CENTER FOR
PARALLEL OPTIMIZATION

OPTIMAL TILINGS FOR PARALLEL DATABASE DESIGN
by

Jonathan Yackel and Robert R. Meyer

Computer Sciences Technical Report #1046

September 1991

Optimal Tilings for Parallel Database Design®

Jonathan Yackell Robert R. Meyer!

Abstract

The computing time benefits of parallelism in database systems (achieved by
using multiple processors to execute a query) must be weighed against commu-
nication, startup, and termination overhead costs that increase as a function of
the number of processors used. We consider problems of allocating data among
the processors so as to optimize the execution time for certain type of queries.
We present lower bounds for these combinatorial problems and demonstrate how
processors may be optimally assigned by “tiling” the partitioned data grid with
optimal configurations.

1 Introduction

In highly-parallel database machines (e.g., Gamma (2], Bubba [1], Non-Stop SQL [11],
XPRS [10] and Volcano [6]) relations are “partitioned” (see Livny et al[8] and Ries and
Epstein [9] for early partitioning strategies) across multiple processors. This allows
each processor to execute a portion of a query in parallel with the other processors,
resulting in a lower response time for the query. However, there is communication
overhead associated with initiating and terminating a query on multiple processors,
and this overhead increases as a function of the number of processors used to execute

*This research was partially supported by the Air Force Office of Scientific Research under grant
89-0410, and by the National Science Foundation under grants CCR-8907671 and DCR-8512862.

tCenter for Parallel Optimization, Computer Sciences Department, University of Wisconsin,
Madison, Wisconsin 53706.

a query. (This overhead is primarily in the form of additional messages to control the
execution of the query on additional processors and, in the Gamma database machine
[2], increases linearly with the number of employed processors.) In order to balance
the workload among the processors, Multi-Attribute Grld deClustering (MAGIC),
as introduced by Ghandeharizadeh [3], partitions a relation by assigning ranges of
several attribute values to each processor in the system. To illustrate MAGIC consider
the partitioning of the Employee relation EMP in figure 1. For parallel computation,

Salary in $K

0-20 20-50 > 50
Age 0-25 [1 1 P)
in 26-50 | 1 3 3
Years > 50 [2 3 2

Figure 1: Processor assignment for the EMP relation

MAGIC partitions the EMP relation by establishing ranges of Salary and Age attribute
values. Each cell of this grid corresponds to a fragment of the relation and must be
assigned to some processor. For example, the cell which contains records with Salary
attribute values that range from 0 to 20 and Age attribute values that range from 26
to 50 is assigned to processor 1. Given a query on either the Age or Salary attribute,
the predicate of the query maps to either a row or a column (termed a “slice”) of
the grid and the corresponding processors are used to execute it. Note that, for the
assignment depicted by figure 1, every processor is assigned three cells, and every
query requires two processors.

Although our principal focus is on the limiting case in which the goal is to mini-
mize query overhead (measured via non-convex fixed-charge functions that count the
number of distinct processors in slices), the optimal processor assignments that we
thereby obtain also minimize some more complex response time functions. For exam-
ple, suppose the response time r for a query as a function of the number of processors
v used by the query is modeled by r(v) = O'v + Q! /v , where O is the overhead
associated with a single processor and Q' is the processing time for a query on a
single processor, i.e. the query overhead increases proportionally with the number of
processors used for the query, while the processing time is inversely proportional to
the number of processors'. As we will show in section 5.3, under certain assumptions
the solutions that minimize overhead are also optimal for the response time function

r(v).

1.1 Overview

This paper formalizes problems of optimally assigning the cells of a multidimensional
grid to a given number of processors. In section 2 we present a mathematical statement
of versions of the problem. In section 3, we develop lower bounds on the optimal
value. Section 4 develops optimal configurations of cells for individual processors, and
section 5 provides combinations of these configurations producing optimal assignments

1The Gamma database machine results presented in [2] justify this assertion.

that attain the lower bounds. Our conclusions and future research directions are
contained in section 6.

2 Problem Statement

Suppose that we wish to assign the cells of a D-dimensional grid to N processors, and
that the size of the grid is My x My x ... x Mp (i.e., the dth attribute is partitioned
into My ranges). Let V := [, Ma denote the number of cells (volume) of the grid. A
“slice” is a (D — 1)-dimensional subgrid containing all the cells with a common value
for a given coordinate (this corresponds to a query). For example, in an My x My grid
the slices are the M; rows and the Ms columns, and in an M; X My x M3 grid the
slices are the M; + Mo + M3 two-dimensional subgrids. Let S denote the collection
of slices.

Given an assignment of cells to processors and an arbitrary slice s of the grid, let
v, denote the number of distinct processors in the slice s (this may be thought of
as the “chromatic index” of slice s). Given a processor p, let the “load” L, denote
the number of cells assigned to p. (From a geometric viewpoint, L, may be thought
of as the area or volume occupied by processor p.) The objective functions for the
optimization problems that we develop measure total or worst case overhead. Let
Oiotal = Y oses Vs and Omax = max,es vs. Note that if each slice has the same
frequency of access and we are interested in minimizing the average query overhead,
then we should minimize 6 .1- If, on the other hand, we are interested in minimizing
the worst case overhead incurred by any query, then §max should be minimized. Load
balancing constraints are defined by specifying a load for each processor. In the case
of homogeneous processors, we would expect L, = [V/N] or [V/N] for each p, but
for non-homogeneous processors loads related to processor power could be specified.
The problem, which we now state formally, is to minimize the overhead subject to a
fixed load balance:

Let the following data be given: the dimensions of the grid: My x Mz % --- X Mp,
a number of processors N, and a load Ly, for each processor.

Find an assignment that

minimizes 0 (where 8 is chosen as 0,447 0T fmaz)
s.t. every cell is assigned to a processor,
and processor p is assigned L, cells (p =1,2,.. L N).

It is easily seen that the number of assignments satisfying the balancing constraint

(1‘1/1) (v Ele) (v - Iila— Lz) ... (V i LgL; - LD-z) - Wﬂf:élzp!)h

Complete enumeration of these assignments is not feasible even for relatively small
problems. For example, given a 5 x 5 grid, 5 processors, and a load of 5 for each
processor, there are more than 623 x 1012 assignments that satisfy the balancing
constraint.

A similar class of data aggregation problems was studied by Helman [7]. He
showed the following problem to be NP-complete: Given a set of objects D =
{di,da, ..., den} (where N and k are positive integers), a set of “requests” @ =

{q1,92,---,9m}, where each ¢; C D, and an integer C, is there a partition P of D into
N aggregates, each of size k such that S 7, Numb(P, ¢;) < C where Numb(P, g;) is
the number of aggregates in P which intersect ¢;? The corresponding optimization
problem

min ..., Numb(P, ¢;)
such that P is a partition of Q into N aggregates of size k

(1)

is NP-hard.

When the objective function is 0y ,) and a perfect load balance (L; = L;V1,j) is
specified, our problem is a restricted form of (1). The set of grid cells in our problem
corresponds to Helman’s set D, and the set of slices of the grid correspond to the
set (). An assignment of cells to processors with a balanced load corresponds to a
partition of D into N equal size aggregates. The numbers of distinct processors in the
slices correspond to the Numb(P, ¢;). Since the slices of grids intersect in a regular
way, the set @ corresponding to a grid has special structure. Therefore our problem
is a restriction of the NP-hard problem (1) where @ has a “grid structure”.

3 A Lower Bound on etotal

In this section we show that 8.1 1s equivalently represented as the sum of the “I)-
perimeters” of the configurations of cells assigned to the individual processors. We
develop a lower bound on D-perimeter as a function of load, hence arriving at a lower
bound on fiqtal-

Because reordering the slices of the grid does not affect the objective functions,
we may consider the cells assigned to a particular processor in their most “compact”
configuration. For a particular configuration of cells, we can permute the slices so
that in each dimension the slices containing cells in the configuration are contiguous.
For example, Figure 2 shows a configuration of 9 cells with a non-compact and a
compact slice ordering.

p p p plp|P
piyplp
—\p|P|P
p p p
p p p

Figure 2: Permuting slices to produce a compact configuration.

Throughout the rest of this paper, the following notation is used. P(C) denotes
the “D-perimeter” of a configuration C of cells. By D-perimeter we mean the sum
of the D dimensions of the smallest hyper-rectangle enclosing the cells in their most

compact form. For example, the 2-perimeter of the configuration [is

4+3 = 7. The notation P(Cy) is used to denote the D-perimeter of the cells assigned

to processor p. Another way to interpret P(C,) is as the total number of slices
containing processor p.
A key relationship in the development of the lower bounds is

Lemma 1 01540 = Y ses Vs = Z,I;V=1 P(Cp).

Proof: Given an assignment of grid cells to processors, define

WP = L if processor p appears in slice s
e 0 otherwise.

Then P(Cp) = ¥ ,es X5 and v5 = 3~ X%, so
Ototal = Z”’ = ZZXI; = zzxa = ZP(CP)'
s€S S€ES p p SES P

It is useful to consider the overhead measure ;.4 ,) from these two different points
of view. We first derive results related to a lower bound on the D-perimeter of a
configuration of cells.

Theorem 2 For a given D-perimeter P, let L*(P) be the mazimum load for which
D-perimeter P is achievable. Then

o3/ [

where r = P mod D.

Proof: Let P!,P2,..., PP denote the dimensions of a configuration. The maxi-
mum load for which D-perimeter P is achievable is the optimal value of the following

problem.
L*(P)= max [[,P¢ (2)

s.t. ded =P

P? a positive integer Vd.

A necessary optimality condition for (2) is that no two P45 differ by more than 1.
Furthermore, only one (unordered) set of P%s satisfy this condition:

||
By “inverting” the function L*(P), we obtain a function P* (L) which maps load
L to the smallest D-perimeter achievable by a configuration of L cells.

Theorem 3 The minimum D-perimeter of all configurations of L cells is
P*(L) = s [LVD] +(D—-59) [LI/DJ
where s is the smallest positive integer such that

[Ll/Dr lLl/DJD_S > L.

Proof: We may bound the D-perimeter of any configuration of L cells from below
by finding the smallest D-perimeter P that satisfies L*(P) > L, since this implies
L > L*(P — 1), which means that a D-perimeter of P —1 is not achievable for a load
of L.

Consider the following sequence of D-dimensional rectangular blocks.

Qo : O0x0x...x0
Q1 1x0x...x0
@p: Ix1lx...x1

QD+1Z 2x1x...x1
Qpi2: 2x2x...x1

Qap : 2x2x%x...x2
Q2D+1: 3x2x...x2

We call these blocks “quasi-hypercubes” since the lengths of any two sides of a
block differ by at most 1. Note that the volumes of the quasi-hypercubes in the
sequence are strictly increasing after the Dth, the volume of the ith quasi-hypercube
Q; for i > D is L*(4), and the D-perimeter for the quasi-hypercubes increases by 1 at
each step. The volumes of these quasi-hypercubes are the points at which the lower
bound on the D-perimeter increases by 1.

For an arbitrary L, there is a unique smallest quasi-hypercube @; whose volume
is at least L. Since the volume of @; is at least L, by selecting L cells from @Q; a D-
perimeter of at most P(Q;) is achievable for L. Since the volume of @;-1 is smaller
than L, a D-perimeter of P(Q;-1) = P(Q;) — | is not achievable for L. Therefore
the smallest D-perimeter achievable for any configuration of L cells is P(Q;). Each
dimension of Q; is either |LY/P| or [LYP] so P(Q;) is exactly the D-perimeter
bound in the statement of the theorem. | |

The above argument implies a construction technique for “perimeter-optimal” con-
figurations, i.e., configurations with minimum D-perimeter. An optimal configuration
for any L can be constructed by arranging L cells into a partial hypercube as follows.
Start with a complete hypercube with sides of length |[L*/?]. Add cells to fill in new
(D — 1)-dimensional faces (completing a face before starting on a new one) until the
total number of cells is L. The resulting partial hypercube will have sides of length
|L1/P| and [L*/P], and will measure [L1/P] in as few dimensions as possible. In

Figure 3: Partial squares with minimum perimeter

min D-perimeter max load (L*)

(P*) 2 dimensions | 3 dimensions | 4 dimensions | 5 dimensions
1 — — — —
2 1 — — —
3 2 1 — -
4 4 2 1 —
5 6 4 2 1
6 9 8 4 2
7 12 12 8 4
8 16 18 16 8
9 20 27 24 16
10 25 36 36 32
11 30 48 54 48
12 36 64 81 72
13 42 80 108 108
14 49 100 144 162
15 56 125 192 243

Table 1: Maximum loads and minimum [-perimeters.

figure 3, we show some perimeter-optimal partial squares constructed in this manner
with areas ranging from one to sixteen.
Table 1 contains some L* values for various D-perimeters.

Corollary 4 ZP*(L;}) < byotal -

P
Proof: Use theorem 3 and the fact that 0yo¢. = 3, P(Cp)- |
In section 5 we give classes of grids for which the lower bound of corollary 4 is

tight.
In the following lemma we present a perimeter optimality test for any configuration
of cells.

Lemma 5 A D-dimensional configuration of L cells with D-perimeter P has mini-

mum D-perimeter iff
L*P-1)<L. (3)

Proof: If (3) holds, then L is greater than the largest load for which a smaller
D-perimeter is achievable. On the other hand if (3) does not hold, then by theorem 3
there is a configuration of L cells with a smaller D-perimeter. |

In section 3 of Ghandeharizadeh et al [5], we derived an alternate bound on P:

szva

This expression is equivalent to P*(L) and therefore is the best possible lower bound
when D = 2, but for higher dimensions (D > 3), P*(L) provides a better lower bound
than [DLY/P} for some values of L.

Theorem 6 For D =2, P*(L) = [2L}/?].

Proof: Since P* yields the best possible lower bound, we need only show P(L) <
[2L1/2].

P < [2L}/?]

e P22 < 1

N P-1 < 2LY?

From lemma 5 we have
P = P(L)
< L*(P-1) < L
P11 |P-1|P"
<= [“T] l_-————z J <L (4)

where 7 = (P — 1)mod 2.
If r = 0 then | B3] = P=1 50 (4) becomes
) <1
= P-1 < 2LY%

If r = 1 then |B51] = 2 —1land [251] = £ so (4) becomes

(Z-np% < L
P P2 9P < 4L.

Since both sides of the last inequality are even integers, we may add 1 to the LHS
and maintain the inequality.

P2 2P +1 < 4L.
= P-1)° < 4L
= P-1 <2LY2
|
For D = 3, the smallest L for which the two lower bounds are not equal is 37.
[3(37)1/3] = 10, but the smallest achievable perimeter is P*(37) = 11. Note that the
two bounds are the same if L is a perfect D-power because P = [DLYP] = DLY/P
is attainable by a hypercubical configuration in this case.

4 Additional Optimal Configurations

The quasi-hypercubes and related configurations introduced in the proof of theorem 3
are clearly perimeter-optimal. Less square cases will be developed in section 4.1.

4.1 Optimal Two-Dimensional Rectangles

Using the results from the previous section, we can characterize the two-dimensional
rectangular blocks which have minimum D-perimeter.

Theorem 7 An z x (z + k) or an (z + k) x z rectangular block is perimeter-optimal
iff
kis even and 1+ (5 - 1)<z
or
k is odd and 1 4 (Lg—l-)z <z

Conversely, an z x (z + k) or an (z + k) x = rectangle 1s perimeter-optimal iff the
rectangularity increment k is al most

max {2 round(z'/%),2 [zllz - IJ -+ 1}
where round(z) rounds z to the nearest integer.

Proof: To prove the first part of the theorem, we simply apply the optimality
test. By lemma 5, an z x (z + k) block is optimal iff

{2z+k—11’ {2z+k-l

Doy
2
5 5 J <z"4kz (5)

where r = (22 + k — 1) mod 2.

If k is even, (5) reduces to

l'21‘+k 1 t?:x:—{-k IJ < :B + kzx
= (z+5(+Li-1) < PHke
= (£ -1) < oz

rojarrofa

The integrality of both sides of the inequality allow us to derive the desired result.
If k is odd, (5) reduces to

Luizk 1J2 < 2l+kz

= (z+5YD? < 224k
= (k-z--)2 < =

To prove the second part of the theorem, we show that 2 [(z — 1)Y/2| + 1 and
2 round (z!/?) are the largest odd and even integers respectively satisfying (5).

To prove the result for the odd numbers, we start with the expression for z in
terms of odd k.

()'+1 < =
S 5 < (z-1Y2
Since the LHS of the last inequality is integer, we may take the floor of the RHS.
== -&—5—1 < (z — 1)1/2J
= k < 2{=z-DY}+1

Since the RHS of the last inequality is an odd integer, & = 2 |(z ~ 1)}/2] + 1 is the
largest odd integer satisfying (5).

To prove the result for the even numbers we write z1/? in the form /2 = r + f
where r is the integer part and f € [0,1) is the fractional part. If f < % then
2 round (z'/2) = 2r. If f > % then 2 round (z 1/2) = 2r + 2. (For integer z, f is never
L so round (/%) is umquely defined for integer z.)

If f < 1 and 2 round (z'/2) = 2r then k = 2r satisfies (5) because

k(k
5 (-2———1>:r(r~1):r2—r<r2+2fr+f2:—.x

and k = 2r + 2 violates (5) because

k [k
5(5"1>+1:(r+1)r+1=r2+r+1>r2+2f7‘+f2'—‘93-

If f > & and 2 round (z!/2) = 2r + 2 then k = 2r + 2 satisfies (5) because

k [k 9
5(-2—-—1> :(r+1)r:r“+r<1’2+2fr+f2::v

and k = 2r + 4 violates (5) because

§<£_1> =(r+2)(r+)=r+3r+2> 7+ 2fr+ P =2

10

Therefore k = 2 round (z'/?) is the largest even integer satisfying (5). |

Note that the first part of the theorem shows that if a particular two-dimensional
rectangle is optimal, then by increasing both dimensions by the same amount, the re-
sulting larger rectangle is also optimal. Figure 4 shows the dimensions of all rectangles
with z < 30 that have minimum perimeter. The integral points on the diagonal line
in the figure represent the squares, and the outer boxes represent the most-skewed
rectangles with optimal perimeter. All integer points between (and including) the
boxed points correspond to rectangles with minimum perimeter. Table 2 lists dimen-
sions of the most skewed optimal rectangles corresponding to the boxed points above
the diagonal.

wE T T %9532;532;23;885 A

IR ELELLLRRRERL

B

gt s R

QXXXXXXX XEXXXXKEERE 8

2 L 9%3&;3&3&;& 3888882%%22&35)

SR

20 RgLe8sg 35%232?252%8&?‘ -

i _
1o

0F 9¥gs ;sgggéxg -

s | oBREEERERS |

e
0 5 ! !]] ! | ! !
0 5 10 15 20 25 30 35 40

Figure 4: Dimensions of rectangles with optimal perimeter

4.2 Optimal Irregular Configurations

The configuration occupied by a processor may be irregular (non-rectangular) and still
be perimeter-optimal. The partial hypercubes introduced in section 3 are examples
of such irregular configurations. In addition, some configurations that do not fall
into the partial hypercube category are optimal. Consider a 2-dimensional case in
which a processor’s load is 7. Then the minimum achievable perimeter is P*(7) = 6.

11

Most-skewed perimeter-optimal rectangles

k z X (z+k)
2| 1x3
3| 2x09

4 3xT 4x8
51 5x10 | 6x11
Tx13 | 8x14 | 9x 15
10x17]11x1812x 19
13 x 21114 %2215 x23 |16 x 24
17x26 | 18x 27119 x28 |20 %29
02T x31122x32123%x33(24x%x341|25x%35
1126 x37[27x38128x39 29 x40 |30x41

O 00l ~1j &

[UNS Y

Table 2: Some most-skewed perimeter-optimal rectangles

The following non-square configurations (and obvious variants) have perimeter six
and are therefore perimeter-optimal:

The first configuration is a partial square constructed as described in section 3, but
the others are not.

5 Optimal Tilings

In order to achieve the lower bound for 6.1, each processor must contribute ex-
actly P*(L,) to the objective function. Thus, we wish to interleave perimeter-optimal
configurations for all processors in order to fill the grid exactly. Note that since in-
terchanging slices in the grid does not affect the objective function, the slices of a
processor’s configuration do not have to be contiguous, i.e., the configuration for a
processor need not be in compact form. In this section we exhibit classes of grids
for which assignments which minimize various objective functions can be constructed
by such tilings. Conditions under which assignments that minimize 6] also mini-
mize fmax and other objective functions are also developed. These results generalize
optimal assignments developed in Ghandeharizadeh et al [5].

5.1 Optimal Tilings for 0y, 4]

One class of problems for which the minimum-perimeter results of section 3 yield
optimal solutions are instances in which the grid can be tiled with hyper-rectangular
blocks that are perimeter-optimal for each processor. In particular, if N can be

factored as fifs - - - fp where f; divides M; (i = 1,2,..., D) and the Affx%x--«x—l‘jﬁ%

12

hyper-rectangular blocks are perimeter-optimal, then such a tiling is possible. Below
we demonstrate an optimal assignment for such an instance: a 6 x 18 grid with 6
processors, each of which has a load of 18.

1|11 j1]2|2(2}|2 2131313333
Tjtrj1j1rj1f1y12y212|2 21313(313[3]3
1|11y j1]2)2[2]2 213(3[3(3]3]3
4414 |4|4|4|5(5|5|5|5|5|6|6|6]6|6]|6
4|14|4{4|4{4|5|5|5|5|5|5|6|6]|6]6]6]6
4|414|4|4|4]|5|5]|5|5|5|5|6]6|6]6[6]|6

However, it is not necessary that all the blocks be oriented in the same way. An
alternate optimal assignment for the same problem is shown below.

111222122 |213|313|4(4[4[4]|4]4
111222222333 |4]4(4(4144
111222222333 |4|4[4]4|4]4
1|1|1|5{5|5]|5|5]5|3|3|3]6|6;6[6]6]6
1l1|1|5|5|5|5|5]5]|3{3|3[6|6[|6]6]6]6
1]1|1|5(5|5|5|5(5|3]|3[3]6|6]6[6]6]6

Another class of problems for which it is possible to construct assignments that are
optimal for both 8;;.1 and Omax is the class of N x N grids with N processors,
where each processor has a load of N. We have developed an algorithm that constructs
optimal assignments for such problem instances [5]. Figure 5(a) shows the a551gnment
produced by our algorithm when N = 7. Note that for any processor the slices in
figure 5(a) may be permuted so that the set of cells occupied has the following optimal

configuration: . Figure 5(b) shows an optimal tiling of the same grid where

the configurations are more compact.

5.2 Doubly Optimal Tilings for fmax and 045ta]

In this section we use a simple lower bound on fmax to demonstrate several classes of
rectangular grids for which both ;. and fmax may be simultaneously minimized.

o
Lemma 8 0Omaz > [—iﬂiﬁL] where agotal is the optimal value for 04,4,

Proof: The total of the v’s is at least Gt tal SO the average v is at least ig&al.

The maximum v must be an integer at least as big as the average.
Besides the above N x N grid case, other tilings which are optimal for both
fmax and ¢, can be developed. In Ghandeharizadeh et al [5], we showed that

13

112(13(1]213]1 Lj1)1r|6(6177
212|3[(412|3]4 11112121277
51313415 (3|4 1114212]3]3](3
5]16|414(5|64 414122334
5(6|7|515|6]7 4|5|5|5(31314
11617]1(6]6]7 4|1515(6(6|6]4
(271|277 7155|6677
(a) (b)

Figure 5: Some doubly optimal tilings

fmax achieves its lower bound for D dimensions if the grid can be tiled with hyper-
rectangles whose proportions are the same as the proportions of the grid (i.e., there are
N1/D gybdivisions along each dimension). If the corresponding hyper-rectangles are
also perimeter-optimal, then such tilings are also optimal for 8,1 by the results of
section 3. In fact, lemma 8 shows that any tiling by perimeter-optimal configurations
that results in the same chromatic index for each slice must be optimal for both fmax
and ;.- This observation also generalizes the N x N grid result of Ghandeharizadeh
et al [5] (illustrated by Figure 5).

A second case in which both objective functions can be simultaneously minimized
is when the grid can be tiled by perimeter-optimal configurations so that i slices
have a chromatic index of k and the other j have an index of k — 1. In this case,
o7 = ki + (k — 1)4, so the lower bound on fmax from lemma 8 is k. The tiling
. othal . L : s : .
is therefore optimal for both objectives. The following grid is a two-dimensional
example, in which the rows all have a chromatic index of three, the columns all have
an index of two, and the grid is tiled by perimeter-optimal configurations.

1111]212(2(3]343
41414|5/5|5]6]|6]6

A third doubly optimal case tiles the grid with perimeter-optimal configurations
so that i slices have a chromatic index of k and the other j slices have an index of

k—1ork—2 withi> j. Again, fmax = k is optimal. To see this, note that the

. kil b2V PN 0)
lower bound on fmax is at least [—%—2—)—1] = [5-(’—%)]—21] = [k — z—}_’-}—] = k since
;%'_13- < 1. The following grid is a two-dimensional example of this third case with four
processors assigned to each row and six assigned to each column.

11112223133]|4]4]4
5556|667 [7|7|8]8]38
999 j10f10j10]11}11|11}12]12]12

13113113 (14|14 |14 |15|15{15| 16|16 |16
1717|1718 |18 |18 |19 |19]19]20|20 |20
21[21[21(22]122122]23|23|23|24]|24]|24

14

5.3 Optimality for Other Objective Functions

The tilings that minimize the ;,;,] and fmax functions also minimize more general
objective functions. In order to verify the optimality of these assignments for other
objective functions we make use of a relaxation of the original constraints of the
problem. The original constraints were:

(a) every cell of the grid is assigned to a processor
(b) processor p has L, cells assigned to it.

In section 3 we showed that constraint (b) implies
S v =050 2 D P (L) (6)
s »

Therefore (6) is a relaxation of the original constraints, and for any objective function

f(V), where V = (v1,v3,...,1s|), the continuous-variable problem
min f(V)
st 2o, vs 20, Pr(Lp) (7)
vs > 0Vs

is a relaxation of the integer-programming problem
min f(V)
s.t. every cell is assigned to a processor,

and each processor p has L, cells assigned to it.

Consider the response time function r(v) = O'v + Q' /v from section 1. In the ab-
sence of any constraints, the optimal number of processors per query (or equivalently,
per slice) is the unconstrained minimum v* := (Q'/O')Y/2. If the overhead O'N
associated with communication with all of the N processors of the system is at least
as great as the time Q' required to process the query on a single processor, then v*
is at most N/2. Assume also that the (2-dimensional) grid given can be tiled with
perimeter-optimal configurations so that there are exactly N 1/2 processors in each
row and column (see, e.g., Fig. 5). (In hypercube architectures, it is not unusual to
have N a perfect square.) Consider the continuous-variable problem

minY>, r(vs) = miny, (Olv, + Q!/v,)
sb. Yo Vs 2 Zp P*(Lp) (8)
vy > 0Vs

which is a relaxation of the form (7). In the tiling described above, v} = N/2 Vs and
the constraint of (8) is satisfied as an equation. Since v} > v*, r'(v}) > 0. Choosing

15

r'(v¥) as a multiplier for the constraint of (8), optimality conditions for the convex
problem (8) are satisfied. Thus, the tiling provides optimal processor assignments for

all three objective functions 6;¢.1 , fmax , and }_, 7(v;). A similar argument applies
to cases in higher dimensions in which v* = N°5* > N'/2, and to arbitrary convex

differentiable functions r with the property that '(v;) > 0.

6 Conclusions and Future Work

We have formalized the problem of partitioning data on a parallel database machine
in order to minimize overhead. Lower bounds on the objective functions have been
developed and we have demonstrated how the bounds can be attained in many cases
by tiling with optimal configurations. To extend this work, we would like to describe
exactly which hyper-rectangles have minimum D-perimeter for D > 3, and under
which conditions tiling is possible. In addition, the square grid assignment algorithm
may generalize to more than 2 dimensions. We would also like to explore other ap-
proaches to generating assignments for the the data partitioning problem. A branch
and bound type of approach in a suitably restricted search space seems promising.
We also have a nonconvex nonlinear programming formulation of the problem that
suggests other solution techniques. In addition, we would like to deal with more
general objective functions and load balancing constraints as presented in Ghande-
harizadeh et al [5]. Finally, it would be interesting to consider other applications that
fit into the task assignment/parallel computing framework developed here (see, e.g.,
Ghandeharizadeh et al [4]).

References

[1] H. BoraL, W. ALEXANDER, L. Cray, G. COPELAND, S. DANFORTH,
M. FraNKLIN, B. HarT, M. SMITH, AND P. VALDURIEZ, Prototyping Bubba,
a highly parallel database system, IEEE Transactions on Knowledge and Data
Engineering, 2 (1990), pp. 4-21.

[2] D. DEWITT, S. GHANDEHARIZADEH, D. SCHNEIDER, A. BRICKER, H. Hsiao,
AND R. RASMUSSEN, The Gamma database machine project, IEEE Transactions
on Knowledge and Data Engineering, 2 (1990), pp. 44-63.

[3] S. GHANDEHARIZADEH, Physical Database Design in Multiprocessor Systems,
PhD thesis, Computer Sciences Department, University of Wisconsin - Madison,
1990.

[4] S. GHANDEHARIZADEH, L. RaMOs, Z. AsaD, aNp W. QURESHI, Object place-
ment in parallel hypermedia systems, in Proceedings of the 1991 Very Large Data
Bases Conference, Barcelona, Spain, September 1991.

[5] S. GHANDEHARIZADEH, G. L. ScHULTZ, R. R. MEYER, AND J. YACKEL, Opti-
mal balanced assignments and a parallel database application, Computer Sciences
Technical Report 986, University of Wisconsin - Madison, Madison, WI, Decem-
ber 1990.

16

[6] G. GRAEFE, Volcano: An extensible and parallel dataflow query processing sys-
tem, computer science technical report, Oregon Graduate Center, Beaverton,
OR, June 1989.

[7) P. HELMAN, A family of NP-complete data aggregation problems, Acta Informat-
ica, 26 (1989), pp. 485-499.

[8] M. LivNy, S. KHOSHAFIAN, AND H. BoRAL, Mulli-disk management algo-
rithms, in Proceedings of the 1987 ACM SIGMETRICS Int’l Conf. on Mea-
surement and Modeling of Computer Systems, May 1987.

[9] D. Ries aND R. EPSTEIN, Ewaluation of distribution criteria for disiributed
database systems, UCB/ERL Technical Report M78/22, UC Berkeley, May 1987.

[10] M. STONEBRAKER, D. PATTERSON, AND J. OUSTERHOUT, The design of XPRS,
in Proceedings of the 1988 Very Large Data Bases Conference, Los Angeles, CA,
September 1988.

[11] TANDEM PERFORMANCE GROUP, A benchmark non-stop SQL on the debit credit
transaction, in Proceedings of the 1988 SIGMOD Conference, Chicago, IL, June
1988.

17

