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ABSTRACT

The size of computer internets is increasing the need for automated network management systems. These
network management systems are divided into administrative domains, with independent administrators managing
each domain and the exchange of management information between domains. The large number of interacting
domains needs some way of coordinating their activities. This research addresses the complexity of managing
such a system by providing a language to formally specify the system’s configuration, and by providing a tool to
incrementally check the specifications for consistency and install consistent specifications in a running

management system.

The language, called NMSL, includes facilities for describing the interactions between components of
network and distributed management systems. Interactions are described in terms of the protection, capacity, and
configuration constraints placed by an administrator on communication within and between administrative

domains.

A collection of NMSL specifications can be checked for consistency. We describe both a centralized and
an incremental method for evaluating consistency. We present a detailed description of logic rules for evaluating
consistency of NMSL specifications centrally. We then show how a centralized proof can be partitioned and
performed incrementally. An important result of performing an incremental proof is that we can divide the proof
along domain boundaries and only propagate small summaries of per-domain information between domains. The
incremental method is shown to be better than the centralized method for reasons of performance and preservation

of autonomy and privacy of administrative domains.

These methods are prototyped in an implementation. With this implementation, we show that NMSL is
powerful enough to specify existing network management systems. We show that our approach to incremental
consistency checking meets the goals of improving performance and preserving autonomy. We also show how a
consistent specification can be installed in a running management system. We discuss the implications of
antomatic installation and describe problems encountered when trying to enforce specifications. The

implementation demonstrates the feasibility of our ideas, and suggests areas for future research.
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Chapter 1

Introduction

Computer internets are growing in size and complexity, and the need for automated network management
systems is growing as well. If the network is small, the task of network management can be performed by a
human administrator, using simple, ad hoc tools. In a network with two or more independent administrators,
managing the network management system becomes a significant problem in itself. This thesis addresses the
complexity of managing the network management system for multi-administrative domain internets through the
use of a language to specify the configuration of network management systems. The structure of this language is
suitable for the general problem of controlling distributed systems management as well, as an extension to
network management. The methods described in this thesis allow autonomous administrators to formally specify
the intended configuration of their network management systems, formally check these specifications for errors,
and then check these specifications for consistency with the specifications written by other administrators.
Furthermore, these methods take advantage of knowledge about the specifications, both in their structure and in
the possible relationships between specifications written by different administrators, to improve the efficiency of
the error checking. These methods are prototyped in the Network Management Specification Language (NMSL).

The job of a network management system is to gather data about a network, the attached devices, and the
programs running in the network. It must present this data to network operators or administrators, and allow them
to monitor and control the network. Monitoring involves watching the network’s behavior, and controlling

requires the ability to modify the behavior of parts of the network, including process behavior.

A network management system is similar to other networking or distributed applications, in both design and
difficulty of maintenance. The system instantiates processes throughout the network. The processes communicate
via network management protocols, which must be configured correctly. For example, these processes must be
configured to perform the correct internal operations, to make queries at the correct time, to answer queries

correctly, or to reject invalid queries.

Additionally, an internet, and therefore, the network management system, is generally divided along the
lines of administrative domains[9]. An administrative domain is a group of networks and attached equipment that
is controlled by a single organization, such as a company or a university. Administrative domains can be
hierarchical. For example, a company can be divided into divisions, and the divisions into departments. Each
department is responsible for administering its own networks, but the interconnection of the departments is under
the control of the division, or perhaps the company’s computing services department. Similar hierarchies also
exist in academic settings. These corporate and academic networks can be connected together in an internet.
Existing internets typically have a backbone, possibly hierarchically organized, with a backbone per region and a
backbone connecting the regions, to transmit data between organizations. This backbone may be administered by



a separate organization. Organizations can also coordinate their own connections to other networks without using

a backbone network. Hierarchical administrative domains exist today in such networks as TCP/IP Internet.

Multiple administrative domains introduce several problems to managing an internet, First, they cause an
inherent distribution of control. Each administrator wants to control the networks and devices in their domain, and

in general will not want to give up this control to a central network management organization.

Second, because the control must be distributed, there must be some way in which the multiple domains can
cooperate to perform global management functions, such as routing, name space management, configuration
management and accounting. Cooperation is difficult because separate administrative domains are often hostile to
one another; the network manager in one domain might not trust the statistics and control requests coming from a

network manager in another domain.

Finally, there is a lack of responsibility, especially in datagram networks. When a user in one domain sends
datagrams into another domain, it is difficult to trace the origin of these packets, introducing security and control
problems. The users in one domain of an internet are not held responsible for the problems they cause in other

domains.

The goal of this research to provide methods for network administrators to effectively manage their network
management systems, both within a single administrative domain, and to coordinate the management of multiple
administrative domains. The thesis of this dissertation is that a formal specification language combined with a
system built around this specification language can be used to achieve this goal. The important contributions

derived from this work are:

® A model for network management systems, and a definition for the correct operation of a network
management system.
° A descriptive specification language allowing network administrators to describe both the internal

operation of a single administrative domain’s network management system, and the interfaces between the

various network management systems.

e A prescriptive meaning for the language. The specification can be translated into control commands that
configure the various network management systems. These commands set individual configuration
parameters necessary to achieve the global management goals. These control commands can be based on
the network management standards such as the OSI organizational model[23], or the TCP/IP management

framework{5].

e The language is high level, and relatively easy for non-experts to understand. This allows non-experts to
write specifications.

° We provide the administrator with a way to find errors in their network management system before such

errors cause problems under normal operation. We locate inconsistencies in specifications, or indications

of incorrect behavior, by mapping the specification onto a logic programming language, and verifying its




consistency.

® We have extended the verification method to include administrative domains, and devised an incremental
proof method that preserves the domains’ autonomy and provides for information sharing and hiding. In

addition, this method can reduce the time it takes to verify the multi-domain specification.

We are not directly addressing the important issues of security or authentication. We assume the existence
of a suitably strong authentication mechanism that can be used by the NMSL system. We also do not attempt to
define the format of the network management data or the low level management protocols themselves. We
assume the existence of standard management data representations and protocols. In the NMSL prototype, we
depend on the TCP/IP Management Information Base (MIB)[27,28] and use the Simple Network Management
Protocol (SNMP)[5].

This dissertation is organized as follows. Chapter 2 describes related work in network management systems
and standards, as well as work from the specification language literature. In Chapter 3, we describe our model for
network management systems. We also present an overview of our specification language, and the system built

around the language.

Chapter 4 discusses the language, its grammar, and its semantics. The facilities provided by the language

for specifying network management systems are described and shown in examples.

Chapter 5 describes a method for mapping NMSL onto a logic programming language. Given this mapping,
we describe a centralized proof evaluator. We then extend this evaluator to operate incrementally. The various

properties of this mapping and the evaluation methods are detailed.

Chapter 6 examines the prescriptive aspects of the language, i.e., how a specification can be changed into a
format that can be used to control the network.

Chapter 7 describes our prototype implementation of the NMSL system, including the performance of that
prototype, and the studies we have performed to show the utility of this system. Chapter 8 concludes with a

summary of this research and its contributions, and offers suggestions for future research in this area.

The Language Reference Manual for the NMSL prototype is in Appendix A.



Chapter 2

Related Work

This research is based on work in the areas of both network management and formal specification
languages. Network management has been important in the telecommunication industry for decades, while in the
computer industry, networks have only recently become complex enough that ad hoc methods are no longer
sufficient. Specification languages have been used in many areas of computer development, for specifying both
hardware and software designs. Some specification languages have been designed specifically for network
management. These languages will be addressed in particular, and we will show that while they address important

design issues, they are not well suited for specifying configuration issues.

2.1. Network Management

The problem of network management is to provide a network administrator with the equivalent of an
operator’s console for monitoring and controlling the operation of their network. Current research into providing
this network management function can be divided into three areas: management architectures and protocols,
expert systems, and interfaces. Management architectures and protocols include defining the software
components of network management systems, designing data models for network management, defining protocols
for exchanging management data in the system, providing security to the protocols, and developing languages for
specifying management protocols and systems. Research into expert systems for network management is an
attempt to find ways for the system to diagnose network problems automatically, reducing the workload for the
network administrator. Interface developers concentrate on providing the actual console for the network
administrator, often using workstation technology. Our work in network management addresses the first area,
defining both a model for multi-administrative domain management and a specification language for such systems.
As such, we will concentrate on work in defining management architectures and protocols, and their support for

multiple administrative domains.

Current research efforts are investigating the management of today’s computer networks, and standards are
available for the low level monitoring and control functions in the network. Some of these research projects also
partially address the issue of administrative domains. We will discuss the administrative aspects of these research
projects, especially multiple administrative domains and system configuration. Papers describing early network
management systems[7,29,36] discuss problems relating to administrative domains, but do not offer any
solutions. These systems are precursors of the current management systems, and will not be mentioned further.
Among the current systems that deal with administrative domains are network management systems for the
TCP/IP Internet[5], the OSI networks[23], AT&T’s networking products[22], and IBM’s SNA networking

product[30]. The Internet and OSI network management systems are meant for use in large, distributed internets,



with no central administration. The AT&T and IBM network management products primarily address the needs
of a single customer organization, and do not include general support on the problems of administrative domains.
Both the AT&T and IBM products include a mechanism for delegating control, and for allowing different
administrators different amounts of control over the network. The administrative aspects of these systems are
detailed below.

The Simple Network Management Protocol (SNMP)[5], is a draft standard for managing TCP/IP based
internets and is being studied by members of the Internet Engineering Task Force (IETF). Implementations are
currently being built and tested in the TCP/IP Internet. This protocol defines the low level interactions between
the managed network elements and entities that perform the actual management functions. The managed network
elements run a program called the management agent, and the management functions are performed by
applications. As the name states, the protocol is simple, defining only a small number of messages. These
operations allow applications to retrieve and change objects (called variables) in a network management database
in an agent. The agent processes are located on the remote network elements. SNMP employs polling techniques
as the primary method for receiving data from remote network elements. Polling is important to the scalability of
the protocol, because when polling is used, no management data will be sent unless it is requested. SNMP also
provides exceptional event messages, called traps, for notifying applications of exceptional conditions, such as the

restart of an agent. Traps can also include management data, but their use is intended to be infrequent.

SNMP allows for distributed control of an internet and assumes that there will be many independently
operating management entities throughout the network. These management entities are divided into communities.
Every variable in the database is assigned an access mode. Each community has a view of this database, and an
SNMP access mode. The access mode may be either reading or writing, or both. A management entity in a given
community can access a specific variable if the variable is in that community’s view and both the variable’s access
mode and the community’s SNMP access mode allows the access. This protection mechanism allows flexibility in
deciding how a remote domain of administration, such as a community, can access data from a network element’s

database.

The OSI network management architecture[23], and the International Standards CMIS and CMIP[17, 18]
also include support for administrative domains in its current definition. The OSI organizational model assumes
that management of the network will be distributed across different domains of administration. Each management
domain communicates with other domains via ports. These ports may be symmetrical or asymmetrical in the data
that may be transferred between the domains. Management domains may also be nested, and the internal features
of domains may be hidden from the outside applications. Configuring network managers based on the OSI model
could be complex and error-prone, due to the model’s generality. Providing a formal specification of the correct

configuration could reduce these errors,

StarKeeper[22] is a network management system for managing AT&T’s Datakit virtual circuit networks.

Its implementation is basically an extension to the existing administrative support available on each Datakit node;



as such, its protocol for accessing remote nodes is more complicated than SNMP. StarKeeper is a centralized
management system, assuming that most management activity for the entire network will originate from a single
management location. It includes facilities to allow the central network administrator to delegate some control
functions, such as the configuration of simple network devices (like multiplexors) to the support staff in
subordinate locations. While delegation acknowledges that administrative functions are not always centralized,
this mechanism is less general than the SNMP access controls, and may not easily extend to a large, diverse

internet.

NetView([30], the IBM SNA network management product, is another fully developed management system.
NetView is a centralized management service for SNA networks, but also includes methods for integrating non-
SNA components into the system. It provides a central operator with the ability to fully monitor and control a
network and all of the devices attached to it. NetView also allows different operators to have different privileges,
allowing, on an operator by operator basis, restrictions on which parts of the network the operator may monitor,
and the types of control and change operations they may perform. There is also a mechanism for handling
management of networks that cross administrative domain boundaries, but the details of this support are not given

in the literature.

Other research on network management specifically addresses administrative and security issues, rather than
overall system design. Once again, these issues have been addressed on a small scale and at the lowest level. In
both CERNNET][11] and Wilbur’s local area management model[37] administrative and organizational issues are
addressed, but only within a small, local area environment. Both these papers concentrate on the mechanics and
implementation of such a system. Interorganizational administrative requirements are mentioned, but not

addressed by either paper.

These systems and research projects illustrate the current directions in network management, especially in
their support for multiple administrative domains. In both StarKeeper and NetView, multiple administrative
domains are possible. However, the management is a centralized, extended to allow data sharing via delegation,
where a central domain delegates control over part of their network to a subordinate domain. This structure does
not match the way the present NSFNETI[6] operates, for example, where control is distributed by default, and
administrators that share data maintain control over their own data. The OSI architecture, while proposing a rich
set of operations for the sharing of management data, does not include a proposal or policy for implementing these
operations. The IETF mechanism is simple and well defined, but does not atiempt to define high-level
abstractions, such as those described in the OSI architecture. As such, the IETF mechanism provides a simple
protocol and a way to specify to which domain multiple clients belong (via the community identifier). In both of
these standards, methods for determining the policy for the administrative domains, such as what data can be
shared and by whom, are left up to individual implementations. None of these systems include a protocol for
coordinating the configuration of the various network managers under the control of different administrators. Also
not defined are high-level specifications of the required performance of the network and the network managers.
These are the areas that NMSL specifically addresses.




2.2. Formal Specification Languages

Formal specification languages are used in many environments, most notably for specifying programs and
protocols. These languages come in two basic types, algorithmic specifications and axiomatic specifications.
Algorithmic specifications are similar to traditional programming languages, in that they specify the algorithms
used to implement the system being specified. However, there is formal meaning associated with each statement
in an algorithmic specification. Because of this formal meaning, we can easily prove properties about the
algorithmic specification, such as its comrectness. Axiomatic specifications list properties of the system being
specified rather than the algorithms used to implement them. Therefore, many implementations are possible for a
single specification. Some specification languages are executable. An executable specification is one that can be
executed to perform the task described by the specification. Both algorithmic and axiomatic specifications can be
executable. Our interest in specification languages, however, is in their use as part of a larger tool, rather than in

the correct way in which a specification language should be designed.

A few of the better known program specification languages are Ina Jo[2], PAISLey[39], and Larch[38]. We
discuss the features of these languages that are important to designing our network management specification
language. We also mention three other recent program specification languages, Gist[10], PLEASE[34], and
Anna[26), that share features in common with our work. The protocol specification languages LOTOS[16],
Estelle[15], and SDL[12] have been designed for specifying network management issues. Their capabilities are

similar to each other and, as we will show, address issues different from those addressed by this research.

Ina Jo and PAISLey support specification of the interactions between multi-process programs. Both
languages fall into the algorithmic category. The ability to specify timing properties is important in a network
management system, where overloaded resources can be a problem. A network management system is inherently
distributed among the various hosts, gateways, and network management stations, so the interactions between
these components must be specified. The ability to handle requests in real-time, and the bandwidth required to
transmit requests and responses are also important properties in a network management specification. Both these
languages could be applied to the timing and bandwidth requirements of network management, but they do not

address the problem of administrative domains.

Gist is similar to Ina Jo and PAISLey in that it is used to specify the interactions and operation in a system
of interacting components. It differs in that it is an axiomatic language. This approach is appropriate for
specifying multi-domain network management systems, because axiomatic languages allow us to concentrate on
the interaction between the components of the system without knowing their internal operation. This property can
be used to specify management components where only the external behavior is known (e.g., a binary program
purchased from a vendor) or to hide information between administrative domains. Gist is not directly applicable
to our network management problem because the language is lower level than we wished to present, and because

it did not directly support administrative domains.



Larch also takes the axiomatic approach. In addition, it provides a two-level model for specifying
programs. The lower level describes the underlying data abstractions, and the upper (interface) level describes
how state changes occur. Larch also allows, in its interface specification language, the specification of
interactions between independent processes. The two-level model gives Larch generality. Separating the
specification of abstractions from state or interaction specifications can also be used for specifying network
management. Although this concept is one we use, Larch is a programming specification language, and is not

tailored for network management specification.

PLEASE and Anna include mechanisms to prototype or test the programs with which specifications are
associated. As such, they fit into the category of executable specifications. PLEASE allows the programmer to
convert specification into a prototype. The user can then verify the specification by testing its prototype against a
battery of test data. Anna is designed specifically for use with Ada and allows the specification to be translated
into run-time checks in the Ada language. These run-time checks are used to verify that the specification is being
met. Once again, these languages are meant for programming language specification, and do not include

mechanisms for describing administrative domains.

Estelle, SDL, and LOTOS are specification languages used by the OSI community for specifying network
protocols and applications. SDL is based on an extended finite state machine model. Estelle is based on
PASCAL, extended to describe finite state machines. All three of these languages describe the operation of the
system in an algorithmic manner. LOTOS, based on process algebraic models and temporal reasoning, is superior
in some cases for specifying standard network management systems because it is object-oriented’. The objective
for these languages are virtually the same, to specify the interactions between protocol entities in a network. Their
strengths and weaknesses are also similar, so we will only address LOTOS in detail.

LOTOS, an ISO Draft International Standard, is a formal description technique used for specifying the
temporal ordering of events in a system. In this way, it is similar to Gist and PAISLey. Its use is primarily for
describing protocols, not programs in general. It uses a notation similar to CSP[13] to describe the input and
output behavior of processes. LOTOS can also be used to describe abstract data types, and the operations and
transformations that data objects can undergo. LOTOS is designed to specify the messages exchanged by
protocols. One can also use LOTOS to specify features of the OSI management framework, such as scoping,
filtering, and access control. Because of these strengths, it has been proposed as a formal technique for specifying
OSI network management entities, such as CMIS[24].

While LOTOS can specify parts of the network management system, it has some major gaps. Its support for
the instantiation of data types and processes does not include explicit requirement of the locations at which
processes are instantiated, nor does it include the ability to instantiate data objects. LOTOS also does not support

The OSI network management architecture makes use of object-oriented paradigms[14,23, 35] making LOTOS a good match. The
SNMP architecture is not object-oriented[5, 28], so LOTOS would not have any advantage here.



the possibility of timing or bandwidth constraints, although it does allow the specification of relative temporal
ordering. Its access control function can be derived from the ability to hide CSP-style guards and encapsulation.
With these, one can specify the access control policy desired, but one cannot specify how this policy relates to an
instantiation of the processes in any particular environment. Our work concentrates on the possible interactions,
and administrative and configuration relationships between management processes, not the low level protocol used

to achieve those interactions.

These formal specification languages illustrate the current technological level for specifying programs.
While we are not directly using any of these languages, because specifying networks and network management is
different from the ways one would specify an algebraic program, we are incorporating specific capabilities of
these languages into NMSL. Mechanisms for specifying process interaction are included in all of the languages
mentioned above. The ability to specify timing constraints, as in PAISLey, is important. Separating the data
abstractions from interactions, as in Larch, allows a cleaner, more easily understood specification. Executable
specifications, as in PLEASE, help ensure that an implementation of the specification will conform to the specified
parameters. These characteristics, in particular, are important to NMSL.
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Chapter 3

Management Model and Overview

NMSL is designed to meet the high-level management needs of very large internets. It is designed to handle
autonomous administrative domains and to provide facilities that allow cooperation between these domains. In
this chapter, we first present our model for describing network management systems. Next, we outline properties
of NMSL, a simple, formal language based on this management model. Third, we outline the consistency model
used o evaluate NMSL specifications. Last, we give an overview of our tools for showing the correctness of these
specifications, comparing specifications written by different administrators, installing these specifications, and

enforcing them in a running network management system.

3.1. A Network Management System Model

NMSL is based on the model for network management systems shown in Figure 3.1. There are four main

components to this model. Management data, objects, are contained within a Management Information Base or

Network Element

Network Element

Object||Object

Figure 3.1,
The Management Model
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MIB. This data is contained within processes. Processes communicate via queries to perform management
functions. Management processes monitor and control the hardware and software elements of the system via
queries on the MIB. Processes reside on the hardware or network elements (e.g. hosts, routers, bridges) attached
to the network. These network elements are grouped into administrative domains (called simply domains in
Figure 3.1).

Administrative domain descriptions group network elements, place restrictions on the interactions between
domains, and place restrictions on the internal configuration of domains. Administrative domains can also contain
other administrative domains; containment must be non-circular. Externally, an administrative domain should be
considered a black box. Only those processes and queries that involve processes outside a domain are visible to

other administrative domains.

3.2. A Formal Language

NMSL specifications are formal, allowing the use of automated proof techniques to find inconsistencies.
NMSL specifications are also axiomatic, allowing us to specify the interactions (often called queries) between
network management processes and their operation, without forcing a particular implementation. The axiomatic
approach allows the specification of a generic management server or client application. The generic description
need not depend on how the management function is implemented, as long as all implementations treat the

management data in the same way and interact by making the same queries with the same frequencies.

The syntax of NMSL follows the system model closely. NMSL specifications are made up of the four
components, objects, processes, network elements, and administrative domains. We describe each of these
components in terms of the types of accesses that processes makes on objects, the rate at which accesses take

place, and the constraints that the component makes on the configuration of the system.

Several characteristics are specified for each of the four components. An object description includes the
name of the object, access permissions, and the relationship between this object and other objects (for example,
objects could be organized hierarchically). A process description includes the queries that the process makes, and
the exported queries other processes are allowed to make on this process. The specification of queries includes the
objects being referenced and the type of reference operation. In addition, query specifications include timing
characteristics, the frequency of requests, bandwidth requirements, and the speed at which servers can process
requests. Network element descriptions describe the properties of the network element as they relate to network
management, such as the CPU type, operating system, and network connections. Additional requirements for the
configuration of the management system, such as the protocols used by processes, can be specified for both
process and network element descriptions. Administrative domain descriptions group network elements and place
restrictions of the interactions between processes by constraining access types and rates. Domain descriptions can
also constrain the configuration of the network management system, such as the placement of processes or the

types of network element allowed.
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3.3. A Model for Consistency

The first step in using a NMSL specification is to determine if it is consistent. The model for consistency is
made up of the three types of relationships present in NMSL: access types, access rates, and configuration
constraints. Configuration constraints depend on the context of the constraint. The context of a constraint is the
component of the system (object, process, network element or administrative domain) to which the constraint
applies. The context can be the peer of communication (only applies to processes), the containing or instantiating
component, or the component in which the constraint is specified. For example, a process may place a constraint
on it’s peer process in communication, the network element instantiating (containing) the process, or on itself. We

say that a NMSL specification is consistent if and only if the following three conditions are met.

1) Every query access must be matched by an export permission. The export permission is given for each
object, and can be restricted by either a process exporting the object or a domain containing the object.

2) The aggregate rate of all queries made on an object must be less than the exported raie at the desired
loading level. The amount can be either the maximum load or the overload probability. In the maximum
case, the exported rate can never be exceeded. In the overload probability case, the exported rate must not
be exceeded the given percentage of the time, as specified by a client. The rate used, percentage or
maximum, depends on the needs of the clients making the queries. Once again, the exported rate can be

restricted by the containing domain.
3 Each configuration requirement must be matched by a configuration provision within the specified context.

NMSL specifications are automatically evaluated for consistency. The automatic evaluation is done by
mapping the NMSL statements and consistency rules onto a Prolog-like language, CLP(R) [1]. Details about the

model, this mapping, and consistency evaluation are given in Chapter 5.

3.4. NMSL Operation Overview

Figure 3.2 shows the parts of the NMSL system and their relationships. The boxes in the figure show the
input and output of the NMSL system. The ovals represent active elements in the system. We divide the
operation of this system into two aspects, the descriptive and the prescriptive aspects. The descriptive aspect
includes the specification language, the NMSL Compiler and the Consistency Checker. The prescriptive aspect
inciudes the NMSL configuration installers.

To use this system, administrators writes a specification for their network management systems. For
simplicity, we will assume there is one administrator per administrative domain, and that each specification is
written separately. This specification includes the properties outlined in the previous section. Included in this
specification are the interactions both within the administrator’s administrative domain and between this domain
and other domains. The administrator compiles this specification and checks it for consistency. Any
inconsistencies will be noted by the Consistency Checker. If the specification is consistent, the administrator can
use the prescriptive aspect of the system to generate configuration output from the specification. The
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Figure 3.2.
The NMSL System Design

configuration output is made up of commands to reconfigure the network management system. New management
processes can be started, existing ones can be reconfigured, and processes that are no longer needed can be
terminated. After initial configuration, the system can continue to consult the specification and determine if the
network is operating within the parameters of the specification. The specification can also be compared with new
versions of the specification the next time the prescriptive step is performed.

3.4.1. Compilation

The compiler is central to both the descriptive and prescriptive aspects of NMSL operation. The compiler
takes as input the network management specifications for each part of an internet. The output of the compiler
varies depending on the desires of the system administrator. There are two basic types of output: consistency data,
and configuration information. Thus, no matter what the administrator does with the specification, the first step is

always to compile the specification into the appropriate form.

The syntax recognized by the compiler is fixed, but the semantic routines are external to the compiler and
are read in at the beginning of compilation. The semantic routines are written in an extension language; they
allow new specification types to be added to the basic NMSL repertoire. See Appendix D for an example use of
the extension language. A system administrator or a vendor can use the extension language to write new

specification types, relate them to the basic specifications, and describe the different types of compiler output in
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the extension language. Details of compiler operation are given in Chapter 4,

3.4.2. Consistency Checking

The consistency checker takes the consistency data from the specifications, adds some overall consistency
requirements, and determines if the specifications for the network managers are consistent. If they are not
consistent, the immediate causes for inconsistency are listed for the system administrator. Determining
consistency is an important part of this research. The details of the consistency checker and the theory behind it
are discussed in Chapter 5.

3.4.3. Configuration Installers

The configuration output is the prescriptive output of the NMSL system. The configuration installers take
the configuration output from the NMSL compiler and install it, using a standard management protocol, in the
network managers. Different network elements and processes require different configuration mechanisms,
requiring multiple configuration installers. The installation of the specification-derived output is meant to
guarantee that the configurations of the individual network managers meet the consistency requirements. To
further ensure that the running system meets the specification, the running system can be periodically checked
against the specification. If discrepancies are found, they can be reported or corrected. For example, if a process
in the specification does not exist in the running system, it can automatically be restarted. Configuration installers

are discussed in more detail in Chapter 6.
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Chapter 4

The NMSL Language

This chapter describes the NMSL language. It describes the syntax and semantics of the language, the
facilities the language provides, motivation for these basic facilities, and examples of each of the features. For a

complete description of the NMSL language, see Appendix A.

4.1. Motivation

The purpose of a NMSL specification is to describe the expected interactions that take place in a system of
network managers. In our model, an interaction is initiated by a client sending a request to a server. The server
processes the request and returns a response. A request could be a simple look up operation, it could modify
objects in the management database, or it could cause the execution of some remote operation on an object in the
database. A process may act as a server in some interactions and as a client in others. To specify interactions of
this form, we must specify the data that is transferred during the interaction, the parties involved, their expected
behavior, where they are physically located in an internet, the administrative properties of the parties, and their
groupings. We describe the behavior of the parties in terms of protection, capacity and configuration conditions.
Protection conditions describe access permissions. Capacity conditions describe rtesource utilization.

Configuration conditions describe requirements on the structure and implementation of the parties.

We first need to specify the types of objects in the network management database. The values of these
objects will be transferred back and forth in queries. An object specification must include the abstractions present
in the database: how the data is grouped into complex data types, and the various representations that an object

can have. We call these object descriptions.

We also need to specify the clients and servers in the system; these are the parties involved in queries.
These specifications are called process descriptions. A process description defines the queries that a process
initiates, the frequency of the queries, and type of access (read or write). If the process is a server, the description
also includes configuration information: which clients are allowed to query this server, how often, and for what
data. A process description may also include statements defining how instances of object descriptions are
transformed between their representations. Additional configuration requirements, such as protocols and hardware
requirements can also be specified. A process in NMSL is an abstraction similar to an object description that must
be instantiated at some place in the network.

The physical components of the network are specified in network element descriptions. A network element
is any piece of hardware that can be connected to a network. Its description defines which processes are
instantiated on it. It also specifies which parts of the management information base are supported (instantiated) on

that network element.
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Finally, the administrative relationships between groups of network elements and the processes that are
instantiated on them are given in the domain descriptions. A domain description groups processes and network
elements along administrative boundaries. Domains can overlap and nest. A domain description defines which
network elements belong to a domain, which processes on those network elements can receive queries from

outside the domain, and which processes are allowed to initiate queries to other domains.

The redundancy between the various descriptions is deliberate. Every network administrator has their own
idea of how network elements, domains, and processes interact with other parts of the management system. To
verify that all parts of the system are configured in a consistent way, the administrator needs to specify how each
component interacts with other components, from that component’s point of view. Multiple points of view cause
the redundancy.

We separate of the specifications into abstractions (the data and process descriptions) their instantiations (on
network elements) and administrative grouping (with administrative domains). This separation allows the
management information to be specified independent of its use. It also allows types of processes to be specified,
and allows these process types to be instantiated in various locations. These separate specifications, as shown in
Larch[38], make them more generally useful. In the case of network management, the separation also mirrors the
real world, where many network elements will store the same types of management data, and run network

management software derived from the same source.

4.2. The NMSL grammar

The syntax of NMSL, is designed to by easy to write, understand and parse. Tokens are separated by white
space or special character sequences like “‘: :="" or *‘; ”’. NMSL keywords are alphabetic. Various other token
types are supported by NMSL, and their format is described when they are introduced. Tokens are grouped into
sub-clauses, which in turn are grouped into clauses. Clauses are grouped into descriptions. There is a different
type of description for each of the four components (type, process, network element, and administrative domain),
as described in Section 3.1. Clauses are the basic descriptive element in the specification, and each clause

describes a property of the component. The descriptions may occur in any order.

In this section, we describe the properties of NMSL. First, we present object descriptions. Next, we present
process descriptions, and show their relationship to each other and to object descriptions. Third, we present
network element descriptions. Last, we present administrative domain descriptions. Each description is
accompanied by an example. In the examples, SNMP([5] and the IETF MIB[27] are used exclusively. For
additional examples of the use of NMSL, see the full specification shown in Appendix B.

4.2.1. Object Descriptions

The NMSL syntax for object descriptions is an encapsulated version of ISO Abstract Syntax Notation One
(ASN.1)[19]. ASN.1 has the advantages that it is general, machine architecture independent, and well known. It
is used to specify the objects of both the IETF MIB and the OSI MIB (and the data formats used by other OSI
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protocols and standards), two of the management databases we might specify using NMSL. The OBJECT-TYPE
and OBJECT-CLASS ASN.1 macro descriptions, used by the IETF standards[28, 35]
are supported.

A NMSL object description is the keyword module, followed by a standard ASN.1 data module
description, followed by a period. The full grammar and description for ASN.1 may be found in {19]. A module
declaration ends with a period. Data may be imported from other type modules using the standard ASN.1

IMPORTS clause.

As an example of the use of an object description, consider the ASN.1 specification of the IP Address Table
that defines the IP Addresses for a given entity. This example, shown in Figure 4.1, is derived from the TCP/IP
MIB[27]. The IpAddress and INTEGER tokens are ASN.1 type names. ipAdEntAddr, et al, are
members of the IpAddrEntry sequence. Complex types of this form are common in network management
data.

module
RFC1156-MIB
{ iso org(3) dod(6) internet(l) mgmt (2) 1 }

DEFINITIONS ::= BEGIN
IMPORTS
mgmt, OBJECT-TYPE, IpAddress
FROM RFC1155-SMI;

mib OBJECT IDENTIFIER ::
ip OBJECT IDENTIFIER ::

{ mgmt 1 }
{ mib 4 }

0ot

ipAddrTable OBJECT-TYPE
SYNTAX SEQUENCE OF IpAddrEntry
ACCESS read-only
STATUS mandatory

::= { ip 20 }

IpAddrEntry ::= SEQUENCE ({
ipAdEntAddr IpAddress,
ipAdEntIfIndex INTEGER,
ipAdEntNetMask IpAddress,

ipAdEntBcastAddr INTEGER

Figure 4.1.
Example Object Description
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This simple specification shows how the ASN.1 type specification fits into a NMSL. specification. It also
shows how the access mode of a type applies to the components of the object; the access mode of
IpAddrEntry was not specified, but IpAddrEntry was used in the definition of an ipAddrTable, so all
IpAddrEntry elements in an ipAddrTable are read-only. The objects in the MIB are each given a unique
identifier, specified as a list of numbers. So, for example, the identifier { ip 20 } corresponds to the number
list 1,3,6,1,2,1,1,4,20. This list of numbers names the object and shows object containment
(,3,...,4 corresponds to ip). Thus, { ip } contains { ip 20 }. The integration of the object

descriptions with the other descriptions is given in the following sections.

4.2.2. Process Descriptions

A process description defines the characteristics of a network management process. A process is given a list
of input parameters and performs some interactions with other processes based on the values of those parameters.
A process description defines a new abstraction in the same way as an object description defines a new

abstraction. Processes can be instantiated in a network element description.

A network management process can perform many functions, but we are mainly interested in its interactions
with other processes and the network management data to which it has access. Therefore, in NMSL, one specifies
the queries that a process makes, the data it makes available to other processes, and the configuration requirements

of the process.

Figure 4.2 shows a simple example of a SNMP agent and a manager process.2 The agent process,
snmpdReadOnly, is a simple SNMP agent that exports all of its objects read-only to the ‘‘wisc-cs’” domain.
Because of the way the IETF MIB is defined, by supporting ‘‘mgmt .mib’’, the agent supports the full IETF MIB.
It expects to be queried no more than 10 times per second without becoming overloaded. The process provides a
protocol named ‘‘snmp” to its peer, and requires that its enclosing specification (the network element description)

provide it with a protocol named ‘“udp”’.

The manager process, snmpPing, retrieves the length of time an SNMP agent process has been running.
This process resides on some instance-dependent network element. The manager has two parameters, Proc and
SysName, which are assigned values when the manager is instantiated (executed). Proc is the name of the
process to query, and SysName is the host on which the process runs.  SnmpPing sends a query to Proc and
requests the sysUptime value. This manager is expected to make queries infrequently, since it makes 1 query
per second only 2% of the time (mode 1), the rest of the time the process is idle (mode 2). It requires that its peer
can handle this load in the average case (this case corresponds to the rate avg in the specification), meaning

that the destination should not be overloaded more than 50% of the time.

2An agent process stores management data and responds to requests while a manager process is one that initiates requests but does not
store management data itself.
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process "snmpdReadOnly" ::=
supports mgmt.mib; -~ entire MIB subtree

exports to "wisc-cs™ {

objects mgmt.mib;

access ReadOnly;

rate max {

mode 1 1.00 10 qps;

}
}
queries "snmpt" {

on "romano";

traps any;
}
provides "protocol" = "snmp" to peer;
requires "protocol" = "udp" of enclosing:;

end process "snmpdReadOnly".

process "snmpPing" ( Proc, SysName ) ::=
supports mgmt.mib; -- entire MIB subtree
queries Proc {
on SysName;
requests mgmt.mib.system.sysUpTime;
rate avg {
mode 1 0.02 1 gps;
mode 2 0.98 0 gps;
}
}

end process “snmpPing".

Figure 4.2.
Example Process Descriptions

This example shows the main points of the process descriptions. The objects supported by the process
are listed in the supports clause. Each type listed must be defined in an object description. The interactions
are specified using the queries and exports clauses. The types listed here must be listed in an object
description, and a supports clause. Queries clauses describe the active side of communication,
exports clauses describes the passive export of data to other processes or domains. A queries clause
specifies the process being queries, the network element on which the process runs (the on subclause),
parameters to the query (the using subclause, not shown in the example), the expected response (the
requests subclause), the data modified (the modifies subclause, not shown in the example), possible traps
or exceptional alarms to be sent (the traps subclause), and the timing characteristics of the query (the rate
subclausej. Note that in this example, the process sends traps to a process named snmpt instantiated on the
system named romano. Any trap allowed by the protocol can be sent, and the rate is unspecified (meaning the
rate is probably to low to be significant).
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The rate subclause requires additional explanation. This subclause expresses the rate at which the
process sends or receives queries, and, in the case of a queries clause, specifies requirements on the rate of the
peer. The activity that we are modeling is that of a typical management process, where the process has different
query behaviors throughout its lifetime. For example, a process might have 3 different modes of behavior. In the
first mode, the process makes a complete dump of router statistics twice a day. In the second mode, the process
gets updates from each router on the hour. The remaining time the process is idle, making no queries. Each of
these modes is associated with a different level of activity. Each mode is characterized by a percentage of time
spent in that mode and the associated level of activity. The percentage is the amount of time over the lifetime of

the process that it executes in the mode.

Ina queries clause, we can specify three types of rate requirements, max, avg or a percentage. These
are requirements on the exporter of the data. If max is specified, this process requires that the recipient of the
query never be overloaded, no matter what combination of queries and modes are made. If avg is specified, this
process requires only that the recipient of the query not be overloaded in the average case, where average means
half of the ime. Avg is a special case of the percentage case. If a percentage is specified, then the recipient of
the query must be able to handle the query the given percentage of time, without causing overload. For example,
if 75% is specified, then the recipient must be able to process queries 75% of the time without becoming
overloaded. The way in which overload is calculated is described in Chapter 5.

The provides and requires clauses describe other constraints on the configuration of the system. A
provides clause specifies a configuration condition and a value or range of values associated with that
condition. A configuration condition can be tested for existence, and instances of condition conditions can be
counted. The range associated with configuration conditions can also be tested. A requires clause makes a
requirement on a configuration condition provided by a provides clause. Specifying arange ina requires
clause says that all values of the configuration condition given in a provides clauses must be in the specified
range. Provides and requires clauses can also be specified in network element and domain descriptions.

Additional details of these clauses are described in examples later in this chapter and in Chapter 5.

A provides or requires clause applies only to the context specified. The context of the provision or
requirement is listed using the to or of subclauses. If the contextis peer, the condition applies to the peer of
communication. If the context i containing, the condition applies to the containing context. A network
element contains processes, and a domain contains domains and network elements. For example, specifying
containing within a process description means the condition applies to all network elements that instantiate the
process. If the contextis self, the condition applies to the current description and any contexts listed within the
description. For example, specifying self within a process description means the condition applies to all

clauses of the process description.
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4.2.3. Network Element Descriptions

Network element descriptions describe the physical properties of the network. Each description shows the
details for a single computer, terminal, printer, router or other device that could be connected to a network, and its
connections to an internet. It also lists the portion of the MIB that is supported by the network element’s hardware
and operating system. Finally, a list of the network management processes that are expected to execute on this

network element is given.

An example of a network element description is shown in Figure 4.3. This network element, called
romano.cs.wisc.edu, has a single interface, connecting it to a 10Mbps ethemet named wisc-research.
It runs the Ultrix version 4.0 operating system. It supports the objects listed from the IETF MIB for SNMP2,
Romano.cs.wisc.edu instantiates two process, one called snmpt (an SNMP trap handler) and one called
snmpdNoEgpReadOnly (like the snmpReadOnly process shown in Figure 4.2, but without EGP support). It also
sets some internal objects, shown by the provides clauses.

Several important features of network element descriptions are shown in this example. The properties of the

hardware are given, including the CPU type and a list of network interfaces. Each interface lists one

network interface, an identifier, the physical network to which the interface connects, the type of interface, and its

system "romano.cs.wisc.edu" ::=

cpu “decstation";
interface "1ln0" {

net "wisc-research";

type "ethernet-csmacd";

speed 10 Mbps;
}
opsys "ultrix" version "4.0";
supports

mgmt .mib.system, mgmt.mib.at,

mgmt .mib.interfaces,

mgmt .mib.ip, mgmt.mib.icmp,

mgmt .mib.tep, mgmt.mib.udp;
process "snmpt";
process "snmpdNoEgpReadOnly";
provides "sysContact" =

"Dave Cohrs <davelcs.wisc.edu>";
provides "sysLocation" = "6372 Comp Sci";
provides "protocol™ = "udp";
end system “"romano.cs.wisc.edu".

Figure 4.3.
Example Network Element Description

3A reader familiar with the IETF TCP/IP MIB will notice that the EGP objects are not supported.
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nominal speed. The speed is important for determining if the processes on this network element will be able to
respond to queries in a timely manner, or if this network element will be swamped with management requests.
The software is also described. The operating system provided is listed (specific operating systems or versions
could be required by different processes). The MIB objects that the network element supports are also listed.
Each network management process that is instantiated on this network element is listed in the process clauses.

Parameters may be listed for the process instantiations (not shown in this example).

4.2.4. Domain Descriptions

Domain descriptions describe the administrative groupings found in networks. Domains may contain other
domains (sub-domains) and network elements. A domain description also lists how its members relate

administratively to other domains.

An example of a domain description is given in Figure 4.4. In this example, the domain, wisc-cs,
contains two network elements. The wisc-cs domain exports the full IETF MIB to the public domain, but
only for reading, and requests from public can arrive no more frequently than once per second without causing

overload.

This example shows the main feature of domain descriptions, grouping network elements into
administrative domains. Subdomains can also be grouped within domains. The exports clause specifies which
parts of the MIB that are available in this domain can be accessed by processes in other domains. The exports
clause is allows the enforcement of higher level limitations on lower level exports. For example, an administrator
of a host or subdomain may allow data to be exported to any other domain. The administrator for the containing
domain can restrict this exported data, by restricting both the permissions granted or the rates available to non-
local domains. One can also specify provides and requires clauses, just as for process and network
element descriptions. They can be used to restrict interactions between domains or to restrict configurations

within the domain itself. In the example, we require that there be at least 1 instance of the Router configuration

domain "wisc-cs" ::=
system "romano.cs.wisc.edu";
system "asiago.cs.wisc.edu";
exports to "public" {
objects mgmt.mib;
access ReadOnly;
rate max { mode 1 1.00 1 gps; }
}
requires count ("Router") >= 1 of self;
end domain "wisc-cs".

Figure 4.4.
Example Domain Description
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condition within the domain. This shows another feature of the requires clause, the ability to count the

number of configuration condition instances within a context, rather than just comparing ranges.

4.3. Summary

The examples given above, taken from a description for a management system set up at the University of
Wisconsin Computer Sciences Department, show the descriptive ability of NMSL. The language can specify the
management objects using the standard ASN.1 notation. It also specifies the operation of the management system
via the process descriptions. The process descriptions describe not only the data accessed and exported, but the
operations performed on the data, and the frequency at which the queries are made. Furthermore, processes can
be parameterized. Network element descriptions describe the hardware and the software components of the
network element, as they affect network management. In addition, processes can be specified for each network
element, and the same process type to be used on multiple network elements. Finally, domain descriptions group

network elements, and can restrict the interactions between domains and restrict the configuration of the domains.
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Chapter 5

Consistency Evaluation

Given a network management specification, the NMSL system must inform the system administrator if the
specification is consistent. If it is not, the causes for inconsistency should be shown to the administrator. This is
the task for the NMSL Consistency Checker. The consistency checker is based on a network management

specification consistency model.

There are two basic ways to evaluate consistency, centrally and incrementally. We first investigated a
centralized approach to evaluate specifications. In this approach, all specifications are copied to a single location
and evaluated. Each of the possible relationships is tested, and if all relationships meet the model’s conditions, the
specification is consistent. This approach works well for small specifications of single administrative domains.

For multiple domains, the centralized approach violates the goal of preserving the autonomy of different
administrative domains. By copying all the data to a central location, administrators give up information that may
be proprietary and may not be needed by any specification other than the specification for their own domains.
Furthermore, the centralized model does not scale well. The time it takes to evaluate specifications increases
non-linearly. Justification for this claim is given in Chapter 7. To address both of these problems, we investigated

incremental evalnation methods.

In an incremental method, one divides the set of specifications into pieces and evaluates each piece
separately. The conditions for consistency remain the same as in the centralized method. Because it may not be
possible to break up the specification into independent (non-interacting) pieces, relationships between the pieces
must be determined and evaluated incrementally. As in the centralized approach, if all the relationships meet the

consistency conditions, the specification is consistent.

In the incremental method that we investigated, we divided evaluation along domain boundaries, taking
advantage of the hierarchical organization of administrative domains for evaluation and incremental re-evaluation.
In the first step, the specification of each bottom level domain is checked for consistency using the centralized
method. Then, relationships between specifications are determined. The inter-domain relationships are sent to the
immediate parent in the hierarchy. When the parent has been notified of all the relationships from its children, it
evaluates these relationships for consistency along with its own specification, once again, using the centralized
method. If any inter-domain relationships remain (with domains from elsewhere in the hierarchy), they are sent to
the parent domain for evaluation. This process repeats until the top is reached, when a final evaluation takes
place. If the evaluation succeeds, all of the specifications are consistent, and all domains are notified. Otherwise,

at any point inconsistencies are determined, they are reported back to the child domains.
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The same hierarchical method is applied when a specification is modified. In this case, re-evaluation can
stop at any point in the domain tree where the set of inter-domain relationships remains unchanged from the
previous consistency check. In other words, if only the internal part of a domain’s specification changes, the
consistency check need only be performed on that domain’s specification (along with its children’s inter-domain

summaries).

In this chapter, we first describe the model for consistency used for centralized evaluation. Next, we show
how the model is expressed in an underlying logic, CLP(R). Third, we extend the evaluation model to allow
incremental evaluation and to take advantage of the distributed nature of network management and administrative
domains. We have implemented an incremental evaluator, using the methods described in this chapter.

Experience with this evaluator is presented in Chapter 7.

5.1. The Centralized Consistency Model

The consistency model states the conditions that must be met for a given set of specifications to be correct.

The consistency model assumes a clientlserver” based system. We divide the conditions for consistency into the
three NMSL categories: protection, capacity, and configuration. These categories correspond to the three types of
relationships specified in a NMSL specification. Any given specification is defined in terms of these three
relationships. The protection condition states that a client must be given permission to perform the requests that it
makes. The capacity condition states that a service provider must have enough capacity to handle the requests
from all of its clients. The configuration condition states that individual configuration statements in a specification

must meet global constraints. If these three conditions are met in a specification, the specification is consistent.

In this section, we develop a logical semantics for NMSL. The goal of developing these semantics is to
logically define inconsistency. Based on the three conditions for inconsistency, we can state in logic the condition

for an inconsistent specification:

ProtInconsistent | CapacityInconsistent |
ConfigInconsistent | CountInconsistent > Inconsistent

This condition states that if there is a protection, capacity, or configuration inconsistency, then the specification is
inconsistent. ProtInconsistent and Capacitylnconsistent correspond to inconsistent protection and capacity
conditions, respectively. Configinconsistent and CountInconsistent correspond to inconsistent configuration

conditions. In sections 5.1.1 through 5.1.3, we describe each of these consistency categories in more detail.

*Network management standards[5, 14] refer to these processes as managers and agents, respectively, We prefer to use the more gen-
eral, distributed systems terms.
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5.1.1. Protection

The purpose of the protection conditions is to verify that all operations that a client requests of a server are
permitted by that server. For example, if a client specification states that it requests routing tables from a server,
the specification for that server must state that this client has permission to perform that operation. The protection

conditions include the property that each request performs a single operation on a single object.

To verify the protection condition, we must show that each client has permission to perform each of its
specified queries. In this discussion, we use the following logical relations:
Containsg (01, 02)  Object O contains object O 5.
Containsp (D1, D;)  Administrative domain D contains network element or domain D .

Instanp (D, P,Ipp)  Network element or domain D instantiates process P with identifier
I D.P-
Instanp (Ip, 0, 1Ipo)  Process instance Ip instantiates object O with identifier Ip ¢.

Ref(C, I, T, Is o) An instantiated process, C, requests to perform operation T on object
instance I o from process instance Ig.

Perm (C,Is, T,Isp) Domain or process instance Iy permits domain or process instance C to
perform operation T, on object instance I o.

The relation, Containsg, allows permissions to be inherited using the containment hierarchy of the management
information. Containsp, gives the relationship between domains and the network elements and sub-domains that
they contain. Both of these relations are strictly hierarchical — objects and domains cannot contain themselves.
The Instany, relation models the idea that a network management process is a control abstraction that must be
instantiated. Instanp models the way in which a management process instantiates information; multiple instances
of information have different identifiers. Ref describes the permissions necessary in each request that a client
makes of a server. Perm describes the permissions that a server gives to a client or domain. If permission is
granted to a domain, each client in that domain, as defined by the Containsp relation, is also granted permission.

The functions described above are related by a small set of deduction rules, shown in Figure 5.1.

The notation used is first order logic. The = relation denotes equality, which is true where the values
compared are equal. Universal quantification is assumed for all variables listed in the rules.

The Transitivity rules formalize the intuitive notion that an enclosing domain or object contains all of the
parts of its subdomains or sub-objects, respectively. Note that transitivity does not allow deductions from specific

cases to generalizations because containment is strictly hierarchical.

The rule of Implied Containment states that when a network element instantiates a process, the network

element contains that instantiation of the process.

The rule of Implied Instantiation states that if a process instantiates an object that contains other objects, the
sub-objects are also instantiated by that process.




Transitivity

Containsg(0,, 04) & Containsg(0 2, 03)
> Containsg(0 1, 03)

Containsp(D 1, D3) & Containsp(D 3, D3)
> Containsp(D,, D3)

Implied Containment

Instanp (D, P, I) > Containsp(D, I)

Implied Instantiation

Instanp(Ip, 01, Ip,01) & Containsp(01, O3)
o Instanp(p, 04, Ip 03)

Implied Object
Permission

Perm(C, I3, T, I5,01) & Instanp(Is, O+, Ipo1) &
Containsg(01, 03)
o Perm(C, Is, T, Is 03)

Implied Domain
Permission

Perm(D, I, T, Is_a) & Containsp(D 1, D)
D Perm(D3, Is, T, Is,0)

Unique Identifiers

Instanp(py, 01, Ip1,01) & Instanp(py, 02, Ipz 02) &

Ip101=1Ip1,02
Dlpy=lpp &0,=0

InstanD(Dl, Plv IDI,PI) &Instanp(Dz, Pz, IDZ,PZ) &

Ipip1=Ipap2
DD] =D2&P1 =P2

Figure 5.1.

Logical Deduction Rules for Protection Verification

The Implied Object Permission rule states that if a process gives permission to access an object instance,

and the object contains sub-objects, then the process also gives permission to access the instantiations of those

sub-objects.

The Implied Domain Permission rule states that if a process or a domain gives some access permission to a

domain, then anything contained in that domain also has that permission.

The rules for defining Unique Identifiers state that instance identifiers with respect to protection are uniquely
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determined by the process and object in the Instanp relation, and by the domain and process in the Instanp

relation.

Given these relations and rules, we can prove that a specification is consistent if, for every request, there

exists a corresponding permission. Conversely, we say that a specification is inconsistent if there is any reference

to an object for which permission is not granted. This can be expressed logically as
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(3 C,Is, T, Iso : Ref(C, Is, T, Is0) &

—Perm (C, Ip, T, I50) &

(s =1Ip | (Containsp Up,Is) & — Containsp (Ip, C)))
D Protlnconsistent.

This says that a specification is inconsistent if there is a query from process instance C of type T to object Is o at
destination I, for which permission is not granted by I or any domain I, that contains /s and does not contain C.
This condition allows members of the same domain to access data that is not accessible from outside the domain.

This condition also allows members of other domains to be constrained by domain-wide permission restrictions.

The evaluation is simplified by the finite problem space — we only need to prove this condition for the
statements in a specification. A simple, centralized method proceeds as follows. We attempt to match each Ref
relation with its corresponding Perm relation. The Perm relations are either taken directly from a translated
NMSL specification, or are derived. We employ the Implied Object Permission rule to find the permissions for
each object instance, using Instanp, and Containso relations obtained from the specification. Next, we use the
derived Perm relations, along with the ones obtained directly from the specification, the Containsp relation, and
the Implied Domain Permission rule to derive the permissions for each client process and the containing domains.

If, after iterating through the Perm relationships, any Ref relations have no match, the specification is invalid.

5.1.2. Capacity

The goal of the capacity conditions are to determine, as quickly as possible, if each server has the capacity

to provide the services needed specified by its clients. This is a form of the classic capacity planning problem(4].

Capacity planning provides a systematic approach to modeling and predicting the capacity of a system, in
our case, a network management system. To form a capacity planning model, one must determine the parameters
that characterize the workload of a system, and the parameters that are required to predict the future performance
of the system. This is an application of performance analysis, with an emphasis on the predictive nature of the
model.

In our capacity planning model, we wish to obtain a reasonable answer to the capacity question by use of a
simple, easy to understand model. This lead us to employ a system of closed-form equations to solve the capacity
planning problem. Closed-form equations have two characteristics that we find important. First, since the users of
this system will not be performance experts, they need a simple, easily understandable model with simple
parameters. Second, this model is important because our capacity problem is part of a larger automated

consistency proof, which requires a yes or no answer that must be calculated quickly.

Clients interact with servers by means of a request, or query, and a server sends back a response. We allow
clients to have more than one mode of operation, based on the frequency of queries made. For example, an
interactive client could have two modes, an inactive mode, where it is waiting for input, and an active mode,
where it is interacting with a human and some servers. In the inactive mode, this client will make few, if any,

requests of a server, but in the active mode, it will make frequent requests. We assume that servers all operate in a




29

single mode, that of answering queries from any appropriate client. If a process has the characteristics of both a
client and a server, we make the simplifying assumption that these operations are independent. This assumption
limits the interactions that can be accurately modeled. We make this assumption to avoid the use of queuing

models. We plan to incorporate a more complex interaction model in the future.

Capacities are calculated by using an independent, discrete distribution of the frequency of interactions
(requests and responses), between network management processes. A client’s behavior is divided unto distinct
modes of operation. If we inspect the distribution of queries of the client over a sufficiently large period of time,
we can divide this distribution into modes, where the total percentage of time spent in each mode is the amount
shown in the specification. The order of the modes over time is random. A client can be in the same mode more

than once over the time interval measured, as long as the total percentage is the amount specified. During a mode

of operation, a client makes at most g queries per any 1 second interval, or 1 query per % seconds.

Given a group of clients, we can determine the aggregate load that the group places on a server. This
aggregate load and its distribution are important for determining the probability of overloading a server, and for
propagating information between domains. These loads are calculated from a discrete aggregate distribution of
the group. Interactions are independent, and the order of modes of the individual clients is random. Therefore,
the aggregate distribution has several modes, corresponding each combination of modes of the independent
clients. When measuring a sufficiently large period of time, the total percentage of time spent in each mode is the
aggregate percentage. As in the case of one client, during a mode of operation, the aggregate of clients makes at

most g queries per any one second interval.

Several concepts are not present in our model for simplicity’s sake. Interactions are independent, so there
are no interactions between request by the same client, nor are there interactions between clients querying the
same server. The model does not include information concerning the duration of a given mode — behavior is
considered on an instantaneous basis. The model also excludes response or processing time. Because we are not
modeling the behavior of the entire network, but just the end-to-end behavior of the processes, we do not have
enough information to determine response time. Adding response time to the model makes the problem difficult
to solve, if solvable at all. Response time could be included by using a quening model, however given the large
number of states in the model, we would not have the resources (time or memory) to solve the problem, given
current performance modeling technology[25]. Finally, we also do not model the fine-grained operation of the
message delivery protocols.

We compare the capacity, in queries per second, of servers, with the load clients will place on those servers,
and determine whether each server’s capacity will be exceeded. The load can be measured several ways. We are
interested in the peak utilization, the maximum number of queries a server can receive and process per second.
We are also interested in the probability that a server’s capacity will be exceeded, called the overload probability.
The utilizations depend on the distribution of requests from the clients, which in tumn depend on the number of
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modes of operation of each client.’ If only one client is being considered, we call its distribution a simple

distribution. A group of clients has an aggregate distribution.

We divide the calculations into two cases: a single client querying a single server, and a group of clients
querying a single server. The case of a single client simultaneously querying a group of servers (multicast), while

interesting from a reliability point of view[3], is not used in current network management systems.

The single client/single server case is easy to calculate. For example, consider the interactive client and
server shown in Figure 5.2. The peak utilization is 20 gps, and the aggregate distribution is the same as the simple
distribution. Determining whether this example is consistent is a matter of determining if the server can withstand
the load of its client. In the example in Figure 5.2, the server, which can receive 20 gps, has the capacity for the
peak rate of requests, and any percentage less than the peak. Therefore, the probability that the server’s capacity
will be exceeded is zero.

In the multiple client/single server case, we simply add the peak modes of the individual clients to get peak

request frequency. For example, Figure 5.3 shows three clients Client;, Client,, and Client;. The peak request
rate is the sum of the peak rates for each of the clients,

20 gps + 10 gps + 20 gps = 50 gps.

which is greater than the capacity of the server.

We calculate the overload probability by computing an aggregate distribution. The distribution of the
aggregate load of these three clients has 8 modes, and is determined using simple probabilities, because of our
independence assumption. Basically, we take all combinations of the modes of the three clients. For example, to
calculate aggregate Mode 1, we take the combination of Mode 1 of Client,, Mode 1 of Client, and Mode 1 of

80% in mode 1

0 gps Server
20% in mode 2 Capacity: 20 gps
20 gps

Figure 5.2.
A Single Client/Single Server Configuration

3The examples in this section all show clients with two modes of operation. The query model is not limited to two mode distributions;
any number of modes can be specified.
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80% in mode 1} .
0 aps

20% in mode 2| ...
20 gps

80%Om mode 1{__,. Aggregate Server
gps B
Load Capacity: 20 gps
20% inmode 2| .
10 gps

00

50% in mode 1}
5 gps

50% in mode 2|,
20 gps

Figure 5.3.
A Multi-client/Single Server Configuration

Client. The probability of operating in this aggregate mode is
0.8x0.8x0.5=0.32

and the number of queries per second is

0 gps+0gps+5qps=5 gps.

The other modes are calculated in the same manner. The resulting aggregate distribution, shown in Figure 5.4, is
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Mode Prob. Query Rate Mode Prob. Query Rate
Mode1: 032 S5¢ps Mode5: 008 15¢gps
Mode2: 032 20¢ps Mode 6: 0.08 304gps
Mode 3: 008 25¢ps Mode7: 002 35¢ps
Mode 4: 008 40gps Mode 8 002 50g¢gps

From this aggregate distribution, we can see that the probability that the server will be overloaded at any
given instant is 0.28 (the sum of the modes with query rates greater than the server’s capacity of 20 gps, shown as
a dotted line in Figure 5.4).

In general, for n clients, C;, Cs,..., C,, each with m operating modes, or request rates, F;(m), the
probabilities of being in each of the modes, P;(m), and one server, S, the peak aggregate load is

5. max(Fi(j)

i=1 =

The aggregate distribution is calculated by taking all combinations of the n clients and m modes. For each mode,
we determine the probability of operating in that mode by multiplying the probabilities of a combination of modes
of the n clients. We determine the query rate by summing the query rates of the clients for the given combination
of their modes. Because there are n clients, each of which has m modes of operation, the time to calculate the

aggregate distribution using a naive algorithm is O (m").

50 7
. 407
K
&
5307
=}
5 @
§ 20 [T
g
10 7 @
0 * y
10 20 30 40 50 60
Percentage of time
Figure 5.4.

Aggregate Load Distribution of Three Clients
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We can limit the number of modes in the output by using an approximation. In the approximation, modes
are grouped depending on the frequency of requests in the mode, so all modes within a combined group have
similar frequencies. A fixed number of modes, N, are allowed in the approximation. The probability of the
combined mode is the sum of the probabilities of the calculated modes being grouped together. The frequency of

requests in the combined mode is the maximum of the frequencies of the calculated modes.

To determine the amount of error introduced by approximation, we can measure the amount of area added
to the distribution graph. To limit the error, we make two restrictions on the combination of modes. First, that we
order the pre-combined modes according to their frequency (height). We combine modes in order until the total

percentage in the combined mode is greater or equal to —;—I— and that the sum of the remaining percentage is —1%;

times the number of remaining combined modes. The percentage is the width of the mode, as shown in Figure

54.

By picking the frequency of the combined mode to be the maximum of the modes in the group, we
guarantee that the calculations will never determine that a group of clients is within a server’s capacity, when the
capacity is exceeded. This also corresponds with our model, where, if we take an aggregate distribution mode the
number of queries for any second interval is bounded by ¢. Logically, however, there is a chance of an
inconsistency being determined when a server does have enough capacity. This chance of error decreases as N

increases.

If we take the aggregate load shown in Figure 5.4 and combine them into 4 modes this way, we get the

following modes:

Mode Old Modes  Probability  Query Rate

Model 1 32 5 gps

Mode2 52 40 20 gps
Mode3 36 .16 30 gps
Moded4 4,78 a2 50 gps

The total amount added to the distribution is calculated by adding up the area under the distribution graph and
subtracted from the area of the original graph. The area of the original distribution is 18.5gps. The area of the
approximate distribution is 20.4gps. The difference is 1.9gps, for an error of about 10%.

We can calculate this approximation for N modes in polynomial time, using a pairwise aggregation method.
In this method, we take pairs of clients and calculate their combined aggregate. Since each client has at most N
modes, each pair requires O (N?) calculations. From this result, we choose N modes, as discussed above. We
repeat this process, tournament style, until all pairs have been combined. There are n-1 total aggregations. This
results in O (N2 x n) calculations for the entire aggregate. Remember that N is constant for any given consistency

check, so the time varies linearly with the number of clients in the aggregate.
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In determining consistency, we need to prove that all client capacity requirements are matched by large
enough capacity exports for the client’s needs. Conversely, there is an inconsistency if there is any client capacity
requirement which cannot be satisfied. To express this logically, we introduce a relation, AggrTooBig to represent

the calculations shown above,

d AggrTooBig (C, Is o, Tc, Ts ) o Capacitylnconsistent.

This relation states that there is an inconsistency if the aggregate is too large. The aggregate is where process C is
making queries of object instance I o with aggregate rate T (this rate takes into account the client requirement of
overload probability or peak load), but the exported rate was T o.

5.1.3. Configuration

The configuration conditions are used to verify parts of NMSL specifications relating to the configuration of
network management systems. This classification includes all parts of a specification not modeled by the capacity
or protection conditions. The configuration conditions have the common characteristic that they are general
requirements placed on the entire specification by a single element of the specification. Some examples of
configuration conditions are verifying: the protocol used to communicate between two management processes is
the same, the maximum number of routers allowed in a network is less than some maximum, and all requests sent

to a process are smaller than the maximum request size accepted by that management process.

Two examples of specifications defining configuration conditions are shown in Figure 5.5. These examples

are fragments of a NMSL specification (other configuration conditions are shown in the examples in Chapter 4).

system “romano.cs.wisc.edu" ::=
cpu “"decstation";
interface "1ln0" {
net "wisc-research";
type "ethernet-csmacd";
speed 10 Mbps;
}
opsys "ultrix" version "4.0%;
provides "sysContact" =
"Dave Cohrs <dave@cs.wisc.edu>";
end system "romano.cs.wisc.edu".

domain "wisc-cs" ::=
requires count ("Router"™) >= 1;
requires count ("Router"™) <= 3;
end domain "wisc-cs".

Figure 5.5,
Examples of Configuration Conditions
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The first example shows the hardware configuration of a computer on our local network, defining several
conditions. The CPU type and operating system version define constraints on the types of programs that can be
run on this computer. The interface definition sets conditions for maximum transmission rates and packet

sizes. The provides clause defines a name that is used in configuring the network element.

The second example specifies, in a requires clause, the requirement that the number of computers that
route packets between networks (i.e. those computers that run routing processes) be between 1 and 3, inclusive.
Requirements can also be used to enforce administrative needs. Specifying a minimum of one router, for
example, enforces the requirement that a network cannot be split into two disconnected networks without
changing the specification.

To verify configuration conditions, we must show that each condition in a specification is met within the
specified context. The context specifies the scope of the requirement (self, containing, or peer), as described in
Section 4.2 for the provides and requires clauses. A configuration condition is a name; the number of
instances of this name in a context can be counted, and the range or ranges of values associated with these

instances can be tested.

To verify conditions concerning a count of a condition, we determine the number of instances of the
condition in the specification within the specified context. The method used for verifying range conditions is
similar to the method used for verifying protection conditions. The major difference between the methods used

for determining configuration conditions from protection or capacity conditions is the addition of the context.
The following logical relations are used to represent configuration conditions:

Provides (D, N, OP, V, D»)
Context D, (a process, network element or domain) provides condition N to Context D . OP and V define
the value or values provided. OP is one of =, <, <, 2, or >. For example, Provides (D, "protocol”, "=",

"udp”, D ,) means that context D, provides protocol “udp” to context D ,.

Requires (D, N, OP, V, D»)
Context D, requires condition N of Context D,. OP and V define the value or values required. Their

values are of the same form as the Provides relation.

Count (D, N, OP,V, D,)
Context D, requires a count of condition N in Context D,. OP and V define the value or values required.
OP is one of =, <, <, 2, or >. V must be a number. For example, Count(D;, "Router”, "<", 4, D,)

requires the count of "Router” instances provided by context D to be less than 4.

D, depends on the context specified. If the context is the peer, D, can be any context that queries or is
queried by D;. If the context is the containing context, D, is any context that contains or instantiates D .

Otherwise, the context is the same as D ;.
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As in the case of protection conditions, we need a small set of rules to evaluate conditions of instantiated
processes (shown in Figure 5.6). The first rule states that if context D instantiates process P with identifier 7, and
P provides condition N with value range OP,V to context D ,, then all instances [ also provide N with the given

range to D,. The other two rules define the same relationship for Requires and Count relations.

For each instance of a Requires relation, we search for a matching Provides relation. The Provides
relations are either taken directly from a translated NMSL specification or are derived using a Implied
Instantiation rule. If any Requires relation does not have a corresponding Provides, the specification is invalid.
This is expressed in logic as

@ D, N, OP, V, D, :Requires(D,,N, OP, V, D)) &
— Provides (D, N, OP, V, D,)) D Configinconsistent.

For evaluating counts, we make an aggregate of all instances of condition N provided in the specified context. If
the aggregate is within the bounds specified by OP,V, the condition is valid, otherwise it is invalid. We express
this logically with the implication

3 BadCountRange (D, D, N, OP, C, C,) o Countlnconsistent.

BadCountRange represents the meta-logic operation of counting the Provides relations and comparing this count
with specified range. This relation states that there is an inconsistency if context D, requires context D, to
provide instances of condition N in the range OP, C,, but there are C instances, and this is not in the range. For
example, if we prove that

3 BadCountRange (D, D, "Router”, "<", 4, 6)

then D, required that D, provide less than 4 router instances, but D, provides 6.

Instanp (D, P, I') & Provides (P, N, OP, V, D,)
o Provides{I, N, OP, V, D)

Instanp(D, P, 1) & Requires (P, N, OP, V, D,)
D Requires(l, N, OP, V, D,)

Implied Instantiation

Instanp(D, P, 1) & Count (P, N, OP, V, D,)
> Count(I, N, OP, V, D,)

Figure 5.6.
Logical Deduction Rules for Configuration Verification
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5.2. Consistency Evaluation in CLP(R)

To evaluate NMSL specifications, we translate the specification into the logic programming language,
CLP(R). CLP(R) is similar to Prolog, but allows reasoning about relationships over the real numbers. We show
that statements of NMSL can be translated into CLP(R) and that CLP(R) is powerful enough to represent the
consistency model. In doing so, we show how the logic rules presented in Section 5.1 are represented in CLP(R).
In this section, we use examples of NMSL statements and their translations. These examples are taken from a full
specification for a network management system. The full specification and translated CLP(R) code are given in
Appendix B. The full translation of the evaluation rules is shown in Appendix C.

Each statement of NMSL translates into a CLP(R) clause corresponding to one of the relationships
discussed in Section 5.1. For each object listed in a module declaration, we generate clauses of CLP(R)

defining the object containment and protection. For example, within the TCP/IP MIB,

sysDescr OBJECT-TYPE
SYNTAX OCTET STRING
ACCESS read-only
STATUS mandatory
::= { system 1 }

is represented by
contains([[1,3,6,1, 1},01,3,6,1,2,1,1,111).
decl_access([1,3, 6, 1,1,1]),readOnly) .

The strings of digits are the numeric identifiers for the names system and sysDescr respectively.

Decl_access is part of the representation of the Perm relation.

Each export access permission type is represented by a clause describing the access type and relating

that type to every instance of the export. The rate modes are represented by similar clauses. For example,

exports to "wisc-cs" {
objects mgmt.mib;
access ReadOnly:;
rate max {
mode 1 1.00 10 gps;
}
}

is represented by

perm_access (52, 'wisc-cs’, Y, readOnly) :-
1nstanD(Sl,process(’snmdeeadOnly') s2),
instan(s2,[1,3,6,1,2,1 | v1],Y).

perm eq(’wisc-cs’,Y¥,1,10) :-
lnstanD(Sl,process('snmdeeadOnly ).S2),
instan(s2,[1,3,6,1,2,1 | V1],Y).

instan(P1,{1,3,6,1,2,1], [Pl,1,3,6,1,2,1]) :-
instanD(S2,process (/ snmpdReadOnly’),Pl) .

Perm_access comesponds to the logical Perm relation; perm_eq corresponds to a rate mode. The value
1,3,6,1,2,1 is the numeric form of the data exported, mgmt .mib. The unique identifiers, S2 and Y are

derived from clauses output from the network element descriptions and from the instan clause shown at the
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end of the example. The instan clause describes all of the instances of objects supported by this process.

The queries clause is represented similarly. In addition to protection and capacity rules, we generate a
special rule used for representing peer relationships for provides and requires statements. For example,

the statement for a process named snmpxmon,

queries "snmpdReadOnly" {
on gw;
requests
mgmt .mib.interface.ifTable.ifEntry.ifOperStatus;
rate avg {
mode 2 0.02 1 gps;
mode 1 0.98 0 gps;
}
}

is represented by

ref access(P2,Yl,readOnly) :-
instanD (52, process (’ snmpxmon’) ,P2),
instanD (' gw'’,process (' snmpdReadOnly’),Pl),
(instan(pP1,(1,3,6,1,2,1,2,2,1,81,Y1)).

ref _eq(P2,Y1,0.02,1,avg) :-
instanD (52, process (’ snmpxmon’) ,P2),
instanD (' gw’,process (' snmpdReadOnly’),P1l),
(instan(pP1,(1,3,6,1,2,1,2,2,1,81,Y1)).

ref eq(P2,Y1,0.98,0,avg) :=-
instanD (52, process (’ snmpxmon’ ) ,P2),
instanD(’gw’,process (’/ snmpdReadOnly’),Pl),
(instan(P1,(1,3,6,1,2,1,2,2,1,8],Y1)).

queries (P1,P2) :-
instanD (S1,process (/ snmpxmon’) ,P1),
instanD ('gw’,process (’ snmpdReadOnly’),P2).

The ref_access clause corresponds to the Ref relation. The ref eq clauses correspond to the rate modes.
Once again, the strings of digits correspond to the objects being referenced. The queries clause states the
process instances potentially involved in peer relationships.

The configuration requirements (from the provides, requires, and network element configuration
clauses) are also represented by clauses. For example, in a process declaration for the process

snmpdReadOnly,
provides "protocol"™ = "snmp" to peer;
requires "protocol™ = "udp" of enclosing;
is represented by

provides (Y2, ‘protocol’, '=’, ’snmp’, X) :-
instanD (81, process (’ snmpdReadOnly’),Y2),
queries (X,Y2).

requires (Y2, ‘protocol’, ’=’, fudp’, X) :-
instanD (S1,process (’ snmpdReadOnly’),X),
Y2 = S1.

Note the use of the queries clause for determining all peer instances in the provides clause. Recall that the
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enclosing declaration for a process is a network element declaration. Since network elements instantiate
processes, all of the enclosing instances are determined using the instanD relationship. Provides and

requires clauses in network element and domain descriptions are represented similarly.

We also generate CLP(R) clauses describing the instantiation of processes on network elements. For

example, the statement within the network element description for romano,
process snmpdNoEgpReadOnly;

is represented by

instanD (’ romano’ , process (' snmpdNoEgpReadOnly’),
[ romano, snmpdNoEgpReadOnlyl) .

Finally, domain grouping is represented by clauses describing containment. For example, in the domain
wisc-cs
system romano;

is represented by

containsD (['wisc~cs’, ' romano’]).

Representing our consistency conditions in CLP(R) is straightforward. The rules for Transitivity, Implied
Containment, Implied Instantiation, Implied Object Permission and Implied Domain Permission, shown in Figure
5.1, are already in clausal form and translate directly into CLP(R). The Unique Identifier Rules are incorporated
into the Implied Instantiation Rule and the relationships output by the NMSL compiler. That is, the compiler
generates unique identifiers, such as the one shown in the process instantiation example above. The translation of

other rules are shown in Appendix C.

The protection condition shown in logic in Section 5.1.1, despite its use of negation, is also easily
represented in CLP(R). In Section 5.1.1, we gave an iterative method for finding the result of this condition. In
this method, we depended on being able to derive cases where permission was not granted by finding cases where
we could not prove permission. This method matches the definition for negation in CLP(R). Thus, the protection

condition translates into the CLP(R) clauses:

inconsistent ([P,Y,T]) :-
ref_access(P,Y,T), perm access(S,P,Y,T),
failed(S1,P1,Y1,T1).

inconsistent ([P,Y,T]) :-
ref access(P,Y,T), perm_access(S,P,Y,T),
isinD2([D,S1]),not (isinD2([D,P])),
perm_access(D,P,Y,T),
failed(S1,P1,Y1,Tl).

inconsistent ([X2,X,Y]) :-
ref_access (X2,Yinstan, readWrite),
instan (X,Y,Yinstan), decl_access (Y, readOnly).

The first two clauses identify those references where no permission at all was given. The first checks permissions
by process instances, the second checks permissions by enclosing domains that do not also contain the process

instance making the reference. The third clause checks the protection condition on the object itself, and finds any
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inconsistency when inadequate permission is granted. The failed relation is generated during evaluation and

saves a derivation of not (perm_access). See Appendix C for the definition of failed.

Representing capacity uses CLP(R) constraints and equation evaluation. The formulas for average and
maximum load, shown in Section 5.1.2, are translated into deduction rules. These rules operate on lists
representing the query rates of clients. The lists are built up during evaluation. The rules derive the aggregate
query rates from the lists. The constraints represent the requirements of the querying process. The capacity

condition is translates as

inconsistent ( [LH,Result,Y,R]) :-
retractall (ung(Xfoo)),
all([F,X], ref eq(X,F), List),
breaklist (List, L1, L2), !,
doeval ([R,Result,Y,LH],Ll,L2).

The first two lines make a list of all references in the specification. The third line breaks out the first server in the
list. The final line evaluates the list for the aggregate. The dexwils of doeval are shown in Appendix C.

The configuration conditions are translated using the techniques described above. In Section 5.1.3, we
described a logical condition for inconsistent configurations and an iterative method for finding inconsistent
simple conditions (those that are not defined in terms of a count). This method, like the method for protection
conditions, requires only the weak form of negation present in CLP(R). Therefore, we can translate this
requirement into CLP(R). For conditions on counts, we use an iterative method based on lists, similar to the
method for determining capacity conditions. This method does not use negation, only constraints. So, it is
possible to represent the method in CLP(R). The specific translation is similar to the protection and capacity
conditions. For details, see Appendix C.

Given these three parts, we have shown that the entire model can be expressed in CLP(R). We have
implemented a centralized consistency checker using this approach.

5.3. Incremental Evaluation

So far we have assumed that we will evaluate the specifications in a single, central location. This
centralized method has three limitations. First, centralized evaluation requires each administrative domain to
provide detailed information about their internal computing environment. Second, it requires a full consistency
check each time any single domain’s specification changes. Third, the time to evaluate the logic increases non-
linearly with the number of logical relations. These problems occur at the domain boundary and share a common
solution, incremental evaluation. Incremental evaluation breaks up the consistency proof. The goal of using
incremental evaluation is to perform the proof in small increments, and to only cross domain boundaries with the
minimal amount of information necessary to complete the proof. We produce a small summary at each increment
and perform another proof on this summary and the next part of the specification, repeating the process until all
parts have been checked. The effect on incremental changes are discussed at the end of this section.
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This section describes a method for performing a NMSL consistency proof incrementally, including logical
justification that the incremental proof will prove the same result as the original, centralized proof. We show that
in the incremental method, any evaluation we perform will give us a logically complete answer. Because our
proof is implemented using CLP(R), we appeal to the representation of NMSL specifications in CLP(R) in our
proof. The relative efficiency and performance of the incremental vs. the centralized proofs are also discussed.

5.3.1. Proof of the Incremental Method

The consistency output of the NMSL Compiler is a list of CLP(R) clauses. These clauses are combined
with additional evaluation clauses, shown in Appendix C, and evaluated. In the centralized method, the set of all
specifications are combined, translated, and evaluated together. In the incremental method, we take the
specification for each domain, translate it and evaluate it separately. Each description remains intact when the
proof is divided along domain boundaries. In either the centralized or the incremental method, the input to the
evaluator is a set of CLP(R) clauses, output by the Compiler.

A specification is internally consistent if all of the relationships within the specification of a single domain
are met. Specifications are externally consistent if the interactions between domains are consistent. We divide
our proof into subproofs of each of these conditions. Given both conditions, the incremental method proves the

same result as the centralized method.

We show that the proof of internal consistency is identical for both the centralized and incremental method.
Since the output of the Compiler for a single specification is identical for either the centralized or the incremental
method, the inctemental input to CLP(R) is strictly a subset of the centralized input. Since all of the information
about internal relationships are present, by definition, all of the internal relationships will be checked in either the
centralized or incremental method. Therefore, if the internal relationships were consistent in the centralized
check, they will still be consistent in the incremental check. If an internal relationship was not met in the
centralized check, the invalid protection, capacity, or configuration condition will still be invalid, because the set
of clauses representing the internal interactions of the domain is identical. Therefore, any internal inconsistencies
found in the centralized check will be found in the incremental check.

Next, we show that the incremental method evaluates external consistency in the same way as the
centralized method. To determine the same results for external inconsistencies requires that we identify those
clauses generated by the Compiler that correspond to extemal relationships. Each of the clauses shown in Section
5.2 are supported by other clauses. Support is defined in two parts. First, when proving the an instance of the
head of the clause, the truth of instances of the relationships in the tail must first be proved, so clauses that prove
those instances support the head. Second, if the clause is used in conjunction with other clauses in a proof, all of
those clauses support each other. An example of the second type of support is the set of ref_eq clauses relating
the same client and server; such clauses support each other. Below we show a method for identifying exactly
those clauses denoting external relationships and their supporting clauses. We call this set of external

relationships a domain’s external summary. We can apply this method to the clauses representing each
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domain’s specification. We then combine the external summaries. Assuming this method for find exactly those
clauses relating to external relationships, we can prove external consistency. Since the algorithm will generate all
of the external relationships, the incremental method will prove the same result as the centralized method. If the
centralized method proves consistency, the incremental method will also prove consistency, because all of the
clauses representing external interactions will be present in the external summary. Likewise, if the centralized
method proved external inconsistency, the exactly those clauses that were inconsistent in the centralized method

will be present in the external summary, so the incremental method will prove inconsistency.

5.3.2. A Domain-Based Method for Finding External Summaries

The methed for finding external summaries depends on knowledge of the Compiler’s consistency output.
The method inspects each CLP(R) clause output by the compiler. If the clause is part of the external summary, the
method finds the clausé’s supporting clauses, and adds all of these clauses to the external summary. We address
each clause output by the Compiler, as discussed in Section 5.2, in turn. Then, we show an algorithm to find an

external summary.

In this method, we make two assumptions about the clauses used in consistency evaluation. First, all
clauses denoting objects (the MIB) are included in each domain’s specification. This is reasonable because no
interaction can take place without a common set of objects. Second, the evaluation rules, listed in Appendix C,
are replicated, with one copy per domain. This is also reasonable, because we cannot break up the consistency

proof unless all domains use the same evaluation rules.

Consider clauses denoting objects.
contains([[1,3,6,1,2,1,11,(1,3,6,1,2,1,1,11]).
decl_access([1,3,6,1,2,1,1,1],readOnly).

Such clauses do not refer, in themselves, to external relationships. Therefore, these clauses are not candidates for
the external summary. Furthermore, because we assume that all specifications define the same set of objects, we

can avoid ever making such clauses part of the external summary.

Next, consider clauses that export protection or capacity.

perm_access (52, 'wisc-cs’, Y, readOnly) :-
instanD (S1,process (! snmpdReadOnly’),S82),
instan(s2,(1,3,6,1,2,1 | V11,Y).
perm_eq('wisc-cs’,¥,1,10) :-
instanD(S1,process (f snmpdReadOnly’),S82),
instan(s2,[1,3,6,1,2,1 | v11,Y).
instan(pP1,[1,3,6,1,2,1],(P1,1,3,6,1,2,1]) :-
instanD (52, process (' snmpdReadOnly’) ,P1l).

For the perm access clause, we can inspect the second parameter of the relationship, the destination of the
protection export, and determine if that destination is internal or external. If the destination is external, the clause
is added to the external summary. We must locate the clauses that defines the instantiation of the process, S2 by

the instanD clause, and the object instance, Y. The clause defining the object instance is the instan clause
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shown at then bottom of the CLP(R) code fragment. The instan clause depends on the same instanD clause
as the perm access clause. We can inspect all of the instanD clauses output by the compiler, and pick
those that instantiate the process named in the perm_access clause. The instanD clauses have no tail, so
they have no supporting clauses. Because perm_access clauses are referenced when determining domain-

wide access permissions,

inconsistent ([P,Y,T]) :-
ref access(P,Y,T), perm_access(S,P,Y,T),
isinD2([D,S1}),not (isinD2([D,P1)),
perm_access(D,P,Y,T),
failed(Ssl1,P1,Y1,T1l).

we must include all of the containsD clauses that support the perm_access clause in this role. Recall that
domain containment is implemented using lists, so the isinD2 relations above (shown in detail Appendix C)
indirectly reference containsD relations. To find all supporting containsD relations we take each
instanD clause we added to the summary, above, and find the domain that contains the network elements listed
in these instanD clauses. For each such domain, we recurse and find the containing domains. Each clause

listing these containment relationships is added to the summary.

Next, consider the perm_eq clause shown in the earlier CLP(R) fragment. The destination of the
exported capacity is the first argument. After determining if the destination is external, we follow the same
supporting clauses as described for the perm access clause. In addition, if the destination domain of the
perm_eq clause contains the local domain (directly or transitively), part of the capacity listed can be used by the
local domain. To account for this locally used capacity, we must include all local ref_eq clauses that reference
this perm_eq clause in the external summary. Such clauses are identified by inspecting the process referenced

inthe ref eqclause. The supporting relationships for the ref eq clauses are detailed below.

Next, consider clauses representing queries.

ref_access(P2,Yl,readOnly) :-
instanD (82, process (f snmpxmon’),P2),
instanD (/' gw’ ,process (' snmpdReadOnly’),P1l),
(instan(P1,(1,3,6,1,2,1,2,2,1,8],Y1)).
ref_eq(P2,Y1,0.02,1,avg) :-
instanD (S2, process (/ snmpxmon’) ,P2),
instanD (‘gw’,process (’ snmpdReadOnly’) ,P1),
(instan(P1,[1,3,6,1,2,1,2,2,1,8]1,Y1)).
ref_eq(P2,Y1,0.98,0,avg) :-
instanD (82, process (/ snmpxmon’),P2),
instanD (/ gw’ ,process (/ snmpdReadOnly’) ,P1),
(instan(P1,[1,3,6,1,2,1,2,2,1,8]1,Y1)).
queries (P1,P2) :-
instanD (S1,process (! snmpxmon’),P1l),
instanD (' gw’ ,process (' snmpdReadOnly’) ,P2) .

Ifa ref access clause is external, then the network element shown in the second instanD relationship,
instanD ('gw’ ,process (' snmpdReadOnly’),P1l),

will be external. Given an external ref access clause, we must find the clauses that instantiate the process
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listed in the first instanD relationship,

instanD (S2, process (! snmpxmon’) ,P2),
and add each instantiation to the external summary. As in the cases shown above, we must also add the
corresponding instan clauses to the external summary. Recall that we can find all relevant clauses by
inspecting the instanD relationship used in the body of the instan clause (see above). Instances of the
second instanD clause are not added to the external summary, because it denotes an external instantiation. The

external instantiation is part of another domain’s external summary.

The ref_eq clauses are handled similarly. Because ref_eq clauses depend on exactly the same clauses
as do ref access clauses, we need not find the supporting clauses for ref_eq clauses, because ref eq
clauses are always are present in conjunction witha ref_access clause. Note, however, that we must add the
clauses representing all of the modes of the query distribution to the summary. The Compiler generates these in

order, so finding all relevant ref eq clauses is easy.

The queries clause is treated just like the ref_ access clause, and the appropriate instantiations, as
shown by the first instanD relationship in the queries clause are also added to the external summary. The
queries clause is used only by provides and requires clauses denoting peer configuration requirements.

Therefore, we must find clauses such as
provides (Y2, ’protocol’, f=', ’snmp’, X) :-
instanD (S1,process (! snmpdReadOnly’),Y2),
queries (¥X,Y2).
that refer to the same process in the instanD clause as the process listed in the queries clause. Such clauses
support the queries clause, and are added to the external summary. The relationships used in the body of such

clauses have already been added to the external summary.

Next, consider configuration conditions.
provides (Y2, fprotocol’, ’'=', ’snmp’, X) :-
instanD (81, process (! snmpdReadOnly’) ,¥2),
queries (X,Y2).
requires(Y2, ’‘root, ’'=', 'true’, X) :-
containsD([S1l,'wisc~cs’]),
Y2 = S1.
There are two ways such clauses can be part of the external summary: if the clause denotes a peer configuration
condition and the peer is external, or if the clause denotes an enclosing configuration condition on an external
domain. The first case was handled above, when looking for clauses that support a queries clause. The
second case can be determined by inspection. If the destination domain listed in the containsD relationship is
the parent of the domain being summarized, then the clause is added to the external summary. The containsD

relationship supports the configuration condition, so it must also be added to the summary.

Finally, consider domain containment.

containsD([’wisc~cs’, ' romano’]).
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Any containment clauses that are needed in the external summary will already have been included in support of
perm access, providesor requires clauses. Therefore, the remaining containsD clauses need not

be included.

In two cases, we can further summarize the external capacity distributions. First, if there are ref eq
clauses for several local clients referencing the same external server, we can aggregate the client’s rate
distribution, as discussed in Section 5.1.2, and include this aggregate distribution in the summary, rather than the
distribution of the individual clients. Recall that aggregation can introduce one-sided error in the aggregate
distribution. However, because this aggregation is performed anyway, during the course of the proof, we can

aggregate locally without adding additional error.

Second, if a perm_eq clause exports permission to a containing domain, and there are local references to
this perm_eq clause, we can summarize the locally used capacity in the same way, and include ihe aggregate

distribution of the locally used capacity in the summary.

5.3.3. An Externalization Algorithm

This discussion leads to the following algorithm for identifying the clauses from a NMSL specification that
are involved in cross-domain interactions. The output of this algorithm, Algorithm 5.1, is the external summary of
a single domain. This algorithm assumes that the database of clauses includes only the clauses for a single
administrative domain. Algorithm 5.1 first builds a tree of containment and instantiations (line 5). Clauses that
are entered into the tree are also marked as being local or remote, depending on their containment (anything
contained in the local domain is local, everything else is remote). The algorithm processes the clauses a second
time, looking for those involved in remote interactions. Local and remote interactions are determined (lines 8,13
and 22) using the domain tree built in the first step. For each remote interaction, the algorithm determines the type
of interaction (protection, capacity or configuration), and searches the clause database for all supporting clauses
(line 10), using the requirements detailed above. Recall that supporting clauses describe instantiations, domain
containment, peer configuration, and query distribution. For exported capacities, the amount of capacity used by
local queries is looked up in the clause database, aggregated, and included in the external summary (lines 16
through 18). Each time a remote reference is located (line 22) the distribution mode is combined with other
modes already in the summary, to form an aggregate distribution within the summary. The output is the set of

clauses for the external summary (line 25).

Efficiency is an important issue in implementing this algorithm. In the first pha;se, we iterate over the entire
database of N clauses. Entering a clause into the domain tree takes time to find the right place in the tree to add
the clause. The time depends on the depth of the tree. The depth of the tree is bounded by the height of the
domain containment hierarchy, which is constant over the course of a proof. Thus, the total preprocessing time is
OW).
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Given: A set of NMSL clauses for a single domain and external interactions

Compute: The external summary

Algorithm:

1 BuildSummary:

2 DomInstTree = &; Summary = &J;

3 for each NMSL clause f

4. if ( type of fis "ContainsD" or "InstanD" )

5: insert fin DomInstTree;

6: for each NMSL. clause f {

7 if ((type of fis "perm" or "ref" or "provides" or "requires” or "count")
8 and (dest of fis not local) ) {

9: append f to Summary;

10: for each clause e that supports f

11: append e to Summary;

12: ]

13: if ( (type of fis "perm_eq") and ( dest of fis not local) ) {
14: if ( dest domain of f contains local domain ) {
15: Aggregate = JJ;

16: for each clause, e, that references f

17: combine e with Aggregate;

18: add Aggregate to Summary;

19: }

20: append fto Summary;

21: }

22: if ((type of fis "ref_eq" ) and (dest of fis not local) )
23: combine f with Summary;

24: }

25: output Summary;

Algorithm 5.1. Build an external snmmary

In the second phase, we iterate over the database of N clauses again. We assume that the database is
accessed with a hash table, with keys based on the type of the clause, the source domain or process specified by
the clause, and the clause’s destination, an object or another process or domain, as needed for finding supporting
clauses, discussed above. Determining if a clause is a local or remote interaction requires a constant-time lookup
in the clause database and a check to see if the domain of the clause in question was marked local or remote. For

each clause denoting a remote interaction, we must find all supporting clauses. Looking up each supporting clause
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is constant time, because we hash on the parts of the clause used for determining support. Furthermore, if we
remove a supporting clause from the fact database when we add it to the external summary, we never process such
clauses twice. This means that over the entire list of N clauses, the time to process each clause is constant.

Therefore, the complexity of finding these conditions is O(N).

For each clause denoting the export of a capacity, we must determine if part of the capacity is taken up
locally (line 14), which is a constant-time lookup in the clause database. For such clauses, we must determine the
aggregate load of all local accesses (lines 16 through 18) and add this to the external summary. The time to do
this requires looking up the clause for each mode of the rates (constant time), adding the mode into the aggregate
(constant time). There will be one clause for each instance of each mode of the rate in the clause database, so the
bound on the number of clauses we must look up is N. The maximum number of modes per instance is m, which
is a bounded by a constant, as shown in Section 5.1.2. The time to incorporate a new mode into the aggregate is
constant time, also shown in Section 5.1.2. If we remove these supporting clauses from the clause database, as we
did above, we never compute an aggregate more than once. This reduces the time to process each capacity export

to constant time, over the entire fact list. Therefore, the time to calculate all capacity conditions is O (N).

Given that the bound for computing protection and configuration conditions is O(N), and the bound for
computing capacity conditions is also O(N), we see that the complexity of calculating all remote interactions is
ON).

Since we can produce external summaries, we can break up the consistency proof along domain boundaries.
Furthermore, we can perform the hierarchical proof we outlined at the beginning of this chapter. Each bottom
level domaix{’s specification can be checked for consistency separately and in parallel. Their external summaries
can be combined at the next higher level in the domain tree and checked in a later step. This process is repeated
up the tree until the root is reached. If there is to be a savings in elapsed time for the incremental consistency
check, the size of the summary for each domain must be much smaller than the size of the full specification for
that domain. If the size of the summary is close to the size of the full specification, the elapsed time to check
consistency approaches the time for the centralized method. We show in Chapter 7 that the specifications in our
test implementation have the property that their external summaries are small. Additional details of the

hierarchical implementation are also given in Chapter 7.

5.3.4. Incremental Re-evaluation

Once a consistency proof is completed, administrators can change their specifications. After any changes,
consistency must be re-evaluated. The incremental method allows us to reduce the amount of work needed for

re-evaluation. To reduce the workload, we must save the external summary for each domain’s specification.

When a specification is changed, a new external summary must be determined. If this external summary is
identical to the old external summary, then only the local, internal proof must be performed. We proved external

consistency in the previous consistency check, and since no external conditions changed, the specification is still
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externally consistent. If the external summary changes, we must re-evaluate external consistency. When using
the hierarchical method, we can still achieve a savings in this case, because we propagate the external summary up
one level in the domain hierarchy. At this higher level, we determine the external summary. If it is unchanged,
we can stop the prbof after evaluating consistency at this level. In the worst case, we must keep re-evaluating
until the root is reached. However, this is no worse than not taking advantage of the imowledge included in the

external summaries.

5.4. Summary

In this chapter, we have presented the model for consistency of NMSL specifications. This model is based
on three conditions for consistency, protection, capacity and configuration. We described methods for evaluating
specifications using this model is a centralized manner. However, centralized evaluation is limited, because
centralized evaluation can severely limit domain autonomy. To deal with this limitation, we introduced an
incremental method for evaluating consistency, based on the hierarchical organization of domains. We showed

that this incremental consistency check can solve the same problems as the centralized check.

The bottom-up hierarchical consistency check is not the only type of incremental method possible. One
alternative is to pass inter-domain relationships to the peer domain, rather than the parent domain. Restrictions
from the parent could be passed down the hierarchy, rather than up. This method might be useful if each parent
has many children, or if all domains are at the same level (that is, there is no hierarchy). Using the hierarchical
method described above, all inter-domain relationships would be evaluated at a central site. The peer-domain
method can also be helpful if the parent domain is not trusted with information about peer interaction. Because of

these advantages, we plan to investigate this method in the future.
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Chapter 6

Prescriptive Aspects

Once a specification is determined to be consistent, the specification can be used to configure the network
management processes and the newly installed configuration can be monitored and enforced. A NMSL
Configuration Installer takes output from the NMSL compiler and uses the output to configure a network manager.
The NMSL compiler does not configure a network manager directly, because configuration requires knowledge of
data formats, protocols and authentication issues. A Configuration Installer is, therefore, a separate module that
interprets the configuration output of the compiler and performs the implementation-specific bactions necessary to
install the configuration in a network management process. Enforcement means detecting and (possibly) taking
action against processes in the system that do not behave according to their specification.

The operation of the prescriptive mode is as follows. After a specification has been shown to be consistent,
the NMSL compiler is re-run with a parameter requesting configuration output of a specific type. A Configuration
Installer takes the configuration output and transmits it to each appropriate network element or process.
Configuration is achieved, in most cases, by initiating a connection to a network management process (specified in
the NMSL specification) on each affected network element, authenticating the Configuration Installer as a trusted
process, and sending, via the normal network management protocol, the configuration information. Objects
representing the configuration information were added to the MIB. In other cases, the data might be copied, in the
form of a file, to the affected network element, or even sent via electronic mail to the administrator of that network

element.

Once the configuration is installed in the system, it can be enforced. Enforcement entails monitoring the
running system to determine if the processes are operating within the specified bounds for protection, capacity and
configuration. If not, the system administrator can be notified, and, in some cases, corrective action can
automatically be taken. We now address both areas of installation and enforcement. Enforcement is not within

the scope of this thesis, so the enforcement details are all areas of future work.

6.1. Installing Configurations

We have investigated two issues in installing configurations. First, how one installs configurations in a
running system efficiently, without infringing on the autonomy of administrative domains. Second, how one

should implement the installation. The implementation depends on a solution to the issue of autonomy.

Installing configurations must be performed in a distributed way. Centralized configuration would require a
single administrative domain to have control over all other administrative domains. Given this control, the single
Configuration Installer would have to update the configuration of all parts of the network management system.
Configuring from a central site is not viable for two reasons. First, it violates the autonomy of the administrative
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domains. Second, it is likely that the overall management specifications will be updated frequently, on the order
of minutes for a large group of domains. With such a high frequency, it would be common for an installation to
still be running when the next installation begins. However, a specification for an individual administrative
domain will not be updated as frequently, on the order of days or weeks. If we distribute installation, we can
preserve the autonomy of the administrative domains, reduce the frequency at which individual parts of the
management system get reconfigured, and decrease the elapsed time it takes to install a configuration. In Chapter
5, we introduced the idea of an incremental consistency check, allowing us to implement a consistency checker

distributed over the domain hierarchy. We can distribute the automated configuration over this same hierarchy.

Recall that we required administrators to give enough information in their specifications so that a local
consistency check, using the centralized method, can be performed. A side effect of this requirement is that
enough information is present to perform local configuration installation. However, to avoid installing
inconsistent specifications, the local domain must wait until the parent domain has passed back the success of the
consistency check before beginning installation. This method allows the most autonomy possible, because it does
not require domains to give the ability to configure their processes to other domains. In our implementation, we

follow these steps (check for local consistency, wait for remote results, install locally).

There are several choices for installing the configuration into a running system. All of the methods assume
that the Configuration Installer can authenticate itself with the systems and processes that it is configuring. One
method is to use a standard network management protocol, such as SNMP or CMIP, to install the configuration in
an extended MIB. This method is preferable because the processes of the network management system already
speak a management protocol, so no additional management interfaces are needed in the rest of the system. In our
experience, using a management protocol is also the fastest way of installing a new configuration. Another
method would be to use a remote execution service, for example, the Berkeley UNIX remote shell (rsh) service.
Remote execution services generally have higher overhead management protocol, and are not always available.
For example, a dedicated router may only allow configuration via the management protocols it supports.
Furthermore, because interactions are not directly with the management process, it is not as easy to determine if
the installation was successful. The final method, using electronic mail or a similar service, is also the least
reliable. With electronic mail, the Configuration Installer has no control over when or if the new configuration
will be installed. Such installations would probably be performed by a human system administrator, and humans
occasionally act even less predictably than software. In all of these approaches, there is the possibility that the
installation will fail, however, the ability of the Installer to compensate for failures decreases as we move to higher
and higher level protocols. It is also reasonable for the Installer to support more then one method for installing
configurations, so if one fails, it can try another.

The NMSL Configuration Installer takes an optimistic approach to installing configurations, no matter
which method is used for installation. The approach is optimistic in that it allows the installation to go ahead,
assuming the configuration of the network will be consistent by the time the installation is complete. The installer
assumes the installation will succeed, and if the installation fails, the installer notifies the administrator of the
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failure. This approach allows as many of the processes and network elements as possible to be configured
correctly. Also notice that the network management system is technically in an inconsistent state while a new
configuration is being installed. In the middle of the installation, some parts have the new configuration, some
have the old configuration. As soon as all parts of the system are brought up to date, the configuration will be
consistent again. The behavior of management interactions taking place during reconfiguration is undefined. The
implementation should make it possible to detect this being-reconfigured state, so any erroneous behavior can be

ignored and interactions can be retried when reconfiguration completes.

6.2. Enforcing Specifications

Enforcing NMSL specifications means making sure all processes in a running network management system
operate within the bounds of the specification (operation is defined in terms of the process’s interactions).
Enforcement requires the ability to monitor and modify the state of a running management system. If that ability

is not available, it is possible for the system to be inconsistent, despite the consistency of the specification.

An issue of enforcement is determining how often and in what way the behavior should be monitored. If
one monitors too often, it affects the performance of the system. If one does not monitor frequently enough, the
system could remain inconsistent for a long time for the problem is noticed. To monitor the network management
system, we can either make queries of the processes of the management system itself or, for some statistics and
networks, we can passively’ monitor the traffic on the network. Passive monitoring reduces the effect of the
Enforcer on the network’s performance, but cannot be used for monitoring the activity within a network element
itself. For example, we cannot tell if a management process is overloaded because it’s specified capacity was t00
high just by monitoring the requests sent to the management process over the network. In this case, the number of
requests are within the specified limits, but the specification for the recipient was incorrect. These are not new

issues; they are present in any network management decision.

In the network management systems with which we have experience, only some processes can be
monitored. All network management agents can be monitored, but managers often do not include a monitoring
capability. In such systems, we can only enforce the specification on the agent processes. We can monitor the
query rates, access types, and configuration requirements, but, since we only have one-sided monitoring, this does
not completely solve the problem of enforcing the specification on the processes initiating the queries. For
example, if t0o many processes are sending queries, this may not be noted in the agent’s statistics, because the
overload of queries might get dropped or lost in the network itself. Even passive monitoring of the network can
miss such overloads. In the future, all network management processes should define a standard interface to make
their status available via the management protocols. This would allow us to enforce the specification on all

processes.
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6.3. Summary

Distributing the configuration of the network management system is as important as distributing the
consistency check. Distribution allows the NMSL system to provide an automated configuration installer, but
does not require administrators to give up complete control of their domains. We have shown that breaking up
configuration along domain boundaries achieves this goal. Full enforcement of a NMSL specification in a running
system requires access to the current state of all processes in the system, for both monitoring and control. If either

of these is not present, the system can only give limited guarantees on the consistency of the running system.
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Chapter 7

Implementation and Performance Measurement

In this chapter, we describe the implementation of the NMSL system and provide performance
measurements for the system. There are four parts to the system: compilation, incremental consistency checking,
configuration installation, and configuration enforcement. We present the implementation and performance of the
NMSL Compiler and Consistency Checker. For the compiler, we present measurements of its speed. For the
Consistency Checker, we present both centralized and incremental performance results. We first describe the time
to check several domain specifications in a centralized manner. We then describe the times to separately evaluate
and summarize the domain specifications, followed by a hierarchical check of the parent specification with the
summaries generated in the first step. We compare the performance of the centralized and incremental methods.
Memory utilization and the size of the summaries are also presented. We also outline our implementation of the

Configuration Installer and discuss how one might implement a Configuration Enforcer.

7.1. The NMSL Compiler

The NMSL Compiler consists of three phases: preprocessing, parsing, and semantic analysis. The input to
the first phase is a textual specification. Preprocessing is performed using the C preprocessor{21]. The second
phase reads the preprocessed input, checks its syntax and reorders the descriptions in a way that simplifies
semantic checks. This reordering causes network element and domain descriptions to be checked after data
module and process descriptions. In the third phase, the specification is checked for semantic errors, and compiled
into either CLP(R) clauses for the Consistency Checker or configuration instructions for the Configuration
Installer. The type of output depends on the options given to the NMSL Compiler. Some inter-description checks

are also made, most importantly, checks of process instantiations within network element descriptions.

The semantic checks and output generators are coded in an extension language. The Compiler reads in the
semantic and output generating routines, written in the extension language, when it is initialized. This extension
language is a simple, interpreted language tailored to the syntax of NMSL. An example of the extension language
and a more detailed description if its syntax is given in Appendix D. The extension language is a list of
procedures. Each procedure is introduced by a predicate and has two or more sub-procedures. One sub-procedure
performs semantic checks; the others generate output of different types. The parse tree for each clause and
declaration is tested against each predicate in the extension file. If a match is found, the semantic processing sub-
procedure is executed. Then the appropriate output sub-procedure is executed, depending on the compile-time
options. There are two benefits to using an extension language. First, the extension language reduces the time
spent in developing the compiler. Second, it allows an easy way to incorporate new output types into the

compiler.
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7.1.1. Consistency Output

One type of compiler output is the collection of CLP(R) clauses for the Consistency Checker. Each clause
in NMSL is translated into one or more CLP(R) clauses. Each clause states the information present in the clause
and relates the information to the description containing the clause. Recall that descriptions group clauses and that
there are four description types: type descriptions, process descriptions, network element descriptions, and domain

descriptions.

In Figure 7.1, we show an example of translating part of a NMSL specification into CLP(R). This example
shows the type of output the compiler generates for consistency checking. The specification fragment is taken

1

process "snmpPing" ( Proc, SysName )
queries Proc {
on SysName;
requests mgmt.mib.system.sysUpTime;

rate avg {
mode 1 0.02 1 gps:
mode 2 0.98 0 gps;
}

}

end process "snmpPing".

!

ref_eq(P2,Y1,0.02,1) := (1)
instanD($2,process (‘ snmpPing’),P2), (2)
instanvar($2, [P2, ' SysName’],Shost), (3)

instanvar (82, [P2,'Proc’], Svar), “)
instanD (Shost,process(Svar),Pl), (5)
instan(Svar, [1,3,6,1,2,1,1,31,Y1). (6)

ref eq(P2,Y1,0.98,0) :-
instanD (S2, process (! snmpPing’) ,P2),
instanvar(S2, [P2,’SysName’], Shost),
instanvar(S2, (P2, 'Proc’],Svar),
instanD (Shost,process (Svar),P1l),
instan{(r1,[1,3,6,1,2,1,1,31,Y1).

Figure 7.1.
Translation from NMSL into CLP(R)
A rate clause expanded into CLP(R)
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from the process description in Figure 4.2. In the example, the rate clause shown in the upper box is translated
into the CLP(R) statements shown in the lower box. The other statements are shown to give the reader some

context.

The two modes of the rate clause translate into two CLP(R) statements. We explain the details of this
translation for the first mode; the second mode is translated analogously. Line 1 states that some process instance
p2 will reference some object instance Y1 2% of the time with one query per second. Lines 2 through 6 relate
the clause to the containing process description. Since the rate is being listed for a query, these lines also relate
the clause to the destination of the query. Line 2 says that P2 is any instance of the snmpPing process on any
network element, S2. S2 will be constrained by clauses generated for process clauses found in network
element descriptions. Lines 3 and 4 constrain the network element and process identifiers, Sysname and Proc
in the upper box, to the constant values, Shost and Svar, respectively. Shost and Svar identify the
parameters specified when the process is instantiated. Line 5 constrains the process instance P1 to the instance of
the process identified by Proc on the network element identified by Sysname. Line 6 constrains Y1 to the

object instance of mgmt .mib.system.sysUpTime found in process P1.

7.1.2. Configuration Output

The other type of compiler output is a collection of configuration instructions. We have currently
implemented Compiler output procedures that generate output to configure ISODE SNMP agent processes[31, 32].
The output is passed to a Configuration Installer to reconfigure the management system. The output is textual, and
consists of configuration files for the agents. These configuration files include such data as export types and
interface definitions. They also include configuration conditions such as the name of the person to contact about
the agent process. For export types and interface definitions, we output the information described in exports,

queries,and interface clauses. Configuration conditions are specified using provides clauses.

An example of configuration output is shown in Figure 7.2. This output is meant to configure an ISODE
SNMP agent process, and the specification fragment is taken from the network element description in Figure 4.2.
The exports clause translates into the first and second lines of output. Only the domain name ("wisc-cs")
and the permitted access type (ReadOnly) are used by this configuration file format. The queries clause
translates into the third line of output. The process and network element names are used to configure the recipient
of trap messages. The notation of the output is the ISODE configuration file format. The token 0.0.0.0
represents an access code. 0.0.0.0 means no access code is required. The token 1.17.3 is used to link
community and view stattments. The community statement defines a community name and its
permissions. The view statement lists the objects that make up the view. The trap statement lists the process

to which traps should be sent, and the network element instantiating the process.
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process "snmpdReadOnly" ::=
exports to "wisc-cs" {
objects mgmt.mib;
access ReadOnly;
rate max {

}
}
queries "snmpt"™ {
on "“romano";
traps any;
}
end process "snmpdReadOnly".

|

community “"wisc-cs"™ 0.0.0.0 readWrite 1.17.3
view 1.17.3 mib-2
trap snmpt romano

Figure 7.2.
Translation from NMSL into Configuration Output
An exports and a queries clause translated into
the ISODE SNMP agent configuration file format

7.1.3. Compiler Performance Measurement and Discussion

We first measured the performance of the NMSL Compiler. To test compiler performance, we compiled
several sample specifications. Each specification included a module describing the SNMP MIB, two agent
processes (A and A,), three manager processes (M |, M5, and M 3), two domains (one local and one remote), and
N network elements. In our measurements, we varied N from 2 to 20. One network element in each specification
is in the remote domain. This network element instantiates processes A; and M. Each network element in the
local domain (the remaining N—1) instantiates the other agent process, A;. One network element in the local
domain instantiates the other two manager processes, M, and M. This style of specification is meant to be
representative of a specification for a real network management system. In later sections, we refer to this data set
as the Compiler Test data set. Figure 7.3 illustrates a specification with 6 network elements. These specifications
are modeled after the NMSLTEST specification, shown in Appendix B.

The size of the specifications vary from 99 lines (for 2 network elements) to 473 lines (for 20 network
elements). Each additional network element adds about 30 lines of text. Each line of text corresponds roughly to
a NMSL clause.
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Figure 7.3.

The Components of a Six Network Element Specification
Boxes are network elements, circles are processes.
Arcs show Interactions between Managers and Agents.

Figure 7.4 shows the speed of the compiler. The data point for zero network elements is the time to compile
an empty specification. This graph shows that the time to compile a specification varies linearly with its size
measured in network elements. The size of the output of these tests, measured in CLP(R) clauses, also grows

linearly with the number of network elements in the specification.

These measurements show that the compiler performs reasonably well for the test input. Although these
measurements test small specifications, we feel it is reasonable to expect the time to remain proportional to the
size of the specification as the size increases. The size of systems we hope to eventually specify with NMSL is on
the order of thousands or hundreds of thousands of network elements. The data shown in the graph implies an

average of 0.26 seconds per network element. For a 100,000 network element specification, then, we would
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Figure 7.4.
Compile times for NMSL Specifications
Varying the number of network elements in the Compiler Test Specification
Tests run on a DECstation 3100 with 20 Mbytes of memory

expect the compilation time to be over 7 hours. However, such a large network management system would be
made up of several, possibly hundreds of domains. The specification for each domain is written separately.
Therefore, we compile the specification for each domain separately and use the incremental method for checking
the set of specifications for consistency. Separate compilation preserves the autonomy of the domains and allows
parallel compilation.
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7.2. The Consistency Checker

We implemented an incremental Consistency Checker, as described in Chapter 5. There are two parts to
this implementation, a Consistency Evaluator and an Externalizer. The Evaluator determines the consistency of a
specification that has been translated into CLP(R). The Externalizer determines the external summary of a

specification for a single administrative domain.

These two tools are used to implement the hierarchical proof we described in Chapter 5. First, a domain
administrator writes a specification for the local domain and its interactions with other domains. The
administrator then uses the NMSL Compiler to translate this specification into CLP(R) clauses. The Consistency
Evaluator takes the CLP(R) clauses as input, adds CLP(R) evaluation rules to this list, and uses the CLP(R)
interpreter to find inconsistencies. If the specification is consistent, the Externalizer is executed. The
Externalizer’s input is the same as the input to the Consistency Evaluator, the CLP(R) rules for a single
administrative domain. The Externalizer uses Algorithm 5.2 to compute the external summary of an
administrative domain. Its output is the local domain’s external summary in the form of CLP(R) clauses. This
output is sent to the administrator of the parent domain. The administrator of the parent domain combines the
external summaries for all of the child domains with the CLP(R) clauses for the specification of the parent domain
and then evaluates this combination of clauses using the Consistency Evaluator. This process continues until the
root of the tree is reached. The consistency or inconsistency results are propagated back down the tree. Most of

these steps can be automated, but all are executed manually in our current implementation.

7.2.1. Performance of Consistency Checking

This section describes the performance results for the Consistency Checker. We present measurements of
the execution time and memory usage of the CLP(R)-based Evaluator. We also present measurements of the size
of the Externalizer’s output and the speed of the Externalizer. We compare the performance of using the

Evaluator in a centralized way with the incremental method.

We use four sample specifications as test data to perform these measurements. The first specification is the
output of the Compiler Test discussed in Section 7.1.3. The other three specifications are written for real network
management systems. One is for a small network management system used in testing the NMSL system. Another
is for WISCNET, the Wisconsin educational backbone network. The third is for CICNET, the midwest regional
backbone network. All of theses specifications are similar in content. See Appendix B for the full specification of
the NMSLTEST system. The WISCNET and CICNET systems are similar to the NMSLTEST system, except the
number of network elements are different, and the names for network elements and certain processes are different.

Since they are so similar, the text of their specifications is not included.

The NMSL test network management system (NMSLTEST) consists of seven network elements and two
domains. There are two agent processes, a trap (alarm) handling process, and a manager process. One agent is

instantiated on each of six of the network elements. NMSLTEST also queries an agent within the CICNET
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domain. The manager process is instantiated on one network element and performs “keep alive’’ tests on the
network elements it manages. It also performs *‘keep alive’” tests on the gateway to CICNET. The trap handler is
instantiated on one of the network elements and accepts traps from any of the agents. The specification is 190
lines long.

WISCNET contains a single domain with 22 network elements. The management system manages these
network elements and queries the local CICNET gateway (in the CICNET domain). Each network element
instantiates an agent process; one element instantiates a trap handling process and two manager processes. One
manager process sends ‘keep alive’” queries to the network elements in the network and of the CICNET gateway,
and displays the status of the network elements for the network administrator. The other manager process gathers
performance statistics. The trap handler accepts traps from the agent processes. The specification for WISCNET
is 683 lines long.

CICNET is comprised of a single domain with 13 network elements. Each network element instantiates an
agent process; one network element instantiates a trap handler, two monitoring processes and a performance
gathering process. Both of the monitoring processes send ‘‘keep alive’ queries to each network element in the
network. The two monitoring processes use different protocols for their queries. The specification for CICNET is
494 lines long.

We divide our performance measurements into centralized and incremental measurements. We benchmark
the Centralized Evaluator using the Compiler Test data set. We then show the time to centrally evaluate the
three-domain data set. For this test, we combine the specifications for the three network management systems into
a single, large specification. Next, we present the incremental measurements. We show the relative sizes of the
input and output to the Externalizer for the three-domain data set and for a specification from the Compiler Test
data set. We also show the time to separately evaluate and externalize the specification for each domain in the
three-domain data set. Finally, we compare the time to execute the centralized and the incremental evaluators

using the three-domain data set.

Figure 7.5 summarizes the measurements of centralized evaluation time, for the Compiler Test output,

varying the number of network elements in the specifications from 2 to 20. There are three sets of measurements

shown in this graph, one showing the elapsed time on a Sequent Symmetry with 40 Megabytes of main memory®,
one showing the elapsed time on a DECstation 3100 with 20 Megabytes of main memory, and the Iast showing the
combined user and operating-system time on the DECstation 3100. We see that the evaluation time increases
faster than linearly, though the degree of the increase cannot be accurately determined because it depends on the
implementation of CLP(R). The rapid increase in elapsed time on the DECstation 3100 from 16 to 17 network
elements is because of increased paging activity due to the high memory utilization of CLP(R). The combined
user and operating system time on the DECstation 3100, which was essentially the same as clapsed time before

5We used the Sequent Symmetry for its large main memory, not for its parallelism.
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Figure 7.5.
Centralized Consistency Evaluation Time
For the Compiler Test Specification

this incongruity, continued to grow at the same rate for the tests of 17 through 20 network element specifications.
This is a machine specific problem; no such increase occurred on the Sequent, with a larger main memory. This

performance is bad, as we discuss in Section 7.2.2, not because the problem is difficult, but because of the
CLP(R)-based implementation.

Figure 7.6 summarizes the measurements of memory utilization during centralized evaluation. We also
used the data set from the Compiler Test output for these measurements. This graph shows the results for both the
Sequent Symmetry and the DECstation 3100. As with evaluation time, memory use increases at a rate faster than

linear. The shape of the curve is similar to the curve shown for evaluation time. This is because each time
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CLP(R) evaluates a rule, it adds more information to its proof data structure. No memory is released until the
proof completes.

Next, we evaluated the combined specifications for the NMSLTEST, WISCNET and CICNET domains.
This test measures the centralized evaluation for specifications of a real, multi-administrative domain management
system. Figure 7.7 shows the elapsed time, combined user and system time, and memory usage to check the
three-domain data set using the centralized Evaluator running on the Sequent. The large difference between the
elapsed time and the user and system times is due to paging and swapping activity.
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Elapsed Time (min:sec) 81:44.33

User + System (min:sec) 9:09.46

Memory Usage (Mbytes) 167
Figure 7.7.

Centralized Evaluation of the Three-Domain Data Set

Next, we present the performance results for incremental evaluation. Figure 7.8 shows the input and output
sizes for test specifications run through the Externalizer. We tested the Externalizer on four inputs, the
NMSLTEST specification, the WISCNET specification, the CICNET specification, and the 20 network element
Compiler Test specification. We show the total input size, measured in CLP(R) clauses, and the number of input
clauses denoting rate modes. The table also shows the execution time of the Externalizer for these tests. The tests

were run on a DECstation 3100.

In these tests, the size of the external summary is much smaller than the input specification. This means that
most of the specified interactions stay within a single domain, and that there is a small set of inter-domain
interactions. The CICNET summary is empty because CICNET exports data only to itself and its subdomains.
When comparing centralized and incremental evaluation, the number of clauses denoting rate modes is important,
because the cost of evaluation increases at a greater than linear rate with the number of clauses denoting rate
modes. If the number of these clauses increases in proportion to the size of the specification, then the time to
evaluate the specification will increase rapidly. If the number of these clauses increases in proportion to the size
of the specification, then the time to evaluate the specification will increase rapidly. In these tests, the number of
clauses denoting rate modes varied directly with the size of the specification. Finally, the Externalizer is very fast
compared to the Consistency Evaluator.

Next, we determine the time to perform an incremental consistency check. To perform this test, we use the

three-domain data set. This data set includes interactions between three existing network management systems,

Input Size Number of Output Size Execution
Specification (CLP(R) clauses) Input Clauses (CLP(R) clauses) time (sec)
for Rate Modes
NMSLTEST 431 15 10 0.39
WISCNET 911 47 11 1.50
CICNET 722 37 0 1.01
Compiler Test (20
network elements) 643 3 8 0.71
Figure 7.8.

Comparisons of Input and Output Sizes for the Externalizer
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NMSLTEST, WISCNET, and CICNET. In our specifications, CICNET administrative domain contains both the
NMSLTEST and WISCNET administrative domains. This administrative layout is shown in Figure 7.9. Using
the domain-based incremental consistency check, the following steps are performed. First, the specifications for
NMSLTEST and WISCNET are checked for consistency. Next, external summaries are made for these same
specifications. The summaries are combined with the CICNET specification and checked for consistency.
CICNET is the root of our test tree, so the consistency check stops here.

Figure 7.10 summarizes the elapsed time for individual steps in the incremental consistency check. The
table shows elapsed times for both the Evaluator and the Externalizer for NMSLTEST and WISCNET. The
Externalizer is not run on the CICNET specification because CICNET is the root of the tree. These tests were run
on the Sequent Symmetry. Note that the times in Figure 7.10 are significantly smaller than those in Figure 7.7.

Figure 7.11 compares the difference between running consistency checks using a centralized vs. an
incremental method. This figure summarizes the results from Figure 7.7 and 7.10 and includes the order of
execution shown along a timeline. In a real incremental proof, the evaluation of specifications for domains at the
same level in the tree, like NMSLTEST and WISCNET, can be run in parallel and the evaluation is shown this

Figure 7.9.
Domain Hierarchy Used in the Incremental Tests
Arrows show propagation of summaries to the parent domain

Consistency Externalizer
Specification Evaluation Elapsed Time (sec)
Elapsed Time (min:sec)

WISCNET 2:39.8 4.1
NMSLTEST 6.3 1.1
CICNET .

+ summaries 2:27.0 N/A

Figure 7.10.

Incremental Evaluation of the Three-Domain Data Set
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way in Figure 7.11. The CICNET specification cannot be checked until it can be combined with summaries from
both NMSLTEST and WISCNET. The execution time for WISCNET is longer, so the CICNET check begins
when the execution of the Externalizer produces the external summary for WISCNET. The evaluation of
CICNET completes about 5 minutes after the incremental evaluation begins. For comparison, the centralized
check of the combined specifications for NMSLTEST, WISCNET and CICNET is shown at the bottom of the
figure. It executes for a total of over 9 minutes, counting the system and user time. The parallelism accounts for
only 6 seconds of this difference, so the remaining factor must be due to the smaller specifications being
evaluated. Since we do not have an automated way of passing information between administrative domains, such

time cannot be taken into account in these tests.

7.2.2. Discussion

The performance measurements of incremental evaluation, based on the test specifications, are encouraging.
With the current Consistency Evaluator, it is much faster to execute the consistency check incrementally than it is
to execute the check centrally. The incremental method runs faster because the amount of data checked in each
part of the proof is smaller. Therefore, the improved speed depends on the small size of the external summaries.

Incremental Evaluation

NMSLTEST | — Evaluator
::—————-—-———%—! i ) R Externalizer | :
| WISCNET | E ! 5
] 1 b 1 |
§ : : CICNET + Summaries :
! i ; F ? :
| Centralized Evaluation
| NMSLTEST + WISCNET + CICNET | §
: — f ; 1F — / {
i i : llll I i : 1 I 'I’ll ] : Illll I :
0:00  0:05 235 240 245 250 505 510 900  9:05

Figure 7.11.
Comparison of Incremental vs Centralized Elapsed Times
Combined User and System Time in minutes:seconds.
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The data used to measure the Externalizer included only a small amount of external interactions. We
preferred to use real (or realistic) specifications for the measurements, but did not find any with a large amount of
external interaction. From informal inspections of other network management systems, it appears that this trend of
small external interactions is common. However, we have not extensively investigated enough management

systems to draw more definite conclusions.

We have investigated the effect on the incremental results of replacing the CLP(R) Evaluator with a
different evaluator. We showed in Section 5.1.2 that the time to compute an aggregate query rate grows linearly
with the size of the aggregate. Our test specifications indicate that the number of modes, and thus, the number of
rates, grows linearly with the size of the specification. This means we need to calculate, on average, O(N),
aggregates, where N is the size of the specification, and implies that it takes at least O(N 2) time to calculate all
aggregates. This complexity results means that the best evaluator we could devise could take no less than O (N 2)
time to evaluate a specification. The incremental evaluation method reduces the total size of each local
specification. If the sizes of the external summaries are small, as our measurements indicate, then combined
summaries and parent-domain specifications will also be smaller. Depending on the constant multiplier (the time
to evaluate each individual condition), our performance using the incremental method could be much better. In
the current implementation, the constant is very large, so we see a large improvement. If the constant is smaller,
the improvement in performance will be much lower. However, because we can perform the incremental tests in

parallel, we can still achieve a faster elapsed time for the incremental proof, even for a small constant multiplier.

Our measurements of the NMSL Consistency Checker show that our choice of CLP(R), while a reasonable
prototype, would need replacement to achieve acceptable performance. The main sources for the poor execution
time of CLP(R) are inefficient searching algorithms and unneeded re-evaluation. Prolog implementations and
CLP(R) use hashing on keys made up of the clause name and one or more parameters to reduce the search time.
CLP(R) only hashes on the clause name, and NMSL uses many clauses with the same name. This means many
searches down the list at each bucket need to be performed. This effect is most noticeable for the contains
relation, used in representing the MIB object containment structure. Re-evaluation is caused by the top-down
proof method used by CLP(R). As the proof moves forward, properties are proved. However, if the same
property is needed again later in the proof, the property is re-proved. Some properties, such as instantiations of
processes in NMSL, are re-proved many times during a CLP(R) proof. One can often use a technique called
memoization[8] to combat this problem. Memoization simply remembers results proven (facts) within the
CLP(R) fact database, and uses these results when they are re-referenced. This method did not prove useful in
optimizing our implementation.

We spent many hours optimizing the CLP(R)-based evaluation rules. The main method for reducing the
evaluation time was to add cuts to the proof when possible. A cut is used by CLP(R) to reduce backtracking
during evaluation by telling the evaluator which choices need not be reconsidered during backtracking. Using cuts
is tricky, because they can change the meaning of an evaluation rule if used incorrectly. By strategic placement of

cuts, we were able to get a 20-fold improvement in execution time. However, cuts do not solve the basic problems
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of poor searching and re-evaluation.

Two alternatives to CLP(R) are to use a different logic programming language or to write a specialized
evaluator. One alternative language is Coral. As we described in Chapter 5, NMSL proofs can be performed in
Coral. Coral uses a bottom-up approach for proving results, rather than CLP(R)’s top-down approach. Because of
the bottom-up approach, Coral avoids re-evaluation of parts of the proof. Coral was not used because a compiler
was not yet available when we chose an evaluation language. A specialized evaluator could be tailored to
performing consistency evaluation for NMSL specifications. This means we can optimize the algorithms used and
achieve better performance than we could get from using a general purpose language. Such choices are matters

for future research.

7.3. The Configuration Installer

We implemented a Configuration Installer for NMSL. It can install configurations into a running SNMP-
based network management system. The system in which we use the Configuration Installer is based on the
ISODE SNMP[31,32] agent and trap handler and a NYSERNET[33] monitoring process. This system, the
NMSLTEST system also used in specification tests, runs on a small group of computers in the University of
Wisconsin Computer Sciences Department.

To install the configuration into a running system, we use the SNMP protocol whenever possible. However,
the standard MIB for SNMP does not include a common method for describing the configuration of network
managers. Therefore, we added a new class of objects to our experimental SNMP system to hold configuration
data. We also added a trigger object to cause reconfiguration. The object, an integer, normally has the value zero.
When the object is set to one, the agent reconfigures itself, and sets the value back to zero. The agent answers no
queries while it reconfigures itself. The NMSL Configuration Installer attempts to connect to each agent in the
system, authenticate itself, and load the new configuration. To reduce the reconfiguration overhead, the Installer
only reloads the configuration if the agent is not currently configured correctly. If any one of these steps fails, the
installer tries to restart the agent (by killing the old process and re-executing the agent program). If restarting
fails, the domain administrator is notified. In the last case, the running network management system is in an
inconsistent state, although the specification was consistent. Recovering from such failures is one problem we

plan to investigate in the future.

7.4. The Configuration Enforcer

We also implemented a very limited Configuration Enforcer. In our implementation, we only have access to
the current state of agent processes. We did not have access to the runtime state of manager processes. This

severely limited the amount of enforcement possible.

Agent processes respond to queries, but never initiate queries. Therefore, if the NMSL system installs the
configuration in the agent, the agent should remain correctly configured unless an administrator installs a new

configuration. Monitoring these agents for correct behavior consists of making sure the currently installed
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configuration matches the one the NMSL system installed. If the configuration is not correct, the agent is
reconfigured. We can monitor the query rates, access types, and configuration requirements. Since we only have
one-sided monitoring, this does not completely solve the problem of enforcing the specification on the processes
initiating the queries, nor will this monitoring always tell us if an agent process is processing queries at the
specified rate. For example, if too many processes are sending queries, this may not be noted in the agent’s
statistics, because the overload of queries might get dropped or lost in the network itself.

Enforcement of specifications was not a goal for our current research, however we do want to investigate
enforcement issues in the future. To effectively enforce a specification requires all network management
processes to make their state available via the management protocols for both monitoring and control. We discuss

this and other issues of enforcement in our discussion of future work, in Chapter 8.
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Chapter 8

Conclusion

This dissertation addressed problems caused by the increasing use of automated network management: that
of managing the management system. We have described a language for specifying multi-administrative domain
network mahagement systems. We have also shown how this language is used to find consistent configurations
for network management systems using an incremental proof technique. This technique preserves the autonomy
of the individual domains while still allowing cooperation and controlled sharing of information between multiple

domains.

We have described a specification language, NMSL., that allows network administrators to describe the
configuration of their management systems and the interaction between the components. Most interactions are
described in terms of the information passed between processes. Additional interactions are described in terms of
the configuration requirements on the network management system. The specification includes not only the

internal behavior of an administrative domain, but its external interactions as well.

We described a way to check NMSL specifications for consistency. The definition of consistency includes
protection, capacity, and configuration, and allows us to ensure compliance with all requirements on interactions
between components of a network management system. An important part of these specifications is the ability to

place requirements on an entire domain and its interactions with other domains.

We described an incremental method for evaluating the consistency proof. We showed that we can use this
incremental approach to partition the consistency proof along administrative domain boundaries. The incremental
method allows us to preserve the autonomy of administrative domains. Only information pertaining to the
interactions between domains needs to be shared, internal information about a domain remains private. It also has
a performance advantage over evaluating the proof in a centralized manner by allowing multiple parts of the proof
to be performed separately, and even simultaneously on different hosts.

We also described how one can use a consistent specification prescriptively. By automatically installing a
consistent configuration into the network management system, we help to ensure that the components of the
system will meet the specification. The specification can also be enforced after installation, although our

investigation did not emphasize this aspect of the research.

Finally, we showed the practicality of these ideas in an implementation. The implementation concentrated
on the language and consistency checking issues. We wrote specifications for existing network management
systems, and showed that such specifications can be evaluated by our implementation. We provided performance
measurements for both the compiler and consistency checker, and showed that the implementation works well for

small network management specifications. In our implementation, the incremental proof method has an great
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advantage over the centralize method. We also showed that, given relatively small numbers of interactions
between domains, the incremental method can always give better performance than the centralized method.

8.1. Future Work

Our investigation of NMSL suggests several areas for future research. Many of these are improvements to
NMSL. Our current capacity model is very simple. There is no way to describe the length of time that a process
remains in a mode of query behavior, nor is there a way to describe temporal or other cause-and-effect
relationships between queries. Adding either of these to the capacity model significantly increases the complexity
of the model. Simulation or evaluating a queuing model are a possible solutions for small specifications, like
those presented in this dissertation, but both would be too costly for large specifications (of thousands or tens of
thousands of network elements and process instances). Two possible alternative approaches to investigate are
temporal logics and approximation methods that could be solved analytically. At this point, we have no feel for

which alternative offers the most promise.

Another area for improvement is the enforcement of specifications. To fully enforce specifications, we need
a way to monitor and control manager processes, not just agent processes. Like agent processes, manager
processes should be accessed via a network management protocol. Making other processes accessible requires
extensions to the management information base to describe the state of application processes. Given these
extensions and a standard mechanism of locating manager processes at runtime, a specification can be enforced on
all network management processes. Another issue is how to enforce a specification on processes that cannot be
reconfigured, or those processes that continue to violate the specification despite being reconfigured (buggy
software). Enforcement in this case would require some form of rules for penalizing uncooperative processes.
These rules would generally limit a process that violates its specification and prevent it from communicating.
Such limits could also violate the consistency of a specification. A specification presumably includes descriptions
of the correct behavior for uncooperative processes, including interactions with other processes. However, limits
would ensure a2 well-known behavior on processes, and limit the effect of uncooperative processes on the rest of

the network management system.

We also wish to evaluate NMSL’s ability to specify network management systems based on other
management standards, for example, the OSI standards. Experiments with such systems will help to evaluate our

language design and suggest possible areas of improvement.

The current evaluator is very slow for large specifications because CLP(R) is a general logic programming
language, and is not optimized for our problem. To solve this, we want to investigate using other logic
programming languages to evaluate NMSL. One possible language is CORAL. CORAL is promising because it
addresses one of the main problems we found with CLP(R), re-evaluation of facts. CORAL performs proofs
bottom-up and never needs to re-evaluate facts. The other main performance problem, poor searching, may also
be solved by the bottom-up proof technique. We must also determine if CORAL can represent any extensions we
make to the capacity model. If not, we will need to look at different languages, or write a specialized evaluator.
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The Consistency Checker relies on human interaction to run the Externalizer and to send the external
summary to the parent domain’s administrator for use in the incremental proof. Human interaction is also needed
in returning inconsistency results. Manual propagation means that the tools do not have to worry about
synchronization, but it also means we cannot accurately determine the average time to perform an incremental
proof. We want to automate the propagation of summaries and results. Automation requires that we deal with
synchronization within a single consistency check and between proofs of different specification versions. One
possible way to simplify these problems is to use a different incremental approach. One approach is to exchange
external summaries between peer domains rather than relying on a domain hierarchy. This approach reduces
synchronization to a pairwise problem. Additional information may also be needed in a specification to help the
Evaluator and Externalizer cooperate to ensure all of the necessary data is present before checking the consistency
of a specification.

We also want to extract other information from a specification, in addition to the specification’s consistency.
For example, if a specification is inconsistent, suggestions on how to resolve the inconsistency might be returned.
Such suggestions would be based, in part, on previous inconsistency results or by comparing the differences
between subsequent specification versions. For example, a common error might be to specify the modification of
a read-only object. If this inconsistency is found, the suggestion can be made to inspect the offending queries
clause, rather than checking the corresponding export.s clause. Another possibility is to use the specification to
find resources in the system that are underutilized. A specification could be consistent and could be used by a
running system, but there are often economic factors that require resources (hardware, network links) to be

utilized more efficiently. Both of these uses go beyond the issue of consistency evaluation.

We claimed that the language can be used not only for network management systems, but also for the more
general problem of distributed systems management. The main difference between these two types of systems is
the amount of information that needs to be managed. A distributed systerns manager has more processes to
manage and has more management processes. The structure of the language is appropriate for either management
problem. However, the current evaluator cannot perform well for large specifications. We want to test NMSL on
large network management and distributed management systems. Such tests are necessary to better evaluate the

choices we made in our implementation and, if necessary, to re-implement parts of the NMSL system.

Finally, our work has shown the use of applying incremental approaches to management specification. We
feel that incremental or distributed approaches can be used effectively in other aspects of network management.
Current computer network management systems are highly centralized. Almost all network management
decision-making is done by a centralized network management system. Management functionality can be
distributed in large networks, and management decisions can be made incrementally. Local management
processes can monitor, control and gather statistics about small parts of a network. Summaries can be passed to
higher level processes. Alarms can also be handled in this way, reducing the load on centralized alarm handlers.
A decentralized structure can be more robust than a centralized system, but is also more complex. Much work has

been done to decentralized management in telephone networks. However, as recent problems in the long distance



telephone networks show, there is still work to be done in designing robust, distributed management systems.
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Appendix A

The NMSL Language Reference Manual

A.l. Introduction

This reference manual describes the implementation of the NMSL language. It is meant for programmers or
administrators that wish to write NMSL specifications and who need little tutorial help. This description is
bottom-up, starting at the lowest level of the syntax. Throughout, characters or symbols presented in the
typewriter font are tokens of the language itself. The structure of the encapsulated ASN.1 notation is not

discussed here, except as required in the discussion of other descriptions.

A.2. Lexical Conventions

A NMSL specification is stored in one or more files. Each file is made up of a sequence of ASCII
characters. The files are first preprocessed using the C preprocessor[21]. The C preprocessor performs macro

expansion. When the preprocessing phase is complete, the files have been reduced to a sequence of tokens.

There are five classes of tokens: reserved keywords, identifiers, constants, operators, and other separators.
Some tokens are prefixes of other tokens. In this case, the compiler finds the maximal length valid token. Tokens
are separated by whitespace. Whitespace is typically a space, tab, or newline character, and has no other meaning
than to separate tokens. Some tokens, namely separators and operators, need no whitespace to differentiate them

from the surrounding tokens.

There are two types of comments in NMSL. The token /* denotes the beginning of a comment. All
tokens and characters inside a comment are ignored, until the token */ is seen. The other type of comment is

introduced by -- and ends with a newline. Comments do not nest.

A.2.1. Reserved Keywords

The following list of keywords are reserved and may not be used except in their specific contexts.
Keywords are case-sensitive.

access interface of seconds
avg K on speed
bps max opsys supports
count Mbps peer system
cpu minutes process to

domain mode provides traps
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enclosing module qps type

end modifies queries version

exports net rate

external objects requests

hours octets requires

In addition, the following keywords, defined by ASN.1[19], are reserved:

ABSENT END NAMES SIZE
ACCESS ENUMERATED NOTATION STATUS
ANY EXPLICIT NULL STRING
APPLICATION EXPORTS OBJECT SUPERIORS
BEGIN FALSE OBJECT-CLASS SYNTAX
BIT FROM OBJECT~TYPE TAGS
BOOLEAN IDENTIFIER OCTET TRUE
CHOICE IMPLICIT OF TYPE
COMPONENT IMPORTS OPTIONAL UNIVERSAL
COMPONENTS INCLUDES PRESENT VALUE
CONTAINS INTEGER PRIVATE WITH
DEFAULT MACRO REAL
DEFINITIONS MAX SEQUENCE
ENCRYPTED MIN SET

A2.2. Identifiers

An identifier is either simple or compound. A simple identifier is a sequence of letters, digits, and the _
(underscore) and - (hyphen) symbols. Identifiers must start with a letter. Case is significant. A compound
identifier is a sequence of simple identifiers separated by . (period).

A.23. Constants

Constants come in two forms.

FloatNumber |
String

Constant ::=

A floating point constant is a sequence of digits, optionally followed by a decimal point and a fractional part,
which is a sequence of digits. Character siring constants begin and end with a double quote. All characters
between the quotes are part of the constant. A double quote may be made part of a string by entering two

successive double quotes, e.g. "I said, ""hivww",

A.2.4. Operators

Five operators are provided for describing value ranges, these operators are =, <=, <, >, >=,

A.3. Meaning of Identifiers

Identifiers are used for parameterized process declarations and for naming objects specified in ASN.1

descriptions. Process parameters are simple identifiers. They are place holders and allow one to specify constant
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values on a per-instance basis rather than a per-declaration basis. Parameters are all assumed to hold the place of
string constants. Parameters also have a scope, which is the process declaration in which they are defined. Object
names are compound identifiers. An object name identifies a kind of data stored in an instance of a network
management process. Syntactically, each element in the object name is an identifier defined in an ASN.1 module
and exported to other declarations. Compound identifiers allow the expression of hierarchical names, such as
those used for naming objects in the SNMP MIB. For example, mgmt .mib.system. sysUpTime is the name
of one object and mgmt .mib.system names all objects below mgmt .mib.system in the SNMP MIB

naming hierarchy.

A 4. Expressions

NMSL has three types of expressions: primaries, range expressions, and object lists. Primaries are used to
identify declaration names within other declarations. Ranges associate configuration conditions with a value or

range of values. Object lists are simply lists of object names.

A.4.1. Primaries
A primary is either a string or a simple identifier.
primary ::= String | Identifier
An identifier is a primary if it is declared as a parameter within the same declaration in which it is used. Identifiers

currently only identify strings.

A.4.2. Range Expressions

Range expressions appear in provides and requires clauses. Range expressions associate

configuration conditions with a value or a range of values.

Range ::= CondName |
CondName = String |
CondName Operator FloatNumber Units |
count ( CondName ) Operator FloatNumber Units

CondName ::= String
Operator ::= =|<|<=]|>]>=

Units ::= K | hours | minutes | seconds | octets | EMPTY

A configuration condition is a name. Syntactically, it is a character string constant. A configuration
condition can be assigned a value or a range of values in a provides clause. A configuration condition can be
testedina requires clause. Specifyinga count of a configuration condition tests the number of instances of
the configuration condition rather than its value. The scope of configuration conditions are defined by the clauses

that contain them.
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A.4.3. Object lists

An object list is a list of object names defined in a type declaration. The object names are separated by

commas.
VarList ::= VarList , compound-identifier |
compound-identifier

There is no semantic significance to the order in an object list. Clauses that use object lists treat all elements of the
list equally.

In the using subclause (section A.5.2), it is necessary to associate values with object names. In this case,
each element in the object list is an object name and a constant value, separated by = (an equals sign). There is

no semantic significance to the order in an object list.

AsgnVarList ::= AsgnVarList , compound-identifier = Constant |
compound-identifier = Constant

A.5. Clauses

NMSL supports several clauses for describing the interactions between parts of a management system.

Clause ::= SupportsClause |
ExportsClause |
QueriesClause |
ProvidesClause |
RequiresClause |
CpuClause |
InterfaceClause |
OpsysClause |
ProcessClause |
DomainClause |
SystemClause

A.5.1. The Supports Clause

A supports clause is introduced by the supports keyword and lists the objects from the ASN.1
module descriptions supported in the description.
SupportsClause ::= supports VarList ;
Support of an object means the definition of this object is imported from the ASN.1 module and can be used in
other clauses within the same description. Supports clauses are currently used only for compile time checks,

not by the output generators.

A.5.2. The Exports and Queries Clauses

An exports clause is introduced by the expoxrts keyword and lists constraints on the objects exported
to some process or domain. A queries clause is introduced by the queries keyword and lists the

parameters to a query, including the process that is queried, the objects read or modified, and the query rates.
ExportsClause ::= exports to primary { ExpSbclauses }
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QueriesClause ::= queries primary { QrySbclauses }

ExpSbclauses ::= ExpSbclause ExpSbclauses

ExpSbclause ::= TrapSh | ERateSh | ObjSh | AccessSb

QrySbclauses ::= QrySbclause QrySbclauses

QrySbclause ::= OnSb | TrapSb | ORateSh | ReqSb | ModSb | UseSb

TrapSh ::= traps Traplds ;

Traplds ::= StringlList | any

StringList ::= String | String , Stringlist
ERateSh ::= rate max { RtModes }

ObjSh ::= objects VarList ;

AccessSh ;= access AcType ;

AcType ::= ReadWrite | ReadOnly [WriteOnly ! None
OnSb ::= on primary ;

ReqSh ::= requests VarList ;

ModSh ::= modifies VarList ;

UseSh ::= using AsgnVarlList ;

QORateSh ::= rate RiType { RtModes }
RtType ::= max | avg | Float

Rtmodes ::= RtMode RtModes

RtMode ::= mode Integer Float Integer qps ;

An exports clause lists the recipient of the export, which must be the name of a domain. It also lists the modes
in which the exporter operates. There is typically a single mode, but more are allowed. The clause also lists the
types of objects that are exported. The rate modes listed in the rate subclause are the maximum rate at which
the exporter can receive queries without becoming overloaded. Finally, the type of access that may be performed

on the exported object types are listed in the access subclause.

A queries clause lists the process that will receive the query and the host on which the receiving process
is instantiated. Several subclauses are used to list the objects involved in the query. The requests subclause
lists objects whose values are to be returned by the query. The modifies subclause lists objects whose values
will be changed by the query. The using subclause lists objects whose values are to be used by the recipient of
the query in satisfying the query. The object and value pairs listed in the AsganrList select particular instances
of the objects listed in the requests and modifies subclauses.

Both clauses list trap types, also known as exceptions or alarms, that are exported or queried. In this case,

exporting a trap means that processes are allowed to send trap messages of the named types to the exporier. A

query that specifies a trap means that the trap types specified will be sent to the exporting process.
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A.53. The Provides and Requires Clauses

A provides clause is introduced by the provides keyword and describes a single configuration
condition and the value or range of values provided for this condition. A requires clause is introduced by the
requires keyword and describes a single configuration condition and the value or range of values that are
required of this configuration condition.

ProvidesClause ::= provides Range ToPart ;

RequiresClause ::= requires Range OfPart ;

ToPart ::= to PeerPart | EMPTY
OfPart ::= of PeerPart | EMPTY
PeerPart ::= peer | enclosing | self

Specifying a range in a provides clause says that the configuration condition can have any value in that range.
Specifying a range in a requires clause says that all values of the configuration condition given in
provides clauses must be in the specified range. There is no current meaning to specifying a count in the
range of a provides clause, and attempts to use count ina provides clause are flagged as errors by the
compiler. Specifying a count in a requires clause says that the number of instances of the configuration
condition must be in the specified range. There is one instance for each instantiation of a process providing a

configuration condition, and one instance for each network element or domain providing a configuration condition.

The context of the provision or requirement is listed using the to or of subclauses. If the context is
peer, the condition applies to all peers of communication. The peer context can only be used within process
descriptions. If the contextis containing, the condition applies to the containing context. A network element
contains processes, and a domain contains domains and network elements. For example, specifying
containing within a process description means the condition applies to all network elements that instantiate the
process. If the contextis self, the condition applies to the current description and any contexts listed within the
description. For example, specifying self within a domain description means the condition applies to the
domain description and any network elements or domains that are listed as members of that domain. If no context
is specified, it defaults to self.

A.5.4. The Cpu and Interface Clauses

These clauses are introduced by the cpu or interface keywords and describes the cpu type and

network interface characteristics, respectively.

CpuClause ::= cpu String ;
InterfaceClause ::= interface String {
net String
IFAddresses
type String

speed Integer IFRate }
IFRate ::= bps | Mbps
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IFAddresses ::= EMPTY |
address String ; |
address String ; remaddress String ;

The name of a CPU type is a string. There is currently no standard naming convention for CPUs. The name for
an interface is also a string. This name should correspond to the name used by the management system to identify

the interface. On Berkeley Unix variants, these names should be the names listed by the netstat program.

The net subclause lists the network name accessed via this interface. The string should be the standard
name for the network as assigned by a standards body, for example, those assigned by the Internet naming
authority. If there is no naming authority for a particular management system, the names may be chosen
arbitrarily, but names must be used consistently (the same name each for each reference to the same network, and

different names for different networks).

The type of the interface is a string and should be a standard name if possible. For example, the SNMP
MIB defines names for standard interfaces.

The address and remaddress subclauses list the address of the interface and, for point-to-point links,
the address on the far end of the link. The compiler uses the network type to determine if it is appropriate to
specify a remote address for the interface. For IP networks, these addresses must be the internet addresses of the

interface and, for point-to-point links, the remote interface.

The speed is the nominal speed of the network accessed via this interface.

A.5.5. The Opsys Clause

An opsys clause is introduced by the opsys keyword and describes the operating system type and

version for a network element.
OpsysClause ::= opsys String version String ;

A.5.6. The Process Clause

A process clause is introduced by the process keyword and describes a single process instance
1

within a network element description.

ProcessClause ::= process String ProcParams ;
ProcParams ::= ( PrParamList ) | EMPTY
PrParamlList ::=  PrParamList , PrParam | PrParam
PrParam ::= String

The process clause is used to instantiate processes described with process descriptions. The name of the
process must match the name of a process description found elsewhere in the specification. If that process
description is parameterized, a list of values to associate with the identifiers in the description’s parameter list

must be present. Since identifiers are only used for strings, the values must all be strings.
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A.5.7. The Domain and System Clauses

These clauses are introduced by the domain or system keywords. Each lists a single member of a
domain.
DomainClause ::= domain String ;
SystemClause ::= systemString ;
These clauses are used only within a domain description. They describe the containment relations between the

domain being described and its members.

A.6. Descriptions
There are four kinds of descriptions in NMSL. A description is used to group all of the properties

(described by clauses) of a part of a network management system. A group of descriptions makes up a

specification. The order of descriptions in a specification is unimportant.

Description ::=  TypeDescription |
ProcessDescription |
NetElemDescription |
DomainDescription

Specification ::= Description | Description Specification

Each description is identified by a name, as discussed below. The names of the descriptions must be unique

within a specification.

A.6.1. Type Descriptions

A type description is used to define a management information base (MIB). More than one MIB may be
present in a single specification.
TypeDescription ::= module ASNisyntax .

A type description starts with the module keyword. The body of a type description is an ASN.1 module. The
ASN.1 module syntax is described in [19]. The OBJECT-TYPE and OBJECT-CLASS ASN.1 macros for the
IETF standards[28, 35] are supported. In our implementation, new ASN.1 macros cannot be defined.

A.6.2. Process Descriptions

A process description is used to define the external behavior of a network management process.
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ProcessDescription ::= process String ParamSpec : :=
ProcBody
end process String .
ProcBody ::= ProcClause ProcBody | ProcClause
ProcClause ::=  SupportsClause | ExportsClause | QueriesClause |
ProvidesClause | RequiresClause
ParamSpec ::= ( ParamList ) | EMPTY
ParamlList ::= Paramlist , Identifier | Identifier

Any MIB objects used in the specification must be imported by including a supports clause. The behavior of
the process is described in terms of data exported, using the exports clause, queries made on other processes,

using the queries clause, and configuration constraints, using the providesand requires clauses.

Process descriptions can be parameterized with a list of identifiers. When the process is instantiated, a value
must be specified for each identifier. Currently, all identifiers are assumed to identify string constants. In the
future, they may be used for identifying floating-point constants as well. Identifiers are valid for the scope of the
process description. Their names must be unique within a single process description, but the same name may be
used again in another process description. When a process is instantiated, the values listed are used in place of the

identifiers for consistency and configuration output.

A.6.3. Network Element Descriptions

A network element describes a hardware component attached to the network, such as a computer, router, or

gateway, but not the wires over which data passes.

NetElemDescription ::= system String : :=
SysBody
end system String .

SysBody ::= SysClause SysBody | SysClause

SysClause ::= CpuClause | InterfaceClause | OpsysClause |
ProvidesClause | RequiresClause | ProcessClause

A device is described in terms of the interface to the network, using the interface clause and the type of cpu,
with the cpu clause. The type of operating system is also specified, using the opsys clause. Configuration

conditions can be specified for a network element using the provides and requires clauses.

Network elements also instantiate processes, using the process clause. If the comresponding process
description is parameterized, values must be specified for the parameters. These values are matched left-to-right
with the identifiers in the process description. Instantiating a process implies the instantiation of that process’s
exports, queries, and configuration conditions. It is important to remember this because the aggregate query rates
depend on the number of process instances. The count of a configuration condition also depends on the number

of process instances for a condition specified withina process description.



82

A.6.4. Domain Descriptions

Domain descriptions are used to group network elements and domains and to specify domain-wide

requirements on the interactions within a domain and between domains.
DomainDescription ::= domain String : :=

DomBody
end domain String .
DomBody ::= DomClause DomBody
DomClause ::= DomainClause | SystemClause | ExportsClause |

ProvidesClause | RequiresClause

The members of a domain are listed using the systemand domain clauses. A domain description can restrict
the export of data from the domain to other domains by including a exports clause. A domain can make
additional constraints on the configuration within the domain or on its containing domain by including

provides and requires clauses.

A.7. Grammar

Following is a concise list of the NMSL grammar, using the BNF-style notation used throughout this

language reference manual.

Specification ::= Description | Description Specification
Description ::=  TypeDescription |
ProcessDescription |
NetElemDescription |
DomainDescription

TypeDescription ::= module ASNIsyntax .

ProcessDescription ::= process String ParamSpec : :
ProcBody
end process String .

ProcBody ::= ProcClause ProcBody | ProcClause

ProcClause ::=  SupportsClause | ExportsClause | QueriesClause |
ProvidesClause | RequiresClause

ParamSpec ::=  ( Paramlist) | EMPTY
ParamlList ::= ParamlList , Identifier | Identifier
NetElemDescription ::= system String : :=
SysBody
end system String .
SysBody ::= SysClause SysBody | SysClause
SysClause ::= CpuClause | InterfaceClause | OpsysClause |

ProvidesClause | RequiresClause | ProcessClause

DomainDescription ::=domain String : :=
DomBody
end domain String .

DomBody ::= DomClause DomBody




DomClause ::=

DomainClause | SystemClause | ExportsClause |
ProvidesClause | RequiresClause

SupportsClause ::= supports VarList ;

ExportsClause ::= exports to primary { ExpSbclauses }

QueriesClause ::= queries primary { QrySbclauses }

ExpSbclauses ::=

ExpSbclause ::=

QrySbclauses ::=

QOrySbclause ::=
TrapSh ::=
Traplds ::=
StringList ::=
ERateSh ::=
ObjSh ::=
AccessSbh ::=
AcType ::=
onSh ::=
ReqSh ::=
ModSh ::=
UseSbh ::=
ORateSh ::=
RiType ::=
Rtmodes ::=
RiMode ::=

RequiresClause ::

ToPart ::=
OfPart ::=
PeerPart ::=

CpuClause ::=

InterfaceClause ::

IFRate ::=
IFAddresses ::=

OpsysClause ::=

ExpSbclause ExpSbclauses

TrapSh | ERateSb | ObjSb | AccessSb
QrySbclause QrySbclauses

OnSb | TrapSb | QRateSh | ReqSb | ModSb | UseSb
traps Traplds ;

StringList | any

String | String , Stringlist

rate max { RtModes }

objects VarList ;

access AcType ;

ReadWrite | ReadOnly |WriteOnly | None
on primary ;

requests VarList ;

modifies VarList ;

using AsgnVarlList ;

rate RtType { RtModes }

max | avg | Float

RtMode RtModes

mode Integer Float Integer gps ;

ProvidesClause ::= provides Range ToPart ;

= requires Range OfPart ;
to PeerPart | EMPTY
of PeerPart | EMPTY
peer | enclosing | self
cpu String ;

= interface String {
net String
IFAddresses
type String
speed Integer IFRate }

bps | Mbps

EMPTY |
address String ; |
address String ; remaddress String ;

opsys String version String ;
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ProcessClause ::= process String ProcParams ;
ProcParams ::= ( PrParamlList y | EMPTY
PrParamList :>=  PrParamlList , PrParam | PrParam
PrParam ::= String
DomainClause ::= domain String ;
SystemClause ::= systemString ;
VarList ::= VarList , compound-identifier |
compound-identifier
AsgnVarList ::=  AsgnVarlList , compound-identifier = Constant |
compound-identifier = Constant
Range ::= CondName |
CondName = String |
CondName Operator FloatNumber Units |
count ( CondName ) Operator FloatNumber Units
CondName ::= String
Operator ::= =f<<=]|>]|>=
Units ::= K| hours |minutes | seconds | octets | EMPTY
primary ::= String | Identifier
Constant ::= FloatNumber |

String
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Appendix B

The NMSLTEST Specification

This appendix is divided into two parts. The first section is the specification for the NMSLTEST system,
described in Chapter 7. Parts of this specification are also used in examples in Chapter 5. The second section
shows the CLP(R) representation of the NMSLTEST specification, as output by the NMSL compiler. The initial
part of the CLP(R) representation is for the MIB and has been abbreviated here. The representation of the
process, network element and domain descriptions follow these object descriptions. The text of the MIB is not
included in this appendix. The reader may refer to RFC1156[27] for the full text of the MIB.

B.1. The NMSL Specification for NMSLTEST

#include "tests/smi"
#include "tests/mib"

process "snmpdReadOnly" ::=
supports mgmt.mib; -- entire MIB subtree

provides "protocol" = "snmp" to peer;
requires "protocol" = "udp" of enclosing;
exports to "monitor" {
objects mgmt.mib.system,mgmt.mib.at;
access ReadOnly;
rate max {
mode 1 1.00 10 gps;
}
}
exports to "wisc-cs" {
objects mgmt.mib;
access ReadOnly;
rate max {
mode 1 1.00 10 gps;
}

}
end process "snmpdReadOnly".

process “"snmpdNoEgpReadOnly" ::=
supports
mgmt .mib.system, mgmt.mib.at,
mgmt .mib.interfaces,
mgmt .mib.ip, mgmt.mib.icmp,
mgmt .mib.tcp, mgmt.mib.udp;

provides "isode";
requires “protocol" "udp" of enclosing;
provides "protocol" = "snmp" to peer;



queries "snmpt" {
on “romano";
traps any;
rate max {
mode 1 0.01 1 gps;
mode 2 0.99 0 gps;
}
}
exports to “"wisc-cs"™ {
objects mgmt.mib;
access ReadWrite;
rate max {
mode 1 1.00 10 gps;
}
}
end process “snmpdNoEgpReadOnly™.

process "snmpt" ::=
requires “protocol" = “udp" of enclosing;
provides "protocol™ = "snmp" to peer;
provides "isode-traps":

exports to "wisc-cs" {
traps any:;
rate max {
mode 1 1.00 10 gps;
}
}

end process "snmpt".

process "snmpxmon" ::=
supports mgmt.mib; -- entire MIB subtree
provides "protocol™" “snmp" to peer;
requires "protocol" "snmp" of peer;

requires "protocol" = "udp" of enclosing;
queries "snmpdReadOnly" {
On "gw“ ’.

requests mgmt.mib.interface.ifTable.ifEntry.
rate avg { mode 1 0.02 1 gps; mode 1 0.98 0

}
queries "snmpdNoEgpReadOnly" {
on "“romano";

requests mgmt.mib.interface.ifTable.ifEntry.
rate avg { mode 1 0.02 1 gps; mode 1 0.98 0

}
queries "snmpdNoEgpReadOnly" {
on "gruyere";

requests mgmt.mib.interface.ifTable.ifEntry.
rate avg { mode 1 0.02 1 gps; mode 1 0.98 0

}
queries "“snmpdNoEgpReadOnly" {
on “asiago";

requests mgmt.mib.interface.ifTable.ifEntry.
rate avg { mode 1 0.02 1 gps; mode 1 0.98 0

}
queries "snmpdNoEgpReadOnly" {

ifOperStatus;
gps; }

ifOperStatus;
gps: }

ifOperStatus;
aps; }

ifOperStatus;
gps; }
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on “poona®™;
requests mgmt .mib.interface.ifTable.ifEntry.ifOperStatus;
rate avg { mode 1 0.02 1 gps; mode 1 0.98 0 gps; }

}

queries “"snmpdNoEgpReadOnly"™ {
on "beaufort";
requests mgmt .mib.interface.ifTable.ifEntry.ifOperStatus;
rate avg { mode 1 0.02 1 gps; mode 1 0.98 0 gps; }

}

queries "snmpdNoEgpReadOnly"™ {
on "grilled":
requests mgmt .mib.interface.ifTable.ifEntry.ifOperStatus;
rate avg { mode 1 0.02 1 gqps; mode 1 0.98 0 gps; }

}

end process "snmpxmon".

#define DEC_SYS (Name,Contact,Loc)
system Name ::=
cpu decstation;
interface 1n0 {
net wisc-research;
type ethernet-csmacd;
speed 10000000 bps:;
}
opsys ultrix version 4.0;
process "snmpdNoEgpReadOnly";
provides "sysContact"™ = Contact;
provides "sysLocation" = Loc;
provides "protocol" = “udp";
end system Name

PPl P P Ol

system "gw" ::=
cpu cisco;
interface one {
net cicnet;
type T1:
speed 1000000 bps:
}
interface two {
net wisc-research;
type ethernet-csmacd;
speed 10000000 bps:
}
interface three |{
net wisc-herd;
type ethernet-csmacd;
speed 10000000 bps;
}
opsys cicso version 2;
process "snmpdReadOnly";
provides “protocol" = “udp";
end system “"gw".

system “romano" ::=
cpu decstation;
interface 1n0 {



net wisc-research;
type ethernet-csmacd;
speed 10000000 bps;
}
opsys ultrix version 4.0;
process "snmpt";
process "snmpdNoEgpReadOnly";
process "“snmpxmon";

provides "sysContact" = "Dave Cohrs <dave@cs.wisc.edu>";
provides "sysLocation™ = "6372 Comp Sci;
provides "“protocol"™ = "udp";

end system “romano"

DEC_SYS("asiago", "Bart Miller <bart@cs.wisc.edu>",
"6381 Comp Sci")
DEC_SYS ("poona™, "Jeff Hollingsworth <hollings@cs.wisc.edu>",
"6376 Comp Sci™)
DEC_SYS("beaufort", "R Bruce Irvin <rbi@cs.wisc.edu>",
"6376 Comp Sci"™)
DEC_SYS("grilled", "Rob Netzer <netzerfcs.wisc.edu>",
"6358 Comp Sci")
DEC_SYS ("gruyere", "Joann Ordille <joann@cs.wisc.edu>",
"6372 Comp Sci™)

domain wisc-cs ::=
system gw;
system asiago;
system romano;
system gruyere;
system poona;
system beaufort;
system grilled;

end domain wisc-cs.

domain monitor ::=
external;
system gw;

end domain monitor.

B.2. The CLP(R) Representation of the NMSLTEST Specification

contains([[1,3,6,1,2,1,1],11,3,6,1,2,1,1,111).
decl_access([1,3, (1,1,1],readOnly).
contains([[1, 3,6, 1,01,3,6,1,2,1,1,2]1).
decl_access([1,3, (1,2}, readOnly) .
contains([[1,3,6, },0%,3,6,1,2,1,1,311).
decl_access([1,3, +1,3],readOnly).
contains([[1, 3,6, 1,11,3,6,1,2,1,2,111).
decl_access([1,3, 12,1}, readOnly) .
contains([[1,3,6, 1,01,3,6,1,2,1,2,211).
decl_access([1,3, .
contains([({1,3,6, ,
decl_access([1,3, ‘

2,2] ,readWrite).
1,11,3,6,1,2,1,2,2,111).

1
1
1
1
2
1
2
1
2,2

1,2,2 1],readWrite).




contains{([[1,3,6,1,2,1,8,5,11,11,3,6,1,2,1,8,5,1,2]11).
decl_access([1,3,6,1, 2,1,8,5,1,2], readOnly) .
instan(p1,([1,3,6,1,2,1),[P1,1,3,6,1,2,11) :-
1nstanD(Sl,process(’snmdeeadOnly’),Pl).
provides (Y2, ’protocol’, '=', fsnmp’, X) :-
instanD(S1l,process (' snmpdReadOnly’),¥2),
queries (X,Y2).
requires (Y2, ’protocol’, '=', ’udp’, X) :-
instanD (S1,process (' snmpdReadOnly’) ,X),
Y2 = S1.
perm eq(‘monitor’,Y,1.00,10) :-
instanD (51, process (' snmpdReadOnly’),S82),
instan(s2,[1,3,6,1,2,1,1 | v1],Y).
perm_access(SZ,'monitor’,Y,readOnly) -
instanD (S1,process (' snmpdReadOnly’),S2),
instan(s2,(1,3,6,1,2,1,1 | v1],Y).
perm_eq('monitor’,Y¥,1.00,10) :-
instanD (581, process (' snmpdReadOnly’),S52),
instan(s2,(1,3,6,1,2,1,3{v1],Y).
perm_access (82, 'monitor’,Y,readOnly) :-~
instanD (S1, process (' snmpdReadOnly’), S2),
instan(s2,[1,3,6,1,2,1,3[v1},Y).
perm _eq(’wisc-cs’,Y¥,1.00,10) :~
instanD (S1l,process (! snmpdReadOnly’),S2),
instan(s2,(1,3,6,1,2,1 | vil,Y).
perm_access (52,'wisc-cs’, Y, readOnly) :-
instanD (S1,process (’ snmpdReadOnly’),S2),
instan(s2,(1,3,6,1,2,1 | V11,Y).
instan(Pl1,(1,3,6,1,2,1,11,[P1,1,3,6,1,2,1,1]) :-
instanD (S1,process (! snmpdNoEgpReadOnly'’) ,P1).
instan(?1,(1,3,6,1,2,1,31,[P1,1,3,6,1,2,1,3}]) :-
instanD (81, process (! snmpdNoEgpReadOnly’) ,P1).
instan(pP1,(1,3,6,1,2,1,2],(P1,1,3,6,1,2,1,2}) :-
instanD (81, process (' snmpdNoEgpReadOnly’),P1).
instan(p1,[1,3,6,1,2,1,4},1[P1,1,3,6,1,2,1,41) :-
instanD (S1,process (' snmpdNoEgpReadOnly’) ,P1l).
instan(pP1,{1,3,6,1,2,1,51,[P1,1,3,6,1,2,1,5}) :-
instanD (S1,process (f snmpdNoEgpReadOnly’) ,P1l).
instan(pPl1,(1,3,6,1,2,1,61,[P1,1,3,6,1,2,1,6]) :-
instanD (S1,process (! snmpdNoEgpReadOnly’) ,Pl).
instan(?P%,(1,3,6,1,2,1,7},[P1,1,3,6,1,2,1,7]) :-
instanD(S1,process (’ snmpdNoEgpReadOnly'’) ,P1).
provides (Y2, ’‘isode’, ’'noop’, ’'%s’, X) :~-
instanD (S1,process (’ snmpdNoEgpReadOnly’),Y2),
(containsD (Y2, X) ; X = ¥2).
requires (Y2, ’'protocol’, '=', ’'udp’, X) :-
instanD (S1, process (! snmpdNoEgpReadOnly’) ,X),
Y2 = 81.
provides (Y2, ’'protocol’, '=', 'snmp’, X) :-
instanD (S1,process (! snmpdNoEgpReadOnly’),¥Y2),
queries (X,Y2) .
ref eq(P2,Y1,0.01,1,avg) :-
instanD (82, process (' snmpdNoEgpReadOnly’) ,P2),
instanD (' romano’ ,process (' snmpt’),P1),
(
Yl = [traps,anyl).
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ref eq(P2,Y¥1,0.99,0,avg) :-
instanD (52, process (' snmpdNoEgpReadOnly’) ,P2),
instanD (’ romano’ ,process (' snmpt’),Pl),
(
Y1l = [traps,any]l).
queries (P1,P2) :-
instanD(S1,process (’ snmpdNoEgpReadOnly’),Pl),
instanD (' romano’ ,process (’/ snmpt’),P2).
ref_access(P2,Yl,readOnly) :~
instanD (S2,process (' snmpdNoEgpReadOnly’) ,P2),
instanD (! romano’ ,process (’'snmpt’),Pl),
(
Yl = [traps,any]).
perm _eq(’wisc-cs’,¥,1.00,10) :-~
instanD (S1, process (' snmpdNoEgpReadOnly’),S2),
instan(s2,([1,3,6,1,2,1 | V11,Y).
perm_access (52, wisc-cs’,Y, readWrite) :-
instanD(S1,process (! snmpdNoEgpReadOnly’),S2),
instan(s2,{1,3,6,1,2,1 | v1],Y).
requires (Y2, ’protocol’, ’'=', fudp’, X) :-
instanD (S1,process (/snmpt’) ,X),
Y2 = S1.
provides (Y2, ’‘protocol’, ’'=’, ’snmp’, X) :-
instanD(S1,process(’/snmpt’),¥2),
queries (X,Y2).
provides (Y2, 'isode-traps’, "noop’, '%s’, X) :-
instanD (S1,process (' snmpt’),¥2),
(containsD (Y2, X) ; X = Y2).
perm _eqg(‘wisc-cs’, [traps,any],1.00,10) :-
instanD (S1,process(’snmpt’),S2).
perm_access (52,’wisc-cs’, [traps,anyl, readOnly) :-
instanD (S1,process(’'snmpt’),S2).
provides (¥2, 'protocol’, '=’, ’‘snmp’, X) :-
instanD (81, process (' snmpxmon’) ,Y2),
queries(X,Y2).
requires (Y2, ’protocol’, ’'=’, ‘snmp’, X) :-
instanD (S1,process (’/ snmpxmon’) ,X),
queries(¥X,Y2).
requires (Y2, ’'protocol’, ’=', 'udp’, X) :-
instanD (S1,process (! snmpxmon’) ,X),
Y2 = S1.
ref_eq(P2,Y1,0.02,1,avg) :-
instanD (82, process (’ snmpxmon’) ,P2),
instanD (' gw’ ,process (’/ snmpdReadOnly’),Pl),
(
instan(p1,[1,3,6,1,2,1,2,2,1,8]1,Y1)).
ref eq(P2,Y1,0.98,0,avg) :-
instanD(S2, process (! snmpxmon’) ,P2),
instanD (' gw’ ,process (' snmpdReadOnly’),P1),
(
instan(pP1,[1,3,6,1,2,1,2,2,1,81,Y1)).
queries(P1,P2) :=-
instanD (S1,process (’ snmpxmon’) ,P1l),
instanD (' gw’,process (' snmpdReadOnly’) ,P2).
ref access(P2,Y1l,readOnly) :-
instanD (82, process (f snmpxmon’) ,P2),
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instanD (' gw’ ,process (’ snmpdReadOnly’),P1),
(
instan(pP1,{1,3,6,1,2,1,2,2,1,8]1,¥1)).
ref_eq(P2,Y¥1,0.02,1,avg) :-
instanD (S2, process (’ snmpxmon’) ,P2),
instanD (’ romano’ ,process (’ snmpdReadOnly’),P1l),
(
instan(pPi,[1,3,6,1,2,1,2,2,1,8]1,Y1)).
ref_eq(P2,Y1,0.98,0,avg) :-
instanD (S2, process (/ snmpxmon’) ,P2),
instanD (! romano’ ,process (' snmpdReadOnly’),Pl),
(
instan(?r1, {1,3,6,1,2,1,2,2,1,8]1,Y1)).
queries (P1,P2) :-
instanD (S1, process (’ snmpxmon’),Pl),
instanD ( romano’ ,process (’ snmpdReadOnly’) ,P2).
ref access(P2,Yl,readOnly) :-
instanD (82, process (! snmpxmon’) ,P2),
instanD (’ romano’ ,process (' snmpdReadOnly’),P1l),
(
instan(r1,(1,3,6,1,2,1,2,2,1,81,Y1)).
ref eq(P2,Y1,0.02,1,avg) :-
instanD (82, process (! snmpxmon’) ,P2),
instanD (' gruyere’ ,process (’/ snmpdReadOnly’) ,Pl),
(
instan(pP1,(1,3,6,1,2,1,2,2,1,8],Y1)).
ref eq(P2,Y1,0.98,0,avg) :-
instanD (82, process (' snmpxmon’) ,P2),
instanD (' gruyere'’ ,process (/ snmpdReadOnly’),P1),
(
instan(®1,[1,3,6,1,2,1,2,2,1,8],Y1)).
queries (P1,P2) :-
instanD (81, process (/! snmpxmon’),P1l),
instanD (' gruyere’ ,process (' snmpdReadOnly’),P2).
ref access(P2,Yl,readOnly) :-
instanD (S2, process (! snmpxmon’) ,P2),
instanD (' gruyere’ ,process (' snmpdReadOnly’),P1l),
(
instan(P1,[1,3,6,1,2,1,2,2,1,8]1,Y1)).
ref eq(P2,Y1,0.02,1,avg) :-
instanD (82, process (' snmpxmon’) ,P2),
instanD (' asiago’ ,process (! snmpdReadOnly’),P1l),
(
instan(p1,[1,3,6,1,2,1,2,2,1,81,¥Y1)).
ref _eq(P2,Y1,0.98,0,avg) :-
instanD (S2,process (' snmpxmon’) ,P2),
instanD (’asiago’,process (' snmpdReadOnly’),Pl),
(
instan(?P1,[2,3,6,1,2,1,2,2,1,8]1,Y1)).
queries (P1,P2) :-
instanD (S1,process (’ snmpxmon’) ,Pl),
instanD (’asiago’,process (' snmpdReadOnly’) ,P2).
ref_access(P2,Y1,readOnly) :-
instanD(S2, process (’ snmpxmon’),P2),
instanD(’asiago’,process (' snmpdReadOnly’),Pl),
(
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instan(P1,(1,3,6,1,2,1,2,2,1,8},Y1)).
ref_eq(P2,¥1,0.02,1,avg) :- ’
instanD(S2,process ('’ snmpxmon’) ,P2),
instanD (' poona’ ,process (’ snmpdReadOnly’) ,P1),
(
instan(?P1,[1,3,6,1,2,1,2,2,1,8]1,Y1)).
ref _eq(P2,Y1,0.98,0,avg) :-
instanD (52, process (! snmpxmon’) ,P2),
instanD (’ poona’ ,process (’/ snmpdReadOnly’),P1l),
(
instan{(pP1,[1,3,6,1,2,1,2,2,1,81,¥1)).
queries (P1,P2) :-
instanD (S1,process (! snmpxmon’),Pl),
instanD (’ poona’ ,process (' snmpdReadOnly’) ,P2).
ref_access(PZ,Yl,readOnly) -
instanD (S2, process (/ snmpxmon’) ,P2),
instanD ('’ poona’ ,process (' snmpdReadOnly’) ,P1l),
(
instan(p1,(1,3,6,1,2,1,2,2,1,8]1,Y1)).
ref_eq(P2,Y1,0.02,1,avg) :-
instanD (S2, process (f snmpxmon'’) P2},
instanD (' beaufort’,process (! snmpdReadOnly’) ,P1l),
(
instan(pP1,[1,3,6,1,2,1,2,2,1,8],Y1)).
ref_eq(P2,Y1,0.98,0,avg) :-
instanD(S2,process (! snmpxmon’) ,P2),
instanD (' beaufort’,process (' snmpdReadOnly’) ,P1l),
(
instan(p1,(1,3,6,1,2,1,2,2,1,8],Y1)).
queries(Pl,P2) :-
instanD(S1, process (’ snmpxmon’) ,Pl),
instanD (! beaufort’ ,process (' snmpdReadOnly’) ,P2) .
ref_access(P2,Yl, readOnly) :-
instanD (52, process (' snmpxmon’),P2),
instanD (' beaufort’,process (' snmpdReadOnly’),P1l),
(
instan(P1,(1,3,6,1,2,1,2,2,1,8],Y1)).
ref_eq(P2,Y1,0.02,1,avg) :-
instanD (82, process (/ snmpxmon’ ) ,P2),
instanD(’grilled’,process ('’ snmpdReadOnly’),Pl),
(
instan(p1,[1,3,6,1,2,1,2,2,1,8],Y1)).
ref eq(P2,Y1,0.98,0,avg) :-
instanD (82, process (' snmpxmon’) ,P2),
instanD ('grilled’,process (' snmpdReadOnly’),P1l),
(
instan(?r1,[1,3,6,1,2,1,2,2,1,8]1,Y1)).
queries (P1,P2) :-
instanD(S1, process (' snmpxmon’),Pl),
instanD(’grilled’,process (' snmpdReadOnly’) ,P2).
ref access(P2,Y1l, readOnly) :-
instanD (52, process (' snmpxmon’) ,P2),
instanD('grilled’,process (’ snmpdReadOnly’),Pl),
(
instan(pP1,[1,3,6,1,2,1,2,2,1,8],Y1)).
property('gw’,’cpu’,’cisco’).
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property (’'gw’,'net’,’cicnet’).
property(‘gw’,"type’, 'T1").
property ('gw’,’speed’,1000000).
property(’gw’,’'net’,’'wisc-research’).
property(’gw’,’type’,’ethernet-csmacd’) .
property (‘gw’,’speed’,10000000).
property(‘gw’, net’,’wisc-herd’).
property(’gw’,’type’,'ethernet-csmacd’).
property ('gw’,’speed’,10000000) .
property (’gw’,'opsys’,’cicso’).
instanD (’ gw’ ,process (’ snmpdReadOnly’), [/ gw’, snmpdReadOnly]) .
provides (Y2, 'protocol’, ’=’, ‘udp’, X) :-
Y2 = 'gw',
(instanD (Y2, ,X) ; X = Y2).
property (/ romano’,’cpu’, ‘decstation’).
property (f romano’,'net’,’wisc-research’).
property (’ romano’,’type’,’ethernet-csmacd’).
property (/ romano’,’ speed’,10000000) .
property (’ romano’,’opsys’, ultrix’).
instanD (' romano’ ,process (/ snmpt’), [/ romano’,snmpt]) .
instanD (' romano’ , process (' snmpdNoEgpReadOnly’),
[ romano’ , snmpdNoEgpReadOnly]) .
instanD(’romano’,process('snmpxmon’),[’romano',snmpxmon]).
provides (Y2, 'sysContact’, '=',
Dave Cohrs <dave@cs.wisc.edu>’, X) :-
Y2 = "romano’,
(instanD (Y2, ,X) ; X = Y2).
provides (Y2, ’sysLocation’, '=', ‘6372 Comp Scif, X) :-
Y2 = 'romano’,
(instanD (Y2, ,X) ; X = Y2).
provides (Y2, ’'protocol’, '=', 'udp’, X) :-
Y2 = ’romano’,
(instanD (Y2, ,X) ; X = Y2).
property(’asiago’,’cpu’,'decstation’).
property (’asiago’, ‘net’,'wisc-research’).
property (’ asiago’,’type’, ' ethernet-csmacd’).
property (’asiago’, ' speed’,10000000) .
property(’asiago’,’opsys’, ultrix’).
instanD (' asiago’,process (' snmpdNoEgpReadOnly’),
["asiago’, snmpdNoEgpReadOnly]) .
provides (Y2, 'sysContact’, '=',
fBart Miller <bart@cs.wisc.edu>’, X) :-
Y2 = 'asiago’,
(instanD (Y2, ,X) ; X = Y2).
provides (Y2, /sysLocation’, ’=', ’6381 Comp Sci’, X) :-
Y2 = ’asiago’,
(instanD (Y2, ,X) ; X = ¥2).
provides (Y2, 'protocol’, ’=', 'udp’, X) :-
Y2 = 'asiago’,
(instanD (Y2, ,X) ; X = Y2).
property (' poona’,’cpu’,’decstation’).
property (' poona’,'net’,’'wisc-research’).
property (/poona’,’type’,’ethernet-csmacd’).
property (/poona’, ' speed’,10000000).
property (’poona’,  opsys’, ultrix’).
instanD (' poona’,process (' snmpdNoEgpReadOnly’),



[’ poona’, snmpdNoEgpReadOnly]) .
provides (Y2, ’'sysContact’, ’=',
rJeff Hollingsworth <hollings@cs.wisc.edu>’, X) :-
Y2 = 'poona’,
(instanD (Y2, ,X) ; X = Y2).
provides (Y2, ’sysLocation’, '=’, 76376 Comp Sci’, X) :~
Y2 = ’poona’,
(instanD (Y2, ,X) ; X = Y2).
provides (Y2, ’protocol’, ’'=', fudp’, X) :~-
Y2 = "poona’,
(instanD(Y2, ,X) ; X = Y2).
property (' beaufort’,'cpu’, 'decstation’).
property (' beaufort’, 'net’,'wisc~research’).
property ('beaufort’,’type’,’ethernet-csmacd’).
property (' beaufort’, ' speed’,10000000) .
property (' beaufort’, opsys’, ultrix’).
instanD (' beaufort’,process (' snmpdNoEgpReadOnly’),
[’ beaufort’, snmpdNoEgpReadOnlyl) .
provides (Y2, 'sysContact’, =/,
'R Bruce Irvin <rbi@cs.wisc.edu>’, X) :-
Y2 = 'beaufort’,
(instanD(Y2, ,X) ; X = Y2).
provides (Y2, ’sysLocation’, ’=', 76376 Comp Sci’, X) :-
Y2 = ’'beaufort’,
(instanD (Y2, ,X) ;
provides (Y2, ’protocol’, '
Y2 = ’beaufort’,
(instanD (Y2, ,X) ; X = ¥2).
property (‘grilled’,'cpu’,’decstation’).
property (‘grilled’, 'net’,’wisc-research’).
property (‘grilled’,’type’,'ethernet-csmacd’).
property (‘grilled’, 'speed’,10000000).
property (‘grilled’,’opsys’,’ultrix’).
instanD(’grilled’,process (/! snmpdNoEgpReadOnly’),
[*grilled’, snmpdNoEgpReadOnlyl) .
provides (Y2, ’sysContact’, =/,
'Rob Netzer <netzer@cs.wisc.edu>’, X) :-
Y2 = 'grilled’,
(instanD (Y2, ,X) ; X = ¥Y2).
provides (Y2, ’sysLocation’, ‘=’, ’6358 Comp Sci’, X) :-
Y2 = fgrilled’,
(instanD(Y2, ,X) ; X = Y2).
provides (Y2, 'protocol’, '=f, ’‘udp’, X) :-
Y2 = 'grilled’,
(instanD (Y2, ,X) ; X = ¥2).
property (f gruyere’, 'cpu’,'decstation’).
property (' gruyere’,'net’,’'wisc-research’).
property (' gruyere’, ' type’,’ethernet-csmacd’) .
property (' gruyere’,’speed’ ,10000000) .
property (' gruyere’,’ opsys’,’ultrix’).
instanD ('’ gruyere’ ,process (' snmpdNoEgpReadOnly’),
['gruyere’, snmpdNoEgpReadOnly]) .
provides (Y2, ‘sysContact’, '=',
rJoann Ordille <joann€@cs.wisc.edu>’, X) :-
Y2 = fgruyere’,
(instanD(¥2,_,X) ; X = ¥Y2).

X = Y2).
=f, fudp’, X) :-
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provides (Y2, ’sysLocation’, f=', 76372 Comp Sci’, X)

Y2 = 'gruyere’,
(instanD (Y2, ,X) ;
provides (Y2, ’protocol’, '
Y2 = ’gruyere’,
(instanD (Y2, ,X) ; X = Y2).
containsD([’/wisc-cs’,'gw’]).
containsD({’wisc~cs’,"asiago’]).
containsD([’wisc-cs’,’romano’]).
containsD([‘wisc~cs’,gruyere’]).
containsD([’wisc-cs’, poona’]).
containsD([’wisc-cs’, 'beaufort’]).
containsD([’wisc-cs’, 'grilled’]).
localdomain(’wisc—-cs’).
containsD ([’'monitor’,'gw’]).
externaldomain ('monitox’).

X = Y2).
=r, f'udp’, X) :-
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Appendix C

The CLP(R) Representation of Evaluation Rules

%

% dependencies

%

?- lib(all).

%

% list generators

%

%

% contains becomes lists
%

lcontains ([X,Y]) :- contains([X,Y]).

lcontains ([X,Y2]Y]) :- contains([X,Y¥2]), lcontains([Y2{Y]).

isin2([[1,_1).

isin2 ([ [O1l]01L], [O1]02L]1]) :- isin2([O0l1L,02L]).

isin([01,02]) :- contains([_,02]), isin2([01,02]).

%

$ containsD becomes lists

%

lcontainsD([X,Y]) :- containsD({[X,Y]).

lcontainsD ([{X,Y¥2[Y]) :- containsD([X,¥2]), lcontainsD([Y2]¥]).
isinD2 ([01,02]) :- lcontainsD([0O1l{L]), tail(L,02).

tail ([X],X).

tail (XLl ,Y) := tail(L,Y).

%

% protection rules

% - implied object and domain permissions are included in
% compiler output

$ - uid’s are implicit in the implementation;

% no need to check for them

%

containsD([D,I}) :- instanD(D,P,I).

instan (IP,02, [02|IPO1]) :- isin([01,02]1), instan(IP,01,IP0O1), !.
%

% capacity rules

%

ref eq(Y,[P,Prob,N,X]) :- ref eq(P,Y,Prob,N,X).

perm eq(3,B,C,D) :- isinD2([D1,A]), perm eq(D1,B,C,D).

perm_eq(a, [02[B],C,D) :- isin([01,02]), !, perm eq(a, [O1|B2],C,D).
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%

% verification rules, in terms of what is invalid

%

% protection condition

perm_access(S,P,¥Y,T) :- isinD2(([D1,P]), !, perm_access(S,Dl,Y,T).
perm_access(5,P,¥,T) :- nonvar(S), nonvar (P), nonvar(Y), nonvar(T),

asserta (failed(S,P,Y,T)).

inconsistent ([X2,X,Y]) :-
ref_access (X2,Yinstan,readWrite), instan(X,Y,Yinstan),
decl_access (Y, readOnly).

inconsistent ([P,Y,T]) :~ ref access(P,Y,T), perm access(S,P,Y,T),
isinD2([D,S1]),not (isinD2 ({D,P})),perm_access(D,P,Y,T),
failed(Sl1,P1,Y1,T1).

inconsistent ([P,Y,T]) :-
ref_access(P,Y,T), perm access(S,P,Y,T), failed(S1,P1,Y1,T1).

%

% capacity condition

%

greater(A,B,A) :~ A > B,A.
greater (A,B,B) .

max ([[[C,Prob,T,X]l¥]],T,X).
max ([[[C,Prob, T,max]}|Y]|Tail],Result,max) :-

max (Tail, R2, X), greater(R2,T,Result).
max ([[[C,Prob,T,X]|Y]|Tail],Result,max) :-

max (Tail, R2, max), greater(R2,T,Result).

breaklist ([[[X1IX3],X43I[[[X1]X5],X4]|Xrest]],Y,2) :-

breaklist ([ [ [X1|X5],X4][Xrest],¥2,2), ¥ = [[[X1|x3][x41lY2].
breaklist ([X1],[X1]1,1[]).
breaklist ([X1[x2], [X1],X2).

maxeval (_,[1,[1,_) :- !, fail.
maxeval ([R,Result,Y,LH], [ [ [LHJLE],Y]|L], ,X) :-
perm eq(LH,Y,P,R),
Result > R,
max ([ [[LH|LE],Y]I|L] ,Result,max) .
maxeval ([R,Result,¥Y,LH],_ ,LZ2,X) :-
breaklist (L2, L3, L4),
maxeval ([R,Result,Y,LH],L3,L4,max) .

tonum (X, X) :~real (X) .
tonum(X,0).

gothru([[P1,T1]],P,T, [[Pout,Tout]]) :- Pout = P * P1l, Tout = Tl + T;
gothru([[P1l,T1]WV],P, T, [[Pout,Tout]Vout]) :~
Pout = P * Pl, Tout = Tl + T, gothru(V,P,T,Vout);

%

% Aggregation; using the naive, exponential algorithm
% The idea: compute aggregate of Tail modes,

% combine with current mode



% compute aggregate for rest of modes from same client
% concatenate the lists
% Also, find largest precentage specified, 0 if none

v

agr([[[C,Prob,T,X]l¥]1],T,X) :- real(X).
agr([[[C,Prob,T,X1l¥]1],T,0).
agr([1,[[[C,Prob,T,X]l¥]|Tail], [Rout|R3},N) :=~
Tail = [[[C,Prob2,T2,X21[¥2]|Tail2],
agr(C, Tail2, R2, N1), gothru(R2,Prob,T,Rout),
agr([]l, Tail, R3, N2),
greater (N1,N2,N4), tonum(X,N3), greater(N3,N4,N).
agr([],[[[C,Prob, T, ,X]ll¥}ITail] ,Rout,N) :~-
tonum(X,N1),
agr(C, Tail, R2, N2),
gothru(R2,Prob, T,Rout),
greater (N1,N2,N) .
agr(C, [[[C,Prob,T,X]l¥]|rail},R2,N) :~
agr(C, Tail, R2, N).
agr (C2, [[[C,Prob, T,X]|¥Y]|Tail],Rout,N) :=-
tonum(X,N1),
agr(C, Tail, R2, N2),
gothru (R2,Prob, T,Rout),
greater (N1,N2,N).

% Find %age of modes, P2, with rate greater than R
addup([[P1l,T1]}],R,P1l) :- T1 > R.
addup([[P1,T1]],R,0).

addup ([[(P1,T1]}IV],R,P) :-
addup (V,R,P2), addup([(P1l,Tl1l}],R,P1l), P = Pl + P2.

pct (A, Result,R,P) :-
agr([],A,AGR,P), addup(AGR,R,P2),P > P2.

pcteval(_,[1,[1,_) :- !, fail.
pcteval ([{R,Result,Y,LH], [ [ [LHLE],Y]IL], ,X) :-
perm_eq(LH,Y,P,R),
pct ([[[LH|LE},Y]|L] ,Result,R,X).
pcteval ([R,Result,¥,LH],_,L2,X) :-
breaklist (L2, L3, L4),
pcteval ([R,Result,¥Y,LH],L3,L4,R,X).

doeval(a,B,C) :- maxeval (A,B,C,max).
doeval(a,B,C) :- pcteval(A,B,C,P).
doeval (A,B,C) :- pcteval(A,B,C,0.50).

inconsistent ([LH, Result,Y,R]) :-
retractall (ung(Xfoo)),
all([F,X], ref eq(X,F), List),
breaklist (List, L1, L2),
doeval ([R,Result,Y,LH],Ll,L2).

oP

% Configuration conditions
%
inconsistent ([I,A,0P,B,X]) :-
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requires (I,3,0P,B,X), not(provides(I,A,’'=",B,X)).
inconsistent ([A,’'=',B]) :-

requires(I,A,’=",B,X), not(provides(I,A,’'=',B,X)).
inconsistent ([A,’<',B]) :~-

requires (I,A,’<’,B,X), provides(I,A,’=',B2,X), B >= B2.
inconsistent ([A,’<=',B}) :-

requires(I,A,’<=',B,X), provides(I,A,’=',B2,X), B > B2.
inconsistent ([A,’>',B]l) :-

requires(I,a,’>',B,X), provides(I,A,"=",B2,X), B <= B2.
inconsistent ([A,'>=",B]) :—

requires(I,A,’'>=',B,X), provides(I,A,’'=',B2,X), B < B2.

sizeof ([]1,0).

sizeof ([A|B),S) :~ sizeof(B,S1l), S = 81 + 1;
compare (N1,N2,"=') :- N1 < N2.

compare (N1,N2,7=") :- N1 > N2,

compare (N1,N2,’<’) :- N1 >= N2Z;

compare (N1,N2,/<=') :- N1 > NZ2;

compare (N1,N2,7>’) :- N1 <= N2;

compare (N1,N2,’>=") :- N1 < N2;
inconsistent ([A, 'Count’,B]) :- count(I,A,OP,B,X)

all(a, provides(_ ,A, ,_ ,X), List),
sizeof (List,S), compare(B,S,0P).
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Appendix D

The NMSL Extension Language

Extension programs are divided into procedures, one for each NMSL statement. The syntax of the language
is a header, defining the type of NMSL statement recognized (for example, declhead for the head of a
declaration, or clause for a NMSL clause). This type is followed by an expression defining which statements
of the specified type are processed using this procedure. Next, are a list of sub-procedures. The generic sub-
procedure is used to convert the statement into an internally useful form. Other sub-procedure are used for
generating output. For example, consistency is used to generate consistency output; isode is used to

generate configuration output for ISODE agent processes.

The sub-procedures are made up of a list of statements. These statements, in general, should be familiar to
any programmer familiar with the C programming language[21] and the csh command language[20]. The
statements recognized are foreach, if, break, let, printf, put, putprop, delprop, error,
return, do, and dumpit. Compound statement are also recognized and are surrounded by braces: {, }.

We describe those statements that are unique to the Extension Language.

let i = expression

Initializes (and declares) or assigns a new value, computed from expression to variable i.

put (key, value, ...)
The put statement saves a value or an array of values in the symbol table keyed on the specified key.

putprop (key, prop, values...)
Similar to the put statement, putprop assigns a property named prop toa key in the symbol table
with the given value(s). Many properties may be associated with the same key.

delprop(key [,propl)
Deletes a single property named prop associated with key, or, if prop is not given, deletes all
properties of key. If key has a value, it’s value is not changed.

error (format, args ...)
Error prints its output (the arguments are processed like a printf statement) to the standard error
output device and aborts the compilation of the current NMSL clause. Compilation continues with the next

clause, until too many errors have been found, in which case compilation is aborted.

return (values...)

Causes the given values to be returned from the current sub-procedure. If the sub-procedure is generic
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then these values will be the parameters of any subsequent sub-procedure instead of the original

parameters. See below for more description of parameters.

do stmt
Loopson stmt (a compound statement) untila break statement is reached.

dumpit (value)
A rudimentary debugging facility. Dumpit completely displays the given value, even expanding arrays.
Types of each element of the value are also displayed.

The if and let statements make use of expressions. The simplest expression is a single variable,
constant, or function call. Simple expressions can be combined using infix operators. Operators are left-
associative and all have the same precedence. Parentheses may be used to group sub-expressions. The supported
operators are
+, -, *x, /
The usual arithmetic operators. These operators only apply to numbers.

1=, <, <=, ==, > >=
String and arithmetic comparators. These operators denote not-equal (! =), less than (<), less than or equal
(<-), equal (==), greater than (>), and greater than or equal (>=). Strings can be compared only with !=
and ==. All of the comparators apply to numbers. Comparators evaluate to non-zero if the comparison is

true and zero if the comparison is false.

Il &&
Logical-or and logical-and, respectively. Logical-or evaluates to non-zero if either argument is non-zero.

Logical-and evaluates to non-zero if both arguments are non-zero. These operators evaluate to zero in all

other cases.

=" 1"
Regular expression operators. =" evaluates to non-zero if the left-hand string is matched by the regular
expression found in the right-hand string. It evaluates to zero in all other cases. ! ~ returns the opposite
result of =~.

Variables are not typed and can be assigned numeric, string, or array values. Functions are provided to test
the type of a value. Built-in variables begin with the $ symbol. $decl refers to the current declaration;
$clause refers to the current top-level clause; $1ine refers to the current line number in the input file.  $n,
where n is a number, refers to parameters of the current NMSL statement. ~ $* refers to the entire current
NMSL statement being processed. A parameter is either a parsed token or an array of parameters. Some
statements, like clauses, are made up of other statements, so parameters can be indexed. Thus, to refer to the

second parameter of the third subclause of the current clause, one would use $3[2].
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The Extension Language provides a small set of built-in functions. Functions may appear in expressions.
These include:
get (x)
Retrieves a value from the symbol table previously stored by the put statement with the name x. xis
a string.
getprop (x,¥y)
Retrieves a property by named y associated with a symbol table entry named x previously stored by the

putprop statement.

length (x)
Returns the length of a list or a string.

isarray (x)

Returns non-zero if its parameter is an array, zero otherwise.

isnumber (x)

Returns non-zero if its parameter is a number, zero otherwise.

isstring(x)

Returns non-zero if its parameter is a string, zero otherwise.

regex (x, re)
The first parameter is a string, the second is a regular expression as recognized by the C regex function,
also in the form of a string. It returns an array of beginning and length markers, corresponding to the

positions in the first string that the regular expression matched.

strip(x)
Strips quotes from a string.

substr(x,start, length)
Returns a substring of its first parameter, starting at index start and up to length characters long, or

the end of the string, whichever comes first.

sprintf (format,args,...)

Similar to the C sprintf function, this function formats its arguments into a string, which is returned.

Below is an example of the NMSL Extension Language input for the NMSL Compiler implementation,
discussed in Chapter 7. This is only a partial listing of the Extension Language input, the full listing is over 1000

lines long.




declhead ( 1 )
generic {
error ("Unknown declaration \"%s\" at line %d\n",
S$decl{1][1], Sline);
}
end declhead.

clause ((($1[1] == "requests") || ($1[1] == "modifies™) ||
(51[1] == "traps")) &&
($clause[l] == "queries"))

generic {
if (length ($*) != 1)
error ("Invalid \"%$s\" clause at line %d\n",
$1[1], $line);

let 1 = 2;
let d = 1;
do {
if($1[i] == ", "

error ("extra comma at line %d\n", $line);
let reqvalld] = $1[i];
let d = d + 1;
let 1 = i + 1;
if((i < length(81)) && (S1[i] != ","))
error("missing comma at line %d\n", $line);
let i = 1 + 1;
if(i > length(S51))
break;
}
return ($1{1], reqgval);
}

end clause.

clause (($1[1] == "process") &&

(($decl[1][1] == "system") ||

(Sdecl([1]1[1] "domain')))

generic {
if (length($*) != 1)
error ("Invalid \“"process\" clause at line %d\n",
Sline);

let curprop = getprop("__ tmpprops__ ", $1[1]);
let curpropllength(curprop)+l] = strip($1[2]1);
putprop("__tmpprops__", $1[1], curprop);

if (length($1) == 2)
return $1;
if ((length($1) == 5) &&
($1[3] == "(") && (S1[5] == ")")) |

return($1[{1], $1([2], $1[41]):
}

error ("Invalid \"process\" clause at line %d\n", $line):

}

consistency {
let dst = strip($decl[1l]([2]);
let dstid = sprintf(“[’%s’,%s]", dst, $2);

printf ("instanD (’%s’,process(’%s’),%s).\n", dst, $2, dstid);
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/* check if this process had parameterized queries */
let procinfo = get($2);
if (procinfo != $null) {
foreach x in procinfo({2] do {
let proc = x[2];

/* already generated code for the constant case * /
if(proc = uh\n.*")
break;

if(x[7] == $null)
let dsthost = "S1%;
else
let dsthost = sprintf("’%s’'"™, x[71):
foreach y in x[5] do {
let freq = y([2];
printf ("ref_eq(%s,Yl,readOnly,", dstid);
if (isnumber (freq))
printf("3d4d", freq): -
else
printf ("%s", freq):;
printf£ (") :=\n");
let 1 = 1;
do {
if(i > length(procinfoll]))
error ("Help! internal queries error\n");
if (procinfol[l] [i] == proc)
break;
}
if(i > length($3))
error (
"Missing parameter to process \"%s\" at line %d\n",
$21 Sline);
P£($3[1] == "*x")
let pname = "P";
else
let pname = sprintf("/%s’", $3[i]):
printf ("\tinstanD (%s,process(%s8),P1l),\n",
dsthost, pname);
printf ("\t (\n");
foreach r in x[3] do
printf ("\t instan(%s, [%$s],Y1);\n",
dsthost, r):
printf("\t instan(%s,[%s],Y1)).\n",
dsthost, x[41):

}
1

end clause.
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