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Abstract
We consider Whittaker’s cardinal series interpolation from a uniform grid to a nonuniform grid. It is

shown that the interpolation is a bounded linear map if and only if a constraint on the clustering of the
nonuniform grid is satisfied. An error estimate is also presented showing the spectral accuracy of the cardinal
series interpolation.
Mathematical Classification: 41A05

1. Introduction

In this paper we consider Whittaker’s cardinal series interpolation between a uniform grid and a non-
uniform grid. Cardinal series interpolation is a limiting case of cardinal spline interpolation [4], and is
also a limit for interpolation by finite Fourier series as the extent of the grid increases. Because of this,
cardinal series interpolation is important in the theory both for interpolation using Fourier methods and as
a limiting case for more conventional local interpolation between finite difference or finite element grids. We
are currently developing a more general theory of interpolation between grids in which the results proved
here play a essential role.

Interpolation between grids is an important part of many computational procedures. Perhaps the most
important current application arises in domain decomposition methods. Domain decomposition is used
as a means to decompose large problems into smaller subproblems that can be solved in parallel, see the
collections of paper [2] and [1] for examples of the use of domain decomposition.

The primary result of this paper is the determination of the necessary and sufficient condition for
the cardinal series interpolation to be a bounded linear operator between the space of square summable
sequences on the first grid and a weighted norm on the second grid. The principle technique used in the
proofs is borrowed from the work of Paley and Wiener on almost periodic functions {3, page 108].

In section 2 we give the basic definitions, define the interpolation operator, and give the clustering
constraint to be satisfied by the grid mapping to give a bounded operation. In section 3 we show that the
clustering constraint is necessary and sufficient for the one-dimensional cardinal series interpolation to be a
bounded linear operator. In section 4 we show how the one-dimensional result can be extended to prove the
result in higher dimensional space. Finally, error estimates for cardinal series interpolation are presented in

section 5.
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2. Finite Difference Grids and Cardinal Series Interpolation.
The usual orthogonal grid in R? with grid spacing h, which we will refer to as G, is
(h2)* = {mh :m e 2%}

where Z is the set of integers. We consider cardinal series interpolation from G to a second grid G defined as
the image of (hZ)% under a mapping ¢ from R? to R¢. Usually we assume that the mapping is independent
of the grid spacing, although this requirement can be relaxed.

We take the same grid spacing h on both grids G and G. Our treatment easily extends to using two
different grid spacings h and A, for G and G, respectively, as long as the grid ratio fi/h remains bounded
above and bounded away from zero. For simplicity of exposition we use only the one parameter h.

The space of grid functions on G is the set of square summable sequences. That is, we consider sequences

{um} for m € Z4 and use the norm
1/2

Ny = | 2% D" fuml?

meZ?
The Fourier transform is defined on this space by
a(g) = (-—h——>d > emimhiy,, (2.1)
\/i—ﬂ: mezZd

. . . d . . .
where € is restricted to the domain B¢ = [——7?/1‘1‘ 7rh'1]L . The inversion formula is

Li 2
Um = (—\/15_;> /Bd e Eag) de, (2.2)

and Parseval’s relation relating the grid function and transform is’
RS Ju]® = / |a(§)|? de.
mezZd /B¢

We define the norm of # as X

= ([ lit(s‘)lzd£>l/ﬁ~

For the grid G we consider a weighted L* pseudo-norm given by

1/2
llolls = h* Z B lvm[*
meZd
where the weights B, are nonnegative real numbers. We denote the space of sequences for which || - ||5 is
finite by B9. Note that || - || is a norm only if all the weights are positive, and this norm is equivalent to

the L? norm in G only if the weights are bounded and bounded away from zero. Typically the weights G,
would be some approximation to the Jacobian of ¢ at the grid point mh.
The cardinal series interpolation of a function u defined on the grid &, which is hZ%, is the function ®u

on G, given by

d
(Pu),, = <¢%> /Bd etPtmh) Eq ey de. (2.3)

The discrete function ®u is not be in B¢ unless some conditions are imposed on ¢. The necessary and

sufficient condition is the clustering constraint.




The Clustering Constraint. The measurable function ¢ from R? to R? satisfies the clustering constraint
on the grid G with weights Sy, if there is a constant B and a positive number hqg such that for 0 < h < hg
and any v € Z% the relation

> Bm<B

meS,
holds, where S, is the set
{m: !h‘lcp(mh) - I/Im < %} (2.4)

The set S, is the set of indices of points in G that are closest to vh. There are several important cases in
which the clustering constraint is easily verified. In one dimension, if ¢ is a differentiable function and there
are constants b and b, such that 0 < b < g, < b, then the clustering constraint is satisfied if the derivative
of ¢ is bounded away from zero. As a consequence g must be a monotone function. Another case is with
¢ being a piecewise linear function, not even necessarily continuous, where the slopes of the linear segments

are bounded away from zero.

3. Cardinal Series Interpolation in One Dimension.

In this section we consider the special case of cardinal series interpolation in one dimension. The analysis
of cardinal series interpolation in higher dimensions utilizes the result for one dimension.
In one dimension, the Fourier transform given by (2.1) can be written

(€) e~ ivhEy, (3.1)

i

where u, denotes u(vh) and € is restricted to the interval [—7h~1, 7rh“1] . The inversion formula (2.2) is

wfh

! / ivhE
Uy = e eI G(E) dE.
V2T Jox/n

The cardinal series interpolation operator (2.3) is
1 mfho R
(Qu),, = —= / e PmRIE G (E) dE. (3.2)
By using the series (3.1) this can be expressed as a series,
o0

sin (h=tp(mh) —v)w
(Pu)y, = Z Y (h=to(mh) — )T

[}
which is the classical representation of the cardinal series interpolation.

Theorem 3.1. The cardinal series interpolation operator ®, given by (3.2). is a bounded operator from

L*(hZ) to B if and only if the function » satisfies the clustering constraint.



The operator ® is a bounded operator only if there is a constant C, independent of h for 0 < h < hy,

such that
|@ulls < Cllulln (3.3)

for all u in L%(RZ).
Proof
We first show that the clustering constraint is a necessary condition for @ to be a bounded operator.

Consider the discrete functions u(®) defined by
- -1/2 —
u&/av) — {h if v -— (4
0 otherwise.

Notice that ||u(®|| is 1 for each a. The Fourier transform of u(®) is

4 R/ .
(o) E) - e iah€

u - \/—2.77-

and therefore

<<i>u(‘”) _ h_l/:,sin(h‘lgo(mh)—a)ﬂ
m (h~le(mh) —a)w
= h™%sinc (h~Yp(mh) — a) ,

where sinc(y) is defined as sin(y)/y. The norm of ®u'*) in B is

o3

Z Om {sinc (h=tp(mh) — «) 7r|2 (3.4)

TS e OO

The series (3.4) is greater than the sum over the terms with m € S, i.e.

Z Bm ]sinc (h=p(mh) — a) 71"2 > Z Fim |si11c (h=to(mh) —a)n

m=-o0 me S,

Y
2 2\"
Z (;) Z ﬁmw
meESa
If ® is a bounded operator, then the series (3.4) is bounded independently of «. hence the sums ZmES,, O
are bounded. This is precisely the clustering constraint.

We next show that the clustering constraint is sufficient for ® to be a bounded operator from L*(hZ) to

B. Let v denote ®u. By multiplying each side of equation (3.2) by 3,, b, and summing over all m, we have

C\?\ ; wfh
hY gl = [ e de (3.5)
m=-—oo S-mfh
where .
h i .
L = Bm m.e—“p( mh g - 3.6
w(g) .277 m:z—:-:\? v ’ ( )

We then obtain from (3.5)
el < Ml fulln,

where the norm of w is that of L? ([-wh~! wh~1]). We next show that
llwll < Cliells (3.7)
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for some constant C independent of v, from which we obtain
lllls < Cllulln

which is (3.3) and shows that v is in 5.

We now prove (3.7). The essential ideas of this proof are due to Paley and Wiener [3] and used by them
in their study of almost periodic functions.

For each integer m define the integer vy, by vy, — % < h=Yp(mh) < vm + %, then for each integer v, 5,
is the set {m : v, = v}, which is the same as (2.4). Given a function v in B we have the function w(£) by
(3.6) and define z(§) by

(6) = i (3:8)

m

/ m=—-00

it

\/——‘ Z < Z ﬁﬂ'LUTn) '““’hf

g meS,

We show that w and z are well-defined functions in L? (—wh~t, mh~1) if ¢ satisfies the clustering constrains.

By Parseval’s relation and the clustering constraint we have

T/h 2
/ I d€ =h Z Z Fmvm

"/h v=—ox |meSs,
) o)
S h Z Z "Jml'vmlg Z Bm S Bh Z /jmll'm|2
vm—-oc meSs, meSs, m=—oc
Thus
=1l < BY*|Jell, (3.9)

and z is in L?(—~mh~1, wh~1).

We now consider the difference between w(&) and (&), where we now let ¢ range throughout £. We

have
UJ(&) - ’(E R Z 3171 Um <l—i¢(mh L fh“lmhf)
' m=—so
Vmh i
- 1E 3 v,,/ e gt (3.10)
V m_z_d.\: mem w{mh)
&[T ey
= — e TV () di
where
~
Vty=nh Z 5171(t).‘3rn'”m
NI e N
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and
1 if @(mh) <t <vmh
em(t) = { -1 if vph <t < p(mh)
‘. 0 otherwise.
By the clustering constraint, the sum defining 17(t) is absolutely convergent for each value of t. By considering
v such that t — $h < vh <t -+ Lh we have

5

Vt)* =

h Z Em(t)Bmvm

meS,

<h Y Balem@P D Bumloml? (3.11)

meS, meS,

< h*B Z fljnzl'Unz]2~

meS,

Formula (3.10) shows that the function (€)1 (w(€) — z(€)) is the Fourier transform on R of the function
V(t). By Parseval’s relation on R we have

/ 139_‘5-)-’;-;2—:(-“1'2[15:/“ VO dt. (3.12)
-0 S -0
From the left-hand side of (3.12) we have
R 2 * Jw(8) - =9
— W) — (VN de < s 224 Ny /3 3.13
p; -.,,,h’“’(“’ (&) us_/m HE 3 (3.13)

To estimate the right-hand side of (3.12) we use the estimate (3.11) for V(¢) and obtain

00 o0 (v41/2)h
/ Vi Pde= Y / |V ()| dt
—ca (v~1/2)h

V=G

hsB Z ,Bml(-’ml2 (314)

M=o

IN

= thHv[]f,.
Combining the two estimates (3.13) and (3.14) for (3.12) we obtain
m/h .
=l = [ e = =R de < Bl
J—m/h

Together with (3.9) this implies
llwll < BY2 (1-+ ) [[lls,

which is essentially (3.7) and thus (3.3) holds. This proves Theorem 3.1.
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4. Cardinal Series Interpolation in Higher Dimensions.

We now prove the extension of Theorem 3.1 to higher dimensions.

Theorem 4.1. The cardinal series interpolation operator is a bounded operator from L*(hZ)* to B® if

and only if the function ¢ satisfies the clustering constraint.

As with the one-dimensional interpolation it is easy to show that the clustering constraint is necessary
for ® to be a bounded linear functional. The proof that the clustering constraint is sufficient depends on
proving that the function ]

h —io(mh).

w(€) = (_"\/_2___;> mez;dﬂmvme ¢(mh) €
is bounded by the norm of v. This proof is made easier by employing a convenient notation to keep track of
the many functions used in the proof. In place of the two functions z and A~V used in the one-dimensional
case we employ 29+! — 2 additional functions. We designate these as w, where o is an element of {0, 1}*
for some k, 0 < k < d. We let w correspond to the null-sequence with k£ equal to 0. The proof proceeds by
taking one dimension at a time and decomposing each of the functions w, into two functions as was done in
the proof of Theorem 3.1.

We define the functions po(m, j,n) and p1(m, j, n) as

. s
1.70(177.._}‘ 17) = pl¥ (m)hn

and , ,
1 if @ (mh) <np<vi(im)h

pi(m,j,n) =19 -1 if vi(m)h <n <@l (mh)
0 otherwise.
where 17 (m) is defined by

v{m) = 3

< h~t (mh) < v (m) + L

The point v(m)h is a point in (hZ)? that is nearest to p(mh).

The function w,, for a k-tuple o in {0.1}*, is defined by

wd(’llw-ﬂ?kwfkﬁ“u 'Ed)
- d (4.1)
= h4 Z Bmvm H po;(m.joni)exp [ ¢ L £ (mh)E;
meZ4? j=1 =+l

If o; is 0, then the range of 7; is [~wh~'. 7h~!] and if ¢; is 1, then the range is R. The range of §; is
[~mh~t, nh‘l] .
We let o, 0 refer to the (k+ 1)-tuple formed by adding a 0 to the k-tuple o and similarly for o, 1. Similar

to the one-dimensional case we have the relation

wd(nla .o "ynkvfk-{-lv . "Ed) - U’O,O(’hv . "1771\7w51ﬂ+1v - ~«fd)

TR S e (0 et Eegay - Ed) A

=€ —E——/Oce
- k+1\/§;r- e



and the resulting inequalities
lwsll < [|wooll + [lwe — waoll (4.2)

and
lws — waoll < Cllws,]|- (4.3)

The relations (4.1) and (4.2) are established as was done in the proof of Theorem 3.1.

As a consequence of repeated application of (4.2) and (4.3) we obtain

lolf<C | > lwdll |- (4.4)

oge{0,1}4

The proof that cardinal series interpolation is a bounded interpolation operator depends on showing that
each term on the right-hand side of (4.4) is bounded by ||v]|s.
We now consider a representative ||w,|| from (4.4) where, without loss of generality, we may consider

oj to be 0 for 1 < j < ¢ and o; to be 1 for j larger than £. We have

deHQ:/ / !w”(‘gl’“'vgf;tbmw"',I‘d)|2 dt de
f€[-mh=t wh=1]t JreRI-!

and

wo (€1, 1€ terry - ta)

d
h\* ‘ _
Bmvme'’™ &h pi{m, j. tj)
V2w

mezZd j=f41
(4.5)
ho\° :
‘ 1 h ]
() St 5 s I monatn
K veZt meS, ,(n j=i+1

where u(t) is the (d — ¢)-tuple given by t; — $h < pjh < t; + +h and S, 1) is the set of grid indices m such
that v, =uvd forj=1,..., 6, and v, =g for j =L+ 1,....d.
By Parseval’s relation in the first ¢ arguments of w, we have

bl

d
l[wo || = A Z/R“ S Bwvm [[ pr(moiity)] de
te -

veZ! MES, 4 j=041

For each value of t in R%~¢ and v in Z¢ we have.

o By

d - d
. = n . g .
E Bmvm H p1(7n1]'tj) < E .dmlum.l‘ E Im H [-71(7"»J~,tj)
mESu',‘(,) j=E£41 MES, (1) MES, . Jm=e41

Since
d

H pi{m. j, t;)

j=i+41

is bounded by 1 for each value of ¢ € R and v € Z¢ we have, by the clustering constraint,

2]

J 2

Y <9

E Brvm H pim,j,tj)| < B E B |vm]|”.
mESy (1) j=i4+1 mES, 41y




Thus

”w0“2 < Bht Z / Z ﬁmlvml2

d=2
vezt TTERT mes, L

=52 2 (L) 35 i

veZt nezi-t meESy 4
where B(p) is the region given by

(1j = 1/2h < t; < (4 +1/2)h.
Since the volume of B(u) is A%~ we have

lwolP < BR? D" > Y Bmlvml* = Bh® Y Buluml® = Bllvll3.

vEZL ueZd-t meSu, mezZ?¢
This proves Theorem 4.1.

5. Error Estimates

In this section we present estimates for the error incurred by cardinal series interpolation. We give
proofs of the error estimates in the one-dimensional case; the proofs for higher dimensions are sketched. We

begin with a function u defined on R? and consider the grid function Tu in L3*(hZ)¢ defined by

d
1 .
TU,n o <‘—\7-.—2__—;) /;d e’-TTL/L Eu(g) d&

where B¢ is as defined in (2.1). Note that the discrete transform of T is @ restricted to B¢ We also consider
the discrete function Eu,, obtained by evaluating u on the grid, i.e., Fuy, = u(mh).
We consider the difference between the cardinal series interpolation of Tu. ie., ®Tu, and u evaluated

on the grid ¢(hZ) which we denote by E u. ie.,

d
1 -
E u,, = elsa(mh.)f al€) de.
90171”(\/5;;) ./Bd (S) <

The interpolant of Tu is given by

1 d w/h ] n e
PTuy, = | —= / e Plmh) & () dE,
m <\/‘2ﬂ'> Jew/h I(S) £

and thus the error is given by

d
i 4
Epum — ®Tum = (ﬁ) /I| . et & ey e
! Jhléleo2

The expression |€|o refers to the supremum norm on RY, i.e.,

Eloe = max €.

ISIC\: lgigdlslt
The error, the difference between the function evaluated at the grid points and the interpolant from the
evenly spaced points, is estimated using the next theorem.
Theorem 5.1. Ify satisfles the clustering constraint and » > d, then there is a constant C, such that for
u € H™(RY)

/2
1 Epu = 0Tl < m( [ e de) |
‘h'E'mZ"



If we interpolate the function u evaluated at the grid points rather than T'u we get similar estimates.
Corollary 5.2. If ¢ satisfies the clustering constraint and r > d, then there is a constant C, such that
for w € H™(R?) '

1/2
Epu—omuls < o ([ iR )

|€loo 2

As a further consequence we have that if the grid function v is a good approximation to the smooth

function u on the evenly spaced grid, then ®v is a good approximation to u on the unevenly spaced grid.

Corollary 5.3. If ¢ satisfies the clustering constraint and r > d and u € H"(R%) and v is a grid function

with ||[v — Eu||n < €, then there is a constant C'. such that
1/2
IEpu — ®vljs < C- (e +h" ( / e df_) ) ;
héleo 2T

Proof of Theorem 5.1
We first give the proof for the one-dimensional case, then we sketch the proof for higher dimensions.

Let vy = Eptim ~ ®TUm, then

S ﬂm!vm12h=/ w(E)a(E) de

m=—00 higl2m

o

1/2 ( 172
< ( [ erwier d£> ( [ e dg)
hel2m Helzm

where w{€) is defined as in (3.6).

As in section 3, define z(£) as in (3.8). We then have, by the triangle inequality,

. 1/2 “ 1/2 ' ] 1/2
</ Gk de) < (/ €-2](0)]° df) + (/ €172 (€) — ()] czs) (5.2)
hlg|>m higlzm hlgl>m

The first integral on the right-hand side of (5.2) is evaluated using the periodicity of =(¢).

2 2l ﬁ/h i OO’ ¥
[ terts@rds = [ R X e 2ol de
hlg|>n -

n/h n=-—og

where the prime on the summation denotes the omission of the term for n = 0. Now, since || < ah™t

Z/ [E+27r/)‘111|"9§2—}1; ‘.1.;:17_‘
n=—-o9 ™ n=1 n- 3
So r
o2 e h3 x/h - B2 \
€177 1= d€ < |=(€)[* de < < Bllell3
hig| 2w - —7/h E
by (3.9).
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The second integral on the right-hand side of (5.2) is estimated using the relations (3.10), (3.12), and

the estimate (3.11). We obtain

/ [wl®) = =(O1 "'f(é”“ de < /oo [V (t)]2dt < h*B||v||3. (5.3)
hlg]>T €12 —oo
Therefore,
1/2
([ lelutor ae) < ol
hlgl2w

and so from (5.1)

1/2
1Bpu—sruly <onl [ lePiacer i) (5.4

It easily follows from (5.4) that

lelzn

D)

R\T 1/2
- oruls <o (L) ([ teracor 3
T hig|> ]
for any r > 1.

We now sketch the proof for higher dimensions. As in section 4, we employ k—tuples o to index the

auxiliary functions. In place of equation (5.1) we have

S BmlomPhi= [ e de

mezd h]&thw

1/2 1/2
<([ wteorde) (e )
hl§loe 2™ hloo 2
We define the function ¥(£, o) for a k—tuple o by
T , : .
P(g,0) = max <I— {l&] (i <kand oy =0)ori> k}> :
]

The functions w, are defined as in (4.1), except here the range of € is R, and we include an extra factor of
hl?!l in w, as defined by (4.5).

The first decomposition is

1/2 q y
~2d 2d g / [w(€) — wo(€)}* lf)
(-/M&lmzn!ﬂoo lw(€) cf) < ( e W(E, (1) 2D 2 d¢
e
| [wo(6)?
JwolOF
+ <//,|ﬂw2w (€, (0))2 k>

. o 1/2
. t1, €0, .. Ea)l”
_<_(,' </ |U)1( ! EU Sl)i (['l‘lClEjg (lfd>
Rt

1/2
' Jwo(€)[*
— R dl.’
- (./hlf[mZW \I/(E’(O))Qd g)

Proceeding with a similar decomposition on the second dimension in both of the last integrals, we obtain at

the k—th step a sum of terms of the form

. 1/2
G A
po U(E )10

11



After all decompositions are performed, we have a sum of 2¢ functions w,. As in section 4, we consider
the case where oy =0 for 1 < i< fand o; = | for £ < i < d. We have, by the (27 /h)—periodicity of w, in

the first £ dimensions,

2 lwy (€1, .. Eorteqr, .. ta)|?
el =/e e e
€ i€ - 1
1

= o(E1, L Eeterty - td)]? -
»/hlfloosn -/teRd—t lws (€1 ey tett a)] Z T T Imn/h o) dt dé (5.5)

nezt

sch“]H [ Tttt dede.
hlé|leo<m JteRI-E

We next use Parseval’s relation on the first £ dimensions, and proceeding in a way similar to the proof of

Theorem 4.1, we have that the last integral in (5.5) is equal to

d
C'huz h-t Z B U H pi(m, j ;)| dt

d -
veZ! teRi-¢ MES, 4 j=l+1

< BCR™*t )~ / > Bauloml® dt
te R4

—t "
veZ*t MES, uit)

= BOK™* 37 Y- (/Em)ldt) > Aulowl?

[ IANT VALY meS,

= BCh3¢ B lom]® = Coh*Hol)3
3

veZdmeSs,

From this the theorem follows easily.

Proof of Corollary 5.2

We have, for one dimension,

1 e
Eum = — / p! ™A G(€) dE = u(mh)

27 J o

and
1

Eup - Tu=
V2.

/ e!™hEg)E) dE.
hlg) 2w

It is then easily shown that

]

1/
1Bum = Tull < ol [ lePlac ac )
< hig| 2w
similar to (5.4). We then have
1Epu = ®Eully < | Epu — OTulls + |[B(Tu — Bu)ls
<N Epu — @Tullg + Cl|Tu — Eully
by Theorem 3.1. The proof for more dimensions is similar.
Proof of Corollary 5.3

We have, for one dimension,
1B = Bvlly < [|Epu ~ DEully + |9 Eu - o]y
< | ot = BEulls + CllEu — vl

The result then follows from Corollary 5.2.
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6. Conclusions and Observations.

The error estimates given here display the “infinite” order of accuracy of the cardinal series interpolation,
that is, the order of accuracy depends only on the differentiablity of the function being interpolated. Notice
that there are no smoothness requirements on the grid mapping ¢. A careful examination of the proofs shows
that no use is made of the order of the points in the grid G, and thus any rearrangement of how the points of
G are mapped to the points in G is an equivalent mapping. In particular, the properties of the interpolation

depend essentially on the location of the points in G and less on the mapping .
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