note that the exploratory property imposes very strict constraints on the

algorithm A: It does not simply require A to be capable of generating a path that allows the
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automaton to sense all points on the surface; it requires that all paths generated by A having
length greater than Mg have this property. Intuitively, this means that the algorithm must
control the motion of the automaton by always taking into account the points on the obstacle
surfaces that have already been sensed. Also note that the definition does not depend on the
characteristics of the path generated (e.g., whether it is a path between a starting position s
of the automaton and an a priori determined target position t).

The main goal of this section is to prove the following theorem:

Theorem 2.1 Let o = (6, M, A,T,p) be an automaton, where
1. A is a deterministic algorithm
2. 6(c) contains c for any c € R — Vs
8. M(p) = Use, ()
4. I =(s,t,6(c), M(p))
5. A can generate a path between ¢ and any point in &(c)
6. M(p) is closed for any finite-length path p.

Then a solves the path planning problem iff A is exploratory.

Condition 2 states that the automaton has available the three-dimensional coordinates of
its current position. Conditions 3 and 5 allow the automaton to store the coordinates of all
points it already sensed along its path and to plan a path to any of those points. Condition
6 ensures that the robot can determine the boundary of the points already sensed; together
with Definition 2.6 it ensures that an exploratory algorithm will allow the automaton to sense

all points on the obstacle surface.



We prove the ‘only if’ part of Theorem 2.1, since the other part is immediate by Conditions
3 and 5. We prove this by contradiction, assuming that there is a non-exploratory algorithm
that allows « to solve the path planning problem. In particular, we prove the following

proposition:

Proposition 2.1 Let a = (6, M, A,Z,p) be an automaton satisfying the conditions of The-

orem 2.1. If A is non-exploratory,

1. There ezists a surface S, and s € R3 — Vs such that the length of the path generated by

A for any point t € Vs is unbounded.

2. Given M > 0, there is a point t on S such that A plans a path between s and t of length

greater than M.

This proposition implies that determining whether or not t is reachable is an unsolvable
(or undecidable [13]) problem since if t is not reachable, the automaton’s algorithm will not

terminate. Refer to the Appendix A for a proof of the proposition.

2.1 Implications of Theorem 2.1

The intuitive result that follows from Theorem 2.1 is that the path planning problem in
arbitrary three-dimensional environments is in general unsolvable if the robot does not possess
an ability to explore the surface of an obstacle. An important consequence of this result is that
apart from the algorithmic machinery that must be available to the robot, certain constraints
are put on the sensing mechanisms that the robot needs to plan its path.

An important constraint imposed by the theorem is that the robot must be able to sense
all points on the surface (i.e., a two-dimensional set of points) from a one-dimensional set of
positions corresponding to the robot’s path. This implies that the sensing mechanism of the

robot must fulfill either (or both) of the conditions below for an arbitrary surface:
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e The robot can sense a two-dimensional set of points on the surface from a discrete

number of positions along its path.

e From each position in a one-dimensional subset of its path, the robot can sense a one-

dimensional set of points on the surface it did not previously sense.

The immediate consequence of these conditions is that tactile sensing, whereby the robot can
determine the coordinates of a point on the obstacle surface by means of single-point contact,
is not sufficient to guarantee the successful exploration of an arbitrary surface. Hence, tactile
sensing cannot guarantee the correctness of a three-dimensional path planning algorithm;
more powerful sensing mechanisms are necessary to deal with the path planning problem in
three dimensions. On the other hand, the above conditions point directly to algorithms that
use visual sensing (i.e., either a camera or a range sensor) for guiding the exploration and
the path-planning processes: The first condition leads to strategies where the path planning
process is guided by observing the obstacle surfaces from a discrete set of positions and
planning the motion of the robot between them (e.g., similar to [12]). The second condition
leads to the development of strategies that are based on the detection of one-dimensional
curves that can “slide” on the surface as the robot moves (e.g., the occlusion boundary [7]).

The above conditions also point to a two-dimensional path planning problem that has
been hitherto not considered: The problem of planning the motion of the robot between two
points on an unknown surface. Although the robot in this case moves in a two-dimensional
space, the path planning problem cannot be solved using traditional path planning algorithms
that assume the robot moves on a plane or a known surface (e.g., a torus). In fact, the above
conditions show that this problem is unsolvable even if the robot is equipped with visual
sensors, because the robot will not be able to explore the surface by tracing a finite length

path. For example, if the robot moves on a convex part of the surface, only the point of
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contact of the surface with the robot can be sensed, which is a zero-dimensional set. An
intuitive explanation of this result is that the problem is an overconstrained version of the
three-dimensional path planning problem, where the robot must reach a point described by
its three-dimensional coordinates while being constrained to move on a fixed (but unknown)
surface.This implies that the robot must in general move above the surface, planning its
motion in three-dimensional space, in order to reach the target position.

An important point in Theorem 2.1 is that no assumptions are being made about the
nature of the space in which the path planning problem is formulated. For example, the
space in which path planning is performed does not have to be the workspace of the robot
but could instead be a configuration space. This amplifies the importance of our result since
it implies that some motion planning problems that are cast as path planning problems in
three-dimensional configuration spaces may require the ability to explore the surface of the
configuration space obstacles. Non-exploratory path planning algorithms in three-dimensional
configuration spaces have been developed that take into account the natural constraints on the
shape of the configuration space obstacles imposed by the geometry of the robotic manipulator
[9,14]. However, there are problems where the configuration space obstacles can have arbitrary
shapes. For example, the problem of planning the path of a box between obstacles in a plane
can be transformed to the problem of planning the path of a point robot in a three-dimensional
configuration space containing arbitrarily-shaped obstacles. An important direction for future
research will be to design exploratory algorithms for this and other similar configuration space

path planning problems.
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3 Path Planning in ®?

Having identified the key characteristics of algorithms that can solve the path planning prob-
lem in three dimensions, we now consider the issue of how to design such an algorithm. We
assume that the environment of the robot is 2, containing a number of obstacles that are
finite volumes bounded by closed surfaces of arbitrary shape. Obstacles in the environment
do not touch each other. Furthermore, we assume that (1) any ball of finite radius intersects
only a finite number of such obstacles, and (2) the intersection of any plane with an obstacle
contains only a finite number of connected regions.

We will assume that the robot is modeled as a point automaton «. The automaton has
available an exploratory algorithm Ag, discussed in Section 4, for exploring the surface of
any obstacle by tracing a finite-length path. The goal of this section is to design a provably-
correct exploratory algorithm Azp for a that will use Ag as a component to solve the three-
dimensional path planning problem. Here we focus on the case where the sensing mechanism
of the robot is a range sensor, i.e., the robot is able to determine the three-dimensional
coordinates of all points on the obstacle surfaces such that (1) they lie within a ball of fixed
radius, and (2) the open line connecting them to the position of the robot does not intersect
any obstacle.

The main idea of our approach is to decompose the path planning problem in three

dimensions into two independent subproblems:

e A planar path planning problem, solved by an algorithm A;p, where the robot must
either plan a path between two points s and t in a given plane by tracing a finite-length

path, or determine that the two points are not reachable from each other.

e A three-dimensional exploration problem, solved by algorithm Ag, where the robot -

explores an obstacle surface until either the robot’s position or a surface point sensed
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by the robot satisfies a given condition.

The remainder of this section describes how algorithms A,p and Ag for solving these two
subproblems can be combined to produce a path planning algorithm for the three-dimensional

problem.

3.1 Decomposition of the Path Planning Problem in #?

Let s and t be the start and target position of the robot and let z be a point in R* such
that s,t and z are not collinear. These three points define a plane II in R3 that possibly
intersects the obstacles in the environment. Although the target location t may be reachable
from s, it may or may not be reachable by a collision-free path on II. If s and t are reachable
on II, one of the known planar path planning algorithms (e.g., [5]) will be able to solve
this path planning problem. On the other hand, if t is not reachable, the robot must plan
its motion by moving outside of II (Figure 2). The idea behind the decomposition of the
three-dimensional path-planning problem is to consider it as a collection of two-dimensional
path-planning problems in II and a series of exploratory motions that force the robot to move

outside of II.

Definition 3.1 (II-reachable) Let IT be a plane in ®°. Points s and t are called II-reachable

if they can be connected by a curve in II that does not pierce any obstacle.®

In general, plane II will intersect a number of obstacles in the environment. The inter-
section of II with an obstacle O will be a collection of closed curves (not necessarily simple),
lines, points, or even two-dimensional regions of II (e.g., when II touches the face of a cube).

Since the robot is allowed to move on the surface, areas of contact of the surfaces with II that

3We will assume that the robot can move on the obstacle surfaces, and therefore paths that are tangential
to the obstacle surfaces or lie on these surfaces will be considered acceptable.
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Figure 2: Path planning around a crater-like surface. Points s and t are reachable but not
II-reachable. The robot must plan a path outside plane II in order to reach ¢ (e.g., path p).
The two curves in II N S are the only obstacles presented to a robot constrained to move in
II. These curves define two equivalence classes gy, g, of II-reachable points.

are isolated lines, points or two-dimensional regions are not considered obstacles. Therefore,
the obstacles for a robot constrained to move in I will only consist of closed curves. II-
reachability is defined in terms of these obstacles. It partitions points in II not belonging to
obstacle interiors into equivalence classes, where each equivalence class contains points that

are II-reachable from each other (Figure 2).

Definition 3.2 (Reachability region) The set {z : z and t are II-reachable} is called the

reachability region of t in II.

Clearly, if the robot can reach from s any point within the reachability region of t in II,
then any planar path planning algorithm that is consistent with the definition of the obstacles
in IT (i.e., non-polyhedral and arbitrarily-shaped closed curves) can complete the path from s

to t. We will use the exploration algorithm Ag to reach the reachability region of t in II. This
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region is bounded by curves in the intersection of II with the obstacles in the environment.
Therefore, if the robot is able to sense points belonging to any of these curves using Ag, the

robot will be able to reach a position on II that belongs to the reachability region of t.

3.2 Algorithm Ayp

Simply for the sake of specificity we assume that the robot uses algorithm Bugl [5] for solving
the two-dimensional motion planning subproblem. This algorithm assumes the robot can
determine its three-dimensional coordinates and knows the coordinates of the target location.
The robot can also determine when it is in contact with an obstacle, and it can move (1) in
a straight line toward the target until it contacts an obstacle surface or until it reaches the
target, or (2) move along an obstacle boundary in plane II.

Briefly, a robot using the Bugl algorithm moves toward the target in a straight line in II
until an obstacle is encountered or until the target is reached. If an obstacle is encountered,
the robot moves along the obstacle boundary in II until it is completely circumnavigated. It
then performs a Il-reachability test and if the test is positive it defines a leave point on the
obstacle boundary and continues moving toward the target in a straight line. If the target
is not II-reachable, the algorithm can determine which obstacle boundary in II contains the

target in its interior.

3.3 Algorithm Ag

We will assume that the robot uses a procedure EXPLORE(l,d) to explore the obstacle
surface containing the closed curve [ € S NII until a point on S is sensed by the robot such

that its distance to t is less than d.
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3.4 Algorithm A;p

We now have a simple algorithm for planning the path of the robot in arbitrary three-

dimensional environments:

1. Use algorithm A;p until either t is reached or until Ayp determines that t is not II-
reachable (i.e., t is contained in the open region of II bounded by { € SNII). If t is

reached, stop. Otherwise, let d be the distance of t from .

2. Use algorithm EXPLORE(l,d) to explore the surface of the obstacle containing { until
a point = € II is sensed with distance to t less than d. If no such point is sensed, stop

(t is unreachable).

3. If a point z is sensed, move on a straight line to z, and continue at Step 1.

We provide a proof of the following lemma in the Appendix, which shows that algorithm

Asp is correct.

Lemma 3.1 Steps 1-3 will be executed a finite number of times. Furthermore, if t is reach-

able, the position of the robot when the algorithm terminated will be t.
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4 Exploring Smooth Surfaces in 33

The goal of the exploration algorithm Ag is to generate a path for the robot that allows it
to sense, through its visual sensors, an obstacle surface point that satisfies a specific distance
constraint from the target location. The key phenomenon limiting the robot’s ability to sense
such a point from an arbitrary position is that of occlusion. Occlusion occurs in environments
containing opaque obstacles, where the light reflected from their surfaces cannot go through
the obstacles. Consequently, for any position of the robot, some portions of the obstacle
surfaces will be occluded from view. In general, in order for the robot to induce the visibility
of an obstacle surface point satisfying the above distance constraint, the robot must have
the ability to visually explore an arbitrary obstacle surface, i.e., to induce the visibility of
all surface points that are occluded by generating an appropriate finite-length path for the
robot.

Visual exploration of an obstacle surface requires the ability to perform two tasks: (1) to
plan the motion of the robot so that it induces the visibility of previously-occluded points on
the surface, and (2) to then determine that the exploration goal has been achieved. In order
for the robot to perform these two tasks it must represent in some way the set of surface
points becoming visible during the exploration process or, alternatively, the set of surface
points that remain occluded.

The approach we take allows the robot to explore the environment by following a contin-
uous, collision-free path while continuously monitoring the environment using a camera. The
central concept in our approach is the ezploration frontier. This is the one-dimensional set
of points on the surface that bounds the points seen so far during the exploration process.
We address the exploration problem by considering the dynamic evolution of the exploration

frontier under continuous motion of the robot. Its evolution depends in a simple way on the
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instantaneous motion of the robot and the dynamics of the visual mapping.

As the robot continuously moves in the environment, the exploration frontier “slides” on
the surface, tracing strips. The main idea of the exploration strategy is to have the robot move
on a family of parallel planes (e.g., parallel to the plane II used by algorithm Asp) in order
to completely cover the surface with partially overlapping cylindrical strips. This strategy
involves two phases. The first phase is a planar motion phase in which the robot explores a
cylindrical strip on the surface. In the second phase the robot first decides whether it should
move above or below the current motion plane and then moves in the chosen direction to a
different plane in the family in order to explore a new strip on the surface. Results from the
differential topology of surfaces allow us to represent the surface as a graph and to reduce the
exploration process to an abstract graph exploration problem. In this respect our approach is
close in spirit to approaches that address the motion planning problem in planar environments
by first reducing it to a graph-theoretical problem [4,11]. We use a graph representation of the
surface that is a direct generalization of a tree-like representation developed by Koenderink
for the qualitative description of gray-scale images [15]. More details on the algorithm and

the analysis of its correctness and convergence properties will be presented in a future paper.
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5 Concluding Remarks

This paper reveals a crucial link between the path planning problem and the problem of
visually exploring a three-dimensional environment. By showing that visual exploration is
necessary for successfully planning the motion of a robot in unknown three-dimensional envi-
ronments, our analysis stresses the importance of integrating exploratory visual sensing with
motion planning. This work makes explicit the need for solving the visual exploration prob-
lem. Important future research issues will be to study the implications of our analysis for
path planning problems in three-dimensional configuration spaces, and to study the visual

exploration problem.
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Appendix

A Proof of Proposition 2.1

To see how the above proposition can be proved, consider the non-exploratory algorithm 4
and let S be the surface for which one of the conditions of Definition 2.6 is not satisfied.

Now suppose that A solves the path planning problem. Then for any points s,t with
s € R*—V; and t € V; the path generated by A is of finite length. We proceed by deforming
S into a new surface that contains t and considering the paths generated by A on this new
surface. Intuitively, the idea of the proof is to show that any‘ non-exploratory algorithm that
plans a path from s to t must be able to “foresee” any possible deformation of the surface
that would make the surface contain t. This requires the generated paths to have unbounded
length, therefore contradicting the correctness of the algorithm.

The next subsection makes formal the notion of deforming the surface in the environment.
We then consider the problem of planning the path between s and an unreachable point t
on the surface §. Because the algorithm is deterministic, Lemma A.1 and its extensions
proved in Section A.2 show that we can appropriately deform the surface without affecting
the initial portion of the automaton’s path, even though after this deformation process t
becomes reachable. Lemma 3.1, whose proof we omit due to lack of space, then shows that
the length of this initial portion of the path is unbounded.

In order to avoid ambiguities concerning the environment in which « operates, we write
ag for the automaton operating in the environment that contains surface S and, similarly,

write pg for its path.
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A.1 Deformations of S

Let v : [0,1] — S be a simple closed curve on S and let € = 7([0,1]). We only consider

curves C that bound an open region R¢ of S homeomorphic to a disk.*

Definition A.1 Given any tuple (S5, C,t) we define the deformation S& of § with respect to

C and t as
(1) St = (feVils_m,) (9)
where

¢ is the identity function in R3
f& : Roc — Ry is a homeomorphism with f|, =i |s, t € f&(Ro), and Ry, C V.
Ro, R are the closures of Rp and Rl respectively.

Since t is in the connected set Vi, it follows that such a homeomorphism f§ exists,
i.e., we can deform R¢ in the above fashion without altering its genus, producing any self-
intersections, or intersections with 5 — Rg. Also, from the Glueing lemma [16] it follows that
both (f& Udls_ Rs) and its inverse are homeomorphisms.

For any fixed point t € Vg, f& allows us to associate a unique surface 5'(5 with each simple
closed curve C' bounding a disk in S, such that S’g contains t. In the following we fix t and
omit the superscript in 3& Intuitively, S¢ is created by producing a dent in S so that the

new surface contains t.

A.2 The Main Lemma

The main idea of the proof of Proposition 2.1 lies in the following simple observation. Since

algorithm A is deterministic, any deformations applied to regions of S that were not sensed

4If $ is homeomorphic to a sphere, then without loss of generality assume that as point ¥(¢) moves on C
by increasing ¢, the region R¢ is to the left of ¥(t).
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(a) (b)

Figure 3:

along the path already traced by the automaton will not affect the execution of A (i.e., the
path of the automaton) up to the current position of the automaton.

We make these ideas concrete as follows. Let Cp, Cy be simple closed curves bounding disks
Re,, Ro, on S. We consider the actions of three automata, ag, g, and Qg - We assume
that they use the same algorithm to plan their motions and the same sensing function but
live in three different spaces, namely the sets R — V, ®% — VS~CO, and %3 — VS~C1 respectively.

Let Pse, (s — t) be the path from s to t traced by g in 3 - VSCO (Figure 3). Suppose
G(S)ﬂ—]—%—/;: = [ (i.e., the automaton Qg Cannot sense the deformed portion of S from position
s), and let ap be the first point on this path for which S, (ao) VR, # 0. Since s € R®—V;
the initial portion p of this path will be contained in %% — V5.

Now consider p as a path in £ — V. Suppose that &(s) N Rg, = 0. Let by be the first
point of p for which &(by) N Re, # 0, and let Pe, (s — bg) be the initial segment of p up to

and including point by. We now have the following lemma:

Lemma A.1 If Rg, N M(pgco(s — bg)) = 0, the path P, (s — t) traced by ag, contains

pgco (S —3 bo)
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Proof. Consider the input available to algorithm A at by after planning path Pse, (s — byg)
for automaton ag,. This consists of the coordinates of s,t and of all points in ./\/l(pgc0 (s —
bo).

We now apply the following deformations on S¢,:
1. Deform R, into Re, using (f&,)™"
2. Deform Rg, into Ry using f& .

First note that by definition both R¢, and R, have no points in common with M (p§c0 (s —
bo). Hence the execution of the algorithm is not affected by the first deformation step applied
to S¢,. Second, note that by the assumptions of the lemma Rg, and M(p§c0 (s — bg)) have
no points in common.

The first deformation step deforms ‘§Co into S. We can therefore conclude that the paths
generated by the algorithm for o Sc, and ayg are identical up to and including point bo.

Now, by the definition of the deformation operation, Rf, is contained in V. Since
M(ps(s — bg)) has no points in common with either V;z or Rg,, the second deformation
step cannot affect 4 at least until the automaton g, has traced Ps., (s — bg). O

We now apply Lemma A.1 to a sequence of simple closed curves (C), bounding a disk in
S in order to show that the path generated by A on S will pass through enough points to
make its length unbounded.

Note that for each simple closed curve C, in the sequence, we can assign a point b, €
(R® - Vg) N (R® — Vg, ) such that pg_ (s — bn) C R® — Vg and M(pg,_ (s — b)) has no

points in common with R, .
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Definition A.2 (Independent sequences (C),) We call a sequence (C),, of simple closed

curves bounding disks on $ independent iff the following condition holds for all n:

n—1
(2) Ro, 0| U M(ps,, (s = bm))| #10
m=1
Lemma A.2 Let (C), be an independent sequence of curves in S. Then for any n >

0,pg, (s = t) contains all ps_ (s — bm),m < n.

Proof. By induction on n, applying Lemma A.1. O

The following lemma makes explicit the connection between pg(s — t) and pg_ (s — t).

Corollary A.1 Let (C), be an independent sequence of curves. Then for anyn > 0,ps(s —

t) contains all paths pg, (s — bm),m <n.

Proof. Use Lemma A.2 to show that ps_ (s — t) contains all Pi.. (s = bm),m < n.

Then apply deformation ( f;,Cn)"1 to R, so that S¢, deforms into §. Because of the
independence assumption and the definition of b, the input to algorithm A upto and including
point b, will not be affected by this deformation. Therefore the path traced by the automata

ag and ag_ will be identical upto and including point b,. U

A.3 Proof of Proposition 2.1

Corollary A.1 shows that if we can construct an independent sequence of curves (C'), then
ps(s — t) contains the initial portions all paths ps_ (s — bm),m < n. Proposition 2.1 in
now proved by the following lemma which shows that we can find such a sequence so that

the path generated by A in the environment containing $ is of infinite length:

Lemma A.3 There exists an independent sequence of curves (C), such that for any positive

M > 0 there is an integer npy such that

(3) length(ps, (s — bn)) > M
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Proof. Let Cy be a simple closed curve bounding a disk in S. To create the sequence (C)r
we choose C,, to be a simple closed curve bounding a disk in § — %=} [M(pc,.(s — bm))NS].

The infinite sequence (C), is well-defined because it is always possible to select such a

curve C,. To see this, first observe that pc,, (s — am) contains pe,, ,(s — am-1) and hence

we have

(4 5 U [Ments = bu)) 0 §]

(5) = N [MGon—Bal 0 8]
(6) = $ — [M(po,,(s = an-1)) N ]
(7) = M(pc,(s — bg))N S

Now note that algorithm A is not exploratory and S was chosen so that for any finite path
p generated by A there exists an open set U containing no points in common with M(p). So
we can choose C, to be a simple closed curve bounding a disk in U.

Finally, we need to show that we can choose the curves C, in the above manner so that
the length of the path connecting points s and (b), is unbounded. It suffices to show that

the polygonal path connecting points (b), is unbounded, i.e., that

M

(8) Y do(bm, by) > M

mz=]

where d; is the Euclidean distance metric in ®2.

Suppose no such sequence exists. This implies that Y o2, d2(b,, b,—1) is bounded for all

n=

sequences (C),. Let (C), be any such sequence. Then we have
(9) Tim 3" dy(bay bar) = L < 00
k=2
since it is an increasing sequence bounded from above. Let b, be the limit of the sequence
(0)n-
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Now the curve C,, is chosen from the set (Y3 (M(pg,.(s = t)) N S). Curves (C), are
chosen to lie in a sequence of subset intersections
1

N [Mpons = bm)) NS >+ > rTjO [Mpe,.s = Bm))N 8] > -

m==0

none of which is the empty set. Therefore, the limit of the sequence exists and is a set M.

It follows that M, does not contain any open sets. But now the path traced by the
automaton up to and including the limit point b, is finite and all but a degenerate set of
points have been sensed by the automaton. However, this contradicts both conditions of
Definition 2.6 since A was assumed non-exploratory. [

Proof (Proposition 2.1). Proposition 2.1 now follows directly from Lemma A.3. The second
part of the proposition is proved by this lemma by setting Sy = 5’Cn for an appropriately
chosen n. The first part now directly follows, since from Corollary A.1 we have
(10) p3(s — t) > sup{length(pg, (s — t))} = oo

n>0

O
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B Proof of Lemma 3.1

Since Steps 1-3 are each executed once during the loop of Azp, it suffices to show that Step

1 is executed a finite number of times, and that if t is reachable, it is reached at Step 1.
Suppose Step 1 is executed when the robot is at a position s from which t is not II-

reachable. Let y be the point of minimum distance on curve ! (defined in Step 1) to t. We

first show the following lemma:

Lemma B.1 Let L be the half-open line segment connecting y to t and containing t but not
y. If L is not contained in the open volume bounded by S, the distance between y and t strictly

decreases between successive evecutions of Step 1.

Proof. Suppose that L is not contained in the open volume bounded by S, and let w be the
point of intersection of L with S NII that is closest to y. We first show that this intersection
is not empty.

Suppose the intersection is empty. This implies that L must lie completely outside the
volume bounded by S. This, however, contradicts the definition of y since t would be II-
reachable in this case.

Now, since w is a point on S, it will become sensed during the exploration of 5. Hence, the
point & sensed at Step 2 will have a distance from t at most equal to the distance of w from
t. This implies that the algorithm will not terminate after performing Step 2. Furthermore,
algorithm BUGI guarantees that the point y’ selected during the subsequent execution of
Step 1 will have distance from t at most equal to the distance of z from t. O

We can now prove Lemma 3.1 by showing that Steps 1-3 are executed a finite number of
times as follows:

Proof (Lemma 3.1). Consider the closed curves bounding the intersection S NII. The curve

I will correspond to one of these curves. Furthermore, for each curve [ we can associate a
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distance d; corresponding to the distance from the curve to t. From Lemma B.1 we know that
after Step 2 is executed the distance to t will be less than d;, where [ is the curve selected in
Step 1.

To show that Step 1 is executed a finite number of times it suffices to show that only a
finite number of distinct curves | can be selected, i.e., that only a finite number of curves [
are contained in a disk of radius d;, for any [.

From our assumptions about the environment it follows that each disk D of finite radius
can intersect only a finite number of obstacles. Furthermore, only a finite number of closed
connected regions are contained in the intersection of DD with an obstacle. It follows that
the total number of regions contained in D N S is finite and, therefore, the number of curves
bounding these regions is also finite.

Since Steps 1-3 are executed a finite number of times we can conclude that the algorithm
terminates if t is not reachable. Now, suppose that t is reachable and that the algorithm
terminates before t is reached. This can only occur after performing Step 2 of the algorithm.
Let y be the point defined in Step 1 of the cycle of the algorithm in which the algorit‘hm
terminates. Since t is reachable, it follows that the half-open line segment connecting y to t
is not contained in the volume bounded by S. This leads to a contradiction, because from

Lemma B.1 the algorithm cannot not terminate at Step 2. O
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