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Control dependences characterize how the predicates in a program govem the execution of other statements and predicates. Control
dependences are defined in terms of a program’s control-flow graph; given a control-flow graph G, a corresponding control depen-
dence graph, CDG(G), can be constructed. This paper addresses the inverse problem: we define an algorithm that, given a control
dependence graph C, finds a corresponding control-flow graph G (i.e., a graph G such that CDG(G) is isomorphic to C), or determines
that no such control-flow graph exists. We call this process CDG-reconstitution.

CDG-reconstitution is a necessary part of systems that use and transform program dependence graphs (graphs that combine data
dependences and control dependences) as the basis for discovering and performing code transformations. For example, parallelizing or
vectorizing compilers as well as program integration tools may construct the program dependence graph(s) of a program (or set of pro-
grams) and then manipulate them in various ways to form a new graph. Reconstitution is needed as a final siep to find a corresponding
program for this graph. Such a process must respect the data and control dependences of the graph—we concentrate on the reconstitu-
tion problems caused by control dependences.

Our research provides two important advances over existing CDG-reconstitution algorithms. First, while previous algorithms han-
dle only acyclic CDGs, our CDG-reconstitution algorithm correctly handles both acyclic and cyclic control dependence graphs.
Second, our algorithm provides an improvement in efficiency over existing algorithms.

1. INTRODUCTION

Control dependences were introduced in [8, 10] to characterize how the predicates in a program govern the
execution of other statements and predicates. Control dependences are defined in terms of a program’s
control-flow graph; given a control-flow graph G, a corresponding control dependence graph, CDG(G), can
be constructed using the methods of [6,7,10]. This paper addresses the inverse problem: we define an
algorithm that, given a control dependence graph C, finds a corresponding control-flow graph G (i.e., a
graph G such that CDG(G) is isomorphic to C), or determines that no such control-flow graph exists. We
call this process CDG-reconstitution.

CDG-reconstitution is a sub-problem of program dependence graph reconstitution: given a program
dependence graph (a graph that combines a program’s control dependence and data dependence graphs),
find a corresponding program or determine that no such program exists. Reconstitution of program depen-
dence graphs is used in several areas:

(1) The program-integration algorithms of [14, 18,22] combine portions of several program dependence
graphs to form a merged graph. Program-dependence graph reconstitution is needed to determine
the feasibility of the merged graph (the merged graph is feasible if it is the program dependence
graph of some program) and, if it is feasible, to produce a corresponding program. Currently, these
integration algorithms can handle only programs written in a language with very restricted control
flow (for which CDG-reconstitution is trivial). The CDG-reconstitution algorithm presented in this
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paper will permit the integration algorithms to be extended to handle a rich set of control constructs.

(2) Program-dependence graph reconstitution is also potentially useful in optimizing, vectorizing, or
parallelizing compilers that perform source-to-source transformations by computing the program
dependence graph of a program, performing transformations on this graph, and finally, finding a
source program that corresponds to the transformed graph [5, 10].

Previously, [9,11] have addressed the CDG-reconstitution problem, culminating in the results of [20],
which addresses the issue of CDG-reconstitution in a formal framework. However, in this work, CDG-
reconstitution is formalized only for acyclic CDGs (i.e., the control dependence graphs of loop-free pro-
grams). An extension to handle cycles is mentioned briefly, but is incomplete and contains some errors.
Our research provides two important advances. First, we define a single CDG-reconstitution algorithm that
correctly handles both acyclic and cyclic control dependence graphs. Second, our algorithm provides an
improvement in efficiency: in [20], the authors present an O (NxE) (where N and E are the number of ver-
tices and edges, respectively, in the control dependence graph) algorithm for CDG-reconstitution when the
control dependence graph is known beforehand to be feasible (i.e., there is some corresponding control-
flow graph) and an O (N>xE) algorithm for determining if a control dependence graph is feasible. Our
algorithm takes an arbitrary control dependence graph C and either produces a corresponding control-flow
graph or determines that C is infeasible in O (NxE) time; we also show how reconstitution can be done in
linear time for large classes of CDGs.

Our algorithm is restricted in that it only considers the control dependence graphs of control-flow graphs
that are reducible and for which no vertex inside a loop postdominates the loop’s entry. This restriction
greatly simplifies the process of reconstitution and allows for an efficient algorithm, while still providing an
important improvement over the algorithm of [20], which handles an even more restricted class of control
dependence graphs.

The main problem of CDG-reconstitution is to totally order the children of each predicate vertex in a
way that is consistent with the postdomination ordering in a corresponding control-flow graph, if one
exists. A feasible control dependence graph may have more than one corresponding control-flow graph. In
this case, there is more than one total order that can be computed. Our CDG-reconstitution algorithm finds
one corresponding control-flow graph for a given feasible control dependence graph by making some non-
deterministic choices as explained below. Given a feasible CDG C, the algorithm determines, for all pairs
of vertices (a,b) that have a common parent in C, which of the following holds:

(i)  Vertex a postdominates vertex b in all corresponding control-flow graphs.
(iiy Vertex b postdominates vertex a in all corresponding control-flow graphs.

@iii) There is a corresponding control-flow graph in which vertex a postdominates vertex b, and a
corresponding control-flow graph in which vertex b postdominates vertex a.

Pairs that fall into categories (i) and (ii) must be ordered b —a and a —b, respectively; pairs that fall into
category (iii) may be ordered nondeterministically as long as the resulting postdomination order over all
the pairs is acyclic.

The remainder of this paper is organized as follows: Section 2 gives the basic definitions used
throughout the paper; Section 3 presents our CDG-reconstitution algorithm and the ordering properties that
are the basis of this algorithm; Section 4 considers related work; Section 5 examines some optimizations
and extensions to CDG-reconstitution; Section 6 suggests directions for future research; the Appendix con-
tains proofs of the ordering properties and proofs of correctness for the algorithms presented in Section 3.
A glossary of terminology is included at the end of the paper, preceding the Appendix.



2. BACKGROUND

2.1. Control-flow Graphs and Control Dependence

A control-flow graph (CFG) is a directed, rooted graph that represents the flow of control among the por-
tions of a program. A CFG has three types of vertices: statement vertices, which have one successor,
predicate vertices, which have a true-successor and a false-successor, and an EXIT vertex, which has no
successors. The root of the CFG is the ENTRY vertex, which is a predicate with EXIT as its false-successor
and the first statement in the program as its true-successor. Finally, every vertex is reachable from the
ENTRY and EXIT is reachable from every vertex.

Vertex w postdominates vertex v in a CFG iff w # v and w is on every path from v to the EXIT vertex
(sometimes written w pd v). Vertex w immediately-postdominates vertex v iff w pd v and there is no ver-
tex x such that w pd x pd v (sometimes written w impd v). Vertex w postdominates the L-branch of predi-
cate vertex v (where L is either true or false) iff w is the L-successor of v or w postdominates the L-
successor of v. While no vertex can postdominate itself, a vertex can postdominate its own L-branch. The
postdomination relation for a CFG is a tree with root EXIT where edge v—w denotes that v impd w.

Let G be a CFG and let v and w be vertices in G. Vertex v is an L control dependence predecessor of w
(i.e., w is directly control dependent on v—written v —>% w) iff w postdominates the L-branch of v and w
does not postdominate v. A vertex can be directly control dependent on itself. Intuitively, if v —>Lw, then
whenever v executes and evaluates to L, w will eventually execute, barring abnormal termination such as
an infinite loop or an exception. Furthermore, if v executes and does not evaluate to L, w might not exe-
cute. In this way, v directly controls whether or not w executes.

The control dependence graph (CDG) of a CFG is a directed graph that contains the same vertices as its
CFG, excluding the EXIT vertex. The edges of the CDG are defined by the direct control dependence rela-
tion, as given above. The root of the CDG is the ENTRY vertex, from which every vertex in the CDG is
reachable. Vertex v dominates vertex w in CDG C (written v dom w) iff every path from ENTRY to w con-
tains v. Every vertex dominates itself. At times, we will also refer to domination in the CFG. However,
unless explicitly stated otherwise, domination refers to the CDG.

Example. Figure 1 presents two CFGs, GI and G2, and their CDGs, CI and C2. In CFG G, both vertices
a and b postdominate the true-branch of r, but neither vertex postdominates r. Therefore, both a and b are
true control dependent on 7 in CI1. Vertex ¢ is not control dependent on  because it postdominates 7. In
CFG (2 both r and b postdominate the false-branch of ¢, but neither vertex postdominates g. Therefore,
both r and b are false control dependent on g in C2.

A CFG G is a corresponding CFG of CDG C iff CDG(G) is isomorphic to C. The isomorphism must
respect vertex text and edge labels.

2.2. The CDGs Under Consideration

The class of CDGs that is the focus of this work contains the CDGs of a restricted class of CFGs. A CFG
is in this restricted class iff it is reducible’ and for each vertex w that is a loop entry (i.e., is the target of at

'A CFG G is reducible if the target of each back edge e of G (as defined by a depth-first search of G starting at the ENTRY vertex)
dominates the source of e. Equivalently, G is reducible if any depth-first search of G identifies the same set of backedges. Roughly
stated, reducibility restricts loops to be single-entry. Other equivalent characterizations of reducibility are given in [2].



Figure 1. Control flow graphs GI and G2 and their control dependence graphs CI and C2.

least one backedge), no vertex in the natural loop? of w postdominates w. The CDGs of such CFGs have
certain properties that make reconstitution easier. Both CFGs G and 2 of Figure 1 fall into this class.

The class of CFGs described above properly contains the CFGs of programs written with while loops,
sequencing, conditionals, and forward branches that do not jump into loops (this includes break and muiti-
level exit statements). In general, CFGs generated by repeat-until loops do not have the second property;
vertices inside such loops can postdominate the loop entry.

As defined in the Introduction, a CDG C is feasible if it has a corresponding CFG. However, as our
algorithm is only well-defined for the restricted class of CDGs described above, it may fail to reconstitute
some feasible CDGs. To avoid confusion, we call a CDG feasible if it has a corresponding CFG; we call a
CDG R-feasible it has a corresponding CFG that is in the restricted class. Similarly, we call a CDG
infeasible if it is not feasible, and R-infeasible if it is not R-feasible. CDGs CI and C2 of Figure 1 are K-
feasible.

Finally, note that the goal of CDG-reconstitution is not to produce program text, but rather a CFG. A
variety of syntactic constructs can give rise to the same CFG; the problem of determining or preserving
syntactic constructs in reconstitution is not addressed here. A CFG or CDG may be annotated with infor-
mation about the syntactic structures from which it was originally derived in order to recover the syntax
later, or a structuring algorithm such as that of [3] may be employed to produce a program from a CFG.

2.3. The Difficulty of CDG Reconstitution

The CDG factors out the postdomination information that is present in the CFG; while the children of a
given predicate vertex in a CDG are unordered, in the CFG these vertices are totally ordered by the

?Natural loops are defined in [2]. See the Appendix for a more detailed description of this restricted class of CFGs.
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postdomination relation. The main problem of CDG-reconstitution is to recover an acceptable postdomi-
nation order solely from the examination of the CDG (i.e., one that will produce a corresponding CFG). It
might seem that the CDG could be annotated with the postdomination order from the CFG, thus eliminat-
ing this problem. However, the systems that use the CDG may transform it so that the original postdomina-
tion order is of no use to the reconstitution process (in fact, the original postdomination order may contrad-
ict the order imposed by a transformation).

To show why CDG-reconstitution is difficult, we first examine a class of CDGs for which it is simple.
Consider a language that permits only sequencing, conditionals, and while loops (the CFGs generated by
this language are a proper subset of the restricted class of CFGs). The CDG of a program in this language
is essentially a tree in which while predicates are the true parents of the statements immediately enclosed
in the loop, and if predicates are the true (false) parents of the statements immediately enclosed in the then
(else) branch. The only non-tree edges are self-loops on while predicates. The CDG of a program in this
language is nearly identical to the program’s AST.

These observations give us a very simple and fast reconstitution algorithm for a CDG C that is composed
only of tree edges and self-loop backedges: (1) pick an arbitrary total order for the L control dependence
tree children of each predicate in the CDG; (2) let the “ordered” CDG represent an AST where predicates
with self-loops are while loops, and predicates without self-loops are if-then or if-then-else conditionals,
depending on whether or not they have faise control dependence children. It is easy to see that no matter
the order picked in step (1), the CDG of the program defined by the resulting AST is isomorphic to C.

Reconstitution is made difficult by the presence of forward, cross, and (true) backedges in the CDG.
When such edges occur, it is not always possible to pick any total order for the L-children of a predicate in
the CDG. In particular, the postdomination order of two vertices may be fixed for all corresponding CFGs.
For example, in Figure 1, ¢ pd ¢ in every corresponding CFG of CDG Cl, but the same does not hold true
for vertices p and d. The difficulty of CDG-reconstitution is in distinguishing the cases where the postdom-
ination order is fixed (and in what direction) from the cases where the postdomination order may be arbi-
trarily chosen.

3. ARECONSTITUTION ALGORITHM

The function ReconstituteCDG (see Figure 2) takes an arbitrary CDG C as input and behaves as follows:
(1)  if C is not feasible then the function returns FAIL;
(2) if Cis R-feasible then the function returns a corresponding CFG;

(3)  if C is feasible but R-infeasible then the function may return FAIL or may return a corresponding
CFG.

The algorithm performs three main steps. In line [1] the function ComputeGoodOrder is called. If C is
R-feasible then this function returns, for each predicate vertex p in C, a total order for p’s children that is
consistent with the postdomination ordering in a corresponding CFG (for an R-feasible CDG, such an order
is called a good order); the function may return FAIL if C is not R-feasible. In line [2] the function Con-
structCFG is called to construct CFG G. The test in line [3] checks whether the CDG of G is isomorphic to
C. This test is necessary because ComputeGoodOrder may not fail on some infeasible CDGs. If this test
fails, then C is R-infeasible and ReconstituteCDG returns FAIL.3

?As presented here, the algorithm will succeed in reconstituting some CDGs that are feasible but not R-feasible. It is easy to modify
the algorithm so that it succeeds iff the CDG is R-feasible: add a second test after line [3] that checks whether the CFG G is in the res-
tricted class, returning FAIL if it is not.



function ReconstituteCDG(C : CDG) : CFG or FAIL
Order : set of ordered pairs of vertices
G : CFG

begin

[1] Order := ComputeGoodOrder(C)
if Order = FAIL then return (FAIL) fi

[21 G := ConstructCFG(C, Order)

[3]1 if not Isomorphic(CDG(G),C) then return (FAIL) fi
return (G)

end

Figure 2. Function ReconstituteCDG(C) produces a corresponding CFG for C if C is R-feasible.

The next three subsections present each of these three steps in greater detail. The final subsection gives
a complete example of the reconstitution algorithm. Section 3.1 describes the main problem in reconstitu-
tion: how to compute a good order for a CDG. Section 3.2 describes how this order is used to construct a
corresponding CFG. Finally, Section 3.3 illustrates the need for the CDG isomorphism check and
describes how to perform it efficiently. Each of these sections includes a running time analysis. We show
that the function ComputeGoodOrder takes O (NXE) time in the worst case, where N is the number of ver-
tices in C and E is the number of edges in C, and that its running time dominates the running times for con-
structing the CFG and performing the isomorphism check. Therefore, the entire running time for function
ReconstituteCDG is O (NXE) in the worst case.

3.1. Computing a Good Order for an R-feasible CDG

The first step of the CDG-reconstitution algorithm determines, for each predicate vertex p in the CDG, a
total order for p’s L-children that is consistent with the postdomination ordering in a corresponding CFG.
For every pair of vertices (a,b) that have a common parent in the CDG (i.e., 3 p such that p —La and
p—>L b, where Le { true, false }), the algorithm must decide whether a pd b or b pd a.* We refer to
such pairs simply as (a,b) pairs.

By definition, a postdomination order for all (a,b) pairs in a CDG C is a good order for C if it is con-
sistent with the postdomination ordering in a corresponding CFG. That is, Order is a good order for CDG
C if there is a corresponding CFG G such that for all (a,b) pairs in C, Order specifies that a pd b iff a pd b
in G (under the isomorphism map between C and CDG(G)). For example, a good order for CDG CI of
Figure 1is { b pd a, c pd ¢, d pd p }. An infeasible CDG has no good orders; a feasible CDG may have
more than one good order.

The goal of this part of the CDG-reconstitution algorithm is to find a good order when the CDG is R-
feasible. If the CDG is R-infeasible this step may fail or may return some acyclic order. Conceptually, a
good order can be thought of as an acyclic graph where the vertices represent vertices from the CDG, there
is either an edge a—b or b —a for every (a,b) pair, and edge v—w implies that w pd v in the good order.

Consider vertices a and b such that p —>% @ and p —>L b. By the definition of control dependence, in every corresponding CFG of C
both a and b postdominate the L-branch of p. This implies that in every corresponding CFG of C eithere pd borb pd a.
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A good order (or any other acyclic ordering of all (a,b) pairs) totally orders the L-children of each predi-
cate vertex in a CDG.

Unfortunately, we cannot always determine a good order simply by picking an arbitrary acyclic order

over the (a,b) pairs of C.3 The postdomination order of an (a,b) pair may be fixed; that is, it may be that a
pd b in all corresponding CFGs or that b pd a in all corresponding CEGs. Once all fixed orders have been
identified, a postdomination order for the remaining (a,b) pairs can be easily found.

Section 3.1.1 presents the ordering properties that form the basis for computing a good order. Section
3.1.2 refines one of these properties to allow for a more efficient algorithm. Section 3.1.3 makes use of
these results to define a function ComputeGoodOrder that computes a good order for C if it is R-feasible.

3.1.1. Ordering Properties

This section introduces several ordering properties that can be used to determine a good order for an R-
feasible CDG. The first two properties are about feasible CDGs: Property OrderFixed states that if a cer-
tain structural condition holds in a feasible CDG with respect to an (a,b) pair, then b pd a in all
corresponding CFGs; Property OrderArbitrary states that if a different condition holds in a feasible CDG,
then the postdomination order of the (a,b) pair is not fixed. Property Complete shows that for any (a,b)
pair in an R-feasible CDG, either property OrderFixed or OrderArbitrary must hold (this is not true for
feasible CDGs that are not R-feasible). Thus, for R-feasible CDGs, properties OrderFixed and OrderArbi-
trary can be stated in terms of “if-and-only-if”, rather than “if-then.” The proofs of these and other proper-
ties given in this section are included in the Appendix.

DEFINITION. A path in CDG C is parent(a)-free iff for all edges v -->L w in the path, v —>% g isnot in C.
DEFINITION. Reachable(C,v) denotes the set of vertices reachable from v in CDG C (i.e., { x| v —>;x }).

PROPERTY OrderFixed

Consider an (a,b) pair in feasible CDG C. If there is a parent(a)-free path from ENTRY to a vertex in
Reachable(C,b), then b pd a in every corresponding CFG of C.

The intuition behind property OrderFixed is as follows: if there is a parent(a)-free path from ENTRY to
x, then there may be some execution of a corresponding CFG in which x executes at least once and a never
executes. Suppose that x € Reachable(C,b) and that a pd b in some comresponding CFG G of C. By
several properties of control dependence, a pd b and x € Reachable(C,b) imply that a pd x in G. There-
fore, any time x is executed, @ must eventually execute, which contradicts our claim that x may be executed
once while a is never executed. Therefore, b pd a in all corresponding CFGs of C if there is a parent(a)-
free path from ENTRY to a vertex in Reachable(C,b).

Example. Consider CDG CI in Figure 1: in this CDG, there is a parent(a)-free path from the ENTRY vertex
to b: ENTRY —Tp —T g —F b. Therefore, b pd a in all CEGs corresponding to CI. Vertex p is in
Reachable(CI, ¢) and ENTRY —>7 p is a parent(g)-free path. Therefore, ¢ pd ¢ in all CFGs corresponding
to C1.

5As discussed in Section 2.1.3, this is possible when the CDG is a tree.



DEFINITION. DomReach(C) = { v|V x € Reachable(C,v): v dom x }.
Example. DomReach(CI) = { ENTRY, p,d, q,a, b } and DomReach(CZ) = { ENTRY, q,c,a,b}

DEFINITION. Given an (a,b) pair in CDG C, b over a (by edge v —>% b) iff there exists v —>% b such that
(not v —>~£ @) and (not b dom v).
Example. In CDG C1 of Figure 1, b over a by edge ¢ —% b, and (not a over b).

PROPERTY OrderArbitrary

Consider an (a,b) pair in feasible CDG C. If not a over b, not b over a, and a,b € DomReach(C),
then there is a corresponding CFG in which b pd 4, and a corresponding CFG in which a pd b.

Example. Consider CDG CI in Figure 1. Since OrderArbitrary holds for the pair (p,d), there are at least
two good orders for C1, one in which d pd p and one in which p pd d. In fact, there are exactly two good
orders for this CDG, since property OrderFixed holds for every other (a,b) pair in C1.

In a feasible CDG, it is impossible for both property OrderFixed and OrderArbitrary to hold for an (a,b)
pair. However, there are feasible CDGs for which neither property holds for some (a,b) pair. That is, these
properties are not complete for feasible CDGs. However, they are complete for R-feasible CDGs:

PROPERTY Complete

If CDG C is R-feasible then for any (a,b) pair, either property OrderFixed holds (in one direction) or
property OrderArbitrary holds.

The above three properties give us enough information to determine for which (a,b) pairs the postdomina-
tion order is fixed (and in what direction). The following property characterizes how to determine a good
order for an R-feasible CDG:

PROPERTY Permutations

If CDG C is R-feasible, then an order for the (a,b) pairs of C is a good order iff it (1) respects the fixed
pair orderings determined by property OrderFixed and (2) orders the (a,b) pairs for which OrderFixed
does not hold according to an arbitrary total ordering of C’s vertices.

3.1.2. Refining the Ordering Properties

A naive approach to check whether property OrderFixed holds for each (a,b) pair in a CDG will take
worst-case O(N2xE) time, since there are at most O(N'?) pairs to check and we might have to traverse O(E)
edges for each such pair to determine if there is a parent(a)-free or parent(b)-free path in the CDG. The
following property permits a more efficient reconstitution algorithm by identifying a series of cheaper tests
that are equivalent to property OrderFixed (when applied to R-feasible CDGs).

Every R-feasible CDG is reducible (see Appendix for proof). Thus, the set of backedges of an R-
feasible CDG, as identified by any depth-first search, is uniquely defined (an edge v—»w is a backedge of a
reducible graph iff w dom v in the graph).

DEFINITION. Given reducible CDG C, the backedge free graph BF(C) is the graph obtained by removing all
backedges from C.



PROPERTY OrderFixed’

Consider an (a,b) pair in R-feasible CDG C. b pd a in every corresponding CFG iff one of the follow-
ing holds:

(a) (nota over b) and (not b over a) and b ¢ DomReach(C).

(b) (nota over b) and b over a.

(¢) (a over b) and (b over a by edge v —>% b such that v —>% x —>} a in BF(C)).

Example. In CDG CI of Figure 1, case (b) of the property implies that b pd a and case (a) implies that ¢
pd ¢. In CDG C2, case (c) implies that b pd a and case (b) implies that b pd . The Appendix proves that
properties OrderFixed and OrderFixed’ are equivalent for R-feasible CDGs (for R-infeasible CDGs the
properties may not be equivalent).

3.1.3. Function ComputeGoodOrder

We first describe an implementation of function ComputeGoodOrder that runs in worst-case O (NXE) time.
Unfortunately, this algorithm may run in O (N 2) expected time, even for CDGs that are trees. We then
show how region-identification can improve the expected running time of this algorithm. Function
ComputeGoodOrder is based directly upon the properties of the previous sections and performs the follow-
ing steps:

(1) Preprocess the CDG C: check if C is reducible, and fail if not. Perform a depth-first search of C,
classifying edges as tree, forward, cross, or back edges; compute DomReach(C). Section 3.1.3.1
shows how the set DomReach(C) can be computed in O (N+E) time.

(2) For each (a,b) pair in C, determine if property OrderFixed’ holds (and in which direction).

(3)  Arbitrarily number the vertices of the CDG to order each (a,b) pair for which property OrderFixed’
does not hold.

(4) If there is a cycle in the pairwise orderings of the (a,b) pairs then fail (if C is R-feasible, no such
cycle can arise). If C is R-feasible, the resulting order will be a good order.

We now consider the running time of this algorithm. Step (1) requires linear time since checking for
reducibility is a linear-time operation [21], as is depth-first search and computing DomReach(C). Step (2)
considers every (a,b) pair in C (possibly O (N 2y of them) in turn. To compute whether or not property
OrderFixed’ holds for an (a,b) pair, the following three operations are needed:

° Membership in DomReach(C). Vertex membership in this set can be performed in constant time
with a boolean test.

° Determining if b over a. This is a worst-case O (V) operation since a vertex may have as many as N
predecessors. In practice, the number of predecessors of any vertex is bounded by a small constant
and this operation takes constant time. The CDG domination relation is not required to compute b
over a. Given a candidate edge v —>% b (for b over a), b dom v iff v —>L b is a backedge (as
identified by the depth-first search of the CDG).
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° Determining if v —>% x —7 a. Computing this transitive closure can take O (E) time, which implies
a worst-case overall running time of O (N?xE) for step (1). However, by caching the results of each
closure operation, subsequent occurrences of this case may take constant time. In the worst case,
amortizing over all (a,b) pairs, a transitive closure will have to be computed from each vertex in C,
requiring O (NXE) time.

From the above analysis, it should be clear that the worst-case running time of step (2) is O (NXE),
which dominates O (N?) and is equivalent (in the worst case) to O (N?). Step (3) requires O (N) time and
step (4), checking for a cycle, is a worst-case O (N 2y operation since there may be O (N 2y ordered pairs
(i.e., the ordering corresponds to a graph with at most N vertices and N 2 edges—a graph with M vertices
and F edges can be checked for cycles using depth-first search in time O (M+F)). Thus, the worst-case
running time for function ComputeGoodOrder is O (NXE).

Unfortunately, the expected running time of the above algorithm may be O (N 2y, even for CDGs that are
trees. Consider the case of a tree of height two that has N leaves. As discussed in Section 2.3, CDGs that
are trees can be processed in linear time. However, the above algorithm will examine O (N 2y pairs. This
time bound can be improved if we assume, as done in [20], that regions already have been identified in the
input CDG. Regions partition the vertex set of a CDG, grouping vertices with common sets of control
parents. Regions are identified in BF(C) rather than in C. Vertices a and b are in the same region iff

{WL)|v-->ainBRC) )= { w.L)|v—Lbin BF(C) } 2 @.

For reducible CDGs, this is equivalent to: a and b are in the same region iff they are an (a,b) pair, (not a
over b), and (not b over a).

Suppose that region R contains the vertices { x;, - -+ ,x, }. Note that only case (a) of property Order-
Fixed’ can apply to any pair of vertices from R. Furthermore, if C is R-feasible then there is at most one x;
such that x, ¢ DomReach(C) (otherwise a cycle would arise in the postdomination order). This implies
that if no such x, exists then property OrderArbitrary holds for all pairs in R, and that if such an x, exists
then it must postdominate all other vertices in R and property OrderArbitrary holds for all the other pairs in
R. We need only examine each vertex in a region once to determine the order for all the (a,b) pairs in the
region.

However, an (a,b) pair may span two regions (i.e., a and b may be in different regions, R; and R,). Itis
impossible for property OrderArbitrary to hold for such an (a,b) pair. In this case, either case (b) or (c) of
property OrderFixed’ will determine a postdomination order for the (a,b) pair. Furthermore, it is easy to
show that for any two (a,b) pairs (call them (c¢,d) and (e,f)) such that c and e are in R, and d and f are in
R, property OrderFixed implies that d pd c iff property OrderFixed’ implies that f pd e (and OrderFixed’
implies that ¢ pd d iff OrderFixed’ implies that e pd f). Thus, to order all the (a,b) pairs that span the same
two regions requires only one application of property OrderFixed'.

Thus, to process all (a,b) pairs that reside in the same region takes O (V) time. If no (a,b) pairs span a
region then function ComputeGoodOrder runs in linear time. By an analysis similar to that for step (2) of
function ComputeGoodOrder, processing all (a,b) pairs that span different regions takes O (RXE) time,
where R is the number of regions in the CDG. In the worst case, R =N. However, in practice, there are
many fewer regions than vertices in CDGs.
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3.1.3.1. Computing DomReach(C)

This section precisely characterizes when a vertex v dominates all the vertices in Reachable(C,v), and then
shows how to compute this information efficiently for all vertices in C using a depth-first search.

A depth-first search of C partitions its edge set into four classes: tree edges (TE), forward edges (FE),
back edges (BE), and cross edges (CE). The preorder number of vertex v is denoted by #v. Vertex v is an
ancestor of vertex w iff v = w or there is a sequence of tree edges from v to w. Vertex v is a proper ances-
tor of vertex w iff v = w and v is an ancestor of w. Given distinct vertices a and b, let Ica(a,b) be the least-
common ancestor of g and b in the spanning tree (TE) of graph C.

LEMMA. Vertex v dominates all vertices in Reachable(C,v) iff all the following hold:

(1) there is no forward edge a—b such that a is a proper ancestor of v and v is a proper ancestor of b;

(2) there is no back edge b—a such that a is a proper ancestor of v and v is an ancestor of b;

(3) there is no cross edge a—b such that v is a proper ancestor of b or a, and Ica(a,b) is a proper ances-
tor of v.

PROOFE. The proof is straightforward and is left to the reader. [l

To determine when the condition in the above lemma holds, a LOW numbering, similar to that used to
determine the biconnected components of undirected graphs [1, pg. 1791, is defined for each v in C:

LOW[v] = MIN( {#v)
U {#a|3 a—b e FE such that v is a proper ancestor of b }
o {#a|3 b-—a e BE such that v is an ancestor of b }
v {#lca(a,b) |3 a—b e CE such that v is a proper ancestor of aor b } )

By the above lemma, v dominates all vertices in Reachable(G,v) iff LOW[v] > #v. The calculation of
LOWIv] can be embedded in a depth-first search of v by rewriting the LOW equation for a vertex v in
terms of the LOW values for v’s children in the tree TE. The rewritten equations are:

LOWIv] = MIN( {#v) UP[v] = MIN( LOW[v]
U {#fa|2v->aeBE) v {#alda—>ve FE}
v {UP[s]|v—seTE}) V) {#lca(a,b) | 3a—>b e CE such thatv=aorv

Using the rewriiten equations, LOW[v] can be computed for all v in G via a postorder traversal of the
spanning tree TE, an O (N) operation. Each operation done during the computation of LOW is a constant
time operation, given that the least common ancestor of each cross edge has been computed beforehand.
An algorithm for computing least common ancestors in trees by Harel and Tarjan [12] takes O (N+M) time,
where N is the number of vertices in the tree and M is the number of queries (in this case M = |CEJ).

3.2. Constructing the Control-Flow Graph

This section shows how to construct a corresponding CFG from a feasible CDG C and a good order Order.
For each predicate p with L-children in C, the L-children of p are totally ordered by the postdomination
information supplied by Order. Let the list CLIST(p, L) = (v1,...,V,, ) be the L-children of p ordered so that
for all i, 1<i <m, the ordered pair (v;,v;4;) is in Order (i.e., Order specifies that v, pd v;).

The following rules describe how CFG postdomination information can be propagated in a top-down
fashion over the CDG and used to determine the edge set of the desired CFG G (a CFG that corresponds to
C and respects Order):
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® The immediate postdominator of the ENTRY vertex in any CFG is the EXIT vertex.
. If vertex w immediately follows v in CLIST(p,L), then w impd v in G.
° If vertex v occurs last in CLIST(g,L) and w impd ¢ in G, then w impd v in G.

These rules provide the basis for the function ConstructCFG of Figure 3, which first builds the CLISTs
and then calls the procedure DFS to produce the edge set of the CFG via a depth-first search of C. The first
parameter to DFS (v) is the current vertex of the depth-first search and the second parameter (w) is always
the immediate postdominator of v, which is updated in accordance with the above rules. The edges of the
control-flow graph are determined as follows:

® The CFG successor of a statement vertex is its immediate postdominator,
° The CFG L-successor of a predicate p such that CLIST(p,L) # () is the first vertex in CLIST(p,L).
° The CFG L-successor of a predicate p such that CLIST(p,L) = () is p’s immediate postdominator.

If C is feasible and Order is a good order for C, then function ConstructCFG will return a corresponding
CFG for C. Otherwise, ConstructCFG will return a CFG that does not correspond o C.

global procedure DFS( v,w : vertices );
CLIST : (vertex, LABEL) — list of vertices; begin
Edges : set of edges if not Marked(v) then

Marked(v) := TRUE;
if v is a statement then Edges := Edges v {v > w }

function ConstructCFG(C:CDG, else /*vis apredicate */
Order: set of ordered pairs of vertices) : CFG for LBL := false to true do
begin if CLIST(v,LBL) = () then
CLIST := ConstructCLIST(C,Order) Edges := Edges v {v — X w }
Edges =& else
unmark all vertices in C curr :=head(CLIST(v,LBL));
DFS(ENTRY,EXIT) rest := tail(CLIST(v,LBL));
return( (vertices(C) v {EXIT}, Edges) ) Edges := Edges u { v — YL curr }
end while rest # () do
DFS(curr,head(rest))
curr = head(rest); rest = tail(rest)
od
/* curr is now the last vertex in the CLIST */
DFS(curr,w)
fi
od
fi
fi
end

Figure 3. Function ConstructCFG uses a depth-first search of the CDG C and the order information {rom Order to
generate the edges for the CFG.
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A topological sort of the vertices of C (using the pair ordering of Order) is all that is required to con-
struct the CLISTs. This takes worst-case O (N2) time since Order contains, in the worst case, O (N 2y pairs
(this can be improved by use of region-identification, in much the same way function ComputeGoodOrder
can be improved). The depth-first search to generate the edges of the CFG takes O (E) time.

3.3. Final Isomorphism Test

Once step [3] of function ReconstituteCDG (Figure 2) is reached, a CFG G has been constructed. If C is
R-feasible then G corresponds to C. Furthermore, CDG(G) is guaranteed to be isomorphic to C via a map-
ping constructed by uniquely tagging the vertices of C and carrying the tags over to the vertices of G and
CDG(G) (see the Appendix for proof). We can check whether the mapping provided by these tags is an
isomorphism map between C and CDG(G) in time O (N+E).

If C is not R-feasible, then either the CDG of G is not isomorphic to C or G is not in the restricted class
of CFGs. Figure 4 illustrates these two points. The CDG shown in Figure 4(a) is infeasible. However,
function ComputeGoodOrder will not fail and will return an order in which b pd a (case (a) of property
OrderFixed’ implies that b pd a). Function ConstructCFG will build the CFG as shown. The CDG of this
CFG is not isomorphic to the input CDG.

The CDG shown in Figure 4(b) is feasible but R-infeasible (neither property OrderFixed nor property
OrderArb holds for the (a,b) pair). However, case (a) of property OrderFixed’ implies that b pd a; there-
fore, assuming that case (a) of property OrderFixed’ is tested first, function ComputeGoodOrder will return
an order in which b pd a, which happens to be a good order for the CDG. Function ConstructCFG will
build a corresponding CFG. This CFG is not in the restricted class because b postdominates loop entry a.

Figure 4. (a) An infeasible CDG and (b) an R-infeasible CDG.
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3.4. Putting It All Together

This section illustrates how CDG-reconstitution produces a CFG from a CDG. Consider the R-feasible
CDG in Figure 5(a). Property OrderFixed only holds for two (a,b) pairs; it determines that 4 pd 3 and 13
pd 12. In terms of property OrderFixed’, 4 pd 3 because 4 over 3 and (not 3 over 4), and 13 pd 12
because (not 12 over 13), (not 13 over 12), and 13¢ DomReach(C). Property OrderArbitrary holds for
every other (a,b) pair. Thus, we are free to give any total order to the T-children of ENTRY and to the 7-
children of vertex 6. Note that (10,11) is not an (a,b) pair because 10 and 11 do not share a common L-
parent.

Figure 5(b) gives a good order for the CDG. To make the example easier to explain, we choose an order
that matches the layout of the CDG in 5(a). We emphasize that there are other good orders for this CDG.

4 pd 3 13 pd 12 14 pd 6 pd 5 pd 1 9 pd 8 pd 7
(b}

(©

Figure 5. (a) An R-feasible CDG; (b) a good order for the CDG, and (c) the corresponding CFG that would be con-
structed by function ConstructCFG.
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The graph in 5(c) is the corresponding CFG that results from applying function ConstructCFG to the CDG
and the good order. We illustrate how a portion of the CFG is built. Here are some of the CLISTs and a
portion of the execution of function DFS (see Figure 3), which creates the edge set of the CFG:

Some CLISTs
CLIST(ENTRY ,F) = (
CLIST(ENTRY,T) = (1,5,6,14)
CLIST(1,F) = (4
CLIST(1,T) = (2)
CLIST(2,F) = ()
CLIST2,T) = (3,4)

Execution of DFS

1] DES(ENTRY.EXIT)

[2] add edge ENTRY—TEXIT
[3] add edge ENTRY—T1

[4] DFS(1,5)

5] add edge 174

[6] DFS(4,5)

71 add edge 4—5

(8] add edge 1572

9] DFS(2,5)

[10] add edge 2—' 5
[11] add edge 273
[12] DFS(3,4)

[13] add edge 3—4
[14] DFS4,5)

[15] DFS(5,6)

Recall that the second vertex in the call to DFS is always the immediate postdominator of the first. DFS is
initially invoked (line [1]) with the call DFS(ENTRY,EXIT). Since CLIST(ENTRY,F) is empty, the edge
ENTRY-—FEXIT is made (line [2]). The edge ENTRYT—1 is added because 1 is the first vertex in
CLIST(ENTRY,T) (line [3]). Since 5 follows 1 in CLIST(ENTRY,T), 5 is passed down as the immediate
postdominator of 1 in the call DFES(1,5) (line [4]). The edge 1—74 is added because 4 is the first vertex in
CLIST(1,F). Since 4 is also the last vertex in CLIST(1,F), 5 is passed down as the immediate postdomina-
tor of 4 in the call DFS(4,5) (line [6]). Because 4 is a statement vertex, the edge 4—5 is added (line [7]).
At this point, we return to process CLIST(1,T) in the active call DFS(1,5).

4. RELATED WORK

As discussed in the Introduction, the most important previous work on CDG-reconstitution is that of [20].
In this section we discuss the similarities and differences between that work and the work presented here.,

The major difference between our work and that of [20] is in the treatment of loops. In [20], CDG-
reconstitution is formalized only for control dependence DAGs as opposed to general cyclic CDGs. An
extension to handle cycles is mentioned briefly, but is incomplete and contains some errors, which are
corrected in our CDG-reconstitution algorithm. For example, in the control dependence DAG representa-
tion of [20], CDG CI of Figure 1 would not include the backedge from ¢ to p. The graph would be aug-
mented by marking ¢ as an exit vertex of the loop headed by p and marking p as a loop entry. However,
the ordering rules of [20] do not force ¢ to postdominate g, which it must; exit vertices must always post-
dominate other vertices with the same control dependence parents.
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Considering CDG C1 of Figure 1 again, according to [20], p should be treated as a special forall vertex.
According to their ordering rules, if a forall vertex and a statement vertex have a common control parent,
the forall vertex must follow the statement vertex in every corresponding CFG. Thus, p would be forced to
follow d; however, the order of these two vertices is not fixed. Forcing p to follow d would be a problem if
there were a flow dependence from a to d, requiring that d follow p.

Another difference between our approach and that of [20] is that they present two separate algorithms,
one to test feasibility and the other to produce a corresponding CFG for a given feasible CDG, while we
define a single algorithm that either produces a corresponding CFG, or determines that the given CDG is
infeasible. Their feasibility-testing algorithm is O (N?xE), and their CDG-reconstitution algorithm is
0O (NXE). Our (single) algorithm is O (NXE).

Two aspects of the work of [20] that appear different but that are actually only superficially so, have to
do with the class of CDGs that can be handled. Both the algorithm presented in this paper and the algo-
rithms of [20] handle restricted classes of feasible CDGs. In [20] these restrictions are defined directly in
terms of properties of the CDGs. In contrast, we define the restrictions indirectly by saying that we handle
only those CDGs that correspond to a restricted class of CFGs. Our algorithm handles a superset of the
CDGs considered in [20].

Another aspect of the question of what CDGs are handled has to do with region vertices (also called
forall vertices), which are assumed in [20] to have been added to the CDG (region vertices are added to a
CDG to gather all vertices with the same set of control conditions together). As discussed in Section 3.1.3,
our algorithm is easily extended to handle CDGs with regions.

5. OPTIMIZING AND EXTENDING CDG-RECONSTITUTION

This section examines how to improve the efficiency of CDG-reconstitution for commonly occurring
classes of CDGs, and considers the problems involved in extending CDG-reconstitution to handle a larger
class of CDGs.

5.1. Improving Efficiency

There are several ways in which the efficiency of our CDG-reconstitution algorithm can be improved by
using a prepass over the CDG to identify and exploit certain regular structure in the CDG.

If the given CDG corresponds to a program written with only while loops, (multi-level) exit, and if-
then-else statements, then CDG-reconstitution takes time O (N+E), as opposed to O (NxE). The CDGs
corresponding to such programs are graphs whose edge sets can be partitioned into a set of tree edges and a
set of backedges via a depth-first search (i.e., there are no forward or cross edges). To order the L-children
of a predicate p we merely scan the children to see if there is a child y such that y¢é DomReach(C) or
p —>.y is a backedge. If C is R-feasible then vertex y must postdominate all other L-children of p. The
other L-children of p can be ordered arbitrarily with respect to one another.

When a vertex is a member of DomReach(C), the CDG subgraph reachable from that vertex can be
“clipped” out of the CDG, resulting in two CDGs. CDG-reconstitution can be done on each graph
independently and the results combined. This has two potential benefits. First, it can reduce the cost of
transitive closure needed in case (c) of property OrderFixed’. Second, if the clipped subgraph corresponds
to a well-structured program, the subgraph can be processed in linear time, as noted above. As shown in
Section 3.1.3.1, the set DomReach(C) can be computed in linear time.



—17 =

5.2. Extending CDG-Reconstitution

Our CDG-reconstitution algorithm can only be applied successfully to the CDGs corresponding to a res-
tricted class of CEGs. This section presents two ways to extend the reconstitution algorithm to handle the
CDGs of all reducible CFGs (handling the CDGs of irreducible CFGs adds an additional level of complex-
ity, but such CFGs hardly ever arise in practice). We first examine the difficulties in extending CDG-
reconstitution directly to CDGs of reducible CFGs with loops that do not satisfy the postdomination pro-
perty (we refer to these loops as repeat loops and to loops with the postdomination property as while
loops), and then consider an approach that sidesteps the reconstitution problem by transforming the input
CFG.

CDG-reconstitution is much harder for CDGs that correspond to CFGs containing repeat loops because
these CDGs are not as well-structured as the CDGs of CFGs in the restricted class. Vertices that are inside
a repeat loop of a CFG may be directly control dependent on vertices outside the loop; in contrast, vertices
that are inside a while loop can only be directly control dependent on the loop entry or other vertices within
the loop. This lack of structure complicates the definition of property OrderFixed—there are many more
cases that determine when the postdomination order is fixed. We have a candidate set of such conditions,
but are not sure that we have completely identified them. Although we have a property OrderArbitrary for
this larger class of CDGs, more work is needed to find a suitable OrderFixed property and a way to com-
pute it efficiently for the larger class of CDGs.

Although, theoretically, the CDG-reconstitution algorithm presented here works only for CDGs of CFGs
in the restricted class, in practice, we believe that a simple CFG transformation will make this algorithm
applicable to the CDGs of any reducible CFG. Given a reducible CFG, natural loop analysis [2] can be
used to identify the nested loops in the graph. Those loops that cannot be expressed as while loops (loops
containing a vertex that postdominates the loop entry) can be rewritten in terms of a while loop (that has
the postdomination property) and specially marked. As long as the manipulations that are applied to the
CDGs of such CFGs maintain the feasibility of the CDG and do not introduce structures that correspond to
repeat loops, the CDG-reconstitution algorithm given here will succeed in reconstituting the CDG.

A CFG constructed by our CDG-reconstitution algorithm will only contain loops that are expressible as
while Ioops. The inverse of the repeat-to-while loop transformation can be applied to any loop that was
specially marked. This entire process is independent of the control constructs in the source language that
generated the original CFG.

6. FUTURE WORK

6.1. Data Dependences and PDG-reconstitution

CDG-reconstitution is a component of PDG-reconstitution. In PDG-reconstitution, data dependences (as
well as control dependences) determine an order between vertices. We have described and proved correct
an algorithm for PDG-reconstitution for PDGs in which the underlying CDG is a tree [4]. A data depen-
dence from vertex v to w will determine an order between the ancestors of v and w in the CDG that are
children of the least-common ancestor of v and w. In a CDG that is a general graph, the same general prin-
ciple holds (by ignoring the backedges in the CDG, the least-common ancestor relation is well-defined).
We believe that the algorithm in [4], incorporated with the techniques described in this paper, will easily
extend to PDGs with complex control dependence.

The complexity of PDG-reconstitution depends on the types of data dependences represented in the
PDG. In the PDGs considered in {4], data dependences include loop-independent and loop-carried flow
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edges, and def-order edges (which are similar to output dependences), but not anti-dependences. Because
there are fewer ordering constraints in these PDGs (than in a PDG that includes anti and output depen-
dences), PDG reconstitution is algorithmically and computationally more complex.

6.2. A Semantic Justification of Control Dependence

Considering the PDG as a program representation (independent of the process that created it), the goal of
PDG-reconstitution is to find a program whose PDG representation is the given PDG, much in the same
way that the goal of an unparser (given an abstract syntax tree) is to find a program whose AST representa-
tion is the given AST. In this sense, the goal of PDG-reconstitution is merely syntactic.

However, an underlying premise of much of the work on dependence graphs is that if two programs
have the same program dependence graph (i.e., the graphs are isomorphic) then the two programs have the
same meaning. Certainly, it would be troublesome if we took a program P, constructed its program depen-
dence graph and reconstituted a program Q from this graph such that on some input for which P terminates
and produces x, Q either does not terminate or does terminate and produces y # x. The equivalence pro-
perty for program dependence graphs that correspond to programs written with only while loops, sequenc-
ing, and conditionals has been shown using a variety of frameworks [13,15-17,19]., However, to our
knowledge, no one has extended the equivalence property for program dependence graphs with more com-
plex control dependence. Such a property would provide a semantic justification for a reconstitution algo-
rithm.

6.3. Maintaining Program Syntax

The CDG-reconstitution process described in this paper is independent of the source language and its
syntax—the product of reconstitution is a control-flow graph rather than program text. In some applica-
tions that manipulate PDGs, such as program integration [14], it is desirable for the output program to
resemble the input programs (when possible). In these cases, it is useful to annotate the PDG with informa-
tion about the source program (syntax) from which it was derived. These annotations can be used by
reconstitution to recreate the desired syntactic structure. We are examining the relationship between a
language’s syntax and PDGs, and are developing techniques for maintaining program syntax in environ-
ments that manipulate PDG representations of programs.

REFERENCES

1. A. Aho, L.E. Hopcroft, and J. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Read-
ing, MA (1974).

2. A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley, Reading, MA
(1986).

3.  B. Baker, “An Algorithm for Structuring Flow Graphs,” J. ACM 24(1) pp. 98-120 New York, NY, (January 1977).

T. Ball, S. Horwitz, and T. Reps, “Correctness of an algorithm for reconstituting a program from a dependence
graph,” Technical Report #947, Computer Sciences Department, University of Wisconsin — Madison, Madison,
WI (July 1990).

5. W. Baxter and H. R. Bauer, III, “The Program Dependence Graph and Vectorization,” Proceedings of the Six-
teenth ACM Principles of Programming Languages Symposium, pp. 1-11 (January 11-13, 1989).

6. R.Cytron, I. Ferrante, B.K. Rosen, M.N. Wegman, and K. Zadeck, “An efficient method of computing static sin-
gle assignment form,” pp. 25-35 in Conference Record of the Sixteenth ACM Symposium on Principles of Pro-
gramming Languages, (Austin, TX, Jan. 11-13, 1989), ACM, New York, NY (1989).

7. R. Cytron, . Ferrante, and V. Sarkar, “Compact Representations for Control Dependence,” Proceedings of the
ACM SIGPLAN '90 Conference on Programming Language Design and Implementation (SIGPLAN Notices)
25(6)(June 20-22, 1990).



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

T

D.E. Denning and P.J. Denning, “Certification of programs for secure information flow,” Commun. of the ACM
20(7) pp. 504-513 (July 1977).

7. Ferrante and M. Mace, “On linearizing parallel code,” pp. 179-189 in Conference Record of the Twelfth ACM
Symposium on Principles of Programming Languages, (New Orleans, LA, January 14-16, 1985), ACM, New
York, NY (1985).

J. Ferrante, K. Ottenstein, and J. Warren, “The program dependence graph and its use in optimization,” ACM
Transactions on Programming Languages and Systems 9(5) pp. 319-349 (July 1987).

J. Ferrante, M. Mace, and B. Simons, “Generating Sequential Code From Parallel Code,” Proceedings of the ACM
1988 International Conference on Supercomputing, pp. 582-592 (July 1988).

D. Harel and R. E. Tarjan, “Fast Algorithms for Finding Nearest Common Ancestors,” SIAM Journal of Comput-
ing 13(2)Society for Industrial and Applied Mathematics, (May 1984).

S. Horwitz, J. Prins, and T. Reps, “On the adequacy of program dependence graphs for representing programs,”
pp. 146-157 in Conference Record of the 15th ACM Symposium on Principles of Programming Languages, (San
Diego, CA, January 13-15, 1988), ACM, New York (1988).

S. Horwitz, J. Prins, and T. Reps, “Integrating non-interfering versions of programs,” ACM Trans. Program. Lang.
Syst. 11(3) pp. 345-387 (July 1989).

G. Ramalingam and T. Reps, “Semantics of Program Representation Graphs,” Technical Report #3900, University
of Wisconsin, Madison (December 1989).

T. Reps and W. Yang, “The semantics of program slicing,” Technical Report #777, Computer Sciences Depart-
ment, University of Wisconsin, Madison, WI (June 1988).

T. Reps and W. Yang, “The semantics of program slicing and program integration,” in Proceedings of the Collo-
quium on Current Issues in Programming Languages, (Barcelona, Spain, March 13-17, 1989), Lecture Notes in
Computer Science, Springer-Verlag, New York, NY (March 1989).

T. Reps, “Algebraic Properties of Program Integration,” Proceedings of the 3rd European Symposium on Pro-
gramming (Copenhagen, Denmark, May 15-18, 1990), Lecture Notes in Computer Science 432Springer-Verlag,
(1990).

R. P. Selke, “A Rewriting Semantics for Program Dependence Graphs,” Conference Record of the Sixteenth ACM
Symposium on Principles of Programming Languages (Austin, TX, Jan. 11-13, 1989), pp. 12-24 ACM, (1989).

B. Simons, B. Alpern, and J. Ferrante, “A Foundation for Sequentializing Parallel Code,” Proceedings of the Sym-
posium on Parallel Algorithms and Architectures, (July 1990).

R. Tarjan, “Testing Flow Graph Reducibility,” Proceedings of the Sth ACM Symposium on Theory of Computing,
pp. 96-107 (1973).

W. Yang, S. Horwitz, and T. Reps, “A program integration algorithm that accommodates semantics-preserving
transformations,” in Proceedings of the Fourth Symposium on Software Development Environments (to appear),
ACM, New York, NY (December 1990).



-20—

Glossary of Terminology

(a,b) pair
A distinct pair of vertices (¢ and b) with a
common control parent in a CDG; i.e., 3 ver-
tex p and label L such that p —>%a and
p—*kb.

backedge
Edge v—w is a backedge of a reducible graph
iff w dom v.

BF(C)
Given reducible CDG C, the backedge free

graph BF(C) is the graph obtained by remov-
ing all backedges from C.

control dependence
x—>Ly (in CDG(G)) iff in CFG G w post-
dominates the L-branch of v and w does not
postdominate v.

corresponding CFG
G is a corresponding CFG of CDG C iff
CDG(G) is isomorphic to C (the isomorphism
map must respect vertex text and edge labels).

domination
v dom w (in a CFG or a CDG) iff every path
from ENTRY to w contains v {(every vertex
dominates itself).

DomReach(C)
{v|Vx e Reachable(C,v): vdomxinC }.

feasible
C is a feasible CDG iff it has a corresponding
CFG

good order
Order is a good order for CDG C if there is a
corresponding CFG G such that for all (a,b)
pairs in C, Order specifies that a pd b iff a pd
binG.

over
b over a (by edge v —>% b) in CDG C iff there
exists v —>L b such that (not b dom v in C)
and (not v —>% a).

parent(a)-free path
A path in CDG C is parent(a)-free iff for all
edges v —>% w in the path, v —%£ g is not in C.

parent(a,b)-free path
A path in CDG C is parent(a,b)-free iff for all
edges x —Ly in the path, not (x —%a and
x—>Eb)inC.

postdomination
w pd v (in CFG G) iff w # v and w is on every
path from v to the EXIT vertex.

Vertex w postdominates the L-branch of predi-
cate vertex v iff w is the L-successor of v or w
postdominates the L-successor of v.

w impd v (in CFG G) iff w pd v and there is
no vertex x such that w pd x pd v.

pd) ={xlxpdy}.

imm-pd(G,v) = w such that w impd v in CFG
G.

Reachable(C,v)
{x|v—>.xinCDG C}.

reducibility
A graph (rooted at ENTRY) is reducible iff for
each backedge v—w of G (as defined by a
depth-first search of G starting at the ENTRY
vertex) w dom v.

R-feasible
C is an R-feasible CDG iff it has a correspond-
ing CFG in the restricted class of CFGs (see
Section 2.2).
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APPENDIX

This appendix proves the results stated previously in this paper. Section 1 proves the most general results,
properties QrderFixed and OrderArbitrary. Section 2 proves that OrderFixed and OrderArbitrary are
complete for loop-free feasible CDGs (the CDGs of loop-free CFGs) and that OrderFixed is equivalent to
OrderFixed for this class of CDGs. The next three sections prove two main results concerning cyclic
CDGs and R-feasible CDGs: Section 3 proves that the CDGs of reducible CFGS are reducible; Section 4
describes the restricted class of CEGs (those that give rise to the R-feasible CDGs) and some important
properties of these CFGs. Section 5 shows that removing the backedges from an R-feasible CDG (which
must be reducible) yields a feasible CDG. Using the results from the previous sections, Section 6 proves
that the properties OrderFixed and OrderArbitrary are complete and that OrderFixed is equivalent to
OrderFixed for (possibly cyclic) R-feasible CDGs. Section 7 proves the correctness of property Permuta-
tions. Finally, Section 8 proves the correctness of function ConstructCFG and the isomorphism test.

1. General Results

The proofs of properties OrderFixed and OrderArbitrary rely on some basic results about control depen-
dence presented in Section 1.1. Properties OrderFixed and OrderArbitrary are proved in Sections 1.2 and
1.3, respectively.

1.1. Basic Results About Control Dependence

LEMMA(1.1). If CFG G has vertices v, w, and z such that z pd v and v —>, w is in CDG(G), then there is a
non-empty z-free path from v to win G.

PROOF. By contradiction. Since v —>,w there must be a non-empty path from v to w. Suppose that every
such path contains z. The facts that not w pd v and z pd v imply that not w pd z. Because z is on every
path from v to w and not w pd z, w cannot postdominate the L-branch of v, as required by v —>Lw. Con-
tradiction. [J

LEMMA(1.2). If CFG G has vertices v, w, and z such that z pd v and v —, w in CDG((), then z pd w.

PROOE. By lemma (1.2), there must be a non-empty z-free path from v to w. If there were a z-free path
from w to EXIT then z could not postdominate v. Therefore, z pd w. O

LEMMA(1.3). If CFG G has vertices a, b, and x such that b pd a and @ —>; x in CDG(G), then b pd x.

PROOF. Let a —>,x; —>, *** —>. X, be a control dependence path from a to x where x, =x. By lemma
(12), b pd a and a —>,x; implies b pd x;. Given b pd x; and x; —>, x;41, 1<i<n, lemma (1.2) implies
that b pd x;,;. Therefore, b pd x. [

LEMMA(1.4). v —>} w in CDG(G) iff there is a non-empty path from v to w in G that does not contain any
postdominators of v.

PROOF.

(=) Letv—>.x; —>, +*+ —>.x, be a control dependence path from v to w where x, =w. By lemma
(1.3), any postdominator of v must postdominate all x;. Since v —>;x,, there must be a non-empty path
from v to x;. By lemma (1.1), one of these paths must be pd(v)-free. By similar reasoning, for all i
(1<i<n), since x; —>, x;,; and any postdominator of v postdominates x;, there must be a non-empty, pd(v)-
free path from x; to x;,;. Therefore, there must be a non-empty, pd(v)-free path from v to w.
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(&) Proof by induction on the number of predicates in the pd(v)-free path PTH from v to w (not including
w). If there is one predicate in PTH, it must be v (if v were a statement vertex PTH would not be pd(v)-
free). Since every other vertex in PTH is a statement, w must postdominate a branch of v. Since notw pd
v, it follows that v —>, w. The induction hypothesis is that if there are fewer than N predicates in PTH,
then v —>? w. The induction step follows: since PTH is pd(v)-free, the induction hypothesis implies that
all the predicates in PTH (except v and w) are transitively control dependent on v. Let p be the last predi-
cate in PTH such that not w pd p (such a p must exist since not w pd v). It is clear that w postdominates
every statement and predicate vertex between p and w in PTH. Therefore, w postdominates a branch of p
and p —>, w exists. Since v —>} p, it follows that v —>7 w. [

LEMMA(1.5). If @ pd v in CFG G (where a is not the EXIT vertex), then every path from ENTRY to v in
CDG(G) must include an edge p —% x such that p —>~a and a pd x in G (i.e., there is no path from
ENTRY to v that is parent(a)-free).

PROOF. By induction on the length of the path PTH from ENTRY to v in CDG(G).

Base Case: length of PTH = 1. In this case, PTH = ENTRY —Ty and p = ENTRY and x =v. Since
a # EXIT, it follows that not a pd ENTRY. Furthermore, since a pd v and v postdominates the T-branch of
ENTRY, it follows that a postdominates the 7-branch of ENTRY. Therefore, ENTRY —>T g exists. Since
x =vand a pd v, it follows that a pd x.

Induction Hypothesis: If a pd v then for all PTH of length < N, there is an edge p —>L x in PTH such that
p—>%aanda pdx.

Induction Step: PTH of length =N. Suppose the control dependence parent of v in PTH (p —>L v) is not
postdominated by a. Since a pd v it follows that p —>% a. Instead, suppose a pd p. p —>% a obviously can-
not exist. Let PTH,, be the prefix of PTH up to predicate p. The length of this path is less than N. There-
fore, by the induction hypothesis, since a pd p, there must be a ¢ =% x in PTH,, such that g —>% a and a
pdx. [l

1.2. Property OrderFixed

PROPERTY OrderFixed. Consider an (a,b) pair in feasible CDG C. If there is a parent(a)-free path PTH
from ENTRY to a vertex in Reachable(C,b), then b pd a in every corresponding CFG of C.

PROOF. By contradiction. Assume all conditions, except that a pd b in some G (since a and b share a com-
mon parent, either b pd a or a pd b must hold). Let v be the vertex in Reachable(C,b) to which there isa
parent(a)-free path from ENTRY. By lemma (1.3), b —>>v and a pd b imply that @ pd v. Lemma (1.5)
implies that PTH is not parent(a)-free, a contradiction. [J

1.3. Property OrderArbitrary

PROPERTY OrderArbitrary. Consider an (a,b) pair in feasible CDG C. If not a over b, not b over a, and
a,b € DomReach(C), then there is a corresponding CFG in which b pd a, and a corresponding CFG in
which a pd b.

The correctness of property OrderArbitrary follows immediately from the following lemma, which is
used in the proof of property Permutations.
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LEMMA (1.6). Consider an (a,b) pair in feasible CDG C and a corresponding CFG in which b pd x pd a
(or b impd a). If not a over b, not b over a, and a,b € DomReach(C), then there is a corresponding CFG
in which a pd x pd b (a impd b).

PROOF. Consider the special case where a and b are statement vertices. Since a and b have no outgoing
edges in C, neither dominates any vertex besides itself in C. This fact together with (not a over b) and (not
b over g) implies that the sets { (v,.L) | v —LagYand { (L) | v —>L b } are equal. Thus, if G is a
corresponding CFG in which b pd x pd a (or b impd a), then simply renaming a to b and vice-versa yields
a corresponding CFG G in which a pd x pd b (a impd b).

To extend this proof to the case where a and b are predicates requires the notion of a control-flow ham-
mock. A hammock is a single-entry, single-exit subgraph of the CFG (it is useful to think of a hammock as
a “super vertex”). When the conditions of property OrderArbitrary hold, it is possible to swap the ham-
mocks with entries a and b in a corresponding CFG in which b pd a to yield a corresponding CFG in which
a pd b. The remainder of this section proves this in greater detail.

DEFINITION: A hammock H is an induced subgraph of CFG G with entry vertex v in H and exit vertex v’
not in H such that:

1. All edges from (G—H) to H go 1o v.
2. All edges from H to (G-H) go to v’.

DEFINITION: Let imm-pd(G,x) denote the immediate postdominator of vertex x in CFG G.

LEMMA(1.7). Consider a vertex v in CDG C with corresponding CFG G. Let H = Reachable(C,v). Vertex
v dominates all vertices in H in C iff H is a hammock in G where v is the entry and imm-pd(G,v) is the exit.

PROOF.

(&) By lemma (1.4), every vertex in H must be transitively control dependent on v (because no vertex in
H can postdominate v). Since H is a hammock, all edges from G —H to H go to v. This implies for any ver-
tex w € H and w # v, w cannot postdominate the L-branch of a vertex outside of H. Therefore, w cannot be
directly control dependent on a vertex outside of H, and v dominates all vertices in H in C.

(=) We show that the two conditions for H (Reachable(C,v)) to be a hammock must hold:

(1) Suppose that there is an edge x—y in CFG G where x ¢ Reachable(C,v), y e Reachable(C,v), and
v#y. If not y pd x in G, then x —>,y, which contradicts the assumption that v dominates
Reachable(C,v). Therefore, y pd x in G. By lemma (1.5), along any path from ENTRY to x in C there
must be an edge p —>~ z in the path such that p —% y. If p¢ Reachable(C,v) then v cannot dominate
Reachable(C,v). If p € Reachable(C,v), then since p —>} x, it follows that x € Reachable(C,v). Con-
tradiction.

(2) Suppose that there is an edge x—y in CFG G where xe V(H), y e V(G-H), and y # imm-pd(G,v).
Since v —7 x, lemma (1.4) implies that there is a pd(v)-free path from v to x in G. If not y pd v then
there is a pd(v)-free path from v to y and lemma (1.4) implies that v —>} y. This implies that y €
Reachable(C,v), a contradiction of y € V(G~-H). Therefore, y pd v. However, since v —>} x, there
must be a pd(v)-free path from v to x in G. Therefore, there is a path from v to y in G in which y is the
first postdominator of v in the path. This implies that y = imm-pd((z,v). Contradiction. [J
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We are now in a position to prove lemma (1.6) in its full generality. We assume that the following hold
for the given (a,b) pair: not a over b, not b over a, and a,b € DomReach(C). We assume, without loss of
generality, that C has a corresponding CFG G in which b pd x pd a (or b impd a). We must show that C
also has a corresponding CFG G’ in which a pd x pd b (a impd b).

Since both a and b are in DomReach(C), lemma (1.7) implies that G must contain a hammock H, =
Reachable(C,a) with entry a and exit imm-pd(G,a), and a hammock H,, = Reachable(C,b) with entry b and
exit imm-pd(G,b). Hammocks are either disjoint or nested. Since b pd a in CFG G and no vertex in H,
can postdominate a, H, and H, must be disjoint.

The CFG G’ contains the same vertex set as G. The edge set of CFG G’ is defined as follows:

{vtw|v—rwisin G and [ (v,w ¢ H,UH,)or (v,we H,)or (v,we Hy) 1}
{votb|v->laisinGandve H, )

{v—talv-tbisinGandve H, )

{ v—% imm-pd(G,b) | v—L imm-pd(G,a) isin Gand ve H, }

{ v imm-pd(G,a) | v—* imm-pd(G,b) isin G and ve H, }

c Cccc

The relationship between CFGs G and G’ is depicted in Figure 6. It is obvious that a pd x pd b (or a impd
b) in CFG G’ and that H, and H,, are hammocks in CFG G’. To show that G’ corresponds to C we must
show that CDG(G") is identical to C. This follows from the four observations below (the last three have
symmetrical counterparts replacing a with b and H, with H,):

(1) Since hammocks are single-entry and single-exit subgraphs, swapping hammocks H, and H,, cannot
affect any control dependence between vertices v and w that are both outside of (H, v Hp).

(2) Since swapping the hammocks does not change any paths strictly inside H, and does not change any
postdomination ordering between vertices strictly inside H,, there is no effect on control dependence
between vertices v and w that are both inside H,,.

“1’00 """"" X '3’0’
CFG G
G T R
CFG G
y = imm-pd(G,a) z = imm-pd(G,b)

Figure 6.
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(3) Since (not a over b) and (not b over a) in CDG C, swapping the hammocks cannot affect the control
dependence predecessors of a that lie outside of H,.

(4) Since H, is a hammock in both G and G’, lemma (1.7) implies that there can be no control dependence
in either C or CDG(G’) from a vertex inside H, to a vertex outside of H,, or from a vertex outside of
H, to a vertex inside of H, other than a. []

2. Results for Loop-Free Feasible CDGs

This section shows that properties OrderFixed and OrderArbitrary are complete for loop-free feasible
CDGs and that property OrderFixed’ is equivalent to property OrderFixed for this class of CDGs. These
results rely on the following two lemmas about CDGs and loops:

LEMMA (2.1). There is a loop in CFG G iff there is a loop in CDG(().

PROOF. Straightforward, from the definition of control dependence. [

LEMMA (2.2). Consider an (a,b) pair in CDG C of CFG G. If there is a vertex x such that xe
Reachable(C,a) and x € Reachable(C,b), then there is a loop in C.

PROOF. Without loss of generality, assume that b pd a in G. This implies that x # b (if x = b then a —>7 b,
which is not possible since b pd a). Since x € Reachable(C,a) and b pd a, lemma (1.3) implies that b pd
x. There must be a path in G from b to x (because b >} x) and a path in G from x to b (because b pd x);
therefore, b and x participate in a loop in G. By lemma (2.1), there must be a loop in CDG C. O

2.1. Completeness of Ordering Properties

In this section we show that either property OrderFixed or property OrderArbitrary holds for every (a,b)
pair in a loop-free feasible CDG (it is clearly impossible for OrderFixed to hold in both directions in a
feasible CDG). The proof relies on the following definition and lemma:

DEFINITION. A path in a CDG is parent(a,b)-free iff for each edge x —>%y in the path, not (x -——% a and
x —Lb).

LEMMA (2.3). Consider an (a,b) pair in CDG C. If there is no parent(a)-free path (from ENTRY) to a ver-
tex in Reachable(C,b), and no parent(b)-free path to a vertex in Reachable(C,a), then for any z in
Reachable(C,a) v Reachable(C,b), there is no parent(a,b)-free path from ENTRY to z.

PROOF. By contradiction. Assume the antecedent but that there is a z in Reachable(C,a) « Reachable(C,b)
such that there is a parent(a,b)-free path PTH from ENTRY to z. Consider the parent(a)-free and
parent(b)-free prefix (possibly empty) of PTH. Let p —>%x be the edge in PTH immediately after the
prefix. Either p —*% a or p —% b (but not both) exists. This implies that there is parent(b)-free path to a
or a parent(a)-free path to b (consisting of the prefix followed by the edge p —L g or p —L b). Contradic-
tion. [

LEMMA (2.4). Properties OrderFixed and OrderArbitrary are complete for loop-free feasible CDGs.

PROOF. By contradiction. We suppose that there is an (a,b) pair in a loop-free feasible CDG C for which
neither property holds and yield the contradiction that C must contain a loop. If property OrderFixed does
not hold in either direction for an {a,b) pair, then there is no parent(a)-free path (from ENTRY) to a vertex
in Reachable(C,b), nor is there a parent(b)-free path to a vertex in Reachable(C,a). Lemma (2.3) implies
that for any z in Reachable(C,a) w Reachable(C,b), there is no parent(a,b)-free path from ENTRY to z.
Suppose that property OrderArbitrary does not hold, either because (1) a ¢ DomReach(C) or (2) a over b:



-26—

(1) Suppose that a ¢ DomReach(C) because there is some v ¢ Reachable(C,a) and w e Reachable(C,a)
such that v —>, w and w #a. Since there can be no parent(a,b)-free path from ENTRY to w, on every
path from ENTRY to w that ends with v —>, w there must be an edge x —>% y such that x —% a and
x—>kb. If x=v then y=w and y=a (because w#a). If x#v then y #a (otherwise v €
Reachable(C,a)). In either case, vertices y and a are distinct, share a common control parent (x) and
reach a common vertex (w), so lemma (2.2) implies that there must be a loop in C. Contradiction.

(2) Suppose that a over b by edge v —>% 4. Since there can be no parent(a, b)-free path from ENTRY to a,
on every path from ENTRY to v there must be an edge x —>% y such that x —>% @ and x —% b. Since a
over b by v —>% a, v # x, which implies that y = a. Vertices y and a are distinct, share a common con-
trol parent {x) and reach a common vertex (a), yielding the same contradiction as in (1). [1

2.2. Equivalence of properties OrderFixed and OrderFixed

LEMMA (2.5). If CDG C is loop-free and feasible, then property OrderFixed implies that b pd a iff pro-
perty OrderFixed’ implies that b pd a.

PROOE.

(=) If C is loop-free and feasible and property OrderFixed implies that b pd a, then property OrderFixed’
implies that b pd a. Since property OrderFixed implies that b pd a, there must be a parent(a)-free path
from ENTRY to a vertex in Reachable(C,b). This implies that either b ¢ DomReach(C) or b over a. If not
a over b, then either case (a) or (b) of property OrderFixed’ mustimply that b pd a.

Instead, suppose that a over b by edge z —L" 4. We show that case (c) of property OrderFixed’ implies
that b pd a. By the definition of a over b, z —>L" b cannot be in C. Let PTH be a path from ENTRY to a
ending with edge z —>% 4. Since b pd a in every corresponding CFG of C, lemma (1.5) implies that there
must be an edge v —>% x in PTH such that v —% b and b pd x in every corresponding CFG of C. Itis clear
that v —>L x —>* 4. To show that b over a by edge v —>L b, we must show that (not » dom v) and not
v —>L a. If b dom v then since v —>% b, it follows that there is a loop in the CDG. Suppose instead that
v—La. If x =a then z —>% a = v ~—>L x, which implies that z —>% b exists (because of v —>L b), a con-
tradiction. If x # a then since x —>} a and x and a have a common parent (v), lemma (2.2) implies that
there is a loop in the CDG.

(¢=) If C is loop-free and feasible and property OrderFixed’ implies that b pd a, then property OrderFixed
implies that b pd a. Assume that property OrderFixed” implies that b pd a but that property OrderFixed
does not imply that b pd a. Since case (a), (b), or (c) of property OrderFixed’ must hold, either b ¢
DomReach(C) or b over a, which implies that property OrderArbitrary cannot hold.

Since C is feasible, property OrderFixed does not imply that b pd a and property OrderArbitrary does
not hold, it follows that property OrderFixed implies that a pd b. By (=), property OrderFixed’ must
imply that @ pd b. We will show a contradiction in each of the three possible cases:

(1) Case (a) implies that a pd b. Note that neither (b) nor (c) can imply that b pd a. Suppose that (a)
implies that » pd a: b¢ DomReach(C) because of edge v —>,.w (where v ¢ Reachable(C,b), w €
Reachable(C,b), and w # b). Since a pd b in all corresponding CFGs of C and w is transitively control
dependent on b, lemma (1.3) implies that ¢ pd w. By lemma (1.5), since a pd w, on any path from
ENTRY to w there must be an edge p —% x such that p —>L a. Since not a over b, either a dom p or
p —%b. Since p —*% g, if the former case holds then there is a loop in CDG C. Instead, suppose that
p —>L b. Since b and x reach a common vertex w and have a common control parent, there must be a
loop in CDG (.
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(2) Case (b) implies that a pd b. It is not possible for (a), (b), or (¢) to imply that b pd a (because (b) and
(c) both require b over a, and (a) requires not a over b). Therefore, OrderFixed’ cannot imply that b
pd a, as assumed.

(3) Case (c) implies that a pd b. Neither (a) nor (b) can imply that b pd a. Suppose that (c) implies that b
pd a: a over b and b over a by edge v —>L b such that v —>Lx—>*a. Since ¢ pd b in all
corresponding CEGs of C, v —> b, and not v —*% a, it follows that a pd v (if not a pd v then v —tgq
would exist). Therefore, by lemma (1.4), a cannot be transitively control dependent on v. O

3. The CDGs of Reducible CFGs are Reducible

This section shows that the CDG of a reducible CFG is itself reducible. There are many equivalent
definitions of reducibility. A graph G (rooted at ENTRY) is reducible iff any of the following is true:

(1) For each back edge v—w of G (as identified by a depth-first search of G starting at the ENTRY vertex)
w dom v.

(2) Every depth-first search of G identifies the same set of edges as backedges.

(3) There is no loop in G that contains distinct vertices a and b such that (not a dom b) and (not b dom «)
in G,

The following lemma relates domination in the CFG to domination in the CDG:
LEMMA (3.1). If v dominates w in reducible CFG G and v —>, w CDG(G), then v dominates w in CDG(G).

PROOF. Suppose that v dominates w in reducible CFG G and that v —, w CDG(G). Let H be the set of
vertices that are dominated by v and postdominated by imm-pd(G,v) in G. Suppose there is a v-free path in
CDG(G) from ENTRY to w. Since ENTRY ¢ Hand w € H, this path must include an edge z —, z’ such
that z ¢ Hand 2’ € H. We will show that no vertex in H other than v can be directly control dependent
on a vertex z outside H; thus, this path cannot exist and v dominates w in CDG(G). There are two cases (o
consider, depending on whether or not there is a v-free control flow path from z to a vertex in H:

(1) Every control flow path from z to a vertex u in H contains v. If ¥ =v then u can be directly control
dependent on z. However, if u # v, then u cannot be directly control dependent on z, as we now argue.
Since every control flow path from z to u must pass through v and no vertex in H can postdominate v, it
is impossible for u to postdominate the T-branch (or F-branch) of z. Thus, u could not be control
dependent on z.

(2) There is a v-free control flow path PTH from z to a vertex in H. Without loss of generality assume that
the last vertex (1) in PTH is in H and that all other vertices in PTH are not in H. Let t—>u be the last
edge in PTH. We show that u cannot dominate ¢ in G and that there is a depth-first search of G that
identifies r—u as a backedge. This implies that G is irreducible, yielding a contradiction.

It should be clear that no vertex in H (except v) can dominate a vertex outside of H. All that remains
to be shown is that there is a cycle-free path from ENTRY to ¢ that includes u (which implies that some
depth-first search would identify 7->u as a backedge). There is a cycle-free path PTH from ENTRY
to v such that no vertex in PTH, (except v) is in H. There is a cycle-free path PTH, from v to imm-
pd(G,v) that includes u such that every vertex in PTH,; (except imm-pd(G,v)) is in H. There is a
cycle-free path PTH, from imm-pd(G,v) to ¢ such that no vertex in PTH, is in H. The only way a
cycle could arise in the concatenation of the three paths is if PTH, and PTH , share a vertex x (x # v,
since no vertex in PTH, is in H). Concatenating the prefix of PTH y up to and including x, the suffix
of prefix of PTH, starting at x, and the edge ¢ —>u, yields a v-free path from ENTRY o u, contradicting
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u’s membership in H. Therefore (PTH, || PTH, || PTH ;) must be cycle-free.[]

LEMMA (3.2). If CFG G is reducible then CDG(G) is reducible.

PROOF. Let C = CDG(G). Suppose G is reducible and that C is irreducible. We will show a contradiction:
namely, that G must be irreducible. Since C is irreducible, there must be a backedge v —>,w in C such
that w does not dominate v. Furthermore, v cannot dominate w in C (because the depth-first search that
identifies v —>, w as a backedge must encounter w before v). The following points result:

(1) Since w is directly control dependent on v in C, there must be a control flow path from v to w in G.

(2) By lemma (3.1), since v does not dominate w in C, v —>, w, and G is reducible, v cannot dominate w in
G. Therefore, there must be a v-free control flow path from ENTRY to w in G.

(3) Since v —>,w is a backedge, there must be a chain of control dependences from w to v. Therefore,
there must be a control flow path from w to vin G.

(4) TItis obvious that there must be a control flow path from ENTRY to v. We must show that there is such
a path that is w-free. Suppose the contrary. If w dominates v in G, then since G is reducible and v is
transitively control dependent on w, w must dominate v in C by lemma (3.1). This contradicts an ini-
tial assumption.

By points (1) through (4), we have shown that there is a loop in G containing distinct vertices v and w such
that not w dom v and not v dom w in G. Therefore, G is irreducible. [J
4. The Restricted Class of CFGs

The R-feasible CDGs are defined as the CDGs of a restricted class of CFGs. We use the concept of a
natural loop in a CFG to define this class of CFGs.

DEFINITION. The natural Ioop of a backedge v—w is defined as nat-loop(v—ow) = { w } v { x| there is a
w-free path from x to v }.

DEFINITION. The natural loop of a loop entry w, denoted nat-loop(w), is the union of all nat-loop(v—w),
where v—w is a backedge.

A CFG G is in the restricted class iff it is reducible and for each loop entry w (a vertex that is the target of
one or more backedges), no vertex in nat-loop(w) postdominates w.

There are several important properties concerning natural loops in reducible CFGs:
(1) A loop entry w dominates all vertices in nat-loop(w). This follows immediately from reducibility.

(2) Given loop entry w, there is a path from w to each vertex in nat-loop(w) that contains only vertices in
nat-loop(w). This follows immediately from (1).

(3) Given two loop entries w and x, from the definition of natural loop it follows that either nat-loop(w)
and nat-loop(x) are disjoint, or one contains the other. This allows us to identify levels of loop nesting
and outermost loops (i.e., loops that are not contained in any other loops).

5. The Feasibility of Backedge-free R-feasible CDGs

Given a reducible CDG C, its backedge-free counterpart (BF(C)) is uniquely defined. While BF(C) is a
Ioop-free CDG, it is not necessarily a feasible CDG. For example, removing the self-looping backedge
from the feasible (but R-infeasible) CDG in Figure 4(b) yields an infeasible CDG. The main result of this
section is that for any R-feasible CDG C, BF(C) is feasible.
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LEMMA(5.1). If CDG C is R-feasible, then BF(C) is feasible.

PROOF. Given a CFG G in the restricted class, we show that BF(CDG(G)) is feasible. The proof is by
induction on the number of backedges in G.

Base Case: If G has no backedges then, by lemma (2.1), CDG(G) has no backedges either. This implies
that BE(CDG(G)) = CDG(G).

Induction Hypothesis: If G has fewer than N backedges (V >0) then BF(CDG((7)) is feasible.

Induction Step: If CFG G has N backedges (N >0) then BF(CDG(G)) is feasible. The proof consists of
three steps:

(1) Find an outermost loop in CFG G headed by loop entry w and pick a backedge v—w. Construct CFG
G’ from G as follows: G’ = (vertices((), edges(G) — { v—»w } L { v— imm-pd(G,w) }).

(2) Show that G’ is in the restricted class and contains fewer than N backedges. This implies that
CDG(G") is reducible, so BF(CDG((")) is uniquely defined.

(3) Show that BF(CDG(G)) = BE(CDG(G")).

Since G’ is in the restricted class and contains fewer than N backedges, the Induction Hypothesis implies
that BFE(CDG(G") is feasible. Since BF(CDG(G)) = BF(CDG(G"), BE(CDG(G)) is feasible.

We now turn to proving (2) and (3). The proofs of these steps rely on the following properties relating
postdomination and domination in G and G’. In the remainder of this section, z denotes the vertex imm-
pd(G,w). The proofs make use of the following two observations: any v —»w-free path in G is also in G’;
any v —>z-free path in G’ is also in G.

(@) Vx, Vy:notypdxinG = noty pdxinG’.

If there is a y-free path from x to EXIT in G that is v—sw-free, then the same path is clearly in . If
the only y-free path from x to EXIT in G contains v—w, then there must be a y-free and v—w-free path
from x to v and from w to EXIT (and from z to EXIT, since z pd w) in G. The same paths are in G’.
Since v is connected to z by v—z in G, it follows that not y pd x in G'.

(b) Vy,y#w:noty pdxin G’ = noty pd xin G.

If there is a y-free path from x to EXIT in G’ that is v—z-free, then the same path is in G. If the only
y-free path PTH from x to EXIT in G’ contains v—z, then there must be a y-free and v—z-free path
from x to v and from z to EXIT in G’. Thus, the same paths are in G. If there is a y-free path from w to
zin G, then not y pd x in G. If y is on every path from w to z in G, then since z = imm-pd(G,w), it fol-
lows that either y = w or y =z. The first case contradicts the assumption that y # w. The second case
implies that PTH is not y-free.

(€) Vx,x¢ nat-loop(w)in G:notw pdxin G’ = notw pdxinG.

If there is a w-free path from x to EXIT in G’ that is v—z-free, then the same path is in G. If the only
w-free path PTH from x to EXIT in G’ contains v—yz, then there must be a w-free and v—>z-free path
from x to v in G’, and thus in G. However, since x ¢ nat-loop(w) and v € nat-loop(w), any path from
x to v in G must contain w.

(d) Vx, Vy:notydomxin G = noty dom xin G'.

If there is a y-free path from ENTRY to x in G that is v—w-free, then the same path is in G”. It is not
possible that the only y-free path from ENTRY to x in G contains v—w, since w dom v in G.
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() Vx, Vy:notydomxinG" = notydomxinG.

If there is a y-free path from ENTRY to x in G’ that is v—z-free, then the same path is in G. If the only
y-free path PTH from ENTRY to x in G’ contains v—>z, then there is a y-free path PTH’ (a prefix of
PTH) from ENTRY to v and a y-free path from z t0 x in G. Since w dom v in G, w occurs in PTH’ and
thus in PTH. If there is a y-free path from w to z in G, then there is a y-free path from ENTRY to x in
G. If y is on every path from w to z in G, then since z = imm-pd(G,w), either y =z or y =w. In the
former case, PTH cannot be y-free. In the latter case, since y = w and w is in PTH, PTH cannot be y-
free.

e (' is reducible.

Since z = imm-pd(G,w) and G is in the restricted class, z cannot be in nat-loop(w). This and the fact that
nat-loop(w) is an outermost loop imply that w and z cannot participate in a loop in G. Because z = imm-
pd(G,w), there can be no path from z to w in G. It follows that there can be no path from z to a member of
nat-loop(w) in G. Thus, the edge v—z cannot participate in any loop in ',

A graph is irreducible iff it contains a cycle with distinct vertices a and b such that not @ dom b and not
b dom 4. Suppose that such a situation occurs in G'. Since v—3z cannot participate in this loop, the same
loop exists in G. Furthermore, (¢) implies that not @ dom b and not b dom « in G. This implies that G is
irreducible.

e (' contains fewer than N backedges

Since G and G’ are reducible and y dom x in G iff y dom x in G’ (by (d) and (e)), it follows that any
backedge in G (excluding v —w) is a backedge in G’, and that any backedge in G’ (with the exception of
v—sz) is a backedge in G. We show that v--»z cannot be a backedge in G' (not z dom v in G”), which
implies that G” contains N—1 backedges. As shown above, z and v cannot participate in a loop in G. Since
there is a path from v to z in G (as v—w and z = imm-pd(G,w)), it follows that not z dom v in G. Thus, (d)
implies that not z dom v in G’.

e (' is in the restricted class.

We prove that for each loop entry d in G’, no vertex in nat-loop(d) postdominates d. As shown above,
every backedge in G’ is also a backedge in G. Since v—z cannot participate in any loop, for each backedge
¢—d in G’, nat-loop(c —d) in G’ is equal to nat-loop(c —d) in G. Consider any vertex fin nat-loop(c —d)
in G'. Vertex fis also in nat-loop(c —d) in G. Since G is in the restricted class it follows that not f pd 4.
By (a), not f pd d in G’. Thus, G’ is in the restricted class.

e BF(CDG(G)) =BF(CDG(G").

We prove that BF(CDG(G)) = BF(CDG(G")) by showing the following relationships between CDG(G)
and CDG(G"):

() Vx, ¥y, y#w:x —Lyin CDG(G) & x -y in CDG(G).

From (a) and (b) it follows that if y # w then not y pd x in G iff not y pd x in G’, and that y postdom-
inates the L-branch of x in G iff y postdominates the L-branch of x in G’. Therefore, if y#w, then
x —>%y in CDG(G) iff x —L y in CDG(G).

(ii) Vx,x¢ nat-loopw)inG:x —Lwin CDG(G) & x —L win CDG(G).

From (a) and (c) it follows that if x ¢ nat-loop(w), then not w pd x in G iff not w pd x in G’, and that
w postdominates the L-branch of x in G iff w postdominates the L-branch of x in G’.
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(iii) Vx, x € nat-loop(w) in G : w dom x in CDG(G) and CDG(G"). This implies that if x —>% w is in
CDG(G) or CDG(G"), then it is a backedge of that CDG.

Since x € nat-loop(w) in G, w dom x in G. By (e), w dom x in G,

Since G is reducible and no member of nat-loop(w) can postdominate w in G, there is a path PTH from
w to x in G containing no postdominators of w (without loss of generality, we can assume that PTH is
v—w free, since inclusion of v—w would imply that PTH contains a cycle). Since PTH is v—sw-free
in G, PTH exists in . Since no vertex in PTH postdominates w in G, (a) implies that no vertex in
PTH postdominates w in G". Thus, lemma (1.4) implies that w —7 x in CDG(G) and in CDG(G").

Since w dom x in G and G’, and w —>} x in CDG(G) and CDG(G"), lemma (3.1) implies that w dom x
in CDG(G) and in CDG(G").

(iv) Vx, ¥y :y dom x in CDG(G) < y dom x in CDG(G).

Follows from (i), (i), and (iii). We prove (& ). The proof of (=) is symmetrical (switch CDG(G)
and CDG(G")). Suppose that not y dom x in CDG(G). Let PTH be a y-free path from ENTRY to x in
CDG(G). Note that we can always pick PTH such that for each edge a —, b in PTH, not b dom a in
CDG(G). PTH cannot contain an edge of the form a —>, w, where a € nat-loop(w) in G, because (iii)
implies that w dom @ in CDG(G). Thus, (i) and (i) imply that PTH is in CDG(G’) and not y dom x in
CDG(G").

The above four points imply that the only edges on which CDG(G) and CDG(G") can differ are backedges
(edges for which the target dominates the source in the CDG). Thus, BF(CDG(G)) = BR(CDG(G")). O

6. Results for R-feasible CDGs

In this section we show that properties OrderFixed and OrderArbitrary are complete for R-feasible CDGs,
and that properties OrderFixed and OrderFixed’ are equivalent for R-feasible CDGs. The following lem-
mas characterize some important relationships between R-feasible CDG C and BF(C).

LEMMA(6.1). If CDG C is R-feasible, then

(1) b over ain BF(C) iff b over ain C, and

(2) be¢ DomReach(BF(C)) = b¢ DomReach(C)
PROOF,

(1) (<) If b over aby v—>%L b in C, then v —>L b, not b dom v, and not v —>L a. Since C is reducible
and not b dom v, it follows that v —>£ b cannot be a backedge. Thus, b over a by v — b in BF(C).

(=) Suppose b over a in BF(C) by v —L b (e, v —>. ais not in BF(C) and not b dom v in BF(C)).
Since C is reducible, it follows that y dom x in C iff y dom x in BF(C). Therefore, not b dom v in C.
Suppose that v —>% g is in C. Since v —>% a is a backedge it follows that @ dom v in C, and thus in
BF(C). This means that a —>} b in BF(C). Lemma (2.2) implies that there is a loop in BF(C). Con-
tradiction.

(2) If b ¢ DomReach(BF(C)), then there must be a vertex x (x # b) in Reachable(BF(C),b) such that there
is a b-free path from ENTRY to x in BF(C). The same path must obviously exist in C.

LEMMA(6.2). Given an (a,b) pair in R-feasible CDG C. If be DomReach(BF(C)) and b¢
DomReach(C), then there is a parent(a)-free path from ENTRY to a member of Reachable(C,b).
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PROOF. Since C is reducible, b dom x in BF(C) iff b dom x in C. If no vertex in Reachable(BF(C),b) is
the source of a backedge in C, then b€ DomReach(C). If for every vertex v in Reachable(BF(C),b) that is
the source of a backedge v —>, w in C, w is in Reachable(BF(C),b), then b € DomReach(C).

The only case left is where there is a vertex v in Reachable(BF(C),b) that is the source of a backedge
v—>.win C, and w ¢ Reachable(BF(C),b). Since C is reducible, w must dominate b in this case. We
show that w dom g, which implies that there must be a parent(a)-free path to w (a member of
Reachable(C, b)).

Let p be the common parent of vertices a and b. Since w dom b and p —>, b, either w = p or w dom p.
It follows that w —>7 a and that b —>} a. Since a and b have a common parent, either b pd a or a pd b in
a corresponding CFG. However, by lemma (1.4), if a pd b in a corresponding CFG then b —>* g cannot
exist. Therefore, b pd a in all corresponding CFGs. Suppose that not w dom a by some path PTH. Since
b pd a in all corresponding CFGs, lemma (1.5) implies that there is some x —Ly in PTH such that
x —>L b. This implies that there is an w-free path from ENTRY to b consisting of the prefix of PTH up to x,
followed by the edge x —>% b. This contradicts the fact that w dom b. [

LEMMA(6.3). If C is R-feasible and there is a parent(a)-free path from ENTRY to a vertex in
Reachable(C,b) in BF(C), then the same path is parent(a)-free in C.

PROOF. By contradiction. If the path is not parent(a)-free in C, then it must be because of a backedge
(v —>. a). Since C is reducible, it follows that a dom v. This implies that a is in the parent(a)-free path in
BF(C), which is clearly a contradiction as a parent(a)-free path cannot contain a. [J

6.1. Completeness of Properties OrderFixed and OrderArbitrary
PROPERTY Complete. Properties OrderFixed and OrderArbitrary are complete for R-feasible CDGs.

PROOF. To show that properties OrderFixed and OrderArbitrary are complete for a given R-feasible CDG
C, we consider which property holds in BF(C). Since BF(C) is feasible and Ioop-free, one of the properties
must hold for a given (a,b) pair.

(A) Assume that property OrderFixed holds (in some direction) in BF(C) for (a,b). Lemma (6.3) implies
that property OrderFixed holds in the same direction in C.

(B) Assume that property OrderArbitrary holds in BF(C) for (a,b). If property OrderArbitrary holds in C,
then we are done. If it does not hold, then lemma (6.1) part (1) implies that either a or b is not a
member of DomReach(C). Lemma (6.2) implies that property OrderFixed must hold in C. [J

6.2. Equivalence of Properties OrderFixed and OrderFixed’

LEMMA (6.4). If CDG C is R-feasible, then property OrderFixed implies that b pd a iff property Order-
Fixed’ implies that b pd a.

PROOF.

(=) Assume that property OrderFixed implies that b pd a. We will show that property OrderFixed’
implies that b pd a, by case analysis on which property (OrderArbitrary or OrderFixed) holds in BE(C).

If property OrderArbitrary holds in BF(C), then by lemma (6.1) part (1) either @ or b is not a member of
DomReach(C). If a¢ DomReach(C), then by lemma (6.2) property OrderFixed must imply a pd b, con-
tradicting an initial assumption. Therefore, b ¢ DomReach(C). Since property OrderArbitrary holds in
BF(C), by lemma (6.1) part (1), not (a over b) and not (b over a) in C. Thus, case (a) of property
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OrderFixed’ holds.

If property OrderFixed holds in BF(C), then lemma (6.3) implies that it must hold in the same direction
as in C. Therefore, property OrderFixed’ implies that b pd @ in BE(C). By lemma (6.1), it is clear that
property OrderFixed’ also must imply that b pd ain C.

(<) Assume that property OrderFixed’ implies that b pd a. We will show that property QOrderFixed
implies that b pd a.

By lemma (6.1), it is clear that if case (b) or (c) of property OrderFixed’ implies that b pd a in C, then
the same case implies that b pd a in BF(C). Furthermore, if case (a) of property OrderFixed’ implies that b
pdaand b¢ DomReach(BF(C)), then case (a) implies that b pd a in BF(C). Since BF(C) is feasible, pro-
perty OrderFixed implies that b pd a in BF(C). By lemma (6.3), it follows that OrderFixed implies that b
pdainC.

If case (a) implies that b pd a in C and b € DomReach(BF(C)), then, by lemma (6.2), property Order-
Fixed implies thatb pdain C. [0

7. Property Permutations
The proof of property Permutations relies on the following lemma.

LEMMA (7.1). Given feasible CDG C. If property OrderArbitrary holds for (a, b) and b pd x pd g in a
corresponding CFG of C, then (1) there is a vertex p such that p —% a, p —>% x, and p —% b, and (2) pro-
perty OrderArbitrary holds for (a,x) and (x,b).

PROOF. There must be a vertex p such that p ~>% a and p —>%b. Since b pd x pd a, it follows that
p —>tx. By lemma (1.6), there mustbe a corresponding CFG G’ in which a pd x pd b, which implies (2).
|

PROPERTY Permutations. If CDG C is R-feasible, then an order for the (a,b) pairs of C is a good order iff it
(1) respects the fixed pair orderings determined by property OrderFixed and (2) orders the (a,b) pairs for
which property OrderArbitary holds according to an arbitrary total ordering of C’s vertices.

PROOF,

(=) If Order is a good order, then Order must be acyclic and respect the fixed orderings of property
OrderFixed. Since Order is acyclic it must be possible to find a total ordering of C’s vertices that respects
the pair orderings of those (a,b) pairs for which property OrderArbitrary holds.

(&) Since property OrderArbitrary cannot hold for an (a,b) pair that spans regions (see Section 3.1.3) and
regions partition the vertex set of C, we only need to argue that within any region the (a,b) pairs for which
property OrderArbitrary holds can be ordered according to an arbitrary order of the vertices in that region.
Within any region R = { x,...,x, } of an R-feasible CDG C, at most one X, cannot be a member of
DomReach(C). Such an x; must postdominate all other vertices in the region. Property OrderArbitrary
holds for every pair of vertices from the set § = (R — { x; | x, ¢ DomReach(C)}).

Consider a corresponding CFG of C, and let x,, be the vertex from S such that X, postdominates all other
vertices in § and let x, be the vertex from S such that all other vertices in § postdominate x,. This chain
contains all the vertices in S and no others (if there was an X € § such that x, pd x; pd x; then lemma
(7.1) implies that property OrderArbitrary holds for (x,,x,) and (xz,x1) which implies that x, € ). Since
property OrderArbitrary holds for every pair in the chain, lemma (1.6) implies that there is a corresponding
CFG for every possible postdomination ordering of vertices in S. [
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8. The Correctness of Function ConstructCFG

good order). Finally, we show that the CDG of this CFG is isomorphic to C via a mapping constructed by
uniquely tagging the vertices of C and carrying the tags over to the vertices of G and CDG(G). In what fol-
lows, let the list CLIST(p, L) = ( VisesVm ) be the L-children of p ordered so that for all ;, 1<; <m, the
ordered pair (Vi,Vi41) is in Order (i.e., Order specifies that v, pdv;).

LEMMA (8.1). Let G be a cormresponding CFG of C that respects Order (i.e., the graphs representing Order
and the good order of G are isomorphic under an isomorphism map between C and CDG(G)). If w
immediately follows v in CLIST(p,L), then w = imm-pd(G,v).

PROOF. By contradiction, Suppose x (= w) is the immediate postdominator of vin G. Since x impd v and
w pd v in G (since w occurs after v in CLIST(p.L)), w pd x pd v in G. Since p—>iwand p—>Ly andy
pd x pd v, it follows that p—>txisinC. Therefore, x must occur between v and w in CLIST(p,L). Con-
tradiction. [

LEMMA (8.2). Let G be a corresponding CFG of C that respects Order. If vertex v occurs last in
CLIST(q,L) and r = imm-pd(G,q), then r = imm-pd(G,v).

PROOF. Assume that that w #r is the immediate postdominator of v in G, Since r impd gin G and v is
directly control dependent on ¢, lemma (1.2) implies that r pdvin G. Since w pdvandr pdvin G, either
w pd rorr pd w must hold in G. The former implies that w is not the immediate postdominator of vin G,
Therefore, r pd w pd v. Since v postdominates the L-branch of g and w pd v, but not w Pd g (since r pd
W), ¢ —>% w must be in C. However, since w pd v, w must follow v in CLIST(q.L), contradicting an initial

DFS is DFS(ENTRY,EXIT). The vertex EXIT is the immediate postdominator of ENTRY in every CFG.
Suppose the call DFS(v,w) has been made and thatw = imm-pd(G,v). A call to DFS made by this invoca-
tion of DFS either has the form DFS(x, y), where y immediately follows x in a CLIST of v, or the form
DFS(x,w), where x is the last vertex in a CLIST of v. In the first case, lemma (8.1) implies that ¥y = imm-
Pd(G,x). In the second case, lemma (8.2) implies that w = imm-pd(G,x).

In any CFG, the control-flow successor of a Statement vertex is its immediate postdominator. Since
function ConstructCFG correctly determines the immediate postdominator of each vertex in G, it is clear
that it correctly determines the control-flow successors of Statement vertices. We now show that function
ConstructCFG correctly determines the frue and Jalse control-flow successors of each predicate pin G.
There are two cases to consider for a given predicate p:

1. p has no L-successors in C. 1In this case, ConstructCFG determines that imm-pd(G,p) is the -
successor of p in G. Suppose that x (x # Imm-pd(G,p)) is the L-successor of p in G. This implies that
p—>txisin C, which contradicts the fact that p has no L-successors in C.
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2. p has L-successors in C. In this case, ConstructCEG determines that the first vertex in CLIST(p,L) is
the L-successor of pinG. Let x be the L-successor of pin G. Vertex x cannot postdominate p, other-
wise there would be no L-successors of p in C. This implies that p —L x. Since x is the L-successor
of pin G, it must be the first vertex in CLIST(p,L) (because every other vertex that is L control depen-
dent on p must postdominate x). O

LEMMA (8.4). Let G be the corresponding CFG of C that respects Order, as constructed by function Con-
structCFG. CDG(G) is isomorphic to C via a mapping constructed by uniquely tagging the vertices of C
and carrying the tags over to the vertices of G and CDG(G).



