CENTER FOR
PARALLEL OPTIMIZATION

MASSIVELY PARALLEL SOLUTION OF QUADRATIC
PROGRAMS VIA SUCCESSIVE OVERRELAXATION

by

R. De Leone and M. A. Tork Roth

Computer Sciences Technical Report #1041

August 1991

MASSIVELY PARALLEL SOLUTION OF QUADRATIC PROGRAMS
VIA SUCCESSIVE OVERRELAXATION *

R. DE LEONE! AND M. A. TORK ROTH!

Abstract. Serial and parallel successive overrelaxation {(SOR) solutions of specially structured
large scale quadratic programs with simple bounds are discussed. By taking advantage of the sparsity
structure of the problem, the SOR algorithm was successfully implemented on two massively paral-
lel Single-Instruction—Multiple-Data machines: a Connection Machine CM-2 and a MasPar MP-1.
Computational results for the well-known obstacle problems show the effectiveness of the algorithm.
Problems with millions of variables have been solved in a few minutes on these massively parallel
machines, and speedups of 90% or more were achieved.

Key words. Quadratic Programs, Successive Overrelaxation, Massively Parallel Algorithms.

1. Introduction. Our concern here is the quadratic programming problem with
simple bounds:

minimize 1zTMz+ ¢Tz
(1.1) ? 1

subject to [<z<u

where M is a symmetric, positive semidefinite nxn real matrix with positive diagonal
entries and g, [, u, and x are n—dimensional vectors. Problems of this form arise in many
physical and engineering applications such as contact and friction problems in rigid body
mechanics, elastic torsion problems, and journal bearing lubrication [1, 2]. Least squares
problems with box constraints are also a special case of (1.1), and sequential quadratic
programming algorithms for nonlinear optimization with bound constraints require the
solution of a quadratic problem such as (1.1) at each iteration [8, 9].

In recent years a large amount of research has been devoted to the solution of
large scale quadratic programming problems. Two classes of algorithms have received
particular attention: active set strategies and interior point methods.

Active set strategies which allow adding or dropping only one constraint from the
set of active constraints at each iteration are clearly unsuitable for extremely large
problems (with millions of constraints). Algorithms that are able to drop and add
many constraints at each iteration were proposed by Dembo and Tulowitzki [6], Yang
and Tolle [21], Wright[20], Moré and Toraldo [19] and Moré [18]. These algorithms use
a gradient projection method until a suitable set of active constraints is identified. The
face of the feasible region defined by the current iterate is then explored via a conjugate
gradient method. In particular, the effective GPCG algorithm proposed by Moré and
Toraldo [19] uses a gradient projection method until a suitable set of active constraints
is identified or the gradient projection method fails to make reasonable progress. In this

* This material is based on research supported by the Air Force Office of Scientific Research Grant
AFOSR-89-0410

t Center for Parallel Optimization, Computer Sciences Department, University of Wisconsin Madi-
son, 1210 West Dayton Street, Madison, WI 53706

1

2 RENATO DE LEONE axp MARY A. TORK ROTH

case a conjugate gradient method is used in conjunction with a projected line search
strategy. Convergence in a finite number of iterations is established under reasonable
conditions on the matrix M. The main disadvantage of this class of algorithms is the
substantial effort devoted to exploring faces that do not contain an optimal solution. In
addition, the performance of the algorithm depends on the strategy used to determine
whether the projected gradient or the conjugate gradient is to be used.

More recently, polynomial time algorithms for quadratic programming problems
with box constraints have been proposed [22, 17, 10]. (See [10] for a brief outline of the
major results with interior point methods for quadratic programs). The algorithm by
Han, Pardalos and Ye [10] requires a total of O(y/nL) iterations, where L is the size
of the input data of the problem. To our knowledge, this is the best theoretical result
to date. However, at each iteration, O(n®) arithmetic operations are required since a
linear system of equations must be solved. This is the major time-consuming step of
the algorithm.

The aim of this paper is to show that serial and parallel successive overrelaxation
(SOR) methods [12, 13] can efficiently solve extremely large sparse quadratic programs.
Although successive overrelaxation is intrinsically a serial algorithm, synchronous and
asynchronous parallel versions were proposed [14, 15, 3, 4, 5]. The effectiveness of these
algorithms in solving large sparse linear complementarity problems and linear programs
depends on the fact that the algorithms are sparsity—preserving and the original data
are never modified. We present here new computational results for specially structured
quadratic programs. Taking advantage of the sparsity structure of the matrix M, we im-
plemented the SOR algorithm on massively parallel Single-Instruction-Multiple-Data
(SIMD) machines. Problems with over one million variables were solved to a high de-
gree of accuracy in less than 5 minutes. A comparison of solution times with the Han,
Pardalos and Ye algorithm is given in Section 4, and they are on the average nearly 6.5
times faster.

The paper is organized as follows. In Section 2 we briefly describe the serial SOR
algorithm and present some implementation details that substantially decrease com-
puting time. In Section 3 we discuss issues concerning two parallel implementations
(in Fortran-90 and C*) that have been carried out on two different massively parallel
machines: the MasPar MP-1 and the Connection Machine CM-2. Finally, in Section 4
we give results for both the serial and the parallel versions for the well-known obstacle
problems.

We briefly describe our notation now. Given the vectors [and u (with [<
u) and a vector z all in R", 4 will denote the vector with components (z3); =
min{u;, max{l;,z;}}. The scalar product of two vectors z and y in IR" will be denoted
by zTy. For A in IR™", A; will denote the ith row of A. The symbol := denotes

definition of the term on the left side of the symbol.

2. The serial SOR algorithm. In this section we will discuss a serial implemen-
tation of the SOR algorithm for the quadratic program with simple bounds (1.1).

MASSIVELY PARALLEL SOLUTION OF QPs 3

It is easy to verify directly (or see [12]) that z is a solution of (1.1) if and only if
z=(z—wE(Mz +q))y

for some w > 0 and for some positive diagonal matrix E. This simple relationship is the
basis of the algorithm. The successive overrelaxation algorithm constructs a sequence
of iterates {z*} as follows:

SOR Algorithm
For any initial feasible z° € [I,u], generate the sequence {z*},k = 1,2,..., as follows:

i<i izt

(2.1) il = (mf —wky; (Z Mij:cf“ + ZMmiB;“ + Qi))
#
for1=1,2,...,n.

In our implementation we used E;; = Mj;'. Convergence of the algorithm can be
established if the relaxation parameter w is chosen in the interval (0, 2) [11].

It should be noted that two distinct components z; and z; (with ¢ < j) can be
concurrently updated provided that M;, = 0 for all r = ¢,¢ +1,...,5 — 1. This
observation is the basis of our massively parallel implementation of the algorithm for
specially structured matrices. Moreover, the components of z need not be updated in
the natural order; a permutation of the indices {1,2,...,n} can be defined and the
components of updated accordingly.

At iteration k, to update the ith component of the solution vector z, the scalar
product of the ¢th row of M and a vector whose components are :1657+1 for 7 < ¢ and :vf for
j > ¢ must be computed. Since this is the most time-consuming part of the algorithm,
special care must be taken to define a data structure for the matrix M that facilitates
quick retrieval of all elements of a particular row. In our serial implementation, we
assumed that the matrix M is sparse. However, no special sparsity structure was
assumed a priori. We therefore stored the matrix M as a collection of sparse vectors,
each vector being a row of M. Two integer arrays JA and IA and one real array AS
were required for this scheme [7].

The choice of the relaxation parameter w was crucial for the performance of the
algorithm. We experimented with different fixed values of w as well as an updating
scheme for the relaxation parameter. In the latter case, the value of w was monotonically
decreased to 1.0 as the algorithm converged toward the solution. The best results (for
the class of problems considered here) were obtained for very high values of w between
1.8 and 1.95. When a value of w less than 1.0 was used, the number of iterations
increased dramatically.

Another simple but very effective procedure reduced total solution time. During the
updating process, the algorithm recorded if (and how many times) a particular variable
remained fixed at its upper or lower bound. A flag was associated with each component

4 RENATO DE LEONE axpo MARY A. TORK ROTH

of the solution vector and only components with value of the flag equal to 0 were updated
using (2.1). If the variable remained fixed at its bound for a certain number of iterations,
the flag was set to 1. From time to time, it was necessary to check if the decision to fix
a particular variable was still correct. This was achieved by setting the flags for all the
variables back to 0 and executing a new iteration of the SOR algorithm. If the value of
a variable that was previously fixed did not change during this new iteration, the flag
for this variable was set to 1 again. In addition, the algorithm checked for new variables
to fix. In our implementation, this resetting step was performed every 30 iterations.
For the test problems we considered, the successive overrelaxation algorithm was able
to quickly identify (after 50 iterations or less) almost all the variables that would be
either at the lower or at the upper bound at the optimum. A 15% reduction in solution
time was achieved by implementing this bound-fixing strategy.

3. The massively parallel SOR algorithm. The quadratic programming prob-
lems considered in our parallel implementations arise as a finite element approximation
to elliptical variational inequalities. This approximation is obtained by triangulating
the unit square, giving rise to a grid. The grid points represent the values of a piecewise
linear function at the vertices of the triangulation. For a more complete description of
the problems see [19]. We experimented with a Fortran-90 implementation on both a
MP-1 and CM-2, as well as a C* implementation on the CM—-2. The two most im-
portant issues in the parallel implementations were minimizing communication between
processors, and ensuring that all processors were busy doing useful work at any given
time step.

The special pentadiagonal structure of the matrix M allowed us to take advantage
of the NEWS (North-East—West—South) communication grid of the CM-2, and X-Net
communication on the MasPar MP-1. In this context, it is more convenient to describe
the SOR, algorithm and our implementation not in terms of an n—-dimensional solution
vector z, but rather in terms of an m x m solution matrix X, where n = m?. The
components of X correspond to the values at the points in the grid. To update a
particular component X;;, the SOR algorithm requires the value X;;, along with its
north, south, east and west neighbors in X.

By imposing a standard red-black coloring [16] upon the grid to determine the com-
ponents of X that can be updated concurrently, individual components were assigned
to processors in such a way that each processor would be active at every time step. All
red components were updated simultaneously, followed by all black components.

In our C* implementation, we were able to take advantage of the shape construct
in order to define the shape of the machine to fit the natural description of the data.
The processors were organized in an p x p grid, with each processor being assigned a
k x k submatrix of X, and n = p? x k%. In this way, communication between processors
was reduced to sharing data values along the common interior borders of X. This was
achieved by the C* library function pcoord. The values needed to update a component
interior to the k x k submatrix were all local (that is, they were in the local memory
of the processor to which that component had been assigned). To update boundary
components of the submatrix, a processor had to access at most two components from

MASSIVELY PARALLEL SOLUTION OF QPs b}

neighboring processors in the NEWS grid.

We implemented a Fortran—-90 version of the code on both the MasPar MP-1 and
the CM-2. Data layout directives were not yet available with the MasPar Fortran-90
compiler version we used. On the MasPar MP-1, parallel data are allocated across
a two-dimensional processor grid (for instance, processor (1,1) in the grid would be
assigned element (1,1) of a two—dimensional array, and so on). In our implementation,
the components of X were stored in four interleaving m /2 xm /2 submatrices. With this
arrangement, each processor was assigned four components of X; two to be updated
in a red iteration and two to be updated in a black iteration. Furthermore, two of the
four values of X needed to update a particular component were in a processor’s local
memory. The remaining two were in the local memory of neighboring processors, and
were accessed using the Fortran—90 construct EOSHIFT.

4. Performance of the serial and parallel algorithms. In this section we
present computational results for both serial and the parallel versions of our SOR algo-
rithm.

The test problems considered are instances of the well-known obstacle problem
which consists of finding the equilibrium position of an elastic membrane subject to
a vertical force. This problem can be posed as the following constrained variational
problem:

min{g(v):v € K}
with

g(v) = 1/2/7) Vol dD — f/DvdD,

D =(0,1) x(0,1),

V is the Laplacian operator, and K is the subset of all functions v with compact
support on D such that v and ||Vv||* belong to the square integrable class L*(D), and
v varies between obstacle bounds v; and v,. For our experiments, the membrane force
f = 1. Finite element approximations give rise to a minimization of a quadratic problem
with a finite number of variables. The matrix M is the pentadiagonal matrix with
diagonal entries of 4 and off-diagonal entries of —1 that arises from a finite difference
approximation to the Laplacian operator. In all problems considered here, the matrix
M is identical. The lower and upper obstacle bounds for each of the six problems are
given in Table 1.

In Tables 2 to 5 we report computational results for the serial version of the SOR
algorithm. The results were obtained on an IBM RISC 6000 POWERstation 550. All
numerical results were obtained in double precision.

Table 2 shows the number of iterations, solution times (in seconds) and number of
active constraints at the optimum, i.e. the number of variables at the lower or upper
bound. The number of variables varies from 10,000 to 490,000 which corresponds to a

6 RENATO DE LEONE ano MARY A. TORK ROTH

Problem v Vy
1 (sin(9.2z,) sin(9.3z2))? (sin(9.2z1) sin(9.3z2))? + 0.02
2 sin(3.2z1) sin(3.3z) 2000.0
3 0.3(sin(3.2z;) sin(3.3x5) 2000.0
4 (sin(3.2zy) sin(3.3z2)? 2000.0
5 (sin(3.2z,) sin(3.3z3)? 2000.0
6 (1621 (1 — z1)zo(1 — 22)) || (1621(1 — z1)z2(1 — 2))* + 0.01

TABLE 1: Lower and upper obstacle bounds

grid with the number of points varying from 100x100 to 700x700. The accuracy of the
solution defined as

Accuracy := “56 —(z— (Mz + q))#”oo

is reported in the fifth column while the column labeled HPY reports the solution time
for the same problems with the Han-Pardalos—Ye interior point algorithm [10] on a
IBM 3090-600S supercomputer with Vector Facilities. Moreover, in their algorithm,
the conjugate gradient method used for solving the system of linear equations took
advantage of the special pentadiagonal structure of the matrix M. As we stated earlier,
in our serial implementation we took advantage of the sparsity structure of the matrix,
but special sparsity was not assumed a priori. For all the problems we tested, the
solution time for our serial SOR algorithm was lower than the time required by the
Han-Pardalos—Ye algorithm. The solution time ratio for the two algorithms is shown
in the last column. The time per iteration for the SOR algorithm grows linearly with
the number of variables while the number of iterations grows sublinearly. Finally, we
note that for this problem, about 1/5 of the variables are at their lower or upper bound
at the optimum. The algorithm was able to identify a large portion of these variables
quickly. By applying the fixing strategy described in Section 2, a 15% reduction in
solution time was achieved.

Table 3 reports the computational results for Problem 2. For this problem, almost
60% of the variables are fixed at the optimum. In this case, the reduction achieved by
implementing the fixing strategy was even greater.

In next two tables we report number of iterations, solution time in seconds and
number of variables at the lower or upper bounds at the optimum for the remaining
4 problems (Problems 3-6). A larger number of iterations were required for Problems
3, 4 and 5. In addition, a small percentage of the variables are at the lower or upper

MASSIVELY PARALLEL SOLUTION OF QPs 7

bound for Problem 5. This explains the greater solution time required for this problem.
All problems were solved with an accuracy of 10~ or better.

Figure 1 shows the pattern of active constraints for the six problems considered in
this paper. Shaded areas depict either upper or lower bound active constraints.

Tables 6-9 report the solution times for the massively parallel Fortran-90 and C*
implementations of the SOR algorithm on both the Connection Machine CM-2 and the
MasPar MP-1.

A word of caution is in order now in interpreting SIMD machine times. Solution
time on the CM-2 is strongly influenced by exclusive/non-exclusive access to the par-
tition and by the load on the front end. If access to the partition is not exclusive or if
the load on the front end is very high, the solution time can vary by a large amount.
In some cases we observed a variation by a factor of 2 or 3. Therefore, we attempted
to execute our program with exclusive access to the 8K or 16K processor partition. In
addition, we were careful to run our SOR algorithm only when the load on the front end
was sufficiently low. In this sense the solution times reported here represent solution
time in an “ideal” or “near—ideal” situation. However, despite all our efforts, in some
cases we were unable to achieve these ideal conditions.

We make the following observations. First, since in our C* implementation com-
munication between processors was reduced to sharing data along the common interior
border, the solution time was lower than the time required for the Fortran—90 implemen-
tation. A 30-fold improvement over the serial algorithm was achieved for sufficiently
large problems. By doubling the number of processors from 8K to 16K, we were able
to cut the total solution time by almost 50%. The speedup was well over 90% for
sufficiently large problems. Finally, the number of iterations required increased almost
linearly with the number of variables.

Table 10 reports solution times for an MPL (MasPar Parallel Application Language)
implementation on a Maspar MP-1 with both 8K and 16K processors. The code was
written and the results obtained by Mark Holt of MasPar Computer Corporation. The
code uses the X-Net communication protocol to share information along the common
interior borders. The function Profiler available under MPPE (MasPar Programming
Environment) showed that the amount of time spent communicating substantially de-
creased as the size of the problem increased. In fact, about 38% of the total time was
spent sharing information between processors for n = 65,536. When n = 1,048,576,
this accounted for less than 10% of the total execution time.

5. Conclusions. We have presented computational results for a serial and a mas-
sively parallel implementation of the SOR algorithm for large-scale quadratic programs.
Problems with more than a million variables were solved in less than 5 minutes on a
16,384-processor CM-2 machine. Moreover, a problem with almost 9.5 million variables
was solved on the MP-1. To the best of our knowledge, this is the largest problem of
this class that has been solved thus far.

6. Acknowledgments. We would like to thank Thinking Machines Corporation
for providing us access to the CM-2 and MasPar Computer Corporation for providing

8 RENATO DE LEONE axo MARY A. TORK ROTH

us access to the MP-1. In addition, we are grateful to Jill Mesirov of Thinking Ma-
chines for her suggestions in the early stages of development of the massively parallel
implementation of the SOR algorithm, and to Mark Holt of MasPar for his advice and
assistance in improving the design of the algorithm. In particular, it was his suggestion
to implement a C version of the algorithm that led to significant performance gains.

REFERENCES

[1] G. CMATTI, On a problem of the theory of lubrication governed by a variational inequality,
Applications of Mathematical Optimization, 3 (1977), pp. 227-242.

[2] G. CimaTTI AND O. MENCHI, On the numerical solution of a variational inequality connected
with the hydrodynamic lubrication of a complete journal bearing, Calcolo, 15 (1978), pp. 249-
258.

[3] R. DE LeEoNE AND O.L. MANGASARIAN, Sertal and parallel solution of large scale linear pro-
grams by augmented Lagrangian successive overrelazation, in Optimization, parallel process-
ing and applications, A. Kurzhanski, K. Neumann, and D. Pallaschke, eds., vol. 304 of Lecture
Notes in Economics and Mathematical Systems, Springer Verlag, Berlin, 1988, pp. 103~124.

I4] , Asynchronous parallel succesive overrelazation for the symmetric linear complementarity
problem, Mathematical Programming , Series B, 42 (1988), pp. 347-361.

[5] R. DE LEoNE, O.L. MANGASARIAN, AND T-.H. SHIAU, Multi-sweeep asynchronous parallel
succesive overrelazation for the nonsymmetric linear complementarity problem, Annals of
Operation Research, 22 (1990), pp. 43-54.

[6] R.S. DEMBo AND U. TULOWITZKI, On the minimization of quadratic functions subject to box
constraints. Working paper Series B #71, School of Organization and Management, Yale
University, New Haven, 1983.

[7] 1.S. Durr, A.M. ErisMaAN, AND J.K. REID, Direct methods for sparse matrices, Oxford Uni-
versity Press, Oxford, England, 1989.

[8] U.M. GaRrciA PALOMARES AND O.L. MANGASARIAN, Superlinearly convergent quasi-Newton
algorithms for nonlinearly constrained optimization problems, Mathematical Programming,
11 (1976), pp. 1-13.

[9] W. GiLL, P.E. MURRAY AND M.H. WRIGHT, Practical Optimization, Academic Press, 1981.

[10] C. HaN, P.M. PaRDALOS, AND Y. YE, Solving some engineering problems using an interior-
point algorithm, Tech. Report CS-91-04, Department of Computer Science, The Pennsylvania
State University, Pennsylvania, 1991.

[11] Z.-Q. Luo aND P. TSENG, On the convergence of a matriz splitting algorithm for the symmetric
monotone linear complementarily problem, Tech. Report LIDS-P-1884, Laboratory for Infor-
mation and Decision System, Massachusetts Institute of Technology, Cambridge, 1990. to
appear SIAM Journal on Control and Optimization.

[12] O.L. MANGASARIAN, Solution of symmetric linear complementarity problems by iterative meth-
ods, Journal of Optimization Theory and Applications, 22 (1977), pp. 465-485.

, Sparsity-preserving sor algorithms for separable quadratic and linear programming, Com-
puter and Operation Research, 11 (1984), pp. 105-112.

[14] O.L. MANGASARIAN AND R. DE LEONE, Parallel successive overrelazation methods for symmet-
ric linear complementarity problems and linear programs, Journal of Optimization Theory and
Applications, 54 (1987), pp. 437-446.

, Parallel gradient projection successive overrelazation for symmetric linear complementarity

problems and linear programs, Annals of Operation Research, 14 (1988), pp. 41-59.

(13]

[15]

MASSIVELY PARALLEL SOLUTION OF QPs 9

[16] J.J. Mob1, Parallel Algorithms and Mairiz Compulation, Clarendon Press, Oxford, England,
1988.

[17] R.D.C. MONTEIRO AND I. ADLER, Interior path following primal-dual algorithms part II: convex
quadratic programming, Mathematical Programming, 44 (1989), pp. 43-66.

(18] J.J. MoRE, On the performance of algorithms for large-scale bound constrained problems, Tech.
Report MCS-P140-0290, Argonne National Laboratory, Argonne, Illinois, 1990.

[19] J.J. MorE AND G. TorRALDO, On the solution of large quadratic programming problems with
bound constraints, STAM Journal on Optimization, 1 (1991), pp. 93-113.

[20] S.J. WriGHT, Implementing prozimal poini methods for linear programming, Tech. Report MCS-
P45-0189, Argonne National Laboratory, Argonne, Illinois, 1989.

[21] E.K. YANG AND J.W. ToLLE, A class of methods for solving large convez quadratic programs
subject to bozx constraints. preprint, University of North Carolina, Department of Operation
Research, Chapel Hill, North Carolina, 1988.

[22] Y. YE aND E. TsE, An estension of Karmarkar’s projective algorithm for conver quadratic
programming, Mathematical Programming, 44 (1989), pp. 157-179.

10

RENATO DE LEONE ano MARY A. TORK ROTH

vars || # iter | # fixed vars | time accuracy HPY | time ratio
10,000 306 2,412 6.30 | 0.1848 x 1077 16.3 2.59
40,000 323 8,761 | 26.86 | 0.1643 x 10~7 | 131.1 4.88
90,000 361 19,104 | 68.10 | 0.2027 x 107 | 437.6 6.43
115,600 393 24,237 | 95.89 | 0.1900 « 10~® | 700.3 7.30
160,000 449 33,096 | 148.54 | 0.6603 + 1072 | 1035.8 6.97
250,000 608 51,241 | 314.58 | 0.5813 % 10~7 | 2110.5 6.71
360,000 872 73,288 | 750.58 | 0.1171 % 10~7 | 4090.3 5.45
490,000 851 99,264 | 848.79 | 0.9143 x 10~7 | 8977.8 10.58

TABLE 2: Comparison of serial SOR algorithm on an IBM RISC 6000 POWERstation 550 and the

HPY algorithm. Problem 1

vars || # iter | # fixed vars | time accuracy HPY | time ratio
10,000 191 6,157 3.53 | 0.2056 * 10 254 7.20
40,000 417 24,120 32.03 | 0.1244 1077 | 203.9 6.37
90,000 459 53,840 80.44 | 0.1288 % 10¢ | 699.9 8.70
115,600 535 69,072 | 124.15 | 0.7085 % 10~" | 1018.7 8.21
160,000 780 95,361 | 241.42 | 0.6745 %1078 | 1534.7 6.36
250,000 1114 148,758 | 560.28 | 0.5935 % 10~7 | 3141.9 5.61
360,000 | 1594 213,833 | 1357.48 | 0.5659 * 10~7 | 5312.4 3.91

TABLE 3: Comparison of serial SOR algorithm on an IBM RISC 6000 POWERstation 550 and the

HPY algorithm. Problem 2

MASSIVELY PARALLEL SOLUTION OF QPs 11

vars Problem 3 Problem 4 Problem 5 Problem 6
iter time | # iter time | # iter time | # iter time
10,000 309 5.63 336 7.49 329 7.55 264 5.21
40,000 473 37.69 430 38.70 410 38.35 317 24.73
90,000 794 153.78 831 170.39 | 1010 214.33 343 60.93
115,600 953 241.59 | 1076 283.91 | 1296 353.42 401 90.69
160,000 | 1304 453.45| 1486 538.50 | 1777 663.12 519 157.83
250,000 | 1870 1052.96 | 1896 1093.18 | 2206 1308.79 588 281.79
360,000 | 2668 2560.67 | 2658 2639.07 | 3076 3112.20 782 627.63

TABLE 4: Solution time in seconds for the serial SOR algorithm on an IBM RISC 6000 POWERstation
550. Problems 36

vars | Problem 3 | Problem 4 | Problem 5 Problem 6
fixed vars | # fixed vars | # fixed vars | # fixed vars
10,000 4637 1321 704 3288
40,000 18192 5255 2725 12472
90,000 40658 11609 6071 27216
115,600 52129 14836 7772 34814
160,000 72026 20428 10727 47888
250,000 112208 31706 16687 74492
360,000 161240 45446 23963 106790

TABLE 5: Number of variables fized at the lower or upper bound at the optimum for serial SOR algo-

rithm on an IBM RISC 6000 POWERstation 550. Problems 3-6

RENATO DE LEONE axo MARY A. TORK ROTH

PEDSSISTISI0S55052200080044

Problem 2
Problem 4
Problem 6

W sttt

sersesssistnitinaisIaa ity

T

T It IS sss e sEsEssEisittissssstsitssy
$oressessssssesteassssesstosstessesassiatessss
$2es0s0844s ossstessiecessesstatessss

ettt e

IREINTARTHARNIL,
HRTRATATITH

1

By

12

Problem 5

Problem 1
Problem 3

The pattern of active constraints for Problems 1-6: shaded areas depict active upper and lower

bounds.

Fig. 1

MASSIVELY PARALLEL SOLUTION OF QPs 13

n # iter | CM-2 | MP-1
90,000 480 8.3 7.8
160,000 620 | 186 | 134
250,000 980 | 574 | 20.6
360,000 | 1460 | 87.0 | 82.1
490,000 || 2000 | 139.7 | 150.6
640,000 | 2620 | 264.2 | 335.8
810,000 || 3330 | 546.9 | 496.0

TABLE 6: Solution time in seconds for Fortran-90 implementation with 8K processors on the CM-2
and MP-1. Problem 2

n # iter Fortran—90 C*
8K Procs | 16K Procs | 8K Procs | 16K Procs
16,384 360 2.6 2.4 3.66 2.16
65,536 440 5.2 3.2 4.51 2.68
262,144 || 1040 57.2 34.8 32.04 18.57
1,048,576 || 4240 403.1 472.47 249.86

TABLE 7: Solution time in seconds for Fortran—-90 and C* implementations on the CM-2. Problem 2

14 RENATO DE LEONE ano MARY A. TORK ROTH
vars Problem 1 Problem 3 Problem 4 Problem 5 Problem 6
iter time | # iter time | # iter time | # iter time | # iter time
16,384 320 3.39 360 3.66 380 3.86 380 3.85 300 3.17
65,536 320 3.40 520 5.30 420 4.26 480 4.87 300 3.18
262,144 540 17.58 | 1740 53.83 | 1940 59.89 | 2300 70.92 340 11.06
1,048,576 | 2280 253.77 | 6900 767.85| 7220 817.60 | 8420 1055.76 | 1320 147.79

TABLE 8: Solution time in seconds for the parallel C* SOR algorithm on the CM-2 with 8K processors.
Problems 1,3-6

vars Problem 1 Problem 3 Problem 4 Problem 5 Problem 6
iter time | # iter time | # iter time | # iter time | # iter time
16,384 320 2.00 360 2.16 380 2.28 380 2.28 300 1.88
65,536 320 2.00 520 3.12 420 2.72 480 2.92 300 1.92
262,144 540 10.14 1740 31.12 1940 3452 | 2300 40.91 340 6.42
1,048,576 | 2280 143.36 | 6900 406.67 | 7220 425.65 | 8420 541.17 | 1320 83.34

TaBLE 9: Solution time in seconds for the parallel C* SOR algorithm on the CM-2 with 16K processors.
Problems 1,3-6

n # iter | 8K Procs | 16K Procs
65,536 440 2.3 1.3
262,144 | 1040 15.0 8.7

1,048,576 | 4240 216.0 109.5
4,194,304 | 15900 2750.0 1441.7
9,437,184 | 34200 6752.7

TABLE 10: Solution time in seconds on the MasPar MP-1. Problem 2

