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Abstract. Inf-sup conditions are proven for three finite difference approximations of
the Stokes equations by using the average values over certain oblique lines. This approx-
imation technique preserves the divergence-free property which is important to the study
of the Stokes equations. Moreover the approximation gives bounds on the norms of the
divided differences of functions in the approximated space by the norms of the derivatives
of functions in the continuous space. In a subsequent work we use the inf-sup conditions
to prove estimates on the order of accuracy of the finite difference schemes.
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1. Introduction. Inf-sup conditions, which have been introduced independently by
Babiiska [3] and Brezzi [5], are important to study the linear boundary value problems
with a constraint such as

Find (u,p) € X x M satisfying

Au+Bp=f in X',

1.1
Bu=g M (1)

where X and M are two Hilbert spaces, X' and M' are their corresponding dual spaces,
and 4 € L(X;X') and B € L(M; X') are two linear operators with B’ € L(X; M') as the
dual operator of B.

The linear operators 4 and B are associated with the bilinear forms

a(.,.): X x X = R, b(.,.): X x M — R.

Let < .,. > denote the duality pairing between the spaces X and X' or M and M', then
(1.1) is equivalent to the following variational problem :

Given f € X' and g € M', find a pair (u,p) € X x M such that

a(u,v) + d(v,p) =< f,v > Vo e X,

(1.2)
blu,q) =< g,q > Vg e M.
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The inf-sup condition related to (1.2) is

b
AC > 0 such that inf sup _blw,p) > C. (1.3)
reM yex |lullx|lpllm

The bilinear form «(.,.) in (1.2) is related to the norm ||.|x in (1.3) for most problems.

The inf-sup conditions in the continuous problems and the finite element problems
are studied extensively in many places, for example Aziz and Babuska [2], Babuska [3],
Brezzi [5], and Girault and Raviart [7], while the conditions are not studied yet in finite
difference spaces. The inf-sup conditions for three finite difference approximations of the
Stokes problem are proven in this paper for the first time.

Temam [13] and [14] used some finite difference approximations of the Stokes problem
by using point evaluation and average value over an area or a line segment. Using the
average values over horizontal and vertical line segments, Temam [14] mentions that the
divergence-free property is kept in the resulting finite difference space. The divergence-
free property holds in almost all applications. Hence it is important to study this finite
difference space. However, it is not possible to bound the norm of the divided differences of
functions in this finite difference space, or other finite difference spaces resulting from other
approximations which we mentioned above, to the norm of the derivatives of functions in
the function space from which the finite difference space is approximated.

It is necessary to evaluate the norm of divided differences or derivatives of a function
to get the inf-sup conditions. In this paper, we introduce the finite difference spaces
which come from the approximation using oblique line segments for this purpose. This
approximation also preserves the divergence-free property by the same reason that the
approximation using horizontal and vertical line segments does.

The finite difference schemes that we are interested in this paper are a staggered
mesh scheme and the schemes that come from the backward and the forward differencings.
These schemes are rather simple and hence serve well to the theoretical point of view. The
proofs are done by setting a relation between a continuous space and its finite difference
approximation space and uses the inf-sup condition of the continuous space.

2. Definitions. Let Q be a domain in R¢ and let I' be its boundary. For simplicity,
we focus on the case when d = 2, but the results in this paper will hold for any d > 2. We

denote by L2(92) the space of real functions defined on  which are integrable in the L?
sense with the following usual inner product and norm

(u,v)q = // wv dA,  Jullf = (u,u)q.
Q

Let
Hy(Q) = {u e L*Q) | ug,uy € L*(Q) and u|r =0}

have the following inner product and norm

(u,v)1,0 = // Vu- Vo dA, ullf g = (v, u)1,0
JJa
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and

L3(Q) = {p e L*(Q)|(p,1)a = 0}.

We use the notation @ = (u;) for a vector. We shall often be concerned with

two-dimensional vector functions with components in L%(§2) or H}(2). The notation
L2(Q)%, HL()? will be used for the product spaces. Define, for @ and ¥ € L?(Q2)?,

2
(@ D)o =Y (unvide , |@l§ = (@ da
1=1

and, for 7 and ¥ € H}(R2)?,

2

(@00 =) (uiviia |l = (@ Dna.

=1

We also make some definitions analogous to the above on discrete subsets of the unit
square S in R?. Let
S:={(v,y) eR?|0<a,y<1}

and T its boundary. Let

1
h:=—, forsomeN €N,
N
R} :={ (Ih,mh) € R* | I,m e N },
Sh, = 5’ N R,%

where S is the closure of S.
For an arbitrary discrete set 2 of the form

Qp={ (lh,mh) e Sy | lh <1<y and mg <m <my },

we define
pe={(lhymh)e Sy | b+1<I<hL—-1,me+1<m<my—1},
e(Qn):={ ({h,mh)e Sp | lo+1 <1<, my<m<my },
w(Qp) =={ (lh,mh) € S | lo <1<l —1, mp<m<my },
s(Qp):i={ (lh,mh) € S | b <I<l;, mpy<m<my—11},
n(Qp) = { (lh,mh) € Sy | lb <I<li, mg+1<m<my}

as the interior, east, west, south and the north sides of {25 and define

se(Q2p) 1= s(Qp) Ne(), sw(Qp) = s(n) Nw(y)
ne() = n(Qy) N e(Q), nw(Qy) = n(Q) N w(Q).



For the boundary I'p, of Qp, we define
6(]:1],,), w(rh)a S(Fh)7 n(rh)

as the east, west, south and north parts of Iy including the end points.

In this paper, we want to study both standard and staggered grids. The staggered
mesh schemes use different grids that are staggered for the pressure and the velocity. A
staggered grid is shown in Figure 1. The points marked by P, I, and II are where the
pressure and the first and the second components of the velocity are defined, respectively.

Figure 1
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7 Tr i rig i
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1, 1.
Sp ::{((l-5)h. (m—5)h)€S |i,m=1,...,N },

et}

1
Sp:={(lh, (mws‘)h)ES[Z:O,...,.N, m=20,...,N+1},

nd

S]]:z{((l—%)h, mh)eS|1=0,...,N+1,m=0,...,N },

then these are the sets for P, I, and II. Figure 1 shows Sp, Sr, and Sy when N = 3.
Staggered mesh schemes have been used by Amsden and Harlow [1], Brandt and Dinar
[4], Harlow and Welch [8], Patankar and Spalding [9], and Raithby and Schneider [10] and
others.

Let L2(2;) be the space of all discrete functions defined on §2; with the following
inner product and norm

(U, V)a, =02 > Ule,y)V(z,y), U3, = U,V)a,
(ar,y)EQ,,



and let

Lg(Qh) ={Pe¢ LZ(Qh) | (P,1)e, =01,

then L?(Q) and LZ(Q4) are the discrete analogies of L2(£2) and L3(2).
For notational convenience, we introduce

Utm = U(lh,mh),

and define the forward, backward and central differencings on the z axis and y axis,
respectively, as

. Ul—}—l,m - Ul,m Ul,m—}-l - Ul,m
- b

(617‘*‘(])1,"” : A 3 (6?/-!'U)l,m = A
— U m m m—
(51'—-U>l m = Ul’m ¢ L : (5y—- U)l m = Ul’ Ul’ ! )
' h ’ h
Uiyt m Uiy m U m+L U m—
(b0 1= L (Gl =

Define the discrete gradients as
U i= (b, bt )y V= (6,6 ),  and  Np = (G, b)),
and let V,2 be the five-point discrete Laplacian, then

VE =V % =YV

The inner product and the norm of
H(%(Qh) L= { [f € LQ(QIL) ] Uth, =0 }
are defined as
(U, V)I,Qh = (V-}—U» vi‘vv‘)sw(ﬂ,,) - (V—U> V-V)ne(ﬂh)a

U113, = (U, U1,

which are the sums over all points in §2), where difference quotients are defined. The inner
product and the norm of the product spaces L%(Q;)% and H}(23)? are defined naturally

from L2(Qy) and H}(Q4).

3. Inf-sup conditions for finite difference spaces. To show the inf-sup conditions
for finite difference spaces which come from approximations of the Stokes problem, we begin
with the related theory for partial differential equations. Refer to Aziz and Babuska [2]
for the proof of the next theorem.
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Theorem 3.1. Let § be a bounded domain with a Lipschitz-continuous boundary,
then there exists a positive constant Cpge = Cpde(§2) such that any p € L3(§)) has a vector
@ € HE()? which satisfies

Vig=p i Q@ and |@liq < Cpae lIPlE-

The above theorem implies the so-called inf-sup condition for the Stokes problem.

Theorem 3.2.

(V- i,p)? -
LR A VIS Cp:(lle‘

inf sup . >
PELFON{0} geHl(n)? HUH%,QHPH%

By the next theorem, we will get the inf-sup conditions for finite difference spaces.

Theorem 3.3. There exist positive constants Cy and Cq, which are independent of h,

such that .
(1) any P € L3(Sp) has a vector U € H§(Sr) x H{(Sp) which satisfies

— —

(VO'va)Sp 2 C/Il

PI%, o 0wl s + 102l s, < CallPls,

(2) any P € L(S?) has a vector U € Hi(w(Sh)) x HL(s(Sh)) which satisfies
(V- ﬁwP)S,‘; z C1||PH.29;; T sy TR sy < C’ZHPH%;;

(3) any P € Li(S}) has a vector U e Hi(e(Sh)) x HL(n(Sy)) which satisfies

-

(V- U,P)s; > CillPlIs . I s,y + 1020 s,y < CallPlls; -

Setting C' := C?/C4, we get the following inf-sup conditions for some finite difference
spaces.

Theorem 3.4. There exists a positive constant C', which is independent of h, such that
I ’ T 5

(1) sup > C||P||%, VP € L3(Sp),

Ueyé(sl)ng(sU) HUIH%SI + HU2“‘I7,S,,

> C\PI%, VP e LY(SY),

(2) sup 5 5
Tem: (wism <mi(sesn) 10T wis,) U2 s,

(3) sup

: ' > C]]P[[zo VP e L2(S°).
2 2 e S 0\~h
UeH(e(Sh))x HY (n(Sn) 1T H‘l,c(sz,) + “U?“Ln(sh) " l



Figure 2
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SZ] SZZ S23

S]I S]Z S13

Proof of Theorem 3.3. Define

Stmi={(z,y) eS| (I-Dh<az<lh,(im—1)h<y<mh}

for .m =1,..., N. Figure 2 shows S, when N = 3.
We first prove (1). Let P € L3(Sp), then we define the piecewise constant function
p € L*(S) by
plsi . = P_1 1

Note that
(p,1)s =(P,1)s, =0 and |plls = || P|lsp-

Since p € L2(S), by Theorem 3.2, there exists a vector @ € Hy(S)? such that
V-i=p i S and |@)is < Cpaellpll%. (3.1)
Let Cy be any real number such that
0<Ci <1

and let C3 be the solution of
2+ C'pde

—1-C
NeTeh !

and

C"‘Z = C'B C'pdea
then our claim holds with these ('} and C',. Note that

1 (2—1— C'pde)2

“=3\1"¢,

> 2

and

k:=h/Cs < h.
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For t € [0, 1], define the line segments
. {M—M7ﬁhg§N-h
zi(t) = _
lh, if I =0, N;

mh—kt, f1<m<N -1,

k
t J—

Ym( { mh, if m=0,N;
lh—ht, if1<I<N;

ﬁa):{u% if 1 =0,N;
1, ifl=N+1;
mh—ht, if1<m <N,

yh (1) = { mh, if m=0,N;
1, ifm=N+1.

Let
I = { (,‘Bf(;t)v U;I;q(t)) ‘ te [0? 1] }»
for I=0,...,Nandm=0,...,N + 1, and
Jm = { (21 (t), ym (1)) |t €10,1] },
for I =0,...,N+1and m = 0,..., N, be line segments in S. Figure 3 shows Ii m and
Ji.m when N = 3.

Figure 3
Joa )i (J 34 . . z

Jo3 J13 J23 J33 J43

[03 // 3 y/ 3 Jr33
I i %2442/4;2/ .]42

{o, 1If /s 132
i y ]01 11 Agﬂ/ A’:( J41

401 // 1 // 1 431
~ F % % J,
00 10 20 0 40

l 00 110 120 I3

If

1
(Z‘Tl)l,m——% = / uy(zF(t),y" (1)) dt = average value of u; on Ij m
0

1
(U2)i—tm = / up (2 (t),y* (1)) dt = average value of uy on Jim,
0

8



then U € HY(S7) x H(Syr) since @ € HE(S)?.

Figure 4
I I I J J J
H 13 H23 33 13 23 V33
! I I
J J J
12 22 32 12 sz Vi,
I I ! J J /J
H, H, 31 11 21 Vi

Using H and V to denote “horizontal” and “vertical”, respectively, we define

HI .= the region between the line segments I; y, and Ij_1 m
l,m g & > ,

Vl’Jm := the region between the line segments J; »m and Jim—1
for I,m=1,...,N and

VI{m := the region between the line segments Ij p, and Ij 5,1
forl=1,....N—landm=1,...,N +1 and

H l{m := the region between the line segments J; ,, and Ji—1 m

forl=1,...,N+1land m=1,...,N — 1. Figure 4 shows H,I,m and V,:Im and Figure 5
shows V;I and H lj’m when N = 3.

,M

Figure 5

rrl Lyl
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Note that H l{ o T/',"Im, H l{m and V,:]m are quadrilaterals or triangles such that

area(H{ ) < area(Hy y) = h* + hk/2

area(Vl,Jm) < area(V]\{’N) = h* + hk/2

(3.2)
area(‘fl{m) < a?"ea(V]\g_l)N) = hk
area(H,‘{m) < area(H]{,’NWl) = hk.

Define
Dl Stm \ Hl{m, iflm=1,...,N;
o 0, ifl=0andm=1,...,N.
D/ = Sl"’” \ V,:Im, iflm=1,...,N;
e 0. ifl=1,...,N and m = 0.
Figure 6 shows D{ m and Dl{ m When N = 3.
Figure 6
I I
Dy [ D L ! L
[y
! 1
l)lz 1)22 ) .t e
L
1 1
-l)ll 1)21
Note that DII’ m and Dl{ . are triangles or empty sets and that
'1 leng,}%N area(Dl{m) = 131}})321\7 av’ea('DlJm.L )= CL?“@(L(D{,l) = kh/2 = h?/2Cs. (3.3)
Define

N N
p':= |J D{, and D7:= ] Di,.
I,m=1 l,m=1

3

Let’s first evaluate (Y, - U, P)s, in terms of | Pl|%,. By (3.1),

IPl%, = lIplls = (V- @,p)s.
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Forl,m=1,...,N,

(Ul)l m-—- (Ul)l lmw—
h

(61'0U1)l—%,m-——~ =

= 1 ([ et o) de - [ et 0,00 @)

h/ {uy( %l ) ym( )) — ul(fﬁf__l(t) ym(t))} dt

2 (1)
]// (u1)e(z,y" (1)) dzdt.
? L

For any y = y! (), define
el (y) =2 (1) and 2{(y) = F (1)

By a change of variable, we have

mh :L,(J) 1
(511)[71)1“%,,“__1. ]d / (uy)e(@,y) dedy = ]—2— // (u1)z(z,y) dA. (3.4)
- [ (m—1)h l HI

: (
1o tu) I,m

Similarly one gets

(b0 Ug)l__ mel = // (uz)y(z,y) dA for I,m=1,...,N.
rJ

'I,m
By the way that P was defined,
(V- ,p)s = Z // (u1) Uz)y )Pl__ m—1 dA.
{,m=1 St,m

Thus we have

N

(\1’-'&',]),)5—(@-(7’,}’)51, = // ((u1)s + (u2)y )CZA / (u1)z dA
Iom=1 Stm HlI,m
— / (ua)y dA) P11 = // ul)l dA — // (u1) (3.5)
VlJm ) ’ lym= ]

// , U )y dA — // (tg)y (lA)P,_%,m,,%‘
b 3 g

l111
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By the Schwarz inequality, we have

| //Dr (u1)z d4 ' = \/m \///DI (u1)2 dA.

Applying the inequality to the other integrals in the last row in (3.5) and using (3.3), we

have
h N
7 (. ot 2
|(V-i,p)s — (% U,P)s,| < \/;2—6,—3“%:1 (\///D{m(uﬂw dA +

\/// ul)zczA+\/// (uo?cz4+\/// (u2) A>’pl’m|_

Iml

g 71~ // (u1)2 dA).
vJJof,

Using the same inequality to each term in the right side of (3.6), we get

(3.6)

Note that

]P,m;_ m__} \/// (u1)2 dA < % hlPl__ m—1

l m

|(V-d,p)s — (V- U, P)s, |

Z(

//DI 1111(]4—{—// (w2} dA+// ug)JdA

I—1,m

<3 ‘>C' 4“]3![5] +2( // u1) dA+//DJUo;JdA

+ Chpde
2l + ) < P2

1 '2 +/ (’U,])i dA+
’ Df.,

l\3

i

b

by (3.1). Hence

( + dee)
\/76'

Next we estimate |U1]1,s, in terms of ]]ulﬂl,g. By (3.2) and (3.4), we have

(N -U,P)sp > (V-,p)s — Ipl% = Cillpll: = Cil|lP)I%, . (3.7)

60-TU1 113 o5p) = Nl = B? h~ // (ul (z,y) dA>

lm 1

< - area(Hl ) // (u1)% dA = ‘7// (u1)? dA.
?, [I

l,m=1
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Note that, for {=1,...,N—landm=1,...,N +1,

6V ymoy = 7 (| mab®.uh0) di -

1 ym(t)
/Oulwf(t),y:;ml(t)) dt ) = / / (b (t), ) dydt.

1(t)

For any @ = aF(¢), if we let

yi?—-l(,l) = yﬁl-—l(t)? yg’t(w) = y,l%(t%

then by a change of variable

Lh Jm(l
(p-U1)1-1 m hl / (u1)y(z,y) dyde = // (ul)y(m y) dA.

lh—k )

s

Hence
N-—1 N+1

- 2 —
l]éy——Ul'[n(Sz) - Z Z ]2[» /[/I UI dA

N—=1 N+1 (3.9)

< = Z area V,m // ul)2 dA < (3 // uy);
=1 m=1

By (3.8) and (3.9), we get

1011} s, = Nee-UhllZs,y + No-Unllngsy)

< 2// (u1): dA + Cs //(ul)?/ dA < Cs |luilf s
S S

since C'3 > 2. Similarly it follows that

10213 s < Cs lluzlli s

Hence
NS s, + 10l s, < Cslldllls < Callpll (3.10)

The proof of statement (1) in Theorem 3.4 follows from (3.7) and (3.10).
Now let’s prove the statement (2) in Theorem 3.4. Let P € L3(Sy) and define

Plsi,m = Prm; m=1,...,N -1,

then p € LZ(Ssyw). Hence there exists a vector @ € H}(Ssw)? such that

Vi = pin Sgu and ]]{[Hf,ssw < dee]]p[[%w.
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Define

k _{lh——kt, f1<I<N -2
@i (t) = Ih, ifl=0,N—1;
{mhmkt, fl1<m<N -2
Y (1) : .
mh, ifm=0N -1,
Ih — ht, f1<I<N -1,
zh(t) : { lh, . ifl=0,N -1,
(N —1)h, ifl= N

mh—nht, ifl1<m<N-—1;
yt (t) = { mh, fm=0N-1
(N —1)h, if m=N.
Let
Lm = { (= (1), ym(®) [t €[0,1] },
for'=0,...,N—1landm=0,...,N, and

Tim = { (2 (1), yh (1)) |t €[0,1] },

forl =0,...,N and m = 0,...,N — 1, be line segments in S. Figure 7 shows I}, and
Ji.m when N = 3.

Figure 7
S |
QO'% *13 ]23 J I L i 4
2| Y12 2o J3o
!
40, // 2 12
> / e
/ i Jo1 11 21 Ja1
401 1 A1
n I 2 T
] I* ] Jo\(; J10 20 0
oo 410 20
If

1
(U1)im = / ul(ml (1), ym( )) dt = average value of u1 on Ij n
0

1
(U2)i,m ::/ Uf)(’l (t) ym (t)) dt = average value of us on Ji pm,
0
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then U € HY(w(Sy)) x HE(s(Sy)) since @ € HE(Ssw)?. The proof that U satisfies the
required properties is similar to the proof for statement (1). The proof for (3) is similar to
the proof of (2). o

4. Relation with finite element spaces. One may ask whether one could use some
inf-sup conditions in simple well-known finite element spaces to get the inf-sup conditions
for the finite difference spaces which are proven in this paper. In other words, to prove
(1) in Theorem 3.3, can we use some functions @, and p. defined on some simple finite
element spaces such that

— —t 2 — - 2
<VO.U,P)SP ~ (v'uG,pe)S
103 s, + 102113 s, 1Zell¥ s

2 Clipells = ClIP|ls» (4.1)

for some constant C'? Hence we want to construct U from a given P € L2(Sp) satisfying
some conditions, using the funct1ons pe and u,. The actual process of this is to define p,
from P, 1, f10m pe and finally U from @ .. Since P is defined on S7, p. and . need to be
defined on some triangles using {5} basically.

The first relation in (4.1) may hold if

(% U, P)sp = (V- ile,pe)s and U175, + 110201 s, 2 ey s

The first condition is equivalent to

N
]72 Z ((510U1 +690U2)l—-%

I,om=1

ym—z 5Ny

//s, . (te1)s + (we2)y) (@, y)pe (@, y)dudy.

l,m=1

This may hold when
]JC(L Y ) o~ P[___ ;m—1 in Sl m (42}

// (te1)z(z,y)dady (4.3)
Sl m

h?(8,,U2) )it m— //S (ue2)y(z, y)dzdy. (4.4)
IL,m

«ul'—-
lvle-a

Let Tj m be the boundary of S and let w(T} ) and e(T} ) be the west and east parts
of T7.,,, respectively, then (4.3) is equivalent to

]?’((Ul)l m—- (Ul)l 1, m—-) 2/ uel( y)dy —’/ u€1($7y)dy
e(Ti m) w

(Tl,rn)

:/ uel(xvy>dy_/ uel(:C)y)dy
. e('Tl,m) e(Tl—l,m)

15



and hence

‘ 1
(Ul)l,m-% = 7/ u61($7y)dy' (45)
i C(Tl,m)
Similarly (4.4) is equivalent to
1
gy [ wale)de (46)
S G

If @, is a piecewise linear function defined using some triangles, then the value of @, at
the middle of each side of any triangle is the average value of @, on the side. Hence (4.2),
(4.5) and (4.6) may hold when p. is a piecewise constant function and . is a piecewise
linear constant function. The inf-sup conditions of this case for both the conforming and
non-conforming finite element spaces for Stokes equations are discussed in [6].

Consider the case when one uses the triangles generated by dividing S, into two
equal triangles as we show in Figure 8. If one forces the exact equality in (4.5) and (4.6)
for this case, then one may not be able to relate 6,U; and 6,Us with (uer)y and (ue2)s,
respectively, since e(T} ) and n(7T},,) are straight line segments. Hence Uy and U, need
to be defined using the average values on some oblique line segments which are slightly
deviated from those straight line segments. This is the reason that we used I, and Jim
in the proof of the inf-sup conditions for finite difference spaces. Hence we encounter with
the same difficulty in proving the inf-sup conditions for finite difference spaces by using
either the conditions in finite element spaces with the triangles given in Figure 8 or the
the conditions in partial differential spaces.

Figure 8

Consider using the triangles, which are shown in Figure 9, generated by line segments
I, and Jp n, instead of those triangles given in Figure 8. Since the intersection of two
adjacent triangles need to have a side of each of these two triangles, we need to introduce
more line segments in Sy ,,,. Figure 10 shows the triangles with these extra line segments.
Unfortunately, it is not possible to relate ||Uy[|1,s;, and [[Uz||1,5;, to [[uerll1,s and |luezlls,s,
respectively, if we use these triangles.
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Figure 9

Figure 10

Figure 11

One could use triangles using line segments which are little modified from 7T, 1,m and Jp
which we show in Figure 11, but it is harder to get inf-sup conditions for finite difference
spaces using the inf-sup condltlons for the finite element spaces with these triangles than
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using the conditions for partial differential spaces. Hence the use of inf-sup conditions in
finite element spaces doesn’t offer much help for proving the inf-sup conditions in finite
difference spaces.

5. Conclusion. The inf-sup conditions are proved for three finite difference approx-
imations of the Stokes problem by using the average value over some oblique lines. The
finite difference approximations use a staggered mesh scheme and the schemes resulting
from the the backward and the forward differencings.

If Qp, is the Schur complement of the linear system generated by one of the finite
difference approximations that we discussed in this paper, the inf-sup conditions that we
proved in this paper can be used to prove that the condition number £(Q}) is independent
of mesh size h and to prove the convergence estimation of the solution generated by Qr,
which we will report in the forthcoming paper [12]. These results of @ support the use
of the pressure equation method, a new fast iterative method introduced by Shin and
Strikwerda [11], and other iterative methods to solve the finite difference approximations
of the Stokes and the incompressible Navier-Stokes equations, since the Schur complement
Q, plays an important role in studying those equations.

Future research on the inf-sup conditions for other finite difference approximations
and for other linear boundary value problems with a constraint needs to be done.
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