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AN INTERIOR POINT ALGORITHM FOR MONOTONE AFFINE
VARIATIONAL INEQUALITIES

MENGLIN CAQO AND MICHAEL C. FERRIS

ABSTRACT. Given an n x n matrix M, a vector ¢ in IR®, and a polyhedral convex set
X = {z|Az < b, Bz = d}, where Aisan mx n matrix and B is an p X n matrix, the afline
variational inequality problem is to find z € X such that

(Mz+q)T(y—2) 20

for all y € X. If M is positive semi-definite, the affine variational inequality can be trans-
formed to a generalized complementarity problem, which can be solved in polynomial time
using the path following method of Kojima et.al. The main contribution of this paper is that
the particular structure of the problem is exploited, rather than artificial variables being
introduced to construct a standard form problem.

1. INTRODUCTION

In this paper, we investigate a path following interior point algorithm for monotone affine
variational inequalities. Given an n Xn matrix M, a vector ¢ in R", and a polyhedral convex
set

X = {z|Az < b, Bz = d}

where A is an m X n matrix and B is an p X n matrix, the affine variational inequality
problem, abbreviated as AVI(¢, M, X), is to find z € X such that

(AVT) (Mz +¢)T(y —2) 20, for ally € X.

In this paper, we assume that M is positive semi-definite, and we say that AVI(g, M, X) is
monotone.

Tt is well known (see [3]) that AVI(g, M, X) is equivalent to the following complementarity
problem

(s,z,u) € RP x R* x RY

0 -B 0 s d
(GLCP) H(s,z,u)= | BT M AT [z | + | ¢ € {0} x {0} x RY
0 —-A 0 u b

(s,z,u)TH(s,z,u) =0

This work was partially supported by the Air Force Office of Scientific Research, grant AFOSR-89-0410
and the National Science Foundation, grant CCR-9157632
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2 MENGLIN CAO AND MICHAEL C. FERRIS

Complementarity problems of this form correspond to maximal monotone multifunction (see
[6]) under the following condition

0 -B
(1.1) rank | BT M |=n+p
0 —A

In this case, we call (GLCP) a generalized complementarity problem following the notation
of Giiler (see [2]). We show that any given AVI(q, M, X) can be reduced to an equivalent
problem AVI(q, M, X) such that (1.1) is satisfied. The path following method used by
Kojima et.al. for solving linear complementarity problem can be adapted to solve this
problem. Furthermore, this adaptation provides a polynomial algorithm for AVI(g, M, X)
since the construction of AVI(q, M, X) from AVI(¢q, M, X ) can be achieved in polynomial
time.

For convenience of analysis, we assume that n > 2, and m > 1. The case of n < 1is
trivial. In the case of m = 0, AVI(q, M, X) can be reduced to a system of linear equations.

The general scheme for solving AVI(g, M, X) therefore consists of following steps.

Step 1: Reduce AVI(q, M, X ) to an equivalent problem AVI(G, M, X) such that (1.1) is
satisfied (see Section 2).

Step 2: Construct an artificial problem AVI(¢', M’, X'} which has an easily generated start-
ing point as outlined in Appendix A.

Step 3: Apply the path following algorithm given in Qection 4 to find an approximate so-
lution of AVI(¢', M', X").

Step 4: Construct an exact solution of AVI(¢', M’,X") by using the technique described
in Appendix B, and obtain a solution of AVI(g, M, X) by dropping the artificial
variable (or conclude that AVI(g, M, X) is unsolvable ).

Step 5: Construct a solution of AVI(g, M, X) by filling in zero components (see Section 2).

The rest of this paper is organized as tollows. Section 2 deals with the issue of reducing
AVI(g, M, X) to an equivalent problem satisfying (1.1). In Section 3 we show the existence
of a central path by using existing results regarding complementarity problems as maximal
monotone multifunctions. In Section 4 we describe our path following algorithm and justify
its validity. There are three appendices; Appendix A shows how to construct an artificial
problem with a easily generated starting point. Appendix B shows how to construct an exact
solution of (GLCP) from an approximate solution generated by the path following algorithm.
These are generalization of work found in [4]. Appendix C proves an algebraic property of
positive semi-definite matrices which we use throughout the paper.

The following is a summary of our notation and the basic concepts employed. Given any
matrix C and index sets o and (3, C,. denotes the submatrix formed by those rows of C
with indices in a, C.p denotes the submatrix formed by those columns of C with indices in
B, and C,p denotes the submatrix formed by those elements of C with row indices in o and
column indices in 3. For any vector or matrix, a superscript T' indicates the transpose and
|||, denotes their p-norm, see [9]. For any vector v, diag(v) is the diagonal matrix whose
diagonal elements are the components of v, supp(v) is the set of indices that correspond to
non-zero components of v. Finally, for any closed convex set S C R”

recS 1= {d € R"| s+ \d € 5,Vs € §,¥A 2 0}



AN INTERIOR POINT ALGORITHM FOR VARIATIONAL INEQUALITIES 3

is the recession cone of S, and the set
L(§):={deR"|s+ pd € S,Vs € S,V € R}
is the lineality space of S (see [10]).
9. TRANSFORMATION TO A GENERALIZED COMPLEMENTARITY PROBLEM

The problem (GLCP) is a generalized complementarity problem if (1.1) holds. In general,
a problem in the form of (GLCP) can be reduced to a smaller problem satisfying (1.1),
which is again equivalent to a monotone affine variational inequality. Define the feasible set

of (GLCP) by
(2.1) S:= {(u,v)‘u,v >0,v=Az—bBzx—d= 0, Mz + ATu+BTs+q= 0}
Then the lineality space (see [10]) of 5 is
L(S) = {(S,0,0,IB) \ BTs+ Mz =0,—Az=0,—Bz = 0}
So, L(S) = {0} if and only if (1.1) holds.

For convenience of notation, define

0 —-B
Q= (BT M) c=(0 4)
(GLCP) can be reformulated as
(z,u) € RP™ x RY

o mew=(% T) )+ emem

(z,u)TH(z,u) =0
where z = (%) and ¢' = (d).

q
Suppose I(S) # {0}, then the columns of the matrix (_QC) are linearly dependent. There
exists index sets o and B such that

(2)=(%, %)

and (_%‘fa ) is a maximum subset of linearly independent columns of the matrix (_QO ) Thus

(%)-(%)"

for some |a| x |B| matrix P.

Lemma 2.1. Let o, B and P be as in (2.2), B#0. If (GLCP') is solvable, then there exists

a solution (Z,1) such that Zg = 0.

Proof. Let (2,@) = (Za, 23, ) be & solution of (GLCP'), then it is clear that (Zo + PZp,0,0)
is the desired solution. [
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Lemma 2.2. Define (GLCP") by

(w,u) € ]Rern—hGI % IRZ’:
o JT . ! o
(GLCP") H(w,u) = (951 (po) ) (Z’) + (‘ﬂf) € {0} x RE

(w, )T H(w,u) =0
Then (z,u) is a solution of (GLCP') with zg =0 if and only if (2a,u) 18 @ solution of
(GLCP").

Proof. If (z,u) is a solution of (GLCP') with z3 = 0, then it is casily verified that (za,u) is
a solution of (GLCP").
If (2q,u) is a solution of (GLCP "), then

(2.3) Qaa?a + (CT)a.u +q, =0
(2.4) —Caza+b € RY
and

(2.5) uT(=Coza +b) =0

Moreover, since the matrix (_Qc COT) is positive semi-definite, we can apply Lemma C.3 to
(2.2) resulting in

(@sa @pp (CT)p) = P7 (Que Qs (CT)e)

Also, taking into account (2.3), we have

U

(Qon Qo <0T>g.)(6’)+q'ﬁ = PT(Qua Qus (CTa) (5)+q'ﬂ

Ifqs— PT¢', # 0, then the system

Qao Qap (C’T)a-> - (q’ )
0l+1:%]1=0
(Qﬁa Qe (€M) \ 9
is inconsistent, a contradiction to the solvability of (GLCP') and Lemma 2.1. Hence
q,ﬁ _ PT la = ()
Let zp = (24,0), then
0
H(zo,u) = 0 € {0} x RY
—C.a2a + b
follows from (2.3), (2.4). We also have (zo, uT)H(z0,u) = 0 by reference to (2.5). O
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We can write

QW:<E(,’T “]\f) Co=(0 A)

for appropriately defined submatrices A, B, and M of A, B, and M respectively. Note that
M is positive semi-definite and the matrix

0 —B
BT M
0 -A

has full column rank. Therefore (GLCP") is equivalent to AVI(7, M, X) where
X = {y‘ AySB,By:J}

and g, b, and d are vectors which consist of appropriate components of ¢, b and d respectively.
The procedure of reducing AVI(g, M, X) to AVI(g, M, X ) can be carried out as follows:

Use Gaussian elimination to find a maximum subset of linearly independent columns for the

matrix
0 -B
BT M
0 -

and hence construct the index sets o and 3 defined by (2.2). Drop the the rows and columns
with indices in § from the matrix
0 -B 0 d
BT M AT ¢
0 —-A 0 b

Define M, A, B g, b, and d as the remaining parts of M, A, B, ¢, b, and d. The problem
AVI(g, M, X)) has thus been constructed. A solution of AVI(g, M, X) is found by solving the
equivalent problem (GLCP"). A solution of (GLCP), and hence a solution of AVI(¢q, M, X),
can then be constructed from that of (GLCP” ) by applying Lemma 2.2. The number of arith-
metic operations required to construct AVI(G, M, X) from AVI(q, M, X) and to reconstruct
the solution of AVI(g, M, X) from that of AVI(g, M, X) is bounded by O((m +n + p)*).
For the rest of this paper, we assume that we are given AVI(q, M, X) such that (1.1) holds.

3. EXISTENCE OF THE CENTRAL PATH

We solve AVI(g, M, X) by solving the complementarity problem (GLCP) under assumption
(1.1). We assume the set of interior points of S

S0 = {(u,v)‘u,v>O,U:Aac—b,Ba:——dzO,M:v+ATu+BTs+q:O}

is nonempty. In Appendix A, we will show, for any given affine variational inequality, how
to construct an equivalent problem such that SO £ .
We observe that the set

(3.1) T = {(u,v)| (s,u,v,z) € S, for some s,z }
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defines a multifunction (see [1]) on IR™. For any (u,v;) €T, 1=1,2,
Au = uy — uq, and Av =vg — V1
and some appropriate As and Az satisfy the following homogeneous equation

As

BT AT 0 M A

(3.2) o 0 I A e | =0
0 0 0 B A”
T

Therefore

AuTAv = AaTMT Az
Tt follows from the positive semi-definiteness if M that
(3.3) AuTAv >0

which implies that 7" is a monotone multifunction. The assumption (1.1) further implies that
T is maximal. In order to see this, we first introduce a technical lemma, which is proven in

[4].

Lemma 3.1. Givenp, 7, u € R", p+r=u and p'r > 0 then

lpll, < llwlly
Ir7lly < Nully

ol lill, < 5 Nl

Using this lemma, we are able to prove the following result.

Lemma 3.2. For any positive diagonal matrices Dy, Dy, and r € R™, the equation

0 D1 Dz 0 AS T
BT AT 0 M Av | [0
o 0 I A Av | |0
o0 0 0 B Az 0
has a unique solution.
Proof. Tt suffices to show that the homogeneous system
0 Dy Dy O As
T AT
(3.4) BT AT 0 M Au | _ 0

0 0o I A Av
0 0 0 B Az

has a unique solution.
Suppose (As, Au, Av, Az)is a solution, then

DiAu+ DyAv =0

hence

DAu+ D 'Av=0
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where D = (Dngl)’%. Notice that (DAu)T (D™ Av) = AuTAv > 0 as a result of (3.3), so
Lemma 3.1 applies, and we have

HDAUH2 <0, H.D‘l.AvH2 <0
Tt follows that

Au=0, Av=0

-B
It then follows As =0 and Az = 0 since as rank (B(())T A&) =n+p 0O

The next theorem follows as a direct consequence of the solvability of (3.4) and [2, Theorem
2.1].
Theorem 3.3. Suppose T' is defined by (3.1). Then T is mazimal monotone.

Qur algorithm is based on the idea of tracing certain path in S, which is defined by
(3.5) (u,v) €T, (u,v) =0, wivi = H, 1<i<m

To show that such a path exists, we need the following theorem which is a special case of 6,
Theorem 2] provided that T is maximal monotone.

Theorem 3.4. For mazimal monotone multifunction T, the system (3.5) has unique solu-
tion for each p > 0.

Such a path can be also characterized as the path of zeros of the following non-linear
function

F(s,u,v,2,1t) = (UV-;Le,Ma:+q+BTs+ATu,v+Arc-b,B:c—~d)

under parameter j, where U = diag(u) and V = diag(v). As a matter of fact, (s,u,v,2)
solves (GLCP) if and only if

F(s,u,v,2,0)=0 u,v= 0

The zeros of F, under parameter f, form a continuous curve for p >0 (see [6, Theorem 3])
referred to as the central path of S. The idea of tracing the central path is implemented by
constructing Newton steps for F'.

4. THE PATH FOLLOWING ALGORITHM

We assume that all elements of the matrix

M gq
Q=] A b
B d

are integers. The size of the problem AVI(g, M, X) is defined by

m4n+p n+l
I = 1+logm+n+p)P+1 >, > logll+ lg:;1)]

i=1 j=1

where |z| denotes the largest integer less than or equal to x for any = € IR, and gi;’s are
clements of the matrix Q. This quantity determines the accuracy required in solving affine
variational inequalities and is used to devise a stopping criterion for our algorithm.
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To solve (GLCP), we begin with an initial point (% u°,v°, ") which is close to the central
path, that is, a point in the set

(4.1) S = {(s,u,v,m) € S°| | UVe — (Cell, < o, where (= ;%’LLT’U}

At each step, Newton’s method is used to compute a new point in 5% such that ¢ is reduced
from the previous value by a constant factor. The algorithm terminates when ¢ is sufficiently
small. In Appendix A, we show how to construct such an initial point.

Given a point (s%,u%, v°,2°) € 5%, here s the algorithm:
Step 1: Choose 0 < a < 15, let & = 725, and let k£ = 0.
Step 2: If ufTvF < 2-4L then stop.
Step 3: Let

( — ukT,Uk/m
po= (1—6/m?)
(S7u7v7m) - (Sk?uk7vk?$k)

Step 4: Compute (As, Au, Av, Ac) by constructing a Newton step for the function F, that
is, solving

0o Vv U 0 As UVe— pe

BT AT 0 M Au 0
(4.2) 0 0o I Alloav]|T 0

0O 0 0 B Az 0
and set

(sk“,ukH WL gEY) = (s, u,0,T) — (As, Au, Av, Az)

3 7
Step 5: Set k =k + 1, and go to Step 1.
There are two crucial issues concerning the validity of the algorithm, one is the solvability

of (4.2), and the other is the justification that each new iterate stays in S* and that ( is
reduced. The solvability of (4.2) follows from s a direct consequence of Lemma 3.2. The

following theorem proves that the sequence {(sk,uk,vk,mk)} generated by the algorithm
remains in S¢. Moreover (* = -:;ukTvk decreases by a constant ratio (1 — gi—l-) at each
m 2

iteration. As a result, our algorithm stops in O(m”lz‘L) iterations, each of which requires
O((m + n + p)®) operations to compute a new point. Therefore, it takes no more than

O(m?(m+n+p)°L) arithmetic operations for the algorithm to find a point {(s*,u", 0", z*)}

such that w*Tv* < 274F. In Appendix A, we show that an exact solution of AVI(¢, M, X )
can be constructed in no more than O((m + 7 + p)?) additional operations.

Theorem 4.1. Let (s,u,v,z) € S° satisfy
|UVe—Cell, < af  with (= ;%’U,T’U
for a € (0,55). Let

po= (1-8/m¥)
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Suppose (As, Au,Av,Az) 15 a solution of (4.2), and
(3,4,9,%) = (s,u,v,2) — (As, Au, Av, Az)

Then, (@,9) >0, and

S
<
o
o
R
=
N
Q
P

~
4]
IA

1 1)
— (1-23 )¢
Proof. Since

VAu+UAv=UVe — pe

and according to (3.3)
AuTAv >0

All the estimates for proving of Theorem 1 of [4] are valid ( also see [2, Section 5] ), and our
theorem is therefore proven. [l

Remark. In fact, the conclusion of Theorem 4.1 can be strengthened (see [4]) to allow o < =
and consequently we have

)

2m

(<(1—-—3X

i
2
The rank-one update procedure described in [4] can also be incorporated to save O((m +
n+ p)%) arithmetic operations for each iteration and hence provide an O(mz(m+n+ p)3 L)
algorithm.

5. CONCLUSION

The problem AVI(q, M, X ) can be reduced to a generalized complementarity problem.
Such a complementarity problem can be solved in polynomial time by using a path following
method similar to the one proposed by Kojima et. al. in [4]. The complexity of solving
AVI(q, M, X) is O(m% (m 4 n+p)®L), which can be further reduced to O(m% (m-+n-+ p)%L)

if we incorporate a more sophisticated rank-one update scheme.

APPENDIX A. CONSTRUCTING AN FEASIBLE PROBLEM

Given AVI(g, M, X), we construct an artificial problem with an easily generated starting
point. We can test whether S is empty by solving a single linear program. Suppose S5 i
nonempty. Then there exist an extreme point (s°,u0,0°,2°) € S since L(S) = {0}. We will
show in Appendix B that

22L

(A1) (0, u,0%,2%)] < CETEESD
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Consider AVI(¢’, M’, X") with

/

_ q
q (m + 1)23F — eTh

;L M —ATe
M = (eTA 0

x = {(v t)lyeX,tZO}
= ] (E) M <G (a0) () =4}
— {yll Alyl S bl, Blyl — dl}
~B!
where y' = (). Then ( ]}’IA "’?)Te> is positive semi-definite, and rank (B?T M > =n+1+p.
€ 0 —A'
Let
Sy = {(u',v') > 0\ o = Alz' —¥,B's’ —d =0,M'z" + ATy + B s 4+ ¢ = 0}
then S} # 0. In fact, if we set
s = 80, 2 = ($0723L)
u = ( 93Le 40 eT(Az® —b—u®) + 2°F ) :
v = ( 93Le 4 h— Az® 2L )
then u',v' > 0 as a result of (A.1). It is also obvious from direct algebraic verification that
Bz = d
o + Al =V
BT 4+ AT + M +¢ = 0
So, (s',u/,v',z") € Sp.
We further show that
|U'V'e —('ell, < af’

- L
for a = 15, where

U = diag(«), V' = diag(v'), and ¢’ = wTo'

m1

Let K = m -+ n + p, then by the definition of L

(A.2) ol > omtv . K2
since
L m+n+p ntl
of = (m+n+p)? TI TIC +la)
=1 j=1

and there is at least one non-zero element in each row of the matrix (4 5). Hence

-L
(A.3) 2 <



AN INTERIOR POINT ALGORITHM FOR VARIATIONAL INEQUALITIES
By definition v’,v’, also taking into account (A.1) and (A.3)
1 1
1——)2%F < ’.<(1 —-->23L
(1- )2 < ws (g

1 3L ! 1 3L
P L <
<1 21{4) 27 s ws (1 + 21{4) 2

for 1 <4 <m+ 1. Multiply w;’s by v;’s and notice that K =m +n+p 2 3, then

2 2
(1-—-——)261’ < u;vig<1+—-—>2“, 1<i<m+1

K* K4
Therefore
(A.4) (1—-:2-)26L<¢'<(1+3—>26L
' K4 - K¢
Hence

4
lu’.v’.-(’1§-—-’-<-;26’;, 1<i<m+1

Taking into account (A.4)

et P 4(m B
\U'V'e—(ell, = {Z |ubv; — {'\2} < ég__i_l—)_c'

‘= Kt—2

Knowing that K=m4n+p>m+2andm21

4m+1)7 _ Am+ s _ 1

Kf—2 ~(m+2)*-2710
We conclude that
|U'V'e—(ell, < af’
for a = 11'6
Now, considering that the size of the new problem

m+1+ntit+p  ndi4l
=1+ logm+1+n+1+p+ 2 S log(1+ lgi;D)

M'q .
where ¢j;’s are elements of ( Al bl) and noticing that
B’ d

log(1 + |ATe]) < ilog(l + ‘Agl)

J=1

log(1 + |2'F —€"b]) < 4L+ >~ log(1 + 1b5)

i=1

m+l+n+l+p < 2(m+n+p)
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we have the following estimate

m+ntp n+tl
' < 1+ [1og(m+1+n+1+p)2+3 > Zlog(1+lqijl)+l+m+4[/j
=1 =1
m~+n+p n+1
< 1+ [dlog(m+n+p)+4 D > log(l+lgsl)] +4L
=1 j=1

< 8L

This guarantees that we can solve the artificial problem in O(m%(m +n + p)2L) arithmetic
operations.

The following theorem shows that given any solution 7' = (%, &ms1) of AVI(¢/, M', X'), if
Zme1 = 0 then Z is a solution of AVI(q, M, X); otherwise AVI(g, M, X ) is unsolvable.

Theorem A.1l. Suppose the AVI(q, M, X) is solvable, and T = (Z,Tm+1) is a solution of
AVI(¢', M, X"). Then Ty =0 and I solves AVI(q, M, X).

Proof. Since AVI(g, M, X) is solvable, there exists (3,4, 0, &) satisfying (GLCP) and that
llit|l o lI5]l., are hence bounded by 922L /(m +n+p)?. As aresult, (m+ 1)23F —eT(a+v) > 0.
Let

§=5 0= (1 Gnn ), o= (0 0), and &' = ( & 0)
where
g = (m+1)2%F — €T (i 4 9)
(m + 1)2%F + eT(AE — b — 1)
then, it can be directly verified that (&' 4!, #) solves AVI(¢, M',X"). For any other
solution (&',4',9',z") such that
@ = (@, lms1), 0 = (8,0m41), and &’ = (%, Zm41)

we have . .
W =l 7 4+ u 4 (@ — @) (- )

by Lemma 2.1 of [5]. Since (%' — @)T (%' — ") > 0 as a result of (3.3), and a5 =0
o T <0
But, (@', 7)) > 0, (&,0") > 0, tipm1 = (m+ 1)23L — €T (i + ) > 0, therefore Dmy1 = Tmy1 = 0.
Now, it follows from
Blli, . dl —
—A'Z +V o
BTs + AW + M'Z +¢ = 0

I

that
Bz—d = 0
—AZ+b = D
BTs + ATa+ Mz +q = 0
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Also, @,v > 0, and
o<als<u v =0
Therefore (3',4,%,%) solves (GLCP). In another words, Z solves AVI(q, M, X). O

APPENDIX B. COMPUTING AN EXACT SOLUTION

The path following method finds a point (3,1,9,%) € S such that

als <27
However, a solution (s, u,v,z) of (GLCP) satisfies
(B.1) (s,u,v,2) € S
(B.2) wlv = 0
Again, S is defined by
y BT AT 0 M Z —q
S = (v)ZO 0 0 I A =15
o o 0 B)\ d

0 -B
Notice that lineality space L(.S) of S is zero, due to our assumptions that the rank (BOT M, ) =

n + p. So, if (GLCP) has a solution, it has a solution which is an extreme point of 5. In
fact, such an extreme point can be characterized by the following Lemma.

Lemma B.1. Given (s,u,v,z) € S, suppose
o = supp(u)
B = supp(v)
Then (s,u,v,x) is an extreme point of S if and only if
BT AT 0 M

(B.3) Qa,f)=| 0 0 Is A
0o 0 0 B

has full column rank. In this case, we also say that (s,u,v,z) is basic.

See [7, Section 3.4.4] for a proof.

Our objective is to construct a basic solution, in polynomial time, from an approximate
solution given by the path following method. The following lemma points to the existence of
certain basic solution that is closely related to a given approximate solution. For convenience
of notation, we use

w = (8,u,v,)
and
K(w) = {p_<_k§p+2m\wk <2“2L}
K(w)° {k|k ¢ K(w)}

for any point (s,u,v,z) € S.

il
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Lemma B.2. For any point
there exists basic solution

of (B.1) such that

for all k € K(w).

Proof. For any basic solution (s*,u*,v*,z*)of S, each of its non-zero component is expressible
as Ay/Aq by Cramer’s rule, in which A;’s are determinants of square submatrices of

BT AT 0 M
(B.4) g=| 0 0 I A
0 0 0 B

as a result of the previous Lemma.
By definition of I, these A;’s are bounded by 22F/(m + n + p)>. Hence for any extreme
point w = (s,u,v,z)

(B.5) wg =0 if wp<(m4+n+ p)22~ %k
(B.6) wg > (m+n+ p)22"2[’ if  wp>0
Given any point @ = (§,%,0,%) € S, it can be written as
N .
W = cw' +r
=1

where (si,qii,vi,azi)’s are vertices, ¢; > 0, Zﬁ\;l ¢; =1, r €recS with rp > 0 for p+ 1<k<
p + 2m. In particular

N
zbk=§:ciz};+rk, p+1<k<p+2m
i=1

By Caratheodory (see [10, Theorem 17.1]), we can assume N < 2m +n+p+ 1, and we can
hence find a j such that
1
Cj Z
om+n+p+1
Now, we claim that w’ satisfies (B.5) and (B.6). Otherwise

w{, >0
for some k € K(w), so .
w) > (m+n+p)27"
hence

(m +n+ p)2 2—-2[1 > 2—-2[/

N .
@k:Zciw}C%—mZCjwiZ om+n+1

1=1

a contradiction. [
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Suppose W = (8,4, D,%) is a point in S satisfying 479 < 27%. By using a method given
in [4, Appendix B], we can move from @ to a point @ € S in O((m +n + p)?) arithmetic
operations, with @ satisfying K(i) ¢ K(w) and that the set of columns of the matrix Q
with indices in K (@)° is linearly independent. Consider the system of equations

Quw=q w=>0
wg=0  for ke K(0)

where ¢ = (wgq) According to the previous lemma, this system is satisfied by a solution
w* = (s*,u*,v*,a*) of (B.1) such that wy = 0 for k € K(w). But since 479 < 2~1L we have

U < 272l o O < 92k
for each 1 < k < m. Hence

U < 272k op U < 9~k
for each 1 < k < m. Therefore

up=0 or vp=0

So, we see that w* is a solution of (GLCP). Considering that K (@) C K(w*) and that the
set of columns of ) with indices in K (w)° are linearly independent, we know that w™ can be
solved from the equation

Quw=¢

in O((m + n + p)®) arithmetic operations.

APPENDIX C. AN ALGEBRAIC PROPERTY OF PSD MATRICES

We begin with the following simple fact.
Lemma C.1 ([8, Result 1.6]). Let M be a positive semi-definite matriz, and assume
0 uf
w=(5 i)
then u = 0.

Consequently, we have the following corollaries.

Corollary C.2. Let M be an n xn positive semi-definite matriz, and let
v C {1327 vn}

Assume M., = 0, then M,. = 0.

Proof. Apply the previous Lemma to each index of v. [
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Corollary C.3. Let M be ann X n positive semi-definite matriz, and v, a, f be a partition
of {1,2,--- ,n}, so that

M=(M, Ma Mg )

Assume that

M., = MP
for some |a| x |y| matriz P, then
M, = PTM.,.
Proof.
I -PT 0 I 00 I —-PT 0
o I ol|lmM|-PpI 0| =10 1 0 (OJ\I.Q.]\Jﬁ>
0 o0 I 0 0 I 0o o0 I
I —PT 0\ (0 My Mg
= 0o I 0 0 Moo Mag
0 0 I)\0 Mg Mg

0 * *
= 0 Moo Map
0 Mpa Mpp

0 0 0
= | 0 Muw Mg
0 Mpo Mpg

where the last equality follows from Lemma C.1. It now follows that

I PT O\/0 0 0 I 00
M =lo 1 0|0 Mu Mup || P IO
0 0 I)\0 Mg Mg 0 0 I

PTMyo P PTMy, PTM,p
Alaap ]‘Iaa Mo:ﬁ
MysP  Mas Mg

therefore
M, = (PTMaaP P"Moe PT Map )

= PT( MauP Mow Mop )
= PTM.,
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