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Abstract. For three finite difference approximations of the Stokes equations, the
Schur complement @}, of the linear system generated by each of these approximations is
shown to have its condition number x(Qp,) independent of mesh size. This result is used
to prove convergence estimates of the solutions generated by Q for these approximations.
One of the convergence estimates is for a staggered mesh scheme and the estimate for this
scheme shows that both the pressure and the velocity are second-order accurate.
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1. Introduction. The pressure equation (PE) method, a new fast iterative method
to solve finite difference approximations of the Stokes and the incompressible Navier-Stokes
equations has been introduced by Shin and Strikwerda [10]. The PE method and many
other iterative methods to solve the Stokes equations are heavily dependent on the prop-
erties the Schur complements of the linear systems resulting from discretizations of these
equations, which we investigate in this paper.

We first review the PE method. The steady-state Stokes equations in R? are

Vi — \%p = j?*
. in Q c R (1.1)
V-il=yg

The velocity @ is a vector of dimension d and the pressure p is a scalar. Consider the the
Dirichlet boundary condition

i=b on 0N (1.2)

Let Ay, G and Dy be the operators generated by discretizations of the differential

operators
v o0 . -
( 0 v2> > -V > and (V),

respectively. The discretization of (1.1) and (1.2) may then be written as

Ah,uh + thh = fh
Dpup = gn

(1.3)
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and

wp = by o9,
respectively.
Note that
Apup = fr, — Gapn, wp="b, on 99 (1.4)
by the first row in (1.3) and (1.2). Hence
Up = Vp — Wh (1.5)
where
Apvn = fh v, =by, on 0}
and

Apwy, = Grpns wp,=0 on OLQ.

If A' and A;' are the inverse operators of Ay using the zero boundary condition and the
boundary condition for up, respectively, then

vp = A'bl fn and wp, = AZ)IG RDh- (1.6)
Using the second row in (1.3), (1.5), and (1.6), one obtains
Dy(vyh — wn) = gh

and
Dy Al Grpr = DAz fr — gn-
Thus
Qh,ph = DhA;;l fh — Gh, (17)
if we let

Qn = Dy A Gh.

The operator @y, is called the Schur complement of the linear system (1.3).

In this paper, we show that, for three finite difference schemes, the operator Qp is
self-adjoint, positive definite with eigenvalues bounded independently of mesh size. In each
of these cases, one can use the conjugate gradient (CG) method to solve (1.7), and the
number of the CG iterations required to solve (1.7) should be independent of the grid
parameters. The iterative method based on solving (1.7) by the CG method is called the
PE method.

A popular iterative method to solve the Stokes and Navier-Stokes equations is the
pressure poisson equation (PPE) method, see [4]. Applying the divergence operator (V)
to the first row in (1.1), we have

VY .0) -V -Vp=V-f
and. by the second row in (1.1),
sz)zvzg——ﬁ-f
The PPE method is based on solving the above Poisson equaton for pressure. A boundary
condition for pressure is needed to solve this equation and it is not clear which boundary
condition is appropriate, see [4]. The PE method is similar to the pressure poisson equation

(PPE) method in the sense that they use equations for pressure only, but the PE method
doesn’t require a boundary condition for pressure.
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2. Definitions and inf-sup conditions. Let Q be a domain in R? and let T be its
boundary. For simplicity, we focus on the case when d = 2, but the results in this paper
will hold for any d > 2. We denote by L?(2) the space of real functions defined on 2 which
are integrable in the L? sense with the following usual inner product and norm

(u,v)q = // uv dA, ||ullf = (u,u)e.
Q
LGt
Hy(Q) :={u € L*Q) | uy,uy € L*(Q) and u|r =0}

have the following inner product and norm

(u,v)1 0= // Vu-Vo dA, lulli o = (v, u)1,0
Q
and
L3(Q) = {p € L*(2) | (p,1)a = 0}.

We use the notation @ = (u;) for a vector. We shall often be concerned with
two-dimensional vector functions with components in L2(2) or H}(2). The notation
L2(0)%, HE(Q)? will be used for the product spaces. Define, for # and ¢ € L?(Q2)?,

2
(@, 0) =Y (uivida , |l = (& d)a
1=1

and. for @ and ¥ € H(Q)?,

2
(@,0)1,0 = Z(%w)l,n Nl e = (@ D e

i=1

We also make some definitions analogous to the above on discrete subsets of the unit
square S in R2, Let
S:={(z,y) eR* [0<z,y<1}

and T its boundary. Let

1
h .= T for some N € N,
R2 :={ (Ih,mh) e R? | I,m € N },
Sh:=5nN R%

where S is the closure of S.
For an arbitrary discrete set 2 of the form

Qp={ ({h,mh)e Sy |lo <1<y and mg <m <my },
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we define
‘}’l::{(Zh,mh)EShllo—}—lSlgll—l  mo+1<m<my -1},
e(Q) :={ (lh,mh) € Sy | o+ 1< I1<l;, mo<m<m},
w(Qy) = { (Ih,mh) € Si |l <1<lhi—1, mg<m<my 1,
s(Q) :={ (thymh) € Sp [ Lo <1< L, me<m<my—11},
n(Q4) = { (Ih,mh) € S | lo < 1<li,mp+1<m<m }
as the interior, east, west, south and the north sides of  and define
se(Q) i= s(Qn) Ne(Sn), sw(Qp) := s(Qn) Nw(§2n)
ne(Q) == n(Qr) N e(h), nw(Q) = n(Qn) N w(2r).
For the boundary 'y of Qj, we define
e(Tr), w(Th), s(Th), n(Tr)

as the east, west, south and north parts of T, including the end points.

In this paper, we want to study both standard and staggered grids. The staggered
mesh schemes use different grids that are staggered for the pressure and the velocity. A
staggered grid is shown in Figure 1. The points marked by P, I, and II are where the
pressure and the first and the second components of the velocity are defined, respectively.

Figure 1
1 I 1 I
1 T 1T 1T 11
P { P { P
n 1F 1f i i
y p [ P | P |
i it i f n
rp | P | P |
I 11 17§ Tt I
1 ! I I

Let
1
Sp :::{((l~—;1)-)h, (mws)h)GSll,mzl,...,N},
1
Sr={(lh, (771-—3)71)6511::0,...,]\/',sz,...,Nr{—l},

1
SH::{((Z—-;)h, mh)eS|1=0,...,N+1, m=0,...,N },
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then these are the sets for P, I, and II. Figure 1 shows Sp, Sr, and Sy when N = 3.
Staggered mesh schemes have been used by Amsden and Harlow [1], Brandt and Dinar
[2], Harlow and Welch [6], Patankar and Spalding [8], and Raithby and Schneider [9] and
others.

Let

Swzz{(a:,y)€R210<.’6<1-h,0<y<1},
Se:-:{(x,y)eRzlh<3:<1,0<y<1},
Sszz{(m,y)€R2]0<m<1,0<y<1~h},
S, i={(z,y) eR*|0<z <1, h<y<l},

/ /
Sl:={(x,y)€R2}O<m<1,———;<y<1+¢;},

/ /
Sg::{(n;,y)ERgl~—7;-<:c<1+-;,0<y<1}

Sew 1= Ss N Sw, and Spe 1= Sp N Se

be the continuous analogues of w(S), (S »), and so forth, respectively.
Let L?(Q2;) be the space of all discrete functions defined on §2j with the following
inner product and norm

U, Vg, =0 Y Ulw,y)V(zy),  IWUla, =T Ua
(z,y)€Q

and let

L%(Qh) = { P e LQ(Qh) i (Pal)ﬂh =0 }7
then L2(Q) and L3(£2) are the discrete analogies of L2(2) and L3(Q).
, 0 g ol

For notational convenience, we introduce
Upm = U(lh,mh),

and define the forward, backward and central differencings on the z axis and y axis,
respectively, as

Ul—i—l,m - Ul,m

- Zjl,m~!-1 - Ul,m
3

(6o U = - (6 D) = .
U m " U -1m U m U m—
(U = Dem DL (8 Uy = =g
Upgs m U1 m U m++ U m—x
(buU)1m = ik X PIm L (&0 )m = bty b3

h h

Define the discrete gradients as
Fyoi= (b gt )y Vo= (6o 0-),  and %, = (buo, 0 )
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and let V;2 be the five-point discrete Laplacian, then

Ve =V =V

The inner product and the norm of
Hi Q) ={Uel*) | U, =0}
are defined as . . . .
U, Ve, = (U, NV )swian) = (VU V-V ne@n),
HU”%,Q,, = (U, U)1,0.

which are the sums over all points in §2;, where difference quotients are defined. The inner
product and the norm of the product spaces Lz(Qh)2 and H é (Qh)z are defined naturally
from L2(Q) and HY(Qn).

The following inf-sup conditions are essential to study Qp, the matrix in the pressure
equation (1.7). Refer to Shin and Strikwerda [11] for the proofs.

Theorem 2.1. There exists a positive constant C, which is independent of h, such that

\ (‘—7‘0 ’ ﬁ')P)QS
(1) sup 5 ; o
OGHé(SI)XHé(SI]) HU]»HI,S] + H['-?H],SH

> C|PIl%,, VP e Li(Sp),

(2) sup

> C||P|%, VP e L3(S7),
desri(uisa) xiss 10 wisn + 1020 as0) "

(3) sup

5 > C||P|%, VP e Ly(Sp)
deri(e(se) x (s 10 sy T 102017 s, '

3. Approximations by Finite Differences. Three finite difference approximations
Q) are introduced in this section. Let P € L?*(S?), then 6P and 6, P are defined in
w(Sy) and s(Sg), respectively. Note that

w(Qy) = w(h)°

for any rectangular subset Q of Sj. Hence if U € HY (w(Sh)) x Hi(s(Sr)) is the solution
of
VU, =6_P inw(S;)° and V@ Ux=68P ins(5h)" (3.1)

then L
Q-P:=\_-U in S} (3.2)

is well-defined. The above finite difference problem is similar to the following partial
differential problem : For p € L%*(5,US;), define

Qp:=V-4 in Seu (3.3)
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where @ € H3(Sw) x H3(S,) is the solution of
Viu; =p; in Swe and Viuy =py inSs. (3.4)
Similarly, for P € L%(S7), let 0 € Hi(e(Sy)) x Hi(n(Sh)) be the solution of
V2 Uy = 64 P in e(Si)° and V2 Uy = 6 P inn(S)°, (3.5)

then

Q.P:=% U in Sf

is well-defined. The above finite difference problem is similar to the following partial
differential problem : For p € L*(Se U Sy,), define

Qp = \ART! in  She
where @ € HY(Se) x HE(Sn) is the solution of
V2uy =p, inS. and Viug = py in Sn. (3.6)

Another approximation comes from the staggered mesh schemes. For P e L*(Sp), let
' € HY(Sr) x H}(Sm) be the solution of

V2 Uy = 6P in S} and V2 Uy = 6P in S, (3.7)

then

QP :=%-U in Sp (3.8)

is well-defined. The above finite difference problem is similar to the following partial
differential problem : For p € L?(S, U Sy), define

Qp:=V-4 in S (3.9)

where @ € HL(S1) x Hj(S2) is the solution of
Viuy = p, inSy and Viug = py in S. (3.10)
4. Preliminaries. In this section, we get some basic results for the next sections

and also show that Q4 and Qs are self-adjoint. The next lemma resembles integration by
parts.

Lemma 4.1. IfU,V € L*(Q) with UV |ermyuw@s) =0 then

(6t U, V)wan) = ~(U, 531—v)6(9h)'
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Proof. Let
Qp:={ (h,mh) € Sy | lo <1<l and mg <m <y 1,

then we note that Uy mVim =0if [ = lp or I;. Hence

my  li—1 Ul Ul
1,m m
6t U, V)i =0 D ( = > Vim

m=mg l=ly

my my L—1
( Z Z Ul mVi- 1,m — Z 1}_ﬂJU'l,rnVlnn)

m=myp l=lg+1 m=mg l=Ig

m m I
( 2}: Z Z]I m‘/[ 1,m Zl Z Ul,m%,m)

m=mg {=Ilg+1 m=mg l=lp+1

m1 Viom — Vicim
Z Z Utm <_£-_—/2_I—“1_,—> = —(U,6-V)e(an) ©

m=mg l=lp+1

A similar result for staggered grids is stated in the next lemma. Other similar results
which arise from different discrete domains and different differencings will be used without

proof.

Lemma 4.2. Let P € L*(Sp).
(1) ForU € HY(ST), (U,60P)se = (=6U, P)sp.

(2) ForU € HE(Su), (U,60P)ss, = (—6,U, P)sy-
By Lemma 4.1, we get the next lemma.

Lemma 4.3. ForanyU € H}(Q4),
(1) HOL—UHe(Qh) = H‘sﬁ-U”w(Q y = (l7>‘5$~6i+U)Q;’,

(2) HO UHn(Qh Héy'f'UHs(Q, _’(la‘bg——éy—}-U)Qz
(3) UIRq, = U, =V Uas.

Proof. Let
v { ot U, in w(§2);

any finite number, on e(T'y),

then. by Lemma 4.1,

16-Ul2 e,y = N6t Uy = (64U, 86t Uwiern) = (64 Us Vw(an)
= (U, ==V )e(n) = (U, =&-V)as = (U, —b- 1. U)gs -

The proof for (2) is similar. The statement (3) follows from (1) and (2). o
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Relation (3) in Lemma 4.3 extends to Hg(£2,)* and implies that ~V,2 is positive
definite, and hence the Schwarz inequality for -V2,

(V-2 T, < (V,=Vi2 Vag (T, Vi D), (4.1)

holds for any U and V in H Q)%
By Lemma 4.1 and Lemma 4.2, we can show that the approximations Q+ and (s are
self-adjoint.

Theorem 4.4.
(1) (QuPr,P)sy = (P1,QePa)sg, VP, Py € L*(5F)
(2) (’QsplaPQ)SP :(PlaQSPQ)Spv \V/PMPZ €L2(SP)

Proof. Let U, Ve HY(w(Sh)) x HE(s(Sh)) be the solutions of
V2 U, =6.P inw(S,)° and Vi Up=6-P1 ins(Sh)°

and

VEVi=6-P inw(Sy)° and V@ Va=6-F ins(5)°

respectively, then
QP =% U and Q. P,=V_-V in S}
Hence. by Lemma 4.1 and Lemma 4.3,

(Q-P1, Py)sg = (V. - ﬁaPQ)S;; = (6:-U1, P2)e(w(sn)) + (8-Uz, P2 )u(s(s0))
= (U1, —6ot- P2)uw(u(si)) T (U2, =0+ P2)a(s(51))
= (U1, =V} Vi)w(snye + (U2, =V Va)s(s,)o
= (8ot Ut 60t V1 (w51 + (04 Uty 8 V1 ) s(uw(510))
(80 Us, 601 Va)u(o(sy) + (8ot Uz 8t V2 )o(s(50))
= (864 V1, 6o Ut w5y + (8 V10 01 Ut)s(w(sn))
4 (664 Vi, or Unu(s(sn)) (8t V2, 6 Uz)s(s(50))
=(Q- Py, P1)se = (P1,Q-Pa)s;-

The proof for @y is similar. The proof for (s is similar, but we include the proof for
completeness. Let U, V € Hg(Sr) % H}(S1r) be the solutions of

VU =686,P, Sy and V2Up=6,P inSt

and

V2 Vi = 6oP2 in S7 and Vi Vo =6,P in S7;
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respectively, then
QP = V- -U and QP> = %V in Sp.
Hence, by Lemma 4.2,
(QsPr1, Pa)sp = (% U, Pa)se = (6uoUs, Po)sp + (60 U2, P2)n(sir)
= (U1, =6 P2)sp + (Uz, =bpPa)se, = (U, ~Vi2 Vi)se + (U, — Vi Va)se,
= (6 U1 8o V2 )w(sr) + (U, 8 Vi) (s + (604 U2y 604 Vo)w(sin) + (84+ Uz, 8y Va)s(S11)
= (8 Vi, 660Ut wsry + (Bt Vi, 8 U )agsy) + (604 V2, 8ot Uz Jusin) + (6p4 V2, 8+ U2)s(501)
= (Qs P2, P1)sp = (P1,@sP2)sp. ©

5. The Condition Number of Q. We first prove that Qs and Qs are bounded

above by 1.

Theorem 5.1.
(1) (QuP,P)sg < |IPl%, VP e LX)

(2) (iQSP';P)SP S “P”L,)S'Pa VP e LQ(SP)a
(3) 11Qxllse, 1@sllsr < 1.
Proof. Let U € Hi(w(Sy)) x H}(s(Sh)) be the solution of (3.1), then

N2 ﬁll%}: < NI sy + 102113 o5 = (U1, =V Uw(siye + (U2, =Vik U2)s(siye
= (Ul,_ 1+P)w(w(5'h)) + (U‘Za “6y+P)s(S(Sh)) = (61’“U1’P)6(w(5h)) + (63/‘—U2’P)”(S(S’l))
= (.0, P)sy < IV Ullsg IPlls;

(5.1)
which implies L
IN- - Ullse < || Pllsg-
By (3.2).
Q-P=<_-U
and hence L
|Q-Plls; = IN- - Ullsy < [1Plls- (5.2)

Thus
(Q-P,P)sy < |Q-Plls:IPlls; < IPI5-

The proof for @ is similar. The proof for (2) is also similar, but we show it for
completeness. Let U € Hg(Sr1) % H(S1) be the solution of (3.7), then, by Lemma 4.2,

15 0113, < 10l s, + 10l 5, = (Un,=Vi Un)sy + (U2, =V Uz)sy
— (U1, ~6uP)ss + (Us,~6pP)sy, = (Y% - U, P)s, < % Ullsz [1Plls
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By this relation and (3.8), we obtain

1QsPllsr < IIPllsp (5.3)

and hence

(QP,P)s, < |QPlselIPllsy < [IPl5,.

The statement (3) follows from (5.2) and (5.3). @
To prove that Q+ and Qs are bounded below, we need the next lemma.

Lemma 5.2.

(1) (Q-P, P)sy = sup VP e L*(S})

2 2
VEH&(‘(U(S};))X}I%(S(S;,)) HVlHl)“’(Sh) + “VZHl,S(Sh)

b

VP e L*(59)

b

(2) (Q+P, P)s; = sup : :
P vemiesmxaiosy sy V2l mesiy

VP € L*(Sp).

7

(ﬁo ! vap)z
(3> (QSP,P)SP = sup v D) VSP2
VGH&(S])XI‘I&(SI!) H 1”1,5'1 + H 2“1,511
Proof. Let U be the solution of (3.1), then
(Q—P,P)S,g = (6- . ﬁap>5';j = (Ul»'“vh,2 Ul)w(Sh)" + (UQ’ "VILQ Uz)s(sh)"
by (5.1). Using (4.1), we have
(Vi, =V Ut)ugsiye <
(V27‘_Vh2 UQ).%(S,,)" < (’VZV_VI:? VQ)S(Sh)"(UQ’"VhZ UQ)S(Sh)o
for any nonzero V € Hi(w(Sh)) x Hy(s(Sh)). Hence
2 V1, =V Un)wsnye (Vs =V Uz)s(siye < '2\/("/1’“%2 Vi)uw(si)e

\/EUla‘v}{? Ul)w(Sh)"\/(7VZV‘"V/1,2 V2)s(5h)°\/('U?’”Vh2 UZ’)S(Sh)"
< (Viy =V Vi)w(snye (U2, =Vi, U2)ssiye 4 (Ur, =V U w(snye(Vas =V Va)s(si)e

and

. 1 2
(V1. =V U)w(sn)e + (Va, =V Uz)sisye) <
( (V1, ‘th Vl)w(sh)“ + (V% ”-vh? VQ)S(&.)") ( (Ul ) "vhz Ul)w(sh)” + (UZ’ _Vh2 U2)3(5I1)0>'

We have
(Vi, =V Viw(smye + (Voo =V, Va)s(siye = IVill} s T+ V2113 scsm)
and. by following the steps in (5.1),
(V1, "vh,z Ul)?u(s,l)o + (Va, _vhz U‘?)E(Sh)" = (V.- 73P)S,‘Z'

Thus (1) is proved. The proofs for (2) and (3) are similar. ©
Theorem 2.1 and Lemma 5.2 imply that Q1 and Q, are bounded away from zero
uniformly with respect to the mesh size h.

(Vl ) _"vh.z Vl)w(Sh)o(Ul’ ___vh.? Ul)w(sh)a
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Theorem 5.3. There exists a positive constant C'1, which is independent of h such that
(1) VP e IA(SY), (Q=P.P)s; > CillPl%

(2) VP e L3(Sp), (&P, P)sp, = CullPl5,-
Theorem 5.1 and Theorem 5.3 imply that the condition numbers of Qr and (), are

independent of h.

6. Preliminaries for Convergence Estimation. This section is to prepare to get
the convergence rates of the solutions computed by Qx and Q,. We define

‘.flﬂh ‘= sup ‘f('Lv y)l ) lflro,Qh = Z sup larf(may)t

(z,9)€0: r<r, (z,y)€Q

where 7, is a positive integer and 9" f denotes all possible r’th partial derivatives of f. For
a vector f = (fi), let

1ﬂ9h = Z lf‘i|ﬂh ) lﬂro,ﬂh = Z Ifilra,ﬂh'

The relation between || . || and | . | is stated in the next lemma.

Lemma 6.1. Let Q be a subset of Sy, and U € L?‘(Qh), then

[TUllee < [Ulas -

Proof. Let the number of points n Q9 be M, then M < (N —1)%. Hence

N —1)
E—”‘\fé_‘}'—tUi?—lh S lUl%lh

Ul < B2 > Uy’ < B2MIUTG, =

(z,y) €805

Refer to [3] for the next lemma which is a result of the maximum principle.

Lemma 6.2. Let Qp be a subset of one of the sets Sy, S; and Sy and let T, be its
houndary, then there exists a positive constant Cny = Cr(§2y) such that

Ulas < Cul|Vy U

Q¢ -+ lUirh for U € Lz(Qh,).
Moreover, there exists a positive constant C's = Cs(S) such that
luls < CsIV?uls + |ulr

for any u which is twice differentiable in S.

From the above lemma, we can estimate the norm of the difference quotients of the
solution of the Poisson’s equation.



Lemma 6.3. Let Qp C S, and U € Hg(2y) be such that
ViU=F in Q,
then there exists a positive constant Cq such that
U102, < CqlFlas-

Proof. By Lemma 4.3, Lemma 6.1 and Lemma 6.2,

. 1
102 g = (U, =V U)ag = (U.~Flag < 5 (U113 +11Flag)

| —

<

o

) 1
(.lUlgzg + lFI?zg) < FZ‘(CMlFl?); + lF[?);’)

The claim follows by setting Cq = /(Cn +1)/2.  ©

We prove the discrete Poincaré inequality.

Lemma 6.4. Let U € Hy(Sh), then
(1) Ullsy < 16xUlls; and [[Ulls; < [162Ullsg

(2) 2V < IUIE,s,
Proof. One can easily show that

(i a..i)z < nzn:a;)f (6.1)
=1 1

j=

b

for any positive integer n. Since Uo =0,

m [T
S (6 U = --%u for Lm=1,...,N—1. (6.2)
m!=1 ’
Using (6.1) and (6.2), we get
m ) m N-—1
U2 < B2 (0 (6-Uimr)” < mb? S (6-U)im < h > (66U e
m/=1 m'=1 m!/=1
ancd
-1 N-1 N -1
Z U;?',m S (1\7 - 1)17 Z ('&B“U)‘lz,nﬂ S Z(él“‘lf)?,m‘
ms==1 m!=1 m==1
Hence
N—-1N-1 N-1N-1
U = 023 S VR < 2230 D (8- Ut = 16-Ullim:
=1 m=1 =1 m=1

The other inequalities in (1) are similar and (2) follows from (1). o

The general boundary value problems for second-order elliptic equations on a polygon
are discussed by Grisvard [5]. The next theorem follows from the work for the zero Dirichlet
boundary condition in [5].
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Theorem 6.5. Let k be a positive even integer and let Q be a polygon with I' its
boundary. If f € H¥(Q), then the Poisson’s equation

Viu=f inQ with ulp =0
\2

has a unique solution @ € Hy™*(Q)

The proof for the following imbedding theorem is in [3].

Theorem 6.6. For any positive integer k and a polygon €,

HE(Q) c CF2(Q).

7. Convergence Estimation. The next lemma shows how smooth the solution of
(3.4) is.

Lemmma 7.1. Let @ be the solution of (3.4) with p € C'5(_.5—',; US,), thenu € C*(Sy) x
C4(S,).

Proof. Since p € C%(S, U S;), we have
V pe CH(Sy) x CU(5)) C HY(Sw) x HY(S,).
Applying Theorem 6.5 and Theorem 6.6 to the Poisson’s equation (3.4), we have
@€ HS(Sw) x HE(Ss) € C*(Sy) x C*(S,). ©

We show that Q. gives a first-order accurate solution.

Theorem 7.2. There exists a positive constant C' such that the following is true : Let
p € C3(S,US,) be the solution of

Qp=f in Se (7.1)
and let P € L*(S{) be the solution of
OP=f in S (7.2)

Let P be chosen up to a constant so that p— P € L3(S3). Let @ € C*(Sy) x C*(S,) and
Ue Hl(w(Sy)) x Hi(s(Sr)) be the solutions of (3.4) and (3.1), respectively, then

1 = Usllwesy) + e = Uzllscsy) + lp = Pllse < Ch(lulas, + [u2le,s, + pl2,s,us.).
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Proof. Let V € Hi(w(Sy)) x H}(s(Sh)) be the solution of
V2 Vi = bsp inw(Sp)° and V2 Vo = bpp in s(Sk)°,

then

Q_p= \ARR4 in Sy (7.3)
and

s = Uillwisiye + luz = Uzlls(siye <

(7.4)
lur — Villwesnye + lluz = Vallsgsie + 11V2 = Utllwsie + 11V2 = Uallasie-
Using Taylor expansions, for (z,y) € w(Sy)°, we have
V2 uy(z,y) = Vaulz,y) + ui(e,y) = pe(2,y) + ui(z,y) 75)
V2 Vale,y) = upla,y) = pal@,y) + Pi(e,y)
and, for (z,y) € s(Sr)°,
92 unlery) = ua(e,y) + ui(e,y) = pyle,y) + ui(e,) -
7.6
V.2 Va(z,y) = bup(x,y) = pyle,y) + Pa(2,y)
where
N h? . . h 9
ui(z,y) = ‘1'5(11'1)1:9;.@;7:(37 y) pi(e,y) = 5pea(e,y)
]; ; (7.7)
® (3 A * i “
uy(@,y) = ﬁ(“?)yzu/y(a’ay?’)v pa(z,y) = 5—pyy($,y°)
for some points (z¢,y) in Sy and (=, y') in S, around (z,y).
By (7.5) and (7.6),
V2 (uy — V1) =FEy =u] —p; in w(Sh)° (7.8)
Vh? (ug — Vo) = Ep = uy — P in s(Sh)° '
and. by Lemma 6.1, Lemma 6.2, (7.7), and (7.8),
s = Vallugsme + lluz = Vallasiye € Car(1Bilugsiye + 1Belscsiye) (7.9)

< I\,/[u,hz( IU1I4’SW + llt2l4,sw) + -prhlplZ,Squs

for some positive constants M, and M.



Using Lemma 4.1, Lemma 4.3, Theorem 5.1, Lemma 6.4, and the fact that ‘7, Uc
H(w(Sy)) x Hi(s(Sk)), we have

2(|Vi = Utllys,ye + 1V = Uallys,ye) < 11V — Uill? wisy + 1Va = Ualli os0)
= (Vi = U1, =V2 (Vi = 11)) 5o T (Va = Uz, =V;2 (V2 = U2)) y(5,)e
(Vi = U, =bor(p — P))w(w(g,l)) + (Vo = Uz, —bye(p — P))s(s(Sh))
= (6 (Vi =00, = P) sy + (Ve = U2)ip = P) s,
(v (

L (V-T),p=P)g, = (Q-(p= P)p=P)g < llp = Pl;.
Hence

( “Vl "Ulllw(Sh)" +HV2'—U2”S(5'A)”‘) < 2( HV] —Ul{[?ﬂ(sh)” +HV2_U2”2(SIL)°) = HP_P”%Z

and

Vi = Utllwsie + V2 = Dallsesiye < lip = Pllsg- (7.10)
Combining (7.4), (7.9), and (7.10), we have

lur = Utllwesiye + llve = Uallsesiye <
J\éfu,hz( lu1s,s, + lusla,s,) + Mphipl2,s,us, + lp — P Sy
Now let’s estimate ||[p — P||s¢. By (3.3), Theorem 5.3, (7.1), (7.2), and (7.3), we have

Crlp— Pllsy < 1Q-(p — Plllsy = [1@-p— @plls;

(7.11)

L. L y } (7.12)
LTVl < I (P =l =Tl
and, by Lemma 6.3, (7.7), and (7.8),
HVL ) (V - ﬁ)HS,‘: < Hul - Vl”l,w(sh) + l[uQ - VQHLS(Sh) (7 13)
< Co(1Bs|uw(se + 1 Beloisnye) < Quh®(ltalas, +luzlss,) + Qphlplz,suus,
for some positive constants @, and (.
Using Taylor expansions, we get
- = L I
- id(z,y) =V -dle,y) - %(ﬁu(%,y) + yy(z, 7)) in S}
where (&,y) and (z, ) are points in S around (2,y). Thus
- - - ] o
2@ = V- dllsy < 5lidla,s. (7.14)
By (7.12), (7.13), and (7.14), we have
lp = Pllsy < Cph(lulss, + luzlas, + [pl2,s,0s.) (7.15)

for some positive constant Cp. The claim follows from (7.11) and (7.15). ©
The proof of the next lemma is similar to that of Lemma 7.1.
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Lemma 7.3. Let i be the solution of (3.6) with p € C%(S.US,), then @ € C4(S.) x
CA(Sy).

It is proved similarly that @ gives a first-order accurate solution.

Theorem 7.4. There exists a positive constant C' such that the following is true : Let
p € C3(S, US,) be the solution of

Qp=1f in Spe
and let P € L*(S¢) be the solution of
Q.P=f in S

Let P be chosen up to a constant so that p— P € L(S}). Let @ € C4(S,) x C*(S,) and
U € Hi(e(Sh)) x Hi(n(Sh)) be the solutions of (3.6) and (3.5), respectively, then

vy = Usllecsny + lluz = Uallncsy) + llp = Plisg < Ch(|uls,s, + luzla,s, + Ipl2,s.us,)-

The proof of the next lemma is also similar to that of Lemma 7.1.

Lemma 7.5. Let @ be the solution of (3.10) with p € C5(S1US,), then @ € C*(S1) %
C*(S).

We show the second-order accuracy of the solution computed by staggered mesh
schemes.

Theorem 7.6. There exists a positive constant C' such that the following is true : Let
p € C°(S; U S,) be the solution of

Qp=f in S (7.16)
and let P € L*(Sp) be the solution of
QP =f in Sp (7.17)

Let P be chosen up to a constant so that p— P € L2(Sp). Let @ € C*(S1) X C4(S,) and
U € HY(S1) x H}(S1r) be the solutions of (3.10) and (3.7), respectively, then

luy = Uilsg + lluz — Us|

so +llp— Pllsp < Ch*(|urla,s, + luale,s, + 1pls,s)-



Proof. Let V € H}(S1) x Hi(Sm) be the solution of
ViZ Vi = éuwp in S7 and V2 Va = 6D in Si,

then

Qsp = -V in Sp (7.18)
and
s = Ut || se+lluz—Uallsg, < llur=Vallsg+lluz=Vallsg +IVi=Urllsg + Vo= Uallsg,- (7-19)
Using Taylor expansions, for (z,y) € S7, we have

V2 (s, ) = Viui(e,y) + ui(z,y) = pe(z,y) + ui(w,y)

) | (7.20)
Vi Vi(z,y) = éop(2,y) + p1(2,y)
and. for (z,y) € Str,
th U2(i7,'.l/) = VQ'U'?.(ma y) + u;(%ay) = py(may) + U;(CB,@/) (7 21)
vh? ‘/2(21,,@/) = yap(m» U) +p§(fc’y)
where
N h? 1 . h o
u1($7y) 1‘5(“1)1 Lll(’l' vy)v p1($,y) = ’,;Pm:m,(’b ay>
2 ; (7.22)
. (A , . . Y v
uz(x,y) = i;‘(“z)yyyy(fl’ays)» pa(z,y) = ‘.;Pyyy(f’?a?ﬁ)
for some points (2,y) and (z,y*) in S around (=,y).
By (7.20) and (7.21),
Vi (ur = Vi)(z,y) = Ea(e,y) ==ui—p]  in 57 (7.23)
V2 (uz — Va)(z,y) = Ba(a,y) :=ui —pj  in SP. |
and, by Lemma 6.1, Lemma 6.2, (7.22), and (7.23),
lur = Villse + lluz = Vallss, < Chur ( |E1lse + IEQIS;I) (7.24)

< thz( luila,s, + |uzle,s, + [PIB,S)

for some positive constant Cm.
Using Lemma 4.2, Lemma 4.3, Theorem 5.1, Lemma 6.4, and the fact that V, U €
Hi(Sr) x Hq(S),

2([Vh — Ul + Ve = Ualiyy) < Vi = Urlls, + V2 = el s,
= (WVJ. - Uy, "‘Vh.z (Vi — ll-l))‘g'; + (% —Us, "—'Vh? (V? - UQ))s;
- (Vl - U17_6£1‘0(]) - P))S}‘ + (VQ - U‘Za - y0<p - P)) 52,
= (6;) ’ (‘7 - [7),]3 - 'P)Sp = (Qs(p— -P)’p - P)Sp < Hp - PHZSP
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Hence
2

(Vi = Usllss + Vs — Uslls,)? < 2113 = Uil + V2 = Uall,) < llo = P,

and

Vi = Utllse + [Va = Uslisg, < llp— Pllse- (7.25)
Combining (7.19), (7.24), and (7.25), we have

llur = Uillse + lluz — Uallsg, < Comh?(|uila,s, + |uzls,s, + Ipls,s) +[Ip — Pllse- (7.26)

Now let’s estimate ||p — P||so. By (3.9), (7.16), (7.17), (7.18), and Theorem 5.3,

Crllp = Plls, < [1Qs(p— Plls, = IQsp — Qplls»

L. Lo ) ) (7.27)
=I5V =V idls, < I%-(V=dlsp + 1% &=V -dllsp
and. by Lemma 6.4, (7.22), and (7.23),
Vo (V= D)lsp < ur = Vills, + llue =V
1% - ( s < lur = Villy,s; + llue = Valli, sy (7.28)

< CQ( |Evlse + lEzls;’I) < Cyh*(luile,s, + |uzle,s, + Ipls,s)

for some positive constant Cy.
Using Taylor expansions around (2, y) € Sp, we have

V- i(e,y) = V-d(e,y)

1 ,h : 9 2
+ gﬁ(é—):}((t“)ﬂllffv(mlay) - (ul):ua;a:(mday) -+ (u2)yyy(way1) - (u?‘)yyy(m’y,))

where (z¢,y) are points in 51 and (x,y') are points in Sy around (z,y). Hence
193 sy < Coh?(Jushs,s, + luols,s,) (7.29)
for some positive constant Cy. By equations (7.27), (7.28), and (7.29),

lp— Pllsp < Cph®(luila,s, + [uzla,s, + Ipls,s) (7.30)

for some positive constant Cj. By (7.26) and (7.30), the claim follows. o
One may ask whether
_P P
QP = Q J; @+

4

would give a second-order accurate solution. Note that the domains of the velocity parts
in the solutions of (3.1) and (3.5) are different. If one changes (3.1) and (3.5) so that the
domains of the velocity parts are same, then the domains of the pressure parts become
different. This difference in domains makes problems for getting a second-order accurate
solution.
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8. Conclusions. The condition numbers of the matrices generated by three finite
difference approximations of the Stokes problem in the pressure equation (PE) method
are shown to be independent of mesh size. Moreover the convergence estimations of the
solutions generated by these matrices are shown to be first or second-order accurate. These
results were basically by the inf-sup conditions that are proved by Shin and Strikwerda
[11]. Current research is on getting the inf-sup conditions for other finite difference ap-
proximations.

The PE method has been extended to the Navier-Stokes equations for low Reynolds
numbers by Shin and Strikwerda [10]. Many algorithms that use differenct linearizing
techniques could be applied for the extension of the PE method to the Navier-Stokes
equations. Research is continuing on getting a better algorithm that works for higher
Reynolds numbers.

Work is also being done on applying the PE method to time-dependent problems on
more general domains. The method works better with polar domains since the Poisson
equation can be solved directly with the help of the line SOR ‘method. A lot of domains
in applications are decomposed into some rectangular and some polar domains. Using the
Schwarz alternating procedure [7] with a parallel algorithm, the PE method should work
efficiently.
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