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Abstract

A fundamental problem common to both computer graphics and model-based computer
vision is how to efficiently model the appearance of a shape. Appearance is obtained
procedurally by applying a projective transformation to a three-dimensional object-
centered shape representation. This thesis presents a viewer-centered representation that
is based on the visual event, a viewpoint where a specific change in the structure of the
projected model occurs. We present and analyze the basis of this viewer-centered
representation and the algorithms for its construction. Variations of this visual-event-
based representation are applied to two specific problems: hidden line/surface display,
and the solution for model pose given an image contour.

The problem of how to efficiently display a polyhedral scene over a path of
viewpoints is cast as a problem of computing visual events along that path. A visual
event is a viewpoint that causes a change in the structure of the image structure graph, a
model’s projected line drawing. The information stored with a visual event is sufficient
to update a representation of the image structure graph. Thus the visible lines of a scene
can be displayed as viewpoint changes by first precomputing and storing visual events,
and then using those events at display time to interactively update the image structure
graph. Display rates comparable to wire-frame display are achieved for large polyhedral
models.

The rim appearance representation is a new, viewer-centered, exact representation
of the occluding contour of polyhedra. We present an algorithm based on the geometry
of polyhedral self-occlusion and on visual events for computing a representation of the
exact appearance of occluding contour edges. The rim appearance representation, organ-
ized as a multi-level model of the occluding contour, is used to constrain the viewpoints
of a three-dimensional model that can produce a set of detected occluding-contour
features. Implementation results demonstrate that precomputed occluding-contour infor-
mation efficiently and tightly constrains the pose of a model while consistently account-
ing for detected occluding-contour features.
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Chapter 1

Introduction

Current approaches to the two broad areas of computer graphics and computer vision are
related by common representations and imaging models. Our understanding both of the
mathematics of 3D shape and of the computer modeling of shape has progressively and
intimately joined graphics and vision together. The depth of this relationship and the
implications for future work are only now beginning to be understood. This thesis
presents a study of a new representational framework that addresses specific problems in
computer vision and computer graphics. This framework for modeling the appearance of
3D shape relates the two problems of shape display for visualization and shape under-
standing for recognition.

A major theme through this work is the visual event [Koen76]. Very generally, an
event is an image change resulting from a change in the viewer’s vantage point. If the
problem is to display a model from a set of viewpoints, as in animation, then the visual
event is the change between frames in the animation sequence. For machine vision prob-
lems, the visual event is the change in the images that are gathered over time or from
neighboring viewpoints. The relationship of the visual event to 3D shape and to
viewpoint is one of the central problems studied in this thesis.

Shape representations have been broadly categorized previously as viewer-centered
or object-centered. An object-centered representation encodes the volume of space that
an object occupies independent of the projection mapping used to generate its appear-
ance. A viewer-centered representation stores the appearance of an object from one or
more viewpoints. Viewer-centered representations include information about appearance
that is not explicit in object-centered models. The projection process creates strong
visual cues that are not represented in object-centered models. The important advantage
of the viewer-centered representation is that features of appearance such as occlusion can
be made explicit to be used as part of the shape itself. This thesis presents a viewer-
centered representation of shape and studies the benefits of using this representation for
specific problems in computer graphics and computer vision.
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In computer graphics, the problem of interactively viewing a static scene requires
the computation and display of a sequence of images generated from a user-controlled,
continuously-changing viewpoint. The goal is to display a 3D scene interactively as it
would appear from a particular vantage point; the appearance of the scene must be
updated dynamically as the user interactively modifies the vantage point within the
environment. Qur approach to this problem is to use the set of visual events computed in
a viewer-centered representation to take advantage of the close similarity between adja-
cent frames in the display sequence. This coherence from frame to frame lends itself to a
method of representing only changes between frames rather than computing a complete
projection. The viewpoints where structural changes occur are computed through the
construction of a representation that makes explicit exactly which vertices, edges and
faces are visible as a function of viewpoint. The algorithm has two phases: a preprocess-
ing phase, in which the initial appearance of the polyhedron and the visual events are
computed, and an on-line, interactive phase, in which a sequence of frames along a user-
controlled viewpath is displayed in real time.

This thesis shows that there are advantages over other methods in using visual
events for solving the interactive viewing problem. First, exploiting the coherence
between frames makes this a very efficient approach. The visible lines (or surfaces) of a
polyhedral scene can be displayed for a sequence using this approach at a rate compar-
able to wire-frame display. Second, although there is a precomputation step, this is an
exact, object-space method so that the display of the scene is exact no matter how small
or large the changes in viewpoint may be. Third, unlike methods that totally precompute
the set of images, there is flexibility in rendering. The visible line (surface) computation
is separated from the rendering so that sequences can be viewed under different shading
and lighting conditions (or with only visible lines) without the need to repeat the precom-
putation step of the algorithm.

In computer vision, the problem of how to solve for the set of viewpoints from
which a 3D model will project to an observed set of shape features is considered an
important step in certain object recognition paradigms [Grim90, Lowe87]. Solutions to
the viewpoint-determination problem are based on how features of 3D objects will
appear in an image. Our approach to this problem is to use as a model a precomputed
representation of the appearance of the occluding contour. This viewer-centered
representation is essentially the set of visual events that affect the occluding contour.
These visual events, such as T-junctions, are strong cues in the projection of 3D shape
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[Rich88]. Features of the occluding contour are stored and organized into a structure
making inter-feature relationships and dynamic feature changes explicit. This approach
can be distinguished from previous methods in two respects: (1) the kinds of features that
are explicitly represented, and (2) the type of model-image correspondences that are
made. First, the appearance of the occluding contour, including the formation and per-
sistence of T-junctions, is represented. There is strong information available in the
occluding contour, but the difficulty in adequately and explicitly describing it has
prevented its use in the past. Second, the shape and topology of the occluding contour is
usually stable over a range of viewpoints but is not generated by a fixed, intrinsic feature
of the shape. For example, a T-junction produced by the projection of a smooth shape
persists over an open set in the space of viewpoints, yet the 3D points that project to the
T-junction are not fixed over that set. Consequently, a correspondence between a T-
junction detected in an image and a model T-junction is different from a point-point
correspondence; a T-junction correspondence defines a connected set of viewpoints
where the T-junction can occur rather than a single transformation to bring the model
features into exact correspondence with the image. This notion of correspondence is
more qualitative, producing a small, constrained region of viewpoints rather than a single
viewpoint that generates the image features. This implies a two-step procedure for
viewpoint determination: (1) finding a constrained region of viewpoints, and (2) find a
single viewpoint within the region as a solution.

This thesis is organized as a progressive study of the viewer-centered representation
of 3D shape and its application to the computer graphics problem of interactive viewing
and model-based computer vision problem of viewpoint determination. Chapter 2
reviews some of the current work that is closely related to these problems. This review is
not exhaustive, but serves to define terms and set the context for the contributions made
by this work.

Chapter 3 develops the viewer-centered appearance model for polyhedra, and
presents the application of this model to the problem of the interactive display of static
polyhedral scenes. The chapter is divided into five main parts: representational issues,
algorithms, analysis and results, hybrid methods, and promising future work. The
representational issues include the details of the construction and complexity of the data
for display. An empirical analysis of display rates and times supports our claim that cer-
tain classes of scenes can be displayed more efficiently using this viewer-centered
representation than with other known methods. The current and future work section




extends and relaxes some of the current constraints.

Chapter 4 describes the rim appearance representation, a viewer-centered represen-
tation of the occluding contour of polyhedra. The geometry of self-occlusion for
polyhedral edges is described, and an algorithm based on this geometry and on visual
events is given for computing the visual event data for the occluding contour edges. The
details of this representation and its multi-level development in Chapter 5 is one of the
major contributions of this thesis.

Chapter 5 describes an intermediate-level description of the behavior of the occlud-
ing contour over viewpoint. This description is based on the lower-level visual event
data computed in the rim appearance representation. An algorithm for determining
viewpoint given a set of occluding contours is described. The empirical results from an
implemented version of the approach support the claim that the model-based precom-
puted appearance efficiently constrains viewpoint and provides strong constraints for
solving for viewpoint and for model-based recognition.

Chapter 6 summarizes the main results of the thesis and comments on several
current research directions.



Chapter 2
Related Work

A viewer-centered representation is one that encodes information about the way a shape
appears from the point of view of the observer. This is different from an object-centered
model in that the viewer-centered model makes explicit in advance the appearance pro-
perties of the projected model rather than supplying an algorithmic method for generat-
ing the appearance without computing or storing it in advance. The primary use of the
object-centered model has been as a verification tool. That is, the hypothesized appear-
ance of an object-centered model can be computed when necessary using the appropriate
algorithm, although the appearance is only computed after an hypothesis is made. In
contrast, the viewer-centered model computes and stores in advance various features of
the way a shape appears and these features are used in the hypothesis formation process
itself.

The two main problems that are addressed in this thesis are the interactive display
of 3D scenes and the model-based determination of pose from the occluding contour.
These problems are approached using a viewer-centered representation of shape based on
the definition of the visual event. Section 2.1 briefly reviews work related to the visual-
event-based representation described in this thesis. Section 2.2 discusses selected work
related to interactive display, and Section 2.3 briefly discusses previous and current
approaches to model-based pose determination. The related problem of detecting
features of the occluding contour is itself an active research problem. Section 2.4 men-
tions the current work on detection the occluding contour.

2.1. The Viewer-Centered Model

A common goal of viewer-centered representations is to exploit the regularities in the 2D
views of a given 3D model. Because is is impossible to store all possible views of a 3D
object, viewer-centered representations must exploit regularities in sets of views for a
single object. Exactly how to do this is a difficult problem since a 3D object can appear
very differently from different views. Researchers have divided the views of a 3D object
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in two different ways: (1) the uniform division of the space of all viewpoints
[Goad83, Ikeu87, Korn87, Feke84]; and (2) the division of the space of viewpoints into
sets based on some definition of equivalence
[Bowy89, Egge89, Plan90, Gigu90, Krie89, Srip89].

Although the uniformly-divided viewpoint space is often a fair approximation of the
appearance of an object, several problems remain. First, the appearance of an object
from a single viewpoint is taken to be representative of an entire region of viewpoints.
This is necessary in order to discretize the continuous set of viewpoints. For example,
Ikeuchi [Ikeu87] divides the view sphere into 240 triangles. The appearance of a 3D
object from the center of a single triangle is taken to be representative of the appearance
over the entire triangular patch. The combination of a patch that contains large changes
in the appearance of a 3D object and a patch that is too coarse can yield an unacceptable
representation of the appearance. Second, these multi-view representations treat indivi-
dual 2D views independently of each other. In truth, the appearance of 3D shape changes
smoothly with viewpoint. There is information about shape and viewpoint in the way
shape changes. This dynamic quality is not captured in multi-view representations.
Finally, the space requirement for a single model at the necessary resolution can become
too large to be practical in many situations.

The aspect graph approach in part alleviates the approximation problem of the
multi-view representation. The aspect graph is a description of the topological changes
in the appearance of a 3D object. Topological changes are defined by the structure of the
2D singularities in the projection of the object. The topological changes in the appear-
ance of a 3D object are used to induce a division of viewpoint space and thus to construct
the aspect graph representation.

There are well-known difficulties with the aspect graph scheme. First of all, the
detection of features such as faces is very difficult and not robust. The segmentation of
faces detected in the image into those belonging to a single object is equally difficult.
The indexing problem of selecting the appropriate aspect from the graph is difficult
because of the size and the lack of organization of the graph. Another problem is the size
of the aspect graph for even very simple polyhedra [Plan88]. The extension of the
method to large databases of models seems infeasible without significant restructuring.
Finally, the cost of the computation of the aspect graph is large.
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The viewer-centered representation presented in this thesis focuses on individual
features rather than a constant global topology. The shift from the topology-based focus
of the aspect graph to a representation of the geometry of features as a function of
viewpoint is the significant new contribution in our approach. The feature representation
also improves on some of the size problems as well as the problem of indexing.

2.2. Interactive Viewing

There is a tradeoff in solving the problem of interactive viewing between off-line and
on-line solutions. At one extreme is complete off-line image rendering [Denb86]. The
on-line phase is a fixed playback of precomputed images that have been rendered with
raytracing or other off-line techniques [Glas88, Cook84]. The other extreme is to use
standard display algorithms such as Z-buffering to render each frame of the sequence
independently. The main drawbacks of the total precomputation approach are the size
and inflexibility of the resulting animation description. Rendering each frame at
display-time, however, requires too much computation to be interactive.

There are several approaches to this problem that use intermediate representations
to reduce the work at display time. Hubschman and Zucker introduced the idea of using
frame-to-frame coherence to decrease the time required for hidden-line removal
[Hubs81]. This work was not extended to any objects other than convex polyhedra.
Shelley and Greenberg used frame-to-frame coherence for the generation of an animation
sequence corresponding to a smooth viewpath through a 3D environment [Shel82].
Although the viewpath can be specified interactively, the computation of the appearance
of the scene along the viewpath is done off-line and then displayed.

The Binary Space Partition Tree (BSP-tree) has been used to display polyhedral
scenes in near real-time by precomputing a structure that gives relative depth-ordering
for faces in the model [Fuch83,Nayl90]. The BSP-tree does not take advantage of the
frame-to-frame coherence in animation sequences, however. In addition, the BSP-tree
approach only applies to hidden-surface removal, and requires drawing all of the
polygons in the BSP-tree, which is often more than the number of polygons in the scene
since polygons may have to be split in constructing the BSP-tree.

In contrast to these previous approaches, our algorithm is based on visual-event
computation and places no restrictions on the model polyhedra. Arbitrary nonconvexities
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in the models are allowed, and the hidden-line algorithm extends to the hidden-surface
case. The appearance of the scene is generated on-line as the viewpath is interactively
defined. In cases where hidden-line removal is a desirable or acceptable alternative to
raster display, our approach for hidden-line animation may be used to achieve greater
frame rates. Our algorithm only draws the visible polygons, usually much less than the
total number of polygons in the scene.

2.3. Model-Based Object Recognition and Pose Determination

Approaches to the viewpoint determination problem must solve two inter-related sub-
problems: finding the correct correspondence of model and image features, and recover-
ing the viewpoint that maximizes the match of corresponding features [Grim90]. Solu-
tions vary from solving these two problems independently to treating them as a combined
process, with the goal of solving for viewpoint. For example, iterative methods assume
that the model-image correspondence is known, and solve for viewpoint by applying
numerical  techniques to rtevise an initial estimation of  viewpoint
[Lowe87, Ponc89, Worr89]. Similarly, the alignment approach [Basr88, Hutt90] and
parameter space methods [Thom87] assume a model-image correspondence in order to
derive a unique viewpoint. Interpretation tree methods solve for correspondence and
viewpoint simultaneously by using a constrained search through a tree of model-image
correspondences [Grim90a). Finally, viewer-centered representations such as charac-
teristic views [Wang90] and the aspect graph [Plan87, Bowy89,Gigu90] precompute
representative sets of viewpoints and then attempt to solve for the best correspondence
between image features and the features in each representative view.

Our approach is to use the appearance of the occluding contour to solve for a set of
viewpoints that can globally constrain where a single viewpoint solution must lie. In the
case of iterative methods [Lowe87], a starting viewpoint can be obtained from this small
viewpoint set. Parameter space methods [Thom87] that can avoid a costly search of the
entire space of transformations become much more efficient when they need only con-
sider this reduced set of viewpoints. The search of an interpretation tree [Grim90] is also
made more efficient in space and time when there are global constraints on the possible
solutions. Aspect graph methods [Bowy89, Krie90, Ikeu87] must address the problem of
how to select a few aspects to test from a large number of potential aspects.



2.4. Detecting Occlusion Features

Edges in an image that are part of the occluding contour are produced at depth discon-
tinuity boundaries in the scene. Standard edge detectors that are based on static image
intensities alone cannot reliably distinguish between occluding contours and other types
of scene edges [Barr81]. With additional information, such as depth data from range-
finders or from stereo methods, and dynamic data from motion, occluding contours can
be segmented and analyzed. In addition to the segmentation issue is the task of detecting
features of the occluding contour such as curvature extrema and T-junctions.

Work on detecting the occluding contour from optic flow has focused on the occlu-
sion boundary [Thom85], where optic flow constraints are violated. Discontinuities in
the flow field are interpreted as depth discontinuities in the scene. These methods depend
on the dynamic flow data available from a moving viewer or a dynamic scene.

Recent work on detecting occlusion boundaries using stereo shows promising
results [Toh90]. Stereo methods provide depth data that are used in conjunction with
image intensities to segment those image edges that lie on depth discontinuities. The
robustness of the stereo algorithm is central to this approach. Unfortunately, most stereo
algorithms lack robustness at occlusion boundaries, Other recent work on surface recon-
struction has used stereo to detect and use occluding contours [Vail89] for surface recon-
struction. Researchers have also begun to integrate stereo data and dynamic information
in order to segment and measure the curvature on occlusion boundaries [Cipo90]. Con-
tours are tracked throughout a dynamic image sequence using an energy-based contour
tracking method[Kass88] in order to model how the contour changes as viewpoint
changes. This information is used to reconstruct the properties of the occluding contour
and the 3D surface generating it.

Spatiotemporal representations are formed from images over time that are stacked
together into a cube of data. There are characteristic features in the spatiotemporal cube
that correspond to occlusion in an image sequence [Bake88, Allm91]. These occlusion
features, such as curves flowing through the spatiotemporal cube that merge and split, are
part of the occluding contour and correspond to depth discontinuities in the scene.
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Chapter 3

Interactive Viewing

Interactively viewing a static scene requires the computation and display of a sequence of
images generated from a user-controlled, continuously-changing viewpoint. The goal of
a system for interactive viewing is to display a 3D scene as it would appear from a partic-
ular vantage point, and to update the appearance of the scene dynamically as the user
interactively modifies the vantage point within the environment. There must be a bal-
ance, however, between the incompatible goals of realism and speed in the interactive
display. Clearly it is important to display the scene as fast as possible to give the user the
illusion of movement within the environment.

Computing and displaying such animation sequences has many applications. For
example, computer-aided design of 3D objects requires the interactive construction and
display of objects from a wide range of viewing directions . The animated display of a
rotating 3D object gives the user a sense of depth and structure that is useful in design
and visualization [Farr85]. The animated presentation of a scene that can be navigated
dynamically has application in flight simulation [Yan85] and architectural walk-through
[Broo86].

There are two essential requirements for this type of animated display: realism in
each image and video-rate display. Without an appropriate level of realism, the effect of
interaction with an environment is lost. Perceptual continuity is lost when the display
rate is too slow. In meeting the requirements of realism and video-rate display there is a
fundamental trade-off between off-line and on-line solutions. The precomputation of
information can be as extreme as complete image rendering off-line. The on-line anima-
tion phase is then reduced to a playback of the precomputed images [Denb86]. There are
ways to compute realistic images off-line using, for example, ray tracing techniques
[Glas88, Cook84], but the high per-frame cost makes interactive animated display using
these approaches intractable. The main drawback of the total precomputation approach
is the size and inflexibility of the resulting animation description. At the other end of the
spectrum is the synthesis of the frames of the animation sequence on-line. Animation in
this case depends on fast dynamic frame display [Fuch83]. Without some form of
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precomputation, however, video-rate display and realistic image synthesis become
almost impossible. Wire-frame display is typical for low-cost video-rate display without
significant precomputation.

This chapter discusses the problem of how to display a polyhedral scene interac-
tively from a moving viewpoint. This will be referred to as interactive viewing; the res-
tricted viewer motion of a great circle on the unit sphere under orthographic projection is
considered in detail. A polyhedral scene can be rendered with varying degrees of detail,
ranging from wire-frame display to visible-surface display using a shading model. The
basic algorithm first introduced by Plantinga [Plan88] is presented for animating the
display of a polyhedral scene with hidden lines removed; this algorithm is modified to
allow display with hidden surfaces removed, including the use of shading models, multi-
ple light sources and shadow computation. For the hidden-line computation, the results
presented here show that it possible to display the sequence at a rate comparable to the
rate of display of wire-frame models without hidden-lines removed.

The algorithm is based on the the exploitation of viewpath coherence, a form of
frame-to-frame coherence, by computing the appearance of the scene in the first frame,
and then computing the viewpoints on the viewpath at which the structure of the scene
changes qualitatively. Qualitative changes are changes in the structure of the projected
scene. The viewpoints where structural changes occur are computed through the con-
struction of the asp for the scene, a representation that makes explicit exactly which ver-
tices, edges, and faces are visible as a function of viewpoint. The algorithm has two
phases: a preprocessing phase, in which the initial appearance of the polyhedron and the
events are computed and the visible edge graph is constructed; and an on-line, interactive
phase, in which a sequence of frames along a user-controlled viewpath is displayed in
real time.

The asp quantifies how all possible kinds of visual events occur as a continuous
function of viewpoint. Informally, a visual event can be thought of as any change in the
scene as a result of occlusion. Thus the disappearance of a face as it turns away from the
viewing direction is one such event. The partial occlusion of an edge by some other edge
(the beginning or ending of a T-junction) is another kind of event. More formally, all
structural changes in the projection of a polyhedral scene are the result of the overlap in
the image plane of three edges [Plan89, Gigu90]. In the case of a face that turns away
from the viewing direction, the point at which the face is edge-on to the viewer is a
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degenerate form of the apparent intersection of three edges. The occlusion of an edge by
another face creates a T-junction that begins and ends at two distinct viewpoints along a
viewpath. The T-junction always begins and ends at a viewing direction where an edge
and a vertex appear to intersect. This event (EV-event) is another form of the apparent
intersection of three edges where two of the edges meet at a vertex and actually do inter-
sect.

The orthographic viewing model can be characterized as the set of viewpoints on
the surface of the unit sphere S2. Any viewer movement can be described as a 1D path
of viewpoints on the surface of S2. In general, the apparent intersection of three edges
(EEE-event) occurs at no more than two points along a 1D path of viewpoints on S2, and
corresponds to a topological change in the appearance of the scene. The location of all
such events can be computed and ordered sequentially along the 1D viewpath. By
precomputing and ordering the viewpoints where topological changes occur, the
coherency between viewpoints is exploited. This coherence between frames is a result of
the fact that for most small changes in viewpoint along a smooth viewpath, only linear
changes in the appearance of the scene take place [Ikeu87]. Linear changes are those
changes in the viewpoint that do not change the structure of the projected line drawing in
the image. Changes in the structure, i.e., topological changes in the image structure
graph (ISG), are characterized in the asp as visual events corresponding to the apparent
intersection of edges in the image. In order to take advantage of the coherence between
viewpoints and hence between frames, these topological changes are explicitly computed
and stored. These events are an exact representation of the changes in the appearance of
the ISG. At runtime, a viewpath through the space of viewpoints determines those events
that are relevant to updating each successive frame in an animation sequence.

Hubschman and Zucker introduced the idea of using frame-to-frame coherence to
decrease the time required for hidden-line removal [Hubs81]. They worked in a world
with a small number of stationary convex polyhedra and they found a number of frame-
to-frame coherence constraints. The result was a partition of the scene such that "the
movement of the viewing position across a partition boundary results in an occlusion
relationship becoming active or inactive." The scene is updated when one of these boun-
daries is crossed. As a result, the storage requirements are ®(3) even in the case of a
single, nondegenerate convex polyhedron. A generalization of this technique to multiple
non-convex polyhedra would result in worst-case storage requirements of Om’) for a
scene with n faces [Plan87]. The algorithm presented here places no restrictions on the
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model polyhedra, allowing arbitrary nonconvexities, and extends to the hidden-surface

case.

Shelley and Greenberg used frame-to-frame coherence for the generation of an ani-
mation sequence corresponding to a smooth viewpath through a 3D environment
[Shel82]. A smooth viewpath is represented as a B-spline, which can be interactively
defined. Path coherence (frame-to-frame coherence along a single viewpath) is exploited
to reduce the expense of the sorting and culling operations for visible line and visible sur-
face computation. Rendering makes use of a priority ordering of polygons in the
environment, and changes in this ordering are computed when the B-spline viewpath
crosses one of the separating planes between objects in the environment. Although the
viewpath can be specified interactively, the computation of the appearance of the scene
along the viewpath is done off-line and then displayed. The approach reported here gen-
erates the appearance of the scene on-line as the viewpath is interactively defined.

The Binary Space Partition Tree (BSP-tree) has been used to display polyhedral
scenes in near real-time by precomputing a structure that gives relative depth-ordering
for faces in the model [Fuch83,Nayl90]. The BSP-tree simplifies the hidden-surface
computation for an arbitrary viewing direction by encoding the relative depth ordering of
the model implicitly in a tree structure for all viewing directions. The display of a single
frame from some viewpoint with hidden-surfaces removed involves traversing the BSP-
tree to generate a list of polygons in back-to-front order. The BSP-tree does not take
advantage of the frame-to-frame coherence in animation sequences, however. Each
frame of a viewpath is generated by a separate and complete traversal of the BSP-tree
structure. Also, the BSP-tree approach only applies to hidden-surface removal. In cases
where hidden-line removal is a desirable or acceptable alternative to raster display, our
approach for hidden-line animation may be used to achieve greater frame rates. Finally,
the BSP-tree approach requires drawing all of the polygons in the BSP-tree, which is
often more than the number of polygons in the scene since polygons may have to be split
in constructing the BSP-tree. Qur algorithm only draws the visible polygons, usually less
than the total number of polygons in the scene.

The rest of this chapter focuses on how to efficiently apply the computation of
visual events in a space of viewpoints to the problem of interactive viewing with either
the hidden lines or hidden surfaces removed. The main previous results related to the asp
[Plan88] are reviewed in Section 3.1. Section 3.1 also defines the orthographic viewing
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model and the visual event. Section 3.2 presents a detailed discussion of the computation
and organization of visual events for display. First the hidden-line computation is dis-
cussed, followed by the problem of hidden-surface computation, including issues involv-
ing shaded display and an efficient, object space approach to finding shadow regions.
Section 3.3 reports the computational results from an implementation of the hidden-line
method. Hybrid approaches are discussed in Section 3.4, combining the strengths of the
visual-event based approach with other methods in order to solve some of the weaknesses
of the visual-event based method. Event-based depth ordering reduces the visual event
complexity by relying on depth ordering to remove the hidden surfaces. Model-space
hierarchies organize the scene into components so that smaller pieces of the scene are
insulated from changes. This helps to avoid a large, repeated precomputation cost for
small changes in the scene structure. Using the occluding contour to approximate the
shape to be displayed reduces the amount of visual event information and the model con-
struction cost. Section 3.5 concludes with a review of the contributions of this work and

the promising future directions.

Figure 3.1. The orthographic viewing model is defined as the set of unit vectors on the
view sphere.
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3.1. The Asp

The asp [Plan88, Plan87, P1an86] is a representation that quantifies the visual events in a
3D polyhedral model that arise as a result of occlusion. In general, the visual events that
are explicitly represented in the asp are the apparent intersections of edges. Under the
orthographic projection model, the apparent intersection of two edges (a T-junction)
corresponds to a 2D surface in aspect space. Similarly, the apparent intersection of three
edges corresponds to a 1D curve, and four edges that appear to intersect form a single
point in aspect space. An actual vertex in the scene can be thought of as a degenerate
apparent intersection, where the edges actually do meet at the vertex. Since these various
visual events are explicit in the asp, the appearance of an edge from a given viewing
direction can be easily computed. The exact appearance of the edge is bounded by the
visual events involving other occluding edges in the scene.

The viewpoints where visual events occur depend on both the space of viewpoints
and the models being displayed. The following subsections define the viewing model,
the object model, and formulate the general idea of the visual event. Aspect space and
the asp are then presented in detail as a tool for computing the visual events for polyhe-
dra under the orthographic viewing model.

3.1.1. The Object and Viewing Models

The orthographic viewing model is the parallel projection of an object onto the image
plane. Figure 3.1 shows the projection model as a unit sphere, with the directions on the
sphere determined by the angles 6 and ¢. A projection from a direction (8,¢) is created
with this model by rotating the scene by (6,9) and then projecting into the x—y plane.
Thus, a point (x¢,y9,20) in R3? to be projected from the direction (6,¢) undergoes the
following transformation:

cos® O sin0 1 0 0
[xo,yo,zo] 0O 1 O 0 cos¢ —sin¢ 3.1
—sin® 0 cos0| [0 sind cos ¢

so that the coordinates (u,v) of the projected point in the image plane become
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(@ () ©
Figure 3.2. (a) Each face of the polyhedron is oriented, and each edge is formed by ex-
actly two faces. (b) An example violating the assumptions where the central edge is
formed by four faces rather than two. (c) The polyhedral object model must form a
closed volume.

u=xqcos0—zqsin0 (3.2)
v =x¢ sin 0 sin ¢ +yg cos ¢ + z cos O sin ¢

The object model that is used to represent 3D objects is the polyhedron. It is
assumed that there is a directed normal associated with each face of the polyhedron. A
face is said to be visible when the dot product between the viewing direction V and the

normal to the face N is positive:

Face f is visible & V-N>0

Faces in the polyhedron meet at edges, and it is assumed that exactly two faces meet at
an edge. As shown in Figure 3.2, faces are oriented, each edge is a result of exactly two
intersecting faces, and the faces must form a closed volume. These restrictions can be
relaxed and handled as special cases, although for simplicity they are enforced in the
work described here.
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3.1.2. Appearance, Visual Events, and Image Structure

The appearance of a 3D model is a description of the geometry of the visible portions of
that model in the 2D image plane. Appearance is a function of the geometry of the 3D
model, the viewpoint, and the projection mapping. Certain singularities can occur under
projection from R? into the 2D image plane, and these singularities have been termed
visual events. The singularities of the projection mapping have been studied by Whitney
[Whit55], and there is work being done toward understanding the form of singularities
under projection of specific 3D models such as polyhedra [Plan90, Gigu90, Stew88], sur-
faces of revolution [Krie89, Egge89], parametric surfaces [Srip89, Ponc90], and generic
surfaces [Koen76, Rieg87].

DN
SRV,

Figure 3.3. The image structure graph (ISG) is the graph corresponding to the line draw-
ing of a projected polyhedron.
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The singularities (visual events) for polyhedra can be completely characterized as
the intersection in the image plane of sets of non-adjacent model edges [P1an90, Gigu90].
These events and their inter-relationships form the image structure graph (ISG), a graph
where each node is a vertex and each incident edge is a projected model edge. The
appearance of a polyhedron, commonly known as a line drawing, forms an ISG where
each vertex and T-junction is a node, and each projected polyhedral edge is a graph edge.
Figure 3.3 shows two projections of a polyhedron and their associated ISGs.

An alternative (and slightly different) definition of the visual event is any type of
event that causes a topological (structural) change in the ISG. The stability of the event
is the difference in the two definitions. A singularity in the projection map may be stable
for an open set of viewpoints in viewpoint space. A visual event causing a topological
change in the ISG is not stable, and persists for only a degenerate set of viewpoints. For
example, a T-junction does not always cause a structural change in the ISG, although a
T-junction is a singularity in the projection map. The birth and death of a T-junction,
however, causes a topological change in the ISG, and in this sense are considered visual
events. Figure 3.3 shows the ISG for two different but closely-spaced views of a
polyhedron. The disappearance of the circled vertex causes the structural change in the
ISG, and is the birth of a T-junction. Thus the singular view where the structural change
occurs is the visual event. The T-junction itself is a visual event in the sense that it is a
singularity of the projection map.

We will consider a visual event to be a singularity of the projection mapping. The
distinction between the stable T-junction and other nonstable singularities is important,
and the geometry of the T-junction will be developed in Chapters 4 and 5.

3.1.3. Aspect Space

The appearance of a polyhedron is a 2D set of line segments that is generated from the
3D polyhedral description under a specific projection mapping for a single viewpoint.
The central characteristic of the asp for a polyhedron is that the asp represents the
appearance of the polyhedral faces for all viewpoints rather than a single viewpoint
[Plan88]. Specifically, the asp for a single face is a volume in the 4D space of image
space X viewpoint space, i.e., in R? x S?. The boundaries of this volume are hypersur-
faces that correspond to the visibility of the edges bounding the face. The edge




20

hypersurfaces are bounded by surfaces that correspond to the visibility of the vertices of
the face. The volume in aspect space that corresponds to the visibility of a face is not a
polytope since the surfaces are not planar. The equations for the surfaces are well-
behaved, however, and are algebraic ruled surfaces of degree at most three. Therefore
the asp for a face can be represented and manipulated in much the same way as a
polytope. For example, the intersection of two volumes in aspect space can be computed
exactly in closed form.

The asp was initially studied in order to construct the aspect graph. The work by
Plantinga [Plan88] includes a complete discussion of the definition, construction, and
properties of the asp. As Plantinga describes, a fundamental property of aspect space is
that occlusion in object space corresponds to set subtraction in aspect space. Thus, the
visibility of a face from all viewing directions can be computed exactly by performing
set subtraction in aspect space. The process of set subtraction in aspect space generates
explicit equations for the 2D surfaces, 1D curves, and vertices mentioned above.

The restricted problem of constructing the asp for one degree of freedom in
viewpoint simplifies the form of the asp because the allowable viewpoints are con-
strained to lie on a great circle (i.e., ¢ = 0) of the view sphere (after an appropriate coor-
dinate transform). By making this simplification, aspect space is reduced in complexity
from four degrees of freedom to three. The asp for a polygonal face then becomes a 3D
volume bounded by the visibility of its edges. The visibility of an edge becomes a sur-
face in the 3D aspect space. All of the visual events are simplified by this viewpoint con-
straint, so that the apparent intersection of two edges becomes a curve of viewpoints, and
is bounded by the apparent intersection of three edges, which is a point in aspect space.
The equations that generate these volumes, surfaces, curves and points are obtained
directly from the general form of the asp by restricting the viewpoints to lie in a plane.
This is equivalently done by setting one component of the viewing direction to 0.

The algorithm for constructing the asp for a face F is to subtract from the asp for F
the asps for the faces in front of F. Subtraction is set subtraction, and faces in front of ¥
are those faces that occlude F from some viewpoint. This algorithm hinges on the obser-
vation that the occlusion of F by other faces in the scene corresponds to the subtraction
of the asps for the occluding faces from the asp for F. When the viewpoint is constrained
to the equator of the view sphere, the subtraction of one asp from another corresponds to
the subtraction of the region of intersection of two 3D volumes.
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Figure 3.4. The apparent intersection of two edges in the image plane.

Specifically, the construction of the asp for a scene is done by defining the intersec-
tion of the boundaries of the 3D volumes in aspect space corresponding to the visibility
of faces. The 2D surfaces in aspect space bounding a 3D volume correspond to the visi-
bility of the edges of a face. The intersection of two 2D surfaces in aspect space is a 1D
curve that lies on each of the 2D surfaces. Since each 2D surface in aspect space
corresponds to the visibility of an edge in the model, this 1D curve represents the
apparent intersection of the two edges in the image. For a specific value of the viewpoint
parameter 6, the equation of the 1D curve that lies on the 2D surface can be used to
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compute the exact image coordinates of the apparent intersection point of the
corresponding two edges.

The visibility of an edge is bounded by the other edges in the scene that occlude it
from various viewing directions. The construction of the asp for an edge can be viewed
as the computation of the equations of all of the 1D curves that lie on the 2D surface for
that edge.

3.1.4. Analysis and Equations

Computing all curves for a 2D surface in aspect space involves finding the intersection of
the 2D surface with all other 2D surfaces that correspond to the other edges in the scene.
Consider, for example, two edges E; and E; in IR3. Let E; be an edge from point
p1 = (x1,y1,21) to point p; + a; where a; =(a1,b1,c1). Let E; be an edge from point
p2 = (x2,y2,2z2) to point p; +ap where a;=(az,bz,c2). The edge E; can be
parametrized in IR3 by the expression p; + 5 a1, where 0 <s < 1. The viewing direction
V can be described in spherical coordinates as the vector V= (sin 6, 0, cos 0 ) that
depends on the single viewpoint parameter 6. The equation of the image point where
two edges E; and E; appear to intersect in the image plane (u,v) is a function of the
viewpoint parameter 6 and is given by [Plan88]:

u=(x,+say)cos0—-(cy+szy)sin (3.3)
v=y1+5b;
where the parameter s is expressed as

_ Ve ((p2-p1) X a)
T Ve x ap)

(3.4)

Figure 3.4 shows the edges E; and E; in IR? and the apparent intersection of E; and E;
in the image plane. Given a fixed value of the viewpoint parameter 0, Equation 3.3 gives
the image coordinates of the apparent intersection of the edges E; and E,.

The 1D curve described by Equation 3.3 corresponds geometrically to the intersec-
tion in aspect space of the 2D surfaces generated by edges E; and E;. The 1D curve of
intersection extends over some range of viewpoints [0;,0;]. Figure 3.4(a) shows the
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edges E; and E, as they would appear in the image plane from a single viewpoint. As
the viewpoint moves along the rotation path, the intersection of the edges in the image
changes. Figure 3.4(b) shows the 2D surfaces in aspect space corresponding to E; and
E,. The 1D curve on this surface is the trace of the apparent intersection of E; and E,.
Figure 3.4(b) illustrates how the 1D curve that is the trace of the apparent intersection of
E, and E, corresponds to the intersection of two 2D surfaces in aspect space. This 1D
curve is described by Equation 3.3. The appearance of the two edges in the image plane
is a 2D cross-section for a fixed value of the viewpoint parameter 0.

The most general visual event is the apparent intersection of three edges, i.e., the
EEE-event. This visual event corresponds to the intersection on a 2D surface of two dis-
tinct 1D curves. Computing the viewpoints where EEE-events occur involves finding the
intersection of 1D curves that were generated by edges that do not lie on the same face.
The viewpoint of intersection where two curves on the same 2D surface coincide can be
found directly by solving the equation for viewpoint given the equations of the curves
and the 2D surface on which they lie. Consider three edges E;, E;, and E3 that lie in R3
as illustrated in Figure 3.5(a). E; connects the points p; and p; +a;. Likewise, E; con-
nects the points p, and p, +a,, and E3 connects the points p3 and ps +a3. Let S;
represent the 2D surface in aspect space corresponding to E;. The intersection of S; and
S, in aspect space is a 1D curve C, on S;. Similarly, the intersection of S; and S3 in
aspect space is a 1D curve C, on S;. The intersection of the two curves C; and C; on S;
corresponds to the viewing direction where all three edges appear to intersect in the
image plane. This viewing direction is equivalent to the direction of some vector through
a point p; +sa; on E; , 0<s <1, which intersects both E, and E3. A vector parallel to
this direction is given by

V=((p; +sa; —pz) X az) X ((p1 +sa; —ps) X as) (3.5)

Since the ¢-component of the viewing direction is constrained to be 0, Equation 3.5 has
the form

as?+Bs+y=0 (3.6)

where o, B, and v are linear functions of the endpoints of E;, E; and E3. Equation 3.6
can be solved for the parameter s, and then Equation 3.5 can be solved for the desired




24

(a)

EE,Event (Cp
2D surface for E1 )

)

EEE-Event
E,E,Event (Cy)

Figure 3.5. (a) The apparent intersection of three scene edges in the image plane. (b)
The intersection of two 1D curves on a 2D surface in aspect space

vector V [P1an88]. The value of the viewpoint parameter 8 for vector V is the value of 0
where the two 1D curves C; and C, intersect in aspect space on S;. This is shown in
Figure 3.5(b).

Since the visibility of an edge is a function of the face to which the edge belongs,
determining which edges in the scene occlude a given edge can be done quickly using
simple tests. For example, edges that have non-overlapping y-coordinates in R? cannot
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Figure 3.6. The occlusion of an edge of the square by the triangle corresponds to 1D
curves on the 2D surface for that edge in aspect space.

occlude each other (remember: ¢ =0). The extent of the curve of intersection between
two 2D surfaces is bounded by the viewpoint extent of each of the 2D surfaces. In other
words, the computed curve of intersection between two 2D surfaces must lie on both 2D
surfaces. The viewpoint extent of the curve is therefore determined by the extent of the
2D surfaces in aspect space, which is directly related to the visibility of the correspond-
ing edge as a part of the face to which it belongs.
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The purpose for constructing the asp is to compute exactly the viewpoints where
visual events occur in the scene, and to use this list of visual events to represent how the
scene will appear in the image plane. The complete asp for a polygonal face is the
volume bounded in aspect space by the set of 2D surfaces corresponding to the edges of
that face. Associated with each 2D surface is the set of 1D curves of intersection gen-
erated by all other occluding edges in the scene. Recall that each 1D curve on a 2D sur-
face is the equation of an apparent intersection of two edges in the scene. The visual
events of interest are the EEE-events mentioned above: (1) the viewpoints where the
edge appears or disappears completely as a part of the face of which it is a part, (2) the
viewpoints where a T-junction begins or ends, and (3) the most general EEE-event where
three non-intersecting edges appear to intersect at a single viewpoint. The viewpoints
that represent these events can be obtained directly from the representation of 1D curves
of intersection on a 2D surface. For each edge and its corresponding 2D surface, the
viewpoints where the edge appears or disappears completely is the extent in viewpoint
space of the 2D surface. This extent is given directly as the visibility of the face to which
the edge belongs. The starting and ending of each T-junction for an edge is given by the
viewpoint extent of each 1D curve of intersection on the 2D surface for that edge. These
are found directly without additional computation, and can be stored in a list of events
associated with the 2D surface.

All visual events affecting the appearance of an edge can be derived directly from
the 2D surface for that edge and the 1D curves corresponding to the intersection of the
2D surface with all other 2D surfaces in the scene. Once computed, the visual events for
each edge can be sorted and stored with the corresponding 2D surface. Figure 3.6 shows
the event list for an edge, E;, of a square that is being occluded by a triangle. The edges
of the triangle cause two 1D curves to be generated on the 2D surface for the edge of the
square. The viewpoint extent of the 1D curves on the 2D surface are the viewpoints
where the T-junctions on E; begin and end. The beginning and ending viewpoints
correspond to EV-events, and are the visual events in this example that are sorted and
stored. As shown in the figure, the appearance of E; over some interval I on the
viewpath is described by a list of 1D curves. The set of 1D curves corresponds to T-
junctions and hence determines the appearance of the edge over interval I in the sorted
list of viewpoints.

More generally, a list of visual events &, €, ... , & delimits all of the topological
changes in the appearance of an edge corresponding to a 2D surface. For each particular
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Figure 3.7. The 1D curves in aspect space which determine the appearance of an edge
can be ordered for each interval in the list of visual events for the edge.

interval I = [g;, €;,1] of the visual event list in the viewpath, the appearance of the edge is
completely determined by the set of 1D curves that extend over that interval. Figure 3.7
shows a portion of the visual event list for a single edge E; being occluded by a face with
five edges. For 0 =g¢; there is an EV-event where E,4, Es and E, appear to intersect. At
0 =¢;,; the EV-event involves Ej, E3 and E;. Between viewpoints €; and gy the 1D
curves in aspect space that determine the visibility of E; are the curves generated by Ey4
and E5 with E;.

All of the visual events affecting the appearance of an edge over an interval in
viewpoint space are represented by the set of 1D curves within that interval. Since no
visual events occur within an interval I, the set of 1D curves for an edge can be ordered
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within I based on the orientation of the edge. The 1D curves for interval I correspond to
T-junctions along the edge. These junctions can be ordered relative to the designated
start vertex of the directed edge. The ordering is based upon the a priori orientation of
each edge, i.c., edges are directed from a start vertex to an end vertex, and T-junction
locations along the edge can thus be ordered relative to one of these vertices. A change
in the order corresponds to an EEE-event of some type. Since no such event can occur
within I, the ordering of 1D surfaces cannot change. This ordering can be done during
the off-line construction phase, making the on-line computation of the visible portions of
the edge for interval I efficient.

The length of the list of pointers to 1D curves for any particular interval I varies
depending on the amount of occlusion. For an unoccluded edge, the list of pointers to
bounding curves is length two, i.e., a curve for each endpoint. Due to occlusion, how-
ever, a single edge can be fragmented into arbitrarily many disjoint pieces. An example
of this type of fragmentation is shown by the interval I=[g;41, €42] in Figure 3.7.
Notice that the order of the list of 1D curves for interval [€;,1, €i42] in Figure 3.7 deter-
mines the appearance of E; for all viewpoints within [€;41, €i42]- Because of the frag-
mentation of edges at various viewpoints, the resulting length of the list of pointers to
curves bounding the visibility of the edge over a particular interval may be of length
greater than two.

To analyze the complexity of the construction phase, let e represent the number of
edges in a scene. The construction algorithm will form a 2D surface corresponding to
each edge in the scene. Let q be the number of 1D surfaces on a particular 2D surface.
The 1D surfaces are the curves that represent the intersection in aspect space of two 2D
“-q

2

surfaces. For a particular 2D surface there are 2 +2q + events that can arise in

the worst case. This follows by counting the number of each type of event that can occur

given a 2D surface:
2 Appearance and disappearance of the entire edge
2q EV-events (q 1D curves, each endpoint an EV-event)
a’-q

EEE-events (q 1D surfaces intersecting on a 2D surface)
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It follows that the complete construction of the asp for a single edge (a 2D surface) is
bounded by O(e q2). In order to construct a complete 2D surface for every edge in the
scene, the cost is O(ezqz). In the worst case, q = e for every 2D surface so that the con-
struction time is O(e?). In practice, q is only a small fraction of e for each 2D surface,
and hence the overall construction time is somewhere between ()(ez) and O(e3 ). Notice
that, given a particular edge ¢;, the computation of the edges that occlude ¢; is in the
worst case O(e). This implies that the construction algorithm can do no better that O(ez)
unless other information is given about which edges are "in front of" other edges. For
example, if the scene is known to be convex, the construction time of the asp is linear
in e [Plan88].

3.2. Event-Based Interactive Display

The asp construction phase computes a representation off-line that can be used to interac-
tively generate the image sequences of a polyhedral scene from the position of a moving
viewer with hidden-lines removed [Plan88,Plan90a]. The asp encodes the viewpoints
within the space of all possible viewpoints where visual events occur. The interactive
display process allows the user to select a path through the space of all viewpoints, and
then uses the asp to determine where along that path changes in the appearance of the
scene will occur. In the case where the space of viewpoints is restricted to a great circle
S! on the view sphere S2, the user can interactively move along the great circle in either
direction and at any speed.

3.2.1. Visible Line Display

The visual events that are computed from intersections in aspect space are edge events
and determine the appearance of the lines in the scene. The display phase makes use of
these precomputed visual events for the scene as well as a list of global visual events and
a list of currently visible faces. Global visual events are those viewpoints where an entire
face either appears or disappears. This list is used to focus the display process on only
those faces (and hence edges) that are visible at a given viewpoint. The list of currently
visible faces (CVF list) is maintained in conjunction with the global event list. The CVF
list must be computed for the initial viewpoint of the chosen viewpath. Subsequent
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viewpoints along the viewpath where faces appear and disappear are stored in a global
event list of updates to the CVF list.

With each edge in the scene is associated a fully constructed 2D surface in aspect
space that is computed during the construction phase of the algorithm. Each edge is
associated with its corresponding 2D surface. The 2D surface represents for its

Currently visible faces

T
iy

v

[a—y
\

2-surface for E1

n
Edges bounding F; \ Fi :

1—surfaces

Figure 3.8. The representation used for the display of a polyhedral scene from
viewpoints along a 1D path using precomputed visual events.
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corresponding edge, the visual events along the viewpath that will affect its visibility.
The 1D curves for each 2D surface provide the information needed to display the edge as
it appears. The ordering of the 1D curves for each event interval in the 2D surface gives
the appearance of the edge directly. Figure 3.8 shows the structure of the representation
used to display the scene from the viewpath.

The algorithm for display based on the representation in Figure 3.8 can be divided
into two main steps: (1) display the scene for the current viewpoint, and (2) update the
ISG based on a change in viewpoint. These steps are iterated, once for each frame in the
display. This algorithm assumes the existence of the CVF list for the initial viewpoint
and the global event list for the faces in the scene. These two lists can also be precom-
puted since they depend only upon the initial viewpoint of the viewpath.

The CVF list is a list of faces that are visible from the current viewpoint. Given a
viewpoint, backface culling gives the initial list of visible faces. Forward-facing faces
are only potentially visible since they might be occluded by other faces. The global
event list records the values of © where all faces in the scene appear and disappear.
Faces are oriented and hence viewpoints in front of a face are those from which the face
is visible. The viewpoints where the face becomes visible and where it becomes invisi-
ble are the two viewpoints where the face appears edge-on. These directions can be com-
puted easily from the directed normal to each face. The global event list is sorted by
viewpoint, and with each value is associated the type of event (appear or disappear) and
the face affected.

The display phase begins after the CVF list and the global event list are computed.
For each face on the CVF list, its appearance is computed and displayed. The appear-
ance of the edges for each face on the CVF list is computed from the 2D surfaces
corresponding to those edges. Each 2D surface has a list of event values that have been
sorted. The interval that contains the current viewpoint is found, and the list of pointers
to 1D curves in aspect space directly gives the appearance of the edge. A nil pointer
signifies that the edge is entirely occluded. Hence the only computation involved is the
scanning of the event list for a 2D surface and the computation of the image coordinates
for each of the 1D curves affecting the appearance of the edge. Since the viewpoint typi-
cally changes by small increments along the viewpath, a complete scan of the event list
within a 2D surface is not necessary at every frame. The position in the event list for the
previous frame is saved. The interval that contains the new value of the viewpoint
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parameter is usually within a single step or two of the previous frame’s interval. For
example, Figure 3.7 shows part of a 2D surface for an edge E;. Suppose that at frame k
the value of the viewpoint parameter is 6y, and that €; < 6y <€;,1. A pointer to interval
[€;, €+1] is stored with the 2D surface for E;. If frame k +1 corresponds to the
viewpoint 0,1, the event interval for the 2D surface that contains 0y,; must be found.
The search, however, can begin at [g;, €;,1]. For small changes in 6, 0,1 is likely to lie
within or close to [€;, €i4+1]-

The cost of the computation of the appearance of each frame along a viewpath is
determined by the number of faces visible for that frame. Let f be the number of faces on
the CVF list for some frame, and assume that each face consists of an average of e edges.
In order to display a frame, the algorithm must compute the appearance of each edge for
each face on the CVF list. Consider the following definitions:

Cost of scanning the event list within a 2D surface
Cost of computing the image points from a 1D aspect space curve
Average number of 1D curves determining an edge’s visibility

a8 6 B w

=csa Cost of displaying one edge using the asp

Since the appearance of the scene for a single frame is the appearance of each of the
edges on the CVF list, the cost of computing the appearance is fed, i.e., linear in the
number of edges to be displayed. In practice, s is small after the initial frame, and a
involves only a small constant number of multiplication and addition instructions (and a
single division). The quantity ¢ is also, on the average, small and hence the cost of com-
puting the appearance of an single edge is a small constant.

In addition to the cost of computing appearance, a cost is incurred to update the
CVF list. Let u be the cost of a single update to the CVF list. Let o be the average
number of updates for a single frame (i.e., the average number of faces that appear and
disappear between two frames). Then the cost to update the CVF list for a single frame
is o, u. Assuming a uniform distribution of events and small increments in viewpoint per
frame, o will be small. The update cost is bounded by the cost to update the CVF list.
Using an appropriate data structure (e.g., a balanced binary tree) this cost is O(log f).
Thus the total cost for a single frame is f e d + o u, which is bounded by the linear cost
of computing the appearance of the edges visible in a single frame.
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Figure 3.9. The triangle occludes the quadrilateral as the viewpoint changes from left to
right. Each circled visual event constitutes an update to the ordered list that preserves the
boundary of the visible portion of the face.

3.2.2. Visible Surface Display

The visible-surface problem is a direct extension to the algorithms for visible-line display
using precomputed visual events. The significant difference is that for each face the
correct edge order must be maintained. This order is maintained for each face indepen-
dently, so that at each frame the representation of a face is an ordered list of vertices
and/or T-junctions. Faces are normally stored as a set of ordered edges, where the order-
ing gives the directed normal to the face. To maintain a visible-surface representation,
this edge ordering around the face is preserved as events occur along the viewpath.

Associated with each visual event is an update to the ordered list specifying where
an insertion or deletion should occur. In the visible-line case, it is not necessary to
preserve this ordering information since the only concern is the appearance of individual
edge segments. For visible surfaces, when an event occurs, the appropriate ordered
update that has been precomputed can be applied directly to the list for the affected face.
The result is a closed, exact visible surface representation maintained at all viewpoints
for each face in the scene.

To illustrate the necessary ordering information, consider the example in Figure 3.9.
Each snapshot from left to right shows a different projection of the two faces as
viewpoint changes along the viewpath. The circled EV-events in snapshots (a), (c) and
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(e) are updates to the ordered list of vertices and EE-events (T-junctions) bounding the
visible portion of the face. Immediately before the EV-event in Figure 3.9(a), the list
bounding the visible portion of the quadrilateral is { 1, 2, 3, 4 }. The numbers refer to
vertices, and the letters (A, B, C) refer to EE-events. The event causes the insertion of
the vertex 6 and the EE-events labeled as A and B. The new ordered list after the event
in Figure 3.9(a) becomes { 1, 2, 3,4, B, 6, A }. Similarly, the EV-event shown in Figure
3.9(c) is a deletion of { A } followed by an insertion of { 7, C } at the end of the list. The
new list for the visible part of the quadrilateral shown in Figure 3.9(d) is { 1, 2,3, 4, B, 6,
7, C }. The last EV-event in this example essentially creates a hole in the quadrilateral,
so that its visible parts are bounded by { 1, 2, 3, 4 } with a hole bounded by {5,6,7}.

The extra cost in time and space for maintaining visible surfaces rather than only
visible lines is the constant cost resulting from storing and updating the ordered lists for
faces. Because insertion and deletion positions can be precomputed, the cost is a small,
fixed constant in time and space for each visual event. The benefit of maintaining surface
information is to make use of various surface-shading algorithms. The following subsec-
tions discuss the issues of shading and shadows.

3.2.3. Shaded Display

The shaded display of polyhedral scenes conveys information about significant features
including lighting, shading, surface markings and surface reflectance, texture, and so on.
The information about visual events that affect polyhedral surface appearance is already
encoded in the asp because the appearance of a face is determined by the appearance of
the set of edges bounding the face. The description of the appearance of faces that can be
extracted from the asp can be used to formulate a hidden-surface version of the previous
algorithm for interactive display. The primary advantage of a hidden-surface display is
the added realism gained from shading models, multiple light sources and shadows.

The asp is a face-based representation and encodes information about how edges are
connected. Consequently, the asp represents the appearance of faces as a function of
viewpoint. By representing the appearance of faces, the area enclosed by a particular
face in the image plane is a closed (but not necessarily connected) region corresponding
to the projection of a face in IR3. The interior of a closed region can be filled according
to shading information based on the reflectance of the surface, the position of the light
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source(s) with respect to the viewpoint, and the effect of shadows cast by the light

source(s) in the scene.

With arbitrary occlusion, the appearance of a single face may be a disjoint set of
polygons. This situation is represented in the asp, however, because the asp allows the
appearance of a face to be computed as a set of closed polygons, each of which is
bounded by an ordered list of edges. Thus the appearance of a face is a set of closed
boundaries, even when a face is partially occluded. This set of closed boundaries in the
image plane is guaranteed to be "empty" because the asp gives the appearance of the
scene with hidden lines removed.

The positions of light sources must be incorporated into the shaded display process.
It is significant to note, however, that the asp for a scene as it has been defined is
independent of point light source positions. The asp encodes visual events arising from
the geometry of the faces and edges in the polyhedral scene. Thus the asp is not depen-
dent on the position in viewpoint space of light sources since the asp represents appear-
ance from all viewpoints. This is significant since the light source can be moved and the
scene drawn again without reconstructing the asp. The cost of constructing the asp is
incurred only once in an off-line preprocessing phase. It is a natural result of the
viewer-centered property of the asp that the position of a point light source defines
another viewpoint, and visibility information from all viewpoints is included in the asp.

3.2.3.1. Flat Shading

The shaded display of polyhedral models in the simplest case assigns to each pixel
belonging to a given face a fixed intensity value. Assuming a perfectly diffusing surface
and point light sources at infinity, the intensity value at each point on the same planar
surface is the same. This value is a function of the reflectance model which depends
upon the normal to the face, the position of the light sources, and the reflectance proper-
ties of the surface. When considering perfectly diffusing surfaces, the viewer’s position
with respect to the light source does not matter since light is scattered uniformly in all
directions. Since the viewing position does not affect the shading of a given face, and the
angle between the surface normal and the light source is constant, the appropriate inten-
sity value can be computed just once for each face. This reflected intensity I for a face
with surface normal N is given by
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N
I =1, + deIL‘.(N - L) (3.7

i=1

where I, is a constant to account for reflected ambient light, N is the number of light
sources, k4 is the percentage of incident light reflected, I, is the radiance of light source

i, and L; is the direction of the ith light source [Whit88].

Under the assumptions of diffuse surfaces and point light sources, the shading
model described by Equation 3.7 can be used to precompute the shaded intensity of each
of the faces in the scene given a fixed set of light source positions. This information is
equivalent to the reflectance map [Horn77] for the scene, and can be used in conjunction
with the asp to compute the shaded appearance of each face in the scene from any
viewpoint.

3.2.3.2. Interpolated Shading

The shading model defined by Equation 3.7 does not simulate the smoothness of curved
surfaces which are approximated by polygons. Given a smooth surface and its
corresponding polygonal approximation, the Phong shading model [Phon75] interpolates
geometric information to estimate a normal at each point on the surface. This normal is
used with an augmented shading function to shade each point on the surface individually,
yielding a smoother shading within and across polygons. Notice that with the shading
function of Equation 3.7, each point on the same face receives the same intensity value.
Using Phong shading, the correspondence between the approximated surface and the
polygon is used to shade each point on the polygon independently. This gives a
smoother, more realistic shading within each polygon. The Phong model is given by the
previous model plus a specular term so that the intensity at each point becomes

N N
I =1, + Ykalp, (N-Ly) + ks 211 Rs (3.8)

i=1 i=1

where R; is a reflectance model that approximates specularity and is also related to sur-
face smoothness.
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T(Q)
R

Figure 3.10. The transformation T recovers the 3D coordinates on a face in R>
corresponding to a point q within a polygon in the image plane.

The application of the Phong shading model depends on two fundamental geometric
assumptions: (1) a smooth, curved surface has been approximated by a set of planar
faces, and (2) given a point on a planar face f contained in IR?, a corresponding normal
to the smooth surface can be estimated. Assumption (1) presents no additional difficulty
since the asp deals directly with polygonal representations that may also be approxima-
tions of curved surfaces. Assumption (2) can be handled for a point on a face f contained
in R? using a bilinear interpolation scheme that makes use of the normal to the surface at
the vertices of f [Phon75]. This scheme assumes that the 3D coordinates of the point on
the face are known. The information derived from the asp, however, is the appearance in
the image plane only, i.e., there is no 3D information. In order to shade a polygon in the
image plane using this method, each point to be shaded in the image plane must be asso-
ciated with a corresponding point on a face in IR3. The transformation T that recovers
the 3D point from its 2D projection is determined by the equation of the plane in IR? on
which the face lies.
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The transformation T depends upon the description of the asp for a point in R3.
Specifically, consider a fixed point p = (x¢, Yo, Z9) < IR?. The asp for p is computed
by considering the image coordinates of p as a function of the viewpoint parameters 0
and ¢. The projection onto the image plane can be separated into two parts: a rotation so
that the viewing direction is along the z-axis, and the orthographic projection into the
image plane. Each component of the rotation is described by an orthogonal 3 X 3
matrix. Under orthographic projection into the image plane (4, v) we have

u=xqcos0—zgpsin0 (3.9
v=Xxq sin 0 sin ¢ +yg cos ¢ +zp cos O sin ¢

These equations specify the image coordinates (4, v) of p as a function of the two
viewpoint parameters 6 and ¢.

The problem of recovering the 3D coordinates of a point given only the values of
the two viewpoint parameters and its image coordinates (i, Vo) is underconstrained;
there are three equations and four unknowns. However, with the equation of the plane in
IR? on which the recovered point is known to lie, the linear transformation T is fully
determined.

Shading a polygon in the image plane using the Phong shading model involves
applying the Phong shading equation (Equation 3.8) at each point within the polygon.
By using the transformation T, each point in the image plane can be associated with a
corresponding point that projects (orthographically) to it from a face in R3. Figure 3.10
shows the transformation applied to a point q in the image plane in order to recover the
coordinates of the point T(q) IR3. Note that the equation of the plane in IR? that con-
tains the triangular face must be known in order to apply the transformation. Bilinear
interpolation can then be used to approximate the normal to the curved surface at that
point. This approximated normal is the normal used in Equation 3.8 to compute the
appropriate intensity value for the point q in the image plane. Although the Phong model
is more expensive than the flat shading model, there are fast approximations to the Phong
shading model [Bish86, Duff79].
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Figure 3.11. A 3D scene containing a single point light source. (a) The 3D scene. (b)
The scene projected from the light source direction. (c) The scene as observed from the
viewer’s position without the shadow. (d) The scene observed by the viewer with the
shadow.

3.2.4. Shadows

When the position of the viewer is different from the position of the light source, regions
in the scene can lie in shadows. A shadow on a surface results from the occlusion of the
light source by some other surface in the scene. Assuming opaque objects, the light
source illuminates the first surface it reaches. The surfaces hidden behind those which
are illuminated lie in shadow. When the light source position and the viewpoint coin-
cide, there are no shadows. This is true since in that case the set of visible surfaces
corresponds identically to the set of illuminated surfaces.

The problem of accurately displaying a shaded scene that contains shadows
involves finding the shadow regions in the scene given a viewpoint and the position of
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each light source. With scenes containing only a single point light source, the problem is
that of determining the set of shadow regions. Shadow region computation in polyhedral
scenes has been incorporated into hidden surface algorithms using shadow volumes
[Crow77] and polygon clipping [Athe78]. Most hidden-surface removal algorithms can
compute shadow regions by performing hidden-surface removal from the position of the
light source [Joy88]. Rendering can then be performed by integrating the shading of the
shadow regions and the visible surfaces according to some shading model. These
methods of removing hidden surfaces and finding shadow regions are not designed for
interactive viewing. Using these algorithms for displaying a sequence of views of a
scene is inefficient since these methods do not make use of viewpath coherence and are
not designed for interactive use.

Scenes that contain multiple light sources generate a set of shadow regions for each
light source. The interaction between these sets of shadow regions must be computed,
i.e., a surface can simultaneously lie in the shadow created by one light source and in the
direct illumination of another. The shading of such a surface requires further computa-
tion according to the interaction of the sets of shadow regions associated with each of the
light sources. Scenes of this complexity have been rendered previously using ray tracing
techniques that create shadow regions as a by-product of light-source and ray intersec-
tions [Whit80, Cook84].

The asp represents the appearance of each face in the scene from all viewing direc-
tions. By treating each light source as an additional viewing direction, the asp can be
used to obtain the appearance of a particular face from the light source position. The
appearance of a face from the direction of the light source is the part of the face that is
under direct illumination. A comparison of the appearances of a face from the viewing
direction and from the light source direction gives the location of the shadows on the face
that are cast by the light source. As an example consider the illustration in Figure 3.11. .
The 3D positions of the triangular and rectangular faces are illustrated in Figure 3.11(a).
The triangular face casts a shadow on part of the rectangular face. Figure 3.11(b) shows
the appearance of the scene from the light source direction. From the position of the
viewer, however, the appearance of the scene is different. As shown in Figure 3.11(c),
from the direction of the viewer the rectangular face is only partially occluded. Regions
visible from the light source are projected from the viewer’s position, thus identifying
regions of full illumination and shadow (Figure 3.11(d)).
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Consider the problem of using the asp to compute the regions of a scene that lie in
the shadows created by a single light source. Let L and V represent the light source posi-
tion and the viewer position in viewpoint space, respectively. Let f be a face in the scene
that lies on plane P < R3. Let fy be the appearance of f from the viewing direction V,
and let f, be the appearance of f from the direction of the light source L. The appear-
ance of a polygon as encoded in the asp is always a set of closed polygons. Note that
because of occlusion, a single polygon may actually appear to be a set of disjoint
polygons. Thus fi, and fy represent sets of polygons in the image plane. Furthermore, fL,
represents the part of f that is illuminated by the light source L, and fy represents the part
of f that is visible to the viewer from the viewpoint V.

The computation of regions of the face f that lie in shadow hinges on a key observa-
tion: the polygons in each of the sets fy and fi, can be thought of as the orthographic
projection of disjoint polygons in IR3 that lie on the same plane containing f. That is, a
transformation can be applied to the edges and vertices in the image plane for both fy

Figure 3.12. The regions of shadow and full illumination on the triangular face can be
computed using the appearance of the face in the image and the transformation T.
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and fy, in order to recover the corresponding 3D coordinates for the image edges. The
3D polygons that correspond to the transformation applied to both fy and fy, are also sets
of closed polygons that lie on plane P in IR3. This is important in order to compare the
regions of f that are visible, to the regions of f that are fully illuminated. Let T(fy) and
T(fy,) represent the sets of polygons in R> on plane P corresponding to the necessary
transformation applied to fy and fy,, respectively. Then the intersection T(fy,) n T(fy)
represents the regions in R3 on f that are both visible and illuminated. The regions
described by T(fy) — T(fy,) represent those areas on f that are visible but not illuminated,

1.e., shadow regions.

The computation of the intersection and difference of these sets of polygons starts
with the transformation T. T can be applied to every edge bounding the projection of a
face in the scene from a particular viewpoint. This yields a set of polygons in R3 on the
face. T(Ay,) is the set of polygons on f « R3. Figure 3.12 shows the appearance of a
triangular face from the direction of the light source in the image plane. The points q;,
go, g3 and g are vertices in the image plane that are a result of the occlusion of the tri-
angular face by the rectangular face. By applying T to the vertices q; in the image plane,
the points p;, p2, p3 and ps are recovered on the triangular face in IR3. Notice that the
edge between p; and p; as well as the edge connecting p3 and p,4 are the boundaries of
the region on the triangular face that separate the regions of shadow and full illumination.

In order to compute the intersection T(fy,) N T(fy), the 2D appearance of the face f
from the light source viewpoint can be recovered as a polygon in R? that lies on the
plane containing f in IR?. This polygon can then be projected (orthographically) from the
viewpoint of the viewer. The two sets of polygons can be compared directly in the image
plane corresponding to the viewpoint of the viewer. Recall that for a single point
q c R? the transformation T(q) c R3 is the image of q constrained to lie on plane P.
Then the point T(q) can be reprojected so that it can be directly compared to the appear-
ance of the face f from the viewing direction V. Transforming the appearance of f from
the direction of the light source in this way corresponds to the appearance of the fully-
illuminated regions of f from viewpoint V.

For scenes with a single light source, the regions of full illumination and the regions
of shadow that may divide the appearance of a face f can be found by applying the above
transformation and then performing the intersection and difference operations
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S1 = T(fv) n T(fL) Sy = T(tv) — T(fyL) (3.10)

The set of polygons S; is the region of full illumination; S, is the remaining part of the
visible portion of f, that is the part of f in shadow.

3.2.5. Multiple (and Moving) Light Sources

The precomputation of visual events using the asp makes explicit all of the visual events
that occur in viewpoint space. The intersection of an interactive viewpath with these
precomputed visual events in viewpoint space allows the efficient computation of succes-
sive frames in the sequence with hidden surfaces removed. This efficiency is a result of
both the viewpath coherence and the visual event precomputation. Because the change
in the visibility of the surfaces in the scene is represented, the dominant cost of interac-
tive viewing with hidden surfaces removed becomes the cost of applying the shading
model along with the cost of the scan conversion of sets of visible surface and shadow

polygons.

The on-line algorithm for interactive viewing computes the appearance of the scene
from the starting viewpoint using a standard hidden-surface removal algorithm. As the
viewpoint parameter changes, visual events along the viewpath occur. With each visual
event is stored a description of how the appearance of visible faces in the scene change
from the previous appearance. Hence, for every event an update to the current appear-
ance of the visible faces is made. The second frame in the sequence is computed from
the first by determining the visual events that occur under the small change in viewpoint,
and then modifying the appearance of each face given the events. The viewpath coher-
ence that results from smoothly changing viewpoints guarantees that only a small number
of visual events will need to be processed between any two frames of the sequence.

These operations can be accomplished using two data structures: a list of visual
events and an image structure graph (ISG). The image structure graph is a graph of
faces, edges and vertices that describes the appearance of the scene for a particular
viewpoint. The ISG is constructed initially for the first frame of the viewpath, and is
modified for each visual event thereafter. The visual event list is generated from the asp
and contains a complete, sorted list of visual events and corresponding updates to the
ISG. The construction of both the visual event list and the initial ISG is done off-line.
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The interactive viewing of a shaded polyhedral scene is a direct application of the
precomputed visual event list and the ISG. Consider a scene with fixed light sources and
flat-shading. Intensities for each face are precomputed and stored in a lookup table, and
shadow regions for each of the light sources can be similarly precomputed. For a single
frame of the sequence the task of displaying the scene with shadows and with hidden sur-
faces removed is a three-step procedure. First, the appearance of each face in the scene
from the current viewpoint is computed using the visual event list and the ISG. Sec()nd,
each shadow set is transformed using the linear transformation T according to the current
viewpoint parameters. Finally, the appearance of the scene is rendered by combining the
shadow sets and the flat-shading value for each face.

Interactive viewing that includes moving light sources amounts to the additional
precomputation of the visual event list and ISG along each light source path. The
changes in the polygons in the shadow set for a light source can then be computed
efficiently by updating the ISG according to its visual event list. For a static viewer and
moving light source, the algorithm is the same as above. For both moving viewer and
moving light source, two distinct ISGs and visual event lists must be maintained.

Interactive viewing using an interpolated shading model requires that a distinct
intensity value be computed for each point inside a given face. Interpolated shading and
fast Phong shading can be done relatively quickly [Swan86,Bish86], and a scan line
algorithm can again be used to combine information from shadow sets and shaded visible
surfaces in the image plane.

3.3. Computational Results

A prototype of both the preprocessing and the on-line portions of the hidden line algo-
rithm has been implemented. The prototype program is written in C and was tested on a
DECstation 3100 running Ultrix V2.1. The input to the algorithm is a polyhedral model
of a 3D scene represented as a graph structure. A model is a collection of faces with
each face is bounded by a set of edges and each edge is bounded by two vertices. The set
of eleven test models used in the timing experiments is shown in Figure 3.13. These
models were chosen to represent two basic categories of objects: those that approach the
worst-case behavior of the asp construction algorithm, and those representing simple 3D
objects. The chain links, the layers of squares, the large and small grids, and the spring
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Figure 3.13. The test polyhedra for which the construction and display results are re-

ported.
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all contain a great deal of nonconvexity and are visually complex. The models of the
tori, spheres and candlestick illustrate the intra-object occlusion created by nonconvexity
as well as inter-object occlusion from multiple objects in a scene.

3.3.1. Model Construction

Timing values and sizes for the construction phase of the algorithm for the test models
are shown in Table 3.1. The numbers of faces, edges and vertices in each of the models
are recorded in the first three columns of the table. For each of the models, Table 3.1
gives the construction time (in seconds) and the size of the resulting representation (in
Kbytes). The visual events computed for the edges of the models include three types: the
appearance and disappearance of an edge, EE-events (two edges forming a T-junction),
and EEE-events (three edges). The maximum, average and total number of events are

Model Faces | Edges | Vertices Size Time
(Kbytes) | (Seconds)

Chain link 72 144 96 24 10
Layers of squares 48 192 192 28 7
Small grid 41 105 82 36 7
Candlestick 288 560 274 72 130
Candlestick and sphere 416 800 388 120 290
Three spheres 384 720 342 88 143
Interlocked tori 512 1024 512 104 426
Torus and candlestick 544 1072 530 120 484
Spring 1800 | 2709 909 868 3486
Large grid 449 880 451 216 943
Torus inside torus 512 1024 512 104 436

Table 3.1. Construction times (seconds) and sizes (Kbytes) for the test models.
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shown in Table 3.2 and are the sum of these three types of events. The minimum number
of events that a model with n edges can have is 2n, i.e., two events for the appearance
and disappearance of each edge.

Several conclusions can be drawn from the data in Tables 3.1 and 3.2. First, the
construction times and sizes indicate that the construction of the asp for models with
many more faces is indeed tractable. Although the off-line computation time for the
largest model, the spring, was approximately 50 minutes, this absolute time is highly
dependent on both the prototype program coding efficiency and the hardware
configuration. We have estimated that an order of magnitude speedup in the construction
time can be achieved by efficient coding to eliminate redundant computation. Second,
the number of visual events occurring in a typical scene is only a small constant times the
number of edges in the model. Note that the average number of events per edge, even for

Model Total Events Events Maximum Events | Seconds

per Edge per Edge per Event
Chain link 996 6.9 21 0.010
Layers of squares 2365 12.3 25 0.003
Small grid 1674 159 60 0.004
Candlestick 3109 55 25 0.042
Candlestick and sphere 5270 6.6 30 0.055
Three spheres 3733 5.2 22 0.038
Interlocked tori 5135 5.0 18 0.083
Torus and candlestick 5030 4.7 29 0.096
Spring 39954 14.7 52 0.087
Large grid 9776 11.1 122 0.096
Torus inside torus 4395 4.3 27 0.099

Table 3.2. The number of visual events computed for each of the test models. Visual
events include the appearing and disappearing of an edge, edge-edge (EE) events and
edge-edge-edge (EEE) events.
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the spring model, is generally less than 15. The number of visual events is typically
about an order of magnitude larger than the number of edges. Extrapolating from the
models tested, 10 MB should be sufficient to store the events for a scene with 20,000 to
180,000 edges. However, since the number of events may be worse than linear in the
scene size, the maximum possible scene size that uses 10 MB of storage will depend on
the visual complexity of the scene and may be much smaller for complex scenes. Still,
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Figure 3.14. The display times for 360 frames of a sequence as a function of the degrees
between frames for the first six models from Figure 3.13. The horizontal axis shows the
degrees between frames.
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the storage requirements appear to be practical for scenes of moderate size and visual
complexity.

3.3.2. Display

Timing measurements for the on-line interactive viewing phase of the algorithm are
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Figure 3.15. The display times for 360 frames of a sequence as a function of the degrees
between frames for models 7-11. The horizontal axis shows the degrees between frames.
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shown in Figures 3.14 and 3.15. In order to measure the display rate of each of the test
models, we measured the time needed to display a sequence of 360 frames. The timing
results include the time to update the event structure as well as the time spent on comput-
ing the image coordinates of each of the edge segments to be displayed. The viewpath
was a great circle (rotation) on the view sphere at ¢ =0. Figures 3.14 and 3.15 show the
display rates in seconds of the eleven test models. A complete asp and animation
sequence was computed and timed for each of these models. Figures 3.15 presents the
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Figure 3.16. Frame rate as a function of the degrees between frames for the display of
the test models 1-6.
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same timing data in the form of frames per second as a function of the number of degrees

between successive frames.

These timing results lead to several observations. First, a small change in the
number of degrees between frames in the sequence does not greatly affect the display
rate. This indicates that the time needed to compute the image coordinates of the seg-
ments to be displayed greatly dominates the time needed to update the event structure.
Thus processing a larger number of events between frames has little effect on the frame

rate.

The above observations also indicate that the dominant part of the display process is
the computation of the image coordinates of the endpoints of segments, and not the pro-
cessing of visual events. With fast 3D rotation and vector-drawing hardware, this seg-
ment coordinate computation can be done quickly for large models. Since the added
computational cost of processing visual events is so small, the interactive viewing of
much larger scenes can be achieved using the asp.

In summary, our results indicate that the asp can be used to achieve a display rate
that is fast enough to allow interactive movement of the viewpoint with scenes contain-
ing at least 2,000-10,000 faces on a general-purpose workstation. From the prototype
implementation of this algorithm we have found that for scenes of moderate size and
visual complexity:

e The number of visual events is in practice a relatively small constant times the
number of edges in the scene

o Frame display time changes very little with larger degree increments between
frames

e Visual event processing requires less than 5 percent of the total display time

These results suggest that the preprocessing times for larger models will be much lower
than the theoretical worst-case bounds and that the resulting size of the event structure
will be a relatively small constant times the number of edges in the model. In addition,
the small computational cost associated with visual event processing shows that the
interactive, on-line display of large models can be achieved when preprocessing time is
available.
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Figure 3.17. Frame rate as a function of the degrees between frames for the display of
the test models 7-11.

The interactive viewing of shaded scenes with multiple light sources and shadows is
a direct extension of this implementation. The key feature of this approach is the separa-
tion of the hidden surface computation in the animation sequence from the application of
the shading model and the scan conversion process. The set of object resolution
polygons representing the visible faces and the shadow polygons is computed efficiently
using the visual event list derived from the asp. Viewpath coherence guarantees that
only a small percentage of the visual events need to be processed between a single pair of
frames. The difference between hidden-line and hidden-surface computation in this
approach is the edge connectivity information that must be preserved, as well as the cost
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of raster display. The primary cost of shaded display is the cost associated with scan
converting the visible surfaces and shadow polygons.

3.4. Hybrid Methods

The methods for visual-event-based interactive display presented here have been studied
as a pure method in order to evaluate the tradeoffs and efficiencies that can be obtained.
There are several known methods for 3D modeling and for display, however, that can be
incorporated into the visual-event framework in order to address some of the weaknesses
of this pure approach. The following subsections discuss hybrid methods that address
several of the limitations of the pure visual-event-based approach. The problem of the
worst-case visual event complexity is solved in part with an algorithm that uses the depth
ordering of faces to display visible surfaces. The only visual events necessary to com-
pute and store are those that affect the depth ordering of faces. Thus there is an asymp-
totic improvement in the complexity of the algorithm when using visual events to com-
pute depth ordering.

3.4.1. Event-Based Depth Ordering

A list of polygons can be displayed with hidden portions removed if the polygons are
ordered in depth with respect to the viewer [Newe72]. That is, the surfaces can be scan
converted in back-to-front order to cover portions of faces that are hidden [Joy88]. The
BSP-tree [Fuch83] is based on this premise: the precomputed tree is a more efficient way
to sort the faces of a scene in depth. Given a viewpoint, the depth ordering is available
from the BSP-tree by an in-order traversal of the tree. Although the BSP-tree is better
than a naive sort, the BSP-tree does not exploit the coherence in the depth ordering
between adjacent viewpoints. For viewpoints that are close together, the back-to-front
order of the faces may not change, or may only change slightly. In contrast to previous
work, we have cast the problem of efficiently determining depth ordering as one where
visual events in viewpoint space specify the appropriate change in the back-to-front
display order of the polygons with respect to the viewer.

The relationship A occludes B (written as A = B) defines a display ordering
between the faces A and B. For a single viewpoint, the occlusion constraints between
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B

Figure 3.18. The change in the depth ordering between faces A, B, and C is precomput-
ed as a set of updates to the occlusion digraph. A topological sort of the digraph gives
the display ordering.

faces form a digraph. A topological sort of this digraph yields a partial ordering that is
the depth ordering necessary to display the polygons. The occlusion graph for the
polygons in Figure 3.18(a) yields the digraph shown; face A and face B must both be
drawn after face C.

Viewpath coherence is exploited by updating the digraph of occlusion relationships
as visual events occur. This digraph maintains the depth constraints from the previous
frame and incorporates any that have changed between frames. Obtaining a correct depth
ordering for the next frame in a sequence is done by first updating the digraph based on
visual events, and then performing the topological sort. The sequence of views in Figure
3.18 shows how constraints are added to the occlusion digraph. In Figure 3.18(b), face A
begins to occlude face B so the arc for A occluding B is added to the graph. At this point
the topological sort gives the depth order C, B, A because of the added arc between A
and B. As viewpoint changes, A no longer occludes B, and so the arc between the two
nodes in the digraph is removed (Figure 3.18(c)). This algorithm is very similar in style
to the previous visual-event-based algorithms. The key difference is the reliance on the
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depth ordering to do hidden-surface removal.

Any partial occlusion between two faces must result in a modification of the occlu-
sion digraph. The EE-event (T-junction) is the event corresponding to partial occlusion
between two faces. Only EE-events are necessary in order to maintain a correct occlu-
sion digraph, as opposed to the higher-order events necessary for the exact-appearance
algorithms presented earlier. This alone represents a substantial savings since there can
be as many as O(n3) EEE-events.

There are several subtleties to this algorithm that are straightforward but nontrivial
[Kutu91]. One such subtlety involves cycles in the digraph. Cycles that occur in the
digraph under certain conditions cause the topological sort to fail (the topological sort
can detect the cycle). As shown in Figure 3.19(a), a cycle can arise from a non-convex
face with another face, or as in Figure 3.19(b), a set of convex faces can form an occlu-
sion cycle. This is a known problem that all depth-ordering methods must contend with
[Fole82]. The BSP-tree avoids the problem by subdividing faces that would potentially

IV — N/
(a)\/ (b) \C/

Figure 3.19. The occlusion relationship need not be a strict ordering. (a) Non-convex
faces can occlude each other, and (b) cyclic occlusion can occur between 3 or more
faces.
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form occlusion cycles. Our algorithm detects cycles using the topological sort algorithm.
Cycles can then be broken by using EE-events to efficiently compute the intersection in
the image plane between two faces in the cycle. The faces in the cycle can be drawn, and
the intersection region is drawn last as a correction to the faulty ordering. Figure 3.19(b)
shows the vertices where faces B and C overlap in the image plane. These vertices
bound the region to be scan-converted after A, B, and C are rendered. The region is
drawn as part of B because of the active local constraints between B and C.

This algorithm is a hybrid blend of the depth-ordered method for display and the
visual event computation for efficient frame-to-frame coherence. Other depth-ordering
approaches do not exploit the coherence available over multiple frames. We are
currently implementing and evaluating the performance of the display algorithm for rota-
tions on the view sphere.

3.4.2. Current Work

There is a tradeoff between the cost of precomputation and the cost at display time. For
scenes that are not static, the penalty of off-line visual event constructioh is greater than
the gain at display time. The problem of large penalties for recomputing the visual
events in a scene that changes only slightly can be solved using a hierarchical structure.
The hierarchy divides the scene into components so that the visual events within a com-
ponent do not affect other parts of the scene. The individual parts of this hierarchy con-
tain visual event information regarding self-occlusion. The components can be combined
together using inter-component constraints. We are currently working on the scale and
display issues of these coarse-to-fine model hierarchies.

The number of visual events can also be reduced by representing the exact appear-
ance of the occluding contour only rather than every visible edge in the scene. The
occluding contour is the projected boundary between the visible portion of a surface and
the back-facing portion. This boundary alone carries much of the information for the
viewer about the 3D properties of the projected shape. There is a significant reduction in
visual events when only considering the occluding contour. An approximate scheme
using the occluding contour as a boundary can be used for a faster and more efficient
(although approximate) display. Chapter 4 of this thesis develops the rim appearance
representation, an exact representation of the visual events affecting the occluding
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contour. We are working on algorithms for using the occluding contour as a boundary for
the inexact but efficient display of large polyhedral models.

3.5. Discussion

This visual-event-based approach can be extended to viewpaths which are not simple
great circles. Using the orthographic model, it is possible to compute the asp along any
viewpath such that the intersection of that path and the volumes of the asp can be found
in closed form. If asp surfaces and their intersections can be represented, the asp can be
constructed.

The algorithm can also be extended to perspective projection. In the perspective
case it is necessary to be able to find the intersection of the path of viewpoints and the
surfaces in aspect space under perspective projection, requiring a straightforward change
in the equations listed above. This would be useful, for example, in interactively display-
ing the appearance of a scene generated by a viewpath moving through a workspace,
such as a model of a building [Broo86]. However, depending on the problem, aspect
space can become very high dimensional and therefore the asp may require more space
and time to compute. For related work on extending the asp to perspective projection,
see [Plan86, Plan87, Plan§8].

This chapter has presented an efficient algorithm for interactively viewing a
polyhedral scene. The algorithm takes advantage of viewpath coherence, a form of
frame-to-frame coherence, which is inherent in the sequence of images generated by a
moving viewer along a continuous viewpath. The appearance from all viewpoints is
computed in a preprocessing phase that works by constructing the asp for the scene. The
preprocessing phase also involves computing the initial appearance of the scene with a
standard hidden-line or hidden-surface removal algorithm. The on-line phase involves
the display of views of the scene with hidden lines or hidden surfaces removed as the
user interactively specifies movement in viewpoint space.

The algorithm presented here is practical only for a certain class of scenes. When
the number of faces in the scene becomes large and the scene is visually complex, the
number of visual events will eventually become too large to store. In the convex case,
the number of visual events is O(n), where n is the number of faces in the scene, but in
the worst case the number of visual events is Om>). However, the prototype
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implementation shows that for polyhedral scenes of moderate size and visual complexity,
the number of visual events is a relatively small constant times the number of edges in
the scene. Therefore, in practice, depending on the visual complexity of the scene, a
current workstation has enough memory to store the events for polyhedral scenes con-
taining 1,000 to 100,000 edges.
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Chapter 4
The Rim Appearance

One of the primary components of 3D model-based computer vision is the representation
of the salient, observable features of objects. The occluding contour, which is generated
by the projection of points on a surface where the viewing direction is tangent, is one of
the primary features of the appearance of an object. The projection mapping generates
occluding contours, and the opacity of solid shape causes the creation of T-junctions in
the image plane. The arrangement of these contours and T-junctions is directly related to
the 3D properties of the shape and provides strong information for recognition
[Marr77, Koen84]. Object-centered object models do not explicitly represent the proper-
ties of the occluding contour since the occluding contour is not generated by any specific
set of object features. Viewer-centered models of 3D shape are better suited to encode
the dynamic, viewpoint-dependent nature of the occluding contour.

This chapter presents a novel approach for representing the geometry of the visible
occluding contour for polyhedra based on the visual event, defined in Chapter 3. The
structure of the occluding contour is modeled in a viewer-centered representation called
the rim appearance representation. This representation models the occluding contour
formed by the edges of a polyhedron that is assumed to be an approximation of a smooth
3D shape as generated under the orthographic projection model. Explicit information is
stored about self-occlusion and the appearance in the image plane of the occluding con-
tour. Much of the observable geometry of the self-occlusion of 3D shape is preserved in
polyhedral approximations, so it is not necessary to assume a polyhedral world. Further,
the geometry of self-occlusion includes viewpoint so that the dynamic changes in occlu-
sion relationships are made more accessible in this representation. The visible occluding
contour of a 3D shape is represented as a piecewise-continuous function of viewpoint.

The definition of the occluding contour makes it difficult to represent. The set of
points in R3 on a smooth shape that project to the occluding contour changes smoothly
with viewpoint, and hence the changing contour in the image plane is a complicated
function of shape, viewpoint and projection. Features such as T-junctions and curvature
extrema on the contour are interesting in that they persist over large portions of the space
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of viewpoints despite the continuous change in the 3D surface points generating them.
The evolution of the occluding contour is discontinuous at a finite set of isolated
viewpoints where topological changes in the structure of the occluding contour occur.
The rim appearance representation encodes an approximation of both the smooth evolu-
tion and the points of discontinuity as explicit, connected structures that can be organized
and manipulated directly.

Recent work in viewer-centered modeling has concentrated on the aspect graph, a
graph enumerating all of the topologically-distinct 2D views of a 3D object, as well as
the transitions between views. The aspect graph has been constructed for polyhedra
[P1an90, Gigu90, Bowy89], solids of revolution [Egge39, Krie89], and piecewise-smooth
objects [Srip89, Ponc90]. The rim appearance representation is different from the aspect
graph in two significant ways. First, the rim appearance representation stores only the
appearance of the rim, that is, the occluding contour. The behavior of the occluding con-
tour of a polyhedron is a strict subset of all of the topologically-distinct changes in the
appearance of the polyhedron. Thus the rim appearance representation is almost always
much smaller than the aspect graph for polyhedra. The rim appearance representation
models only those features that are observed in the images of smooth objects. A large
number of topologically-distinct views in the aspect graph arise from treating the edges
of a polyhedron as true surface discontinuities. These artifacts of the polyhedral approxi-
mation are omitted in the rim appearance representation. Aspect graphs have been con-
structed for piecewise-smooth shapes, although the numerical complexity of those
representations makes it difficult to extract and represent the features of interest. Our
approach avoids difficult numerical problems by relying on the linear features of polyhe-
dra [Faug86].

The second way in which the rim appearance representation differs from the aspect
graph is that the rim appearance representation encodes individual features across
viewpoint rather than the global topology of the image structure graph. Furthermore, the
occluding contour is represented at a level of abstraction above the individual edges
forming it. Although the individual edges of a polyhedron and the self-occlusion charac-
teristics of those edges change with viewpoint, the occluding contour itself is represented
as an explicit object. The interaction between parts of the occluding contour is
represented as a contour event, a higher-level event than the interaction of the individual
edges of a polyhedron. This abstraction provides a natural way to organize geometric
constraints based on the occluding contour. The organization of individual features and



61

feature relationships across viewpoint is lacking in the aspect graph but is included in the
rim appearance representation.

This chapter presents the basic properties of the rim appearance representation
based on aspect space and the visual event (discussed in Chapter 3). Section 4.1 pre-
cisely defines the terms rim and occluding contour, and presents properties of the rim that
make it both desirable but difficult to represent. One primary difference between the rim
appearance representation and the complete visual event data computed from the asp is
that the rim appearance representation is edge-based rather than face-based. This differ-
ence is explained, along with a motivation for the use of the polyhedral model as an
approximation of 3D shape for computer vision tasks.

Section 4.2 analyzes the local geometry of the polyhedral rim, and the local and glo-
bal visual events that create the features of the occluding contour. Section 4.3 presents
an algorithm for constructing the rim appearance representation. The details of how to
compute features of the occluding contour across a space of viewpoints are presented,
and the complexity bounds in time and space for the algorithm are stated. Section 4.4
describes how the exact rim appearance can be approximated. It is shown that the time
and space complexity of computing approximate rim information is asymptotically better
in the worst case than computing the exact rim information. The tradeoffs of approxi-
mating the visual events affecting the polyhedral rim are discussed. Section 4.5 presents
the details of an implementation of the construction algorithm of the rim appearance
representation, including empirical results from a test set of polyhedral models for which
the rim appearance representation has been constructed. Section 4.6 gives concluding
remarks with a discussion of the promising future directions of this work.

4.1. Representing Rim Features

The occluding contour produced by a 3D opaque shape is generated by the projection
process and is directly dependent on viewpoint. This dependence is a property that gives
the contour very strong viewpoint-constraining power. A correspondence between a con-
tour feature and a section of a 3D shape that projects to that contour includes a viewpoint
constraint. The dependence upon viewpoint is also the cause of major representational
difficulties since, in general, changes in the contour occur even for infinitesimal changes
in viewpoint. Section 4.1.1 clarifies the terminology used in defining the rim and the
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Figure 4.1. The projection of the rim points on a smooth shape (dotted curves) generates
a contour in the image (solid curves) that would be generated by a transparent object.
The rim points are the boundaries between potentially visible surface points and invisible
surface points.

occluding contour. The general rim appearance representation is developed in Section
4.1.2 as a hypersurface in R*. Section 4.1.3 contrasts the key differences between the
rim appearance and the asp, and Section 4.1.4 briefly defends the use of polyhedra as an
object model.

4.1.1. The Rim and the Occluding Contour

The terminology for describing the sets of points related to the occluding contour varies
widely. Marr used the term contour generator [Marr77], and others have used terms such
as limbs [Egge89, Nalw88, Mali87] and the rim [Basr88, Koen87]. To avoid confusion,
the precise meaning is defined here for the sets of 3D points called the rim, the visible
rim and the occluded rim, and the sets of 2D points in the image plane called the contour,
the occluding contour and the occluded contour. Let p € S be a point on a smooth,
oriented, compact surface in R3. Let V be a viewpoint on the unit sphere. A point p is
defined to be visible when the normal direction at p it is turned toward the viewer, i.e.,
when V - n > 0. This is a local definition of visibility for p that does not take into
account global occlusion that may obscure p. The rim is a set of points on S, where each
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point p in this set is defined as follows:

Rim: V-n,=0

p is on the rim if the viewpoint vector Vistangentto S atp

Visible Rim: V-n,=0; Aq € Sst.gq=tV+(1-8p, 0<t<1
p is on the visible rim if p is on the rim, and p is visible from V

Occluded Rim: V -n,=0; g € Sst.gq=tV+(1-0p, 0<zt<l1
p is on the occluded rim if p is on the rim, and p is not visible from V

The occluding contour is a set of points in the image plane generated from S under pro-
jection. The contour points are related to the rim as follows:

Contour: The contour is the projection of the rim
Occluding contour:  The occluding contour is the projection of the visible rim
Occluded contour: The occluded contour is the projection of the occluded rim

The local definition of visibility divides the entire surface S into patches of points that are
either potentially visible or not visible. The rim is the transition, or the boundary,
between these patches [Koen90]. This definition of the rim is defined by the local visibil-
ity condition, and the contour generated by the projection of the rim contains points that
are potentially, but not necessarily, visible. The projection of the rim is the contour that
would be generated by a transparent shape. Figure 4.1 shows the rim points of a smooth
shape and the projection of these points into the image plane.

The projection of opaque shapes causes global occlusion, obscuring some of the rim
points. For any viewpoint the set of rim points is only potentially visible, and so the rim
can be divided into two sets: the visible rim and the occluded rim. This induces two sets
of points in the image under projection. The occluding contour is by definition the pro-
jection of the visible rim. The occluded contour is the projection of the occluded rim.
The two inner closed contours in the image plane of Figure 4.1 are on the occluded con-
tour. The outermost closed loop is the visible part of the contour.
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Figure 4.2. (a) The points where the viewpoint V is tangent to the surface are rim
points. The rim is the boundary between potentially visible surface points and invisible
surface points. (b) The polyhedral analog: rim edges are on the boundary between po-
tentially visible and invisible faces.

Given these definitions, the analog of the rim for polyhedra can be defined. The
polyhedron is restricted for simplicity to form a set of closed, oriented 3D volumes.
Each edge is the intersection of exactly two faces and each face is oriented. An edge is
on the rim when exactly one of the two faces adjacent to it is turned toward the viewing
direction. This is analogous to the definition of the smooth rim in that the rim edges are
the transition edges between parts of the model that are potentially visible and parts that
are not visible. In Figure 4.2(b), the rim edges are exactly those edges on the transition
boundary between faces that are potentially visible and faces that are not visible.

The rim points for a smooth surface always form a set of closed space curves
[Koen90]. Likewise, the rim edges for a polyhedron form a set of closed curves made up
of connected "chains” of edges in R®. The geometry of the rim is relatively simple, and
is related to the topology of the surface itself. A torus produces a set of two disjoint rim
curves in IR3, one for the outer boundary and one around the hole. Note that the
geometry of the rim (the rim is the preimage of the contour under the projection map) is
very simple compared to that of the contour. Under projection the closed curves of the
rim usually self-intersect.

As a more complicated example, Figure 4.3 shows a cylinder that has been stretched
and connected into a trefoil knot [Burd85]. This surface produces two disjoint rim curves
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Figure 4.3. The topology of the surface is related to the topology of the rim. In the case
of the trefoil, the rim is knotted from all viewpoints.

that are both also knotted. Although the topology of the rim and the surface are clearly
related, the depth of the relationship is not currently known.

4.1.2. The Rim Appearance Representation

The rim appearance representation is the organized encoding of all the visual events
affecting the appearance of the rim. As presented in Chapter 3, a visual event includes
T-junctions and triple-edge junctions, and the degenerate events such as the alignment of
an edge and a vertex. The important new contribution of this representation is the fact
that the exact appearance of the occluding contour is computed and stored, with its
features made explicit.

The rim appearance representation can be formally defined as a surface in aspect
space for smooth parametrized surfaces. Consider a surface patch S that is parametrized
by the mapping X : R? = R where X(u,v) = x(,v), y(u,v), z(u,v)). The rim points
on S are dependent on the viewing direction and are expressed by the set of points
R={N, V=0 } where N,, is the oriented normal at p € S and V is a vector on the view
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R={NP-V= 0}

Figure 4.4. The mappings from the parameter space for a smooth surface to the image
plane forms a 4-dimensional surface. This surface has singularities where there is occlu-
sion in the image plane.

sphere. The orthographic projection o, vy of the set R maps the rim points on S to the
image plane. The projected rim for the complete space of viewpoints for the surface
patch S forms a hypersurface in R* described by I, vy (N, V=0}. Figure 4.4
shows these mappings.

Figure 4.5 gives an intuitive picture of this rim surface in aspect space. The space
of viewpoints has been restricted to a great circle on the view sphere. This restriction
yields a rim surface in R3, illustrated on the right in Figure 4.5. The selected viewpoints
V; V, V3, and V4 correspond on the left to the contours along the viewpoint axis on the
right. The surface that is swept through the aspect space (R?) can be intuitively thought
of as a surface formed by occluding contours that are stacked together at each viewpoint
along the path. The interesting thing about this surface is that its singularities correspond
to self-occlusion in the image plane.

There has been recent research in formulating an explicit expression for the locus of
points that lie on the folds and creases of the multi-dimensional rim surface. Kriegman
and Ponce [Krie90] have used parametric patches under a weak perspective viewing
model to give an implicit equation for the occluding contour of surfaces of revolution.
The implicit equation for a torus under orthographic projection is an 8th degree
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polynomial containing over 170 terms. Others have computed the singularities of the rim
surface for the purposes of computing the aspect graph for surfaces of revolution
[Egge89, Krie89] and for parametric surfaces [Ponc90, Srip89]. All of this work with
smooth model representations suffers from difficult numerical problems.

Numerical difficulties are avoided when polyhedra are used because of the linearity
of edges. The rim surface for polyhedra affords a local way of expressing the singulari-
ties as piecewise interactions related to individual edges. Each edge corresponds to a
volume in aspect space, the boundaries of which are algebraic surfaces and curves with a
geometric interpretation that results from the apparent intersection in the image plane of
pairs and triples of unconnected edges. The details of this local, piecewise representation
of the rim surface are presented in this chapter. A complete discussion of aspect space
itself can be found in the work of Plantinga and Dyer [Plan88, Plan87].

Figure 4.5. Viewpoint is restricted to 1 degree of freedom to produce an occluding con-
tour surface that is 3D.
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4.1.3. An Edge-Based Representation

The asp for polyhedra stores visual events affecting every face in the model. As
presented in Chapter 3, the complete visual event information can be useful for the exact
display of models over a sequence of viewpoints. The construction of the asp has been
cast as an intersection problem, where the visual events are computed by considering the
asp for individual faces and the way those asps intersect in aspect space. This approach
can be thought of as face-based in the sense that the resulting description gives the exact
appearance of individual faces.

There is a fundamental difference between the face-based asp computation and the
rim appearance representation. The rim for a single viewpoint is a set of edges, most of
which do not lie on the same face. The important thing to be computed is how the rim
edges are connected to each other as a part of the rim. The appearance of faces is not
important, but rather the appearance of edges that are constrained to lie on the rim. Thus
the rim appearance representation is edge-based rather than face-based, and this differ-
ence is manifested in the way the visual events affecting the rim are computed. The par-
ticular details of these differences will become clearer when the construction algorithms

are described in Section 4.3.

4.1.4. Shape Approximation

The class of polyhedral 3D shapes is the earliest and most fundamental representation for
solid shape in computer vision and computer graphics. Pioneering work in computer
vision by L. Roberts, for example, and early work in realistic image synthesis was based
almost solely on the geometry of polyhedra. Much of the work in 3D recognition still
relies on the simplicity and compactness of the polyhedron (for example, see
[Thom87, Murr89] ). Experience in both computer vision and graphics has shown that
the speed and simplicity of linear representations can compensate for size increases and
approximation error, provided the appropriate feature information is retained
[Faug86, Lowe89]. In the present context, it is important to preserve the occluding con-
tour and the interactions between contours as a result of self-occlusion. The local
approximation of smooth surfaces with planar patches preserves these contour features
while affording linearity. Further, the approximation can be made arbitrarily close by
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selective linear refinement where necessary.

Polyhedra eliminate the continuous property of the rim because the set of rim edges
changes discretely as viewpoint changes. These characteristics make polyhedra accept-
able as the basis for an explicit, approximate model of the occluding contour.

4.2. The Geometry of Self-Occlusion

The underlying model for the rim appearance representation is the polyhedron. The
geometry of a polyhedron is simple because of its linearity and compact representation,
and the explicit form of the edge-vertex and EEE-events are at worst quadratic. It is
assumed that the polyhedron is an approximation of a smooth object. Thus the numeri-
cally complex occluding contour can be approximated as a piecewise function of linear
edges interacting with each other in the image plane.

This section is divided into three parts. First, the geometric conditions on the
polyhedral rim are precisely defined. A polyhedral rim edge is defined by the local orien-
tation of the surfaces that meet to form the edge. This definition approximates the
behavior of the smooth rim as viewpoint changes. Second, the visual events causing

v<

Figure 4.6. Two edges defined by the faces that meet to form them.
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topological changes in the projected line drawing of a polyhedron are reviewed. Finally,
the geometry of a T-junction formed by the apparent intersection of two edges is
presented. These geometric properties are the basis for the algorithm to compute the rim
appearance representation described in detail in Section 4.3.

4.2.1. The Polyhedral Rim

The faces of a polyhedron are planar and meet at edges where there is a surface orienta-
tion discontinuity. A face does not turn away from the viewer smoothly, but rather disap-
pears instantaneously at the viewpoint where the face is edge-on to the viewer. The
smooth occluding contour is approximated by defining an edge to be on the rim when the
two faces that meet at the edge are oriented such that exactly one of the faces is turned
away from the viewer.

The geometric conditions for a rim edge can be specified in terms of edges, vertices
and surface normals. Specifically, let e; and e, be two edges in R3 as shown in Figure
4.1. The faces f; and f, meet to form e, and the faces f3 and f4 meet at edge e;. We
denote the directed unit normal to f; as n;, and a viewpoint on the unit sphere, directed
away from the origin, as V. A rim edge is defined as follows:

Definition: An edge of a polyhedron is on the rim if and only if exactly one of the two
faces forming the edge is visible, i.e.,

e, on rim &> (visible (f1) XOR visible(f2))

f; is visible from V means that V-N; > 0. For example, e in Figure 4.6 is on the rim
when either of the following two geometric conditions hold:

V-n1>0 V-n <0

V-nmn<O0 or Vemp >0 4.1

These rim constraints define the rim locally. Since rim edges can interact globally, this
definition does not say anything about the visibility of e¢; from V. Hence the local
definition of a rim edge must be augmented with the geometric constraints that arise from
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the global occlusion that can occur under projection.

4.2.2. Visual Events

The projected edges of a polyhedron form a line drawing in the image plane. Viewpoints
where the connectivity, or topology, of the line drawing changes are viewpoints where
visual events occur. A viewpoint that causes a topological change in the line drawing
from any infinitesimal change in viewing direction is called a visual event. It has been
shown that all such visual events can be found for polyhedra by computing the edge-
edge-edge event (EEE-event) [P1an90, Gigu90]. The EEE-event is the apparent intersec-
tion of three not necessarily adjacent edges. A degenerate case of the EEE-event is the
edge-vertex event (EV-event), where two of the edges actually meet at a vertex. See
Section 3.1.4 for more details on properties of EEE-events.

4.2.3. The Geometry of the T-junction

The primary event affecting the appearance of the visible rim is the formation of a T-
junction that results from self-occlusion. The T-junction is not an infinitesimal visual
event; T-junctions persist in viewpoint space and are bounded by the visual events intro-
duced above. Recall from Section 3.1.2 the distinction between the stability of various
visual events (singularities in the projection map). A quantitative representation of a T-
junction that occurs as a result of self-occlusion must include both the bounding visual
events where the T-junction appears and disappears, as well the quantitative appearance
of the T-junction in the image plane. This section analyzes the geometry of a T-junction
between two edges. The geometry is used for rim edges to compute the exact appearance
of the occluding contour. The goal of computing the interaction between edges that form
T-junctions is to encode the dynamic properties of a T-junction, represent the exact
appearance of the rim, and to make explicit the dynamic changes that occur in the
occluding contour with respect to viewpoint.

There are specific geometric constraints that determine whether two edges in R3
can form a T-junction from some set of viewpoints. Two edges that form a T-junction
can be labeled occluding and occluded where the occluding edge is the one closest to the
viewer. One basic constraint is that only rim edges can be labeled as occluding edges.
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Figure 4.7. (a) The two edges e, and e, form a T-junction in viewpoint space defined
by four planes that form a tetrahedron from the four vertices belonging to the two edges.
(b), () The boundaries of the space where the T-junction occurs.

Further, only convex edges can be occluding edges. Convex edges are those formed by
two faces with an interior angle less than m. This restricts the number of potential T-
junctions since only a subset of the edges is convex, and each of these is on the rim from
a restricted set of viewing directions.

For smooth objects, the occluded edge can be either a smooth, occluding boundary
or a surface orientation discontinuity. Since we are assuming that the polyhedron
approximates a smooth object, we restrict the occluded edge to also be on the rim. This
restriction can be relaxed to also include edges that correspond to true surface discon-
tinuities in a piecewise-smooth object.

The geometry of the visibility of two edges that form a T-junction in the image
plane forms a partition of viewpoint space. Two edges e; and e form a partition of
space into a region where the edges will project to form a T-junction. The planes that
bound this region are defined by the vertices at the endpoints of the two edges. These
four planes form a tetrahedron with four triangular sides (see Figure 4.7(a)). Each of the
planar sides is defined by a set of three vertices: plane (a,b,d) and plane (a,b,c) share the
common edge ab = e1; plane (c,d,a) and plane (c,d,b) share the common edge
cd = ej.
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A viewpoint that causes two edges to form a T-junction must lie within the region
bounded by the planes forming the tetrahedron above. This restriction is expressed by
the following four T-junction inequalities:

[(c=b) x d-b)] -V <0

[(c—a) x (d—a)] -V <0 (4.2)
[a—¢c) x b—-¢c)] -V >0 )
[@—d) x (b-d)] -V >0

Thus e; occludes e, from viewpoint V if and only if (1) both e and e, are on the rim
(the rim constraints shown in Eq. (4.1) are satisfied), and (2) the viewpoint is inside the
region bounded by the four planar sides of the tetrahedron (the T-junction constraints
shown in Eq. (4.2) are satisfied). Geometrically, the T-junction inequalities determine
the visibility of the four planes defining the tetrahedron. The two faces of the tetrahedron
containing e must be visible from V; the other two planes that contain e, must not be
visible. Visible means that the viewpoint V is in the plane’s positive half-space. The
tetrahedron is oriented so that the outside is beyond e and e, and the inside is between
them. The viewpoints in the shaded region in Figure 4.7(a) are those that satisfy Eq.
(4.2).

Egs. (4.1) and (4.2) specify the geometric relationship between two edges that
potentially form a T-junction. That is, given the set of all V that satisfies the rim con-
straints for e; and e,, it can be determined if there is any V that also satisfies the T-
junction constraints. A direct and efficient method for solving this problem uses the
geometry of the regions in IR? formed by two edges. The two faces f; and f5 and the
two planes defined by a,b,c and a,b,d all intersect at e¢; (see Figure 4.8(a)). The
viewpoints that satisfy the rim constraints for ¢ are bounded by the planes for f and f>.
The viewpoints that satisfy the T-junction constraints must lie within the two planes
defined by a,b,¢ and a,b,d. Hence, the intersection of these two regions must be non-
empty in order for a T-junction to occur. Call the necessity of this non-empty region
condition (1).

Likewise, the two faces f3 and f,4 and the two planes defined by ¢,d,a and ¢,d,b all
intersect at e, (see Figure 4.8(b)). The viewpoints that satisfy the rim constraints for e,
are bounded by the planes for f3 and f4. The viewpoints that satisfy the T-junction con-
straints must lie within the two planes defined by ¢,d,a and c,d,b. Hence, the




74

f f
. 1 2 d
PO\ b £
ez e \
C ‘.‘c ..... .,
a f, f, b SN
el A
d
f
(a) (b)

Figure 4.8. (a) The regions on the plane normal to the edge e; defined by the intersec-
tion of the four planes meeting at ¢, determine whether the rim constraints and the T-
junction constraints are satisfied for ¢;. (b) The same geometry for the four planes meet-
ing at e, determine whether the rim constraints and the T-junction constraints are
satisfied for e,.

intersection of these two regions must also be non-empty in order for a T-junction to
occur. Call the necessity of this non-empty region condition (2).

The geometric constraints in Egs. (4.1) and (4.2) are mutually satisfied if and only if
the two edges form a T-junction. That is, all the constraints are satisfied if and only if
condition (1) and condition (2) hold. This proves the following:

Theorem: The rim conditions (1) and (2) hold if and only if edges e, and e, form a T-
junction for some viewing direction.

Determining whether conditions (1) and (2) are satisfied for two specific edges is
done using the four planes involved with each edge and the plane orthogonal to the edge.
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Figure 4.8(a) shows the intersection of the four planes with the horizontal plane normal
to e;. The two large shaded regions on this horizontal plane that are opposite each other
represent areas where e is on the rim. The longer shaded area shows where e occludes
5. Any overlap in these shaded areas in the plane orthogonal to e implies that condi-
tion (1) is satisfied. This overlap is computed efficiently by the projection into the
orthogonal plane of the vectors in each of the four support planes. The test for this over-
lap amounts to an ordering of four vectors in the orthogonal plane. Figure 4.8(b) shows
the analogous geometry for condition (2).

In summary, the analog of rim points in polyhedra is the set of edges satisfying the
geometric property that only one of the two faces meeting at the edge is turned toward
the viewer. The visual events that affect a change in the topology of the edges in the line
drawing of a polyhedron are completely determined by the EEE-event, where the EV-
event is a special case of the EEE-event. Thus the definition of the rim edge can be com-
bined with the visual event computation in order to compute exactly those viewpoints
where the polyhedral rim changes topologically. The T-junction is a persistent visual
interaction, and the viewpoints where T-junctions are created and annihilated are
bounded by the EEE-event. The geometry of the T-junction combined with the definition
of the rim provides a fast test to determine whether two rim edges interact to form a T-
junction. Once two edges are known to form a T -junction, a quantitative description of
the T-junction in the image plane can be computed. This description can be incorporated
into an algorithm for constructing the rim appearance representation, which is the subject
of the next section.

4.3. Constructing the Rim Appearance Representation

The rim appearance representation models the occluding contour as a function of
viewpoint. Representing the rim as a function of viewpoint is related to the asp [Plan88],
a complete representation of appearance as a function of viewpoint. The relationship of
the rim appearance representation to the asp and the aspect graph depends on a single key
component: aspect space. Aspect space, the cross-product space of the image plane X
viewpoint space, is the central component in the construction of the rim appearance
representation. Aspect space has been shown to be useful for encoding the exact appear-
ance of polyhedra as a function of viewpoint [Plan88], constructing the aspect graph
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[Plan90,Plan88], and for the interactive animation of polyhedral scenes
[Seal90, Plan90a].

4.3.1. Aspect Space and the Rim Appearance Representation

Aspect space, the cross-product space of the image plane X viewpoint space, makes use
of a multi-dimensional space to explicitly encode the appearance of objects for all
viewpoints. The dimensionality of aspect space is dependent on the projection model
and the geometry of objects. Aspect space for orthographic projection is 4D since there
are two degrees of freedom in viewpoint space and two degrees of freedom in the image
plane. A review of aspect space and visual events was given in Chapter 3. A complete
discussion of 4D aspect space can be found in Plantinga’s thesis [Plan88].

v (u, v) = image space

B appears A disappears

(2) (b

Figure 4.9. (a) An edge formed by two faces A and B. (b) The surface in aspect space
corresponding to the edge in (a). The visibility of the edge in (a) as a part of the rim is
represented by the shaded parts of the surface.




77

For a 3D aspect space containing only one degree of freedom in viewpoint, a vertex
(X0, Yo, Zo) generates a 1D curve in aspect space. Points on this curve correspond to the
location of the vertex in the image plane for a specific viewpoint. The equations for this
curve are derived from the image coordinates of the point after a rotation by 0 about the
y-axis (see Figure 4.9(a)). Denoting coordinates in the image plane (u, v), the result is

u=xg cosd —zg sin0 “4.3)
V=Yo

These equations specify the appearance of a vertex as a 1D curve in aspect space
u@®),v,0), -t <O <T.
A line segment connecting two vertices p; =(x1,y1,2;) and p;+a; =
(x;+aj,y1+by,z1+cy) can be represented parametrically as p(s)=p; + 5 aj,
0 <s < 1. The line segment appears in the image at the points

u=(xy+aj;s)cos—(yy +bjs)sin0 4.4)
v=yi+bys

specifying the appearance of an edge as the 2D surface in aspect space (u(s, 8), v(s), 0).
This is the form of the 2D surface in aspect space shown in Figure 4.9(b), which
corresponds to the appearance at all viewpoints of the bold edge in Figure 4.9(a).

The term visibility structure will be used to denote the structure in aspect space
corresponding to the visibility of a particular model feature. The dimensionality of the
visibility structure for a feature depends on both the dimensionality of the feature and the
dimensionality of viewpoint space. For visual simplicity we have illustrated visibility
structures using a 1D viewpoint space so that the visibility structure for edges is a 2D
surface and the visibility structure for a face is a 3D volume. With two degrees of free-
dom in viewpoint, the dimensionality of the visibility structures for faces, edges and ver-
tices each increase by 1.

A fundamental property of aspect space is that occlusion is equivalent to set sub-
traction in aspect space [Plan88]. Consider two faces and their corresponding visibility
structures. A point that lies within the visibility structure for both faces is a single image
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point generated from both faces. Since only one face can be visible, the point is removed
from the visibility structure for the face that is occluded. Thus, the exact set of visible
points of a face from all viewing directions can be computed by performing set subtrac-
tion in aspect space. The visibility structure for a face is a volume bounded by algebraic
surfaces. The intersection operations for two such structures can be done in closed form

in a way similar to polyhedral intersection.
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Figure 4.10. (a) The viewpoint changes from left to right. The T-junction of interest is
circled. (b) The 2D surfaces in aspect space for edges e, and e3. The bold curve on the
surfaces is the trace of the T-junction between e, and edges €2 and e3. (c) A linked set
of intervals along the viewpoint axis represents the edges that form the T-junction.
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The asp is the explicit boundary model of the visibility structures in aspect space
that corresponds to the visibility of each vertex, edge and face of a polyhedron
[P1an88, Plan90]. The asp for a polyhedron quantifies the appearance of each face, taking
into account the occlusion relationships between faces. The asp for a single planar face
can be described exactly by computing the equations of its boundaries in aspect space.
For example, the asp for face A in Figure 4.9(a) is the volume in aspect space that is
bounded by the surfaces swept out by the edges around face A. The surface in Figure
4.9(b) is one of these boundaries that corresponds to the common edge of face A and face
B. The asp was originally introduced as an intermediate structure for constructing the
aspect graph. The construction of the asp is a well-defined procedure with known, tight
bounds on the time and space requirements.

4.3.2. Explicit Representation of the Polyhedral Rim

The rim appearance representation is the organized collection of the visibility structures
in aspect space corresponding to the rim edges of a polyhedron. The visibility structure
for a rim edge is a section of the visibility structure for an edge corresponding to the
viewpoints where the edge is on the rim. Figure 4.9(b) shows the visibility structure in
aspect space for the bold edge in Figure 4.9(a). The shaded sections of the visibility
structure are those sections where the edge is on the rim. A portion of the visibility struc-
ture is cut away at the viewpoints where the edge leaves the rim so that only the visibility
of the edge as a part of the rim is represented.

The asp is the visibility structure that represents the exact appearance of a face as a
function of viewpoint. The asp, however, does not make explicit the visual events that
affect the rim. In contrast, there are three characteristics that we feel are necessary in a
representation of the rim appearance: ‘

e The visibility structures for rim edges must be connected together over
viewpoints where the set of rim edges changes

e Only visual events that involve rim edges should be included

e The exact appearance of the rim must be encoded, including an explicit
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representation of T-junctions and contour splits and merges

The following paragraphs describe how the rim appearance representation meets these
goals.

Each visibility structure encodes the exact visibility of a single rim edge for all
viewpoints, and structures are connected together in aspect space where they are adja-
cent. This explicit connection allows visual events involving the visible rim (i.e., T-
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Figure 4.11. (a) The rim edges of a cube being occluded by a rectangular solid. (b) The
2D surfaces in aspect space for the rim edges of the cube. The line that spans the sur-
faces is the trace of the T-junction between es and the rim edges of the cube. (c) A
linked set of intervals along the viewpoint axis represents the edges that form the T-
junction.
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junctions) to be represented as piecewise objects. The visibility structures for rim edges
can be adjacent in aspect space as a result of two geometric conditions. First, two edges
that share a common vertex in the model are adjacent in aspect space. Visual events may
cross the boundary between the two adjacent visibility structures. Figure 4.10 illustrates
the geometry of two adjacent edges and their corresponding visibility structures in aspect
space. The circled T-junction in Figure 4.10(a) occurs first between edges ¢; and €. As
the viewing direction changes, the T-junction crosses the Edge-Vertex (EV) event where
the common vertex between connected edges e, and e3 projects onto €. In the right-
most view, the T-junction occurs between edges e; and e3. The geometry in aspect
space is illustrated in Figure 4.10(b). The trace of the T-junction is shown as the bold
curve that cuts across the two adjacent surfaces in aspect space. The point where the
bold curve crosses the adjacency boundary is the EV-event between e, €2 and e3.

The second geometric condition that causes adjacency in aspect space is the appear-
ance and disappearance of rim edges. When a rim edge disappears, another takes its
place. In aspect space, this corresponds to an adjacency in the viewpoint dimension
between the disappearing and appearing edges. Figure 4.11 illustrates this type of adja-
cency in aspect space as the set of rim edges changes with viewpoint. As viewpoint
changes, the edges that participate in the circled T-junction change because the set of rim
edges changes. Figure 4.11(b) shows how the visibility structures for the rim edges €
and e, are connected to the adjacent visibility structures for e3 and e4. Visibility struc-
tures for individual rim edges are connected together in aspect space as part of the same
contour.

The visibility structure for an edge can be constructed so that it encodes only the
visibility of the edge as part of the rim. Thus only visual events that involve rim edges
are computed and stored. Figure 4.12(a) shows a cylindrical shape that is approximated
by a non-convex polyhedron. The visual event circled in Figure 4.12(a) is part of the
appearance of one of the faces of the model, and is explicitly represented in the asp. This
feature will never be observable in an image, however, and hence is not represented in
the rim appearance representation.

A cross-section of the rim appearance representation for a fixed viewpoint
corresponds to the exact appearance of the occluding contour in the image plane. Unlike
the asp, the rim appearance representation encodes the appearance of the visible occlud-
ing contour, not of individual faces. The visual events involving the rim throughout
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(2) (b

Figure 4.12. (a) A polyhedral approximation of a curved object. (b) The actual smooth
object. The visual events like the one circled in (a) will never be produced by the object
in (b). Such visual events are not represented in the rim appearance representation.

viewpoint space can be extracted and organized explicitly to define the T-junctions that
occur in the projected model. In fact, constraints between pairs of these visual events can
be formulated explicitly in terms of orientation, spatial relationship, and derivatives with
respect to change in viewing direction. By representing the occluding contour as a func-
tion of viewpoint, the evolution of the appearance of the occluding contour over
viewpoint can be extracted and summarized hierarchically from cross-sections and from
visual event properties. Thus properties of the occluding contour such as curvature
extrema and merging and splitting can be explicitly represented and organized.

Several snapshots of the appearance of the rim for a polyhedral model of a candles-
tick are shown in Figure 4.13. These views were generated by an implementation that
constructs the rim appearance representation for one degree of freedom in viewpoint.
The rim appearance representation encodes each of the T-junctions between the contours
of the candlestick as a single structure. The visual events that affect the T-junction are
stored explicitly. For example, the top sequence in Figure 4.13 shows the migration of
the circled T-junction as viewpoint changes. The second view shows a triple-contour
intersection (EEE-event) where two T-junctions temporarily coincide. The third view
shows that the T-junction has evolved from an interaction between the base and top of
the candlestick to the interaction between the base and the middle of the candlestick.
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The bottom row of snapshots in Figure 4.13 illustrates the splitting and merging of
an occluding contour. The occluding contour corresponding to the top section of the
candlestick in the leftmost view is unbroken. A slight change in viewpoint causes the
contour to break at a concave edge. Likewise, part of the contour corresponding to the
middle section splits at a concave edge. In the third view, the contours have merged
again into a single silhouette (except for the contour at the hole in the candlestick). The
merging occurs at viewpoints where the T-junctions end (EV-events) and the rim edges
are connected spatially into a single circuit.

4.3.3. A Construction Algorithm

The algorithm for constructing the rim appearance representation is similar to the algo-
rithm for constructing the asp. The critical differences are (1) the connection of visibility
structures in aspect space based on how the set of rim edges changes with respect to

—gan o

Figure 4.13. The rim appearance representation encodes the T-junctions and the con-
tours in this model as a piecewise-continuous function of viewpoint.
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viewpoint, and (2) the restriction of the visibility structure of an edge to the rim. The
steps below outline an algorithm to construct the rim appearance representation:

(1) Compute the visibility structure for all rim edges. The local definition of the rim
restricts the regions in aspect space where an edge is visible as a rim edge. The two dis-
joint regions in aspect space where each edge is locally defined to be on the rim are con-
structed.

(2) Determine EE-events between rim edges. Since only rim edges can cause visual
events (of interest) with rim edges, the edges are tested to determine those pairs of edges
that form a T-junction from some set of viewpoints. For such edges, their visibility struc-

tures are constructed and then modified as follows:

(a) Given the visibility structure for a single rim edge, subtract the visibility
structures for all other intersecting rim edges. The resulting visibility structure is
the appearance of the rim edge including the boundaries in aspect space
corresponding to T-junctions formed with other rim edges. The algebraic boun-
daries generated by this process are specified by the equations for the EV- and
EEE-events [Plan88].

(b) The final visibility structure for a single edge must be divided into a set of
potentially disjoint volumes. This division is based on the global visibility of the
edge. The global visibility test must be made to determine if the edge is fully
visible or completely occluded. However, since visibility can only change at rim
edge boundaries, this global test needs to be performed only once for the entire
visibility structure for an edge. The result of this test can be propagated to adja-
cent sections of the visibility structure to determine which pieces need to be cut
away as a result of total occlusion. Note that the fact that the visibility can only
change at EE-events implies that the property of being totally occluded or totally
visible must remain constant across a connected section of the visibility structure.

(3) Connect the visibility structures for individual rim edges across both spatial and
viewpoint dimensions in aspect space. Spatial connections are specified by the connec-
tivity information in the polyhedral model. Thus the visibility structures for two
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spatially-connected rim edges can share the curve in aspect space defined by the visibility
of their common vertex. The visibility structures for two distinct edges are connected in
viewpoint space at those viewpoints where one edge leaves the rim and the other edge
_ becomes part of the rim. This “sewing” step is necessary because given this information,
a single T-junction can be described across viewpoint as a piecewise-connected curve or
surface that is independent of its constituent edges. That is, the events where edges
disappear from the rim can be ignored and the connectivity information can be used to
describe the T-junctions across these boundaries.

4.3.4. Complexity Analysis

The complexity of constructing the rim appearance representation is bounded by the
number of visual events that affect the appearance of the rim. The number of vertices in
the visibility structure of the rim appearance representation in aspect space determines
the construction time and space complexity. Under orthographic projection with two
degrees of freedom in viewpoint, each vertex in the rim appearance representation is gen-
erated by the apparent intersection of four object edges. Thus, in the worst case, the rim
appearance Tepresentation can be constructed in space Om*) for a polyhedron with n
faces. Since the algorithm must compute the intersection of the visibility structure for
each rim edge with every other, the construction time is bounded by om>).

These complexity bounds are the same as those for constructing the asp [Plan88].
As with the asp, pathological polyhedra such as picket fences and grids can achieve the
worst-case behavior. The rim appearance representation, however, has a much better
average case behavior because of the elimination of many of the visual events that occur
in polyhedra but are not related to the rim or the occluding contour (as illustrated in Fig-
ure 4.12).

4.4. Approximating the Rim Appearance

The exact appearance of a rim edge can be a complex structure in aspect space. In gen-
eral, the 1D boundaries in aspect space of the visibility structure for a rim edge
correspond to EEE-events. In the worst case, the visibility structure for a rim edge can
be a non-connected region bounded by many EEE-events. This complexity motivates
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consideration of an approximate representation that sacrifices exactness for simplicity.

This section presents an approximate representation of the rim appearance that is
constructed by ignoring the EEE-event. Intuitively, this means that the appearance of a
rim edge is represented with T-junctions only, and a T-junction between two edges must
be marked as either completely visible or completely occluded. This is necessary
because the EEE-event is the "transition” event that occurs when a T-junction (EE-event)
either appears or becomes occluded.

The following subsections describe the geometry of the approximate rim appear-
ance representation, the algorithm for computing this structure, and an analysis of the
construction cost in time and space. The complexity results are asymptotically better
than for the exact rim appearance representation because EEE-events are not computed.

4.4.1. Eliminating the EEE-Event

The visibility structure in aspect space for a rim edge is altered by both EE-events and
EEE-events to produce a bounded set of regions. This set of regions is the exact appear-
ance of the rim edge as it is occluded by other parts of the model. The EEE-event is
potentially the most numerous and costly to compute. A large savings in space and time
can be traded for exacteness by eliminating the EEE-event.

Consider a partially occluded rim edge that forms a T-junction. This T-junction
may be visible or may be occluded by some other part of the model. The viewpoints
where the T-junction becomes occluded are just those viewpoints where EEE-events
occur. The basis for our approximate scheme is to eliminate EE-events based on a visi-
bility test. Rather than splitting an EE-event boundary at the place where the EEE-event
occurs, we either retain the entire EE-event, or completely discard it. The potential for
EEE-events (the intersection in aspect space of two different EE-events for a rim edgé) is
not computed. Clearly this scheme is approximate, since it is possible to discard T-
junctions that are partially visible. It is also possible that a visible T-junction will actu-
ally be mostly occluded.

The primary difference between the computation of the approximate rim appearance
and the exact rim appearance is that global visibility tests must be made instead of the
calculation of EEE-events. The cost of computing a complete event description is traded
for the cost of performing a global visibility test using the model for each EE-event. The
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time necessary to perform a visibility test for every EE-event is O(e3) where e is the
number of model edges. This results from the e2 possible EE-events that each must each
be tested in O(e) time per test. The construction time of the rim appearance representa-
tion is therefore O(es) because the visibility structure of each rim edge must be inter-
sected with every other.

The primary tradeoff in what is represented is space versus exactness. The approxi-
mate representation is much smaller without the EEE-events, although it is inexact. The
quality of the approximation depends on many factors, including the persistence of the
rim edges in the model as well as the overall visual complexity of the object. This makes
it difficult to quantify. We argue, however, that the closer the polyhedron approximates a
smooth shape, the more advantage the approximation has over the exact representation of
appearance. This is because polyhedra that are "smooth" have rim edges that persist in
viewpoint space for only a small range of views. Over this small set of views, the quanti-
tative description of the EE-events that occur is quite stable [Burn90]. As the polyhedron
becomes a better and better approximation of a smooth object, the cost of maintaining
exact information is much higher than the gain in accuracy over this approximate
method.

4.4.2. A Construction Algorithm

The algorithm to construct the approximate rim appearance information relies on finding
EE-events between rim edges and then testing these EE-events for visibility (whether or
not they are, for the most part, visible). The visibility test is used to determine whether
an EE-event should be retained or discarded. Occluded EE-events are those that are dis-
carded. Outlined below are the major steps of the construction algorithm:

(1) Compute the initial visibility structure for all rim edges. The local definition of
the rim restricts the regions in aspect space where an edge is visible as a rim edge. This -
is the same as the first step in the exact algorithm.

(2) Find EE-events between rim edges. Rim edges are tested to determine those pairs
of edges that form a T-junction from some set of viewpoints. For each EE-event, a visi-
bility test is performed:
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(a) (b)

Figure 4.14. (a) The visibility of an EE-event (T-junction) can be approximated by the
visibility at a single viewpoint. (b) Several sampled viewpoints within the EE-event give
an indication of the degree of partial occlusion.

(a) If the EE-event is determined to be occluded, discard it.
(b) If the EE-event is determined to be visible, retain it.

(3) Determine final rim edge visibility. Determine the visibility of each rim edge in
the region of viewpoint space where it is not involved in any EE-event. The geometry of
an EE-event on the view sphere is a convex spherical polygon and hence this test is sim-
ple.

The visibility test is the critical part of this algorithm. A simple test for each EE-
event can be done by finding the central viewpoint within the EE-event and determining
if the EE-event is visible from that viewpoint. Figure 4.14(a) illustrates the central
viewpoint of an EE-event on the view sphere. This EE-event may be completely
occluded by some other part of the model. A single visibility test for an EE-event cannot
determine the degree of partial occlusion. Several tests across the EE-event could more
accurately determine its visibility. Figure 4.14(b) shows how several viewpoints within
the EE-event could be used to determine the final fate (discard or retain) of an EE-event.
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The specific issues involved with approximating the rim appearance are related to
the broader problems of scale and model accuracy in all computer vision work. The
approximation presented here of the exact rim appearance is an approximation in
viewpoint space, where the complexity is reduced by approximate visibility criteria.
There are other possible approaches to these problems, each with its own various trade-
offs. This is an area of active research [Ponc90a, Bowy91, Dick91].

4.4.3. Complexity Analysis

The complexity of constructing the approximate rim appearance representation is
bounded by the number of EE-events that affect the appearance of the rim. The number
of EE-events determines the construction time and space complexity. Unlike the exact
algorithm, EEE-events are not computed. Under orthographic projection with two
degrees of freedom in viewpoint, in the worst case, the approximate rim appearance
representation will require O(n?) space for a polyhedron with n faces. Since the algo-
rithm must perform a visibility test for each EE-event, the construction time is bounded
by O(®?). These complexity bounds are better than those for computing visual events
exactly. Pathological polyhedra such as picket fences and grids can still achieve the
worst-case behavior.

4.5. Implementation Results and Analysis

The construction algorithm for the rim appearance representation has been implemented
for 3D aspect space. The implementation is coded in C and uses an X-windows interface
for object display. Table 4.1 shows results generated by the program for the polyhedral
models in Figure 3.12. The number of visual events stored in the rim appearance
representation is compared to the number of visual events computed for the display algo-
rithm in Chapter 3. The storage requirement for a single visual event is approximately 20
bytes. The size of the aspect graph for the models is not shown in the table because the
aspect graph is always as large or larger than the event data used for exact hidden-line
display.
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Model Faces | Total Rim Total Size | Rim Size

Events | Events (Kbytes) (Kbytes)
Chain link 72 996 220 24 6
Layers of squares 48 2365 544 28 8
Small grid 41 1674 435 36 12
Candlestick 288 3109 715 72 17
Candlestick and sphere 416 5270 1264 120 31
Three spheres 384 3733 970 88 24
Interlocked tori 512 5135 1294 104 30
Torus and candlestick 544 5030 1308 120 32
Spring 1800 | 39954 8790 868 220
Large grid 449 9776 2738 216 68
Torus inside torus 512 4395 1010 104 25

Table 4.1 The asp and the rim appearance representation were created for the polyhedral
models above. The sixth column shows that the number of visual events computed for
each of the models is reduced by 75% when computing the visual events involving only
the rim edges. The visual events were generated under orthographic projection with one
degree of freedom in viewpoint.

The columns in Table 4.1 show the total number of visual events in the asp and the
number of these events that are rim events. Column 6 shows the percentage of the total
events that are rim events. The rightmost two columns report the average number of
events per edge in the asp and the average number of events per edge in the rim appear-
ance representation. As the sixth column shows, there was approximately a 75% reduc-
tion in the number of visual events to be considered in the rim appearance representation:
for example, for the candlestick model, the average number of visual events per edge
decreased from 5.5 in the asp to 1.5 in the rim appearance representation. These results
indicate that the rim appearance representation saves significant time and space over the
asp (and hence the aspect graph as well) while preserving the completeness of the exact
appearance of the occluding contour at all viewpoints.
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4.6. Concluding Remarks

This chapter has described a novel, viewer-centered model of the occluding contour of
3D objects called the rim appearance representation. The exact appearance of the rim
edges of a polyhedral approximation of a smooth object is encoded by the rim appear-
ance representation. The appearance of the polyhedral rim and the features of self-
occlusion that affect its appearance correspond to the contour events generated by
smooth objects. The linear edges of polyhedra make it possible to represent both T-
junctions and occluding contour events as explicit objects that are organized in terms of
sets of interacting rim edges. Representing these features explicitly is difficult in general
because of the continuously changing rim points of smooth surfaces.

A viewer-centered model of the occluding contour of 3D shape is important for
model-based vision. The occluding contour of 3D shape is related to 3D surface proper-
ties, and the features of self-occlusion provide strong constraints for recognition.
Features such as T-junctions and contour events are intrinsic to projected shape, and can
be represented and used for indexing and matching in a model-based system. The rela-
tionships between occluding contour features can further constrain the matching process.
The viewer-centered approach to modeling 3D shapes makes the changes in features with
respect to viewpoint explicit. These changes can be used in a dynamic context where
image features are observed changing over time, or where matching methods must itera-
tively refine an estimation of viewpoint [Lowe89]. In addition, an explicit model that
includes features of self-occlusion for solid shape makes the prediction of the appearance
of the model a faster process that can speed up model matching [Basr88].

Although the rim appearance representation can be large for worst-case examples,
the average case requires much less time and space. Consequently, this representation is
much smaller on average than other representations such as aspect graphs and the asp.
The organization of individual rim edges into contour-level events gives a natural
abstraction and useful structure to the visual events that affect the rim. Finally, it should
be noted that this model of the occluding contour is intended to be used in conjunction
with other available surface and geometric information. The integration of this 3D
viewer-centered approach with other geometric features should provide a strong founda-
tion for more sophisticated, shape-based approaches to 3D vision.
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Chapter 5

Viewpoint from Occluding Contour

The viewer-centered rim appearance representation stores the features of the occluding
contour for polyhedral models. This chapter considers the problem of how to constrain
the set of viewpoints from which a 3D model will project to an observed set of occluding
contour features using the rim appearance representation. This approach relies on
precomputed features of the occluding contour stored in the rim appearance representa-
tion. These features are organized into a structure making inter-feature relationships and
dynamic feature changes explicit. It is assumed that geometric information about the
models is known, occluding contours can be detected in the image, and information such
as surface normals or texture is not available.

The problem of constraining viewpoint for a particular model is often considered a
subproblem of model-based 3D object recognition [Lowe87]. In general, the model-
based approach is to select a model M and the corresponding viewpoint V that will pro-
duce a projection that best matches the image data. For each model, the best viewpoint
V selected from a space of all possible viewpoints is computed. Recognition is the selec-
tion of the best model,viewpoint pair, i.e., the pair (M, V) with the highest degree of
match. Thus a fundamental problem under this paradigm is viewpoint determination, i.e.,
the computation of the model viewpoint that best matches the image for a given model.
This is essentially equivalent to pose determination, where an object’s pose also
describes the transformation that relates the object position to the camera position in
world coordinates.

The approach developed in this chapter can be distinguished from previous methods
in two respects: (1) the kinds of features that are explicitly represented, and (2) the type
of model-image correspondences that are made. First, the appearance of the occluding
contour, including the formation and persistence of T-junctions, is represented. There is
strong information available in the occluding contour, but the difficulty in adequately and
explicitly describing it has prevented its use in the past. Second, the shape and topology
of the occluding contour is usually stable over a range of viewpoints but is not generated
by a fixed, intrinsic feature of the shape. For example, a T-junction produced by[the
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projection of a smooth shape persists over an open set in the space of viewpoints, yet the
3D points that project to the T-junction are not fixed over that set. Consequently, a
correspondence between a T-junction detected in an image and a model T-junction is dif-
ferent from a point-point correspondence; a T-junction correspondence defines a con-
nected set of viewpoints where the T-junction can occur rather than a single transforma-
tion to bring the model features into exact correspondence with the image. This notion of
correspondence is more qualitative, producing a small, constrained region of viewpoints
rather than a single viewpoint that generates the image features. This implies a two-step
procedure for viewpoint determination: (1) finding a constrained region of viewpoints,
and (2) find a single viewpoint within the region as a solution.

There are certain advantages in making use of features of the occluding contour for
viewpoint determination. The occluding contour provides strong information for
viewpoint constraints and for 3D object recognition [Koen90, Rich88], although until
now there has been litfle work to incorporate this information into a model-based
approach. The depth ordering of surfaces relative to the viewer and qualitative pose
information can be inferred from T-junctions and their relative orientations. The curva-
ture of the occluding contour is directly related to the 3D surface generating it [Koen90].

o2

Figure 5.1. The occluding contour of a 3D non-convex object is rich in visual cues that
strongly constrain viewpoint. This figure was taken from [Koen87].
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The relationship between sets of occluding contour features generated by arbitrary non-
convex 3D shape strongly constrains the possible viewpoints that can generate those
features. For example, the projected 3D object in Figure 5.1 is rich with visual cues such
as T-junctions, ending contours, concave and convex arcs, and inflections. These
features independently and in relationship to each other constrain the possible views that
can generate the given projection.

Initially solving for a constrained viewpoint region using the occluding contour is
necessary for many other methods for object recognition because they assume a given,
approximate solution. In the case of iterative methods [Lowe87], a critically necessary
starting viewpoint can be obtained from a constrained viewpoint set. Parameter space
methods [Thom87] that can avoid a costly search of the entire space of transformations
become much more efficient. The search of an interpretation tree [Grim90] is more
efficient in space and time when there are global constraints on the possible solutions.
Aspect graph methods [Bowy89, Krie90, Ikeu87] must address the problem of how to
select a few aspects to test from a large number of potential aspects.

There are several important advantages to using the rim appearance representation
over the aspect graph. The aspect graph is constructed from nodes representing regions
of viewpoint space and arcs representing adjacencies in viewpoint space. Viewpoint
space is divided so as to preserve constant aspect within each connected region. Two
views are in the same aspect when the features projected from those views are qualita-
tively the same. Aspect graph approaches have not yet solved the nontrivial problem of
selecting the appropriate aspect given a set of detected features. We solve this problem
in part by representing individual features across aspect. The rim appearance representa-
tion makes the changes in individual features and in feature sets across adjacent aspects
more explicit than in the aspect graph. Also, only occluding contour features are
represented. If it is assumed that the polyhedral model is an approximation of a smooth
shape, many of the polyhedral events represented in the aspect graph are not observable
in the projection of a smooth shape.

This chapter describes an approach to solving the model-based viewpoint determi-
nation problem using shape features of the occluding contour. In particular, the
inflections and T-junctions that arise from self-occlusion and non-convexity are used as
features to first determine a region of viewpoints that matches the image. These contour
features are precomputed and, unlike the aspect graph, are organized into a structure that
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makes inter-feature relationships and dynamic feature changes explicit. The precom-
puted geometry of the occluding contour, geometry that is dependent on viewpoint, is
related to image features. This relationship globally constrains viewpoint and provides a
direct model-to-data correspondence for features of the occluding contour. Included in
this framework is a representation of the dynamic evolution of the occluding contour as a
function of viewpoint. This dynamic information, as a part of the object model, provides
another way to extract quantitative information about viewpoint from image changes
over time. After this qualitative solution, resulting in a viewpoint region, is obtained, a
second procedure is used to precisely align the model and image features so as to deter-
mine a final single viewpoint.

Polyhedral object models are used, and the behavior of the occluding contours of
these models is precomputed and organized for searching and matching. Although the
occluding contour of a polyhedral model does not change continuously with viewpoint, it
changes discretely and provides an approximation of the smooth occluding contour in the
polyhedral domain. Section 5.1 specifies how features of the occluding contour appear in
the image plane and identifies feature properties that constrain viewpoint. The feature
selection and search issues involving the rim appearance representation are presented in
Section 5.2. Section 5.3 gives implementation results from a prototype system that con-
structs and organizes the rim appearance representation for polyhedra and then relates
this information to projected contour features. Results include information about the
number and the persistence of precomputed model contour features, as well as an algo-
rithm to select model features in order to account for the occluding contour features in
images. Section 5.4 summarizes the results, and discusses a way to integrate the rim
appearance representation with the interpretation tree paradigm for a more constrained
model-based strategy.

5.1. Contour Geometry and Organization

The features of the occluding contour that are precomputed for a particular model are
defined by viewing direction, self-occlusion from projection, and the curvature of the sur-
face at the rim. Thus the association of a feature in an image to a model feature impli-
citly includes a set of constraints on viewpoint. These constraints are derived from the
geometry that produces the contour feature under projection.
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This section focuses on the following issues: the geometry of contour features, the
representational organization of these features, and the viewpoint constraints resulting
from model-image correspondences. The problem of model-image correspondence is
treated as a contour-level correspondence rather than an exact edge-edge correspondence.
This is based on the organization of contour features as a function of viewpoint.

Smooth opaque shapes without surface discontinuities generate only T-junctions,
smooth occluding contours, and contour terminals in the image plane [Mali87]. It is
assumed here that the polyhedral model is an approximation of a smooth shape. It can
then be assumed that none of the polyhedral edges are true surface discontinuities. In
general, surface discontinuities can be treated without difficulty, but for simplicity the
discussion here is restricted to smooth surfaces. In this case the only stable, or
transverse, junctions in the smooth occluding contour are T-junctions and contour termi-
nals. Triple-contour (or higher order) intersections can occur, but only from a 1D or 0D
set of viewpoints. Consequently, any perturbation of viewpoint within an open disc on
the view sphere will cause a triple-contour feature to disappear. Accordingly, the
features described in detail here are the T-junction, caused by the intersection in the
image plane of two non-adjacent rim edges, and the contour terminal, caused by concave
edges. Both of these features persist in general over a 2D set of viewpoints.

5.1.1. T-junctions

The EE-event is represented in the rim appearance representation as a hypersurface in
aspect space. A set of EE-event hypersurfaces that are adjacent in aspect space estab-
lishes a piecewise representation for a single T-junction between two occluding contours.
This piecewise-connected set of hypersurfaces approximates a single contour-contour
event (CC-event). The CC-event is the T-junction that is produced by the projection of
two smooth surfaces. The difficulty in explicitly representing T-junctions for smooth
surfaces is the numerical complexity of the locus of surface points that define the viewing
directions where T-junctions occur [Krie90]. For polyhedra, the EE-events assembled
into piecewise CC-event structures provide an approximation of the smooth T-junction

geometry.
There are three important geometric quantities for a T-junction that are represented
in the rim appearance representation: the image location of the apparent intersection
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Figure 5.2. (a) The T-junction formed by a pair of model edges. Both edges are restrict-
ed to the rim. (b) The orthographic viewing model. (c) A T-junction persists for a bound-

ed viewing region. (d) Two T-junctions co-occur at the viewpoints where their patches
overlap on the viewing sphere.

point, the orientation of the T-junction, and the viewpoints where a T-junction is created
or annihilated. These properties are directly computable from the geometry of the two
edges that form a T-junction; the piecewise connection of EE-events represents the
change in the T-junction as the rim changes. The orientation and location in the image
plane are immediately available from the geometry of the edges that form it. The set of
viewpoints where the T-junction is created or annihilated occur where no continuation of
the T-junction to other rim edges is possible. The equations for the EE-event specify the
image location, orientation and the viewpoints where the event is created or annihilated.

The geometry of the interaction of two rim edges that form a T-junction is described
in part by a region of visibility on the view sphere, as shown in Figure 5.2(c). Figure
5.2(a) shows for simplicity only two isolated edges although, under the definition of the
polyhedral rim, edges forming a T-junction are constrained by the visibility of the faces
that meet to form them. By the definition of the polyhedral rim, a particular edge can
only form T-junctions for viewpoints where that edge is on the rim. The image coordi-
nates of a projected T-junction for two edges are represented directly as a function of the
viewing direction V and the endpoints of the segments [Plan88]. As shown in Figure
5.2(b), a viewpoint is modeled as a point (8, ¢) on the unit sphere. The orthographic
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projective transformation for this sphere of viewpoints is rotation by (9, ¢) and then
orthographic projection in the direction of the z-axis.

There are two conditions that govern the observability of an EE-event between two
rim edges. First, the local rim conditions must be satisfied: each edge must be on the rim
and must project onto one another in the image plane. Second, the T-junction must be
globally visible. Given only the local conditions, an EE-event may be occluded by
another part of the surface. For example, let the set S be the set of viewpoints from
which a given T-junction is observable in the image plane. Under the local conditions
stated above, S forms a convex, connected set on the view sphere. The equations
defining the boundaries of the set S in this case are functions of the endpoints of the
edges and the normal to the faces meeting at each edge. These boundaries are sections of
great circles so that S is a spherical quadrilateral.

When global occlusion modifies the visibility of the T-junction, S may no longer be
connected. This can be visualized intuitively in the case where an EE-event (T-junction)
is partially obscured by a grid. The set of viewpoints where the two edges project to the
T-junction is split into disjoint regions where the T-junction is visible. The visibility
boundaries caused by the grid are specified by the EEE-event [Plan88]. In IR3, the locus
of points where three lines project to a single point is a ruled quadric surface [Gigu90].
The intersection of the ruled surface for three edges with the view sphere forms a polyno-
mial (quadratic) curve with coefficients that are a function of the endpoints of the three
segments. Thus S can be a non-connected region on the view sphere where each con-
nected subregion is bounded by a combination of great circles and quadratic curves gen-
erated by EEE-events [Plan90].

A set of T-junctions (rather than just one T-junction) can be produced by a non-
convex shape at a single viewpoint. The geometric relationships between simultaneously
visible T-junctions is of interest because of the additional viewpoint constraints that they
provide. These relationships can be computed using the geometry of the T-junction
patch boundaries. Two or more T-junctions that can simultaneously occur in an image
define a strictly higher constrained region of viewpoints, i.e., the region defined by the
intersection of the patches for each individual T-junction. Conversely, two T-junctions
co-occur at the same viewpoint when their respective patches form a non-empty intersec-
tion on the view sphere. The region of intersection is the set of viewpoints where the
edges are on the rim and the two pairs of edges will each project to a T-junction in the
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image. Figure 5.2(d) shows two patchs of viewpoints on the view sphere formed by two
pairs of edges, and the intersection of those two patches where the T-junctions co-occur.

The presentation above explains the well-defined geometric structure for the set of
hypersurfaces in aspect space that collectively approxiniate a CC-event. A CC-event is
computed directly from a polyhedral model for the purpose of predicting how the occlud-
ing contour of the model will appear in the image as a function of viewpoint. An
hypothesized correspondence between a CC-event computed from a model and a T-
junction in the image produces a set of viewpoint constraints. These constraints are of
three forms: CC-event persistence constraints, geometric constraints, and co-occurring
feature constraints.

The CC-event persistence constraint eliminates viewpoints where the CC-event can-
not occur. That is, if it is hypothesized that a particular image T-junction has been pro-
duced by a specific model CC-event, then the viewpoint that created the image projection
must lie within the set of viewpoints that produce the CC-event. This set of viewpoints
for a CC-event in the model is well-defined with exact boundaries.

Geometric constraints are derived from an assessment of how well the measured
characteristics of an image T-junction matches a CC-event in the model. For example,
the stem and the T of a detected T-junction meet together at a particular angle. The
viewpoints bounding the CC-event are further constrained by boundaries around the
viewpoints that will project to a T-junction that is approximately equal to the measured
angle of the detected T-junction.

Co-occurring feature constraints are constraints between pairs of CC-events. An
hypothesized correspondence involving one CC-event must also include evidence for any
co-occurring CC-events. The set of viewpoints where two CC-events co-occur is in gen-
eral much more restrictive than the set of viewpoints where a single CC-event occurs.
Co-occurring constraints are simply persistence constraints involving a pair of CC-
events. Specific geometric conditions describing the relative position and orientation of
two CC-events can also constrain the set of viewpoints that may produce a pair of image
features.

Each of these three types of constraints (CC-event persistence, geometric, and co-
occurring) are illustrated in Figure 5.3. The figure shows a set of EE-events on the view
sphere that are joined together to form a single CC-event. In Figure 5.3(a), the outer
boundary of the union of EE-event boundaries is the CC-event boundary. Viewpoints
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Figure 5.3. A CC-event is a piecewise collection of EE-events. (a) The persistence con-
straint: the outermost boundary (in bold) defines the CC-event region and delimits
viewpoints where a single T-junction is visible. (b) The geometric constraint: the shad-
ed viewpoints within the CC-event region are those viewpoints where the T-junction
satisfies a detected geometric condition in the image such as a particular measured angle
or orientation. (c) Co-occurring feature constraints: the shaded viewpoints are those
viewpoints where two spatially-distinct CC-events co-occur in the image.

within this bounded region will produce the CC-event. A subset of the viewpoints within
this CC-event region will satisfy specific geometric requirements from the observed
image feature. Figure 5.3(b) illustrates how a subset of viewpoints satisfy specific
geometric measurements such as relative orientation and angle of a T-junction.
Viewpoints where two CC-events co-occur are computed exactly as an intersection of
viewpoint regions on the view sphere. The shaded region in Figure 5.3(c) is the set of
viewpoints where two model T-junctions will co-occur.

The edges for part of a CC-event can be aligned with an image T-junction for any of
the viewing directions within the bounded region where the CC-event occurs. For a
specific viewpoint, the rotation about the optical axis and translation in the image to
bring the CC-event into correspondence with the image T-junction is well-defined. This
is a result of the fact that a T-junction is oriented, with the stem of the T-junction being
on the unoccluded side of the other edge. Figure 5.4 shows two model edges being
aligned with an image T-junction. The edges are rotated by the viewpoint (0, ¢) and then
projected to the image plane. The rotation o about the optical axis orients the edges
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Figure 5.4. The T-junction formed by a pair of model edges is aligned with an image
T-junction by a rotation o about the optical axis and an image plane translation T to align
the junction point.

appropriately. The translation T in the image plane completes the alignment.

To summarize, a model-image correspondence constrains viewpoint since a CC-
event exists over a bounded set of viewpoints. There are also geometric constraints such
as the measured angle of a detected T-junction. Since a CC-event is represented as a
piecewise set of adjacent EE-event hypersurfaces in aspect space, the exact geometry for
each piece of the CC-event is available. It should be noted here that the viewpoints
within a single EE-event that best match the stem and occluding edge of the image junc-
tion are difficult to compute. In general, there is a locus of viewpoints within an EE-
event patch that can produce a T-junction that exactly matches an image T-junction.
Despite this, the variation in the geometry of a T-junction formed by two edges depends
on the size of the viewpoint patch where it occurs [Burn90]. Consequently, the geometry
of a T-junction persisting over a small region of viewpoint space changes very little over
that region, and can be closely approximated by the geometry at a single viewpoint
within the region.
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Figure 5.5. (a) A polyhedral model. (b) The occluding contour is broken by a combina-
tion of T-junctions and contour terminals. (¢) The dotted edges are concave, and cause
the contour terminals.

5.1.2. Contour Terminals

The occluding contours of smooth, transparent shapes are always closed curves that may
contain non-smooth singularities such as cusps. These curves may overlap in the image
plane and can have self-intersections. For closed, transparent polyhedra, the occluding
contour is always a set of closed, linked edges that can overlap and can self-intersect.
For opaque objects, on the other hand, self-occlusion (the overlapping of two different
closed contour loops in the image plane) causes a contour to split into disjoint parts, or to
merge into a larger piece. A "swallowtail" breaks the occluding contour at the T-junction
that is created by the self-occlusion of an opaque surface [Koen90].

The rim appearance representation computes all of the visual events that affect the
visibility of rim edges. These events include T-junctions that cause the occluding con-
tour to split and merge, as well as the EV-events and EEE-events where T-junctions
begin and end. The topological behavior of the occluding contour is computed and
stored by organizing all of these events as a function of viewpoint. The topological
characteristics are precomputed, and the exact appearance of the occluding contour for
any viewpoint is directly available from the rim appearance representation.

The high-level contour representation that is constructed connects rim edges
together that are spatially adjacent. In addition, the viewpoints where merges and splits
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occur as a result of visual events are explicitly computed so that the higher-level
behavior of the occluding contour as a function of viewpoint is encoded. For example,
the rim edges for a convex polyhedron make up a single loop of edges. Since there are
no EV-events and EEE-events that cause the rim of a convex solid to split and merge, the
behavior of the occluding contour is constructed as an unbroken loop of edges that never
splits or merges. This higher-level structure provides a representation of the topological
features of the occluding contour that is independent of the constituent edges.

The geometry of contour terminals is a key part of the change in the topology of the
occluding contour across viewpoint [Koen90]. Contours end in polyhedra at concave
edges only, i.e., at edges where the measure of the exterior angle between the faces meet-
ing at the edge is less than 7. Concave edges can be excluded from the rim since a con-
cave edge can never occlude anything behind it. When concave edges are removed from
the rim set, the rim can form a set of unconnected edges. For example, Figure 5.5(a)
shows a polyhedron from a viewpoint where the set of visible rim edges is not connected
in IR, The discontinuity occurs at the dashed concave edges, shown in Figure 5.5(c).
The broken contour that results under projection, shown in Figure 5.5(b), consists of two
contour sections. Each contour corresponds to part of the disjoint rim on the model. A
concave edge causes the contour to end at either a T-junction (due to self-occlusion) or at
a contour terminal.

The viewpoints where a contour terminal disappears (or a T-junction disappears)
form visibility boundaries on the view sphere. These boundaries mark a change in the
topolgy of the contour; the topology of the projected contour is different for each region.
The set of viewpoints where the contour breaks at terminals and T-junctions is important
because those viewpoints bound regions where the contour topology changes. Over
regions of constant contour topology, points such as contour curvature extrema can be
computed, and the spatial relationships of those points to the projected T-junctions and
contour terminals can be computed. This qualitative description of the contour provides
a coarse description of the contour in terms of qualitative connectivity and curvature
information. At the same time, exact contour appearance is still maintained as sets of
polyhedral edges and their interactions.

The rim appearance representation organizes polyhedral contour events. In the
smooth case, the locus of viewpoints where visual events occur can be specified as solu-
tions to algebraic equations. The solutions to such equations, however, are numerically
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complex [Krie90]. The polyhedral approximation eliminates the numerical complexity
and provides a piecewise organization that preserves many of the interesting and detect-
able occluding contour features.

In summary, the rim appearance representation explicitly represents the visual
events that cause a change in the topology of the occluding contour. The interaction of
occluding contours in the form of a T-junction is represented as a piecewise-continuous
structure that is connected across the changes in the participating rim edges. The locus of
viewpoints that corresponds to these visual events in the smooth case is numerically
complex and difficult to make explicit. The rim appearance representation avoids these
problems by using the discrete rim of a polyhedral approximation to the real, smooth
shape. The higher-level contour is represented as a set of edges that splits and merges as
a function of viewpoint. This higher-level representation is important because its topol-
ogy corresponds to the topology of the occluding contour of the smooth object that the
polyhedron models. The splitting and merging of the occluding contour as well as the
T-junctions that bound these splits and merges correspond to the dynamic behavior of the
occluding contour of a smooth object. The topological behavior of the occluding contour
and the explicit quantitative representation of the appearance of the occluding contour
can then be used together as the basis for a model-based recognition system.

5.2. Feature Selection and Refinement

The rim appearance representation stores the appearance of the occluding contour for a
complete set of viewpoints. This representation includes the geometry of T-junctions,
contour terminals, and other features generated from self-occlusion. The organization of
occluding contour information and the viewpoint constraints associated with each indivi-
dual occluding contour feature is the basis for obtaining a viewpoint solution in the form
of a small bounded set of viewpoints. This section presents an algorithm that has been
implemented for using T-junctions and contour fragments in order to solve for a set of
viewpoints matching an image. The problem is formulated as a search problem through
the rim appearance representation for a given model. This search problem consists of an
indexing phase, where an initial correspondence between model and image features
results in a restricted set of viewpoints, and a search phase where the results of the index-
ing phase are refined by using the piecewise structure of the CC-event in the rim
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appearance representation. The connections linking individual EE-events over viewpoint
are traversed to refine hypothesized correspondences.

5.2.1. CC-Event Selection

Contour features can be organized by characteristics such as curvature, relative orienta-
tion to other features, and persistence in viewpoint space. For example, a T-junction can
be described by a specific orientation and angle. Multiple features together give relative
orientation constraints and also provide scale information. The contour topology itself
can give a coarse estimate of the potential matching sets of viewpoints. For initial
evaluation purposes, the implementation results presented in Section 5.3 make use of
only T-junction orientation and angle information. Contour-contour interactions are
selected from the rim appearance representation for the model based on precomputed
orientation and angle geometry. Future work will add other features.

The angle formed by a T-junction between two edges is relatively stable over a
small range of views (see Section 5.1). Since the CC-event is represented as a set of EE-
events, the angle for a CC-event can be represented piecewise, where each edge pair has
a fixed, precomputed angle. A CC-event and an image T-junction correspond where the
measured angles of the two are similar. The set of CC-events is organized by this
geometric measure so that portions of a CC-event with particular values can be selected
efficiently.

In addition to the EE-event itself, a set of occluding contour fragments with high
curvature values is stored. The orientation of each contour fragment is computed with
respect to the coordinate system defined by the oriented EE-event. This small number of
contour fragments provides an efficient template that can be used to verify the accuracy
of a match between an EE-event and a detected T-junction. Precomputed contour frag-
ments that are supported by evidence in the image increase the confidence of the match.
Figure 5.6 shows an EE-event (circled) and the parts of the occluding contour that appear
with high curvature values over the set of viewpoints where the EE-event persists. The
relative geometry (with respect to the T-junction) of each of the occluding contour frag-
ments is precomputed and stored with the EE-event.

In summary, the indexing phase of this algorithm selects candidate CC-events from
the rim appearance representation based on the measured angle of a T-junction and the
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Figure 5.6. The geometric relationship of high-curvature contour fragments to an EE-
event reduces the number of CC-events that match a T-junction.

relative position and orientation of high-curvature portions of the contour with respect to
the T-junction. The top candidates are passed on to the search component of the algo-
rithm. Next, the search phase uses the candidate correspondences as starting points in
order to compute a bounded region of viewpoints that best accounts for the observed

image contours.

5.2.2. Refining CC-Event Correspondence

Once the initial correspondences are made between the model and an image feature, the
persistence, geometric and co-occurring constraints described in Section 5.1.1 are applied
to guide a local search for the boundaries of the solution region. Specifically, a candi-
date, qualitative correspondence between a CC-event and an image T-junction is refined
by searching the EE-events that together define the CC-event. The EE-events, as
members of the CC-event, may not satisfy the measured geometric properties of the
image T-junction. Thus the hypothesized correspondence between a CC-event and a T-
junction can be refined by searching the set of precomputed EE-events in the model
through aspect space.

This search has been implemented as a fixed-distance search over the set of adjacent
EE-events within the CC-event in aspect space. A fixed number of adjacent regions is
examined to find a set of boundaries within the CC-event that best satisfies the
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Figure 5.7. The two different EE-events that appear at V; and V, are connected togeth-
er as part of the same CC-event. This is computed using edge connectivity and visual
event adjacency information.

persistence, geometric and co-occurring constraints imposed by the image data and the
hypothesized correspondence. The CC-event with the best measured match is selected as
the solution region. Note that the search is over adjacent EE-events both spatially and in
viewpoint. As an example of the latter case, Figure 5.7 shows two EE-events that lie on
the same CC-event. These adjacencies in aspect space connect the EE-event at V; to the
EE-event at V,. Such viewpoint space adjacencies are also followed during the search
for the boundaries of the solution region in viewpoint space.

5.3. Implementation Results

A prototype system has been implemented in order to study the issues involved with a
model-based, explicit representation of occluding contour features. We have imple-
mented the algorithms to compute the rim appearance representation under orthographic
projection. The results reported here are twofold. First, the task of computing and stor-
ing the contour information for medium-sized polyhedral models is shown to be very
manageable. Second, we describe a prototype implementation that recovers a viewpoint
region estimate from a set of synthetically generated image features. All of the
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viewpoints in the solution viewpoint region produce an occluding contour that matches
the image data.

Figure 3.12 shows the polyhedral model set. Table 5.1 indicates the model size, the
total number of EE-events computed for each model, and the average persistence of each
edge-edge interaction as a percentage of the total area of the view sphere. The number of
edge interactions produced by a model is a function of several variables including the
size of the model, the amount of non-convexity, and the sharpness of the angles between
adjacent faces of the model.

There are two important observations from Table 5.1. First, the EE-event informa-
tion is small enough to be efficiently computed and stored for a model with a moderate
number of edges. The number of EE-events is O(n?) where n is the number of edges.
Rim constraints and non-degenerate polyhedral models give an average size complexity

Model Edges | Computation | Visible | Average EE-Event
Time (Secs) | Patches Region Area
Chain link 144 4.8 2136 0.8
Small grid 105 1.7 490 1.7
Candlestick 560 323 4149 3.1
Candlestick and sphere 800 86.9 6734 20
Three spheres 720 108.3 2536 0.8
Interlocked tori 1024 129.8 6008 5.0
Torus and candlestick 1072 137.3 9335 29
Spring 2709 528 33029 23
Large grid 880 140.5 13486 | 1.6
Torus inside torus 1024 130.3 5494 44

Table 5.1. Size and time information for each of the polyhedral models in Figure 3.12.
EE-event region area is the percentage of the entire area of the view sphere over which
the EE-event occurs.
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that is much smaller than this worst-case size. Second, the average persistence of EE-
events is inversely proportional to the number of polyhedral faces. These observations
illustrate the size/accuracy tradeoff that exists between large models that provide a very
close approximation to a smooth surface and small models that provide a coarser approx-
imation.

Figure 5.9 shows the computational results of determining a starting viewpoint
given a synthetic image generated from an arbitrary viewpoint. The image contours were
generated using orthographic projection with fixed (known) scale. Each image was
represented as a set of individual edges, with known T-junctions. An approximate solu-
tion for a model-image match is a viewing direction (0, ¢) at the center of the solution
EE-event region, a rotation o about the optical axis, and a translation T in the image
plane.

The circled T-junctions in Figure 5.9 were used as the primary constraint feature for
correspondence with the precomputed representation of the occluding contour. The
measured angle of the T-junction was used as the primary indexing key, with an initial
match being any model T-junction with an angle within 10 degrees of the measured
value. The relative position of the occluding contour to the oriented T-junction was used
to further constrain potential correspondences. This is similar in style to the local feature
focus method [Boll82]. A measure of the degree of correspondence was determined by
using a least squares distance measure between predicted contour fragments and image
contours.

An exact solution for viewpoint is not found, but rather a constrained region of
viewpoints is found that accounts for the T-junction and occluding contour data. Given a
tightly-constrained set of viewpoints, an exact solution can be found using, for example,
an iterative method [Lowe87]. Furthermore, a contour correspondence is found, not an
exact edge-to-edge correspondence. The two model edges aligned with the T-junction in
Figure 5.9(d) are not the same model edges that originally projected to that T-junction.
Because of the symmetry of the torus there are many close solutions that can be found.
The solution viewpoint displayed is the center of the final solution viewpoint region. For
our set of test models, all solution regions contained a true solution, and all viewpoints
within each solution region were within 7t/4 radians of the exact solution.

Figure 5.9 shows the input image edges as solid lines, and the projected model at
the solution viewpoint as dashed lines. The T-junction used as the central feature is
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circled. For the torus image, ten edge-edge correspondences within the CC-event for the
circled T-junction were made by the algorithm before the solution shown in Figure 5.9(d)
was found. The selected CC-event correspondence was revised after measuring the
degree of match of the predicted occluding contour edges to the image. A correspon-
dence was revised by using CC-event information in the model to obtain other edges that
project to the same T-junction. This search was limited by the distance in the model
from the original CC-event and the angle of the projected CC-event. Three CC-event
correspondences were required to obtain the view shown of the S-shaped polyhedron in
Figure 5.9(b).

An interesting problem occurs with "coarse" polyhedral models such as the S-
shaped polyhedron shown in Figure 5.9(a). A coarse model is one that has large angles
between adjacent faces so that it does not closely approximate a smooth surface. Sharp
angles cause individual T-junctions to persist over larger ranges of viewpoint space and
hence their projected angle values will each vary over a large range. As expected, large
variations for a single EE-event makes any single choice in values for that EE-event very

=0

(@) (b) © (d

Figure 5.9. The solid lines in (a),(c) are the images used as input to the algorithm. The
dashed lines in (b),(d) are the recovered views. The circled T-junctions in (b) and (d)
were used as the initial feature for selecting a CC-event from the precomputed model of
the occluding contour. The dashed lines are the projection of the model from the middle
of the solution viewpoint region.
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bad. For this case, an EE-event cannot be adequately represented by a single set of angle
values. This again illustrates the time-space tradeoff in representational accuracy. Addi-
tional contour feature information incorporated into the algorithm can help to solve this
problem.

We can make several observations and conclusions based on this prototype imple-
mentation. First, convex shapes provide no occlusion-based information, although the
interaction between several convex polyhedra gives occlusion cues that constrain
viewpoint. Hence, the curvature extrema and shape description of the occluding contour
gives the only information about viewpoint. Second, symmetry generates a larger
number of good model-image matches since symmetry generates a locus of viewpoints
with identical contours. In this case, any of the possible correspondences on the locus of
identical views is valid. Finally, the initial analysis of this approach has not incorporated
other shape-based information that is almost always present in real 3D modeling situa-
tions. We have studied the occluding contour alone, with the future goal to add other
shape information as well as texture, color and surface markings, to provide a larger set
of constraints for viewpoint determination.

5.4. Concluding Remarks

Features of the occluding contour contain strong constraints for viewpoint determination.
These constraints can be used to solve exactly for a region of viewpoints where a model
will project to the observed occluding contour features. Our novel approach relies on the
precomputed occluding contour features produced by polyhedra under orthographic pro-
jection. These precomputed features include contour T-junctions, contour terminals at
concave edges and the relative arrangement of sections of the contour. The basis for the
computation of this information is the construction, at all viewpoints, of the rim for
polyhedra, defined as the analog of the rim for smooth shape. Precomputed contour
information is organized over viewpoint based on edge connectivity in the model and
feature adjacencies across viewpoint.

Occluding contour features are selected from the model given measured contour
features and their relationships. Viewpoint constraints are associated with these qualita-
tive correspondences since occluding contour features are defined by small regions of
viewpoints where they can occur. The implementation results demonstrate that a model-
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based strategy using self-occlusion features such as T-junctions can efficiently constrain
viewpoint by accounting for the occluding contour features detected in an image.

Future work will address issues related to integrating additional information for
constraining viewpoint, including static features and feature changes with respect to
viewpoint. A hybrid paradigm is currently being studied that integrates constraints from
both occluding contour and occlusion features as well as surface discontinuity and
surface-marking features. The problem of detecting occluding contour features and the
sensitivity of this approach to noise and incomplete data is being studied by using
dynamic information over time. The contour representation framework can incorporate
constraints from the changes in contour with respect to viewpoint (i.e., time). We are
also currently studying robust contour detection methods in image sequences and the
model-based application of the derived contour dynamics.

This study of the rim appearance representation for model-based viewpoint determi-
nation has led to related research ideas that integrate rim appearance information with the
interpretation tree paradigm. The notion of the interpretation tree with geometric con-
straints [Grim90] can be modified to include the specific geometric appearance informa-
tion in the rim appearance representation. There has been work using the silhouette that
is related to this idea [VanH87]. The following paragraphs briefly summarize the ideas
relating the rim appearance to the interpretation tree paradigm for model-based vision.

An interpretation tree is an organized way of searching the possible correspon-
dences between model and image features. A node in the tree corresponds to the pairing
of a model feature (an edge, for example) to an image feature. A path from the root of
the tree to a leaf is an interpretation, or an assignment of model parts to image features.
Each level of the tree describes a partial interpretation of the image data. The central
idea of the interpretation tree is that correspondences can be pruned by enforcing
geometric constraints between assigned parts of the model [Grim90].

The primary power of the interpretation tree is derived from the strength of the con-
straints that prune the tree. The rim appearance representation provides a way to com-
pute exact geometric constraints between parts of the occluding contour. The constraints
between image fragments on the occluding contour are strong because the assumption
that a fragment is on the occluding contour restricts the set of viewpoints to those where
the model edges must liec on the rim. There are further constraints available in the rela-
tive geometry between parts of the occluding contour.
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The rim appearance representation encodes geometric constraints for parts of the
rim over the entire viewpoint space. We are working toward the efficient organization of
the geometric constraints between parts of the rim for use with assigning consistent
correspondences at each node in the interpretation tree. The two key elements that give
this approach promise are (1) the efficient organization of geometric contraints in the rim
appearance representation, and (2) the additional geometric constraints from features of
self-occlusion, such as T-junctions.
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Chapter 6

Summary

This thesis presents a novel, visual-event-based representation for 3D objects and a set of
corresponding algorithms for solving problems in computer graphics and computer
vision. Algorithms for the hidden-line and hidden-surface display of polyhedral scenes
generated from a smooth path of viewpoints are developed to take advantage of viewpath
coherence, the similarity in appearance between adjacent views of a scene. The rim
appearance representation, a complete characterization of the structure of the occluding
contour of polyhedra for all viewpoints, is introduced. An algorithm using the rim
appearance representation has been implemented for the model-based vision problem of
solving for a small set of viewpoints given the occluding contour of a 3D object. The
following paragraphs give a chapter-by-chapter summary of the primary contributions of
this thesis, along with a brief mention of current and future research directions.

Chapter 3 reviewed the asp representation [Plan88, Plan90], the basis for our display
algorithms using visual events. The visual-event-based algorithm for display, first intro-
duced by Plantinga [Plan88], has been developed, extended, implemented and tested.
The problem of how to efficiently display a polyhedral scene over a path of viewpoints is
cast as a problem of computing visual events along that path. A visual event is a
viewpoint that causes a change in the structure of the image structure graph (ISG), a
model’s projected line drawing. Alternatively, a visual event is the set of viewpoints that
cause a singularity in the projection map. The information stored with a visual event is
sufficient to update a representation of the ISG. Thus the visible lines of a scene can be
displayed as viewpoint changes by first precomputing and storing visual events, and then
using those events at display time to interactively update the ISG.

Displaying visible surfaces requires the additional maintenance of ordering informa-
tion with each visual event. This preserves the order of the visible edge segments bound-
ing the visible part of each face. The added cost is a small constant times the number of
faces in the scene. The benefit of the visible surface algorithm is the application of
shaded-display techniques and shadows. The computation of shadow regions is a
straightforward extension of the visible-surface algorithm since the appearance of the
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scene is precomputed for all viewpoints. Shadows are treated as polygons that are
occluded from the light source’s position.

The visible-line algorithm has been implemented for great circles on the view
sphere under orthographic projection. The results on a set of eleven test models show
that large models can be rotated in real time at frame rates greater than 20 frames per
second. Only a small percentage of the total computation at display time is spent pro-
cessing visual events, making the cost close to that of wire-frame display.

This method relies on a precomputation phase to compute visual events. There are
three weaknesses to this approach that we are currently addressing. First, a large number
of visual events can be generated in the worst case for pathological models such as grids.
A hierarchically-structured model has been proposed to reduce the number of events by
computing event data only for subparts of the model. Second, the representation is sensi-
tive to changes, where a small change in the model can make it necessary to redo a large
portion of the precomputation phase. The hierarchical model structure breaks the scene
into components to limit the effect of small changes to the scene model. Finally, the
extended algorithm using perspective projection computes visual events in a higher-
dimensional space. We are working on a hybrid display algorithm that combines the
depth-ordering display of faces with viewpath coherence. Only the EE-event is neces-
sary in order to precompute those viewpoints where changes in occlusion relationships
between faces occur. The EE-event boundaries can be computed and stored efficiently in
IR? so that the potentially very high dimensionality of aspect space is avoided.

Chapter 4 introduced the rim appearance representation, a new, exact representation
of the occluding contour for polyhedra. The geometry of self-occlusion for polyhedral
edges is described, and an algorithm based on this geometry and on visual events is given
for computing the visual event data for the occluding contour edges. While the worst-
case time and space complexity for the rim appearance representation is the same as that
of the asp, the average case results show a large decrease in the size of the representation.
The details of this representation and its multi-level development in Chapter 5 is one of
the major contributions of this thesis.

An algorithm for computing an approximation of the exact rim appearance
representation is given. This approximate algorithm uses a simple global visibility test
for EE-events, and ignores the EEE-event. By doing this the worst-case complexity in
time and space is reduced from the exact algorithm at the cost of sacrificing exactness.
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The algorithm for constructing the exact rim appearance representation has been
implemented for orthographic projection. The sizes and times required for the construc-
tion of the rim appearance representation are much smaller than what is required for
complete event data. The exact appearance of the occluding contour is preserved as a set
of adjacent hypersurfaces in R*.

Chapter 5 describes an intermediate-level description of the behavior of the occlud-
ing contour over viewpoint. This description is based on the lower-level visual event
data computed in the rim appearance representation. An algorithm for determining
viewpoint given a set of occluding contours is described. This algorithm uses
hypothesized correspondences between measurable features of the occluding contour as a
way to formulate constraints on the possible views of the model. Three kinds of con-
straints from the EE-event include the persistence of the event, the geometry of the T-
junction, and the geometry of pairs of features that co-occur.

The algorithm using the rim appearance representation for polyhedra has been
implemented for the T-junction feature. The algorithm takes a projected image as input
assuming that T-junctions and contours have been detected. The correspondence of an
image T-junction with EE-events in the rim appearance representation gives a set of con-
straints in viewpoint space. These constraints lead to a solution that is a small set of
viewpoints containing the original viewpoint.

One of the important contributions of this work is the development of the multi-
level representation of the features of the occluding contour. This structure is in contrast
to other viewer-centered approaches like the aspect graph that base the division of
viewpoint space on global image properties such as the image structure graph (ISG)
rather than individual features and their geometric relationships. We are interested in
how to efficiently integrate the multi-level rim appearance representation with other
model features like color, texture and surface markings, and with other known search
paradigms. Specifically, the rim appearance representation can provide strong con-
straints for the interpretation tree paradigm [Grim90] for searching the space of model-
image correspondences. The rim appearance representation makes occlusion and the
appearance of the occluding contour explicit, while the interpretation tree efficiently
organizes the search of correspondences and the application of constraints.

A second future direction of this work is a better understanding of the relationship
between time and viewpoint. The change in image features over time can be detected
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with low-level representations such as spatiotemporal surfaces [Allm91]. The change in
shape with respect to viewpoint that can be computed from a model (for example, the rim
appearance representation) and its relationship to the change in shape that is observed in
images over time is of great interest. This spatiotemporal | spatio-viewpointal problem is
of interest because of the robustess of information over time and the added constraint
that shape change provides for discrimination among 3D models.
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