NEW PROGRAMS FROM OLD
by

G. Ramalingam and Thomas Reps

Computer Sciences Technical Report #1057

November 1991

New Programs From Old

G. RAMALINGAM and THOMAS REPS
University of Wisconsin-Madison

There is often a need in the program-development process to generate a new version of a program that
relates to existing versions of the program in some specific way. Program-development tools that assist in
the generation of the new version, or possibly even automatically generate the new version from the exist-
ing versions, will obviously be of great use in this process. The problems of merging software extensions,
program integration, separating consecutive edits, and propagating changes through multiple versions are
all instances of situations where such tools would be welcome.

These problems give rise to various questions concerning the relationship between these problems and
between various strategies that may be used to tackle these problems. The goal of this paper is to address
these questions.

Previous work has shown how programs may be treated as elements of a double Brouwerian algebra,
and how program modifications may be treated as functions from the set of programs to itself. In this paper
we study the algebraic properties of program modifications, and use them to establish various results con-
cerning the problem of program integration and the problem of separating consecutive edits. We also show
how a particular category can be constructed from programs and program modifications, and address the
question of whether integration is a pushout in this category.

CR Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques — program-
mer workbench; D.2.6 [Software Engineering]: Programming Environments; D.2.7 [Software Engineer-
ing]l: Distribution and Maintenance — enhancement, restructuring, version control, D.2.9 [Software
Engineering]: Management — programming teams, software configuration management; F.4.m
[Mathematical Logic and Formal Languages]: Miscellaneous; G.2.m [Discrete Mathematies]: Miscel-
laneous

General Terms: Theory

Additional Key Words and Phrases: Brouwerian algebra, dependence graph, program slice, program
modification, program integration, separating consecutive edits

This work was supported in part by an IBM Graduate Fellowship, by a David and Lucile Packard Fellowship for Science and En-
gineering, by the National Science Foundation under grants DCR-8552602 and CCR-9100424, by the Defense Advanced Research
Projects Agency, monitored by the Office of Naval Research under contract N00014-88-K-0590, as well as by a grant from the Digital
Equipment Corporation.

An abridged version of this work appeared in the Proceedings of the Second International Conference on Algebraic Methodology and
Software Technology (AMAST), (Iowa City, ITowa, May 22-25, 1991) [Rama91].

Authors’ address: Computer Sciences Department, University of Wisconsin~Madison, 1210 W. Dayton St., Madison, WI 53706.
E-mail: {ramali, reps }@cs.wisc.edu

Copyright © 1991 by G. Ramalingam and Thomas W. Reps. All rights reserved.

—-2-

At a first approximation, a program derivation is likely to be a directed graph in which nodes are
programs and arcs are fundamental program derivation steps. W. L. Scherlis and D. S. Scott
[Sche83]

1. Introduction

In the program-development process, there is often the need to generate a new version of a program that
relates to the existing versions of the program in some specific way. Examples of program-development
steps during which such a need arises include merging software extensions, program integration, separat-
ing consecutive edits, and propagating changes through multiple versions. Program-development tools that
provide assistance during such steps—by aiding in the creation of the new version, or possibly even gen-
erating the new version from the existing versions automatically—would obviously be of great value.

The problem of merging software extensions, first addressed by Berzins [Berz86], is as follows: given
two programs a and b, generate a program that “has all the capabilities of each of the original programs”,
that is, a program that “combines the features of both a and b”. Berzins formally defines the problem to be
that of generating a program whose semantics is the least upper bound (in the approximation ordering of
Scott [Stoy77]) of the semantics of the two given programs. Such a program is called a least common
extension of the given programs. The least common extension of two programs is not computable in gen-
eral, and Berzins outlines (conservatively approximate) ways of generating a common extension of two
programs written in a simple functional language.

The problem of program integration, first formalized by Horwitz et al. [Horw89], is a generalization
of the above problem involving three versions of a program—an original base version and two independent
revisions of the base version’s source code. This can happen during the concurrent development of a pro-
gram, for instance, when two programmers simultaneously modify different copies of the same program,
each enhancing the program in some way or fixing some bug in the program. The program-integration
problem is to determine if the two changes made have an undesirable semantic interaction, and if they do
not, to generate a program that incorporates the enhancements or bug-fixes made by either of the program-
mers. Horwitz et al. formalized this problem for a simple programming language, and developed an
integration algorithm-—referred to hereafter as the HPR algorithm—for integrating programs in that
language.

The HPR algorithm is semantics-based: the integration algorithm is based on the assumption that any
change in the behavior, rather than the text, of a program variant is significant and must be preserved in the
merged program. An integration system based on this algorithm will determine whether the variants incor-
porate interfering changes, and, if they do not, create an integrated program that includes all changes as
well as all features of the base program that are preserved in all variants.

Another problem, which is similar to that of program integration in that it involves three versions of a
program, is that of separating consecutive edits. Consider the case of two consecutive edits to a program
base; let a be a program obtained by modifying base, and let ¢ be a program obtained by modifying a. By
“separating consecutive edits” we mean creating a program that includes the second modification but not
the first. Yet another problem, the problem of propagating changes through multiple versions, is the fol-
lowing: a tree or dag of related versions of a program exists, and the goal is to make the same enhancement
or bug-fix to all of them. This situation arises when multiple implementations of a program exist to support
slightly different requirements. For instance, different versions of a program might support different
operating systems. It was suggested by Horwitz et al. that the problems of separating consecutive edits and
progagating changes were additional applications for a program-integration tool [Horw89]. For example,
they suggested that by repeatedly invoking the program-integration tool it would be possible to propagate

program changes through multiple versions of a program.

This paper studies the program-manipulation operations described above at an abstract level. We
make use of an algebra that abstracts away from the details of particular (concrete) operations for the prob-
lems described above. This approach permits us to study the various program-manipulation problems by
investigating their algebraic properties. (A simple example of an algebraic property—which a specific
program-integration operation might or might not possess—is that of associativity. In this context associa-
tivity means: “If three variants of a given base are to be integrated by a pair of two-variant integrations, the
same result is produced no matter which two variants are integrated first.”) Our algebraic approach helps
us to answer questions such as the following ones:

° What relations (if any) exist between the various program-manipulation problems described above?
) Is there any single tool that can be utilized to address these and other similar problems uniformly?

) As mentioned above, the program-integration tool was proposed as a general tool to tackle these
various problems; however, we will see later that more than one strategy exists for tackling these
problems using a program-integration tool. Are these strategies equivalent? If not, which is the
“correct” strategy (if any)? What is the relationship between these alternative strategies?

This paper is a continuation of two earlier studies of the algebraic properties of the program-
integration operation. One earlier work ([Reps90]) was motivated by the need to establish the algebraic
properties of the HPR integration algorithm. There, the HPR integration algorithm was formalized as an
operation in a Brouwerian algebra [McKi46], and the algebraic laws that hold in Brouwerian algebras
were utilized in establishing properties of the HPR integration algorithm. Recently, the desire to formalize
the notion of a program modification—the change made to one program to obtain another—motivated the
introduction of a new algebraic structure in which integration can be formalized, called fin-algebra
[Rama91a]. In fm-algebra, the notion of integration derives from the concepts of a program modification
and an operation for combining modifications. Thus, while the earlier work reported in [Reps90] con-
cerned a homogeneous algebra of programs, the later approach concerned a heterogeneous algebra of pro-
grams and program modifications.

The aim of this paper is to investigate further the algebraic structure of the domain of program
modifications, in an attempt to explore the relationships between the program-integration problem and vari-
ous related problems, and the relationships between different solutions to these problems. The paper stu-
dies a particular fm-algebra that is defined in terms of a double Brouwerian algebra. Consequently, the
integration operation of the fm-algebra models the HPR integration algorithm, and the results we derive
apply to the HPR integration algorithm.

We wish to point out that the problems of merging software extensions, program integration, separat-
ing consecutive edits, and propagating changes through multiple versions must be addressed at both the
syntactic and semantic levels. Let P denote the domain of programs, which are syntactic objects. Let §
denote a suitable semantic domain, and let M:P — S be a semantic function assigning each program its
meaning. Assume we want to formally specify an n-ary operation Merge:P X -- - X P — P that is meant
to generate a new version of a program from the n input programs according to some criterion. At the
semantic level, we need to specify what the desired semantics of the program to be generated is in terms of
the semantics of the programs that are input to the Merge operation. One way this can be done is by
defining a corresponding n-ary semantic operation SemanticMerge:S X -+ X § — §, and by requiring that
the Merge operation satisfy the equation M(Merge(py, * * * ,pn)) = SemanticMerge (M(p1), * -+ ,M(p,)).

An advantage of the abstract approach taken in this paper (and our earlier ones) is that the results esta-
blished can contribute to the understanding of the various program-manipulation operations at both the syn-
tactic and semantic levels. Because our results are established using only algebraic identities and inequali-
ties, our results hold for all structures whose elements obey a few simple axioms. For example, Berzins
has considered one approach to defining the program-integration operation in a semantic domain [Berz91].
He extended the conventional semantic domain to a complete Boolean algebra, and defined a semantic
integration operation as a ternary operator in this Boolean algebra. However, a Boolean algebra is also a
Brouwerian algebra, and the Brouwerian integration operator defined in [Reps90] reduces to the operator
defined in [Berz91] when the Brouwerian algebra under consideration is a Boolean algebra. Consequently,
the results from [Reps90], [Rama91a], and those that we derive in this paper are all relevant to studying
the integration operation at the semantic level.

The remainder of this paper is organized into seven sections. In Section 2 we review the frameworks
of Brouwerian algebra and fm-algebra upon which this work is based. In Section 3, we construct an fim-
algebra from a given double Brouwerian algebra. We also construct a category from this fm-algebra, a
category in which the objects denote programs and the arrows denote program modifications. Many pro-
perties of the fin-algebra may be succinctly represented by commutative diagrams of this category. In Sec-
tion 4, we define a partial ordering among program modifications that captures the notion of subsumption
among modifications and study the algebraic structure of this partially ordered set. In Section 5, we relate
the fm-algebraic operators to this partial ordering, define several (related) auxiliary operators that have a
simple intuitive meaning, and study the properties of these operators. In Section 6, we utilize the results of
the earlier sections in establishing various properties of the integration operator. In Section 7, we look at
the problem of separating consecutive edits, and various of its solutions. In Section 8, we address the ques-
tion of whether program integration is a pushout in the category defined in Section 3.

2. Previous work

2.1. The Brouwerian algebraic framework

We now briefly review the Brouwerian algebraic framework for program-integration developed in
[Reps90]. The idea behind this approach may be informally described as follows. A program consists of
one or more program-components. Hence, a program may be viewed as a set of program-components.
However, not every set or collection of program-components is a program. An integration algorithm like
the HPR algorithm can decompose a program into its constituent components, compare two programs a
and base and determine what components were added to base and what components of base were
preserved in developing program a from base. Let a = base denote the set of program-components in a but
not in base. (This is not quite correct, as will be explained shortly.) Let aMbase denote the set of program
components that are in both a and base. The integration algorithm integrates variants a and b of base by
putting together the program components in a = base, b= base and allbaselb, obtaining
(a + base)LI(aMbase b)) LI(b - base).

We may describe the Brouwerian algebraic framework more formally as follows. The HPR integra-
tion algorithm makes use of a program representation called a program dependence graph
[Kuck81, Ferr87]. Let s be a vertex of a program dependence graph G. The slice of G with respect 1o s,
denoted by G/s, is a graph induced by all vertices on which s has a transitive flow or control dependence.
A dependence graph G is a single-point slice iff it is the slice of some dependence graph with respect to
some vertex (i.e., equivalently, iff G = G/v for some vertex v in G). Let G, denote the set of all single-

point slices. A partial order < is defined on the set (7, as follows: if @ and b are single-point slices, b < a
iff b is a slice of a with respect to some vertex in a (i.e., iff b = a/v for some vertex v in g). Thus, <
denotes the relation “is-a-subslice-of™.

If p is a program, let S, denote the set of all single-point slices occurring in p (that is, in the program
dependence graph of p). The set §, is downwards-closed with respect to <. (A subset A of G, is said to
be a downwards-closed set if for every xe A and y<x, ye A)) Given a subset A of G, DC(A), the
downwards-closed set generated by A, is defined as

DC(A) & {be G, |JacA.(b<a)).
Thus, DC(A) is the smallest downwards-closed set containing A, and hence represents the smallest pro-
gram that contains all the slices in A. It can be verified that DC(A uB) =DC(A)vDC(B), and that a set A
is downwards-closed iff DC(A) =A. The concepts of an upwards-closed set, and UC(A), the upwards-
closed set generated by a set A, are similarly defined.

UC@A) &2 {(be Gy |JacA.(ash)).

Let DCS denote the set of all downwards-closed sets of single-point slices, Let T denote the set G4,
and let L denote the empty set. Let U, n, and — denote the set-theoretic union, intersection and difference
operators. DCS is closed with respect to w and n. DCS is not closed under —, but is closed under the
pseudo-difference operator ~ defined as follows:

X~Y=DC(X-Y)
DCS is also closed under a similar (dual) operator + defined as follows, where ~ denotes the set-theoretic
complement with respect to T:

X +Y=UC@T-X).
Reps [Reps90] shows that (DCS,u, n, =, +, T) is a double Brouwerian algebra (see below) and that
the HPR integration algorithm can be represented by the ternary operator [] defined by:

albaselb & (a =~ base)v(anbase nb)ub =~ base).
This permits the use of the properties of Brouwerian algebra in proving various algebraic properties of
program-integration.

Definition 2.1. A Brouwerian algebra [McKi46] is an algebra (P, LI,[, ~,T) where

@G (P, is a lattice (with LJ denoting the join operator, and It denoting the meet operator) with
greatest element T. The corresponding partial order will be denoted L.

(i) Pisclosed under ~.

(iii) Foralla,b,andcin P, (a = b)Cciff aC(bLic).

It can be shown that a Brouwerian algebra has a least element, given by T = T, which will be denoted
L.

Definition 2.2. A double Brouwerian algebra [McKid6] is an algebra (P,L1,1, =, <+, T) where both
P,u,m, =, Dand (P,M,Ll, +,T =+ T) are Brouwerian algcbras. In particular,

(i) Pisclosed under +.

(ii) Forallg,b,andcin P, (a + b)Jciff a1(bTc).

Definition 2.3. A ternary operator [], called the integration operator, of a Brouwerian algebra is
defined as follows:
albaselb 2 (a = base)Ui(aMbaseb)LI(b = base).

In this framework it is convenient to think of the elements of DCS as being programs, though they
really are only representations of programs. Further, not every element of DCS represents a program. An
element s of DCS is said to be feasible if there exists a program p such that S, = 5. Let FDCS denote the
set of all feasible elements of DCS. FDCS is not closed with respect to the integration operation: it is pos-

sible that a, base and b are feasible elements of DCS, while a[baselb is an infeasible element. The HPR
integration algorithm reports interference among the variants exactly under these conditions.

The reader is referred to [McKi46,Rasi63, Reps90, Reps] for a discussion of the algebraic laws that
hold in Brouwerian algebras and double Brouwerian algebras.

2.2, The fm-algebraic framework

The goal of program-integration is to merge or combine changes made to some program. The concept of a
“change made to a program” or a program-modification was formalized in [Rama91a] and made use of in
providing an alternative definition of integration. We briefly review this formalism below.

Definition 2.4. A modification algebra is a heterogeneous algebra (P,M, A, +, apply)with two sets P and
M and three operations A, +, and apply, with the following functionalities:

A:PXP—>M
+MXM—>M
apply M x P —> P,

For our purposes, we may interpret the components of a modification algebra as follows. P denotes the
set of programs; M denotes a set of allowable program-modification operations; A{a,base) yields the
program-modification performed on base to obtain a'; operation m, +m, combines two modifications m;,

and m, to give a new modification; apply (m,base) denotes the program obtained by performing
modification m on program base.

Definition 2.5. The 2-variant integration operator [T} :P X P x P —> P of a modification algebra is
defined as follows:

allbaselb & apply(A(a,base) + A(b,base), base).

The UNIx? utility diff yields a simple example of a modification algebra. Here, elements of P are texi-files
and elements of M are script files (for an editor). diff (with the option —e) implements A, while the editor
ed implements apply. There is no direct notion of -+, but file concatenation is one obvious choice. This
choice, in fact, leads to an integration algorithm that is essentially diff 3.

We now consider a particular kind of the modification algebra, in which the modifications (elements
of M) happen to be certain functions from P to P, and apply is just ordinary function application.

Definition 2.6. A functional-modification algebra (abbreviated fin-algebra) is an algebra (P.M,A,+)
where M ¢ P —> P,and A and + are operations with the following functionalities:

A:PXP—>M
+ MxM-—>M

Definition 2.7. The 2-variant integration operator [1] : P X P x P —> P of an fim-algebra is defined
as follows:

allbaselb 2 (A(a,base) + A (b,base)) (base).

In [Rama91a] two different systems of axioms for fm-algebra are introduced, and then used to study the
algebraic properties of the _[_1]_ operator. It is shown there how the HPR integration algorithm may be

1 Of course, there need not be a unique program-modification in M that yields a when applied to base. A more precise interpretation of
A (a,base), in the fim-algebra we are interested in, will be given in Section 5.1.

2UnNIX is a trademark of AT&T Bell Laboratories.

modelled as the integration opcration of an appropriately defined fin-algebra, by making use of the
Brouwerian-algebraic framework outlined in the Section 2.1. The definition of this fm-algebra and the
development of its algebraic structure will be the subject of the following sections,

3. An fm-algebra from a double Brouwerian algebra

The goal of this work is to study the fin-algebra that models the HPR integration algorithm. In the remain-
ing part of the paper, ? =(P,LI,IM, -, +,T) denotes a double Brouwerian algebra. The elements of P
will be referred to as programs. The letters x, y, z, a, b, ¢, and base will typically denote elements of P.
The set M of program-modifications of interest is given by the following definition.

Definition 3.1.

M & (Az @My)ux | x,yeP)
The elements of M will be referred to as modifications. The symbols m and m; will typically denote ele-
ments of M.

Let o denote function composition. Thus, m, om, denotes the function Ax. m;(m,(x)). Then,
Az. zMy)lix = (Az. zLIx)o(Az. z[My). Informally, we may think of modification Az. (zMy)Lix =
(Az. zLUx) o (Az. z[My) as consisting of two components: Az. zLlx, which represents an addition of new
program components (where x is the set of program components to be added), and Az 2y, which
represents deletion of certain program components (where y represents the set of program components to
be preserved).

We would like to represent the modification Az. (21y)Lix by the ordered pair (x,y). However, note
that Az. (zIMy)tix; and Ax. (xMy,)Lix, might be equal even if (x;,y,) # (x3,y2). But the representation
of a modification as an ordered pair may be made unique by restricting attention to ordered pairs (x,y)
where x L y.

Definition 3.2. S, a subset of P X P, is defined as follows:
S 4 {(xy)e PxP|xCy)}

Definition 3.3. A function p from § to M is defined as follows:
p(Cey)) & Az (zMy)Lix

Proposition 3.4. p is a bijection from S to M.

Proof. We first show that p is onto; that is, we show that for any modification m € M, there exists an
ordered pair (x,y) € § such that p((x,y)) = m. Modification m must be equal to Az. (zI"y;)LIx; for some
x; and y,, by definition of M. Then, (x;,y;Lx;) € §, and p((x1,y;LIx1)) = Az. My Lix))Lix, =
Az. My)UEMx)Lx = Az, @My dlix =m.

We now show that p is 1-1; that is, we show that if (x;,y1) and (x,,y,) are two different elements of
S, then p((x1,y1)) # p((x2,y2)). Observe that if (x,y) € S then p{(x,y)) identifies x and y uniquely as fol-
lows: p((x,y)(L) = x, and p((x,y))(T) =y. It follows that p is 1-1.

Hence, p is a bijection, and we see that p‘l m)=m(L),m(T)). O

We use the bijection p to represent modifications as ordered pairs. We will abbreviate p((x,y)) to
<x,y>. In particular, any reference to a modification <x,y> automatically implies that x [C y.

Proposition 3.5.
(a) M is closed with respect to o. In particular,
<X1L,Y1> 0 <X2,¥2> = <x; (2 My1),y1 M2 Lix;)>.
(b) Let I denote the modification <L, T>. Then, (M, o,l) is a monoid: i.e., o is associative, and I is
the identity with respect to o.

~ 8

Proof.
(@) <x1,¥1> 0 <x2,y2> = (Az. (z[My1)Ux1) o (Az. (z[y2)lix2)
= Az. (((zMy2)Lixz) My)lix;
= Az ((zMy, My U2 My,) Lix,
(since a Brouwerian algebra is a distributive lattice)
= Az (2M(y2 My DL My) Lixy)
Hence, <x;,¥1> 0 <x,,y2> € M. Recall thatif m € M, thenm=<m(L),m(T)>. Hence,
<X1,¥1> 0 <X2,y2>=<x;LI(x2My1),y1 (@2 Lixq)>.
(b) Function composition is associative. <L, T> denotes the function Az. (zMT)L L = Az.z which is
the identity function. It follows that (M, o,/) is a monoid. []

An intuitive explanation of program-integration using pictures has often raised the conjecture that
integration was a pushout in an appropriate category. (See Figure 1.) Pictures depicting integration typi-
cally have programs and arrows between programs, representing modifications to programs. We may for-
malize these pictures as diagrams in a category we define below, a category in which the objects denote
programs, and arrows denote program-modifications. We will retum to the question of whether integration
is a pushout in Section 8.

Definition 3.6. Define a category ¢ as follows: The set of objects is P. For every ae€ P, and m € M, there
is an arrow labelled [a,m,m (a)] with domain a and codomain m(a). Thus, every arrow [a,m,m(a)] is
associated with a program modification m. (If no confusion is likely, the arrow will just be denoted by m.)
The operation o is defined to be function composition. Thus, [b,m,,clola,m;,bl=[{amoom,,c]l.

Note that multiple arrows can be associated with the same modification function, provided each of
these arrows has a different domain. Every set of arrows has an associated set of modifications. Occasion-
ally, we blur the distinction between a set of arrows and the associated set of modifications, in order to give
a simple pictorial interpretation for certain sets of modifications.

base

af[base] b

Figure 1. The problem of two variant program-integration.

4. A subsumption ordering on program-modifications

In this section we define a partial ordering < on the set M of modifications that captures the notion of sub-
sumption among modifications. In particular, we may think of “m; <m,” as a synonym for “modification
m; is a part of modification m,” . This provides an intuitive meaning for the meet and join operators with
respect to this partial ordering. These operators are closely linked with the function composition operator,
and we begin with one of the important properties satisfied by the set M of modification functions.

Proposition 4.1. (Extended idempotence). myomaom; =miom, forallm,,my, € M.

Proof. Let m; be <x;,y;> and m, be <x,,y,>. Then,
<X1,¥1> 0 <X2,Y2> 0 <x,¥1>=<x1 LIG2My1), y1M2Llx)> o <x3,y1>
=<xLI(xaMyy), ¥1 MG Ux)>
=<X1,Y1> 0 <Xp,y2> [
Corollary 4.2. o is idempotent.
Proof. Let m, =I in Proposition 4.1. [

Definition 4.3. Define a binary rclation < on M as follows:
mySmy & MoOMy=My=My0oMm,

The relation < is intended to capture the notion of subsumption among modifications. Thus,
modification m; is subsumed by (or “is contained in”, “is smaller than”) modification m, if performing m,
and m, in either order does nothing more than performing m,. The following proposition establishes alter-
native interpretations of this relation.

Proposition 4.4.
(@ m; Smyiff miomy =m,.
(b) < is a partial order.
©my Smqyiff Am. my=m;om.
d)miomy2my.
(e) 1 is the least element with respect to <.

Proof.
(@) If my; $£m,, then m; omy =m, trivially. Conversely, assume m; omy =m,. Then, maom; =
(m,omy)om, =m,; om, (using Proposition 4.1) = m,. Hence, m; <m,.
(b) reflexivity : mom = m, {from Corollary 4.2. Hence, m < m, from (a).
antisymmetry : Assume m; < mq and my Sm,. Hence, myom, = m, and moom; = m;. We
show that m; = m, as follows: m, =m; om, = (myom)om, = myom, ((using Proposition 4.1) =m,.
transitivity : Assume m, < m, and m, < m5. Hence, m;om, = m, and my,om; = m4. From (a),
we can establish that m; < ms by showing that m, oms = ms, which, in turn, may be established as fol-
lows: myoms =myo(myoms)=(m;oms)oms =mooms=ms.
(¢) If my £m, then my, =m,; om,. Hence, dm. m, =m, om is true. Conversely, assume m, =m,om
for some m. Then, m;omy =m;om; om=m, om=m,. Hence, from (a), m; <m,.
(d) Follows from (c).
(¢) Forany m,Iom=m=mol. Hence,/ <m. O

We will often make use of Proposition 4.4(a), without specifically referring to it, in showing that
my <my for some particular m; and m,. The poset (M,<) has an interesting structure, as will be apparent
soon.

—-10 ~

Consider any double Brouwerian algebra (B, LI,11, =, +,T). Let T be any downwards-closed subset
of B. Then, T will be closed with respect to the operations 1 and =, but will not necessarily be closed
with respect to the operations Ll or +. (T, U,M, ~, +) is a partial algebra—that is, a set with a collec-
tion of partial operations—which inherits many of the algebraic properties of a double Brouwerian algebra.

Definition 4.5. A partial algebra (7, {1,,M;, ~ 1, + 1) is said to be a partial double Brouwerian algebra
(abbreviated PDBA) if it can be extended to a double Brouwerian algebra (B, |_I5,7 1, =2, + 2, T) such that
T is a downwards-closed subset of B, and each of the operations | ;, I"l;, ~ 1, and + ; is the restriction of
the corresponding operations |5, [, =4,and +,t0T.

Example. Let (DCS, v, n, =, +,G) denote the double Brouwerian algebra of all downwards-closed sets
of single-point slices. Let FDCS be the set of all feasible slice sets s € DCS. Then, (FDCS, v ,n, =, +)
is a partial double Brouwerian algebra.

Note that a PDBA inherits most of the algebraic properties of double Brouwerian algebra. In particu-
lar, any identity that holds in a double Brouwerian algebra holds in a PDBA too, as long as all the relevant
expressions are defined.

Definition 4.6. Let 8 = (B,LJ,I,~,+,T) be a double Brouwerian algebra, B8 denotes its dual
B,r,u, +,=,1). 8 xB denotes the product algebra of B and B.

Note that if 8 is any double Brouwerian algebra, then both 8 and 8 x B are double Brouwerian alge-
bras. The double Brouwerian algebra ® x ® will be of interest to us. Note that elements of this product
algebra are ordered pairs of programs, and the partial ordering [, .7 on these ordered pairs is given by
(x1,71) Cexa (x2,y2) iff (x; Txy) and (y; Jy,). We will be particularly interested in the partial algebra
of ordered pairs of programs of the form (x,y) where x [y.

Definition 4.7. Let § denote the partial double Brouwerian algebra induced by S as a subset of P X P in
P x P, where S is as defined in Definition 3.2; namely, S={ (x,y) € PxP|{xCy].

Proposition 4.8. The function p (Definition 3.3) is a poset isomorphism from (M,<) to S.

Proof. Here, S, a partial double Brouwerian algebra, is treated as a poset. Let m; = p((x1,y;)) and
my =p((x,,y2)). Note in what follows that x, [y, and x,Cy,. Now m;<m, iff m,omy,=m, iff
P((x1.y1)) 0 P((x2.¥2)) = P((x2,y2)) iff p(Ce1 LICe2 My 1).y1 T2 L1x1))) = p((x2,2)) iff X1 LI(x2Mly1) =
x2 and y{ MyoLix;) =y, iff x; Cxp and y; Jy, iff (x1,y1) T (x2,y2) ins. O

It follows from the above proposition that M is itself a partial double Brouwerian algebra with respect to
the partial order £, We denote the corresponding meet and (partial) join operators [and LI, and the
pseudo-difference and (partial) quotient operators ~ and +. The above proposition implies that <x;,y;> <
<x,,y,> iff (x1 T x2) and (y; Jy,). (Note that the ordering on the respective second components is the
dual of the ordering on the respective first components.) Hence, for instance, <x;,y{> I <X;,y,> is
<x;xy,y1 LIyo>. The following properties are a consequence of the fact that M is a PDBA.

Proposition 4.9.

(a) M is consistently complete: any two modifications m, and m, have a least upper bound iff they
have an upper bound.

(b) my = (my =m3) Ll (m;Mimy)

(©) (mdmo)Mims = (my Mima)LI(mo Mims), provided (m; Limy)Mm; exists.

@ (my ~ma)=my=m;=~my

(&) If (m; Limy) 2 my then my = (M3 ~my).

-11-

Proof.

(a) This follows directly from the definition of a PDBA.

(b) Note that (m; — m,) and (m;Mm,) have an upper bound, namely m;. Consequently, from (a),
(my =~ m3) LI (m,Mmy) exists. Hence, the equality m, = (m; =~ m,) LI (m;Mm,) follows directly from
the same equality of Brouwerian algebra.

(¢) ms is an upper bound for both (m;Mm3) and (m,Mm3). Consequently, (m,Mm3) L) (mym3)
always exists. So, if (m;limy)Mims exists, then (myLImy)ms = (mMim3) L (moms), since a
Brouwerian algebra is distributive. .

(d) This follows directly from the corresponding property of Brouwerian algebra.

(e) This follows from the definition of Brouwerian algebra which requires that (alLib) J ¢ iff b 3
(c>a). O

Now, if m; £m,, then we may think of modification m; as being a “part” of modification m,. We
may think of m;Mm, as the modification that is “common” to the two modifications m, and m,. Simi-
larly, we may think of m; ~m, as the part of m, that is different from m,. (However, just as in a
Brouwerian algebra, ~ is a pseudo-difference operator.) Two modifications may or may not have a least
upper bound. We first formalize a notion of conflict between modifications, and use that to establish cer-
tain results concerning the least upper bound of two modifications.

Figure 2 provides some motivation for the following definition. Programs a and b are obtained by per-
forming modifications m, and m,, respectively, to program base. If m; and m, commute (with respect to
function composition), it seems reasonable that the result of integrating a and b with respect to base should
be the program ¢ = (m,omy)(base). We will subsequently see in Proposition 5.8 that if m;om, #
myomy, then (m, omy)(base) # (m,om,)(base), for any base. Sections 5.3 and 5.4 will address the
question of what integration should yield if (m; omy)(base) # (m,om)(base).

Definition 4.10. Modifications m, and m, are said to conflict or be incompatible if m,om, #myom;.
Otherwise, they are said to commute or be compatible with each other.

Thus, we use the phrase “are compatible” as a synonym for the phrase “commute with respect to func-
tion composition,” essentially because it clarifies the intuition behind various of the following propositions.

base

A
S

Figure 2. Integration by composing modifications.

-12-

Remark: The concept of incompatibility between modifications formalized in the above definition is
distinct from the concept of interference in the HPR algorithm. To formalize the concept of interference,
we need to work with the PDBA of feasible slice sets.

Proposition 4.11.

(a) m, and m, are compatible iff m, and m, have a least upper bound iff m, and m, have an upper
bound, in which case m; Limy =m; om,.

(b) If m3 < m; and m4 < my and if m, and m, are compatible, then m3 and m, are compatible. (Thus,
compatibility is preserved downwards: parts of compatible modifications are themselves compatible.)
Proof.

(a) We first show that if m; and m, are compatible, then m and m, have an upper bound. Since m;,
and m, are compatible, we have, by definition, m; omy = myom;. We know from Proposition 4.4(d) that
myomq 2m,. Similarly, m; omy =my,om; =2 m,. Thus, my om, is an upper bound of m,; and m,.

Since M is a PDBA, it is consistently complete (see Proposition 4.9(a)). Hence, if m, and m, have an
upper bound, then they must have a least upper bound .

We now show that if m, and m, have a least upper bound, they commute. Let m; be p(x,,y;) and let
my be p(x,,y,). Since p is a poset isomorphism between M and S, m; and m, have a least upper bound in
M iff (x,,y,) and (x5,y,) have a least upper bound in S. But (x;,y,) and (x,,y,) have a least upper bound
in § iff xyUxy T y Mys. Thus, if mlim, exists then x;Lixy T y;My,. Hence, mjomy =
<X LJ(JCzHyl),}’l Myallx)> = <xy Lix2,y1Mys> = my Lim,. Similarly, moomy = <xqollxy,y2ly1> =
myLim,. Therefore, m, and m, commute. The result follows.

(b) If m, and m, commute, then they have an upper bound, which is also an upper bound for m3 and
m4. Hence, m3 and m4 commute. [

Let us now consider what it means for two modfications <x;,y;> and <x,,y,> to conflict. If the two
modifications have a least upper bound, it must be <x,[_{x,,y, My,>. Thus, the two modifications have a
least upper bound iff x; Uix, T y{My,, thatis, iff x; C y,andx, C y; (since x; y, and x5 T y, any-
way). Thus, two modifications are compatible iff whatever program slices one modification adds are
preserved (i.e., not deleted) by the other modification. For example, consider a program base, which con-
tains a slice s. Let m; be a modification that adds a new slice s’ to base, where s “makes use” of existing
slice s (that is, s is a subslice of s), and let m, be a modification that deletes slice s. Then, m; and m, will
be incompatible.

Proposition 4.12.
(@)Ifm, 2m, thenmom 2mom,.
(b) If m{ =2 m, and m; and m commute, then m; om 2myom.
DIfmy<my<mzandm,om<msom,thenmiom<myom <mzom.

Proof.

(@) Assume that m,; 2m,. Then, (momy)o(mom,) = momyom, = mom,. Hence, mom; =
momgy by Proposition 4.4(a).

(b) Assume that m; =m, and that m,; and m commute. Then, it follows that m, and m commute.
Hence, from (@), m;om=mom; 2momy =myom.

(c) We have m;om < myomand my < my Smsyom. Since m; om and m3 have an upper bound, they
commute. (Proposition 4.11(@)). Similarly, m, om and m, commute. Hence, myom = (myom)om =
moo(m,om) =(m;om)omy = m; om. Thus we have myom2m;om.

Since m5; commutes with both m; om and m,, it commutes with myo0(m, om), i.e. mpom. Hence,
miom= (mzomy)om=mao{myom) = (myom)oms =2myom. Thus we get, myom<myom<msom.
0

-13 -

Remark: Note that, in general, o is not monotonic in its first argument.

5. Operations on modifications

We now turn our attention to certain operations on modifications. We define the fm-algebra operators A
and +, and a couple of related operators, and study their properties.

5.1. Inferring modifications

The idea behind the operator A, as explained earlier, is as follows. We have programs b and a, where a
was obtained by making some modification m to b. We would like to infer modification m from the pro-
grams a and b. A(a,b) is supposed to represent this inferred modification. As might be expected, there is
no unique modification that yields a when applied to b. We first look at the set of all such modifications.
The following notation will be useful in describing such sets.

Definition 5.1. Given any modifications m; and m, such that m; < m,, let [my,m,] denote the set of
modifications { me M | m; <m <m, }. This is a lattice of modifications with respect to <. DC(m) will
denote the downwards-closed set of modifications generated by m, namely [I,m].

Definition 5.2. For any a and b in P, let M, ;, denote the set of modifications that map b to a. Thus,
M, 2 (meM|m(p)=a}.

Observe that M,,;, may be thought of as the collection of arrows from b to a in the category €. More
precisely, it is the set of modification functions associated with this set of arrows.

Proposition 5.3. M,, = [<a=b,a+b>, <a,a>l={m|<a=ba+b><m< <a,a>}. In particular,
M, ;, has a least element, namely <a = b,a + b>, and a greatest element, namely <a,a>.

Proof. Recall that we are interested only in the ordered pairs (x,y) satisfying x y. For such pairs,
(Bry)Lix= ((bLx)My.
<x,y> € M,, & (bIMy)lx=a (and (bLIx)y = a)

< bMy Caandx Caandbiix Jaandy Ja

< yCa+bandx Caandx Ja~bandy Ja

& <x,y> 2 <a-ba-+b> and <x,y> £ <a,a>[]

Note that <a,a >, the greatest element in M, ;, is nothing but the constant valued function Az.a. We
define A(a,b) conservatively, as the least modification that changes b to a, namely <a =~ b,a = b>. We
will subsequently see that our inability to determine uniquely the modification the user intended in develop-
ing a from b does not greatly affect the result of integration. (See the remark after Proposition 6.2.)

Definition 5.4. Let A(a,b) denote the least element (with respect to <) of M, ;.
Aa,b) & min(M,;)

Proposition 5.5.
(a) Aa,b)(b)=a.
(b) A(n(a),a) Sm.
) Ala,a)=1.
@) Alg,b)=<a =~ b,a+b>=<a,a>=<bb>.
(&) A(m(b),b)y=m =~ <b,b>.
Proof. (a) and (b) follow directly from the definition of A. (c) is a special case of (b). (d) follows from

Proposition 5.3. As for (¢), let a denote m (b). Then, from Proposition 5.3, A(a,b) < m < <a,a>. Hence,
A(a,b) =~ <b,b><m = <b,b> < <a,a>+ <b,b>. Thatis, A(a,b) <m=<bb> < A(a,b). Hence, the

—14 -

result follows. [

It can be verified easily that 5.5(a) and 5.5(b) can be used together as an equivalent axiomatic
definition of A. We have seen that the set of modifications that take b to a, namely M, ;, has a simple
structure. We now look at some sets of modifications that are closely related to M, ;.

Definition 5.6. For any a in P, let], and M;! denote the sets of modifications defined as follows:
I, 8 My,={meM | m@=a}.
M 4 bUpM”'“ ={meM|IbeP.(nb)=a)}
1]

Note that in category € M3! is the collection of functions associated with the collection of arrows directed
to object a, and that I, is the collection of functions associated with the set of loops on object a: arrows
from a to a. In particular, modifications in /, have no effect whatsoever on program a.

Proposition 5.7.
(@ le =1,.
b)) I,=DC(<a,a>)={<x,y> | xCaly].

Proof.

(a) Obviously, M3! o I,. On the other hand, let m € M;!. Then, for some program b, m(b) = a.
Hence, m(a) =m(m (b)) = (mom)(b) =m(b) =a. Hence,m € I,.

®»I1,=M,,=[<a+a,a+a>, <a,a>] (by Proposition 5.3) = [I, <a,a>] =DC(<a,a>). O

Proposition 5.8. Let a be some program, and m, and m, be two modifications. Then, (m; omjy)(a) =
(moomYa)iff myomy =myom;.

Proof. We need to show that if (m; omy) (@) = (m,omy)(a) then miomy = moom;. Let (myomq)(a) =
(mpom,)a) = b. Then, both m; and m are in the set M3'. Hence, from Proposition 5.7, both m; and m,
have an upper bound, namely <b,b>. Hence, from Proposition 4.11(a), m, and m, commute. [

The above proposition says that if m, and m, contlict, then (m; oms,)(a) # (m, om)(a), for any pro-
gram a. This provides further justification for the definition of incompatibility we use (Definition 4.10).
Recall the situation considered earlier. We have a program base, and programs a and b obtained by mak-
ing modifications m, and m, respectively to base, and we are interested in integrating @ and b with respect
to base. The question that arises is whether (m; om,)(base) = (m,om)(base). The above proposition
says that this question is equivalent to the question of whether m, om, = myom;, that is whether m; and
m4 commute.

5.2, Compatibility among modifications

If two modifications m, and m, are incompatible, it is natural to ask if we can decompose m into two
parts, a part that is compatible with m,, and the remaining part. We now define a binary operation |, such
that m; | .m, may be interpreted as that part of modification m; that is compatible with modification m,.

Definition 5.9. Define the binary operation |, on M as follows:
myl.my & (myomy)Mim;.

In terms of Brouwerian algebraic operators, the above definition yields <x,,y,> |, <x9,y,> =
<x1Mys2,¥1Lixo>. It may be observed that m, | .m, adds those program components that m; adds and m,
does not delete, and that m; | .m, deletes those program components that m, deletes and m, does not add.
Thus, m, | ;m, does represent, in an intuitive sense, the part of m; that is compatible with m .

We can show that m | . m, represents the part of m; that is compatible with m, in a more formal
sense too. More generally, assume we want to identify that part of modification m that satisfies a property
(predicate) P. The set { m <m | P (m) } is the set of all modifications that are part of m; and satisfy pro-

-15-

perty P. Thus, either max { m <my | P(m) } or min { m <m, | P(m) }, depending on the property P, is
the natural choice as the part of m; that satisfies property P (provided it exists). For instance, while it is
reasonable to think of max { m <m; | m is compatible with m, } as the part of m that is compatible with
Mo, itis min { m <m, | m is not compatible with m, } that is appropriate as the part of m, that is not com-
patible with m,. This is because the property of being compatible with modification m, is preserved
downwards-—that is, if m is compatible with m, and m’ < m, then m’ is compatible with m,—while the
property of being incompatible with m is preserved upwards.

Proposition 5.10.
(a) m, | .m, is compatible with m,.
b)ymyjmy<my.
() my | my=max { m £m, | mis compatible with m, }.
(d) m, | ,m, and m, | m, are compatible with each other.

Proof.

(@) my|.m, < myom;, from the definition of |,. my < myom,, from Proposition 4.4(d). Since
m | .mo and m, have an upper bound (namely, myom,) it follows from Proposition 4.11(a) that they are
compatible.

(b) Follows from the definition of |.

(c) Let A denote the set { m <m; | m is compatible with m, }. From (a) and (b), it follows that
mq|.mo € A. Consider any m € A. Then, m <m;. Hence, myom <mjom,, from Proposition 4.12(a).
Hence, (myom)Mm < (myom)Mim < (mgom)my =my | .my. But (myom)im is m, since mpom is
moLIm whenever m, and m commute. Hence, m <m, [.m;.

(d) my | ;m o is compatible with m,, from (a). m,|.m; <m,, from (b). Hence, m, | ,m, is compatible
with m4 | ;my, from Proposition 4.11(b). (1

The following equalities are useful in manipulating and rewriting terms. Their intuitive meaning is
discussed following the proof of the equations.

Proposition 5.11.
(@) myomag=(my=ma)om,.
(b) (myomy) =my=my =mj.
(Yymyomy=(my|.m)omy =(ma|.mi)lm,.
(DlEmyom=zm,, thenm 2mqy ~m;.
() Ifmyom=m,, thenmy 2my =~ m.

Proof.

(@) Since M is a PDBA, m; = (m;-m)Li(mMmy) (see Proposition 4.9(b)) =
(my = my)o(miMmy). Therefore, myomy, = (m;~my)o(m,Mmy)om, = (my; =mz)om,, since
mylimy Smjp.

(b) Let m; be <x;,y;> and let m, be <xp,y,>. Then, (<x1,¥1> 0 <Xp,y2>) & <X3,¥2> =
<x1 UMy),y MQ2lx)> = <x,y2> = <¥1 ~X2,¥1 TY2> = <X1,)1> = <X2,Y2>.

(©) myomy = (myomy)limy = ((myomy)mo)LI({(myomy) = my)limy = (my | my)lim;. The last
step uses the fact that (m, oms) ~ my < my, which follows from (b).

(d) From (¢c) myom = (m | m;)\Um;. It follows from the hypothesis m; om = m, that (m | .m)Lim,
>m,. Hence, from Proposition 4.9(¢), m | .m; 2 m» = m,. From Proposition 5.10(b) m 2 m|.m, and the
result follows.

(€) From (c) m;om = (m | m;)LImy. It follows from the hypothesis m; om = m, that (m | cm)Lim,
> m,. Hence, from Proposition 4.9(¢), my 2 my = (m|.m,). From Proposition 5.10(b) m 2 m|.m,, and
hence, my = (m | .m;) 2 mo = m. The result follows. [J

—16—

m, (a)

a (myom,) (a)

k ATC"H

my (a)

Figure 3. Relation between o, = and |,.

The first equation essentially follows from the idempotence of modifications. If modification m; is
applied after modification m,, the effect is the same as if m; - m, were applied (after m,), since the part
of m; that is common to m, (namely, m[1m,) achieves nothing (that m, has not already). The third
equation, on the other hand, says that when m, is performed after m,, the “only effects of m 4 that survive”
are those that are compatible with m;. These two properties are summarized by the commutative diagram
of Figure 3. The fourth and fifth inequalities are generalisations of the following Brouwerian law: if
miLlm=2mq, thenm=2my, ~ my.

5.3. Combining modifications

Now we consider the fin-algebra operator + that “combines™ modifications. Our interpretation of the par-
tial order £ on modifications is that m < m’ represents the fact that modification m is contained as a part of
modification m’. Thus, it is natural to expect m; + ms to be the join m; LI m, of m, and m, with respect
to the partial order <. But, we know that LI is a partial operator: not every pair of modifications have a
least upper bound. We observed earlier that two modifications do not have a least upper bound precisely
when they do not commute: when one of the modifications “adds” some program component(s) that the
other modification “deletes”. The HPR algorithm is based on the assumption that in such circumstances the
addition of the program component should take precedence over the deletion. We may say that the HPR
algorithm resolves the conflict in favor of the addition of program components. This reasoning leads to the
following definition of +.

Definition 5.12. <x;,y;> + <¥2,y2> 2 <xqLxs,(y1 Myo)Lix; Lixy>.

Proposition 5.13. (M, +,I) is a join semi-lattice with J as the least element. Thus,

@mi+m=m

(b) my+my=moy-+m;

(€) (my +ma) +m3=my +(my+ms)

@Dm+I=m=I+m
Proof. These follow from the corresponding properties of both || and I, if we expand the above expres-
sions into ordered pairs and use the definition of +. [0

However, note that (M, +, I) is not a join semi-lattice with respect to the partial order < we have used
so far. The relationship between + and < will be clearer soon.

Proposition 5.14,
(a) If m, and m, are compatible then m, +my =m;omy =m;Lims.

—-17-

(B) (my | cma)U(ma | .my) S my +my.
Proof.

(@) Let my = <x;,y;> and my = <x,,y,>. If m; and m, are compatible then they have an upper
bound, and hence x, Lix, [T y1[My,. Hence, my +mg = <x;Ux,,y1My2>=miomy=m;Lim,.

() Let my=<xy,y;> and mgy=<x,,y,>. Note that m;|.my; = <xiMyzyiLix,> and
M | cm)ld(mg | omy) = <@y Uxo) My My2), (1 My2) LI(x, Lix,)>. Hence, the result follows. [

The above proposition summarizes the previous discussion about the + operator. When m Lim,
exists, it is equal to m; +m,. Thus, + may be regarded as a suitable totalization of the partial operation
Li. + itself satisfies the properties of a semilattice join operator. The corresponding partial order may be
viewed as a refinement of the partial order <. The second proposition shows that m; +m, contains both
my | .m, and m, | m,, as expected intuitively. But, the inequality implies that m; +m is not obtained by
simply putting together the parts of m; and m that are compatible with m, and m, respectively. Rather,
as explained earlier, we may think of m, +m, as being obtained by putting together those parts of m; and
m, that are not overruled by m, and m; respectively. This raises the question of what it means for a
modification to overrule another. We utilize the + operator to formalize this notion in the following sec-
tion.

5.4. Resolving incompatibility among modifications
Definition 5.15. Modification m, is said to overrule part of modification m, if m, +m; 2 m;.

Note that the condition m, +m; 2 m, says that when modifications m, and m, are combined, the
resulting combined modification m, +m, does not completely contain modification m;. We now turn our
attention to identifying the part of a modification m; that is not overruled by another modification m,,
denoted by m, | ,m2.

Definition 5.16. Define the two binary operators |, and =, as follows:
mylomy & (my+ma)my
my = omy & (my|,ma) = my

Proposition 5.17.
(a) mo overrules part of my iff my | ,mqy #my.
(b) (my|,ma)lomy=my|,m2
(¢c) my|,m, and m; ~ ,m, are monotonic in m, and anti-monotonic in m,.
@my|my= mgx { m <£m | m, does not overrule part of m }.

(e) If m; € my and m overrules part of m; then m overrules part of m,.

Proof.

(@) Since > is a partial ordering, it follows that my +m; 2m, iff (my +m)Mmy =m;. In other
words, my +mq £ my iff my | ,my #my.

(b) When we expand the definition of |, fully, we find that <x;,y;>1,<x2,y2> = <x1,y; LUxy>.
Consequently, (my |,m32) |,ma =my|,ma.

(c) This follows directly from the fact that <x;,y;> |, <X2,¥2> = <x1,y; Lixp>.

(d) Let A denote the set { m <m, | m, does not overrule part of m }. From (a) and (b) it follows that
my|,m2 € A. Consider any m € A. Then, m <m,. Hence, from (c), m|,my <m;|,m,. But, using (a),
m=m|,ms since m, does not overrule part of m. Hence, m<m |,m,. The result follows.

(€) Note that <x,y > does not overrule part of <x,,y,> iff x [C y,. Thus, if <x,y> does not overrule
<X3,y2> and <x1,y1> < <x5,y,>, it follows that <x,y > does not overrule <x;,y;>. [J

-18 —

The following proposition concerns different ways of looking at the expression m; +m,. Some of
these results are summarized by the commutative diagram shown in Figure 4.

Proposition 5.18.

@mylmy<myl,my<my

() my | ,m, and m, | ,m; commute.

(@ my+ma=(my|,m2)Li(mz|,m,)

d) myloma = (my = ;ma)LI(my Mimy)

(€) my +my =(my = ;m2)LI(m1 Mma)Li(mz = omy)

A my +my=(my|,ma)omy=(my|,m;)om,

(g) my +my=(m, = ,my)omy =(my+,m)om,

Proof.

(@) my|,mqs <m; from the definition of |,. It follows from Proposition 5.14(b) that m;|.mq <
my +my. Since my | ;my £ my also, it follows that my | my < (my + my)imy =my | ,m,.

(b) From the definition of |,, it follows that m; + m, is an upper bound for both m;|,m, and
ms|,m,. Hence, it follows from Proposition 4.11(a@) that m, | ,m, and m, | ,m, commute.

(c) We verify this proposition by expanding the terms into ordered pairs. Let m; be <x,,y;> and let
ma be <x2,99>. Then, (my|,my) U (mal,my) = <x1,y1Ux> LI <xg,y2lIx;> = <xplix,,
O1Ux2)M@2lix)> = <xibixs, O1My2) U (2My2) U O0alxy) U (xalMxg)> = <xplxo,
1 My)LI(xq Lixy)> (since x1 T y, and x5 [yo) = m;+my by definition.

@ mylymy = (myl,my)~my LI (myl,my)im, from 4.9(b). The result follows since
(my1,m2)Mimy =my Mim,.

(e) This follows from (c) and (d) above.

(N Let my be <x;,y;> and let m, be <x,,y,>. Then, (m; | ,m3) 0 my = <x1,y; Lxy> 0 <xp,¥,> =
<X LJX2,()’1 Lix2) My Uixy)> =my +my (since x; y; and xo T ¥a).

(g) This follows from (f) and Proposition 5.11(a). OJ

base

m, (base)

Figure 4. Relation between |,, <, and +.

-19-—

6. Program-integration

We now look at some properties of the integration operator _[[] of the fin-algebra (P,.M,A, +). Recall
that the integration operator is defined as follows (see Definition 2.5):
allbasellb & (A(a,base) + A(b,base))(base).

Proposition 6.1.
(a) allbasellb = ((A(a,base)|, A(b,base)) LI (A(b,base)|, A(a,base))) (base).
(b) allbasellb=((A(a,base)~ ,A(b,base)) L1 (A(a,base)1A(b,base)) LI
(A(b,base) = ,A(a,base))) (base).
(c) allbasellb = (A(a,base)|, A(b,base) Y(b) = (A(b,base)|, A(a,base))a)
(d) allbasellb = (A(a,base) = , A(b,base) X(b) = (A(b,base) ~ , A(a,base) Ya)
(e) If A(a,base) and A (b,base) are compatible then a[[basellb = A(a,base)(b) = A (b,base)(a).
() A(allbasellb,base) < A(a,base) + A(b,base).
(g) If A(a,base) and A(b,base) are compatible then A (allbaselib,base) = A(a,base)+ A (b,base).
(h) A{allbase]lb,a) < A(b,base) -, A(a,base).
@) A(allbasellb,a) = (A(b,base)|, A(a,base))~ <a,a>.

Proof.

(a)-(e) These follow immediately by rewriting A (a,base) + A(b,base) in the definition of [_1_
using Proposition 5.18. Thus, (a) follows from Proposition 5.18(c). (b) follows from Proposition 5.18(e).
(c) follows from Proposition 5.18(f). (d) follows from Proposition 5.18(g). (e) follows as a special case of
(c) since if A(a,base) and A (b,base) are compatible then A (a,base) |, A(b,base) = A(a,base) from
Proposition 5.18(a).

(f) This follows from the definition of a{[base]lb and Proposition 5.5(b).

(g) It follows from Proposition 5.5(¢) that A(allbasellb,base) = (A(a,base) + A(b,base)) =
<base,base >. If A(a,base) and A(b,base) are compatible, then A(a,base) + A(b,base) = A(a,base)
LI A(b,base) = <a ~ base, a = base> || <b = base, b + base> = <(a + base) || (b ~ base), (a + base) I
(b = base)> = <(alib)~ base, (a\b)+ base>. Hence, (A(a,base) + A(b,base)) + <base,base>
simplifies to A (a,base) + A{(b,base). The result follows.

(h) This follows from (d) and Proposition 5.5(b).

(i) This follows from (c¢) and Proposition 5.5(¢). 1

As seen from the proof, most of the above properties are a consequence of Proposition 5.18. Some of
these results are summarized by the commutative diagram in Figure 5, which is a special case of Figure 4.

Proposition 6.2. Let m; and m, be compatible modifications. Then, (m;lImy)base) =
m, (base)[[baselimy(base).

Proof. Let a=mq(base) and b =my(base). Now, A(a,base)<m; and A(b,base)<m,. Thus,
A(a,base) and A(b,base) are themselves compatible with each other, and with m; and m, too. Then,
(myUmy)(base) = (miomy)base) = m(my(base)) = my(b) = m(A(b,base)(base)) =
(mq0 A(b,base))(base) = (A(b,base)om,)(base) = A(b,base)(m,(base)) = A(b,base)(a) = allbase]lb.
The last step follows from Proposition 6.1(e). [

Remark: The above proposition implies the following, Consider the integration of variants g and b of
program base, where programs a and b are obtained by performing modifications m, and m,, respectively,
to program base, and m; and m, are compatible. Then the result of the integration is (m; omy) (base) =
(A(a,base)o A (b,base))(base). This holds true irrespective of whether A(a,base) equals m; or
A(b,base) equals m,. Thus, we see that our inability to determine uniguely the modification the user
intended in developing a from base does not affect the result of integration in such cases. However, if the

~20-

A (bbase) |, A (a,base)

C A (a,base)

A (a,base) +A (b,base)
base v a[base]b

A (b,base) A (a,bgel) _".OA {b,base)

A (abase) |, A (b,base)

Figure 5. Relation between |,, ~,,and _[T .

modifications m, and m, are incompatible, then the above result does not hold in general. The integration
operation uses an optimistic approach: by choosing A (a,base) and A (b,base) to be the least elements of
Mg pase and My, p,., respectively, it minimizes the chances of incompatibility among A (a,base) and
A(b,base).

7. Separating consecutive edits

The problem of separating consecutive edits on some program into individual edits on the same program
arises in the following context. Assume that an user starts with some program base, makes some changes
to base to obtain program a, and then makes further changes to a to obtain program c. The user then
decides that the first set of changes made was a mistake, and that only the second set of changes was neces-
sary and must be retained. Thus, the user desires a program that incorporates the second set of changes,
but not the first, in the original program base.

Let us try to formalize the above problem in terms of the operators of fin-agebra. If the modification
the user made to a to obtain ¢ was m, then the program the user desires may be expressed as m (base). But
in separating consecutive edits, we have only the programs base, a, and c¢ available, and not m.
Modification m has to be inferred from the programs a and ¢. This leads us to propose A(c,a)(base) as the
solution (to this problem of separating consecutive edits).

However, the above approach is not the only one to the problem of separating consecutive edits.
Other solutions have been previously proposed for this problem. The very first solution proposed was the
“re-rooting” solution [Horw89]: here, ¢ [[a]lbase is taken to be the desired program. A second solution pre-
viously proposed [Reps90] was that the program we seek is a solution x to the equation a[lbaselx = c.
Here, the problem is viewed as that of solving the equation allbasellx = ¢ for x, called a “compatible
integrand” with respect to base, a and c.

The solution we have proposed above is to “redo” the second modification on the original program.
Instead, if we view the problem as that of “undoing” the first modification, we end up with yet another
solution: A (base,a)(c). The assumption behind this solution is that we can use A (base,a) to undo the
effect of A(a,base), which represents the first modification the user made. However, unless a = base,

-21—

A(base,a) is not the functional inverse of A(a,base), that is, A(base,a)o A(a,base) # I, and hence we
can, at best, view this solution as an approximate solution.

These various solutions to the problem of separating consecutive edits are all depicted in Figure 6.
Our goal in this Section is to examine the relationship between these solutions,

Theorem 7.1. If A(c,a) and A (base,a) do not conflict then A (c,a)(base) = c[[a]lbase = A(base,a)(c).
However, if A(c,a) and A(base,a) do conflict, then A(c,a)(base) and A(base,a)(c) will be different,
and nothing can be said about ¢ [[a]jbase in general.

Proof. If A(c,a) and A(base,a) do not conflict, it follows from Proposition 6.1(e) that A (c,a)(base) =
cllallbase = A(base,a)(c). On the other hand, if A(c,a) and A (base,a) do conflict, it follows from Propo-
sition 5.8 that (A(c,a) o A(base,a)) (a) # (A(base,a) o A(c,a)) (a). Hence, A(c,a)(base) #
A(base,a)(c). O

Figure 7 gives an example where A(c,a)(base) and A (base,a)(c) differ. In this case the re-rooting solu-
tion c[[allbase coincides with the proposed solution A (c,a)(base), but this need not be the case in general.

Theorem 7.2. If A(c,a) and A(a,base) do not conflict then the equation a[[base]lx = ¢ has a solution for
x, namely A(c,a)(base).

Proof. We show that b = A(c,a)(base) satisfies the given equation. Now, A (b,base) £ A(c,a) (Proposi-
tion 5.5(b)). Since A(c,a) and A(a,base) are compatible, it follows that A(b,base) and A (a,base) are

base base
/ wa) A (basy
a A(c,a)(base) 8 A (base,a)(c)
A (c,\eN A (base,a)
c c
(a) (b)
base base

p

a/ X a *™ c[a]base
\‘ / /
()

c=a[base]x ? ¢
(d)

Figure 6. Different solutions to the problem of separating consecutive edits

-922 ~

base a c A(c,a)(base) = A(base,a)(c)
cllallbase

program program program program program

Tt :=3.14 n:=3.14 n:=3.14 = 3.14 T =3.14

r:=2 r=2 r=2 r=2 r=2

C=2XTXr a:=mXrXxr h:=3 h:=3 h=3
end(c) end(a) a:=nxXrxr Ci=2XTXT C=2XTXr

vi=aXh a=xXrxr end(c)
end(a,v) vi=axh
end(c,v)

Figure 7. An example where A (c,a)(base) and A (base,a)(c) differ.

also compatible (Proposition 4.11(b)). Hence, from Proposition 6.1(¢), we get al[basellb = A (a,base)(d)
= A(a,base) (A(c,a)(base)) = A(c,a) (A(a,base)(base)) =¢. .

Theorem 7.3. If the equation a[[base]lx = ¢ has a solution for x then b = A (c,a)(base) is a solution of that
equation. Further, A(c,a) is the least modification of base necessary to produce a solution of that equation
(and thus b is the “least-modified” solution of that equation) in the following sense: if m (base) is any solu-
tion to the equation, then m = A(c,a) = A(b,base). (Or, equivalently, for any solution x of the equation,
A(x,base) = A(b,base) = A(c,a).)

Proof. Let x be such that allbasellx =c. Let b denote A(c,a)(base). We first show that
A(bbase) = A(c,a). A(bbase) = A(c,a)~ <base,base>, from Proposition 5.5(¢), and A(c,a) =
(A(x,base)|, A(a,base)) - <a,a >, from Proposition 6.1({). Thus, we get:
A(c,a) = <x = base,(x + base)| I(a ~ base)> ~ <a,a>
= <(x =~ base) ~ a,[(x + base)LI(a ~ base)} + a >
= <(x ~a) = base,[(x + base)i(a ~ base)] ~a >
A(b,base) = A(c,a) =~ <base,base >
= <(x =~ a) = base,[(x + base)|)(a ~ base)] - a> = <base,base >
= <(x ~ a) -~ base,[(x + base)LI(a ~ base)] + a + base >
= <(x -+ a) = base,[(x + base) | l(a ~ base)] + (aMbase)>
= <(x -~ a) = base,[(x + base)I(a ~ base)] + [(a Mbase) Li{a =~ base)]>
(making use of the Brouwerian identity (y; Lly,) +z = (y; Lly,) -+ (zLIy,)
= <(x ~ a) = base,[(x + base)i(a = base)] +a >
= A(c,a)

Now, A(c,a) < A(x,base)|, A(a,base) (Proposition 6.1(h)). Furthermore, A (x,base)|, A(a,base) is not
overruled by A(a,base) (see Proposition 5.17b). Hence, A(c,a) is not overruled by A(a,base) (see Pro-
position 5.17¢), Thus, A(c,a)|, A(a,base) = A(c,a). Then, from Proposition 6.1(c), we get a[[base]lb =
(A(b,base)|, Aa,base) Ya) = (A(c,a)|, A(a,base) Ya) = A(c,a)(a) = c. Hence, b is a solution to the
equation a[[base]lx =c. Also, it follows from above that A(c,a) < A (x,base) for any solution x of the
equation a[[basefix =c¢. O

Thus, we see that whenever a compatible integrand exists (with respect to base, a and ¢), the proposed
solution is itself a compatible integrand. However, as Figure 8 illustrates, there are situations where a com-

-23

patible integrand does not exist. In this particular example, the statement “c := 2 X T X r”” occurs in pro-
gram a but not in program base. Consequently, it must occur in program a[[base]lx for any program x.
Since this statement does not occur in program c, there does not exist any program x such that a[[basellx =
c.

8. Pushouts and program-integration

We now turn our attention to the category € that was introduced in Section 3, (See Definition 3.6.) We are
interested in the relationship between pushouts in this category and the operation of integration.

We first provide some motivation for studying this relationship. We begin by looking at some gen-
eralizations of the program-integration problem. As explained in the Introduction, the two-variant
program-integration problem is only one of many situations that might arise during the program-
development process. A less general version of the problem is the problem of merging software exten-
sions, addressed by Berzins [Berz86], where there is no base program—merely two programs that need to
be merged. A more general version of the problem is the integration of n variants of a base program,
instead of just two variants. The most general version of the problem is the integration of a DAG of multi-
ple versions of a program. Here the (possibly many) roots of the DAG represent various initial versions of
the program. Other versions were obtained either by making some modification to some previous version,
or by merging or integrating some of the previous versions. The problem is to generate one single version
that reconciles the multiple lines of program development.

The primary motivation for studying the algebraic properties of the program-integration operator was
the following question: can the more general versions of the problem described above be solved by
repeated applications of the two-variant program-integration operator, and if so, does the order in which
various integration steps are done matter? Thus, for instance, if we attempt to integrate three variants a, b,
and ¢ of program base using two-variant program-integration, we face the question of whether the various
“reasonable” ways of doing this are all equivalent; (a[[basellb) [baseTlc and allbase]] (bllbaseTlc) are just
two of the possibilities. The number of possibilities explode when we attempt to integrate a more complex
version DAG.

base a [A(c,a)(base)
program program program program
7t =3.14 7= 3.14 =314 Tt =3.14
ri=2 =2 r=2 r=2
h:=3 h:=3 h:=3 h:=3
end() Ci=2XMXr a:=mxXrxr a:=TXrXr
a=nXrxr vi=axh vi=aXxXh
end(c,a) end(a,v) end(v)

Figure 8. An example where a compatible integrand does not exist, and the proposed solution for separating consecu-

tive edits.

— 24—

While (two-variant) integration is a ternary function, pushout is a function of three objects, say base, a
and b, and two arrows, one between base and a and one between base and b. (Since, in a category, an
arrow identifies both its domain and codomain, pushout is really only a function of two arrows with a com-
mon domain. The three objects are implicit arguments.) There is a generalisation of pushouts to arbitrary
diagrams (consisting of multiple objects and arrows between them), namely co-limits. Berzins program-
merging operation, for instance, is a least-upper-bound operation, and hence is the co-limit of two objects
(called a sum or co-product) in the category that represents Scott’s partial ordering among programs. What
is interesting about co-limits is that co-limits of complex diagrams can be obtained by repeated applications
of co-limits of simpler diagrams (such as pushouts). Further, all reasonable ways of composing co-limits
of simpler diagrams yield the same result. These results concerning co-limits, in conjunction with the
questions we raised in the previous paragraphs provide an obvious motivation for studying the question: is
integration a pushout?

Pushouts in a category are unique only up to isomorphism. We first look at the question of when two
programs (objects) in € are isomorphic.

Proposition 8.1. The category C is skeletal: no two distinct objects are isomorphic.

Proof. Let a and b be isomorphic objects. Thus, there exist arrows [a,f,b] and [b,g,q] such that fog =1
and gof=1I1. But, I =fog implies that] > f. Hence, I = f, since I is the least element of M. Hence,
b=f(@)=a O

It is worth noting at this stage that objects in the category ¢ are elements of a given double
Brouwerian algebra. In the double Brouwerian algebra we are interested in, the elements are downwards-
closed sets of single-point slices. Such sets are not programs but program representations. Several pro-
grams might have the same set of single-point slices. Hence, we may view an object in C as an
equivalence class of programs. Thus, C is the skeleton of another category in which the objects really
denote individual programs, and in which two programs are isomorphic iff they have the same set of
single-point slices.

Theorem 8.2. The pushout of diagram 9(a) exists iff m; and m, commute and m[Mm, =1, in which case
the pushout is the diagram 9(b). In particular, the pushout, when it exists, does yield the integrated pro-
gram.

Proof. Recall that a diagram of the form 9(d) is said to be a pushout of the diagram 9(a) iff it commutes
and for any arrows ms and mg that make diagram 9(e) commute, there exists a unique arrow m that makes
diagram 9(f) commute. We will say that diagram 9(d) satisfies the existence condition if for any ms and
mg that make diagram 9(e) commute there exists an m that makes diagram 9(f) commute. Similarly, we
will say that diagram 9(d) satisfies the uniqueness condition if for any ms and mg that make diagram 9(e)
commute there exists at most one m that makes diagram 9(f) commute.

=

We prove the forward implication in two steps. (1) We first show that if the pushout of diagram 9(a)
exists, then m; and m, must commute, and the pushout must be given by the diagram 9(c). (2) We then
show that if diagram 9(c) is the pushout of diagram 9(@) then m Mm, must be I. Note that if m;Mmy =1
then my; ~my = (my ~my) LI (m;Mmy) = m,, and similarly, m, ~m, = m,. Under these conditions,
diagram 9(c) reduces to diagram 9(b).

(1) Assume that the diagram 9(d) is the pushout of diagram 9(a). Then, for any ms and mg that make
diagram 9(e) commute, there exists a unique m that makes diagram 9(f) commute. Thus, ms = moms; 2 m
by Proposition 4.4(d). Similarly, m¢ = m. Further, since moms =ms, we get (using Proposition 5.11(d))

—25—

e Y e e | R
my ™ my m my =1
¢ ¢ cfalb ¢ s ¢ [a Jb
m My = My
(@ (b) (c)
L M .
m my my my s L3

)

Figure 9. Is integration a pushout in C?

ms2ms— m.

Choose ms to be m, and mg¢ to be m, | .m; — this choice makes diagram 9(¢) commute, as shown in
Proposition 5.11(c) and Figure 3. Hence, from the previous inequality, we see that ms = ms~m =
ms +mg (since m<mg) 2m; ~ (my|.my) = my ~m,. Similarly, we derive that my > m, =~ m;.

Now, m3 and m, commuie, since mgom, = msom, is an upper bound for m; and m4. Hence,
my -~ mqy and my =~ m; commute (Proposition 4.11(b)). This implies that m; and m, commute as follows,
m + my commutes with m,Mm; since both have an upper bound, namely m. Since m; = m, commutes
with both my = m, and m,Mm,, it commutes with their composition namely (m, ~m;) o (mz1m;),
which is m,. Similarly, since m, commutes with both m; ~ m, and m, Mm,, it commutes with (m; =~ m,)
o (miMmy), which is m,.

Now, choose ms to be m; ~m, and mg to be m, ~m;. Since m; and m, commute, this choice
makes diagram 9(e) commute. We thus get m <ms = m; ~my, <ms. Thus, ms = moms = ms =

—26—

my +m,. Similarly, my =m, =~ m;.

It follows that d = (mzomy)a) = ((m;=myomy)a) = (myomy)(a) = (m,Umy)a) =
my(a)lallms(a) = cllallb, by Proposition 6.2.

(2) Now assume that m, and m, commute, and that diagram 9(c) is the pushout of diagram 9(a). We
need to show that my Mimy =1.

We first use the fact that 9(c) satisfies the uniqueness condition to establish that
(my =my)M(my ~m;) = 1. Choose mg to be my ~m; and ms to be m; ~ m,. Since this choice makes
diagram 9(e) commute, there must exist a unique m that makes diagram 9(g) commute. But diagram 9(g)
commutes if we let m be either I or m3Mmy4 = (my ~my)M(my = m;). Hence, from the uniqueness condi-
tion, (m; = my)(m, = m;) must be equal to /.

Let mq denote (m; Mmy) M (my = m,), and let mg denote (m; Mmy) M (m; = m,). We now use the
fact that 9(c) satisfies the existence condition to show that m; =T and mg = I.
my~my) M (my+~my)=1 (as shown above)
= (M1 =m3) M (my=my) M (myMmy) =1
= (my=~my) Mmqg=1
= mj I'"lm», =]
= (m3|;m)Mmy =1

Assume that mq is <x,y >. We now show that x = L. Choose ms to be <x,x> and m¢ to be <.L,x>. This
choice makes diagram 9(e) commute. From the commutativity of 9(f) we get

mU(ms|.m)=ms (by Proposition 5.11(c))

= (mll(ms|.m)Mmy =msMmq =my (since m7 = <x,y> < <x,x>=ms)

= (mMmq) U ((m3|.m)Mms) =m5

= (mMmq) LII=my

= mlimqg =mq

= mz2 mq

= Mg =My (since mg = m)

= <lLx>2<x,y>

= 1 Tx

= x=1.

By a similar reasoning we can show that y = T. Consequently, m, =I. Just as we showed m, = I, we can
show thatmg = 1.

We now use the fact that 9(c) satisfies the existence condition to show that m;lMm, <
(mz = my)U(m, = my). Choose mg to be mp ~m, and ms to be m;. Consider diagram 9(f) (with m4 =
my=my and msy = m; ~m,). Since mom, = mg, we have m < mg = m, ~m;. Hence, m and m; =
mj -+ m, commute, and we get m; = ms = momsz = mlms = mL(m, ~my) < (my = m)U(m,; +m,).
Consequently, m,Mmy £my £ (my =~ m U@, = my).

Using this,

miMmy = (m;Mmy) M (mz = m)L(my ~ my))
=[(m;Mm3) N (my ~my)] U [(myMimg) M (my = my)]
=mq limg
=]

&=
We now assume that m; and m, commute, and that m;Mm, = I, and show that diagram 9(b) is the
pushout of diagram 9(a). Obviously, diagram 9(b) commutes.

—27-

We first show that if diagram 9(b) does not satisfy the uniqueness condition then m,Mm, > I, con-
tradicting our assumptions. Thus, for some ms and m¢ that make 9(e) commute there exist two different
modifications m” and m” such that diagram 9(#) commutes. We then have m”om; = ms. Hence, ms >
m”. We also have m’om, = ms. Hence, from Proposition 5.11(d), m; = ms ~m’ = m” =~ m’. Similarly,
my 2m’+~m”. Combining both inequalities, we get my = (m’ +~m”) Ll (m” = m’). Similarly, we get m, >
(m’=m"”) LU (m” ~m’"). Hence, m{Mmy 2 (m’~m") L (m” = m"). Butif m’ and m” are different, then
(m’+m”) L (m”=m’) is strictly greater than I. Hence, m;[my > I, contradicting our assumption.
Therefore, 9(b) must satisfy the uniqueness condition.

We now show that diagram 9(b) satisfies the existence condition. Given ms and mg such that
diagram 9(e) commutes, we need to find an m such that diagram 9({) commutes. We choose m to be
(mg~my) LI (ms ~m,;). Note that since mgom; = msom;, is an upper bound for both mg -~ m, and
ms - m, the least upper bound of mg =~ m, and ms = m, exists. From the symmetry of the problem in m5
and mg, it suffices to show that mom, = ms. From the commutativity of 9(e¢), we get msom, = mgom;
=mg. Hence, from Proposition 5.11(e), ms = m¢ ~ m,. Now,

mom; = ((me=mz) LI (ms +m)) o my
= (mg=m3) o (ms~my) o my

= (mg~my) o (msom,) (by Proposition 5.11(a))
= msom; (since (mg =~ my)<ms < (msomy))
= msg LI (m; | .ms) (by Proposition 5.11(c)).)

So it is sufficient to show that (m, | .ms) < ms. Now m; | ms is compatible with both ms and m,. Hence,
my |.ms is compatible with msom,. Since mg < msom, and compatibility is preserved downwards,
my | .ms is compatible with mg too. Since m | ms is compatible with m¢ and m, | ;ms < m;, Proposition
5.10(c) implies that m, | ;m5 <m | .mg. Thus,

msli(my|.ms) = msom,
MmeoOnt
meli(m; |cme)
m, IcmG

m,]cms'

Vivii i

Hence, taking meet with m; on both sides, we get
(msMmy) U ((ma].ms)Mimy) 2 (my | .ms)Mm,

= (msMmy) L (maMmy) 2 my|oms
= msMm) 7 2 my|.ms
= (msm,) 2 my|.ms
= ms 2 (ml lcmS)-

Hence, the earlier equation (1) mom; = msli(m, | .ms) simplifies to mom; = ms. This completes the
proof that mom, = ms. Similarly, mom, = mg4, and m does make diagram 9(f) commute. Hence, if
myMm, is I, diagram 9(b) satisfies the existence condition.

Hence, 9(b) is the pushout of 9(a). O

Thus, we see that when the pushout of Figure 9(a) exists, it is closely related to the integration opera-
tion. However, in many cases the pushout may not exist, though the result of the integration operation may
be well defined. For instance, as Theorem 8.2 shows, a necessary (but not sufficient) condition for the
pushout to exist is that m, and m, be compatible.

Thus we get the following partial result. Consider the integration of a DAG of versions. If all
relevant sub-diagrams of the DAG have a pushout, then all alternative ways of generating the integrated
program using a sequence of the two-variant program integration yield the same result. If pushouts always
existed in C then this would be a very strong result: all reasonable sequences of two-variant program

—28~

integration operations on a DAG of versions yield the same result. This idea may be utilized as follows to
show that we cannot hope to construct a category P in which the pushout operation and Brouwerian
program-integration operation coincide.

Theorem 8.3. Let D be any category whose set of objects is P, the set of programs. Assume that there
exist at least two objects, and that there exists at least one arrow between any two objects. It is not possible
that the pushout of every diagram of the form 10(a) exists and equals diagram 10(b). Thus, it is not possi-
ble that the pushout always exists and yields the integrated program.

Proof. Assume the converse. Consider the diagram 10(c). The diagram is an instance of the problem of
propagating changes through a tree of versions: base, a and b form a version tree, and base’ is obtained by
making some change to base; the problem is to propagate this change through the tree. Consider the com-
muting diagram 10(d) obtained by first constructing al[base]lbase’ as the pushout of a, base and base’, and
then constructing b[all(allbasellbase’) as the pushout of b, a, and a[lbasellbase’. Thus, the two inner
squares are pushouts. The Pushout Lemma of category theory says that, under these conditions, the outer
rectangle (diagram 10(e)) must itself be a pushout. (See [Gold84], for instance.) In particular, this means
that b[[baseTbase’ must be equal to b[[all(albasellbase”), for all base, base’, a and b. But this is not true.
For instance, choose base and a to be two different programs, and choose base’ to be a and b to be base.

™ _m
my m m
¢ ¢ ¢c[alb
my
(a) (b)
bgse -2, base’ base —@*base’ base 2. base’

my my L]

Y \ my .

] g ————" 3 [base]base’ M50 My Mgo My
my s mg

v . my ,
b b~————* b{a](a[base Jbase’) b b[a](a[base Jbase’)
= b[base Jbase’

() (d) (e)

Figure 10. Is integration a pushout in some category?

-29

Reps [Reps90] shows that the Brouwerian program integration operation satisfies the following two proper-
ties: (1) x[x]ly = y = yl[IxIx and (2) y[[xIly = y. Consequently, b[[base]lbase’ = base[[base]la (by choice of
b and base”) = a (by (1)). But, b[[ali(allbasellbase’) = base[[all(al[basela) = base[[alla = base. Thus, we
have a = base, which is a contradiction, [J

This leaves open the question of how a DAG of versions should be integrated when the pushout does
not exist for all the relevant sub-diagrams, since the results obtained by using different sequences of two-
variant program integration operations can be different.

REFERENCES

Berz86.
Berzins, V., “On merging software extensions,” Acta Informatica 23 pp. 607-619 (1986).

Berz91.
Berzins, V., “Software merge: models and methods for combining changes to programs,” Journal of Systems Integration 1 pp.
121-141 (1991).

Ferr87.
Ferrante, J., Ottenstein, K., and Warren, J., “The program dependence graph and its use in optimization,” ACM Trans. Program.
Lang. Syst. 9(3) pp. 319-349 (July 1987).

Golds4.
Goldblatt, R., Topoi: The Categorical Analysis of Logic, Studies in Logic and the Foundations of Mathematics, Vol. 98, North-
Holland, Amsterdam (1979, Revised Edition: 1984).

Horw8g9.
Horwitz, S., Prins, J., and Reps, T., “Integrating non-interfering versions of programs,” ACM Transactions on Programming
Languages and Systems 11(3) pp. 345-387 (July 1989).

Kuck81.
Kuck, D.J., Kuhn, R.H., Leasure, B., Padua, D.A., and Wolfe, M., “Dependence graphs and compiler optimizations,” pp. 207-218
in Conference Record of the Eighth ACM Symposium on Principles of Programming Languages, (Williamsburg, VA, January
26-28, 1981), ACM, New York, NY (1981).

McKid6.

McKinsey, J.C.C. and Tarski, A., “On closed elements in closure algebras,” Annals of Mathematics 47(1) pp. 122-162 (January
1946).

Rama91.
Ramalingam, G. and Reps, T., “Modification algebras.,” in Proceedings of the Second International Conference on Algebraic
Methodology and Software Technology (AMAST), (lowa City, Iowa, May 22-25, 1991), (1991).

Rama91la.
Ramalingam, G. and Reps, T., “A theory of program modifications,” pp. 137-152 in Proceedings of the Colloquium on Combin-
ing Paradigms for Software Development, (Brighton, UK, April 8-12, 1991), Lecture Notes in Computer Science, Vol. 494, ed. S.
Abramsky and T.S.E. Maibaum,Springer-Verlag, New York, NY (1991).

Rasi63.
Rasiowa, H. and Sikorski, R., The Mathematics of Metamathematics, Polish Scientific Publishers, Warsaw (1963).

Reps90.
Reps, T., “Algebraic properties of program integration,” pp. 326-340 in Proceedings of the Third European Symposium on Pro-
gramming, (Copenhagen, Denmark, May 15-18, 1990), Lecture Notes in Computer Science, Vol. 432, ed. N. Jones,Springer-
Verlag, New York, NY (1990).

Reps.
Reps, T., “Algebraic properties of program integration,” To appear in Science of Computer Programming, ().

Sche83.
Scherlis, W.L. and Scott, D.S., “First steps towards inferential programming,” Technical report CMU-CS-83-142, Computer Sci-
ence Department, Carnegie-Mellon University, Piusburgh, PA (July 1983).

Stoy77.
Stoy, L.E., Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory, The M.LT. Press, Cam-
bridge, MA (1977).

