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Abstract

The magnitude and complexity of existing and future software systems heightens the need for tools that
assist programmers with the task of maintaining and developing software. One recurring problem that
arises in system development is the need to reconcile multiple divergent lines of program development.
When solved by hand, this reconciliation or integration process is often tedious and error prone. A better
solution is the use of a program integration tool—a tool that takes as input several variants of a base pro-
gram, automatically determines the changes in each variant with respect to the base program, and incor-
porates these changes, along with the portion of the base program preserved in all the variants, into a
merged program.

Previous algorithms that solve the program-integration problem include text-based approaches, such as
that used by the UNIX diff3 utility. However, the text-based approach is unsatisfactory since it fails to
guarantee any relationship between the behavior of the integrated program and the behaviors of the base
program and its variants. In contrast, semantics-based approaches to program integration can exploit
knowledge of a language’s semantics to provide such a guarantee.

Previous semantics-based algorithms, however, have been limited to single-procedure programs. This
dissertation extends one of these algorithms to handle programs that consist of multiple (possibly mutually
recursive) procedures. In doing so it makes the following three major contributions.

(1) Definition of the system dependence graph. This graph extends previous dependence representations
to incorporate collections of procedures and the interconnections between them.

(2) New algorithms for interprocedural slicing. These algorithms compute several kinds of interpro-
cedural slices (i.e., slices that cross the boundaries between procedures). The chief difficulty in inter-
procedural slicing is correctly accounting for the calling context of a called procedure. By taking cal-
ling context into account the algorithms described in this dissertation produce smaller (i.e., better)
slices than previous algorithms.

(3) A semantics-based algorithm for multi-procedure integration. As with slicing, the chief difficulty in
multi-procedure integration is correctly accounting for calling context. The algorithm makes use of
the system dependence graph, interprocedural slicing, and some additional preprocessing of the sys-
tem dependence graph to correctly account for calling context.
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CHAPTER 1

PROGRAM INTEGRATION

Program integration concerns the merging process that becomes necessary when a program’s source code
diverges into multiple variants. A program integration tool takes as input several variants of a base pro-
gram and after determining the changes in each variant (with respect to the base program), incorporates
these changes, along with the portion of base that is preserved in all the variants, into a merged program.
In addition to assembling a merged program the integration tool also determines if two modification inter-
fere (the notion of “interference” is formalized later). In the absence of interference the integration tool
must provide guarantees about how the execution behavior of the merged program relates to the execution
behaviors of the variants. This dissertation extends previous semantics-based integration tools by consider-
ing programs that include procedures and procedure calls.

An example of the use of an integration tool is to provide a kind of optimistic concurrency control. In
this scheme multiple programmers can update separate copies of a program in parallel without placing res-
trictions (i.e., locks) on the software modules they are modifying (such restrictions essentially constrain the
activities of programmers and hence reduce their productivity). For example, consider a compiler being
upgraded by two programmers: the first is specializing the code generator to produce code for a particular
architecture and the second is implementing a new register allocation scheme. Knowing that they have a
program-integration tool, these two programmers could work independently (without hampering each oth-
ers progress). The result of their work is two versions of the compiler, each containing one of the
upgrades. When both programmers have completed their work, an integration tool would be invoked to
produce a version of the compiler for the particular architecture that includes the new register allocator.

It is easy to imagine a variety of uses for an integration tool in areas including, for example, program
development and program maintenance. More specifically, the need for program integration arises in the
following situations:

(1) When a system is “customized” by a user and simultaneously upgraded by a maintainer, and the user
desires a customized, upgraded version.

(2) When a system is being developed by multiple programmers who may simultaneously work with
separate copies of the source files.

(3) 'When several versions of a program exist and the same enhancement or bug-fix is to be made to all
of them.

Having an integration tool to provide assistance when tackling such problems would obviously be useful.

At present, the only available tools for integration (e.g., the UNIx! utility diff3) implement an operation
for merging files as strings of text. This approach has the advantage that it is applicable to merging

! Unix is a Trademark of AT&T Bell Laboratories.



documents, data files, and other text objects as well as merging programs. However, these tools are neces-
sarily of limited utility for integrating programs because the manner in which two programs are merged is
not safe: one has no guarantees about how the execution behavior of the program that results from a purely
textual merge relates to the execution behaviors of the programs that are the arguments to the merge. For
example, if one variant contains changes only on lines 5-10, while the other variant contains changes only
on lines 15-20, diff3 would deem these changes to be interference-free; however, just because changes are
made at different places in a program is no reason to believe that the changes are free of undesirable
interactions. The merged program produced by a text-based integration tool must, therefore, be checked
carefully for conflicts that might have been introduced by the merge.

In contrast, our goal is to create a semantics-based tool for program integration. A “semantics-based”
program-integration tool has the following characteristics:

(1) The integration tool makes use of knowledge of the programming language to determine whether the
changes made to the base program to create the variants have undesirable semantic interactions; only
if there is no such interference will the tool produce an integrated program.

(2) The integration tool provides guarantees about how the execution behavior of the integrated program
relates to the execution behaviors of the base program and the variants.

Determining any non-trivial property of a program’s execution behavior is undecidable; thus, a semantics-
based integration tool must use techniques that compute safe approximations to undecidable problems.

The remainder of this chapter is divided into three subsections. The first describes the model for
semantics-based program integration discussed in [Horwitz89] and also introduces the first algorithm that
satisfies this model (a detailed summary of this algorithm is given in Chapter 2). The second subsection
describes the major contributions of this dissertation, which extends the approach in [Horwitz89] to pro-
grams that contain procedures and procedure calls. This chapter concludes with an outline of the remain-
ing chapters of the dissertation.

1.1. The Horwitz, Prins, and Reps Semantics-Based Program Integration Algorithm

Horwitz, Prins, and Reps first formalized the problem of semantics-based integration
[Horwitz87, Horwitz89]. To make this problem amenable to theoretical study they studied the problem
using a simplified model. This model, referred to hereafter as the HPR model, possesses the essential
requirements for an integration algorithm; thus, it permits the study of the program-integration problem to
be performed in the absence of inessential detail.

The Horwitz-Prins-Reps Model of Program Integration

Informally, given a program Base and two variants A and B (each created by editing separate copies of
Base), the goal of program integration is to determine whether the modifications in A and B interfere, and if
they do not, to create a merged program M that incorporates the changed behavior of A with respect to
Base, the changed behavior of B with respect to Base, and the unchanged behavior common to Base, A, and
B2

2 More generally, we may be interested in integrating an arbitrary number of variants with respect to Base; however, for the sake of ex-
position we consider the common case of two variants A and B.




HPR Model of Program Integration

(1) Programs must be written in a simplified programming language that has only scalar variables and
constants, assignment statements, conditional statements, while loops, and final output statements
(called end statements); by definition, only those variables listed in the end staiement have values
in the final state. The language does not include input statements; however, a program can use a
variable before assigning to it, in which case the variable’s value comes from the initial state.

(2) When an integration algorithm is applied to base program Base and variant programs A and B, and
if integration succeeds—producing program M—then for any initial state ¢ on which Base, A, and
B all terminate normally,? the following properties concerning the executions of Base, A, B, and M
on ¢ must hold:

(i) M terminates normally.

(i) M captures the changed behavior of A: for any program component ¢ in variant A that pro-
duces different sequences of values in A and Base, component ¢ is in M and produces the
same sequence of values as in A (i.e., M agrees with A at component c).

(iii) M captures the changed behavior of B: for any program component ¢ in variant B that pro-
duces different sequences of values in B and Base, component c is in M and produces the
same sequence of values as in B (i.e., M agrees with B at component c).

(iv) M captures the behavior of Base preserved in A and B: for any program component ¢ that pro-
duces the same sequence of values in Base, A, and B, component ¢ is in M and produces the
same sequence of values as in Base (i.e., M agrees with Base, A, and B at component o).

(3) Program M is to be created only from components that occur in programs Base, A, and B.

A “program component” means an assignment statement, the predicate of a while loop or conditional
statement, or the occurrence of a variable in the program’s end statement. “The sequence of values pro-
duced by a program component,” means the following: for an assignment statement, the sequence of values
assigned to the target variable; for a predicate, the sequence of boolean values to which the predicate evalu-
ates; and for a variable named in the end statement, the singleton sequence containing the variable’s final
value. In addition, a program is assumed to have a special initial-definition component for each variable
that can be used before being assigned to. Such components compute a singleton sequence containing the
variable’s initial value, as taken from the initial state.

Properties (1) and (3) of the model are syntactic restrictions that limit the scope of the integration prob-
lem. Property (2) defines the model’s semantic criterion for integration and interference. A more informal
statement of Property (2) is “changes in the behavior of A and B with respect to Base must be incorporated
in the integrated program, along with the unchanged behavior of all three.”* Any program M that satisfies

3 There are two ways in which a program may fail to terminate normally on some initial state: (1) the program contains a non-
terminating loop, or (2) a fault occurs, such as division by zero.

* Originally, the changed behavior of a variant was defined in [Horwitz89] in terms of the final values of its variables rather than in
terms of the sequences of values produced by all program components. However, that definition of changed behavior was unsatisfac-
tory for several reasons. One problem is that, in a program development environment, dead code (code that has no effect on the final
vilue of any variable) may be introduced temporarily; it is impontant that an integration algorithm preserve all changes made to a vari-
ant, including the introduction of dead code (which the programmer may intend to tum into live code at a later time). Another prob-
lem with defining Property (2) in terms of final values is that it restricts the way output statements can be handled. While Property (1)
permits only final output statements, it is clearly desirable to relax that restriction to permit intermediate output statements. If Property
(2) deals only with final values, the only way to preserve changes to intermediate output is to treat output as a single value, with every
output statement concatenating onto the end of that value. With this treatment there is interference essentially every time both variants
include any change 1o the program’s output. An altemative philosophy for treating output statements, which reduces the number of
cases in which interference is reported, is to treat output statements as producing independent sequences of values; in this case, Proper-
ty (2) must be defined in terms of the sequence of values produced at intermediate program components in order to ensure that changes



Properties (1), (2), and (3) integrates Base, A, and B; if no such program exists then A and B interfere with
respect to Base. However, Property (2) is not decidable, even under the restrictions given by Properties (1)
and (3); consequently, any program-integration algorithm will sometimes report interference—and conse-
quently fail to produce an integrated program-—even though there is actually no interference (i.e., even
when there is some program that meets the criteria given above).

The Horwitz-Prins-Reps Algorithm for Program Integration

The first algorithm that meets the requirements of the HPR model was formulated by Horwitz, Prins, and
Reps [Horwitz87, Horwitz89]. That algorithm, referred to hereafter as the HPR algorithm, was the first
algorithm for semantics-based program integration. The HPR algorithm represents a fundamental advance
over text-based program integration algorithms (such as diff3), and provides the first step towards the crea-
tion of a semantics-based tool for program integration. The HPR algorithm is able to detect changes in
behavior—rather than just changes in text; the algorithm either incorporates all behavioral changes in the
integrated program or reports interference.

Although determining whether a program modification actually leads to a change in program behavior is
undecidable, the HPR algorithm is able to determine a safe approximation to the set of program elements
with changed behavior by comparing each of the variants with the base program. To determine this infor-
mation, the HPR algorithm employs a program representation similar to the program dependence graphs
used previously in vectorizing and parallelizing compilers [Kuck81, Ferrante87]. The HPR algorithm also
makes use of Weiser’s notion of a program slice [Weiser84, Ottenstein84] to find the statements of a pro-
gram that contribute to the computation of the program elements with changed behavior. Program depen-
dence graphs, program slicing, and the HPR algorithm are described in Chapter 2.

1.2. Contributions

A necessary and important step in extending the HPR algorithm to a full-fledged programming language is
the capability to integrate programs that contain procedures and procedure calls. In designing an algorithm
for integrating such programs, we would like to make use of the HPR algorithm (and its proof of correct-
ness). An example of an algorithm that does this is the following three-step process: (1) transform three
programs with procedures into equivalent programs without procedures, (2) apply the HPR algorithm, and
(if the HPR algorithm does not report interference) (3) reverse the transformation from step (1) to produce
a program with procedures. The transformation used in step (1) is accomplished by roll-out: the exhaustive
in-line substitution of call statements. Unfortunately, the roll-out of a recursive program is infinite. Thus,
for languages with recursion, the above three-step process cannot be used to implement multi-procedure
integration.’ However, the idea of roll-out is used in Chapter 4 to formulate a criterion against which our
algorithm is measured. The algorithm does not actually perform any in-line expansions, it operates on
finite representations of programs (called system dependence graphs).

The primary contribution of this dissertation is an algorithm for semantics-based multi-procedure pro-
gram integration that meets the criterion discussed above. That is, we present an algorithm that succeeds in
integrating three programs with procedures whenever the three-step process defined above succeeds in pro-
ducing a satisfactory integrated program. Two of the important building blocks developed as part of this
algorithm are the definition of the system dependence graph and an algorithm for precise interprocedural

to non-final output statements are preserved.

5 Even for programs without recursion, the three-step process is not practical because the number of copies of a procedure introduced
by roll-out may be exponential in the number of call-sites in the program.




slicing.

1.2.1. The System Dependence Graph

The system dependence graph, described in Chapter 3, extends previous dependence graphs in two ways: it
explicitly represents multiple procedures and both the interprocedural control dependence between a call-
site and the called procedure and the interprocedural data dependences between actual and formal parame-
ters. Another key feature of the system dependence graph is its inclusion of transitive dependence edges at
call-sites (in addition to conventional direct-dependence edges). These edges summarize paths of edges
through called procedures, thus permitting information about a called procedure to be obtained without
examining the called procedure. This capability significantly reduces the complexity of algorithms (e.g.,
interprocedural slicing) that must keep track of the calling context of a called procedure.

1.2.2. Precise Interprocedural Slicing

The purpose of any slicing algorithm is to identify a reduced program that captures some part of the com-
putation of the original program; therefore, the usefulness of a slicing algorithm is inversely proportional to
the size of the slices it produces. Hence a more precise slicing algorithm (i.e., one that produces smaller
slices) is of greater utility. Chapter 3 discusses an interprocedural slicing algorithm that is more precise
than its predecessor [Weiser84].

The chief difficulty in interprocedural slicing is correctly accounting for the calling context of a called
procedure. As discussed in Chapter 3, the transitive dependence edges in a system dependence graph are
used in conjunction with a two-pass algorithm to solve the calling-context problem as it arises in interpro-
cedural slicing. This approach leads to more precise slices than the original interprocedural slicing algo-
rithm given by Weiser [Weiser84] and provides greater efficiency, particularly when more than one slice of
the same program is desired, than the algorithm given by Hwang et. al. [Hwang88], which has similar pre-
cision.

1.2.3. A Multi-Procedure Integration Algorithm

As discussed in Chapter 5, the primary contribution of this dissertation is the first algorithm for semantics-
based multi-procedure program integration; this algorithm extends previous semantics-based integration
algorithms, which apply only to single-procedure programs. As with interprocedural slicing the chief
difficulty in integrating multi-procedure programs is correctly accounting for calling context (an algorithm
that does not account for calling context is used in Chapter 4 as a strawman to motivate the need for more
precise techniques).

To handle the calling-context problem as it arises in multi-procedure integration, the algorithm makes
use of the transitive dependence edges in a system dependence graph, precise interprocedural slicing, and
an additional kind of transitive dependence edge that summarizes paths to dead code inside a procedure’s
body. By accounting for calling context, the algorithm can more precisely capture the changed and
preserved components of the variants; thus, it can succeed in returning an integrated program in cases
where a less precise algorithm (e.g., the one developed in Chapter 4) reports interference and therefore fails
to return an integrated program.

In addition to integrating multi-procedure programs, some of the intermediate results from the multi-
procedure integration algorithm have uses outside program integration. For example, the term ASP, Q),
which captures the differences between programs P and Q, can be used to determine a reduced program
from P that computes all the changed behavior of P when compared with the behavior of Q. Such informa-
tion has obvious uses in software development and software maintenance. For example, if a program
maintainer has produced P from Q as the result of fixing a bug in Q, then, rather than retesting all of Q’s



functionality, only that portion represented in AS(P, Q) must be retested because the remainder of Pis
computationally equivalent to Q. This is particularly beneficial when AS(P, Q) is small and P and Q are
large.

1.3. Dissertation Overview

The remainder of this dissertation is divided into eight chapters. Chapter 2 provides necessary background
material on program dependence graphs (for single procedure programs), intraprocedural slicing, and the
HPR integration algorithm. System dependence graphs and interprocedural slicing are the topic of Chapter
3. Chapters 4 and 5 discuss multi-procedure integration: Chapter 4 identifies shortcomings (when integrat-
ing multi-procedure prograins) in the HPR integration model and develops a new model more appropriate
for multi-procedure integration; Chapter 5 describes an algorithm that satisfies this model. Chapters 6, 7,
and 8 are devoted to proving that the algorithm from Chapter 5 satisfies the model from Chapter 4. Finally,
Chapter 9 summarizes the work described in the dissertation and describes possible future work on pro-

gram integration.




CHAPTER 2

BACKGROUND

This chapter summarizes the HPR program-integration algorithm. It first describes two key components of
the algorithm: program dependence graphs and program slicing, before summarizing the steps of the HPR
algorithm itself.

2.1. PROGRAM DEPENDENCE GRAPHS

Different definitions of program dependence representations have been given, depending on the intended
application; they are all variations on a theme introduced in [Kuck72], and share the common feature of
having an explicit representation of data dependences (see below). The “program dependence graphs”
defined in [Ferrante87] introduced the additional feature of an explicit representation for control depen-
dences (see below). The definition of program dependence graph given below differs from [Ferrante87] in
two ways. First, it covers only a restricted language with scalar variables, assignment statements, condi-
tional statements, while loops, and a restricted kind of “output statement” called an end statement,! and
hence is less general than the one given in [Ferrante87]. Second, we omit certain classes of data depen-
dence edges and make use of a class introduced in [Horwitz87]. Despite these differences, the structures
defined below and those defined in [Ferrante87] share the feature of explicitly representing both control
and data dependences. (See [ Pfeiffer91] for a survey and history of dependence graphs.)

The program dependence graph for program P, denoted by Gp, is a directed graph whose vertices are
connected by several kinds of edges.” The vertices of Gp represent the assignment statements and control
predicates that occur in program P. In addition, Gp includes three other categories of vertices:

(1)  There is a distinguished vertex called the entry vertex.

(2)  For each variable x for which there is a path in the standard control-flow graph for P on which x is
used before being defined (see [Aho86)), there is a vertex called the initial definition of x, which
represents an assignment to x from the initial state and is labeled “x = InitialState(x).”

(3)  For each variable x named in P’s end statement, there is a vertex called the final use of x, which
represents an access to the final value of x computed by P and is labeled “FinalUse(x)”.

The edges of Gp represent dependences among program components. An edge represents either a con-
trol dependence or a data dependence. Control dependence edges are labeled either true or false, and the

1 As described in the HPR model in Chapter 1, an end statement, which can only appear at the end of a program, names one or more of
the variables used in the program; when execution terminates, only those variables will have values in the final state; the variables
named by the end statement are those whose final values are of interest to the programmer.

2 A directed graph G is a pair consisting of a set of vertices V(G) and a set of edges E(G), where E(G)SV(G)xV(G). Each edge
(s, )& E (G) is directed from s to t, where s is the source and 1 the farget of the edge. The graph having vertex set V and edge set £ is
denoted by (V, E).



source of a control dependence edge is always the entry vertex or a predicate vertex. A control dependence
edge from vertex v, to veriex vy, denoted by v; —, v,, means that during execution, whenever the predi-
cate represented by v, is evaluated and its value matches the label on the edge to v,, then the program
component represented by v, will eventually be executed if the program terminates normally. A method
for determining control dependence edges for arbitrary programs is given in [Ferrante87]; however,
because we are assuming that programs include only assignment, conditional, while, and end statements,
the control dependence edges of Gp can be determined in a much simpler fashion. For the language under
consideration here, the control dependences reflect a program’s nesting structure.

DEFINITION. (Control Dependence Edges). Program dependence graph Gp contains a control depen-
dence edge from vertex v to vertex v, of Gp iff one of the following holds:

(1) v, is the entry vertex, and v, represents a component of P that is not nested within any loop or con-
ditional; these edges are labeled true.

(2) v, represents a control predicate, and v, represents a component of P immediately nested within the
loop or conditional whose predicate is represented by v;. If v, is the predicate of a while-loop, the
edge v, —. v, is labeled true; if v, is the predicate of a conditional statement, the edge vy —;v2
is labeled true or false according to whether v, occurs in the then branch or the else branch, respec-
tively.?

A data dependence edge from vertex v, to vertex v, means that the program’s computation might be
changed if the relative order of the components represented by v, and v, were reversed. In this disserta-
tion, program dependence graphs contain two kinds of data-dependence edges, representing flow depen-
dences and def-order dependences.* The data-dependence edges of a program dependence graph are com-
puted using data-flow analysis. For the restricted languages considered in this dissertation, the necessary
computations can be defined in a syntax-directed manner.

DEFINITION. (Flow Dependence Edges). A program dependence graph contains a flow dependence edge
from vertex v; to vertex v iff all of the following hold:

(1) v, is a vertex that defines variable x.
(2) v, isavertex that uses x.

(3) Control can reach v after v, via an execution path along which there is no intervening definition of
x. That is, there is a path in the standard control-flow graph for the program by which the definition
of x at v reaches the use of x at v,. (Initial definitions of variables are considered to occur at the
beginning of the control-flow graph; final uses of variables are considered to occur at the end of the
control-flow graph.)

A flow dependence from vertex vy 0 veriex v, will be denoted by vy —> V2.

Flow dependences can be further classified as loop carried or loop independent. A flow dependence
vy =y v is carried by loop L, denoted by vi—>y. ¢y V2, if in addition to (1), (2), and (3) above, the follow-
ing also hold:

(4) There is an execution path that both satisfies the conditions of (3) above and includes a backedge to
the predicate of loop L.

3[n other definitions that have been given for control dependence edges, there is an additional edge from each predicate of a while
statement to itself 1abeled true. This kind of control edge is left out of our definition because it is not necessary for our purposes.

“For a complete discussion of the need for these edges and a comparison of def-order dependences with anti- and output dependences
see [Horwitz88].




(5) Both v, and v, are enclosed in loop L.

A flow dependence vy —> Vv, is loop independent, denoted by v, —>; v,, if in addition to (1), (2), and (3)
above, there is an execution path that satisfies (3) above and includes no backedge to the predicate of a
loop that encloses both v, and v,. It is possible to have both v —>c ¢y v2 and vy —>; vy,

DEFINTTION. (Def-order Dependence Edges) A program dependence graph contains a def-order depen-
dence edge from vertex v; to vertex v, iff all of the following hold:

(1) v, and v, both define the same variable.
(2) v, and v, are in the same branch of any conditional statement that encloses both of them.
(3) There exists a program component v3 such that vy —>,v3 and vy —/vs3.

(4) The program component represented by v; occurs before the program component represented by v,
in a preorder traversal of the program’s abstract-syntax tree.

A def-order dependence from v, to v, with “witness” v is denoted by vy —>4,(y,) V2. However, it is often
useful to think of this edge as a hyper-edge from source v, to source v, and then to target v3. For exam-
ple, only when def-order edges are thought of in this way the following statement is true for all kinds of
edges “the evaluation of the component (components) represented by the source (sources) of an edge affect
the evaluation of the component represented by the target of the edge.”

Note that a program dependence graph is a multi-graph (i.e., it may have more than one edge of a given
kind between two vertices). When there is more than one loop-carried flow dependence edge between two
vertices, each is labeled by a different loop that carries the dependence. When there is more than one def-
order edge between two vertices, each has a different witness.

The adequacy of the program dependence graph as a representation for programs has been addressed in
[Horwitz88], where is it shown that two programs with isomorphic program dependence graphs are
strongly equivalent. In other words, if P and Q have isomorphic program dependence graphs then, when
run on the same initial state, P and Q either both terminate in the same final state or they both fail to ter-
minate normally.

Example. Figure 2.1 shows an example program and its program dependence graph.

2.2. Program Slices (of Single-Procedure Programs}

The slice of a program with respect to program point p and variable x consists of all statements and predi-
cates of the program that might affect the value of x at point p. This concept, originally discussed by Mark
Weiser in [Weiser84], can be used to isolate individual computation threads within a program. Slicing can
help a programmer understand complicated code, can aid in debugging [Lyle86], and can be used for
automatic parallelization [Weiser83, Badger88]. Finally, program slicing, as described in Section 22.1is
used in the HPR program integration algorithm, which is the topic of Section 2.3.

In Weiser’s terminology, a slicing criterion is a pair <p, V>, where p is a program point and V is a subset
of the program’s variables. In his work, a slice consists of all statements and predicates of the program that
might affect the values of variables in V' at point p. This is a more general kind of slice than is often
needed: rather than a slice taken with respect to program point p and an arbitrary variable, one is often
interested in a slice taken with respect to a variable x that is defined or used at p. The value of a variable x
defined at p is directly affected by the values of the variables used at p and by the loops and conditionals
that enclose p. The value of a variable y used at p is directly affected by assignments to y that reach p and
by the loops and conditionals that enclose p. When slicing a program that consists of a single monolithic
procedure, a slice can be determined from the closure of the directly-affects relation. Ottenstein and Otten-
stein pointed out how well-suited program dependence graphs are for this kind of slicing [Ottenstein84];
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program Main

sum = 0 Edge Key
i=1 — control dependence
while i <11 do — loop-independent flow dependence
sum = sum+i —} loop-carried flow dependence
Q=i+l e def-order dependence
od
end(sum, i)

7 X
@"‘

SeoAS s

Figure 2.1. An example program, which sums the integers from 1 to 10 and leaves the result in the variable sum, and
its program dependence graph. (The boldface arrows represent control dependence edges, solid arrows represent loop-
independent flow dependence edges, solid arrows with a hash mark represent loop-carried flow dependence edges, and
dashed arrows represent def-order dependence edges.)

once a program is represented by its program dependence graph, the slicing problem is simply a vertex-
reachability problem, and thus slices may be computed in linear time.

2.2.1. HPR Program Slices

This section introduces the two kinds of HPR slices:> backward and forward. The original formulation of
the HPR algorithm, given in Section 2.3, uses only backward slices; we include the definition of forward
slices at the end of this section for two reasons: first, Chapter 3 addresses both backward and forward inter-
procedural slicing and second, forward HPR slices are used in Chapter 5 in a reformulation of the HPR
algorithm. Since the predominate use of slicing in the following chapters is the use of backward slicing,
we use the term “slice” to refer to a “backward slice” (occasionally adding an explicit “backward” only for
emphasis); a forward slice is always referred to as a “forward slice”.

For a vertex v of a program dependence graph (PDG) G, the vertices of a backward slice of G with
respect to v are all vertices on which v has a transitive flow or control dependence (i.e., all vertices that can
reach v via flow or control edges). We define an operator b*r with signature PDG Xvertex-
set — PDG x vertex-set that pairs the graph being sliced with the vertices of the slice:

5 In previous papers we have referred to an “HPR slice” as an “intraprocedural slice”; however, in this dissertation, the term intrapro-
cedural slice is reserved for an extended HPR slice, defined in Chapter 5.
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b (G, )2 (G, {(weV(G)|w—>", svandveS)).

For a single vertex, we define b*"(G, v)=b""(G, (v }) and define b*"(G, v)=(G, @) for any v& V(G).
Figure 2.2 gives a simple worklist algorithm for computing the vertices of a slice using a program depen-
dence graph.

As a notational shorthand, when taking the slice of a program’s program dependence graph, we some-
times use the name of a program to denote the corresponding program dependence graph, for example
b*r(Base, S) in place of b*" (Gpase. S)-

The slice of graph G with respect to vertex set S is denoted by Induce B (G, $)).¢ where
Induce : PDG X vertex-set — PDG is the function that returns the subgraph of the program dependence
graph induced by the vertex set. (A def-order edge v—>4, () W is included in the induced edge set iff u, v,
and w are all included in the vertex set.) Formally, Induce is defined as follows:

Induce(G, S) 2 (S,E"), whereE'= {(v—>yweE(G)|v,weS)
u{v—.weEG)|v,weS}
U {vIpwweEG)|u,v,weS}.

The relationship between a program’s dependence graph and a slice of the graph has been addressed in
[Reps88]. We say that G is a feasible program dependence graph iff G is the program dependence graph of
some program P. For any ScV(G), if G is a feasible program dependence graph, the slice
Induce(b™ (G, S)) is also a feasible program dependence graph; it corresponds to the program P’ obtained
by restricting the syntax tree of P to the statements and predicates whose vertices are in Induce (b™"(G, S))
[Reps88].

procedure MarkVerticesOfSlice(G, S)
declare
G: a program dependence graph
S: a set of vertices in G
WorkList: a set of vertices in G
v, w: vertices in G
begin
WorklList := S
while WorkList # & do
Select and remove vertex v from WorkList
Mark v
for each unmarked vertex w such that edge w —>,;v or edge w —>, vis in £(G) do
Insert w into WorkList
od
od
end

Figure 2.2. A worklist algorithm that marks the vertices in G /S. Vertex v is in G /S if there is a path along flow and/or
control edges from v to some vertex in S.

& In previous papers the notation G /v has been used to denote the backward slice of G with respect to v. Because of the variety of dif-
ferent kinds of slices used in multi-procedure integration we have introduced names for some of the lower-level operations used to
generate slices (¢.8., b™" and Induce).
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Example. Figure 2.3 shows the graph that results from taking a slice of the program dependence graph
from Figure 2.1 with respect to the final-use vertex for i, together with the one program to which it
corresponds.

The significance of a slice is that it captures a portion of a program’s behavior in the sense that, for any
initial state on which the program halts, the program and the slice compute the same sequence of values for
each component of the slice (i.e., each program dependence graph vertex in the slice) [Reps88]. Recall
from Chapter 1 that a program point is (1) an assignment statement, (2) a control predicate, (3) an initial-
definition point (for a variable that may be referenced before being assigned 10), or (4) a final use of a vari-
able in an end statement. And that by “computing the same sequence of values for each component of
(point in) the slice” we mean: (1) for any assignment statement the same sequence of values is assigned to
the target variable; (2) for a predicate the same sequence of boolean values is produced; (3) for an initial-
definition point the same value is assigned to the target variable (this values comes from the initial state);
and (4) for each final use the same value for the variable is produced.

Forward Slicing

Forward slicing is the dual of backward slicing: whereas the backward slice of a program with respect to a
program point p and variable x consists of all statements and predicates of the program that potentially
affect the value of x at point p, the forward slice of a program with respect to a program point p and vari-
able x consists of all statements and predicates of the program that are potentially affected by the value of x

at point p.

program Main
i=1 ) Edge Key
wh.ile l.< 11 do F—, control dependence
i=i+l et loop-independent flow dependence
od —ts loop-carried flow dependence
end(i) R def-order dependence

S

‘! while i < 11 @

Figure 2.3. The graph and the corresponding program that result from slicing the program dependence graph from Fig-
ure 1 with respect to the final-use vertex for i.
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For a vertex v of program dependence graph (PDG) G, the vertices of a forward slice of G with respect
to v are all vertices that are transitively flow or control dependent on v. We define an operator f* with
signature PDG X vertex-set — PDG X vertex-set that pairs the graph being sliced with the vertices of the
slice:

7 (G, 852G, (weV(G)|v > swandveS)).
‘f

For a single vertex, we define f*"(G, v)=f*"(G,{v)) and define f*"(G, v)=(G, @) for any v¢ V(G).
The forward slice of G with respect to v is denoted by Induce (G, S)).

Finally, unlike a backward slice, the forward slice of a feasible program dependence graph (i.e., a graph
that is the program dependence graph of some program) does not correspond to a feasible program depen-
dence graph. For example, the forward slice with respect to the statement “sum:=0" in Figure 2.1 consists
of the vertices labeled “sum =0", “sum := sum+i", and FinalUse(sum) together with the flow and def-order
edges that connect them. This slice does not include the entry vertex or the control predecessor of
“sum = sum+i"; either of these omissions implies that the slice is infeasible.

2.3. Summary of the HPR Integration Algorithm

This section provides an overview of the HPR integration algorithm; a more detailed description can be
found in reference [Horwitz89]. In particular, [Horwitz89] contains a running example that illustrates the
different steps of the algorithm; the reader may find it helpful to refer to Figures 1-8 of [Horwitz89], which
depict the results of the various graph manipulations that the algorithm performs (an abbreviated version of
this example is given at the end of this section).

As outlined in Chapter 1, given a program Base and two variants A and B, each created by editing
separate copies of Base, the HPR algorithm determines whether the changes made to Base to produce A
and B interfere; if there is no interference, the algorithm produces a merged program M that incorporates
the changed behavior of A with respect to Base, the changed behavior of B with respect to Base, and the
unchanged behavior common to Base, A, and B.

The HPR algorithm requires that program components (i.e., statements and predicates) be tagged so that
corresponding components can be identified in all three versions. Component tags can be provided by a
special editor that obeys the following conventions:’

(1) When a copy of a program is made—e.g., when a copy of Base is made in order to create a new
variant—each component in the copy is given the same tag as the corresponding component in the ori-
ginal program.

(2) The operations on program components supported by the editor are insert, delete, and move. A newly
inserted component is given a previously unused tag; the tag of a deleted component is never re-used;
a component moved from one position to another retains its tag.

(3) The tags on components persist across different editing sessions and machines.

(4) Tags are allocated by a single server, so that two different editors cannot allocate the same new tag.

Component tags are used to determine corresponding vertices when performing operations that use vertices
from different program dependence graphs; two vertices are corresponding if they have the same tag.

The HPR algorithm uses backward slicing to determine a safe approximation to the changed and
preserved behaviors of variants A and B with respect to Base, and to determine whether the modifications

7 A tagging facility meeting these requirements can be supported by language-based editors, such as those that can be created by such
systems as MENTOR [Donzeau-Gouge84], GANDALF [Notkin85], and the Synthesizer Generator [Reps88al.
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in A and B interfere. The first step of the HPR algorithm determines the slices of A and B that are changed
from Base and the slices of Base that are preserved in both A and B; the second step combines these slices
to form the merged program dependence graph Gy; the third step tests Gy for interference, and if there is
no interference produces a program M whose program dependence graph is Gy

Step 1: Determining changed and preserved slices

If the slice of variant A with respect to vertex v differs from the slice of Base with respect to v, then A and
Base may compute a different sequence of values at v [Reps88]. In other words, vertex v is a site that
potentially exhibits changed behavior in A when compared with Base. Thus, we define the affected points
of A with respect to Base, denoted by AP ™" (A, Base), to be the subset of vertices of A whose slices in Base
and A differ (as with the slicing operators, the various integration operators all return (program dependence
graph, vertex-set) pairs):

AP*"(A, Base) 2 (A, (v € V(A) | Induce(b*" (Base, v)) # Induce(b™" (A, v)) }).

We define AP™"(B,Base) similarly. It follows that the slices b (AP*"(A, Base)) and
b*r(AP*" (B, Base)) capture all the slices of A and B (respectively) that differ from Base, and so we make
the following definitions:

AM"(A, Base) & b""(AP*"(A, Base)) and AY(B, Base) & b""(AP*"(B, Base)).

A vertex that has the same slice in all three programs is guaranteed to exhibit the same behavior
[Reps88]. Thus, we define the preserved points of Base, A, and B, denoted by Pre*”"(A, Base, B), to be
those vertices of Base that have the same slice in Base, A, and B:

Pre™" (A, Base, B)  (Base, {v e V (Base) | Induce(b™"(A, v))=Induce(b™" (Base, v))
=Induce(b™ (B, v)) }).

Step 2: Forming the merged graph

The merged graph Gy is formed by taking the graph union® of the slices that characterize the changed
behavior of A, the changed behavior of B, and the behavior of Base preserved in both A and B:

Gy 2 Induce (A" (A, Base)) v Induce (A""(B, Base)) v Induce(Pre ker(A, Base, B)).

Step 3: Testing for interference

There are two possible ways by which the graph Gy can fail to represent a satisfactory integrated program;
we refer to them as “Type I interference” and “Type Il interference.” The criterion for Type I interference
is based on a comparison of slices of A, B, and Gy. The slices b (AP"'(A, Base)) and
b*"(AP*"(B, Base)) capture the changed slices of A and B, respectively. There is Type I interference if
Gy does not preserve these slices; that is, there is Type I interference if either of the following is true:

there exists a vertex v in AP*" (A, Base) such that Induce(b™"(Gy, v)) # Induce(b*" (A, v))
there exists a vertex u in AP*" (B, Base) such that Induce (b""(Gyy, w)) #Induce (b*”" (B, u)).

The final step of the HPR algorithm involves reconstituting a program from Gy. However, it is possible
that no such program exists—the merged graph can be an infeasible program dependence graph; this is
Type 1I interference. (See [Horwitz89] or [Ball90] for a discussion of how to determine whether Gy is
feasible, and if so how to reconstitute a program from Gy.) If neither kind of interference occurs, a pro-
gram whose program dependence graph is Gy is returned as the result of the integration.

8 Given directed graphs G; =(V1, Ey) and G2 =(V2, E ), the graph union, G G2, is defined as: ViUV, E{uE)).
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One of the most important aspects of the HPR algorithm is that it provides semantic guarantees about the
behavior of the integrated program. In particular, it has been shown that the HPR algorithm satisfies Pro-
perty (2) of the HPR integration model discussed in Section 1.1 [Reps88].

2.3.1. HPR Integration Example

This section presents an abbreviated version of the running example given in [Horwitz89). Figure 2.1
shows a program that sums the integers from 1 to 10 and its corresponding program dependence graph.
We now consider two variants of this program, shown in Figure 2.4 with their program dependence graphs:

1) In variant A two statements have been added to the original program to compute the product of the
integers from 1 to 10.

2)  Invariant B one statement has been added to compute the mean of the sequence.

These two programs represent non-interfering enhancements of the original summation program. The
affected points of A with respect 0 Base are the assignment vertices labeled “prod:= 1” and
“prod:=prod * x” as well as the final-use vertex for prod. Similarly, the affected points of B with respect
to Base are the assignment vertex labeled “mean :=sum / 10” and the final-use vertex for mean.

Figure 2.4 also shows the vertex sets for two of the three graphs that form Gy: the vertices of
A"’ (A, Base) (i.e., the vertices in b*"(AP*" (A, Base))) and the vertices of A*"(B, Base) (i.e., the vertices
in b"r(AP*"(B, Base))); the subgraphs of G4 and Gp induced by these vertices capture the changed
behaviors of A and B, respectively. The third graph, Induce(Base, Pre ker(A, Base, B)), which captures the
behavior of Base preserved in both A and B, is identical to the program dependence graph shown in Figure
2.1 because every vertex in Gpg,, has the same slice in Ggae., G4, and Gp (i.e., Pre ker(A, Base, B) contains
all the vertices of G )-

The merged graph Gy, shown in Figure 2.5, is formed by taking the union of the sub-graphs of G, and
G induced by the bold vertices shown in Figure 2.4(a) and Figure 2.4(b), respectively, and the graph
shown in Figure 2.1. An inspection of the merged graph shown in Figure 2.5 reveals that there isno Typel
interference: the slices of Gy and A with respect to the affected points of A (the bold vertices in Figures
2.4(a)) are the same and the slices of Gy and B with respect to the affected points of B (the bold vertices in
Figures 2.4(b)) are the same. Finally, this graph is feasible; one of the programs that has Gy as its program
dependence graph is shown below:

program
prod:=1
sum:=0
x:=1
while x < 11 do
prod:=prod * x
sum:=sum+x
x=x+1
od
mean :=sum [ 10
end(x, sum, prod, mean).
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Fum =]

Ix:=
[whilex < 0

d

[od]

[end|(x, sum,[mean))

(b) Variant B and its program dependence graph.

FinalUse (mean)

Figure 2.4, Variants A and B of the base program shown in Figure 1, and their program dependence graphs. (Boxed
statements correspond to the vertices in AM7(A, Base) and A" (B, Base), respectively, which are shown in bold.)
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(' FinalUse (x) FinalUse (mean)

FinalUse (prod)

Figure 2.5. Gy, is created by taking the union of the induced graphs computed from the bold vertices shown in Figures
2.4(a) and 2.4(b), and the graph shown in Figure 2.1.



CHAPTER 3

THE SYSTEM DEPENDENCE GRAPH
AND INTERPROCEDURAL SLICING

This chapter lays the foundation for the remainder of the dissertation. It begins by informally discussing
the need for more precise interprocedure slicing. Section 3.2 then describes the extensions to the program-
ming language introduced in the previous chapter to include procedures and procedure calls; Section 32
also introduces the system dependence graph, the dependence graph representation used to represent pro-
grams containing procedures and procedure calls. The main result of this chapter is the precise interpro-
cedural slicing algorithm discussed in Section 3.3. The chapter concludes with a discussion of related
work.

3.1. Interprocedural Slicing: Informal Discussion

As described in the beginning of Chapter 2, the backward slice of a program with respect to program point
p and variable x consists of all statements and predicates of the program that might affect the value of x at
point p. Our main concern in this chapter is the problem of inferprocedural slicing—-generating a slice of
an entire program, where the slice crosses the boundaries between procedures. The algorithm for interpro-
cedural slicing discussed in Section 3.3 produces a more precise answer than that produced by the interpro-
cedural slicing algorithm given by Weiser in [Weiser84]. Precision is important because the quality of the
multi-procedure integration algorithm presented in Chapter 5 depends to a large extent on the precision of
the interprocedural slicing algorithm upon which ita based.

The algorithm in Section 3.3, like the algorithm used in the HPR integration algorithm, follows the
example of Ottenstein and Ottenstein by computing a slice of a program as an operation on a dependence
graph representation for the program [Ottenstein84]; however, in [Ottenstein84] Ottenstein and Ottenstein
only discuss the case of programs that consist of a single monolithic procedure and do not discuss the more
general case where slices cross procedure boundaries. As discussed below, the chief difficulty in comput-
ing such a slice is correctly accounting for the calling context of a called procedure.

It is important to understand the distinction between two different but related “slicing problems:”

Version (1)
The slice of a program with respect to program point p and variable x consists of all statements and
predicates of the program that might affect the value of x at point p.

Version (2)
The slice of a program with respect to program point p and variable x consists of a reduced program
that computes the same sequence of values for x at p. That is, at point p the behavior of the reduced
program with respect to variable x is indistinguishable from that of the original program.

When slicing single-procedure programs, a solution to Version (1) provides a solution to Version (2), since

the “reduced program” required in Version (2) can be obtained by restricting the original program to just
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the statements and predicates found in the solution for Version (1) [Reps89].

When slicing multi-procedure programs, restricting the original program to just the statements and predi-
cates found for Version (1) may yield a program that is syntactically incorrect (and thus certainly not a
solution to Version (2)). The reason behind this phenomenon has to do with multiple calls to the same pro-
cedure: it is possible that the program elements found by an algorithm for Version (1) will include more
than one such call, each passing a different subset of the procedure’s parameters.

This chapter addresses Version (1) of the interprocedural slicing problem (with the further restriction—
mentioned in Chapter 2-—that a slice can only be taken with respect to program point p and variable x if x
is defined or used at p). The algorithm given in this chapter identifies a subgraph of the program’s system
dependence graph whose components might affect the sequence of values for x at p. A solution to Version
(2) requires either that the slice be extended or that it be transformed by duplicating code to specialize pro-
cedure bodies for particular parameter-usage patterns. (It should be noted that, although it is imprecise,
Weiser’s algorithm produces a solution to Version (2).)

Recall that as discussed in Chapter 2, Weiser described a slice using a slicing criterion, a pair <p, V>,
where p is a program point and V is a subset of the program’s variables. Weiser’s method for interpro-
cedural slicing is described in [Weiser84] as follows:

For each criterion C for a procedure P, there is a set of criteria UPo(C) which are those needed to slice call-
ers of P, and a set of criteria DOWN,(C) which are those needed to slice procedures called by P. . .

UP,(C) and DOWN,(C) can be extended to functions UP and DOWN which map sets of criteria into sets
of criteria. Let CC be any set of criteria. Then

UPCC) = c Ucc UP(C)

DOWN(CC) = e DOWN,(C)

The union and transitive closure of UP and DOWN are defined in the usual way for relations.
(UPUDOWN)” will map any set of criteria into all those criteria necessary to complete the corresponding
slices through all calling and called routines. The complete interprocedural slice for a criterion C is then just
the union of the intraprocedural slices for each criterion in (UPw DOWN)’ (C).

This method does not produce as precise a slice as possible because the transitive-closure operation fails to
account for the calling context of a called procedure.!

Example. To illustrate this problem, and the shortcomings of Weiser’s algorithm, consider the follow-
ing example program, which sums the integers from 1 to 10. (Except in Section 3.3.3, where call-by-
reference parameter passing is discussed, parameters are passed by value-result.)

program Main procedure A (x, y) procedure Add(a, b) procedure Increment (z)
sum =0 call Add (x, y) a=a+b call Add(z, 1)
i=1 call Increment (y) return return
while i <11 do return
call A (sum, i)
od
end

Using Weiser’s algorithm to slice this program with respect to variable z and the return statement of

'For example, the relation (UPuDOWN)'(<p, V>) includes the relation UP(DOWN(<p, V >)). UP(DOWN(<p, V>)) includes all
call sites that call procedures containing the program points in DOWN(<p, V'>), not just the procedure that contains p. This fails to
account for the calling context, namely the procedure that contains p.
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procedure Increment, we obtain everything from the original program. However, a closer inspection
reveals that computations involving the variable sum do not contribute to the value of z at the end of pro-
cedure Increment; in particular, neither the initialization of sum, nor the first actual parameter of the call on
procedure A in Main, nor the call on Add in A (which adds the current value of i to sum) should be included
in the slice. The reason these components are included in the slice computed by Weiser’s algorithm is as
follows: the initial slicing criterion “<end of procedure Increment, z>,” is mapped by the DOWN relation
to a slicing criterion “<end of procedure Add, a>.” The latter criterion is then mapped by the UP relation to
two slicing criteria—corresponding to all sites that call Add—the criterion “<call on Add in Increment, z>"
and the (irrelevant) criterion “<call on Add in A, x>.” Weiser’s algorithm does not produce as precise a
slice as possible because transitive closure fails to account for the calling context (Increment) of a called
procedure (Add), and thus generates a spurious criterion (<call on Add in 4, x>).

A more precise slice consists of the following elements:

program Main procedure A(y) procedure Add (a, b) procedure Increment (z)
i=1 call Increment (y) a=a+b call Add(z, 1)
while i < 11 do return return return
call A ()
od
end

This set of program elements is computed by the slicing algorithm described in Section 3.3.

The chief difficulty in interprocedural slicing is correctly accounting for the calling context of a called
procedure. To address the calling-context problem, system dependence graphs include some data-
dependence edges that represent transitive dependences due to the effects of procedure calls, in addition to
the conventional edges for direct dependences.

The comerstone of the construction of the system dependence graph is the use of an attribute grammar to
represent calling and parameter-linkage relationships among procedures. The step of computing the
required transitive-dependence edges is reduced to the construction of the subordinate characteristic graphs
for the grammar’s nonterminals (an introduction to the terminology and concepts from attribute-grammar
theory that are used in this chapter may be found in the Appendix to Chapter 3). The need to express this
step in this fashion (rather than, for example, with transitive closure) is discussed further in Section 3.3.2.

The remainder of the chapter is organized as follows: Section 3.2 introduces procedures and procedure
calls into the language used in Chapter 2 and discusses the system dependence graph. Section 3.3 presents
an efficient, precise interprocedural slicing algorithm, which operates on the system dependence graphs and
correctly accounts for the calling context of a called procedure. Section 3.3 also describes four related
topics: how to improve the precision of interprocedural slicing using interprocedural summary information
in the construction of system dependence graphs, how to handle programs with aliasing, how to compute
precise interprocedural forward slices, and how to slice incomplete programs.

3.2. The System Dependence Graph: A Multi-procedural Dependence Graph Representation With
Explicit Interprocedural Dependences

We now turn to the definition of the system dependence graph. The system dependence graph, an exten-
sion of the program dependence graphs defined in Chapter 2, represents programs in a language that
includes procedures and procedure calls. In particular, our definition of the system dependence graph
models a language with the following properties:

(1) A complete system consists of a single main procedure and a collection of auxiliary procedures.
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(2)  Auxiliary procedures end with return statements instead of end statements (as defined in Chapter
2). A return statement does not include a list of variables.

(3)  Parameters are passed by value-result.

We make the further assumptions that there are no call sites of the form P (x, x) or P (g), where g is a glo-
bal variable. The former restriction sidesteps potential copy-back conflicts. The latter restriction permits
global variables to be treated as additional parameters to each procedure; thus, we do not discuss global
variables explicitly in the remainder of the dissertation, except in Section 3.3.2, which uses interprocedural
summary information to determine which parameters and global variables are defined and used by a pro-
cedure. Finally, in order to simplify the presentation, we assume there are no calls on the main procedure.
This assumption is easily removed by including as the entry point for the system an invisible (uncallable)
procedure that simply calls the existing main procedure.

It should become clear that our approach is not tied to the particular language features enumerated
above. Modeling different features will require some adaptation; however, the basic approach is applicable
to languages that allow nested scopes and languages that use different parameter-passing mechanisms.
Section 3.3.3 discusses how to deal with systems that use call-by-reference parameter passing and contain
aliasing. .

A system dependence graph is made up of a collection of procedure dependence graphs connected by
interprocedural control- and flow-dependence edges. Procedure dependence graphs are similar to the pro-
gram dependence graphs described in Chapter 2, except that they include vertices and edges representing
call statements, parameter passing, and transitive data dependences due to calls (we will abbreviate both
procedure dependence graphs and program dependence graphs by “PDG”). The definition of a system
dependence graph is motivated by the following concerns:

(1) The graph representation should be correct in the sense that inequivalent programs (systems) should
have non-isomorphic graph representations. The correctness of the system dependence graphs
developed in Section 3.3.2 is shown in [Binkley89]

(2) A (correct) representation that allows some class of equivalent programs to have isomorphic depen-
dence graphs should be chosen over one that distinguishes among members of the class by giving
them non-isomorphic dependence graphs. As discussed in Section 3.2.2, this concern motivates the
use of interprocedural data-flow information in the definition of a system dependence graph.

(3) The graph representation should support efficient, precise interprocedural slicing. An algorithm for
slicing a system dependence graph is presented in Section 3.3.

Section 3.2.1 discusses how procedure calls and procedure entry are represented in procedure depen-
dence graphs and how procedure linkage edges (the edges representing dependences between a call site
and the called procedure) are added to connect these graphs together. Section 3.2.2 defines the linkage
grammar, an attribute grammar used to represent the call structure of a system. Transitive dependences
due to procedure calls are computed using the linkage grammar and are added as the final step of building a
system dependence graph.

3.2.1. Procedure Calls and Parameter Passing

Extending the definition of dependence graphs to handle procedure calls requires representing the passing
of values between procedures. In designing the representation of parameter passing we have three goals:

(1) It should be possible to build an individual procedure’s procedure dependence graph (including the
computation of data dependences) with minimal knowledge of other system components.
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(2) The system dependence graph should consist of a straightforward connection of the procedure
dependence graph and procedure dependence graphs.

(3) It should be possible to extract a precise interprocedural slice efficiently by traversing the graph via
a procedure analogous o the procedure MarkVerticesOfSlice given in Figure 2.2,

To meet the goals outlined above, our graphs model the following slightly non-standard, two-stage
mechanism for run-time parameter passing: when procedure P calls procedure Q, values are transferred
from P to Q by means of intermediate temporary variables, one for each parameter. A different set of tem-
porary variables is used when Q returns to transfer values back to P. Before the call, P copies the values of
the actual parameters into the call temporaries; Q then initializes local variables from these temporaries.
Before returning, Q copies return values into the return temporaries, from which P retrieves them.

This model of parameter passing is represented in procedure dependence graphs through the use of five
new kinds of vertices. The locus of control for a call is represented using a call-site vertex; information
transfer is represented using four kinds of parameter vertices. On the calling side, information transfer is
represented by a set of actual-in and actual-out vertices. These vertices, which are control dependent on
the call-site vertex, represent assignment statements that copy the values of the actual parameters to the call
temporaries and from the return temporaries, respectively. Similarly, information transfer in the called pro-
cedure is represented by a set of formal-in and formal-out vertices. These vertices, which are control
dependent on the procedure’s entry vertex, Tepresent assignment statements that copy the initial values of
the formal parameters from the call temporaries and the final values to the return temporaries, respectively.

Using this model, data dependences between procedures are limited to dependences from actual-in ver-
tices to formal-in vertices, and from formal-out vertices to actual-out vertices. Connecting procedure
dependence graphs to form a system dependence graph is straightforward, involving the addition of three
new kinds of edges: (1) a call edge is added from each call-site vertex to the corresponding procedure-
entry vertex; (2) a parameter-in edge is added from each actual-in vertex at a call site to the corresponding
formal-in vertex in the called procedure; (3) a parameter-out edge is added from each formal-out vertex in
the called procedure to the corresponding actual-out vertex at the call site. (Call edges are a new kind of
control dependence edge; parameter-in and parameter-out edges are new kinds of data dependence edges.)

Another advantage of this model is that flow dependences can be computed in the usual way, using data
flow analysis on the procedure’s control-flow graph. The control-flow graph for a procedure includes
nodes analogous to the actual-in, actual-out, formal-in and formal-out vertices of the procedure dependence
graph. A procedure’s control-flow graph starts with a sequence of assignments that copy values from call
temporaries to formal parameters, and ends with a sequence of assignments that copy values from formal
parameters to return temporaries. Each call statement within the procedure is represented in the
procedure’s control-flow graph by a sequence of assignments that copy values from actual parameters to
call temporaries, followed by a sequence of assignments that copy values from return temporaries to actual
parameters.

An important question is which values are transferred from a call site to the called procedure and back
again. This point is discussed further in Section 3.3.2, which presents a strategy in which the resuits of
interprocedural data flow analysis are used to omit some parameter vertices from procedure dependence
graphs. For now, we will assume that all actual parameters are copied into the call temporaries and
retrieved from the return temporaries. Thus, the parameter vertices associated with a call from procedure P
to procedure Q are defined as follows (Gp denotes the procedure dependence graph for P):

In Gp, subordinate to the call-site vertex that represents the call to Q, there is an actual-in vertex and
an actual-out vertex for each actual parameter a of the call to Q. These vertices are labeled “7;, = a’
and “a :=r,,”, respectively, where r is the corresponding formal parameter name.




The parameter vertices associated with the entry to procedure Q and the return from procedure Q are
defined as follows (G denotes the procedure dependence graph for Q)

For each formal parameter r of Q, G, contains a formal-in vertex and a formal-out vertex. These
vertices are labeled “r = r;,,”, and “r,,, = r”, respectively.

Example. Figure 3.1 repeats the example system from Section 3.1 and shows the corresponding pro-
cedure dependence graphs connected with parameter-in edges, parameter-out edges, and call edges. (In
Figure 3.1, as well as in the remaining figures of the dissertation, def-order edges are not shown. Edges
representing control dependences are shown unlabeled; all such edges in this example would be labeled
true.)

3.2.2. The Linkage Grammar: An Attribute Grammar that Models Procedure-Call Structure

Using the graph structure defined in the previous section, interprocedural slicing could be defined as a
graph-reachability problem, and the slices obtained would be the same as those obtained using Weiser’s
slicing method. As explained in Section 3.1, Weiser’s method does not produce as precise a slice as possi-
ble because it fails to account for the calling context of a called procedure.

Example. The problem with Weiser’s method can be illustrated using the graph shown in Figure 3.1. In
the graph-reachability vocabulary, the problem is that there is a path from the vertex of procedure Main
labeled “x;, := sum™ to the vertex of Main labeled “i :=y,,”, even though the value of i after the call 0
procedure A is independent of the value of sum before the call. The path is as follows:

Main: “x,, =sum” - A “xi=x5" - A:"gp=x" -  Add: "a:=ay”
— Add:“a=a+b" > Add:“a,,:=a" - Inc:"z:=a,,"”
= Inc: “zygi=2" - A"y i=2z,4" - Al You=y"

-  Main: “i =Y

The source of this problem is that not all paths in the graph correspond to possible execution paths (e.g., the
path from vertex “x;, := sum” of Main to vertex “i :=y,," of Main corresponds to procedure Add being
called by procedure A, but returning to procedure Increment).

To overcome this problem, we add an additional kind of edge, called summary edges, to the system
dependence graph to represent transitive dependences due to the effects of procedure calls. The presence
of summary edges permits interprocedural slices to be computed in two passes, each of which is cast as a
reachability problem. Thus, the next step in the construction of the system dependence graph is to deter-
mine such transitive dependences. For example, for the graph shown in Figure 3.1, we need an algorithm
that can discover the transitive dependence from vertex “x;, := sum” of Main to vertex “swm = X,,~ Of
Main. This dependence exists because the value of sum after the call o A depends on the value of sum
before the call to A.

One’s first impulse might be to compute transitive dependences due to calls by taking the transitive clo-
sure of the graph’s control, flow, parameter, and call edges. However, this technique is imprecise for the
same reason that transitive closure (or, equivalently, reachability) is imprecise for interprocedural slicing,
namely that not all paths in the system dependence graph correspond to possible execution paths. Using
transitive closure to compute the dependence edges that represent the effects of procedure calls would put
in a (spurious) edge from vertex “x;, := sum” of Main to vertex “i :=y,,” of Main.

For a language without recursion, this problem could be eliminated by using a separate copy of a pro-
cedure dependence graph for each call site; however, to handle a language with recursion, a more powerful
technique is required. The technique we use involves defining an attribute grammar, called the linkage



procedure Main procedure A (x, y) procedure Add (a, b) procedure Increment (z)
sum:=0 call Add (x, y) a=a+b call Add(z, 1)
i=1 call Increment (y) return refurn
whilei < 11 do return
call A (sum, i)
od
end(sum, i)

FinalUse(?)

Edge Key
wip  cONtrol
-3  loop-independent flow
—=  loop-carried flow
call

- ardmeter-in
Barameler.odt

Figure 3.1. Example system and corresponding program and procedure dependence graphs connected with parameter-
in, parameter-out, and call edges. Edges representing control dependences are shown (unlabeled) in boldface; edges
representing intraprocedural flow dependences are shown using arcs; parameter-in edges, parameter-out edges, and call
edges are shown using dashed lines.

grammar, to model the call structure of each procedure as well as the intraprocedural transitive flow
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dependences among the procedure’s parameter vertices. Interprocedural transitive flow dependences
among a system dependence graph’s parameter vertices are determined from the linkage grammar using a
standard attribute-grammar construction: the computation of the subordinate characteristic graphs of the
linkage grammar’s nonterminals.®

In this section, we describe the construction of the linkage grammar and the computation of its subordi-
nate characteristic graphs. It should be understood that the linkage grammar is used only to compute transi-
tive dependences due to calls; we are not interested in the language defined by the grammar, nor in actual
attribute values.

The context-free part of the linkage grammar models the system’s procedure-call structure. The gram-
mar includes one nonterminal and one production for each procedure in the system. If procedure P con-
tains no calls, the right-hand side of the production for P is €; otherwise, there is one right-hand-side non-
terminal for each call site in P.

Example. For the example system shown in Figure 3.1, the productions of the linkage grammar are as
follows:

Main - A A — Add Increment Add — € Increment — Add

The attributes in the linkage grammar correspond to the parameters of the procedures. Procedure inputs
are modeled as inherited attributes; procedure outputs are modeled as synthesized attributes. For example,
the productions shown above are repeated in Figure 3.2, this time in tree form. In Figure 3.2, each nonter-
minal is annotated with its attributes; a nonterminal’s inherited attributes are placed to its left; its syn-
thesized attributes are placed to its right.

More formally, the program’s linkage grammar has the following elements:

Main Xin Yin A Xout Yout
i PRt
| Pre s S e -
| . ~ o
l o RIS
i e S o
Xin Yin A Xout Yout 8in bin Add Aoyt bou Zy Inc Zout
84 bIn Add ot bouﬂ Zin Inc Zout
1 H
| I
| ]
1 i
i H
€ ap bln Add oyt bout

Figure 3.2. The productions of the example linkage grammar shown in tree form. Each nonterminal is annotated with
its attributes; a nonterminal’s inherited atiributes are placed to its left; its synthesized attributes are placed to its right.

2A summary of attribute-grammar terminology can be found in the Appendix to Chapter 3.
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(1)  For each procedure P, the linkage grammar contains a nonterminal P.

(2) For each procedure P, there is a productionp : P — B, where for each call-site representing a call on
procedure Q in P there is a distinct occurrence of Qinp.

(3)  For each actual-in vertex of P, there is an inherited attribute of nonterminal P.
(4)  For each actual-out vertex of P, there is a synthesized attribute of nonterminal P.
Attribute a of nonterminal X is denoted by “X.a”.

Dependences among the attributes of a linkage-grammar production are used to model the (possibly
transitive) intraprocedural dependences among the parameter vertices of the corresponding procedure.
These dependences are computed using HPR slices of the procedure’s procedure dependence graph as
described in Chapter 2. For each grammar production, attribute equations are introduced to represent the
intraprocedural dependences among the parameter vertices of the corresponding procedure dependence
graph. For each attribute occurrence a, the procedure dependence graph is sliced with respect to the vertex
that corresponds to a. An attribute equation is introduced for a so that a depends on the attribute
occurrences that correspond to the parameter vertices included in the slice. More formally:

For each attribute occurrence X.a of a production p, let v be the vertex of the procedure dependence
graph Gp that corresponds to X.a. Associate with p an attribute equation of the form
X.a=f(..,Y.b,..) where the arguments Y.b to the equation consist of the attribute occurrences of p
that correspond to the parameter vertices in b*"(Gp, v).

Note that the actual function f on the right-hand side of the equation is completely irrelevant because the
atiribute grammar is never used for evaluation; all we need is that the equation induce the dependences
described above.

Example. Figure 3.3 shows the productions of the grammar from Figure 3.2, augmented with attribute
dependences. The dependences for production Main — A, for instance, correspond to the attribute-
definition equations

AXin =f1 (Axours A-youl) AYin =f2(A-you!) AXy =f3(A‘yout) AYou =f4(A~youl)-

Main

1

]
S )
Xp Y A You Yout

8y blu Add But bout

Figure 3.3, The productions of Figure 3.2, augmented with attribute dependences.
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It is entirely possible that a linkage grammar will be a circular attribute grammar (i.e., there may be attri-
butes in some derivation tree of the grammar that depend on themselves); additionally, the grammar may
not be well-formed (e.g., a production may have equations for synthesized attribute occurrences of right-
hand-side symbols). This does not create any difficulties as the linkage grammar is used only to compute
transitive dependences and not for attribute evaluation.

Example. The equation A.y,. =f4(A.y,.) makes the example attribute grammar both circular and not
well-formed. This equation is added to the attribute grammar because of the following (cyclic) path in the
graph shown in Figure 3.1:

Main: “i =You" — Main: “whilei<11” — Main: “call A" — Main: “i =y,,"

Transitive dependences from a call site’s actual-in vertices to its actual-out vertices are computed from
the linkage grammar by constructing the subordinate characteristic graphs for the grammar’s nonterminals.
The algorithm we give exploits the special structure of linkage grammars to compute these graphs more
efficiently than can be done for attribute grammars in general. For general attribute grammars, computing
the sets of possible subordinate characteristic graphs for the grammar’s nonterminals may require time
exponential in the number of attributes attached to some nonterminal. However, a linkage grammar is an
attribute grammar of a restricted nature: for each nonterminal X in the linkage grammar, there is only one
production with X on the left-hand side. Because linkage grammars are restricted in this fashion, for each
nonterminal of a linkage grammar there is one subordinate characteristic graph that covers all of the
nonterminal’s other possible subordinate characteristic graphs. For such grammars, it is possible to give a
polynomial-time algorithm for constructing the (covering) subordinate characteristic graphs.

The computation is performed by the algorithm ConstructSubCGraphs, which is a slight modification of
an algorithm originally developed by Kastens to construct approximations 10 a grammar’s transitive depen-
dence relations [Kastens80]. The covering subordinate characteristic graph of a nonterminal X of the link-
age grammar is captured in the graph TDS (X) (standing for “Transitive Dependences among a Symbol’s
attributes”). Initially, all the TDS graphs are empty. The construction that builds them up involves the aux-
iliary graph TDP (p) (standing for “Transitive Dependences in a Production”), which expresses depen-
dences among the attributes of a production’s nonterminal occurrences.

The basic operation used in ConstructSubCGraphs is the procedure
“AddEdgeAndInduce(TDP (p), (a, b))”, whose first argument is the TDP graph of some production p and
whose second argument is a pair of attribute occurrences in p. AddEdgeAndInduce carries out three
actions:

(1)  The edge (a, b) is inserted into the graph TDP (p).

(2)  Any additional edges needed to transitively close TDP (p) are inserted into TDP (p).

(3) In addition, for each edge added to TDP (p) by (1) or (2), (i.e., either the edge (a, b) itself or some
other edge (c, d) added to reclose TDP (p)), AddEdgeAndInduce may add an edge to one of the
TDS graphs. In particular, for each edge added to TDP (p) of the form (X.m, Xo.n), where X is

the left-hand-side occurrence of nonterminal X in production p and (X.m, X.n) € TDS (X), an edge
(X.m, X.n) is added to TDS (X).

An edge in one of the TDS graphs can be marked or unmarked, the edges that AddEdgeAndInduce adds to
the TDS graphs are unmarked.

The TDS graphs are generated by the procedure ConstructSubCGraphs, given in Figure 3.4, which is a
slight modification of the first two steps of Kastens’s algorithm for constructing a set of evaluation plans
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for an attribute grammar [Kastens80]. ConstructSubCGraphs performs a kind of closure operation on the
TDP and TDS graphs. Step 1 of the algorithm—the first two for-loops of ConstructSubCGraphs—
initializes the grammar’s TDP and TDS graphs; when these loops terminate, the TDP graphs contain edges
representing all direct dependences that exist between the grammar’s attribute occurrences, and the TDS
graphs contain unmarked edges corresponding to direct left-hand-side-to-left-hand-side dependences in the
linkage grammar’s productions. Our construction of attribute equations for the linkage grammar ensures
that the graph of direct attribute dependences is transitively closed; thus, at the end of Step 1, TDP (p) is a
transitively closed graph.

In Step 2 of ConstructSubCGraphs, the invariant for the while-loop is:
If a graph TDP (p) contains an edge e’ that corresponds to a marked edge e in one of the TDS
graphs, then e has been induced in all of the other graphs TDP ().
When all edges in all TDS graphs have received marks, the effects of all dependences have been induced in
the TDP and TDS graphs. Thus, the TDS (X) graphs computed by ConstructSubCGraphs are guaranteed to
cover the transitive dependences among the attributes of X that exist at any occurrence of X in any deriva-
tion tree.

procedure ConstructSubCGraphs(L)
declare
L: alinkage grammar
p: a production in L
X;, X}, X: nonterminal occurrences in L
a, b: attributes of nonterminals in L
X: anonterminal in L
begin
/* Step 1: Initialize the TDS and TDP graphs */
for each nonterminal X in L do
TDS(X) := the graph containing a vertex for each attribute X.b but no edges
od
for each production p in L do
TDP(p) := the graph containing a vertex for each attribute occurrence X;;.b of p but no edges
for each attribute occurrence X;.b of p do
for each argument X;.a of the equation that defines X;.b do
Insert edge (X;.a, X;.b) into TDP(p)
let X be the nonterminal corresponding to nonterminal occurrence X; in
if i =0and j = 0 and (X.a, X.b) ¢ TDS (X) then Insert an unmarked edge (X.a, X.b) into TDS(X) fi
ni
od
od
od
* Step 2: Determine the sets of induced transitive dependences */
while there is an unmarked edge (X.a, X.b) in one of the TDS graphs do
Mark (X.a, X.b)
for each occurrence X of X in any production p do .
if (X.a, X.b) ¢ TDP (p) then AddEdgeAndInduce(TDP (p), (X.a, X.b)) &
od
od
end

Figure 3.4. Computation of a linkage grammar’s sets of TDP and TDS graphs.
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Put more simply, because for each nonterminal X in a linkage grammar there is only a single production
that has X on the left-hand side, the grammar only derives one tree (for a recursive grammar it will be an
infinite tree). All marked edges in TDS represent transitive dependences in this tree, and thus the TDS (X)
graph computed by ConstructSubCGraphs represents a subordinate characteristic graph of X that covers the
subordinate characteristic graph of any partial derivation tree derived from X, as desired.

Example. The nonterminals of our example grammar are shown below annotated with their attributes
and their subordinate characteristic graphs.

Xin Yin A Xout Yout ay, bln Add Aoyt hou! Zy, Inc Zout

@/’M\/

3.2.3. Recap of the Construction of the System Dependence Graph
The system dependence graph is constructed by the following steps:
(1)  For each procedure of the system, construct its procedure dependence graph.

(2) For each call site, introduce a call edge from the call-site vertex to the corresponding procedure-
entry vertex.

(3)  For each actual-in vertex v at a call site, introduce a parameter-in edge from v to the corresponding
formal-in vertex in the called procedure.

(4)  For each actual-out vertex v at a call site, introduce a parameter-out edge to v from the correspond-
ing formal-out vertex in the called procedure.

(5) Construct the linkage grammar corresponding to the system.
(6) Compute the subordinate characteristic graphs of the linkage grammar’s nonterminals.

(7) At all call sites that call procedure P, introduce summary edges corresponding to the edges in the
subordinate characteristic graph for P.

Example. Figure 3.5 shows the complete system dependence graph for our example system.

3.3. Interprocedural Slicing

This section describes how to perform an interprocedural slice using the system dependence graph defined
in Section 3.2. It then discusses modifications to the definition of the system dependence graph that permit
more precise slicing and extend the slicing algorithm’s range of applicability.

3.3.1. An Algorithm for Interprocedural Slicing

As discussed in the Section 3.1.1, the algorithm presented in [Weiser84], while safe, is not as precise as
possible. The difficult aspect of interprocedural slicing is keeping track of the calling context when a slice
“descends” into a called procedure.

The key element of our approach is the use of the linkage grammar’s characteristic graph edges in the
system dependence graph. These edges represent transitive data dependences from actual-in vertices to
actual-out vertices due to procedure calls. The presence of such edges permits us to sidestep the “calling
context” problem; the slicing operation can move “across” a call without having to descend into it; thus,
there is no need to keep track of calling context to ensure that only legal execution paths are traversed.
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Edge Key
—p»  control
intraprocedural flow
—>  (loop-independent)
intraprocedural flow
? (lcop-carried)

eegp  SUMIMArY
call
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Figure 3.5. Example system's system dependence graph. Control dependences, shown unlabeled, are represented us-
ing medium-bold arrows; intraprocedural flow dependences are represented using arcs; summary edges (i.e., transitive
interprocedural flow dependences that correspond to subordinate characteristic graph edges) are represented using
heavy bold arcs; call edges, parameter-in edges, and parameter-out edges (which connect program and procedure
dependence graphs together) are represented using dashed arrows.

Our algorithm for interprocedural slicing is given in Figure 3.6, in which the computation of the slice of
system dependence graph G with respect to vertex set § is performed in two linear-time passes over G.
Both passes operate on the system dependence graph using essentially the method presented in Chapter 2
for performing an HPR slice—the graph is traversed to find the set of vertices that can reach a given set of
vertices along certain kinds of edges. The traversal in Pass 1 starts from all vertices in § and goes back-
wards (from target to source) along flow edges, control edges, call edges, summary edges, and parameter-
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procedure Mark VerticesOfSlice(G, §)
declare
G: a system dependence graph
S, S’: sets of vertices in G
begin
/* Pass 1: Slice without descending into called procedures */
S’ := MarkReaching Vertices(G, S, {def-order, parameter-out})

/* Pass 2: Slice called procedures without ascending to call sites */
MarkReachingVertices(G, S’, {def-order, parameter-in, call})

end

function MarkReachingVertices(G, V, Kinds) returns a set of vertices
declare
G: a system dependence graph
V: a set of vertices in G
Kinds: a set of kinds of edges
v, w: vertices in G
WorkList. a set of vertices in G
begin
WorkList :=V
while WorkList # @ do
Select and remove a vertex v from WorkList
Mark v
for each unmarked vertex w such that there is an edge w — v whose kind is not in Kinds do
Insert w into WorkList
od
od
return (the set of marked vertices in G)
end

Figure 3.6. The procedure Mark VerticesOfSlice marks the vertices of the interprocedural slice of G taken with respect
to §. The auxiliary procedure MarkReaching Vertices marks all vertices in G from which there is a path to a vertex in V
along edges of kinds other than those in the set Kinds.

in edges, but not along def-order or parameter-out edges. The traversal in Pass 2 starts from all vertices
reached in Pass 1 and goes backwards along flow edges, control edges, summary edges, and parameter-out
edges, but not along def-order, call, or parameter-in edges. The result of an interprocedural slice consists
of the sets of vertices identified by Pass 1 and Pass 2, and the set of edges induced by this vertex set.

Suppose the goal is to slice system dependence graph G with respect to some vertex s in procedure P;
Passes 1 and 2 can be characterized as follows:

Pass 1
Pass 1 identifies vertices that can reach s, and are either in P itself or in a procedure that calls P
(either directly or transitively). Because parameter-out edges are not followed, the traversal in Pass 1
does not “descend” into procedures called by P. However, the effects of such procedures are not
ignored; the presence of summary edges from actual-in to actual-out vertices (subordinate-
characteristic-graph edges) permits the discovery of vertices that can reach s only through a pro-
cedure call, although the graph traversal does not actually descend into the called procedure.

Pass 2
Pass 2 identifies vertices that can reach s from procedures (transitively) called by P or from
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procedures called by procedures that (transitively) call P. Because call edges and parameter-in edges
are not followed, the traversal in Pass 2 does not “ascend” into calling procedures; the summary
edges from actual-in to actual-out vertices make such “ascents” unnecessary.

Figures 3.7 and 3.8 illustrate the two passes of the interprocedural slicing algorithm. Figure 3.7 shows
the vertices of the example system dependence graph that are marked during Pass 1 of the interprocedural
slicing algorithm when the system is sliced with respect to the formal-out vertex for parameter z in pro-
cedure Increment. Edges “traversed” during Pass 1 are also included in Figure 3.7. Figure 3.8 adds (in

Edge Key
iy CONtrol

intra dural loop-ind dent flow,
— sumlg‘;}yce cop-indepen

—}3» intraprocedural loop-carried flow

call, )
= -2 parameter-in

Figure 3.7. The example program’s system dependence graph is sliced with respect to the formal-out vertex for param-
eter z in procedure Increment. The vertices marked by Pass 1 of the slicing algorithm as well as the edges traversed
during this pass are shown above.
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boldface) the vertices that are marked and the edges that are traversed during Pass 2 of the slice.

Edge Key
control, R
—=3 intraprocedural loop-independent flow,
surnmary
—f>=  intraprocedural loop-carried flow
— -> call, parameter-in, parameter-out

Figure 3.8. The example program'’s system dependence graph is sliced with respect to the formal-out vertex for param-
eter 7 in procedure Increment. The vertices marked by Pass 2 of the slicing algorithm as well as the edges traversed
during this pass are shown above in boldface.



The result of an interprocedural slice consists of the sets of vertices identified by Pass 1 and Pass 2, and
the set of edges induced by this vertex set. Figure 3.9 shows the completed example slice (excluding def-

order edges).

Edge Key
weign  cONLrol

intraprocedural loop-independent flow,
summary

—~f= intraprocedural loop-carried flow

call, .
- .= parameler-in
Bgrameter»odt

Figure 3.9. The complete slice (excluding def-order edges) of the example program’s system dependence graph sliced
with respect to the formal-out vertex for parameter z in procedure Increment.
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In the following chapters of this dissertation, we use the operators b1 and b2 to designate the individual
passes of the slicing algorithm (the “b” refers to the backward (target to source) traversal of edges per-
formed by both passes of an interprocedural slice). Formally, operators b1 and b2 are applied to a system
dependence graph (SDG) and a set of vertices, and return a pair consisting of their first argument along
with a set of vertices; thus, each has the signature SDG X vertex-set — SDG X vertex-set. In the terminol-
ogy of Figure 3.6, they are defined as follows:

b1(G, S) 2 (G, MarkReaching Vertices(G, S, {def-order, parameter-out}))
b2(G, S) £ (G, MarkReachingVertices(G, §, {def-order, parameter-in, call})).

The operator b is used to denote the composition b2 °bl. Thus, the (full backwards) slice of graph G
with respect to vertex set S is denoted by Induce(b(G, S)), where Induce is the extension to system depen-
dence graphs of the function Induce defined in Section 2.2.1. Where there is no ambiguity, we omit
Induce; for example, we use b(G, §) in place of Induce (G, ) to denote the graph resulting from the
backward slice of G with respect to S.

Although operator b produces a (graph, vertex-set) pair, it is convenient to omit the operator that selects
the vertex-set component when comparing slices or when testing whether a set of vertices is in a slice. For
example, we use b(G 1, v)#b(G, v) in place of SelectVertexSet (b(G,v)) #SelectVertexSet (b(G2, v))).

As mentioned in Section 3.1, an interprocedural slice, unlike an hpr slice, is not guaranteed to be feasible
(i.e., it may not be the system dependence graph of any system). The reason for this is that it is possible for
the program elements found by operator b to include multiple calls on a procedure, each passing a different
subset of the actual parameters. For example, the slice shown in Figure 3.10 contains two calls on pro-
cedure P that pass different subsets of the actual parameters.

3.3.2. Using Interprocedural Summary Information to Build Procedure Dependence Graphs

The slice shown in Figure 3.9 illustrates a shortcoming of the method for constructing procedure depen-
dence graphs described in Section 3.2.1. The problem is that including both an actual-in and an actual-out

System § Gs
procedure main
a=1
b=2
c=3
callP(a, b)
callP (b, ¢)
d:=b+c
end

procedure P (x, y)
X =Xx+y
y =y+1

return

Figure 3.10. An infeasible slice. The slice of the system dependence graph for § with respect to the vertex labeled
“d 1= b+c" is highlighted above in bold (only the procedure dependence graph for the main procedure is shown). Since
this slice includes both actual parameters from the second call on P but only one (the second) actual parameter from the
first call on P, the slice is infeasible (i.e., no syntactically legal program has two calls on one procedure that include dif-
ferent numbers of parameters).
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vertex for every argument in a procedure call can affect the precision of an interprocedural slice. The slice
shown in Figure 3.9 includes the call vertex that represents the call to Add from A; however, this call does
not in fact affect the value of z in Increment. The problem is that an actual-out vertex for argument y in the
call to Add from A is included in A’s procedure dependence graph even though Add does not change the
value of y.

To achieve a more precise interprocedural slice we use the results of interprocedural data flow analysis
when constructing procedure dependence graphs in order to exclude vertices like the actual-out vertex for
argument y. The appropriate interprocedural summary information consists of the following sets, which
are computed for each procedure P [Banning79]:

GMOD(P):
the set of variables that might be modified by P itself or by a procedure (transitively) called from P.

GREF(P):
the set of variables that might be referenced by P itself or by a procedure (transitively) called from P.

The efficient computation of these sets is addressed in [Cooper84].

GMOD and GREF sets are used to determine which parameter vertices are included in procedure depen-
dence graphs as follows: for each procedure P, P’s procedure dependence graph includes one formal-in
vertex for each parameter of P and one formal-in vertex for each global variable in GMOD(P) v
GREF(P). It also includes one formal-out vertex for each global variable or parameter in GMOD(P).
Similarly, for each call-site on P, there is one actual-in vertex for each actual parameter and one actual-in
vertex for each global variable in GMOD(P) v GREF(P). At each call-site, there is one actual-out veriex
for each global variable or parameter in GMOD(P). (It is necessary to include an actual-in and a formal-in
vertex for a variable x that is in GMOD(P) and is not in GREF(P) because there may be an execution path
through P on which x is not modified. In this case, a slice of P with respect to the final value of x must
include the initial value of x; thus, there must be a formal-in vertex for x in P, and a corresponding actual-
in vertex at the call to P.)

Example. The GMOD and GREF sets for our example system are

procedure | GMOD | GREF
A X,y X,y
Add a a b
Inc z z

Because parameter b is not in GMOD(Add), Add’s procedure dependence graph should not include a
formal-out vertex for b, and the call to Add from A should not include the corresponding actual-out vertex.

Figure 3.11 shows A’s procedure dependence graph as it would be built using GMOD and GREF infor-
mation. The actual-out vertex for argument y of the call to Add is omitted, and the flow edge from that ver-
tex to the actual-in vertex “z;, :=y” is replaced by an edge from the formal-in vertex “y =y;," to the
actual-in vertex “z;, :=y”. The new edge is traversed during Pass 1 of the interprocedural slice instead of
the (now omitted) flow edge from “y := @ ,,” 10 “z;, :=y", thus (correctly) bypassing the call to Add in pro-
cedure A.

Another advantage to using GMOD and GREF is that it increases the number of equivalent systems that
have isomorphic system dependence graphs. (Recall that one of our motivating concerns from the begin-
ning of Section 3.2 is to capture as many equivalent systems as possible in the equivalence classes deter-
mined by systems with isomorphic system dependence graphs.) For example, consider the following
semantically equivalent systems S and S2 (S2 is S with the two calls to procedure Add reversed in order).
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Figure 3.11. Procedure A’s procedure dependence graph built using interprocedural summary information. The
actual-out vertex for argument y of the call 10 Add has been omitted, and the flow edge from that vertex to the vertex
“z,, := y" has been replaced by an edge from the vertex 'y := Y to the vertex “z;, ==y

System S/ System S2
procedure main procedure main
a=1 a:=1
b=2 b:=2
c:=3 c=3
call Add (a, c) callAdd (b, c)
call Add (b, ¢) callAdd (a, ¢)
end end
procedure Add (x, y) procedure Add (x, y)
X =x+y X =x+y
return return

Without the use of GMOD and GREF, SI and S2 have non-isomorphic system dependence graphs: the
edge from actual-out vertex “C:=You' of “call Add(a, ¢)” to the actual-in vertex “y;:=c” of
“call Add(b, c)” in SI’s system dependence graph is not found in $2’s graph, whereas S2’s system depen-
dence graph contains an edge from actual-out vertex “e =Y, Of “call Add(b, c)” to the actual-in vertex
“yin:=c” of “call Add(a, ¢)”. In contrast, when using GMOD and GREF, systems SI and S2 have iso-
morphic system dependence graphs; thus, using interprocedural data-flow information increases the
number of (semantically) equivalent systems that have isomorphic system dependence graphs.

We can further increase the number of equivalent programs that have isomorphic system dependence
graphs by employing more precise data-flow information. For procedure P, GDEF(P) is the set of vari-
ables that are modified on every control path through procedure P (i.e., variables that must be modified
whenever P is called); GUSE(P) is the set of variables referenced by procedure P before being defined in
that procedure. Variables that are in GDEF and not in GUSE do not require the associated actual-in and
formal-in vertex. However, because this information is costly to compute, we make a compromise and
assume system dependence graphs are constructed using (only) GMOD and GREF.

3.3.3. Interprocedural Slicing in the Presence of Call-By-Reference Parameter Passing and Aliasing

Our definitions of system dependence graphs and interprocedural slicing have assumed that parameters are
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passed by value-result.’ The same definitions hold for call-by-reference parameter passing in the absence
of aliasing; however, in the presence of aliasing, some modifications are required. This section presents
two approaches for slicing with systems that use call-by-reference parameter passing and contain aliasing.
The first provides a more precise slice than the second at the expense of the tdme and space needed to
transform the original system into one that is alias free. (These costs may, in the worst case, be exponential
in the maximum number of parameters passed to a procedure.) The second approach avoids this expense
by making use of a generalized notion of data dependence that includes data dependences that exist under
the possible aliasing patterns. After presenting these two approaches, we consider their use in multi-
procedure program integration.

Procedure Specialization

Our first approach is to reduce the problem of interprocedural slicing in the presence of aliasing to the
problem of interprocedural slicing in the absence of aliasing. The reduction is a transformation performed
by simulating the calling behavior of the system (using the usual activation-tree model of procedure calls
[Banning79]) to discover, for each instance of a procedure call, exactly how variables are aliased at that
instance. (Although a recursive system’s activation tree is infinite, the number of different alias
configurations is finite; thus, only a finite portion of the activation tree is needed to compute aliasing infor-
mation.)

Using alias information two transformations are performed. First, a new copy of the procedure (with a
new procedure name) is created for each different alias configuration; the procedure names used at call
sites are similarly adjusted. Second, within each procedure, variables are renamed so that each set of
aliased variables is replaced by a single variable.

Example. Figure 3.12 shows a system with aliasing, and the portion of the system’s activation tree that
is used to compute alias information for each call instance. We use the notation of {[Banning79}, in which
each node of the activation tree is labeled with the mapping from variable names to memory locations. The
transformed, alias-free version of the system is shown below.

procedure Main procedure PI(x, y) procedure P2(xy)
a=1 if y=0 then if xy =0 then
b:=0 call P2(x) call P2(xy)
call Pl(a, b) fi fi
c:=b y=y+1 xy=xy+1
end return return

The reduction may generate multiple copies of the vertex v with respect to which we are to perform a
slice. If this happens, it is necessary to slice the transformed system with respect to all occurrences of v.
This can be illustrated using the above example: if our original goal had been to slice with respect to the
statement “y :=y + 1” in procedure P, we must now slice with respect to the set of statements {“y =y +1”,
“xy :=xy+17}. The slice of the original system is obtained from the slice of the transformed system by
projecting elements in the slice of the ransformed system back into the original system: a vertex is in the
slice of the original system if any of its copies are in the slice of the transformed system.

System Dependence Graph Generalization

Our second approach to the problem of interprocedural slicing in the presence of aliasing is to generalize
the definition of the system dependence graph. This generalization represents a compromise between

3 |t is easy to modify the rules for including linkage vertices to support value (in) and out parameters. To pass variable x by value, nei-
ther actual-out nor formal-out vertices are included for x; to pass x as an ot parameter, only actual-out and formal-out vertices are in-
cluded for x.




39

procedure Main procedure P(x, y) Main
a=1 if y=0 then  Tocl
b:=0 call P (x, x) b o2
call P(a, b) fi c: loc3
c:=b y=y+1
end return l
P
a, x: locl
b, y: loc2
c: loc3
P
a, x,y: locl
s loc2
c:  loc3

Figure 3.12. A program with aliasing and the portion of its activation tree needed to compute all alias configurations.

precision and efficiency. The transformation described above produces a precise slice, but potentially
creates an exponential number of copies of each procedure; conversely, the approach described below
suffers a loss of precision but maintains the polynomial construction cost of the system dependence graph.

We generalize the definition of the system dependence graph to account for aliasing by replacing the
definitions for actual-out vertices, flow dependence edges, and def-order dependence edges. After giving
the replacement definitions, we describe the data-flow information required to compute flow (and def-
order) dependence edges under the new definitions and then describe how a slice is computed using the
generalized definition of a system dependence graph. We conclude this subsection with an example that
not only illustrates these techniques, but also illustrates the difference between this approach and the
transformation-based approach for handling systems with alising.

DEFINTTION. (Actual-out vertices in the presence of aliasing). The definition for the actual-out vertices at
a call-site is unchanged except that if under the old definition two (or more) actual-out vertices represent
assignments to the same variable, then these actual-out vertices are collapsed into a single actual-out ver-
tex. (This vertex is made the target of multiple parameter-out edges: one from each of the formal-out ver-
tices associated with the original actual-out vertices.)

DEFINITION. (Flow dependence in the presence of aliasing). A procedure dependence graph has a flow
dependence edge from vertex vy to vertex v, iff all of the following hold:

(1) v, is a vertex that defines variable x.
(2) v, isavertex that uses variable y.

(3) x and y are potential aliases, which includes the possibility that x and y are the same variable (in
which case the edge is a “must depend” edge; otherwise, if x and y are potential aliases, but not the
same variable, then the edge is a “may depend” edge).



(4) Control can reach v, after v, viaa path in the control-flow graph along which there is no intervening
definition of x or y.

Note that clause (4) does not exclude there being definitions of other variables that are potential aliases of x
or y along the path from v; 0 v,. An assignment to a variable z along the path from v, to v, only over-
writes the contents of the memory location written by v, if x and z refer to the same memory location. If z
is a potential alias of x, then there is only a possibility that x and z refer to the same memory location; thus,
an assignment to z does not necessarily over-write the memory location written by v, and it may be possi-
ble for v, to read a value written by v;.

DEFINITION. (Def-order dependence in the presence of aliasing). A procedure dependence graph has a
def-order dependence edge from vertex vy to VErieX vy iff all of the following hold:

(1) v, and v, define variables x, and x5, respectively.

(2) x, and x, are potential aliases.

(3) v, and v, are in the same branch of any conditional statement that encloses both of them.
(4) There exists a program component v3 such that vy —;vs and v, =¢vs.

(5) v, occurs before v, in an in-order traversal of the procedure’s abstract syntax tree.

The data-flow information required to compute flow (and def-order) dependence edges in the presence of
aliasing is an extension of traditional reaching-definition information. Traditionally, for each definition, a
pair consisting of the point at which the definition was made and the variable defined is recorded. To han-
dle aliasing each pair is extended to a triple, which includes the set of potential aliases of the defined vari-
able. For example, if y and z are potential aliases of x then a definition of x at point 1 would produce the
triple <1,x, {x, y, z }> (x is included in the third component because the alias relation is reflexive). As
with the computation of traditional reaching-definitions, a subsequent definition of x would replace this tri-
ple. Furthermore, a definition of y or z would remove y or z, respectively, from the alias set (but not
remove the triple).

For each procedure P, reaching-definition triples are computed from P#: an augmented version of P
created by adding to P assignment statements for the assignments represented by actual-in, actual-out,
formal-in, and formal-out vertices in P’s procedure dependence graph. P% models these assignments with
multiple assignment statements (e.g., variable, variable - - - :=expression, expression + - *) to avoid some
problems that would be introduced if an arbitrary order were used for the corresponding sequence of sim-
ple assignment statements.

The flow equation for multiple assignment statement “x, y :=€xpj, exp,” (which can be generalized to
more than two variables) performs the following actions: (1) remove all triples containing x or y as the
defined variable (second component), (2) create the triples <py, X, aliases (x)> and <pj,y, aliases(y)>,
and (3) remove x and y from the alias sets (third component) of all triples, including those added in step (2).
In action (2), points p; and p, are the points associated with the two vertices represented by the multiple
assignment statement; if however these points correspond to a single actual-out vertex (because of the col-
lapse defined above) then the same point is used in both triples (e.g., point 7 in Figure 3.13).

Example. Figure 3.13 shows the computation of reaching definitions in the presence of aliasing for a
slightly modified version of procedure P from Figure 3.12. This computation is straightforward except
perhaps the reintroduction of x into the triple <3, y, {y }> after point 8. In this example, and in general,
the definitions reaching the end of a conditional (e.g., point 8) are a combination of the definitions reaching
the end of the true and false branches of the conditional. In Figure 3.13, the triple <3, y, {y }> reaches
the end of the true branch; however, the triple <3,y, {x,y }> reaches the end of the false branch;
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points Active definitions immediately after each
Procedure P (in P*) P4 program point (for variables x and y only).
procedure P (x, y) procedure P’
1,2 X, Y =X Yin <l,x, &>, <2,y D>
yi=y*2 3 y =y*2 <l,x, >, <3,y {xy)>
4 if y =0 then <l,x,d>, <3, 3, {xy)>
if y=0 then 5 X =X <l,x, P>, <3,y {xy)>
call P (x, x) 6 Vi =X <l,x,d>,<3,5 (xy})>
7 X, X 3= Xours Your <Lx, {y}><3y{yl>
8 fi <l,x, D>, <, x, {y}> <3y {xyl}>
fi 9 yi=y+l <l,x, D>, <1, x, D> <9,y {x,y}>
yi=y+l 10 Xpyy =X <l,x, D>, <7, x, > <9,y {x,y]>
11 Yous =Y <l,x, D>, <1, x, &>,<9,y, {x,y}>
return
return

Figure 3.13. This figure adds the statement ““y :=y*2" to procedure P from Figure 3.12 and shows procedure PA, the
augmented version of P. The rightmost column gives the reaching-definition triples for the variables x and y after each
point in PA. Notice that the first multiple-assignment statement, “x, y :=X;, ¥ corresponds to P's two formal-in ver-
tices and therefore is associated with two program points (points 1 and 2) while the second multiple-assignment state-
ment, “X, X =Xy, You » cOrresponds to a single (collapsed) actual-out vertex and is therefore associated with a single
program point (point 7).

combining these triples produces <3, y, { x, y }> at the join point of the conditional (i.e. point 8).

Given the generalized definition for the system dependence graph, the interprocedural slice of a system
dependence graph is computed by the same two-pass algorithm used to compute the interprocedural slice
of a system in the absence of aliasing. The data dependences in a procedure provide a safe approximation
to the true dependences required for each alias configuration. However, because these edges cover all pos-
sible alias configurations, the resulting slice may contain unnecessary program elements.

Example. A comparison of the two techniques for handling aliasing can be made by considering the
example shown in Figure 3.14. This example illustrates the conservative approximation made by the
second approach which includes the statement “x :=1” in any slice that contains the statement “z :=z+1"
even though, given the aliasing configurations in which P can be called, the value produced by “x:=1" is
never used by “z :=z+1” (in the aliasing configuration defined by the first call there are no aliases and in the
aliasing configuration defined by the second call y is also an alias of x and z and therefore the assignment to
y overwrites the value produced by “x :=1" before it can be used at “z:= z+1”). Statement “x:=1" is
included in any slice that contains the statement “z :=z+1” because there is a flow edge from “x:=1" to

procedure main procedure P (x, y, z)
call P(a, b, ¢) x:=1
call P(d, d, d) yi=2
end ) z:=z+1
return

Figure 3.14. An illustration of the imprecision of the generalized definition for the system dependence graph .
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«z == z4+1” (this edge exists because x and z are potential aliases and a path exists from “x :=1"to “z :=z+1"
that is free of assignments to x and z). Conversely, for this example, the transformation-based approach
correctly omits the statement “x :=1” from any slice that includes “z=2+17.

Integration in the Presence of Aliasing

Because our ultimate goal is to define a multi-procedure program-integration algorithm, it is natural to ask
how integration would be carried out using either of the two techniques described above for representing
aliasing in system dependence graphs. One possibility is to extend the integration algorithm given in
Chapter 5 to operate on the generalized definition of the system dependence graph that contains edges fort
all possible aliasing situations (i.e., the second of the two proposals described above). In other words, the
same operations, as described in Chapter 5, would be carried out on the generalized system dependence
graphs for Base, A, and B. As with slicing, this should provide a safe, conservative integration algorithm
that may spuriously report interference in situations where, using either of the transformation-based
approaches described below, no interference is reported).

There are two possible transformation-based approaches to integration in the presence of aliasing. The
first uses transformations to determine the slices that make up the integrated system (as with the HPR algo-
rithm, the integrated system is the union of slices of Base, A, and B). The second integrates the
transformed versions of the original systems. This requires normalizing the transformations of Base, A,
and B such that if two call-sites must call different copies of procedure P in one of Base, A, or B then they
also call different copies of P in the other two systems. Because multiple copies of a procedure are
allowed, integration is more likely to succeed using this approach; however, the resulting integrated pro-
gram may contain multiple different copies of each procedure. Further investigation is needed to deter-
mine how to (and if it is desirable to) combine these copies into a single integrated version of the pro-
cedure.

Although any of the above approaches to integrating programs in the presence of aliasing could in theory
be used to integrate systems with call-by-reference parameters and aliasing, the remainder of this disserta-
tion deals only with value-result parameters where the aliasing problem does not arise.

3.3.4. Forward Slicing

Recall that forward slicing is the dual of (backward) slicing: whereas the slice of a program with respect to
a program point p and variable x consists of all statements and predicates of the program that might affect
the value of x at point p, the forward slice of a program with respect to a program point p and variable x
consists of all statements and predicates of the program that might be affected by the value of x at point p.
An algorithm for forward interprocedural slicing can be defined on system dependence graphs, using the
same concepts employed for (backward) interprocedural slicing. As before, the key element is the use of
the linkage grammar’s characteristic graph edges in the system dependence graph to represent transitive
dependences from actual-in vertices to actual-out vertices due to the effects of procedure calls.

Our algorithm for forward interprocedural slicing is given in Figure 3.15, in which the computation of
the forward slice of system dependence graph G with respect to vertex set S is performed in two passes.
The traversal in Pass 1 follows flow edges, control edges, and parameter-out edges, but does not follow call
edges, def-order edges, or parameter-in edges. Because call edges and parameter-in edges are not fol-
lowed, the traversal in Pass 1 does not descend into called procedures. The traversal in Pass 2 follows flow
edges, control edges, call edges, and parameter-in edges, but does not follow def-order edges or
parameter-out edges. Because parameter-out edges are not followed, the traversal in Pass 2 does not
ascend into calling procedures.
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procedure Mark VerticesOfForwardSlice(G, S)
declare
G: a system dependence graph
S, 8”: sets of vertices in G
begin
/* Pass 1: Slice forward without descending into called procedures */
§’ = MarkVerticesReached(G, S, {def-order, parameter-in, call})

/* Pass 2: Slice forward into called procedures without ascending to call sites */
MarkVerticesReached(G, §’, {def-order, parameter-out})

end

function MarkVerticesReached(G, V, Kinds) returns a set of vertices
declare
G: a system dependence graph
V: a set of vertices in G
Kinds: a set of kinds of edges
v, w: vertices in G
WorkList: a set of vertices in G
begin
WorkList .=V
while WorkList # & do
Select and remove a vertex v from WorkList
Mark v
for each unmarked vertex w such that there is an edge v —w whose kind is not in Kinds do
Insert w into WorkList
od
od
return (the set of marked vertices in G)
end

Figure 3.15. The procedure Mark VerticesQOfForwardSlice marks the vertices in the forward interprocedural slice of G
with respect to S. The auxiliary procedure Mark VerticesReached marks all vertices in G to which there is a path from a
vertex in V along edges of kinds other than those in the set Kinds.

Just as the operators b and b2 designate the individual passes of the backward slicing algorithm, the
operators fI and f2 designate the individual passes of the forward slicing algorithm. Formally, operators f1
and f2 are applied to a system dependence graph (SDG) and a set of vertices, and return a pair consisting of
their first argument along with a set of vertices; thus, each has the signature SDG Xvertex-
set — SDG x vertex-set. In the terminology of Figure 3.15, they are defined as follows:

f1(G, S) & (G, MarkVerticesOfForwardSlice(G, S, {def-order, parameter-in, call}))
2(G, S) 2 (G, MarkVerticesOfForwardSlice(G, S, {def-order, parameter-out})).

Again, just as operator b is used to denote the composition b2 ¢ b, the operator f is used to denote the
composition f2°f1. Thus, the full forward slice of G with respect to vertex set S is denoted by
Induce(f(G, S)). Finally, as with hpr slices, a forward slice of a system’s system dependence graph may be
infeasible (i.e., it may not correspond to the system dependence graph of any system).

33.5. Slicing Partial System Dependence Graphs

The interprocedural slicing algorithm presented above is designed to be applied to a complete system
dependence graph. In this section we discuss how to slice incomplete system dependence graphs.



The need to handle incomplete systems arises, for example, when slicing a program that calls a library
procedure that is not itself available, or when slicing programs under development. In the first case, the
missing components are procedures that are called by the incomplete system; in the second case, the miss-
ing components can either be not-yet-written procedures called by the incomplete system (when the pro-
gram is developed top-down), or possible calling contexts (when the program is developed bottom-up).

In either case, information about the possible effects of missing calls and missing calling contexts is
needed to permit slicing. This information takes the form of (safe approximations to) the subordinate
characteristic graphs for missing called procedures and the superior characteristic graphs for missing cal-
ling contexts.

When no information about missing program components is available, subordinate characteristic graphs
in which there is an edge from every inherited attribute to every synthesized attribute, and superior charac-
teristic graphs in which there is an edge from every synthesized attribute to every other attribute (including
the other synthesized attributes), must be used. This is because the slice of the incomplete system should
include all vertices that could be included in the slice of some “completed” system, and it is always possi-
ble to provide a call or a calling context that corresponds to the graphs described above.

For library procedures, it would be possible to provide precise subordinate characteristic graphs even
when the procedures themselves are not provided. For programs under development, it might be possible
to compute characteristic graphs, or at least better approximations to them than the worst-case graphs,
given specifications for the missing program components.

3.4. Related Work

In recasting the interprocedural slicing problem as a reachability problem in a graph, we are following the
example of [Outenstein84], which does the same for intraprocedural slicing. The reachability approach is
conceptually simpler than the data-flow equation approach used in [Weiser84] and is also much more
efficient when more than one slice is desired.

The recasting of the problem as a reachability problem does involve some loss of generality; rather than
permitting a program to be sliced with respect to program point p and an arbitrary variable, a slice can only
be taken with respect to a variable that is defined or used at p. For such slicing problems the interpro-
cedural slicing algorithm presented in this chapter is an improvement over Weiser’s algorithm because our
algorithm is able to produce a more precise slice than the one produced by Weiser’s algorithm. However,
the extra generality is not the source of the imprecision of Weiser’s method; as explained in the Introduc-
tion and in Section 3.2, the imprecision of Weiser’s method is due to the lack of a mechanism to keep track
of the calling context of a called procedure.

After the initial publication of our interprocedural-slicing algorithm [Horwitz88a], a different technique
for computing interprocedural slices was presented by Hwang, Du, and Chou [Hwang88]. The slicing
algorithm presented in [Hwang88] computes an answer that is as precise as our algorithm, but differs
significantly in how it handles the calling-context problem. The algorithm from [Hwang88] constructs a
sequence of slices of the system—where each slice of the sequence essentially permits there to be one
additional level of recursion—until a fixed-point is reached (i.e., until no further elements appear in a slice
that uses one additional level of recursion). Thus, each slice of the sequence represents an approximation
to the final answer. During each of these slice approximations, the algorithm uses a stack to keep track of
the calling context of a called procedure. In contrast, our algorithm for interprocedural slicing is based on
a two-pass process for propagating marks on the system dependence graph. In Pass 1 of our algorithm, the
presence of the linkage grammar’s subordinate-characteristic-graph edges (representing transitive depen-
dences due to the effects of procedure calls) permits the entire effect of a call to be accounted for by a sin-
gle backward step over the call site’s subordinate-characteristic-graph edges.
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Hwang, Du, and Chou do not include an analysis of their algorithm’s complexity in [Hwang88], which
makes a direct comparison with our algorithm difficult; however, there are several reasons why our algo-
rithm may be more efficient. First, the algorithm from [Hwang88] computes a sequence of slices, each of
which may involve re-slicing a procedure multiple times; in contrast, through its use of marks on system-
dependence-graph vertices, our algorithm processes no vertex more than once during the computation of a
slice. Second, if one wishes to compute multiple slices of the same system, our approach has a significant
advantage. The system dependence graph (with its subordinate-characteristic-graph edges) need be com-
puted only once; each slicing operation can use this graph, and the cost of each such slice is linear in the
size of the system dependence graph. In contrast, the approach of [Hwang88] would involve finding a new
fixed point (a problem that appears to have complexity comparable to the computation of the subordinate
characteristic graphs) for each new slice.

In [Myers81], Myers presents algorithms for a specific set of interprocedural data flow problems, all of
which require keeping track of calling context; however, Myers’s approach to handling this problem differs
from ours. Myers performs data flow analysis on a graph representation of the program, called a super
graph, which is a collection of control-flow graphs (one for each procedure in the program), connected
together by call and return edges. The information maintained at each vertex of the super graph includes a
memory component, which keeps track of calling context (essentially by using the name of the call site).
Our use of the system dependence graph permits keeping track of calling context while propagating simple
marks rather than requiring the propagation of sets of names.

It is no doubt possible to formulate interprocedural slicing as a data flow analysis problem on a super
graph, and to solve the problem using an algorithm akin to those described by Myers to account correctly
for the calling context of a called procedure. As in the comparison with [Hwang88], our algorithm has a
significant advantage when one wishes to compute multiple slices of the same systern. Whereas the system
dependence graph can be computed once and then used for each slicing operation, the approach postulated
above would involve solving a new data flow analysis problem from scratch for each slice.

The vertex-reachability approach we have used here has some similarities to a technique used in
[Kou77], [Callahan88], and [Cooper88] to transform data flow analysis problems to vertex-reachability
problems. In each case a data flow analysis problem is solved by first building a graph representation of
the program, and then performing a reachability analysis on the graph, propagating simple marks rather
than, for example, sets of variable names. One difference between the interprocedural slicing problem and
the problems addressed by the work cited above, is that interprocedural slicing is a “demand problem”
[Babich78] whose goal is to determine information concerning a specific set of program points rather than
an “exhaustive problem” in which the goal is to determine information for all program points.



Appendix to Chapter 3: Attribute Grammars and Attribute Dependences

An attribute grammar is a context-free grammar extended by attaching atributes w the terminal and non-
terminal symbols of the grammar, and by supplying atribute equations to define attribute values
[Knuth68]. In every production p: X - X1, ..., X, each X; denotes an occurrence of one of the grammar
symbols; associated with each such symbol occurrence is a set of attribute occurrences corresponding to
the symbol’s attributes.

Each production has a set of attribute equations; each equation defines one of the production’s attribute
occurrences as the value of an attribute-definition function applied to other attribute occurrences in the pro-
duction. The attributes of a symbol X are divided into two disjoint classes: synthesized attributes and inher-
ited attributes.

An attribute grammar is well formed when the terminal symbols of the grammar have no synthesized
attributes, the root nonterminal of the grammar has no inherited attributes, and each production has exactly
one attribute equation for each of the left-hand-side nonterminal’s synthesized attribute occurrences and for
each of the right-hand-side symbols’ inherited attribute occurrences. (The grammars that arise in this
dissertation are potentially not well formed in that a production may have equations for synthesized attri-
bute occurrences of right-hand-side symbols. The reason that this does not cause problems is that the
“linkage grammar” of the interprocedural slicing algorithm is used only to compute transitive dependences
due to calls; we are not interested in the language defined by the grammar, nor in actual attribute values.)

A derivation tree node that is an instance of symbol X has an associated set of attribute instances
corresponding to the attributes of X. An attributed tree is a derivation tree together with an assignment of
either a value or the special token null to each attribute instance of the tree.

Ordinarily, although not in this dissertation, one is interested in analyzing a string according to its
attribute-grammar specification. To do this, one first constructs the string’s derivation tree with an assign-
ment of null to each attribute instance, and then evaluates as many attribute instances as possible, using the
appropriate attribute equation as an assignment statement. The latter process is termed attribute evalua-
tion.

Functional dependences among attribute occurrences in a production p (or attribute instances in a tree T)
can be represented by a directed graph, called a dependence graph, denoted by D (p) (respectively, D (T))
and defined as follows:

(1)  For each attribute occurrence (instance) b, the graph contains a vertex b’.

(2) If atribute occurrence (instance) b appears on the right-hand side of the attribute equation that
defines attribute occurrence (instance) ¢, the graph contains the edge b’ — ¢’

An attribute grammar that has a derivation tree whose dependence graph contains a cycle is called a circu-
lar attribute grammar. (The grammars that arise in this dissertation can be circular grammars.)

A node’s subordinate and superior characteristic graphs provide a convenient representation of transi-
tive dependences among the node’s attributes. (A transitive dependence exists between attributes that are
related in the transitive closure of the tree’s attribute dependence relation, or, equivalently, that are con-
nected by a directed path in the tree’s dependence graph.) The vertices of the characteristic graphs at node
r correspond to the attributes of 7; the edges of the characteristic graphs at r correspond to transitive depen-
dences among r’s attributes.

The subordinate characteristic graph at r is the projection of the dependences of the subtree rooted at r
onto the attributes of . To form the superior characteristic graph at node r, we imagine that the subtree
rooted at r has been pruned from the derivation tree, and project the dependence graph of the remaining
tree onto the attributes of r. To define the characteristic graphs precisely, we make the following
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definitions:

(1) Given a directed graph G = (V, E), a path from vertex a to vertex b is a sequence of vertices,
V1, V2, o Vi), such thata=vy, b=v,, and { (v, vis) li=1, . k=1 }cE.

(2) Given a directed graph G = (V, E) and a set of vertices V’ CV, the projection of G onto V' is defined
as

GIIV'=(V', E")

where E/ = {(v, w) | v,we V'’ and there exists a path [v=v,,v,..,vy=w] in G such that
Vg, s Vi @ V7). (Thatis, G//V” has an edge from ve V'iowe V’ when there exists a path from
v to w in G that does not pass through any other elements of V”.)

The subordinate and superior characteristic graphs of a node r, denoted r.C and r.C, respectively, are
defined formally as follows: Let r be a node in tree T, let the subtree rooted at r be denoted T, and let the
attribute instances at r be denoted A (r), then the subordinate and superior characteristic graphs at r satisfy
r.C=D(T)//A(r)

rC=DT)-DTN/IA(F).

A characteristic graph represents the projection of attribute dependences onto the attributes of a single tree
node; consequently, for a given grammar, each graph is bounded in size by some constant.



CHAPTER 4

A MODEL FOR MULTI-PROCEDURE INTEGRATION

In this chapter we consider two straightforward extensions of the HPR algorithm to handle multi-procedure
integration. These two algorithms are strawmen that are used to motivate the need for more refined tech-
niques. The first algorithm, discussed in Section 4.1, fails to satisfy Property (2) of the integration model of
Section 1.1; it is possible for a merged program produced by this algorithm to terminate abnormally on an
initial state on which A, B, and Base all terminate normally. The second algorithm, discussed in Section
42, does satisfy Property (2) of the integration model, but is unacceptable because it reports interference
when an intuitively acceptable integrated program exists. The latter example leads us to reformulate the
integration model to capture better the goals of multi-procedure integration; the reformulated model is dis-
cussed in Section 4.3.

4.1. Integration of Separate Procedures

Our first candidate algorithm for multi-procedure integration applies the HPR algorithm separately to each
of the procedures that make up a system (i.e., for each procedure P in one or more of Base, A, and B, vari-
ant A and variant B’s versions of P are integrated with respect to Base’s version of P). Unfortunately, this
approach fails to satisfy Property (2) of the integration model of Section 1.1. This is illustrated by the
example shown in Figure 4.1, where the program labeled “Integrated System” is the result when the HPR
algorithm is used to integrate the three versions of Main and to integrate the three versions of P. Although
programs Base, A, and B in Figure 4.1 all terminate normally, the integrated program terminates

Base Variant A Variant B Integrated System
procedure Main procedure Main procedure Main procedure Main
=1 x:=1 x:=1 x:=1
call P (x) call P (x) call P (x) call P (x)
y=1/x
end(x) end(x) end(x) end(x)
procedure P (a) procedure P (a) procedure P (a) procedure P (a)
a=a+1 a=a+l a=a-1
return return return return

Figure 4.1. This example illustrates that when the HPR. algorithm is used to integrate separately the individual pro-
cedures that make up a system, the integrated program can fail to satisfy Property (2) of the integration model of Sec-
tion 1.2: although programs Base, A, and B all terminate normally, the integrated program terminates abnormally with a
division-by-zero error. (The boxes indicate the modifications made to variants Aand B.)
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abnormally with a division-by-zero error; this is the result of an interaction between the statement
“g:=a—1" in procedure P (which was introduced in variant A) and the statement “y:=1/x" in the Main
procedure (which was introduced in variant B). This example motivates the need for a multi-procedure
integration algorithm to take into account potential interactions between modifications that occur in dif-
ferent procedures of the different variants.

4.2. Direct-Extension Algorithm: A Straightforward Extension of the HPR Algorithm

The need to determine the potential effects of a change made in one procedure on components of other pro-
cedures suggests the use of interprocedural slicing. Thus, our second candidate algorithm for multi-
procedure integration is a direct extension of the HPR algorithm: it performs the steps of the HPR algo-
rithm exactly as given in Chapter 2, except that each intraprocedural slicing operation is reinterpreted as an
interprocedural slicing operation.

Although this reinterpretation does yield a multi-procedure integration algorithm that satisfies the
integration model of Section 1.1, the algorithm obtained is unsatisfactory because it fails (i.e., reports
interference) on many examples for which, intuitively, integration should succeed. This is illustrated by
the example shown in Figure 4.2, on which the direct extension of the HPR algorithm reports interference.
Because the backward slices b (Base, (x=x+1}), b(4, {x:=x+1)),and b(B, (x:=x+1 }) are pairwise
unequal, the statement “x:=x+1” is an affected point in both variants; therefore, the slices
b(A, (x:=x+1)) and b(B, { x:=x+1}) are both included in the merged system dependence graph Gy.
However, because both slices are included in Gy, they are both “corrupted” in Gy; that is, although
b, {x=x+1)) and b(B, (x:=x+1}) are sub-graphs of Gy, neither b(A, {x:=x+1 }) nor
b(B, (x:=x+11}) is a slice of Gy. For example, the slice b (B, {x:=x+1}) includes the actual-in vertex
Jabeled “x;, :=b" for the second call on Incr, which has an incoming dependence edge from statement
“p.=4.” The slice b(A, {x:=x+1}) also includes the actual-in vertex labeled “x;, :=b" for the second
call on Incr, but with an incoming dependence edge from “b:= 2.” Therefore, in the slice
b(Gy, {x:=x+1}), the actual-in vertex labeled “x;y :=b" has incoming dependence edges from both
“p:=4" and “b:=2." Consequently, graph G, fails the interference test and the integration algorithm
reports interference.

Base Variant A Variant B Proposed Integrated System
procedure Main procedure Main procedure Main procedure Main
a=1 a=1 a:=3
b:=2 b=2 (b =4] b:=4
call Incr (a) call Incr (a) call Incr (a) call Incr (a)
call Incr (b) call Incr (b) call Incr (b) call Incr (b)
end(a, b) end(a, b) end(a, b) end(q, b)
procedure Incr (x) procedure Incr (x) procedure Incr(x) procedure Incr (x)
xi=x+1 x=x+1 x=x+1 x:=x+1
return return return return

Figure 4.2. The program shown on the right incorporates the changed behavior of both A and B as well as the
preserved behavior of Base, A, and B. However, a direct extension of the HPR algorithm that uses inferprocedural slic-
ing operations in place of intraprocedural slicing operations would report interference on this example. (The boxes in-
dicate the modifications made to variants A and B.)



50

Further examination of the example in Figure 4.2 reveals that extending the programming language with
procedures and call statements has introduced a mew issue for the proper formulation of integration,
namely, “What is the ‘granularity’ by which one should measure ‘changed execution behavior’?” Itis cer-
tainly true that statement “x:=x+1” exhibits three different behaviors (i.e., produces three different
sequences of values) in Base, A, and B; however, statement “x :=x+1" in variant A exhibits different
behavior from Base only on the first invocation of Incr; statement “x :=x+1” in B exhibits different
behavior from Base only on the second invocation of Incr. Thus, for this example, it would seem desirable
for the integration algorithm to succeed and return the program labeled “Proposed Integrated System” in
Figure 4.2; when this program is executed, it exhibits the changed behavior from variant A during the first
invocation of Incr and the changed behavior from variant B during the second invocation of /ncr.

However, the program labeled “Proposed Integrated System” in Figure 4.2 fails to meet Property (2) of
the integration model of Section 1.1 (because the sequences of values produced at statement “x :=x +1” in
Base, A, and B are pairwise unequal). This example suggests that the integration model of Section 1.1,
which was originally introduced as a model for the integration of single-procedure programs, needs to be
revised to characterize better the goals of multi-procedure integration. In particular, the integration model
should capture the notion of changed execution behavior at a finer level of granularity.

4.3. Roll-Out and A Revised Model of Program Integration

In this section we define a more appropriate model of multi-procedure integration by relating multi-
procedure integration to single-procedure integration through the concept of roll-out—the exhaustive in-
line expansion of call statements to produce a program without procedure calls. Each expansion step
replaces a call statement with a new scope statement that contains the body of the called procedure and is
parameterized by assignment statements that make explicit the transfer of values between actual and formal
parameters. In the presence of recursion, roll-out leads to an infinite program. (As defined in Chapter 7,
the meaning of an infinite program is defined by the least upper bound of the meanings of the finite pro-
grams that approximate it.) We wish to stress that our multi-procedure integration method does not actu-
ally perform any roll-outs; roll-out is simply a conceptual device introduced to formulate properly our
algorithm’s goal.

Roll-out can be applied to an individual procedure or to all the procedures in a system. We use the nota-
tion roll-out(A, Main) to denote the single (possibly infinite) program produced by repeatedly expanding
call-sites in procedure Main of system A and roll-out(A) to denotes the set of (possibly infinite) programs
produced by rolling-out every procedure in A. In what follows, we present two revised versions of the
program-integration model. Both versions make use of roll-out; however, the first version only requires
that certain properties hold for roll-out(Base, Main), roll-out(A, Main), and roll-ou(B, Main), while the
second version requires that these properties hold for all of the procedures in the sets roll-out(Base),
roll-out(A), and roll-out(B).

The roll-out concept leads us to a different perspective on the notion of the behavior of a program com-
ponent (and consequently to a notion of finer granularity of changed execution behavior). A “rolled-out”
program contains many occurrences—possibly an infinite number—of each statement in the original pro-
gram. In the rolled-out program, different occurrences of a given component of some procedure P
correspond to invocations of P in different calling contexts. Consequently, one occurrence of a given com-
ponent can have a different behavior in roll-out(A, Main) than in roll-out(Base, Main), while another
occurrence of the same component has a different behavior in roll-out(B, Main) than in
roll-out(Base, Main), without there being interference.

Example. For each of the systems listed in Figure 4.2, the (finite) program obtained by applying roll-out
to the system’s main procedure contains two different occurrences of statement “x :=x + 1,” corresponding
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to the first and second invocations of procedure Incr. The change made in Variant A affects the behavior
only at the first occurrence of “x :=x + 1;” while the change made in Variant B affects the behavior only at
the second occurrence of “x :=x+1.” When roll-out is applied to the main procedure of the system labeled
“Proposed Integrated System” in Figure 4.2, the resulting program captures both changes: when the pro-
gram is executed, it exhibits the changed behavior from variant A at the first occurrence of “x :=x+1" as
well as the changed behavior from variant B at the second occurrence of “x :=x + 1.”

To justify the use of roll-out in our new integration model it is necessary to demonstrate that roll-out is a
semantics preserving transformation. That is, when system § and program roll-out(S, Main) are applied to
the same initial state, the sequences of values produced by the statements of S and the occurrences of these
statements in roll-out(S, Main) are the same. Furthermore, the context in which a sequence is produced by
a statement s in S uniquely identifies the occurrence of s that produces the identical sequence in
roll-out(S, Main). For example, referring to system Base of Figure 4.2, in the context corresponding to
“callincr (a)” statement “x :=x+1” produces the sequence <2>; this context (uniquely) identifies the first
occurrence of “x :=x+1" in roll-out(Base, Main), which also produces the sequence <2>. We show in
Chapter 7 that roll-out is a semantics preserving transformation.

Our revised model of integration involves the concept of “integration” at two levels:

(1) The conceptual level concerns the integration of rolled-out (and hence possibly infinite) programs. In
what follows, /™ denotes an operation that combines three (possibly infinite) rolled-out programs.

(2) The concrete level concerns an actual algorithm for multi-procedure integration (i.e., an operation that
applies to finite representations of programs, such as system dependence graphs). In what follows, IS
denotes an algorithm that combines three programs.

Operation I™ provides a standard against which we measure / 5,

We can now state the revised, two-level model of integration:

Revised Model of Program Integration, Version 1

(1) At the concepwal level, we retain the integration model of Section L.I: let
M= =I"(roll-out(A, Main), roll-out(Base, Main), roll-out(B, Main)). Then roll-out(Base, Main),
roll-out(A, Main), roll-out(B, Main), and M~ must meet the three properties of the integration
model of Section 1.1 (with infinite programs now permitted).

(2) Atthe concrete level, we impose the following conditions:

(i) Programs are finite and must be written in the simplified programming language described in
Property (1) of the integration model of Section 1.1, extended with procedures, call state-
ments, and value-result parameter passing.

(i) I°(A, Base,B) succeeds and produces system M iff [ “(roll-out(A, Main),
roll-out(Base, Main), roll-out(B, Main)) succeeds and produces M ~.

(iii) roll-out(M, Main) must equal M™.

Properties (2)(ii) and (2)(iii) state that the system produced by algorithm / $ must be consistent with the
(possibly infinite) program produced by operation /™.

This two-level model of integration has the effect of weakening Property (2) of the integration model of
Section 1.1, since the new model insists that Property (2) of the old model hold only for the rolled-out pro-
grams of the model’s conceptual level. In a rolled-out program, different occurrences of a given com-
ponent of some procedure P correspond to different invocations of P in different calling contexts. Thus,
there is not necessarily interference when one occurrence of a given compenent has a different behavior in
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roll-out(A, Main) than in roll-out(Base, Main), while another occurrence of the component has a different
behavior in roll-out(B, Main) than in roll-out(Base, Main).

Unfortunately, there are two problems with our new model. The first problem is a complication intro-
duced by the roll-out concept. A rolled-out program may contain multiple occurrences of each procedure
that occurs in the original program. For all of the (infinite) programs in the range of roll-out, all of the dif-
ferent occurrences of a given procedure are identical; however, in the (infinite) program produced by
operation /> this is not necessarily the case-—the different occurrences of a procedure may contain dif-
ferent subsets of the procedure’s parameters and statements. If this is the case, it is impossible to provide a
single procedure that represents all of the different occurrences that occur in the integrated program.
Under these conditions, we say that the result of I” is inhomogeneous.! Consequently, we modify Property
(2)(ii) of the concrete level of the integration model as follows:

(2)(ii) [modified]
I%(A, Base, B) succeeds and produces system M iff I™ (roll-out(A, Main), roll-out(Base, Main),
roll-out(B, Main)) succeeds and produces M~ and M = is homogeneous.

The second problem is that the new model allows procedures to be omitted from an integrated system
even though they are present in all three of the systems that are being integrated (i.e., Base, A, and B). For
example, consider the systems shown in Figure 4.3. The system labeled “Integrated System” satisfies the
new model because roll-out(Integrated System, Main) captures the changed behaviors of both
roll-out(A, Main) and roll-out(B, Main) as well as the behaviors that are common to roll-out(A, Main),
roll-out(Base, Main), and roll-out(B, Main). Nevertheless, we judge this integrated system to be unsatis-
factory because it excludes procedure Q, which has not been deleted in either variant.

Base Variant A Variant B Integrated System
procedure Main procedure Main procedure Main procedure Main
a:=0 a=0 a=0
c=2 c=2
call P(a, c) call P (g, c) } call P(a)
a:=a+]]| a=a+l
b:=1 b:=1 b:=1
d:=3 d =3
call P(b, d) ] call P(b, d) call P (b)
b=b+2
end(a, b, ¢, d) end(a, c) end(b, d) end(a, b)
procedure P(x, y) procedure P (x, y) procedure P (x, y) procedure P (x)
x=x+1 x=x+1 x=x+1 x=x+1
call 0(y) call @ (y) call @ (y)
return return return return
procedure Q(z) procedure Q (z) procedure Q (z)
=z+1 z=2z+1 z=z+1
return return return

Figure 4.3. The system labeled Integrated System is an acceptable integration of Base, A, and B according to the re-
vised integration model. However, it is unsatisfactory because procedure Q, which is in Base, A, and B, is omitted.
(The boxes indicate the modifications made to variants A and B.)

1 A formal definition of the term homogeneous is given in Section 6.1.
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The problem is that the new model only imposes constraints on the rolled-out main procedures of Base,
A, and B. To rectify this problem we redefine the model so that integration of rolled-out programs involves
all procedures, not just the main procedures. Thus, henceforth I~ denotes an operation that combines three
sets of (possibly infinite) programs, one set for each of three rolled-out systems.

Revised Model of Program Integration, Version 2

(1) The requirements at the conceptual level are modified to cover sets of rolled-out procedures: let
M= = I=(roll-out(A), roll-out(Base), roll-out(B)). Then for every (rolled-out) procedure that ex-
ists in one or more of roll-out(Base), roll-out(A), roll-out(B), and M~, the three properties of the
integration model of Section 1.1 must hold.

(2) Similarly, at the concrete level, we require that the system produced by algorithm / S must be con-
sistent with the set of rolled-out procedures produced by I™:

(i) Programs are finite and must be written in the simplified programming language described in
Property (1) of the integration model of Section 1.1, extended with procedures, call state-
ments, and value-result parameter passing.

(ii) I°(A, Base, B) succeeds and produces system M iff I=(roll-out(A), roll-out(Base),
roll-out(B)) succeeds and produces set of programs M~ and M~ is homogeneous.

(iii) roll-out(M) must equal M~.

In the remaining chapters of this dissertation the terms “the model” and “the multi-procedure integration
model” refer to the above model (i.e., these terms are synonymous with “the Revised Model of Program
Integration, Version 2”).

To satisfy the integration model, we must devise operations /™ and /5 and show that the required proper-
ties are satisfied. We first define HPR™ to be the natural extension of the HPR algorithm that operates on
the infinite program dependence graphs of infinite programs. We then define Integrate™ to be the operator
that applies HPR™ to every (rolled-out) procedure in roll-out(A), roll-out(Base), and roll-out(B) given the
additional requirement described below:

Integrate” (roll-out(A), roll-out(Base), roll-out(B)) &
U HPR = (roll-out(A, P), roll-out(Base, P), roll-out(B, P)).
Pe (AuBaseuB)
In addition, we require that Integrate™ place the statements of all scopes derived from the same procedure
in the same order. This avoids situations where any operation serving as [ S would fail to satisfy Property
(2)(iii) because Integrate™ picks a different statement order for the statements in two scopes with iso-
morphic dependence sub-graphs. It is important to note that this requirement does not reduce the number
of integrations in which Integrate™ is successful: if Integrate™ would succeed without this requirement,
then it will succeed with the requirement.

Operator Integrate™ serves as I in the remaining chapters of this dissertation. It is shown in Chapter 8
that Integrate™ satisfies Property (1).

The remainder of this dissertation deals with the design of Integrate®, the multi-procedure integration
algorithm that serves as operation / § and the proof that this algorithm satisfies the model. To begin with,
Chapter 5 describes Integrate®. Tt is shown in Chapter 6 that this algorithm satisfies Property (2) of the
model. Chapters 7 and 8 deal with the semantics of the merged system. Chapter 7 demonstrates that
roll-out is a semantics-preserving transformation; thus, Chapter 7 justifies the use of roll-out to relate the
meanings of Base, A, B, and M to the meanings of roll -out(Base), roll-out(A), roll-out(B), and M~.



Together with the results from Chapter 6, this implies M captures the correct execution behavior if M™
captures the correct execution behavior. The final proof, in Chapter 8, demonstrates that Integrate™
satisfies Property (1) of the model; thus, M> captures the correct execution behavior. Finally, Chapter 9
summerizes the work described in the dissertation and outlines possible future work on program integra-
tion.




CHAPTER 5

AN ALGORITHM FOR MULTI-PROCEDURE INTEGRATION

This chapter presents IntegrateS, an algorithm for multi-procedure program integration that meets the
requirements of Version 2 of the Revised Integration Model presented in Section 4.3. Consider again the
examples shown in Figures 4.2 and 4.3, which served to motivate our revisions to the integration model of
Section 1.1. For the example shown in Figure 4.2, Integrate® creates the system labeled “Proposed
Integrated System” in Figure 4.2. (Recall that in Section 4.3 we argued that the “Proposed Integrated Sys-
tem” incorporates the changes that were made in variant A in addition to those made in variant B.) For the
example shown in Figure 4.3, Integrate’ produces a system that is identical to the one labeled “Integrated
System” in Figure 4.3, except that it also includes procedure Q, whose disappearance motivated Version 2
of the Revised Integration Model.

There are two aspects of the multi-procedure integration problem that complicate the definition of
IntegrateS:

(1) Integrate® must take into account different calling contexts when determining what was changed in
variants A and B. (The Direct-Extension Algorithm of Section 4.2 reports interference, and hence
fails to produce the system labeled “Proposed Integrated System” for the example in Figure 4.2
because it does not take into account different calling contexts when determining the changed portions
of A and B.) In Chapter 3, we solved a somewhat similar calling-context problem for interprocedural
slicing using summary edges (edges that summarize transitive dependences between program ele-
ments) and a two-pass backwards slicing algorithm; for multi-procedure integration, we solve the
calling-context problem using summary edges and a combination of the individual passes of the back-
ward and forward slicing algorithms (see Section 5.2).

(2) One or more of the arguments to Integrate’ can contain dead code. During program development,
dead code may be introduced temporarily, with the programmer intending to turn it into live code at a
later time. Thus, it is an important practical concern that an integration algorithm preserve all changes
made to a variant, including the introduction of, and modifications to, dead code. To handle properly
systems that contain dead code, the first step of the integration algorithm augments the system depen-
dence graphs of A and B with some additional vertices that act as representatives for dead code and
additional edges that summarize paths to dead code (see Section 5.3). This information is used by the
integration algorithm to determine what has changed in variants A and B even when one or more of
the systems contains dead code.

The presentation of the multi-procedure integration algorithm is divided into seven subsections: Section
5.1 presents additional background material on the HPR algorithm and interprocedural slicing. Section 5.2
describes the construction of the merged system dependence graph. This construction is actually not quite
correct because, although it handles the calling-context problem, it does not handle all examples correctly
when systems contain dead code. Section 5.3 describes a preprocessing step (the addition of meeting-point
vertices and edges) necessary to handle dead code correctly. Section 5.4 discusses the test for Type 1
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interference. Section 5.5 presents the homogeneity test, which tests whether M™ (the result of applying
Integrate™ to roll -out(Base), roll -out(A), and roll -out(B)) is homogeneous. Section 5.6 outlines how the
source text corresponding to the merged system dependence graph is obtained; and, finally, Section 5.7
contains a recap of the multi-procedure integration algorithm Integrate®.

A common theme in these subsections is that the operations being defined are generalizations of those
used in the HPR algorithm; that is, when restricted to single-procedure programs corresponding operations
produce the same result. This relationship is formalized in [Binkley91], where it is shown that, when
applied to three single-procedure programs, the HPR algorithm and Integrates produce the same integrated
program.

In most cases, our initial attempt to define a generalized operation for use in IntegrateS is the natural
extension of the corresponding operation used in the HPR algorithm. By the “natural extension” we mean
the operator from the HPR algorithm, extended to consider the new kinds of vertices and edges found in a
system dependence graph. For example, the natural extension of AP*7 (A, Base), which was defined as

APMT(A, Base) & (A, (ve V(A) | b¥ (A, v)=b" (Base, v) })
is
APS(A, Base) & (A, {ve V(A) | b(A, v)#b(Base, v) H.

Although it is often used as our first attempt, in most cases, the natural extension of an operation from the
HPR algorithm fails to correctly account for calling context (even though each individual interprocedural
slicing operation used in the extended definition does correctly account for calling context).

5.1. Additional Background on the HPR Algorithm and Interprocedural Slicing

This section presents additional background material on the HPR algorithm and on interprocedural slicing.
In particular, Section 5.1 begins by reformulating some of the concepts from the HPR algorithm, as intro-
duced in Chapter 2, in a way that resembles more closely some related concepts used in Integrate®.
(Throughout the rest of the dissertation, we use superscripts to distinguish between related quantities in the
HPR algorithm and IntegrateS: those used in the HPR algorithm have the superscript “Apr;” those used in
Integrate® have the superscript “S,” e.g., A¥" versus AS, etc)). Section 5.1 ends with an equational
definition for the summary edges introduced in Chapter 3.

A Reformulation of Affected Points

We now give an alternative definition of affected points in terms of a special subset of the affected points,
called the directly affected points. First, define the sets of incoming edges for a vertex v in program depen-
dence graph G as follows:

IncomingControl* (G, v) & (w —>.v|w —>.ve E(G)}

IncomingFlow™ (G, v) £ {w —v|w —>ve E(G))

IncomingDefOrder® (G, v) & (x—aw» Y X 2%w Y€ E(G) }.
The last of these definitions will be somewhat puzzling if a def-order edge x—>4 ) Y is thought of as an
edge directed from x to y and labeled with v. However, it is often useful to think of def-order edge
x—>4(») ¥ as a hyper-edge directed from x to y to v; it is in this sense that a def-order edge is an incoming
edge for the witness-vertex v.

Directly affected points can be used to determine the affected points, which in turn are used to determine
AR Vertex v is a directly affected point of A with respect to Base iff v is in A but not Base or v has dif-
ferent incoming edges in A and Base. Thus, for the HPR algorithm, the set of directly affected points of A
with respect to Base, denoted by DAP*" (A, Base), is defined as follows:
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DAP™T(A, Base) & (A, (ve V(A)| v V(Base)
v IncomingControl ker(A, v) # IncomingControl ker (Base, v)
vIncomingFlow"”’(A, V) # IncomingFlow"" (Base,v) |
v IncomingDefOrder " (A, v) # IncomingDefOrder" (Base, v) }).

The vertices of DAP*" (A, Base) clearly have different backward slices in A and Base. We can identify
all the vertices of A whose backward slices are different in Base (i.e., AP* (A, Base), the affected points
of A with respect to Base) by finding those vertices of A in the forward slice of A with respect to
DAP""(A, Base). Thus, we have

AP*"(A, Base) = f* (DAP*" (A, Base)) and
AMr(A, Base) = b""(AP* (A, Base)).

(Operator f*" denotes the hpr forward slice, introduced in Section 2.2.1.)

A Reformulation of Type I Interference

We now reconsider the test for Type I interference. According to the definition given in Section 2.3, Type
I interference exists when the slice with respect to the affected points of a variant is corrupted in Gy by the
other variant. Reps and Bricker have given an alternative characterization of the test for Type I interfer-
ence used in the HPR algorithm [Reps89a]. The alternative test reports interference at the point of conrup-
tion; interference is reported when a vertex in AMPr(A, Base) is a directly affected point of Gy with respect
to A (or if the analogous condition holds for B). That is, Type I interference occurs iff

AW (A, Base) nDAP™" (Gy,A)2@  or  A¥" (B, Base)nDAP*’ (Gy,B)#@.

In [Reps89al, this definition of Type I interference is shown to be equivalent to the original definition.

An Equational Definition of Summary Edges

This section presents an equational definition for summary edges, in which the edges of a graph are viewed
as a binary relation over the vertices of the graph.! This provides a convenient notation for expressing con-
nections in a procedure dependence graph. For example, the transitive closure of the edge relation pro-
vides a convenient expression for paths in a graph. The purpose of this definition is to introduce some
basic techniques and notation that are used later to introduce new concepts. Before defining summary
edges using this notation, we make the following definitions:

DEFINITION. Callp denotes a call-site vertex that represent a call on procedure Q; Cally.a;, denotes an
actual-in vertex subordinate to Cally and Cally.a,,, denotes an actual-out vertex subordinate to Cally.
Similarly, Enterg denotes the entry vertex for procedure Q; Enterg.a;, denotes a formal-in vertex subordi-
nate to Enterp and Enterg.a,,, denotes a formal-out vertex subordinate to Enterg.

DEFINITION. CFp denotes the control-flow dependence subgraph of procedure dependence graph Gp (i.e.,
Gp with no def-order edges).

CF, & (V(G,), (e € E(G,) | e isaflow or control edge }).

For each procedure P, the augmented control-flow dependence subgraph, denoted by ACFp, CFp aug-
mented with summary edges. The addition of a summary edge at a call-site in procedure 0 may complete
a path from a formal-in vertex to a formal-out vertex in Ggp, which in turn may enable the addition of
further summary edges in procedures that call Q. This interdependence in the creation of summary edges
is captured using a least fixed point in the definition. Thus, the augmented control-flow dependence sub-
graphs are the least fixed point of the following set of equations (one for each procedure P):

! Def-order edges would be represented by a temary relation, however, they are not used in the following definitions.
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DEFINITION. (Summary Edges).
ACFp & CFpu(V(Gp), ((Callg.a;,, Cally.b,,) | Callye V(Gp)
A (Enterg.a;,, Enterg.b,u) € E(ACFp) )).

Note that the last term in this definition refers to ACF, the transitive closure of ACF, because the edges
of ACFp depend on the existence of paths in ACF.

The procedure dependence graph for P augmented with summary edges is obtained by taking the union
of ACFp and Gp.

5.2. Constructing the Merged System Dependence Graph

We now describe the construction of the merged system dependence graph. The form of the construction
is similar to the construction of the merged program dependence graph in the HPR algorithm; it involves
combining three graphs: A(A, Base), which captures the changes made to Base to create variant A,
AS(B, Base), which captures the changes made to Base to create variant B, and Pre’(A, Base, B), which
captures what is common to Base, A, and B.

Gy = A%(A, Base)u AS(B, Base)u Pre(A, Base, B).

(Throughout the remainder of the dissertation, we use Gy to represent the merged graph created by
Inlegrates (A, Base, B).)

The computations of AS(A, Base) and AS(B, Base) require the computations of the sets DAP*(A, Base)
and DAPS(B, Base). Below we discuss how to construct DAPS, AS, and PreS. A common thread in all
three constructions is the need to keep track of calling context. (The construction described below is actu-
ally not quite correct because, although it handles the calling-context problem, the construction of A may
fail to include sufficient vertices when systems contain dead code. This shortcoming will be rectified in
Section 5.3.)

Constructing DAPS

Given two system dependence graphs A and Base, the set of directly affected points of A with respect to
Base, denoted by DAPS(A, Base), is defined similarly to DAP*"(A, Base); DAPS(A, Base) consists of the
vertices of A that are not in Base and those whose incoming edges are different in A and Base. However,
for the purposes of identifying directly affected points in system dependence graphs, parameter-in, call,
parameter-out, and summary edges are ignored. Thus, a vertex v that occurs in both A and Base is a
directly affected iff v has different in incoming control, flow, or def-order edges.
DAPS(A, Base) 2 (A, (ve V(A) | v e V(Base)
vIncomingControlS(A, v) # IncomingControl®(Base, v)

vIncomingFlow’(A, v) # IncomingFlow’(Base, v
vIncomingDefOrder®(A, v) # IncomingDefOrder* (Base, v) }).

It is crucial to the correctness of Integrate® to exclude differences in parameter-in and call edges from
the definition of DAPS(A,Base). As discussed shorily, the construction of AS(A,Base) from
DAPS(A, Base) involves b (i.e., “full backward”) slices with respect to each directly affected point v of A?
the use of b slices includes all of v's possible calling contexts in A(A, Base). Thus, if changes in the
incoming parameter-in or call edges were to cause formal-in and entry vertices, respectively, in procedure
P to be classified as directly affected points, then all call-sites on P (not just the one containing the change)
would be part of AS(A, Base).

2 The definition of AS(A, Base) also involves b and b2 slices taken with respect to some other vertices.
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In particular, this problem occurs when A changes the incoming parameter-in or call edges of a pro-
cedure P (by adding or deleting a call on P or changing an actual parameter at an existing call-site on P)
and B adds or deletes a call on P or changes the value of an actual parameter at an existing call-site on P.
For example, Figure 5.1 illustrates the case where A deletes a call-site on procedure P and B changes the
value of an actual parameter at an existing call-site on P. In A, the deletion of call statement “call P (a)”
changes the incoming parameter-in and call edges of the formal-in vertex labeled “x :=x;,” and entry ver-
tex Enterp, respectively. This should not cause the actual-in and call-site vertices of remaining call-site on
P to be incorporated into AS(A, Base). If they were then “b :=0" would also be included in AS(A, Base)
and thus there would be a conflict with the change made in variant B. (For this example, the goal is to pro-
duce the system labeled “Proposed M™.)

It is not crucial to the correctness of Integrate’ to exclude differences in parameter-out and summary
edges from the definition of DAPS(A, Base): doing so does not affect the success of IntegrateS not does it
change the merged program produced by Integrate It does, however, simplify the argument that
Integrate’ satisfies Version 2 of the Revised Model of Program Integration. For example considering
differences in incoming parameter-out and summary edges complicates the relation that otherwise holds
between DAPS(A, Base) and DAP > (roll -out(A), roll -out(Base)): only when parameter-out and summary
edges are ignored is the set of occurrences from roll-out(A) of vertices in DAP®(A, Base) a subset of
DAP=(roll -out(A), roll -out(Base)). This subset relation simplifies the argument that Inlegrate satisfies
Version 2 of the Revised Model of Program Integration (e.g., see the DAP Equivalence Lemma in Chapter
6).

As discussed in Chapter 2, determining the directly affected points (as well as the other steps of
Integrate™") require program components to be tagged so that corresponding components can be identified
in all three versions (i.e., Base, A, and B). Chapter 2 does not discuss tags for call statements. Because a
call statement is represented by multiple vertices in a system dependence graph it has multiple tags: one for
each vertex. For example, Call P(a, b), where a but not b is a member of GMOD (P), has four tags: a tag
for the call-site vertex, two tags for the two actual-in vertices, and a tag for a’s actual-out vertex. Further-
more, in addition to the conditions imposed on tags in Chapter 2, the tags on parameter vertices (for both
actual and formal parameters) must encode the position of the parameter in the parameter list.

To understand why this encoding is necessary, consider an edit that interchanges two actual parameters.
This interchange is likely to change the computation carried out by the system and therefore should be cap-
tured in AS. At the same time, what is captured in AS should be limited to those calling-contexts that con-
tain the call-site where the interchange took place (not all calling-contexts of the called procedure). We
accomplished this by encoding the parameter-list position of actual parameters in the tags of their actual-in
(and actual-out) vertices; thus, interchanging two parameters creates directly affected points only at the

Base Variant A Variant B Proposed M Common Procedure P
procedure Main procedure Main procedure Main procedure Main procedure P (x)

call P (a) - ] call P (a) x=x+1

b:=0 b:=0 b:=1 return

call P (b) call P(b) call P (b) call P(b)
end() end() end() end()

Figure 5.1. Motivation for the definition of DAPS(A, Base). (The boxes indicate the modifications made to variants A
and B.)



call-site where the interchange took place. (A similar encoding is performed for formal-in and formal-out
vertices.)

Constructing A®

As in the HPR algorithm, the notion of the affected points of variant A with respect to Base is used to iden-
tify the differences between A and Base. The affected points are vertices that potentially exhibit changed
behavior in some calling context.

In the HPR algorithm, there are two equivalent definitions of AP*"(A, Base):
(1) AP*T(A, Base) & (A, {ve V(A) |b¥" (4, v)#b" (Base, v} }), and
(2) AP™’(A, Base) & f*"(DAP" (A, Base)).
However, the natural extensions of these definitions (i.e., the definitions that use inferprocedural slices in
place of intraprocedural slices) are not equivalent. This is illustrated by the example shown in Figure 5.1.
Under the natural extension of Definition (1), all vertices of procedure P in variant A would be affected
points. Under the natural extension of Definition (2), the set of affected points would be empty because the
set of directly affected points DAP5(A, Base) is empty.

Because the natural extension of Definition (2) reuses the context information contained in
DAPS(A, Base), it is the correct definition for multi-procedure integration; it is the one that is consistent
with the notion that the affected points are the vertices that potentially exhibit changed behavior in some
calling context. Consequently, we define the affected points as follows:

APS(A, Base) 2 f(DAPS(A, Base)).

Note that, for the example in Figure 5.1, APS(A, Base) being empty is consistent with the fact that the one
calling context in which P is invoked in variant A exhibits the same behavior as the corresponding calling
context for P in Base.

For multi-procedure integration it is also necessary to identify a special subset of the affected points,
which we call the strongly affected points. Whereas an affected point potentially exhibits changed
behavior in some calling context, a strongly affected point potentially exhibits changed behavior in all cal-
ling contexts. Thus, the strongly affected points of A with respect to Base, denoted by SAPS(A, Base), are
those vertices of A that are in the fI slice with respect to a directly affected point:

SAPS(A, Base) & fl(DAP*(A, Base)).

Strongly affected points and affected points that are not strongly affected (hereafter referred to as weakly
affected points) contribute differently to the definition of A%. As expressed below, AS is defined in two
parts: one part captures changes associated with strongly affected points; the other captures changes associ-
ated with weakly affected points.

(1) Because the execution behavior at each strongly affected point v is potentially modified in every cal-
ling context in which v is executed, it is necessary to incorporate ail of v's possible calling contexts
in AS. This is accomplished by taking a b (i.e., “full backward”) slice with respect to v.

(2) Because the execution behavior at each weakly affected point v is potentially modified only in some
calling contexts in which v is executed, it is necessary only to incorporate some of v's possible cal-
ling contexts in AS. Since the vertices of the call-sites that make up the calling contexts in which v
has potentially modified execution behavior are themselves affected points, it is only necessary to
take a b2 slice with respect to v.

This second point deserves some clarification. Suppose v is a weakly affected point. A b2 slice with
respect to v will only include vertices in P and procedures called by P; it does not include any vertices in
procedures that call P. Initially this may seem incorrect because for a weakly affected point some calling
context must have changed. However, a call-site associated with any changed calling context would itself
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be an affected point; thus, any changed calling context for P in A with respect to Base will also be included
in AS(A, Base) (as desired).

Putting the two parts of A% together produces the following definition of AS(A, Base):
AS(A, Base) & b(SAPS(A, Base))w b2(AP°(A, Base)).

(The second term of the union could be replaced by the b2 slice taken with respect to only the weakly
affected points without affecting the resulting set AS(A, Base).)

Expanding the right-hand side by the definitions of b, f, SAP®, and APS, A® may also be expressed as
AS(A, Base) = b2(b1(f1(DAP*(A, Base)))) v b2(f2(f1(DAP 5(A, Base)))).

Operationally, each of the two main terms in the definition of AS represents three linear-time passes over
the system dependence graph of A. During each pass, only certain kinds of edges in the graph are
traversed.’

Example. In Figure 4.2, AS(A, Base) does not contain the second call-site on Incr in variant A. Thus,
B’s change can affect this call-site (as it does in Figure 4.2) without causing interference.

Example. The example in Figure 5.2 shows the two parts of AS(A, Base) computed from the systems A
and Base also shown in the figure. In this example DAPS(A, Base) contains the new assignment statement
“;.=2" and the actual-in vertex for ¢ at the second call-site on Q in P, which has different incoming edges
in A and Base; these are also the strongly affected points. The weakly affected points are the formal-in ver-
tex for z in procedure Q, and the assignment statement “42 := 2”. For the strongly affected points, the first

Base Variant A
b(SAPS(A, Base)) b2(AP%(A, Base)) AS(A, Base)

procedure Main procedure Main procedure Main procedure Main

a=1 a=1

b=2 b=2

call P(a) call P(a) call P() call P()

call P(b) call P(b) cal P() call P()
end(a, b) end(a, b) end() end()
procedure P (x) procedure P (x) procedure P () procedure P () procedure P ()

call O (x) call Q (x)

t=1 t:=2 1:=2 1:=2

call (1) call Q(r) call @ () call Q (1) call Q(t)

x =2 x:=2
return return return return return
procedure Q(z) procedure Q (z) procedure ¢ (z) procedure Q (z)

2=z 2=z 12:=2 t2:=2
return return return return

Figure 5.2. The third and fourth columns of this figure show the two parts of AS(A, Base) computed from systems Base
and A shown in the first two columns. The union of these two programs (really their system dependence graphs) yields
a program (system dependence graph) that captures the changed computations of A with respect to Base. This union is
shown in the rightmost column. (The box indicates the modification made to variant A.)

3 Because for both terms the initial pass is fI{DAPS(A, Base)), a total of five passes is required; a further reduction to four passes is
possible if the union of b1(f1((DAP S(A, Base))) and ﬂ(ﬂ(DAPs (A, Base))) is performed before a final b2 pass is made.
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part of AS(A, Base), b(SAPS(A, Base)), includes all calling contexts for procedure P because of the
strongly affected points are in P. For the weakly affected points, the second part of AS(A, Base),
b2(APS(A, Base)), includes the necessary parts of procedure Q without including the first call-site on Q
because Q contains only weakly affected points. Together these two parts capture all calling contexts for P
and one calling context for Q; these are the only affected calling contexts in A

Constructing Pre’
Intuitively, a vertex v in procedure Q should be in Pre? iff both of the following hold:

(1) Procedure Q is in Base, A, and B.
(2) If the versions of Q in Base, A, and B are called with the same argument values, the program com-
ponent represented by v produces the same sequence of values in all three versions.

This intuitive definition of Pre® requires that v be in Pre® even when there is no calling context in Base, A,
and B such that Q is called with the same argument values in all three programs. This is consistent with
Version 2 of the Revised Integration Model presented in Section 4.3, which was motivated by the example
in Figure 4.3. Recall that for the example in Figure 4.3 we want procedure Q to be included in the integra-
tion of Base, A, and B even though there is no call-site on Q that is common to Base, 4, and B. Thus, the
definition of Pre’ should ignore the contexts in which Q is called, while still correctly accounting for cal-
ling context in the calls made (transitively) from Q0.

This is accomplished using b2 slices; a vertex with the same 2 slice exhibits the same behavior when
the procedure containing the vertex is called with the same initial argument values in Base, A, and B. Thus,
we define Pre” as follows:

PreS(A, Base, B) £ (Base, { v € V(Base) |b2(A, v)=b2(Base, v)=b2(B,v)}).

By comparing b2 slices with respect to the vertices in a procedure Q, we achieve our goal of ignoring the
contexts in which Q is called, while still correctly accounting for calling contexts in the calls made (transi-
tively) from Q (e.g., all of the vertices in Q from Figure 4.3 have the same b2 slice in Base, A, and B).

Constructing the Merged Graph

The merged graph is constructed as follows:
Gy = AS(A, Base) A% (B, Base)w Pre® (A, Base, B).

In [Binkley91] it is shown that this construction is a true generalization of the one used in the HPR algo-
rithm. That is, for systems that consist of only a single procedure (i.e., with no calls to auxiliary pro-
cedures), Gy is identical to the merged graph constructed by the HPR algorithm.

5.3. Adding Meeting-Point Vertices to System Dependence Graphs

The construction of AS described in Section 5.2 is not quite correct because, although it handles the
calling-context problem, it does not handle systems with dead code. This section describes how to over-
come this limitation. To handle dead code correctly, it is necessary to add some additional vertices and
edges to the system dependence graphs for A and B before computing AS(A, Base) and AS(B, Base),
respectively. These additional meeting-point vertices and edges are used to include the correct actual
parameters in the presence of dead code (they also improve the efficiency of the computation of AS in the
presence of dead code). After the addition of these vertices and edges the computation of AS proceeds
exactly as described in Section 5.2 (except that the slicing operators bl, b2, f1, and f2 are extended to also
traverse meeting-point edges). This section begins by describing the specific problem meeting-point ver-
tices and edges solve and why this problem exists only in the presence of dead code. It then presents a for-
mal definition of meeting-point vertices and edges before giving an algorithm for efficiently computing
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them.

The problem meeting-point vertices solve arises when the value of more than one actual parameter
affects a “dead” computation in a (transitively) called procedure. When computing AS, if the actual-in ver-
tex of one of these parameters is an affected point then the dead computation is also affected. To incor-
porate this affected computation, it is necessary to include in AS all of the actual parameters that affect the
dead computation. This is accomplished by connecting the actual-in vertices for these actual parameters to
meeting-point vertices.

An additional benefit of adding meeting-point vertices and edges is that the actual-in vertices that must
be included in AS can be determined without examining called procedures’ procedure dependence graphs.
In this regard meeting-point vertices and edges serve a purpose in the computation of AS similar to that
served by summary edges in the computation of an interprocedural slice.

Example. For the example shown in Figure 5.3, if AS is computed without meeting-point vertices then it
includes the b slice with respect to the actual-in vertex for parameter a (a strongly affected point) and the
b2 slice with respect to the vertex representing “tI :=x+y” (a weakly affected point). Neither of these
slices includes the actual-in vertex for actual parameter 1. However, in this example the actual parameters
a and 1 at the first call-site on procedure P in Variant A both affect the computation of local variable ¢ in
procedure P; thus, these actual-in vertices are connected to a meeting-point vertex mp. Because mp, like
the actual-in vertex for parameter 4, is an affected point, the backward slice of A taken with respect to mp
as part of the computation of A(4, Base) includes the actual-in vertex for 1.

The problem solved by meeting-point vertices and edges exists only in the presence of dead code
because in the absence of dead code there is always an actual-out vertex that subsumes the role of the
meeting-point vertex. To see that this is the case, suppose that there are two formal parameters whose

Base Variant A Variant B Main’s first call on P from A
procedure Main procedure Main procedure Main

a=2 a:= a:=2

b=1 b=1 b:=1

call P(a, 1) call P(a, 1) call P(a, 1)

call P(b, 1) call P(b, 1) call P(b,[Z)
end(a) end(a) end(a)

procedure P(x, y)

procedure P (x, y)

procedure P (x, y)

tl=x+y tl=x+y tl=x+y
call Incr (x) call Incr (x) /1
x=2 x:=2 x:=2
return return return
procedure Incr (z) procedure Incr(z) procedure Incr(z)
12:=1/z 2:=1/z 2=1/z
z:=2+1 z:=z+1 z:=z+1
return return return

Figure 5.3. This example shows three systems that contain dead code (assignments to the temporary local variables ¢/,
{2 and 13 and the call to Incr in P). The right-hand column shows a fragment of the system dependence graph for A
augmented with meeting-point vertices (shown in bold). (The boxes indicate the modifications made to variants A and
B.)



values are both affect the computation represented at vertex v (e.g., in Figure 5.3, v is the vertex labeled
“/] :=x+y” where the values of x and y are both used in the expression “x+y”). In the absence of dead
code, a path connects v to some formal-out vertex (i.e., v is not dead). Each actual-out vertex associated
with this formal-out vertex is therefore the target of (at least) two summary edges—one from each of the
actual-in vertices associated with the formal-in vertices for the two formal parameters. Thus the meeting at
v is witnessed at each call-site by an actual-out vertex, which obviates the need for a meeting-point vertex.

We now formally define meeting-point vertices and edges using the kind of notation we used in Section
5.1. Meeting-point vertices can be obtained from the least fixed-point of the following set of equations,
which define, for each procedure P, MpACF: the control-flow dependence subgraph of Gp augmented
with summary edges and meeting-point vertices and edges. In the following equation for V, the notation
“<Cally.a;s, Cally.b,>" denotes a new meeting-point vertex and, in the equation for E, the expression
“(Callg.aix, v), (Cally by, v)| ---” denotes a pair of meeting point edges from actual-in vertices Callg.a;,
and Cally.b;y W0 meeting-point vertex v.

DEFINITION. (Meeting-Point Vertices).
MpACFp=ACFp v (V, E), where
V=(<Cally.a;,, Cally.b,> | Cally € V(Gp) A Callg.a;,#Cally.by,
E= [ (CallQ.a,-,, V), (CaIIQ.b,-,,, V) I CallQ € V(Gp)
A ve VA v=<Cally.ay, Cally.by>
A dxe V(MpACF)s.t. ((Enterg.an, X), (Enterg by, x) } S E (MpACFp)
A Bu e V(ACFp) s.t. { (Cally.ai, w), (Cally.by, u) } SE(ACF, ) }.

Thus, at each call-site, there is one meeting-point vertex for every pair of actual-in vertices at the call-site.
Each meeting-point vertex is the target of either no edges or exactly two edges. These meeting-point edges
originate from (different) actual-in vertices at the call-site and represent two paths in the called procedure’s
procedure dependence graph that meet at a common vertex (x in the definition). The reason for the final
clause in the equation for the set of edges E is to avoid the addition of meeting-point edges if there is an
actual-out vertex and appropriate summary edges that subsume the need for a meeting-point vertex and
edges. This clause is included to allow an optimization in the algorithm for computing meeting-point ver-
tices and edges: the algorithm need not materialize those meeting-point vertices and edges that are sub-
sumed by actual-out vertices and summary edges.

Example. Figure 5.3 illustrates the addition of meeting-point vertices and edges. In procedure depen-
dence graph for P of Variant A paths connect the formal-in vertices labeled “x :=x;,” and “y :=y;,” to the
vertex labeled *tl :=x+y.” Consequently, meeting-point vertices and edges are added to the system
dependence graph for Variant A at both call-sites on P. As noted in the above example, when computing
AS(A, Base), the vertex labeled “a:=1" is directly affected, hence the vertex labeled “meeting point” is
strongly affected, and the backward slice with respect to this vertex (taken when computing A%(A, Base))
includes both actual-in vertices associated with the first call on P (in particular the one labeled “y;, :=17).

An Algorithm for Efficiently Computing Meeting-Point Vertices and Edges

Meeting-point vertices can be computed efficientdy using the algorithm shown in Figure 5.4. This algo-
rithm makes use of the TDP and TDS graphs computed when constructing the subordinate characteristic
graphs of the linkage grammar (the attribute grammar used in Section 3.2.2 to compute summary edges).
Recall that this grammar has one nonterminal and one production for each procedure. The nonterminal for
procedure P has one attribute for each formal-in and formal-out vertex in P’s procedure dependence graph.
The production for procedure P has nonterminal P as its left-hand-side and on its right-hand-side a nonter-
minal occurrence for each call-site in P. In essence, the graph TDP (P) is a projection of the formal-in,
entry, formal-out, call-site, actual-in, and actual-out vertices of Gp whose edges summarize paths in Gp;
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the graph TDS(P) is a projection of the formal-in, entry, and formal-out vertices of Gp whose edges also
summarize paths in Gp. Both of these graphs are used in the algorithm for computing meeting-point ver-
tices shown in Figure 5.4.

The algorithm shown in Figure 5.4 adds meeting-point vertices and edges to a system dependence graph
in three steps. As described below, in the first two steps new attributes are added to TDS (P) (provided
there is no subsuming actual-out vertex at call-sites on P). New attributes from TDS (P) are then used in
the third step to add meeting-point vertices and edges at call-sites on P. As an optimization in the algo-
rithm, only those meeting-point vertices that are connected to actual-in vertices are added (i.e., not all pair-
ings of the actual-in vertices are represented).

Step 1: Determining initial meeting-point attributes (lines [2] - [1 0] in Figure 5.4)

The first step determines meeting-point attributes that represent meeting points that are not themselves
meeting-point vertices. This is done using local slices, extended HPR slices that traverses summary edges
and meeting-point edges in addition to control and flow edges. As with other kinds of slices, there are both
backward local slices and forward local slices, denoted by bl and fl, respectively.

Initial meeting-point attributes are determined using local slices to slice forward and then backward from
each formal-in vertex and noting any other formal-in vertices encountered. For example, if
Enterp.b;, € bl fi(P, Enterp.a;,) then there is a vertex v in fi(P, Enterp.a;,) such that Enterp.b;, € bl(P, v),
and hence veriex v is a meeting point.

Step 2: Adding additional meeting-point attributes (lines [11] - [22] in Figure 5.4)

The second step of the algorithm checks if the addition of a meeting-point attribute from either Step 1 or
Step 2 enables the addition of further meeting-point atiributes. For each call-site on P in procedure Q, the
edges of TDP (Q) are used to establish the existence of connections from two formal-in vertices of @ to
two actual-in vertices at a call-site on P. If these two actual-in vertices will be connected to a meeting-
point vertex (because of an added meeting-point attribute and edges in TDS (P)) then a new meeting-point
attribute is added to TDS (Q).

Step 3: Computing meeting-point vertices from meeting-point attributes (lines [23] - [26] in Figure 5.4)
For each meeting-point attribute in TDS (P), the third step of the algorithm adds a meeting-point vertex and
associated edges to each call-site on P.

After the addition of meeting-point vertices and edges the construction of AS(A, Base) proceeds exactly
as described in Section 5.2 (except that the slicing operators b1, b2, f1, and f2 are each extended to traverse
meeting-point edges).

Example. Figure 5.5 shows the merged system created by Integrate’ when applied to the three systems
shown in Figure 5.3 when meeting-point vertices are used to compute AS(A, Base) and AS(B, Base).
5.4. Testing for Type I Interference

As with the computation of AP, there are two equivalent way of expressing the test for Type I interference
in the HPR algorithm, yet only one of them provides the correct generalization. For the HPR algorithm
there is no Type I interference if
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function AddMeetingPointVerticesAndEdges (G) returns an updated system dependence graph
declare
G : a system dependence graph
worlkdist, F, F F, : sets of atiributes
a, Xy, X4, Y1, y2 : atiributes
begin
[ 11 workist =@

J* determine initial meeting-point attributes (those not dependent on the existence of other meeting-point atiributes
i.e., those for which the “common computation” is in the same procedure and the formal-in vertices) */

[ 2] for each procedure P do
[ 3] Let the formal-in vertices of Gp be numbered 1, -, n
[ 4] Let P.i denote the attribute corresponding to formal-in vertex Enterp.is,
[ 5] fori:=1tondo
[ 6] F:=(P.j|j>i n Enterp.j, € bl fi(P, Enterp.iy)}
[7] for each fe F do
[ 8} if there is no attribute a such that P.i —> a and f —> a in TDS (P) then
[ 9] Add (meeting-point) attribute a, together with edges P.i —>a and f —>a, to TDS (P)
[10] Insert a into worklist
fi
od
od
od

/* add dependent meeting-point attributes */
[11]  while worklist # & do
[12] Select and remove a meeting-point attribute a from worklist
[13] Let TDS (P) be the TDS graph that contains a
[14] for each callsite Callp do

[15] Let Q be the procedure that contains Callp
[16]} (x,, X,) = the two attributes such that x; —>a and x, —>a inTDS (P)
[17] F,:={f|f—>% inTDP(Q) A %, is the occurrence of x, at Callp A f corresponds to a formal-in vertex }
[18] Fy:={f|f—>% inTDP(Q)A %, is the occurrence of x, at Callp A f corresponds to a formal-in vertex }
[19] for each pair (y;, y2) from Fy xF, such thaty, #y; do
[20] if there is no attribute a such that y, —> a and y, —> @ in TDS (Q) then
[21] Add (meeting-point) attribute a, together with edges y; —>a and y, —>a, to TDS (Q)
[22] Insert a into worklist
fi
od
od
od

/* insert meeting-point vertices and edges at call-sites in G from meeting-point attributes in the TDS graphs */
23]  for each added meeting-point attribute a do
[24] Let TDS (P) be the TDS graph that contains a and suppose that formal-in vertices Enterp X;, and Enterp.y;,
correspond to the two attributes that are connected to a
[25] for each call-site on P do

[26] Add (meeting-point) vertex m, together with edges Callp Xiy =%, m and Callp.yiy =P ppm 10 G
od
od
[271  return(G)
end

Figure 5.4. This algorithm contains the three steps by which meeting-point vertices and edges are added to a system depen-
dence graph G.
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procedure Main procedure P (x, y) procedure Incr(z)
a=1 tl=x+y t2:=1/z
b=1 call Incr (x) z=z+1
call P(g, 1) t3:=x return
call P(b, 2) x:=2
end(a) return

Figure 5.5. The result of applying Integrate® o the three systems shown in Figure 53.

(1) b™ (AP™T(A, Base))= b""(M,(AP*"(A, Base))) and

b*" (AP (B, Base)) = b*"(M,(AP*" (A, Base))),
or equivalently if
(2) A*’(A, Base) ADAP" (M, A)=9 and

AMr (B, Base)nDAP*" (M, B)=0.
Test (1) (which was discussed in Chapter 2) ensures that the (backward) slices of A and B with respect to
their affected points are preserved in the merged graph. Intuitively, this test ensures that the computations
represented in AM"(A, Base) (i.e., b (AP*" (A, Base))) is not corrupted in M by the changes in B (and
symmetrically for B). Test (2), which was discussed in Section 5.1, identifies corrupted slices at the point
of corruption.

For multi-procedure integration, the natural extension of Test (1) loses necessary calling-context infor-
mation because it uses full backward slices. Such slices consider parameter-in and call edges, which, simi-
ar to the construction of DAP?, should be ignored in the test for Type I interference. On the other hand,
the natural extension of Test (2), by virtue of using DAP § ignores these edges. Thus, for multi-procedure
integration, the test that the correct slices are uncorrupted in Gy (i.e., that there is no Type I Interference)
is the natural extension of the second test:

AS(A, Base) "DAP*(Gy,A)=D and  AS(B, Base)nDAPS(Gy, B)=2.

As shown in Chapter 6, under the assumptions that M= (the result of applying Integrate™ to
roll -out(Base), roll-out(A), and roll -out(B)) is homogeneous and that Gy is feasible, Integrates deter-
mines there is Type I interference in Gy iff Integrate™ determines there is Type 1 interference in Gy=.

5.5. Testing for Homogeneity

Recall that Version 2 of the Revised Model of Multi-Procedure Program Integration requires that
roll -out(M) equal M~ whenever M~ is homogeneous. The final step of Integrate® is to test whether M~
is homogeneous (it is shown in Chapter 6 that whenever M~ is homogeneous, it is also equal to
roll-out(M)). However, because M~ is potentially infinite, it cannot be tested directly; therefore, the
homogeneity test (function IsHomogeneous in Figure 5.10) is applied to the finite system dependence
graphs for Base, A, B, and M. If they pass the homogeneity test then, as shown in Chapter 6, M™ is
guaranteed to be homogeneous and equal to roll -out(M); if they fail to pass the homogeneity test then M~
is inhomogeneous, in which case it is impossible for M™ to equal roll -out(M).

Example. The need for the homogeneity test is illustrated in Figure 5.6. In this example, there is no
Type I or Type II interference in the integration of Base, A, and B. For the integration of single-procedure
programs this absence of interference is sufficient to guarantee the merged program has the correct seman-
tic properties. However, as illustrated by the integrated system M in Figure 5.6, this is not the case for
multi-procedure integration. (System M in Figure 5.6 fails the termination property of a successful
integration—it aborts with a division-by-zero error during the second call on P for initial states on which
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Base Variant A Variant B M
procedure Main procedure Main procedure Main procedure Main
a=1 a:=1 a=10
bi=2 b:=2 b =0] b:=0
call P(a) call P (a) call P (a) call P (a)
call P (b) call P(b) call P(b) call P (b)
end() end() end() end()
procedure P (x) procedure P (x) procedure P (x) procedure P (x)
t:=1/x t=1/x t:=1/x
x =x+1 x=x+1 x=x+1 x =x+1
return return return return
roll -out(Base) roll -out(A) roll -out(B) M= roll-out(M)
procedure Main procedure Main procedure Main procedure Main procedure Main
a=1 a:=1 a:=10 a:=10
b:=2 b=2 (b :=0] b=0 b:=0
scope P (x :=a; scope P (x :=a; scope P (x =a; scope P (x :=a; scope P (x :=gq;
a:=x) a:=x) a:=x) a:=x) a:=x)
t=1/x t=1/x 1 t=1/x t=1/x
x=x+1 x:=x+1 x =x+1 x:=x+1 x =x+1
epocs epocs epocs epocs epocs
scope P (x :=b; scope P (x :=b; scope P (x :==b; scope P (x :=b; scope P (x :=b;
b :=Xx) b =x) bi=x) b:=x) b:=x)
t=1/x t=1/x
x=x+1 x=x+1 x =x+1 x=x+1 x =x+1
epocs epocs epocs epocs epocs
end() end() end() end() end()
procedure P (x) procedure P (x) procedure P (x) procedure P (x) procedure P (x)
1:=1/x t=1/x
x=x+1 x=x+1 x=x+1 x=x+1 xi=x+1
return return return return return

Figure 5.6. This example illustrates the need for the homogeneity test (which the example fails to pass, since it fails to
pass the absent-vertex test— see Section 5.5.2). The boxes in A and B indicate the modifications made to Variants A
and B; the boxes in roll -out(A) and roll-out(B) indicate the modifications that would have been made to create
roll -out(A) and roll -out(B) from roll -out(Base); and the boxes in roll -out(M) highlight the exira occurrences of the
statement “f := 1/x”, i.e., those not in M~. (Recall that because a scope statement defines a new name space, it is
parameterized by two lists of assignment statements that transfer values to and from this name space. For example, in

the scope statement
scope P (x :=b;

epocs

transfer-in statement “x :=b” transfers the value of b from the name space of the enclosing scope to x in the name space
of scope P; similarly, transfer-out statement “b :=x" transfers the return value of x from the name space of scope P to b
in the name space of enclosing scope.)

Base, A, and B all terminate normally.) In this example, it is the homogeneity test that determines M is
unsatisfactory. This test determines failure because M~, the result of integrating roll-out(Base),
roll -out(A), and roll -out(B), is inhomogeneous: it contains two P-scopes (i.e., scopes created from pro-
cedure P by the expansion of a call on P), one with an occurrence of the statement “t:=1/x" (the first) and
one without (the second).

The following description of the homogeneity test has four parts: it describes extra occurrences, a condi-
tion that leads to inhomogeneity; the absent-vertex test and the absent-call-site test of the homogeneity test,
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which test for extra occurrences; and, finally, the algorithm given in Figure 5.10 that implements the homo-
geneity test.

5.5.1. Extra Occurrences

An extra occurrence is a veriex that occurs in roll -out(M) but not M~ (e.g., the occurrence of “t:=1/x"in
the second P-scope of Main from roll -out(M) shown in Figure 5.6). As shown in Chapter 6, if no extra
occurrences exist in roll -out(M) then M™ is homogeneous and equal to roll -out(M). (In other words, the
occurrences in M* always exist in roll-out(M), the only question is whether M~ contains all the
occurrences of roll -out(M) or only some of these occurrences.) The purpose of the homogeneity test is to
determine if any extra occurrences exist in roll -out(M).

For an occurrence in roll -out(M) to be extra, it must not exist in both roll -out(A) and roll -out(B).A
Without loss of generality, the remainder of the discussion of the homogeneity test is phrased in terms of an
occurrence v> from roll -out(M) that does not occur in roll -out(B). Since v™ exists in roll -out(M), M
must contain a vertex v and a sequence of call-sites Seq such that the expansion of Seq produces v>. How-
ever, since v= does not exist in roll -out(B), either (1) v itself is absent from B or (2) one of the call-sites
from Segq is absent from B. These two possibilities form the basis for the two parts of the homogeneity test:
the absent-vertex test and the absent-call-site test.

5.5.2. The Absent-Vertex Test

The absent-vertex test is applied to all vertices v in M that are absent from B (e.g., the vertex representing
the statement “¢ := 1/x” in Figure 5.6). Vertex v’s absence from B implies that no occurrences of v exist in
roll -out(B), which has the following implications on the occurrences of v in M= and roll -out(M): first, the
occurrences of v in M* are the same as those in A”(roll -out(A), roll -out(Base)), and second, as shown in
Chapter 6, the occurrences of v in roll -out(M ) are a subset of those in roll-out(A). Adding the relation
stated above that the occurrences in M are a subset of those in roll -out(M), yields the following inequal-
ity (occ abbreviates occurrences):

occ(v, A”(roll -out(A), roll -out(Base))) = occ(v, M™) < occ(v, roll -out(M)) < occ(v, roll -out(A)).
If we can show that occ(v, A (roll -out(A), roll -out(Base))) = occ(v, roll-out(A)) then this inequality
becomes
occ (v, A (roll -out(A), roll -out(Base))) = occ(v, M =} = occ(v, roll -out(M)) = occ(v, roll -out(A)).
In particular, it implies that occ(v, M ™) = occ(v, roll -out(M)).
The following lemma provides a condition sufficient to prove that

occ(v, A (roll -out(A), roll -out(Base))) equals occ(v, roll -out(A)). It is shown in Chapter 6, that this con-
dition is also necessary.

LEMMA. (EVERY OCCURRENCE LEMMA). If ve bifl DAPS(A, Base) then roll-out(A) and
A™(roll -out(A), roll -out(Base)) contain the same occurrences of v.

PROOE. The occurrences of v in A™(roll -out(A), roll -out(Base)) are, by definition, in roll -out(A); thus,
we must show that if ve blfl DAPS(A, Base) then every occurrence of v from roll-out(A) is in
A=(roll -out(A), roll -out(Base)). To this end, let u be a directly affected point such that v € bl fI (A, u).
We show below that, for every occurrence v= of v, there exists an occurrence u™ of u such that

4 The reason for this is a general property of the HPR algorithm: if a vertex exists in both A and B, it is in M (if the vertex is not in
A" (A, Base) or A¥"(B, Base) then it must be in Pre™(A, Base, B)). For Integrate™ this property implies that veriex occurrences in
both roll -out(A) and roll -out(B) are in M™. Thus, for an occurrence 10 be in roll-out(M) but not in M™ (i.e., to be an extra oc-
currence) it must not exist in both roll -out(A) and roll -out(B).
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v=€ b= f~ (roll -out(A), u™). It is shown in Chapter 6 that every occurrence of a directly affected point
from A is a directly affected point in roll -out(A); therefore, u™ € DAP=(roll -out(A), roll -out(Base)).
Combining these two tesults, v~ is in b™ f~"DAP~ (roll -out(A), roll -out(Base)), which implies that v= is
in  A=(roll-out(A), roll -out(Base)), since  A”(roll-out(A), roll-out(Base)) is  defined as
b= f*DAP=(roll -out(A), roll -out(Base)).

"The existence of an occurrence u” such that v= e b™ f~ (roll -out(A), u™) follows because both b and
f1 slices “ascend” to calling procedures; thus, the procedure containing v transitively calls the procedure
containing u through a sequence of call-sites Seq. In the roll-out of A, the expansion of the call-sites in Seq
places an occurrence of u into a scope transitively enclosed in the scope containing each occurrence of v.
Because v~ and u= are connected by occurrences of the edges that connect v and u this implies
v=e b= f (roll -out(A), u™).

a

Thus, the absent-vertex test tests whether all vertices of M that are absent from B are in
blfl DAPS(A, Base) (i.e., it tests if V(Gy)-V(Gp)<blfl DAPS(A, Base)). If this inclusion does not
hold then, as proven in Chapter 6, roll -out(M) contains an extra occurrence and M = is inhomogeneous.

Example. In Figure 5.6, the vertex representing the statement “t := 1/x” is an absent vertex (it is in M
but not B). Therefore, all occurrences of this vertex in M= must come from
A™(roll-out(A), roll -out(Base)). In the example, A” (roll -out(A), roll -out(Base)) contains the first
occurrence from roll-out(A, Main), but it does not contain the second occurrence from roll-out(A, Main) or
the occurrence from roll-out(A, P); consequently, M* is inhomogeneous. The absent-vertex test detects
the existence of extra occurrences of “¢ := 1/x”; thus, this example fails to pass the absent-vertex test.

5.5.3. The Absent-Call-Site Test

For each call-site Callp in M that is absent from B, the absent-call-site test is applied to the statements of
the procedures transitively callable in M from P. In roll-out(M), each expansion of Callp (and the call-
sites in P) produces a P-scope that is not in roll -out(B) (because Callp is not in B). Thus, to be in M~, the
vertex occurrences in such scopes (i.e., occurrences of the statements from procedure P and the procedures
transitively callable from P) must be in A” (roll -out(A), roll -out(Base)).

Example. The call statement “callQ(y)” in M of Figure 5.7 is absent from B and the statement
“x :=x+1” of procedure R is in a procedure transitively callable in M from Q. Because procedure R is call-
able along two different sequences of call-sites, roll-out(M, P) contains two occurrences of “x :==x+1,” nei-
ther of which is in roll-out(B, P) (see Figure 5.7); thus, to be in M™ these occurrences must be in
A=(roll-out(A), roll -out(Base)).

There are two ways a vertex occurrence can be included in A™(roll -out(A), roll -out(Base)). First, the
Every Occurrence Lemma implies that all of v’s occurrences are in A~ (roll -out(A), roll -out(Base)) if v is
in bl 1 DAPS(A, Base). Second, even if v is not in f1 b1 DAP*(A, Base), it is possible for some of v’s
occurrences to be in A”(roll -out(A), roll -out(Base)) because of certain directly affected points outside of
the procedure containing v (and its transitively called procedures). This second case is complicated
because, in the call-graph for M,® each path from a procedure to the procedure containing v produces an
occurrence of v. Thus, each path from the procedure that contains a call-site in M that is not in B produces
an occurrence that must be in A”(roll -out(A), roll -out(Base)). As introduced below, slice-need sets are
used by the slice-need-set part of the absent-call-site test to track occurrences of v backwards along the

5 The call-graph for system M includes one node for each procedure in M and one directed edge from the node representing P to the
node representing Q for each call-site Callg in P.
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roll-ouwt(M, P)

Base A B M roll-out(A, P) roll-out(B, P)

procedure Main  procedure Main  procedure Main  procedure Main  procedure P procedure P

callP callP callP callP scope Q(a =y;
end end end end yi=a)
procedure P procedure P procedure P procedure P Z - ;g

call @ (y) call@ (y) callQ(y) - R(x:=a:
return return return return scope (z :i;
procedureQ(a) procedure Q(a) procedureQ(a) procedureQ(a) x =x+1

a=1 a:=10 a=1 =10 epocs

bi=2 b:=20 b=2 b:=20 scopeR (x :=b;

callR (@) callR (a) callR (a) callR (a) b =x)

callR (b) callR (b) caliR (b) callR (b) x=x+1

c=b c=b c=b c=b epocs
return return return return c=b

rocedure R (x) rocedure R (x) rocedure R (x) rocedure R (x) €pocs

P x =x+1 P x=x+1 P x=x+1 P x =x+1 return return
return return return return

Figure 5.7. An example that passes the absent-call-site test. (The box indicates the call in M that is absent from B.)

paths in the call-graph to the procedure that contains the call-site in M that is absent from B.® For M™ 10 be
homogeneous, it is necessary to encounter a directly affected point along each path that causes the particu-
lar occurrence to be included in A™(roll-out(A), roll -out(Base)). Only if directly affected points are
encountered along all paths back to Callp then all occurrences of v in the scope produced by expanding
Callp (and the call-sites in P) are in A™(roll -out(A), roll -out(Base)).

Thus, for every call-site Callp in M that is absent from B and every vertex v in P or a procedure transi-
tively callable from P in M, the absent-call-site test tests that v is either in b1 f DAPS(A, Base) or in A
where it does not cause the slice-need-set part of the absent-call-site test (described below) to determine
failure. If neither of these conditions holds then, as shown in Chapter 6, an occurrence of v in roll -out(M)
is extra (i.e., not in M~) and M~ is inhomogeneous.

The complete description of the slice-need sets, given in the following subsection, requires some addi-
tional terminology and notation, which we develop in tandem with the description. After the description,
we present an algorithm for efficiently computing slice-need sets and follow this (in the next section) with
the algorithm that implements the homogeneity test. But first, we intuitively (and incompletely) describe
slice-need sets and then list three factors that complicate the (complete) formal definition.

Slice-Need Sets

The slice-need set for procedure R is a set of subsets of R’s linkage vertices (linkage vertices are the
formal-in, entry, and formal-out vertices of a procedure dependence graph). The elements of this set are
referred to as summary elements. If v's summary element contains formal-in veriex Entery.x;, then the

& The slice-need-set approach can be viewed as a bottom-up approach: it propagates information about potential extra occurrences in P
“up” 10 call-sites on P, and then to call-sites on the procedures containing these call-sites, and so on. Perhaps a more natural approach
is a top-down approach, in which information about the slices taken with respect to directly affected points is propagated “down” 1o
called procedures, then to their called procedures, and so on; however, the top-down approach has potentially exponential cost, and
hence the absent-vertex test is based on the bottom-up approach.
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occurrences of v produced by the expansion of a call-site on R are in the b™ o f~ slice of roll -out(A) taken
with respect to the corresponding occurrence of Enterg x;, (i.e., the occurrence of Enterp.x;, produced by
the expansion of the same sequence of call-sites as the occurrence of v). Similarly, if the summary element
for vertex v contains the entry vertex then the same relationship holds. Finally, if v’s summary element
contains formal-out vertex Entery.x,,, then the occurrences of v produced by the expansion of a call-site on
R are in the b™ slice of roll -out(A) with tespect to the corresponding occurrence of Enterg Xoy.

Example. In Figure 5.7, the summary element for the statement *“x :=x+1” in the slice-need set for pro-
cedure R is { Entery, Enterg.x;,, Enterg x,,, ). Enterg and Enterg x,, are included in this set because the
b=of~ slice with respect to an occurrence of Enterg or Enterg.x;, will include the corresponding
occurrence of v. Similarly, Enterg.x,, is included in this set because the b™ slice with respect to an
occurrence of Enterg.x,,, will include the corresponding occurrence of v. These relationships can be easily
verified from the procedure dependence graph shown in Figure 5.8. (Because R contains no call state-
ments, the procedure dependence graph for each scope created by expanding a call-site on R is identical to
the procedure dependence graph shown in Figure 5.8.)

The vertices in the summary element for v are useful in the absent-call-site test because they are related
to the inclusion of occurrences of v in A”(roll -out(A), roll -out(Base)). (In the following discussion recall
that A= (roll -out(A), roll -out(Base)) is defined as b~fDAP = (roll -out(A), roll -out(Base)).) First, sup-
pose that v’s summary element contains Enterg.x;, (the case for Enterg is similar). If, for a call-site Callg,
every occurrence of Callg.x;, is in f"DAP>(roll -out(A), roll -out(Base)) then every occurrence of v pro-
duced by the expansion of Callg in roll-out(A) is in b™f~ DAP*=(roll -out(A), roll -out(Base))).7 (Recall
that, as discussed above, all occurrences of vertices whose summary elements contain Enterg x;, are in the

Figure 5.8. The procedure dependence graphs for procedures Q and R of system M from Figure 5.7. (The vertex
names used in the text (e.g., Enterg x;,) are shown outside the corresponding vertex. The vertex names for the call-sites
on R are differentiated by the superscripts 1 and 2—e.g., Call  is the call-site vertex for “call R (a)™).
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b= o f= slice of roll-out(A) taken with respect to the corresponding occurrence of Enterg.x;,.) Similarly, if
v’s summary element contains Enterg.x,, and every occurrence of Callg.x,, is in
b=fDAP ™ (roll -out(A), roll -out(Base)) then every occurrence of v produced by the expansion of Callg in
roll-out(A) is in b=f"DAP™(roll-out(A), roll -out(Base)). (Recall that, as discussed above, all
occurrences of vertices whose summary element contains Enterg.x,,, are in the b= slice of roll-out(A)
taken with respect to the corresponding occurrence of Enferg Xou )

Example. In Figure 5.7, occurrences of the directly affected points “a :=10” and “b :=20" cause every
occurrence of Callg.x;, t be in f*DAP = (roll -out(A), roll -out(Base)). Therefore, since Enterg.x;, is in
the summary element for v, A” (roll -out(A), roll -out(Base)) contains the occurrences of v produced by the
expansion of the call-sites on R. For the example shown in Figure 5.7, this implies that the potentially extra
occurrences of v are not extra, since having them in A”(roll -out(A), roll -out(Base)) implies they are in
M=,

Example. As a second example, consider what would happen if statement “c :=b”, rather than state-
ment “b =207, is a directly affected point. In this case, the occurrences produced by the expansion of
Callg are still included in A~ (roll -owt(A), roll -out(Base)). Like the previous example, the occurrences of
v produced by the expansion of the first call-site on R are included, since occurrences of “a :=10" cause
occurrences of Cally x;,® to be in f*DAP = (roll -out(A), roll -out(Base)). Unlike the previous example, the
occurrences of v produced by the expansion of the second call-site are included since occurrences of
“c:=b" cause the occurrences of Call} x,, t0 be in b™f"DAP™(roll-out(A), roll -out(Base)), which
implies the occurrences of v are in A= (roll -out(A), roll -out(Base)) because v's summary element contains
Enterp X,

In the preceding examples it is the presence of directly affected points “g :=10", “b:=20", and “c :=b"
that cause the potentially extra occurrences of v to be included in A™(roll -out(A), roll -out(Base)) and
therefore not be extra. In general, testing for such directly affected points is complicated by the following
three factors:

(1) Representatives for directly affected points.

In Figure 5.7 directly affected points “a:=10" and “b = 20” are in procedure Q, the procedure that
calls procedure R. This is not strictly necessary; Q need only contain a representative of a directly
affected point. For example, in Figure 5.7 if “a :=10” is replaced by “call § (@)” where procedure §
contains 4 directly affected point that affects the value of a after the call then the actual-out vertex
for a is a representative of the directly affected point in S. Similar to the original example—where
all occurrences of Callk.x;, are in f"DAP>(roll-out(A), roll -out(Base)) because all occurrences of
“q:=10" are in DAP=(roll -out(A), roll -out(Base))—in the modified example, all occurrences of
Call}.x;, are in f*DAP>(roll -out(A), roll -out(Base)) because all occurrences of the actual-out ver-
tex for the call on § are in f*DAP~(roll-out(A), roll -out(Base)). Representatives of directly
affected points are defined as DAP-connected vertices in the next sub-section.

(2) Propagation through a sequence of call-sites.
The summary element for vertex v in procedure R’s slice-need set may be propagated to the slice-
need sets of procedures that call procedure R. For the example shown in Figure 5.7 this possibility
allows occurrences of directly affected points from P to cause A™(roll -out(A), roll -out(Base))
include the two occurrences of “x :=x+1” that result from the expansion of Cally and the subsequent

7 The occurrence is actually in b= f*f~DAP ™ (roll -out(A), roll -out(Base )); however, since f™ is idempotent (an operator op is idem-
potent if op(op(x))=op(x)), this simplifies to  b=f"DAP™(roll -owt(A), roll -out(Base)), which is, by definition,
A% (roll -out(A), roll -out(Base)). Operator ™ is idempotent because it is a transitive closure, Also note that b is idempotent. This is
important when v's summary element containg formal-out vertex Enferg X u-

$ Superscripts for the two calls on R in Q denote the first and second calls—e.g. Call} is the call-site vertex for “call R (@)".
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expansions of the two call-sites on R in Q. In general, summary elements can be propagated though
a sequence of call-sites to (a representative of) a directly affected point. However, this sequence
cannot contain the absent call-site. An additional complication, introduced by this propagation, is
that it is possible for v to have multiple summary elements in the slice-need set of a procedure that
transitively calls R because in A’s call graph multiple paths may connect a calling procedure to R.

(3) Combining backward and forward slices.
In the computation of A”(roll-out(A), roll-out(Base)) a backward slice always follows a forward
slice (recall that A= (roll -out(A), roll -out(Base)) is defined as
b=f~DAP ~(roll -out(A), roll -out(Base))); thus, a slice-need involving a backward slice can be
transformed into a slice-need involving a forward slice. This possibility complicates the test because
it must be modeled in the computation of slice-need sets.

We now give the formal definition for slice-need sets. As stated above, the slice-need set for procedure
P is a set of subsets of P’s linkage vertices. These sets are formalized in a manner similar to the definition
of other interprocedural summary information (e.g., GMOD). Such definitions are structured as a set of
equations expressed in terms of initial values associated with each procedure and functions that determine
how this information is transferred from procedure to procedure. For example, in the definition of GMOD,
the initial information is IMOD, the set of variables known to be modified without examining called pro-
cedures, and the transfer functions simply map formal parameter names to actual parameter names at call-
sites. The final solution to such problems is the least fixed point of a set of equations. For example, the
definition of GMOD is the least fixed point of the following set of equations (one for each procedure P):

GMOD (P)=IMOD (P)v Cak) Map formals_to_actuals(Cally, GMOD (Q))
o €

The slice-need set for each procedure, denoted by SNp for procedure P, is determined in an analogous
manner. First, an initial-slice-need set and a transfer function are computed for each procedure P (these are
denoted by ISNp and TFp, respectively). Then final slice-need sets are defined as the least fixed point of
the following set of equations (one for each procedure P):

SNP '—'-'-'ISNP ) Calt)e P TFP(CGHQ, SNQ).

We now define ISNp and TFp. First, ISNp summarizes the “slice-needs” of vertices in P of system M
but not those of vertices in procedures transitively called by P. The elements of ISNp are subsets of P’s
linkage vertices. The subset that summarizes a vertex v includes the following:

(1) Every formal-in vertex Enterp.x;, such that ve bl fl(PEnterp X)), since a b™of” slice in
roll -out(A) taken with respect to an occurrence of Enterp x;, will include the occurrence of v from the
same scope.

(2) Enterp (the entry vertex) because v € fl(P,Enterp) due to the control edges of P.

(3) Every formal-out vertex Enterp X, such that ve bI(P, Enterp X,.), since a b~ slice in roll-out(A)
taken with respect to an occurrence of Enterp.x,, will include the occurrence of v from the same
scope. (Note thatv € bl(P, Enterp x,,,) is equivalent to Enterp X, € AP, v))

To formalize the initial-slice-need sets, we begin with the definition of potential-problem vertices (i.e.,
vertices that may have extra occurrences in roll -out(M) because of an absent call-site).

9 Recall that bl and fl denote backward local and forward local slices, which consider only control, flow, summary, and meeting-point
edges.
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DEFINTTION. (Potential-Problem Vertices).
PotentialProblemVertices & {v € V(Gy) | 3 a call-site Callp in M that is absent from B
A vis in P or a procedure transitively callable in M from P
A vé bl fl DAPS(A, Base) }.

Recall that the Every Occurrence Lemma implies that if v € b1 11 DAPS(A, Base) then every occurrence of
v is in M=, which is why such v’s are not potential-problem vertices.

The second definition uses local slices in each procedure P to determine which linkage vertices of P
summarize a vertex v from P. As an optimization in the definition, Enterp is always included because, for
every vertex v in P, Enterp € fi(P, V).

DEFINITION. (Connected Linkage Vertices).
Linkagep(v) & { Enterp )} U {Enterp.a;, | Enterp.a;, € bl fi(P, v)}
u (Enterp.agy | Enterp.ag, € fil(P,v)}.

Finally, the initial-slice-need sets for procedure P contains the subsets of the linkage vertices from P that
are connected to each potential-problem vertex in P.

DEFINITION. (Initial-Slice-Need Sets).
ISNp & {Linkagep(v) | ve V(Gp)A vE PotentialProblemVertices }.

Example. For the example shown in Figure 5.7, the potential problem vertices are the vertices of pro-
cedure R, which are all summarized by the single summary element { Enferg X, Enterg, Enterg X, } (i.€.,
ISNg = { [ Enterg.x;, Enterg, Enterg.X,u } 1. Thus, (as shown in Figure 5.8) the forward local slice (fol-
lowed by a backward local slice) with respect to Enterp X, Or Enterp and the backward local slice with
respect to Enterp.x,,, each include all the vertices of R.

For the purposes of illustrating slice-need sets and other related concepts, Table 5.1 gives the summary
elements for the vertices of M of Figure 5.7, and indicates which vertices are summarized by each sum-
mary element (the procedure dependence graphs from which the last four summary elements are computed
are shown in Figure 5.8).

Summary Element Vertices of M summarized by the element

S1: { Enteryg ) all vertices in Main's procedure dependence graph

S,: (Enterp } all vertices in P’s procedure dependence graph

S3: { Enterg.ag, Enterg } Enterp.a;,

S4: { Enterg, Entery.a,q ) Entery a,y, “a:=10", and the three vertices representing “call R (a)”
Ss: { Enterg ) “b1=20", “c :=b", and the three vertices representing “call R (b)"

S¢: { Enterg x;,, Enterg, Enterg X, } all vertices in R’s procedure dependence graph

Table 5.1

If all the vertices of M were potential problem vertices then the following would be the initial slice-need
sets (in Figure 5.7, only the vertices from procedure R are potential problem vertices):

ISNyain={S1) ISNg={53,54,S5)
ISNP={82] ISNR={S4}

The next series of definitions formalizes the transfer functions. For each procedure P, and each call-site
Callp in P, TFp updates SNp from SNg. We begin by giving a simplified definition for TFp that may cause
the slice-need-set test to determine failure erroneously (i.e., the test may determine failure even though M~
is homogeneous) because the resulting transfer function for P transfers every summary element of SNg
through Cally in P to SNp. We then give the correct definition that, by taking into account the possibility
that S € SN may not need to be transferred to SNp, transfers only necessary elements from SNy to SNp. It
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is shown in Chapter 6 that using the second definition the slice-need-set test determines failure iff
roll -out(M) contains an extra occurrence due to an absent call-site.

The definition of TFp is divided into two parts. The first maps a call-site Cally and a set S of Q’s linkage
vertices to the corresponding set of actual-in, call-site, and actual-out vertices at Cally:

DEFINITION. (Map formals to actuals).
Map(Cally, S) 2 if Enterg € S then {Cally ) else D fi v (Callg.ais | Enterg.a;n € S}
v {Callg.a,, | Enterg.a,,€ S }.

The second part of the definition uses local slices to propagate actual-in, call-site, and actual-out vertices
associated with a call-site Cally in procedure P to the linkage vertices of P. (As an optimization in the
definition, Enterp is always included because, for every vertex v in P, Enterp € AP, v)).

DEFINITION. (Slice Transfer). For s, a single actual-in, call-site, or actual-out vertex associated with a call-
site Callg in procedure P, Transferp(s) is defined as follows:

{Enterp.a;, | Enterp.a;, € bl(P, s)} if s=Cally or s=Callyx;,
Transferp(s) & {Enterp}u { {Enterp.a;, | Enterp.a;,€ bli(P,5)} if s=Cally.aou
(Enterp.ayg | Enterp.a,,€ (P, s)} if s=Callg.ay,.

This definition is extended to S, a set of actual-in, call-site, and actual-out vertices associated with a call-
site Cally, in procedure P, as follows:

Transferp(S) & usTran.sferp(s).
s €

Example. Consider an actual-in vertex Cally x;, such that Enterp.a;s € bl(P, Cally.x;,) (note that this is
equivalent to Callyx;, € fi(P, Enterp.a;,)). Let v© be an occurrence of a vertex from procedure Q or a
procedure transitively called by Q. If v is in the b~ o f™ slice taken with respect to an occurrence of
Callp.x;, then, because Callp x;, € fi(P, Enterp.a;,), v™ is also in the b™ o f~ slice taken with respect to the
occurrence of Enterp.a;, in the same scope as the occurrence of Cally.x;,. If it were the case that
Enterp.a;, were (a representative of) a directly affected point, then this would imply v> was in
A=(roll -out(A), roll -out(Base)) and therefore not extra.

Finally, putting the two parts of the transfer function together yields the following:

DEFINITION. (Transfer Functions).
TFp(Callg, SNy) & {Transferp(Map(Cally,S)) | S € SNy }.

Example. The transfer functions for procedures Main, P, Q, and R of system M from Figure 5.7 are
given in the following table. For example, TF is computed from the procedure dependence graph for pro-
cedure Q (see Figure 5.8). As can be seen in Figure 5.8, for the first call-site on R,
Transferg(( Callk X;n, Callk, Cally x5, }) includes Enterg (because of the control edges in Q) and
Entery.a,, (because Enterg.a,, is in f(Q, Call}.x,,)). Notice that Transferg({ Cally x;,, Call} })
includes only Enterg—even though Enterg.a,, is in i(Q, Calls.x;,) and fi(Q, Callg)—because we are
only interested in forward slices with respect to actual-in and call-site vertices and the slices resulting from
the connection between Call}.x;, (or Cally) and Entery.a,, are backward slices.
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Transfer Functions:

TF yain(Callp, x) = { Entery,;, } forallx e Main TFp(Cally, x) = { Entery,in }forallxe P
TFQ(CaII},, { Entergx;, }) = { Enterg } TFQ(CaII,%, { Enterg x;, }) = { Enterg }
TFQ(CaII}q, { Enterg }) = { Enterg } TFy(Call}, { Enterg }) = { Enterg }

TFo(Cally, { Enterg X,u }) = { Enterg, Enterg X, } TFg(Callg, { Enterg Xou }) = { Enterg }
TFx(Call, x)=@ (there are no calls in procedure R)

The above functions are for singleton sets, the functions for larger sets can be obtained using the following rule:
TF(Call, {a, b })=TF(Call, {a })VTF(Call, (b }).

As mentioned above, this definition is incorrect because, although it transfers the necessary elements
from SN, through Cally to SNp, it may transfer too many elements. In other words this definition fails to
take into account the possibility that the “slice-needs” summarized by summary element S € SNy may be
satisfied at call-site Cally, in P; in this case, § should not be transferred to SNp.

Recall that § € SN, represents vertices having occurrences in roll -out(M) that may be extra (not in M™)
because of the expansion of a call-site on Q. If Map(Callp, ) contains an actual-in, call-site, or actual-out
vertex that is DAP-connected (defined below) then all occurrences of the vertices summarized by § that
result from the expansion of Cally are guaranteed to exist in M™. Furthermore, if Cally is in P then this
implies that all summarized occurrences that result from the expansion of a call-site on P also exist in M™;
thus, § should not be transferred to SNp.

DAP-connected vertices are actual-in and call-site vertices in f1 DAPS(A, Base) and actual-out vertices
in bl f1 DAPS(A, Base). The following relationships show why DAP-connected vertices can be used as
representatives of directly affected points in the slice-need-set test (these relationships are proven in
Chapter 6).

(1) First, for a DAP-connected vertex d in A, every occurrence of d is in either
= DAP=(roll-out(A), roll -out(Base)) or b=f~ DAP(roll -out(A), roll -out(Base)): if d is an actual-
in or call-site vertex then every occurrence of d is in f~ DAP = (roll -out(A), roll -out(Base)); if d is an
actual-out vertex then every occurrence of d is in b™ f~ DAP=(roll -out(A), roll -out(Base)).

(2) Second, suppose vertex v is summarized by S € SN where v is propagated to S through a sequence of
call-sites Seq. The occurrence v™ of v produced by expanding a call-site Cally and then the call-sites
in Seq is in the b™ o f~ or b™ slice of roll -out(A) taken with respect to an occurrence of each vertex in
Map(Cally, S): if Map(Cally, §) contains Cally or Cally.x;, then v is in the b™ o f~ slice of
roll -out(A) with respect to an occurrence of Cally or Cally X, respectively; if Map(Cally, §) con-
tains Callg x,,, then v~ is in the b slice of roll -out(A) with respect to an occurrence of Callp.Xou:.

To combine these relationships, suppose that Map(Cally, S) from Relationship (2) includes a DAP-
connected vertex d. If d is an actual-in or call-site vertex then Relationship (1) implies every occurrence of
d is in f~ DAP ™ (roll -out(A), roll -out(Base)) and Relationship (2) implies that for some occurrence d”~ of
d, v e b™ f(roll -out(A), d”™); thus, composing these slices, v is in
b= f= f~ DAP=(roll -out(A), roll -out(Base)). On the other hand, if we suppose that d is an actual-out ver-
tex then Relationship (1) implies every occurrence of d is in b= f~ DAP™(roll -out(A), roll -out(Base)) and
Relationship (2) implies that for some occurrence d” of d, v= € b=(roll -out(A), d™); thus, composing

these slices, v™ is in b= b= f= DAP = (roll -out(A), roll -out(Base)).

To show that v= is in A” (roll -out(A), roll -out(Base)) requires the idempotence of f~ and ™ (an opera-
tor op is idempotent if op(op(x))=op (x)). Operators f and b™ are idempotent because they are both tran-
sitive closures; thus, we can replace £~ and b~b* with f~ and b~, respectively. This simplifies both
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b= f= f~ DAP>(roll -out(A), roll -out(Base)) and b= b~ f~ DAP™(roll-out(A), roll -out(Base)) to
b= = DAP™(roll -out(A), roll -out(Base)). Since this is the definition of A™(roll -out(A), roll -out(Base)),
it means (in both cases) that v™ is in A™(roll -out (A), roll -out(Base)).

The definition for TFp that avoids unnecessary transfers incorporates the following definition of DAP-
connected vertices.

DEFINITION. (DAP-connected Vertices).

s € fl DAPS(A, Base)  if sis of the form Cally.a;,
DAPConnected(S) £ Vs s € flDAPS(A, Base)  if sis of the form Cally
s€
s € bl1fl DAPS(A, Base) if s is of the form Cally.a,,

Example. The DAP-connected vertices from system A of Figure 5.7 are Callk Xin, Callk Xou, Callg Xin,
and Call% x,,. For this example, these are determined solely from the procedure dependence graph for
procedure Q shown in Figure 5.8 because the directly affected points “a:=10" and “b :=20" are also in
procedure Q.

The complete definition for 7Fp incorporates a check for DAP-connected vertices.

DEFINITION. (Transfer Functions that account for DAP-connected vertices).
TFp(Callg, SNg) £ (Transferp(Map(Callg, S)) | S € SNg A —DAPConnectedMap(Callg, S)) }.

The final definition is for slice-need sets. In addition to the elements of the initial-slice-need set, the final
slice-need set for each procedure contains elements that summarize vertices from transifively called pro-
cedures. Thus, the slice-need sets are the least fixed point of the following set of equations (one for each
procedure P in M):

DEFINITION. (Slice-Need Sets).
Np =ISN, .
SNp=ISNp v Calkl:'e R TFP(C(IIIQ, SNQ)

Computing Slice Need Sets

Initial slice-need sets and the transfer functions are computed from the procedure dependence graphs of M
using local slices. The (final) slice-need sets are computed by the function UpdateSNs, shown in Figure
5.9. This function is called with SNp initialized to ISNp for each procedure P of M (see line [10] in Figure
5.10).

The algorithm implemented by UpdateSNs makes use of a worklist to avoid redundant computations;
each element of a slice-need set appears in the worklist at most once. Summary element S from SNp is
processed by this algorithm in lines [5] through [9] by first checking at each call-site on procedure Q (line
[5]) whether the set of actual-in, call-site, and actual-out vertices identified by the linkage vertices in § con-
tains a DAP-connected vertex (line [7]). If a DAP-connected vertex is in this set then all summarized
occurrences are in A (roll -out(A), roll -out(Base)) and hence S should not be propagated to the calling
procedure’s slice-need set. Otherwise, if this set contains no DAP-connected vertices then the calling
procedure’s transfer function is used to transfer § to a set of linkage vertices from the calling procedure
(procedure P in lines [8] and [9] of the algorithm). This new element is added to SNp and the worklist,
provided it does not already exist in SNp. (A comprehensive example that illustrates the operation of this
algorithm is given at the end of the next section.)
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function UpdateSNs(SNS, TFS)
declare
SNS : set of slice-need-sets
TFS : set of transfer functions
SNp : a slice-need-set
Cally : a call-site vertex
S : set of linkage vertices
worklist : set of slice-need-set elements
begin
[ 1] worklist == (S | S € SNp A SNp € SNS }
[ 2] while worklist # & do

[ 3] remove S from worklist
[ 4] Let S be in SNy
[ 5] for each call-site Call, do
[ 6] Let Call, be in procedure P
[ 7] if —-DAPConnected (Map (Call,, S)) then
[ 8} if TFp(Cally, S) ¢ SNp then
[ 9] Add TFp(Cally, S) to SNp and worklist
fi
fi
od
od
[10] return (the updated SNS)
end

Figure 5.9. The function UpdateSNs propagates elements of the initial slice-need-sets until a DAP-connected vertex at
a call-site is encountered or no further updating is possible.

5.5.4. The Homogeneity Test Algorithm

The homogeneity test is implemented by the algorithm shown in Figure 5.10. The bulk of the algorithm is
the function ExtraOccurrences, which is called twice: once for vertices of M that are not in B and once for
vertices of M that are not in A. If no extra occurrences are discovered on either call then roll -out(M) con-
tains no extra occurrences and, as proven in Chapter 6, is equal to M™, which implies that M is homo-
geneous.

The function ExtraOccurrénces implements the two parts of the homogeneity test. The absent-vertex
test (line [4] of Figure 5.10) tests whether there are extra occurrences in roll -out(M) because of absent ver-
tices; the absent-call-site test (lines [5] - [13]) tests whether there are extra occurrences in roll -out(M)
because of absent call-sites. The absent-vertex test simply checks that vertices absent from B are in
blfl DAPS(A, Base). The absent-call-site text has two parts: a trivial subset test and the slice-need-set
test. For both tests, the set PP computed in line [5] contains all vertices reachable in M from an absent
call-site. Because all occurrences of vertices in blfI DAPS(A, Base) are in M™, these vertices are
removed from PP in line [6]. For occurrences of the remaining vertices to be in M> they must come from
A=(roll -out(A), roll -out(Base)). This requires that these vertices exist in A (the subset test in line {7]), and
that they not cause the slice-need-set test (lines [8] - {131) to fail in line [13]. If the function ExtraOc-
currences returns true then the test has discovered an extra occurrence in roll -out(M) and M is therefore
inhomogeneous. Otherwise, if no extra occurrences exist in roll -out(M), then, as shown in Chapter 6,
roll -out(M)=M" and hence M~ is homogeneous.
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function IsHomogeneous(Gy, A, B, Base) returns Boolean
declare

Gy : the merged system dependence graph

A, B, Base : systems
begin
] if ExtraOccurrences(Gy, (V (Gy) — V(B)), A, Base) then return (false) fi
2] if ExtraOccurrences(Gy, (V (Gy) ~ V(A)), B, Base) then return (false) fi
] return (true)

end

— - —
(7S] —

function ExtraOccurrences(Gy, Absent, A, Base) returns Boolean
declare
Gy : the merged system dependence graph
Absent : the set of system dependence graph vertices in Gy but not in one of the variants
A, Base : systems
PP : set of potential problem vertices
SN : set of slice-need-sets
TFs : set of transfer functions
S : set of linkage nodes
begin
[ 4] if Absent ¢ bl fl DAPS(A, Base) then return (true) fi
[ 5] PP :={ve V(Gy)| 3 call-site Cally € Absent and v is in Q or a procedure (transitively) called from Q }
[ 6] PP :=PP - bl fl DAPS(A, Base)
[ 7] if PP ¢V (A) then return (true) fi
[ 8] SNs = ConstructlnitialSNs(G,,, PP)
[ 9] TFs :=ConstructTFs(Gy)
[10] SNs = UpdateSNs(SNs, TFs)
[11] for each call-site Cally € Absent do

[12] for each S € SNy do
[13] it ~DAPConnected(Map(Cally, S)) then return (true) fi
od
od
[14] return (false)’
end

Figure 5.10. The function IsHomogeneous performs the two checks of the homogeneity test. The auxiliary function
ExtraOccurrences applies the absent-vertex test (the first line of the function) and then the two parts of the absent-call-
site test (the remainder of the function).

Example. For the integration example shown in Figure 5.6, the absent-vertex test fails: the vertex
labeled “t :=1/x” is in V(Gy) -V (G) but is not in bl f1 DAPS(A, Base). Intuitively, the homogeneity test
fails because A and B make conflicting use of procedure P. The modification made to A requires both
statements from the body of P to be included in M; however, the modification made to B clashes with the
need for statement “t := 1/x” in A’s modification.

A Comprehensive Example

As a second example, consider the application of the homogeneity test to the integration example shown in
Figure 5.11 (this figure repeats systems Base, A, and B from Figure 5.3 and system M from Figure 5.5).
Like the example shown in Figure 5.6, this example fails the homogeneity test; however, unlike that exam-
ple, it is the absent-call-site test that fails rather than the absent-vertex test. (This is the desired outcome
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Base Variant A Variant B M
procedure Main procedure Main procedure Main procedure Main
a=2 a:=2 a=1
b=1 b=1 bi=1 b=1
call P(a, 1) call Pa, 1) call P(a, 1) call P(a, 1)
call P(b, 1) call P(b, 1) call P(b,[Z) call P(b, 2)
end(a) end{a) end(a) end(a)
procedure P (x, y) procedure P (x, y) procedure P (x, y) procedure P (x, y)
tl=x+y tli=x+y tl=x+y tl=x+y
call Incr (x) call Incr (x) call Incr (x)
t3=x
x =2 x:=2 x=2 x=2
return return return return
procedure Incr (2) procedure Incr (z) procedure Incr(z) procedure Incr(z)
R2=1/z 2:=1/z 2=1/z 2=1/z
z:=z+1 z=z+1 z=z+1 z=z+1
return return return return
roll -out(Base) roll -out(A) roll -out(B) M= roll -out(M)
program Main program Main program Main program Main program Main
a=2 a=1 a:=2 a=1 a=1
b=1 b=1 bi=1 b=1 b=1
scope P(x =a,y:=1,; scope P(x:=a,y =1, scope P(x=a,y =1, scope P(x =a,y:=1; scope P(x =a,y==1;
a=x) a:=Xx) a=x) a=x) a=x)
tl=x+y tl=x+y tl=x+y tl=x+y tl=x+y
scope Incr(z =x; scope Incr (z =x; scope Incr (z =x; scope Incr (z =x;
x:=2) x=1z) x =2) x:=z)
12:=1z 2=1/z 12:=1/z 2:=1/z
z=2+1 z=z+1 z=z+1 z=z+1
epocs epocs epocs epocs
13=x 13=x
x=2 x =2 x:=2 x=2 x=2
epocs epocs epocs epocs epocs
scope P(x =b, y =1, scope P(x:=b,y =1, scope P(x=b, y =2, scope P(x =b, y =2; scope P(x =b, y =2,
b =x) b =x) bi=Xx) b =x) b:=x)
tl=x+y tl=x+y tl=x+y tl=x+y tl=x+y
scope Incr(z =x; scope Incr (z =x; scope Incr (z =x; scope Incr (z =x;
x:=2z) x=z) x=z) x:=z)
12:=1/z 2=1/z 2:=1/z
z=z+1 z=z+1 zm=z+1 z2=z+1
epocs epocs epocs epocs
13=x t3=x
x=2 x:=2 x:=2 x =2 x=2
epocs epocs epocs epocs epocs
end(a) end(a) end(a) end(a) end(a)

Figure 5.11. An example that illustrates the absent-call-site test of the homogeneity test. This figure repeats the three
systems shown in Figure 5.3 and the merged system shown in Figure 5.5. Tt also includes the roll-outs of these sys-
tems. (In the roll-outs, only the roll-out of the main procedures are shown.)

~ since, as can be seen in Figure 5.11, M* is inhomogeneous.)

We present two traces in Figures 5.12 and 5.13 that show how the homogeneity test determines that M~
is inhomogeneous. Figure 5.12 shows the trace of the function ExtraOccurrences. The computation of the
slice-need sets for this example is shown in Figure 5.13. For example, consider the second to last iteration
of the loop in lines [2] through [9] of Figure 5.9 where §3 is removed from the worklist (see Figure 5.13).
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Absent = (a =1, Calljyy X, Calljpey, Callppy Xou, 13 =% )
This set is a subset of bl fI DAPS(A, Base); therefore, the absent-vertex test does not fail.

PP = { Enteryy, Zin Enter ., Enter;, 2o, 12:=1/2,z:=2+1}
PP is a subset of V(A); therefore, the trivial part of the absent-call-site test does not fail.

The initial and final slice-need sets and transfer functions are shown in Figure 5.13.

Cally,, is the only call-site in Absent; SNy, =S5, S6 ).

For S, Map(Cally,, S6)={ Calljpy Zin, Callinr, Callinzr Zow }-
Calljey Zow is DAP-connected to a directly affected point; therefore, the necessary occurrences of the vertices
summarized by S¢ are all included in Gy-.

For S5, Map(Calljney, S 5)= { Callfpsyzin, Callpy, ).
Neither Cally,,.a;, nor Cally,, is DAP-connected to a directly affected point; therefore, the absent-call-site test
and thus the homogeneity test fail because occurrences of the vertices summarized by S s are missing from Gy~

Figure 5.12. A wace of the homogeneity test applied to V(Gy)—V (B) for the integration of the systems shown in Fig-
ure 5.11. In this case, the test correctly determines that (as shown in Figure 5.11) the HPR integration of
roll -out(Base), roll -out(A), and roll -out(B) is inhomogeneous.
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Slice-Need Set Elements:
Summary Element Vertices of M summerized by the element
S1: { Enteryg ) all vertices in Main's procedure dependence graph
S,: { Enterp x;,, Enterp.y;,, Enterp } tl :=x+y, Enterp x;,, and Enterp.y;,
Sa: { Enterp.x;y, Enterp } Calljyy Xins Cally,,, Callpr Xouss and 13 :=x
Sa: ( Enterp, Enterp X, ) Enterp x,,, andx =2
Ss: { Entery,, 2;n, Entery,,, ) 2:=1/z
Se: { Entery,, .2, Enteryy,, Enter;,, 2,4 ) z :=z+1, Entery,,.2;, and Enter;, ..z,
Sy, ***, 8¢ represent all possible elements for the slice-need sets computed from M shown in
Figure 5.11.

Initial Slice-Need Sets:

]SNMng ISNP'-:Z ISNIM,.=[S5,S6}
Transfer Functions:
TF ygain(Call, x) = { Enteryy, } for all x € Main

TFp(CaII’m, { Enler,m.z,-,‘ }) = ( Enterp, Emerp.x,-,‘ )
TFp(Call,w, {Enter,m )) = { En!erp }
TFp(CaIl,w, { Em‘er,,,,,.zo., }) = { En!erp, Eﬂfe"p.x,',. }

TF jner(Call, x ) =@ (there are no calls in procedure Incr)

These functions transfer singleton sets; for larger sets the transfer function can be obtained us-

ing the following rule:
TF(Call, (a, b })=TF(Call, (a })UTF(Call, { b))
Slice-Need Set Update:
Procedure  ISN After processing S5 After processing S¢  After processing 3 and S,
Main ] ] & (S:}
P %] {S31} {S3]) (83}
Incr ($5.S6} (S5, 56) (85,56 . {85,565}
Worklist S5,SG S5,S3 S3 1%}
Final Slice-Need Sets:

ISNpain=1{S1)  ISNp={S3}  ISNpy=1[S5. 56}

Figure 5.13. The computation of the slice-need sets for the application of the homogeneity test to the systems shown in
Figure 5.11.

Since S, summarizes vertices in P and there are two calls on P in M, the loop at line [5] goes through two
iterations. During the first (when call "call P (a)” is processed), Map (Call},S5) contains the actual-in ver-
tex for a, which is a DAP-connected point; thus, no new element is added 10 SNy, OF the worklist. How-

ever, Map(Call3,53) contains no DAP-connected vertices and therefore a new element (S,) is added to
SNyqin and the worklist.

5.6. Reconstituting a System from the Merged System Dependence Graph

The final step of Integrate® is to determine whether the merged graph Gy is feasible (i.e., corresponds to
some system); and if it is, to return a system whose system dependence graph is Gy There are two possi-
ble reasons why it may be impossible to reconstitute a system from the merged system dependence graph.
First, Gy may be pdg-infeasible (i.e., one of the procedure dependence graphs may be infeasible, this is
Type 11 interference as found by the HPR algorithm). Second, even if all of the system dependence graph’s



procedure dependence graphs are feasible, Gy may be sdg-infeasible (i.e., the system dependence graph
may still be infeasible due to procedure linkage constraints). Sdg-infeasibility occurs when there is a
parameter-vertex mismatch (i.e., two call-sites on the same procedure have different sets of actual parame-
ter vertices).

As shown in Chapter 6, if Gy has passed the homogeneity test it can only be infeasible if one of its pro-
cedure dependence graphs is pdg-infeasible. Pdg-infeasibility is tested for by applying the program-
reconstitution algorithm from [Horwitz89]'® to each procedure dependence graph in Gy (a few straightfor-
ward modifications to the reconstitution algorithm are needed to accommodate the additional kinds of ver-
tices that represent call statements). The program-reconstitution algorithm may determine that a procedure
dependence graph is infeasible (and thus that Gy is infeasible); in this case, there is Type II interference
and Integrate’ reports failure.

If there is no Type I interference, if the homogeneity test succeeds, and if Gy is feasible, then a system
M whose system dependence graph is Gy is returned as the result of the integration.

5.7. Recap of Integrate’
Putting all the pieces together, a complete algorithm for multi-procedure integration appears in Figure 5.14.

function Integrate®(A, Base, B) returns a system or Failure
declare
A, Base, B, M : systems
G : a system dependence graph
begin
G :=AS(A, Base) u A%(B, Base) u Pre’(A, Base, B)
if Typel_Interference(A, Base, B, G) then return (Failure) fi
if not IsHomogeneous (G, A, B, Base) then return (Fallure) fi
if Typell Interference(G) then return (Failure) fi
M :=ReconstituteSystem(G)
return (M)

Figure 5.14. The function Integrate® takes as input three systems Base, A, and B, where A and B are variants of Base.
Whenever the changes made to Base to create A and B do not interfere and the integration of the roll-outs of Base, 4,
and B is homogeneous, Integrate’® produces a system M that integrates A and B (the absence of Type II interference en-
sures the existence of a system M such that Gy = G).

10 A corrected version of the algorithm is given in [Bali90}.




CHAPTER 6

Integrate® SATISFIES THE SYNTACTIC REQUIREMENTS ON/ §

This chapter demonstrates that Integrate®, the multi-procedure integration algorithm developed in Chapter
5, satisfies the syntactic requirements on [ S from Version 2 of the Revised Model of Program Integration
given in Section 4.3 (henceforth, simply “the model”). This is done under the assumption that I~ is
Integrate™ (the nawral extension of the HPR algorithm). Recall that the model places the following
requirements on Integrate™ and Integrate’:

(1: a semantic requirement)
the “conceptual” integration operation /ntegrate™ must satisfy the original HPR model, extended to
sets of infinite programs, and

(2: a syntactic requirement)
the concrete integration operation Integrates must
(i) deal with finite systems,
(i) succeed in producing M iff Integrate™ succeeds in producing M, and
(iii) be consistent with Integrate™ (i.e. roll -out(M) must equal M™).

In addition, to relate the semantics of M and M, it is required that roll-out be a semantics-preserving
transformation.

These requirements can be viewed in terms of the diagram shown in Figure 6.1 as follows. The syntactic
proof in this chapter essentially states that this diagram commutes. (Informally stated, it shows that

Integrate®
Concrete: Base, f,B/ @

roll-out roll-out

Figure 6.1. The commutative square that captures Version 2 of the Revised Model for Multi-Procedure Integration.
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Integrate™ oroll-out equals roll-out o Integrate®.) The semantic proofs in Chapters 7 and 8 show that M
captures the changed and preserved behavior of A and B with respect to Base. First, Chapter 7 proves that
roll-out is a semantics-preserving transformation; this relates the meanings of a system at the concrete level
with the meaning of its roll-out at the conceptual level. Second, it is shown in Chapter 8 that integration at
the conceptual level satisfies the HPR integration model (extended to allow infinite programs). In other
words, Chapter 8 shows that M= (the result of integrating roll-out(A) and roll -out(B) with respect to
roll -out(Base)) captures the changed and preserved behavior of roll-out(A) and roll -out(B) with respect
to roll-out(Base). Chapter 7, concerns the semantic relationship between Base, A, and B and
roll -out(Base), roll-out(A), and roll-out(B), respectively. Because Chapter 6 shows that
roll -out(M)=M" (which is a syntactic relationship between M and M), Chapter 6 and 7 together tell us
about the semantic relationship between M and M™.

Hence, in accordance with the preceding discussion, this chapter proves that Integrate’ satisfies
Requirement (2) of the model. To begin with, by design Integrates satisfies Requirement (2)(i); thus, we
demonstrate, in the Syntactic Correctness Theorem of Section 6.5, that Integrate® satisfies Requirements
(2)(ii) and (2)(iii).

The proof of the Syntactic Correctness Theorem is based on the Sufficiency, Necessity, and Type I
Interference Theorems; proofs of these theorems appear in Sections 6.2, 6.3, and 6.4 respectively. (An
overview of the structure of the entire proof is provided in Figure 6.2; the way that this chapter is organized
is that the theorems and lemma listed in Figure 6.2 are proven in left-to-right depth-first order). Before
presenting the Sufficiency Theorem, Section 6.1 gathers together some of the terminology and notation
used in the proof.

6.1. Terminology and Notation

The Result of Successful and Unsuccessful Integrations

This section defines the terms successful integration and unsuccessful integration and defines the merged
programs that result from each. To begin with, Integrate® is successful if there is no Type I or Type II
interference; for a successful integration the result is a system M constructed from Base, A, and B as
described in Chapter 5 (note that this means Integrate® produces a merged system even if the homogeneity
test detects inhomogeneity). Otherwise, if there is Type I or Type I interference then integration is unsuc-
cessful, in which case M is defined to be the empty program. Similarly, /ntegrate™ is successful when
applied to roll -out(Base), roll-out(A), and roll -out(B) if there is no Type I or Type II interference; for a
successful integration the result is a set of integrated procedures M. Otherwise, if there in Type I or Type
1 interference then integration is unsuccessful, in which case M is defined to contain only the empty pro-
gram. Even for unsuccessful integrations, both operations produce an intermediate merged dependence
graph: throughout this section, we continue to use Gy to denote the intermediate system dependence graph
produced by Integrate’ and Gy~ to denote the set of iniermediate graphs produced by Integrate™.

Representation of Parameter Transfer

To understand the proof presented in this chapter, it is essential to understand the relationship between the
representation of call statements in G, and the representation of scope statements in Gppr.ow(a)- 10 under-
stand this relationship, it is first necessary to understand how the transfer of values associated with the exe-
cution of call statements in A and scope statements in roll -out(A) are represented in G4 and Grou-ow(a)s
respectively (an example of these representations is shown of Figure 6.3).

A:
In system A, parameters to a procedure call are passed by value-result: initial actual-parameter values
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Syntactic Correctness Theorem

A

Lemmal @ itness Lemma Lemmas 11,12, and I3
Slice Need Lemma A Inclusion Lemma

\
Delta Slic

Meeting Point Lemma

Sufficiency Theorem Necessity Theorem Type I Interference Theorem

Directly Affected Points Lemma
Valid Path Lemma

Figure 6.2. A pictorial breakdown of the proof that Integrate’ satisfies requirements (2)(@ii) and (2)(iii) of the Integra-
tion Model of Section 4.3.

are copied to formal parameters before calling a procedure; result values are then copied back to actual
parameters after the procedure completes execution.

GAZ

By breaking down the transfer of values into actions taken by the calling procedure and actions taken
by the called procedure, G, represents the passing of parameter values at a finer level of granularity
than described for the passing of parameters in A. As described in Chapter 3, the transfer of initial
actual-parameter values to a called procedure is represented by two kinds of vertices: actual-in vertices,
which represent the transfer by the calling procedure of initial values from actual parameters (o inter-
mediate temporary variables (e.g. x;, in Figure 6.3), and formal-in vertices, which represent the transfer
by the called procedure of initial values from the intermediate temporaries to the formal parameters.
After the call, the transfer of result values from formal parameters (through different intermediate tem-
poraries, e.g., the variable x,,, in Figure 6.3) back to the actual parameters is also represented by ver-
tices of two kinds: formal-out and actual-out vertices.
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roll -out(A):

In roll -out(A), each scope statement sets up a new name space. To transfer values into and out of this
name space, a scope statement is parameterized by two kinds of assignment statements: transfer-in
statements, which transfer initial (actual-parameter) values to variables in the new name space (previ-
ously the formal parameters of the called procedure) and transfer-out statements, which transfer result
(formal-parameter) values back to variables of the enclosing name space (previously the actual parame-
ters of the call statement). Thus, transfer-in and transfer-out statements make explicit the transfer of
values dictated by value-result parameter passing.

Grott ow(a):
Unlike Gy, in G-y, @ Single vertex represents the value transfer associated with entering or exit-
ing a scope. A transfer-in vertex represents the transfer accomplished by a transfer-in statement and a
transfer-out vertex represents the transfer accomplished by a transfer-out statement.

The relationship between the representation of a call statement in G4 and the representation of a scope
statement in Goir-oua) iS illustrated in Figure 6.3, which shows a call on procedure P, its expansion, and
the graphical representation for each. In general, the representation of a scope in Groy.owma) “‘condenses”
the representation in G, of a call statement and the vertices representing the interface to the called pro-
cedure as follows: corresponding actual-in and formal-in vertices are condensed into a single transfer-in

System A roll -out(A)
procedure Main procedure Main
call P(a) scope P(x:=a;a:=x)
end cee
epocs
pr(Tc-e.dure P(x) end
return
Gy Grottourih)

<D

actual-out transfer-in transfer-out

A

formal-in formal-out

Figure 6.3. This figure shows a system A, roll -out(A), and fragments of their respective dependence graphs. Notice
that in G, the two vertices that represent the two-step process by which values are transferred to and from P (using in-
termediate temporaries X;, and X, respectively), are condensed into a single assignment vertices in Grou.oua)-
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vertex, corresponding actual-out and formal-out vertices are condensed into a single transfer-out vertex,
and the call-site and entry vertices are condensed into a single scope vertex. This is illustrated in Figure
6.3 where the six vertices representing a call on P and the interface to P are condensed into three vertices
representing the P-scope replacing the call on P. In addition, the edge occurrences in G,y .ou4) associated
with the condensation of two vertices from G4 can be determined from the edges associated with the two
vertices. For example, referring to Figure 6.3, the incoming edges for the transfer-in vertex labeled “x :=a”
are occurrences of the incoming edges for the actual-in vertex labeled “x;, :=a” and the edges whose
source is the transfer-in vertex labeled “x:=a” are occurrences of edges that have the formal-in vertex
labeled “x :=x;,” as their source.

Occurrences of Vertices

This section formalizes the notion of the occurrences of a vertex and the inverse of this mapping. Exclud-
ing actual-in, call-site, and actual-out vertices, the vertices of G, partition the vertices of Gyon.ou(a)- Furth-
ermore, because of the condensation of actual-in and formal-in vertices, call-site and entry vertices, and
actual-out and formal-out vertices, the actual-in, call-site, and actual-out vertices further partition the parti-
tion associated with each formal-in, entry, and formal-out vertex, respectively. Thus, for vertex occurrence
V™ in Gon.oua), ¥~ cOmesponds to a single vertex v from G, if v~ is not a transfer-in, scope, or transfer-
out vertex; otherwise, v corresponds to a pair of vertices in G,. For example, a transfer-in vertex
corresponds to an actual-in vertex and a formal-in vertex.

Before formalizing the correspondence (or mapping) between the vertices of G4 and the vertex
occurrences in Grop-ow(a), W€ identify a distinguished occurrence of each vertex v from G,. This
occurrence is the one associated with the expansion of the empty sequence of call-sites (if v is in procedure
P then the distinguished occurrence of v is in roll-out(A, P)). Because the statement corresponding to this
occurrence has scope-nesting-depth zero (i.e. is nested within zero scope statements), it is referred to as the
depth-zero occurrence.

DEFINITION (Occurrences). The following table defines the mapping occurrences for a vertex v in G
and the inverse mapping for a vertex occurrence v* in Gyoit oway. These mappings are determined by the
type of v and v, respectively.



Typeof v occurrences(roll -out(A), v)

actual-in  Let“CallP(---,p, --+)" be the call statement at which v represents parameter p. The oc-
currences of v are the transfer-in vertices that represent the transfer-in statements of
roll -out(A) obtained from p and the expansion of any sequence of call-sites ending in
“CallP(-++,p, * )

call-site Similar to actual-in.

actual-out  Similar to actual-in.

formal-in  The occurrences of v are the union of the occurrences from G,y owa) Of all actual-in ver-
tices from G, that are connected to the formal-in vertex by an interprocedural edge in Gy,
plus the depth-zero occurrence of v.

entry Similar to formal-in.

formal-out Similar to formal-in.

Type of v=  Inverse of occurrences (i.e. v such that v= € occurrences(roll -out(A), v)).

transfer-in  v™ is an occurrence of the actual-in and formal-in vertices in G, condensed to form v*.

scope v™ is an occurrence of the call-site and entry vertices in G, condensed to form v=.

transfer-out v™ is an occurrence of the actual-out and formal-out vertices in G4 condensed to form
v=,

others v™ is an occurrence of the unique vertex v from G, of which v= is a copy.!

In the remainder of Chapter 6, if v™ is a transfer-in, scope, or transfer-out vertex then the phrase
“corresponding vertex in G,” refers to the actual-in, call-site, or actual-out vertex of which v= is an
occurrence, unless it is explicitly stated that v* is an occurrence of a formal-in, entry, or formal-out vertex,
respectively.

Homogeneiry

In Section 4.3, we informally defined a set of programs that contained scope statements as inhomogeneous
if “different occurrences of a procedure (i.e. scopes) contain different subsets of a procedure’s parameters
and statements.” While programs satisfying this statement are inhomogeneous, there are programs that do
not satisfy the statement that are nonetheless inhomogeneous. The formal definition of homogeneous, rules

out such programs:

DEFINITION. A set of programs P is homogeneous iff there exists a system S (without scope statements)
such that Gp is isomorphic? 10 G oy ous)-

Informally, for each procedure Q, the definition requires that all Q-scopes in P and the procedure
carresponding to roll-out(S, Q) (the roll-out that begins with procedure Q) be the same (i.e., their depen-
dence graph must be isomorphic). Note that in the proofs, because roll-oul(S, Q) must be the same as the

! This can be further formalized using the tags of v and v™.

2 Two sets of graphs S and S, are isomorphic iff there is a 1-t0-1 mapping ffrom Sy onto S, such that, for every graphs G, € §;,G)

and f (G ) are isomorphic graphs; two graphs G and G2 are isomorphic iff the following conditions are satisfied:

(1) There is & 1-10-1 mapping g from the ventex set of G onto the venex set of G2 and for every vin G;, v and g (v) have the same
text.

(2) There is a 1-to-1 mapping A from the edge set of G onto the edge set of G and for every edge e in Gy, e and k (¢) are of the same
type (e.g. both control edges, or both fiow edges, e1c.) and have the same label.

(3) Foreveryedgev —>uin Gy, A(v )= g (v) —> g ().

When Sy and S, are isomorphic or when we are trying to prove 5, #nd S, are isomorphic, for brevity, we will say v and g (v) are the

same vertex and e and A (¢) are the same edge.
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Q-scopes, roll-out(S, Q) is treated as a Q-scope

Additional Notation
NOTATION. The symbol “=" denotes an isomorphism between two graphs. Hence, one goal of Chapter 6
is to show that G i owy ™ Gar.

NOTATION. P, denoies the procedure containing the vertex v.

NOTATION. x~ denotes an occurrence of x (if unspecified in the text, the rolled-out system is implied by
context).

NOTATION. Table 1 summarizes the kinds of edges that exist in a system dependence graph (v and u
denote the system dependence graph vertices).

Type of Edge Denoted by

Any of the following edge kinds v—>u

Intraprocedural Edges control v—r 1
flow v -—),u
def-order v=—pw U (wisthe witness veriex)
summary vV—,u
meeting-point V=Pl

Interprocedural Edges call V= eall U
parameter-in VU
parameter-out V=5 U

Table 1

All edges are incoming edges for vertex u except a def-order edge, which because it is viewed as a
hyperedge from v 10 4 to w, is an incoming edge for the witness vertex w.

A path in G, from v to u (which is obtained from the reflexive transitive closure of the G,'s edge rela-
tion) is denoted by v —>"u. Paths in G, made up of only certain kinds of edges are denoted by the
reflexive transitive closure of particular sub-relations of G,'s edge relation. For example, v—>¢ canll
denotes a path from v to u composed of only control dependence and interprocedural call edges.

NOTATION. We use the symbol ¢, when applied to dependence graphs, to mean “is a sub-graph of™.
Similarly, when applied 10 sets of dependence graphs x and y, x < y means that for each dependence graph
G, in x there is a corresponding dependence graph G, in y such that G,cG,. For example,
Grottouay & Gar- means that for each procedure P in M there is a procedure dependence graph in Gy that
contains all the vertices and edges from G .o, P)-

Finally, as in previous sections, we continue to omit selection operations when they are clear from con-
text. For example, v € bi(P, u) continues to abbreviate v € SelectVertexSet (bl(P, u)).

6.2. The Sufficiency Theorem

The Sufficiency Theorem, which is proven by mutual containment, demonstrates that the homogeneity test
is sufficient—that is, whenever the test is passed, G- is guaranteed to be homogeneous and isomorphic to
Grott-owepry The proof has two parts: Lemma 1, which shows that whenever the test is passed and no Type
I interference exists, G oy owqry & Gu~» and Lemma 2, which shows that whenever no Type I or Type I
interference exists, Gy~ C Gron-ouqy- Together Lemmas 1 and 2 imply that whenever the homogeneity
test is passed and no Type I or Type II interference exists, Grou-om(m) = Gy" (which, because roll -out(M) is
homogeneous, implies that M is homogeneous).
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6.2.1. Lemma 1

We first show, in Lemma 1, that if Base, A, B, and G, pass the homogeneity test and no Type I interfer-
ence exists then G oit.owpsy S Gy~ (€. Gron-ouquy 15 contained in Gy-). The proof of Lemma 1 makes use
of two supporting results: the Containment Lemma, which bounds the vertices and edges of Groit-ow(my» and
the Slice-Need Lemma, which relates the inclusion of certain occurrences of v in
A™(roll -out(A), roll -out(Base)), and thus in G-, with the DAP-connection of a vertex in Map(Call, S),
where S sumimarizes vertex v.

The Containment Lemma

LEMMA (CONTAINMENT LEMMA). If Base, A, B, and Gy pass the homogeneity test and no Type I interfer-
ence exists in the integration of Base, A, and B then roll -out(M) c roll -out(A) v roll -out(B).

PROOF. The proof is by contradiction. We first consider the vertices and then the edges of roll -out(M).

Vertices

Assume v= € V (roll -out(M)) but not V (roll -out(A)) vV (roll-out(B)). Vertex v can be absent from
roll -out(A) because either v or one of the call-sites whose expansion leads to v* in roll -out(M) is absent
from A; vertex v is absent from roll -out(B) for the same reasons. There are two cases to consider:

1) IfveV()andvée V(B) then v & V(Gy), and hence v™ ¢ V (roll -out(M)), a contradiction.

(2) We assume, without loss of generality, that v € V(A) and that v occurs in the procedure dependence
graph for procedure P. Because v™ ¢ V (roll -out(A)) but v e V(4), roll -out(A) must not contain the
P-scope that contains v* in roll -out(M). Thus, one of the call-sites in M whose expansion leads to v~
in roll -out(M) does not exist in A; let Cally be this call-site. Because v~ ¢ V (roll -out(B)), either v is
not in B or a call-site Callz whose expansion leads to v= in roll-out(M) is not in B. We consider these
two possibilities separately. First, if v is not in B then the homogeneity test fails (which contradicts our
assumption that Base, A, B, and Gy pass the homogeneity test). The test fails because Cally is an
absent call-site from A, v is in a procedure (transitively) callable from Cally in M, but v is not in B (see
line [7] of Figure 5.10).

Otherwise, if v is in B then Callg is not in B. Call-sites Cally and Callg cannot be the same call-site
because if they were, then by part (1) Cally would not be in M and hence v= would not be in
roll -out(M) (which contradicts our assumption that v= € V (roll -out(M))). Thus in Gy, since Cally
and Callg are both part of the sequence of call-sites whose expansion produces v=, either Callg isina
procedure transitively callable from Callg or Callg is in a procedure transitively callable from Cally.
The proof for both of these cases is the same as the case when v is absent from B. For example, if
Callg is in a procedure transitively callable from Cally then, because Cally, is an absent call-site from
A, Callg is in a procedure (transitively) callable from Cally in M, but Callg is notin B, the homogeneity
test fails (which contradicts our assumption that Base, A, B, and Gy pass the homogeneity test).

Edges
Assume e~ € E (roll -out(M)) but not E (roll -out(A)) v E (roll -out(B)). As above we consider two cases.
(1) Ifee¢ E(A)and e & E(B) then e ¢ E(Gy) and hence e™ ¢ E (roll -out(M)), a contradiction.

(2) We assume, without loss of generality, that e € E () and occurs in the procedure dependence graph for
procedure P. As in Case (2) above, there is a call-site Cally that is absent from A and either e is absent
from B, which is considered below, or Callg is absent from B, in which case the proof is subsumed by
Case (2) above.
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When e is absent from B, we consider the target of e™; assume this is vertex y~. Vertex y~ is, by
assumption, in roll -out(M); however, because Cally is not in A, y™ is not in roll -out(A). Since the
vertex argument implies V (roll-out(M))cV (roll-out(A))v V(roll -out(B)), y~ must be in
roll -out(B); therefore, y exists in B. Because call-site Callg is absent from A, y is in a procedure (tran-
sitively) called by Cally in M, and Base, A, B, and G, pass the homogeneity test, y is either in
blfl DAPS(B, Base) or is summarized by an element of a slice-need set that is transferred to a DAP-
connected set of vertices. Both of these imply that y is in AS(B, Base) (the later case is detailed below).
But e € E(Gy) and e ¢ E (B) imply that y is in DAP5(Gy, B); thus, y € AS(B, Base) nDAPS(Gy, B),
which leads to a contradiction because it violates the assumption that no Type I interference exists.

What remains to be shown is that if y is summarized by an element of a slice-need set that is
transferred to a DAP-comnected set of vertices then y is in either b2blf] DAP*(B, Base) or
b2f2f1 DAP3 (B, Base) and thus in AS(B, Base). To begin with, a DAP-connected vertex is either an
actual-out vertex in bl f1 DAPS(B, Base) or an actual-in (or call-site) vertex in f1 DAPS(B, Base). For
an actual-out vertex the element initially summarizing y contains a formal-out vertex whose bl slice
includes y. The formal-out vertex is transferred to the DAP-connected actual-out vertex because of a
series bl slices that, taken with respect to formal-out vertices, include actual-out vertices. The kinds of
edges traversed by a bl slice and the parameter-out edges that connect formal-out vertices to actual-out
vertices are the kinds of edges traversed by a b2 slice; thus, y is the b2 slice with respect to the DAP-
connected actual-out vertex and hence in b2 bl f1 DAP*(B, Base). The case for an actual-in or call-site
vertex is identical except that y’s initial summary element and its transfer may involve fl slices followed
by bl slices. Thus y is in the b2 o f2 slice with respect to the DAP-connected acmal-in (or call-site) ver-
tex and hence in b2 f2f1 DAPS(B, Base).

|

The Slice-Need Lemma

The second result used by Lemma 1 is the Slice-Need Lemma. This lemma describes a sufficient condition
for the inclusion of v= from roll-out(A) in A™(roll-out(A), roll -out(Base)) and thus in Gy~. Each
occurrence of v in roll -out(M), including v, can be associated with (the expansion of) a unique sequence
of call-sites Seq from M. Occurrence v™ is in A™(roll -out(A), roll -out(Base)) if this sequence contains a
call-site Callp such that DAPConnected(Map(Callp, TF ({ Linkage(v) }))) where function TF (as explained
below) is the composition of the functions that result when the transfer functions of each procedure called
between P and P, are applied to the corresponding call-sites from Segq.

A transfer function has the signature call -site —> Slice-Need-Set —> Slice-Need-Set. If TF; denotes the
wransfer function for the procedure that contains call-site c; then TF, .(c;) denotes a function, having signa-
ture Slice-Need-Set —> Slice-Need-Set, that transfers slice-need sets through call-site ;. Function TF, also
having signature Slice-Need-Set —> Slice-Need-Set, is the result of composing TF;(c;) for the sequence of
call-sites Segp—the suffix of Seq occurring after Callp. This function transfers elements of P,’s slice-need
set to P’s slice-need set; thus in DAPConnected(Map(Callp, TF ({ Linkage(v) D)), TF transfers Linkage(v)
(backwards) along the call-sites of Seqp until, at Callp, it is mapped to a DAP-connected set of actual-in,
call-site, and actual-out vertices.

LEMMA (THE SLICE-NEED LEMMA). Let v™ be the occurrence of vertex v associated with the expansion
of Seq, a sequence of call-sites from A. Let Callp be a call-site from Seq and let Seqp denote the suffix of
Seq that occurs after Callp. If TF is the composition of TF(c;) for each call-site c; in Seqp and
DAPConnected(Map(Callp, TF({ Linkage (v) }))) then v™ € A= (roll -out(A), roll -out(Base)).

PROOF. Suppose [ is one of the linkage vertices from Linkage(v) that is transferred to a DAP-connected
vertex dc by Map(Callp, TF({ Linkage (v) })). The proof considers separate cases based on the types of [
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and dc. In general there are nine cases since a DAP-connected vertex is either an actual-in, call-site, or
actual-out vertex and there are three kinds of linkage vertices; however, the cases involving call-site and
entry vertices are simplifications of the cases involving actual-in and formal-in vertices, respectively (this
is because every vertex in Gp is in fI(P, Enterp) due to the control edges of Gp). Of the four remaining
cases a formal-in vertex is never transferred by TF to an actual-out vertex (see Section 5.5.3); thus, only
three cases remain.

In each case, we show that v~ is in b~f"DAP"(roll-out(A), roll -out(Base)) (i.e.,
A=(roll -out(A), roll -out(Base))) by establishing the existence of a directly affected point 4™ and two
paths of edges u™ —>;, ;x= and v —> (x* in roll -out(A). (The edges of u™ —> ;x™ are traversed by
the f~ slice of A™; the edges of v~ —-);_fx" are traversed by the b~ slice.) In all cases, 4™ is an
occurrence of the directly affected point u from A that causes dc to be a DAP-connected vertex.

Before considering the individual cases, we show that every occurrence of u, including ™, is in
DAP>(roll -out(A), roll -out(Base)). Directly affected points are determined solely from the incoming
edges for a vertex (or by the existence of a vertex in A but not Base). This local information is not affected
by the expansion of call-sites; thus, if u is in DAP 5(A, Base) and therefore has different incoming edges in
A and Base, every occurrences of u has different edge occurrences in roll -out(A) and roll -out(Base) and is
therefore in DAP = (roll -out(A), roll -out(Base)). (If u is a directly affected point because it is in A but not
Base then, because no occurrences of u are in roll -out(Base), all occurrences from roll -out(A) are in
DAP=(roll -out(A), roll -out(Base)).)

We now consider the three cases based on the types of / and dc. In each case we identify three paths in
roll -out(A) that correspond to the paths in A between v and /, / and dc, and dc and u.

(1) I is a formal-in vertex and dc is an actual-in vertex.

The first path in roll-out(A) corresponds to the path between v and [ in A. To begin with, formal-in
vertex [ is in Linkage(v) iff v € bl fi(P,, 1); thus, in P, paths connect v and 1 to some vertex x. With
two caveats, occurrences of the edges that make up these paths connect v= and ™ (the occurrence of /
in the same scope as v™) to some vertex x~. The first caveat is that if either path in P, contains sum-
mary edges then the “occurrences” of these edges are the occurrences of the edges that induced the
summary edges. The second caveat is that if either path in P, contains a meeting-point edge then the
“occurrences” of this edge are the occurrences of the edges that induce the meeting-point edge.
Notice that x= is an occurrence of x unless both paths in P, end with meeting-point edges. In this case
x* is an occurrence of the vertex that induced the meeting-point vertex. Thus, the occurrences of the
edges that make up | —>, ;. mpx and v—>( . mx imply that the paths I” —.7x~ and
v -—); £Xx~ existin roll -out(A).

The second path in roll -out(A) corresponds to the path from [ to dc in A. When / is a formal-in ver-
tex and dc is an actual-in vertex then the transfer of ! to dc by TF involves only the mapping of
actual-in or call-site vertices to formal-in or entry vertices. Such mappings exists solely because of
forward local slices. For example, transfer function TFg transfers (maps) formal-in vertex Enterg.a;,
to formal-in vertex Enterg.b;, iff Callg.ais € A(Q, Enterg.b;,). The composition of the fl slices used
to compute the functions that transfer [ to dc identifies a path of edges from dc to I. Because this
transfer is along the call-sites in A that are expanded to create v™, occurrences of these edges in
roll -out(A) form the path dc™ —>7, (1.

The third path in roll -out(A) corresponds to the path from dc to u in A. A DAP-connected actual-in
vertex, such as dc, is in fI(A, u), which implies that a path from u to dc exists in A. Occurrences of
the edges on this path connect an occurrence of u to every occurrence of dc, including dc™ because an
f1 slice “ascends” to calling procedures; thus, the procedure containing dc transitively calls the pro-
cedure containing » through a sequence of call-sites. In the roll-out of A, the expansion these call-
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sites places an occurrence of u into a scope transitively enclosed in the scope containing each
occurrence of dc Because occurrences of the edges that connect dc to u connect u™ to dc”,
roll -out(A) contains the path u™ —>; ydc™.

Finally, concatenating the three paths u” —>; ;dc™, dc™ —>; ;1”, and I” —>.. ;x~ produces the
path u”™ -—):'fx"". Since u™ € DAP = (roll -out(A), roll -out(Base)) and the path v™ —):.fx“’ exists in
roll -out(A), this implies v € b= f"DAP > (roll -out(A), roll -out(Base)) as was to be shown.

(2) ! is a formal-out vertex and dc is an actual-out vertex.

First, formal-out vertex ! is in Linkage(v) iff v € bl(P,, I); similar to Case (1), the path from v to [
implies that the path v™ —>;. ;1™ exists in roll -out(A). Second, the transfer of / to dc by TF is identi-
cal to Case (1) except that bl slices replace fl slices; thus, a path from [ to dc exists in A and the path
= ——); sdc™ exist in roll -out(A). Third, when dc is an actual-out vertex it is in bl fI(A, u). In this
case an argument similar to the one used for a DAP-connected actual-in vertex implies two paths exist
in roll-out(A): u” —>; ;x™ and dc™ —>; ;x™. (Note that a b slice, like an fI slice, “ascends” to
calling procedures.)

Finally, concatenating the three paths v= —>;, 1=, 1= =7, ydc™, and dc™ —>¢, ;x™, produces the
path v~ ——): £Xx= in roll-out(A). Since u™ e DAP>(roll -out(A), roll -out(Base)) and the path
u= ——):._fx'” exists in roll -out(A), this implies that v= € b=~ DAP*(roll-out(A), roll -out(Base)) as
was to be shown.

(3) dc is an actual-in vertex and [ is a formal-out vertex.

a

In this case one of the procedures called between P and P, plays a special role in the argument that
v= e A=(roll -out(A), roll -out(Base)). Let Q be the procedure such that TFp transfers a formal-out
vertex Enterg.b,, to a formal-in vertex Enterg.a;,. This transfer takes place because, in procedure Q,
actual-out vertex Callg.b,,, is in bl fi(Q, Enterg.a;,). Now suppose that Callg.bou™ and Enterg.a;s~
are occurrences of Callg.b,, and Entery.a,,, respectively, from the same scope. Because
Callg.b,u € bl fi(Q, Enterg.a;,), a vertex occurrence x™ exists such that Callg.bou” —>; 7x~ and
Enterg.ai,™ =, rx™.

The rest of the argument borrows parts from Cases (1) and (2). First, similar to Case (1) where
there is a path dc™ —>;, ;1= we can show that there is a path dc™ —>;. rEnterg.a;,™. Second, similar
to Case (2) where there is a path [~ —>; ydc™, we can show that there is a path [” —>¢. rCallg byy”.
Combining these paths with Enterg.a;,™ —>7 ;x= and Callg.bou™ —>¢,sx, tespectively, produces
the paths dc™ —., 7x7 and 7 -, 7x°, respectively. Again borrowing from Cases (1) and (2),
because (as in Case (1)) dc™ is an occurrence of a DAP-connected actual-in vertex, roll -out(A) con-
tains the path u”™ --); sdc” and because (as in Case @) ve bl(P,, ), roll-out(A) also contains the
path v= —> ;I~. Combining these paths with dc™ —. sx= and I~ —>;, ;x™ produces the paths
u” ——): £x~ and V7 —-): £x~, respectively, which, since u™ € DAP™(roll-out(A), roll -out(Base)),
imply that v= € b™f~DAP = (roll -out(A), roll -out(Base)) as was 1o be shown.

Lemma 1

LEMMA 1. If Base, A, B, and Gy pass the homogeneity test and no Type I interference exists in the integra-
tion of Base, A, and B then G0ty <Gy~

PROOF. The proof considers first the vertices and then the edges of roll -out(M).

Vertices

Let v* be an occurrence of vertex v in roll-out(M). The Containment Lemma implies that
v= e V(roll-out(A)) or v= € V (roll -out(B)); without loss of generality assume v= e V(roll-out(A)). If v~
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is also a member of roll-out(B) then v~ is in at least one of
Pre>(roll -out(A), roll -out(Base), roll -out(B)), A (roll -out (A), roll -out(Base)), or
A™(roll -out(B), roll -out(Base)), and hence in Gy-. Otherwise, v™ is absent from roll -out(B) because
either v is absent from B, or a call-site Callp is absent from B where Callp is a call-site from Seq-—the
sequence of call-sites in M whose expansion leads to v=. We consider separately these two possibilities for
v* being absent from roll -out(B):

(1) Vertex v is absent from B.
Because v ¢ V(B) but ve V(Gy) and Base, A, B, and Gy pass the homogeneity test, v must be in
bl fl DAPS(A, Base). Thus, as shown in the Every Occurrence Lemma of Section 5.5.2, all
occurrences of v in roll -out(A), including v=, are in A™(roll -out(A), roll -out(Base)), which implies
v> isin Gy-.

(2) Call-site Callp is absent from B.
Because Callp is in V(Gy) but not V (B), v is in a procedure transitively called from Callp, and Base,
A, B, and G, pass the homogeneity test, it must be the case that either

(a) v € bl1fl DAPS(A, Base), or
(b) v is summarized by an initial summary set Linkage(v) that is either not transferred to SNp, or if it
is transferred to S € SNp then DAPConnected (Map(Callp, { S })) holds.

In Case (a), all occurrences of v in roll -out(A), including v™, are in A”(roll -out(A), roll -out(Base)).
In Case (b), there is some call-site of Seq at which Linkage (v) has been transferred (and then mapped)
to a DAP-connected set of actual-in, call-site and actual-out vertices; thus, the Slice-Need Lemma
implies that v= is in A™(roll -out(A), roll -out(Base)). Finally, since A”(roll -out(A), roll -out(Base))
is contained in G-, together these cases imply v™ is in Gy-.

Edges

Let e”=x"—>y~ be any non-def-order edge from roll-out(M); the proof for a def-order edge
X~ —Dam 2™ is the same except z™ is included with x> in the following argument. The Containment
Lemma implies that e is in roll -out(A) or roll-out(B). 1f €™ isin both roll -out(A) and roll -out(B) then
it is in M™. Otherwise, without loss of generality assume e™ is in roll-out(A) but not roll -out(B); there
are two possible ways ¢ can be absent from roll -out(B): either (1) e is absent from B, or (2) a call-site
Callp from Seq is absent from B. We consider separately these two possibilities:

1 ‘Edge ¢ is absent from B,
Recall that e =x —>y. There are two sub-cases to consider:

()ye V(B).
The vertex argument implies that y~ € M, because y* is in roll -out(M). Furthermore, ¥~ must
be in A”(roll-out(A), roll-out(Base)) because it is in M= but not roll-out(B) (by assumption
y € V(B)). Computing A™ involves a b* slice; therefore, since e € E (Grooura))» X 18 also
included in A=(roll-out(A), roll-out(Base)). The inclusion of these vertices in
A=(roll -out(A), roll -out(Base)) and the existence of e” in roll-out(A) imply that
e= € Induce A™(roll -out(A), roll -out(Base)), which implies that ™ is in Gy-.

(ii) y € V(B).
We consider separately the two possibilities for e’s membership in Base. First, if e is absent from
Base then e~ ¢ E (roll-out(Base)). Because e € E(roll-out(A)), this implies y~ is in
DAP*(roll -out(A), roll -out(Base)) and thus in A~ (roll-out(A), roll-out(Base)). As in Case
(1).(0), the b> slice used to compute A~ includes x* in A™(roll -out(A), roll -out(Base)), which
causes e~ =x" —>y~ to be included in Induce A™(roll -out(A), roll -out(Base)). This implies
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that e™ is in Gy-.

Second, if e is present in Base then, because e is not in B but y is,
y e DAPS(B, Base) cA%(B, Base). However, e€E(Gy) and e¢E(B) imply that

y€& DAPS(Gy, B); therefore, Type I interference exists because
ye A5(B, Base)nDAPS(Gy, B). This contradicts the assumption that no Type I interference
exists.

(2) Call-site Callp is absent from B.
The vertex argument implies that, since x* and y~ are in roll -out(M), they are in M™. Because
Callp’s absence from B implies that x™ and y* are not in roll -out(B), they must be in M* because
they are in A”(roll-out(A),roll -out(Base)). Therefore, since e”=x"—>y~, e~ is in
Induce A= (roll -out(A), roll -out(Base)), which implies that e~ is in Gy,

a

6.2.2. L.emma 2

Lemma 1 represents half of the mutual-containment argument used to prove the Sufficiency Theorem.
Lemma 2 proves the other half (i.e. that whenever no Type I or Type II interference exists,
Gy~ S Grot-owon)- Together Lemmas 1 and 2 imply that if Base, A, B, and Gy pass the homogeneity test
and no Type I or Type II interference exists then Gon-oum) = G~ (i-€., Grolt oy 1S isomorphic 10 Gy-),
which, since roll -out (M) is homogeneous, implies that M~ is homogeneous.

The proof of Lemma 2 relies on the A Inclusion Lemma, which follows from four supporting results: the
Delta Slice Lemma, the Valid Path Lemma, the Dual Path Lemma, and the Directly Affected Points
Lemma. After proving these four lemmas and the A Inclusion Lemma, we then prove Lemma 2 and finally
the Sufficiency Theorem. Before proving these four lemmas it is necessary to formalize the relationship
between paths of edges in Gon.ouay and paths of edges in G4: every path in Gy1.0uma) coOrresponds to a
path in G4; however, the converse (that every path in G4 corresponds to a path in G roll-outa)) 1S MOt true.
The paths in G, that correspond to paths in Grop.oua) are valid paths, which are formalize below before
proving the first lemma.

Valid Paths

A valid path is a sub-path of an execution path. Execution paths are composed of control, flow, meeting-
point, and interprocedural edges such that the interprocedural edges correspond to a legal sequence of pro-
cedure calls and returns that begins in a procedure P and ends in the same activation of procedure P. By a
“legal sequence of procedure calls and returns” we mean that an execution path does not contain edges that
represent a procedure being called from one call-site but returning to a different call-site. Execution paths
(and subsequently valid paths) are formalized below.

DEFINITION. (Execution Paths). Vertices x and y from system A are connected by a execution path iff
1) xand y are connected by a path of non-def-order and non-summary edges’ in A, and

2) the interprocedural edges on the path are constrained by the following grammar (the second Path pro-
duction is indexed by call-site):

31f x and y are connected by a path that contains summary edges then x and y are also connected by a path of non-summary edges.
This path is obtained by (repeated) in-line substitution of the edges that induced the summary edges.
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Path — Path Path
Path —> in. Path out,
- £

where “in.” represents either a parameter-in or call edge associated with call-site c, and “out.”
represents a parameter-out edge associated with call-site c.

Intuitively, because the language constraining the interprocedural edges of an execution path corresponds
to the language of balanced parentheses, it represents the balanced execution of procedure calls and returns
made during a system’s execution.

A valid path is any sub-path of an execution path. Thus, valid paths also rule-out paths that enter a
called procedure from one call-site and then exit the procedure to a different call- site. Intuitively, a valid
path from x to y means that the computation represented by x has a potential influence on the computation
represented by y. Formally, there is a valid path from x to y, denoted by x —>»"Py, if the conditions of the
following definition are satisfied.

DEFINITION. (Valid Paths). Vertices x and y from system A are connected by a valid path iff
1) xand y are connected by a path of non-def-order and non-summary edges in A, and

2) the interprocedural edges on the path are constrained by following grammar (the Head and Tail produc-
tions are indexed by call-site):

Valid-Path —> Head Tail
Head out . Head
Path Head
€

in Tail
Path Tail
€

Tail

LIl il

where out,; and in, represent unmatched interprocedural edges (out,; is unmatched if no correspond-
ing in edge in.; occurs before out.; on the path and in, is unmatched if no corresponding out edge
out . occurs after in; on the path.)

For brevity, we use the phrase “the path is described by” in place of “the interprocedural edges on the
path satisfy the constraints described by” and say that “a path p is in £ (NonTerminal)” (or equivalently
p € L(NonTerminal)) if p is described by NonTerminal (L (NonT ermmal) denotes the language generated
by NonTerminal). For example, x —"y e L(Valid—Path) means x —"Py.

Result 1: The Delta Slice Lemma

The Delta Slice Lemma, states that if valid paths beginning with vertices u and v share certain unmaiched
edges and meet at a vertex x then v is in the “delta-slice” with respect to u (the delta-slice is the slice used
to compute A’; thus, if u and v are in system A then v € b2 b1 f1 (A, u) ub2f2f1 (A, u)). The proof follows
from two other results: the Path Lemma, which demonstrates that summary edges correspond to paths in
L (Path), and the Meeting-Point Lemma, which states that the first shared procedure (i.e., the procedure
that contains the head of the first shared unmatched edge on the paths from u and v) contains a meeting
point vertex.

The Path Lemma

LEMMA. (PATH LEMMA). Ifx —" y € L(Path) then a path composed of only control, flow, summary, and
meeting-point edges connects x 10 y.




PROOE. The proof is by induction over the grammar for (execution) paths. First, paths corresponding to
the production Path — € contain no interprocedural edges and therefore are composed solely of control,
flow, and meeting-point edges. Second, for the right-hand side of each indexed production
Path —> in, Path out., the inductive hypothesis implies there is a path of control, flow, and summary edges
through the procedure called by c. This path satisfies the conditions for a summary edge at ¢. Thus,
replacing the edges in., - -, out; on the path from x to y with this summary edge leaves a path from x to y
composed of control, flow, summary, and meeting-point edges. Finally, for Path — Path Path, the path
from x to y can be broken at an intermediate point z such that the paths from x to z and z to y correspond to
the two right-hand-side occurrences of Path. The inductive hypothesis implies that paths composed of con-
trol, flow, summary, and meeting-point edges connect x 0 z and z to y; hence, the concatenation of these
paths produces a path of control, flow, summary, and meeting-point edges from x to y. [J

The Meeting-Point Lemma

The Meeting-Point Lemma, which considers two paths in L (Tail) that share a sequence of unmatched in-
edges, describes a sufficient condition for the existence of a meeting-point vertex and edges (because the
paths are in £ (Tail), the only unmatched edges are unmatched in-edges). The proof is an induction over
the number of unmatched in-edges on a path, which is formalized as the distance of the path.

DEFINITION. (Distance). The distance between the ends of path v —>°"x, denoted by dist(v —>"x), is the
number of unmatched in-edges on the path from v to x.

The Meeting-Point Lemma is slightly more general than described above because it considers the possi-
bility that dist(v —" x)=0, in which case the “meeting point” need not be a meeting-point vertex. This
special case is included in the general case by stating that v € bl fi(P,, u), which implies there is a vertex x,
which may or may not be a meeting-point vertex, such that paths of intraprocedural edges connect v and u
tox(ie v -—):,f, smpxandu -—):,f, 5, mp X)-

LEMMA (MEETING-POINT LEMMA). In system A, if v —*xe L(Tail), u > xe L(Tail), and v —>"x
and u —>" x have the same unmatched in-edges then v € bl fl(A, u).

PROOF. Because v—>"x and u —>"x have the same unmatched in-edges dist(v —>"x) must equal
dist (u —>" x); the proof is an induction over dist (v —>"x).

Base Case: (the lemma holds when dist (v —>" x)=0).
The Path Lemma implies that paths of intraprocedural edges (including summary edges) connect v and
u to x; thus, v € bl fl(A, u) since these paths imply v € bl(A, x) and x € fI(A, u), respectively.

Inductive Step: (if the lemma holds for all z such that dist (v —>"z)=k then it holds for an x such that
dist (v —>" x)=k+1).

Assume dist(v —>"x)=k+1. The Path Lemma implies that paths of (only) intraprocedural edges
(including summary edges) and (unmaiched) in-edges connect v and u to x. Since v —>"xandu —>"x
have the same unmatched in-edges they both begin in the same procedure P (with edges from P’s pro-
gram dependence graph) before exiting P at the same call-site through (possibly different) actual-in
vertices. Dividing these paths at these actual-in vertices (i.e., at their first unmatched in-edges) yields
the following (recall that —-)Z f.s denotes a path of control, flow, and summary edges that are all in
the same program dependence graph):
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Subpath in P Firstinedge  Remainder of path

v—.7sCallpVvin  Din,can Enterp.v;, —" x
u _‘>;‘f’ s Callp.ll;,, —9,',,' call Enterp.u;,l —>"x

Because Enterp.v;, —" x and Enterp.u;, —>" x are in £ (Tail), have the same unmatched in-edges, and
dist (Enterp.vyy —"x) = dist(Enterp.u;,—>"x) = k the inductive hypothesis  implies
Enterp.vi, € bl fI(A, Enterp.u;,). Thus, by definition, there is a meeting-point vertex and meeting-
point edges at every call-site on P; in particular, at Callp there is a meeting-point vertex m and
meeting-point edges Callp.v;, —>n, m and Callp.u;, —>,, m. Finally, the paths obtained by extending
v —>..7.sCallp.v;, and u —>: 1.+ Callp.u;, with these meeting-point edges imply m € fl(A, u) and
v € bi(A, m); thus, v e bl fi(A, u).
|

The Delta Slice Lemma

Given two valid paths that begin with vertices v and u, the premise of the Delta Slice Lemma provides a
sufficient condition for v to be included in the “delta-slice”, taken with respect 0 u (i.e.
ve b2f2f1(A, u)yub2bl flI(A, u)). Later in this section, we show (in the Dual Path Lemma) that if paths
from occurrences of u and v reach an occurrence of vertex x then the premise of the Delta Slice Lemma is
satisfied. Combined with the Directly Affected Points Lemma, which (roughly) states that if an occurrence
of u is a directly affected point then so is u, this provides a condition sufficient to show that v is in
AS(A, Base) because of directly affected point u. The Delta Slice Lemma has two cases which are illus-
trated in Figure 6.4.

LEMMA (DELTA SLICE LEMMA). In system A, assume there are two valid paths
v—"t ="y —"xe L(Valid-Path) and u—>"z —>"w —>"x € L(Valid—Path) such that, for the first
path, v —>"te L(Head) and t —"y —>"x e L(Tail), and, for the second path, u—>"z € [ (Head) and

general (a) ®)

Figure 6.4. Illustrations for the Delta Slice Lemma. Circles represent procedures (the labels in the circles refer to the
vertices mentioned in the Delta Slice Lemma) and lines represent transitive procedure calls. The first figure shows the
conditions stated in the lemma without the restrictions of assertions (a) or (b); the second and third figures show the res-
trictions for (a) (i.e. ¢=y) and (b) (i.e. z=w), respectively. Line labels in Figures (a) and (b) indicate which slicing
operator of A’ is used to “traverse” the edges on various parts of the paths v —"x and u —>" x.
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s =3 w—>"xe L(Tail). If y—>"x and w—>"x have the same unmatched in-edges then both of the fol-
lowing hold:

(a)if y=tthenve b2f2f1(A, u), and
(o) if w=z then v € b2 bl fI(A, u).

PROOE. We first argue that the Meeting-Point Lemma implies y € bl fi(A, w), and then use the Path
Lemma to prove a relationship between paths in L,(Head) and £ (Tail) and the slicing operators f1, f2, bl,
and b2. These results are then combined to prove assertions (a) and (b) separately. First, the Meeting-
Point Lemma implies that y € bl fi(A, w) because t —"y —>"x e L(Tail) implies that y —>"x € L(Tail),
2 —"w—>"x€ L(Tail) implies that w —>"x € £ (Tail), and, by assumption, y —>"x and w —>" x have
the same unmatched in-edges.

We now turn to the relationship between paths in £ (Head) and £ (Tail) and the slicing operators f1.12,
b1, and b2. First, the Path Lemma implies that, for the path v —>*te L(Head), a path of intraprocedural
edges (including summary edges) and (unmatched) out-edges connects v to f; because fI and b2 slices
traverse exactly these edges, v € b2(A, ¢) and t € f1(A, v). Similarly, for a path u —"z € L(Tail), the Path
Lemma implies a path of intraprocedural edges and (unmatched) in-edges connect u to z; because f2 and bl
slices traverse exactly these edges, u € bI(A, z) and z € f2(A, u).

For the various subpaths of v —"t —"y —>"x and u —"z —=>'w —>" x this relationship with the slic-
ing operators fI, f2, bl, and b2 is summarized in the following table. The table has two columns, which
take into account the premises of Assertions (a) and (b), respectively, of the Lemma: column one summar-
izes these relationships for Assertion (a) where y =t and column two summarizes them for Assertion (b)
where w =z. (The slicing operators shown in the table are also marked in Figure 6.4.)

Assertion (a) Assertion (b)

Path Slice Path Slice
v—>"ye L(Head) ve b2, y) v—>"te L(Head) ve b2(A, 1)
z—>"'we L(Tail) we f2(A, z) t —>"ye L(Head) te blA,y)
u—>"ze [(Head) ze fl(A, u) u—>y"we L(Tail) we fl(A, u)

(Recall that the Meeting-Point Lemma implies y € bl fl(A, w).) Composing the slices for Assertion (a)
with ye bl fl(A, w) yields ve b2bl flf2fI(A, u) and composing the slices for Assertion (b) with
y € bl fi(A, w) yields ve b2 b1 bl fifl(A, u). Because blobl=bl, b2obl=b2, flof2=f2, and flofl=fI,
these simplify to v € b2f2f1(A, u) and v & b2 bl f1(4, u), respectively. Ol

Result 2: The Valid Path Lemma

The second result used in the proof of the A Inclusion Lemma is the Valid Path Lemma, which states that
all the paths in roll-out(A) correspond to valid paths in A. The Lemma provides the link between the paths
in roll-out(A) that cause Integrate™ to include an occurrence of vertex v in
A=(roll -out(A), roll -out(Base)) and the paths in A that cause Integrate’ to include v in AS(A, Base).

LEMMA (VALID PATH LEMMA). Ifx™ —>;, ;y™ in roll-out(A) then x —>"PyinA.

PROOE. To show that x —>'"7y, we first show that a path of edges connects x and y, and then argue that
this path is in L (Valid-Path).

A path of edges connects x and y because of the correspondence between edge occurrences in
roll-out(A) and edges in A. Under this correspondence, every edge occurrence e” in roll-out(A) identifies
an edge ¢ in A. In addition, if one of ¢~’s endpoints is a transfer-in, scope, or transfer-out vertex then e*
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identifies—in addition to e—an interprocedural edge and if both of e*’s endpoints are transfer-in, scope, or
transfer-out vertices then e identifies two interprocedural edges. For example, the edge v™ —>u™ where
u* is a transfer-in vertex identifies two edges: one from v to the actual-in vertex of which »” is an
occurrence and the other from this actual-in vertex to the formal-in vertex of which u™ is also an
occurrence. By concatenating the edges in A identified by the edge occurrences in roll -out(A) that make
up x>~ —>"y™, we obtain a path x —"y.

To show that this path is a valid path, we must identify the in and out edges on the path and then demon-
strate that these edges satisfy the conditions for begin a valid path. This can be accomplished by consider-
ing the string of scopes entered and exited by the path from x™ to y~ (hereafter referred to as the scope
string). Let S; denote a scope nested within i other scopes. The scope string corresponding to the path
x= —-): £y" is the sequence of scopes entered into by the path from x™ to y~. For example, if the path
enters enclosing scope S;_; from subordinate scope §; then §; is followed by §;_;. A scope string is used to
determine the in and out edges on the path from x to y as follows: the sequence §; S;,; corresponds to an in
edge and the sequence S; S;_; corresponds to an out edge.

To show that the path from x to y is in L (Valid—Path), we first consider a balanced scope string: a
scope string of the form S;, Sj41, ***, Sjsns Sjsnt1sSjams 75 Sj41, 5. In roll -out(A) each scope is nested
within a single enclosing scope; therefore, the first and last interprocedural edges of a balanced scope string
(i.e. those determined by S;,S;41 and Sj.,S), respectively) must be associated with the same call-siter’
Because this is also true for the remaining edges determined by S;41, * - -, Sj41, the path corresponding to a
balanced scope string is an execution path and hence in £ (Path).

In a general scope string, all substrings of the form S;, 8,41, * **, S+, 5; correspond to balanced strings
of in and out edges in L (Path). If we remove all such substrings, the remaining “skeletal” scope string is
in one of the following forms:

(1) The empty string (i.e. the original string was balanced),
(2) Sj’ Sj—l’ T Sj-m

(3) Sj,Sj+1, "‘,Sj+,,,01'

(4) Sj’Sj—lv '”rSj—mS,j—lM-lr '“1S,j—~n+i'

To see that these represent all possible skeletal scope strings, consider building an arbitrary scope string by
appending a new scope to the end of an existing scope string, beginning with the empty string. In each
case for a string of length at least 1, the appended scope must either represent a subordinate scope or an
enclosing scope; thus, its subscript may differ from its predecessor by either +1 or —1. Before considering
general skeletal scope strings of Form 2, 3, and 4 that have length >2, we consider, as special cases, skele-
tal scope strings of length < 2.

First, the empty string is of Form 1. Now consider the length-one scope string §;, which is of Forms 2,
3,and 4. Appending S;; to S; produces a string of Form 3; appending S;_, to §; produces a string of Form
2.

We now consider appending a new scope to an arbitrary scope string of Forms 2, 3, and 4 that has length
>2. For Form 2, appending S;_,-; produces a skeletal scope string of Form 2, while appending S'; 41
produces a skeletal scope string of Form 4. Beginning with Form 3 and appending ;.41 produces a skele-
tal scope string of Form 3; appending §,,,, implies that the scope string ends with S;4n—1, Sjsns Sjen-1s
which is a balanced substring and therefore in L (Path). Such strings are removed because they are not
part of a skeletal scope string; the remaining skeletal scope string, S, Sj415 ***» Sj4n-1, is Of Form 3 unless
its length is zero, in which case it is of Form 1. Finally, for Form 4, appending §’j-n+i+1 Produces a skele-
tal scope string of Form 4, while appending §’;_4;-1 has the same affect as appending S;,,-1 10 a string of
Form 3. Therefore, Forms 1, 2, 3, and 4 represent all possible skeletal scope strings.
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We now prove that the paths corresponding to skeletal scope strings are valid paths and then extend this
argument to general scope strings. For Form 1, the empty string is trivially in £ (Valid—Path). For Form
2, the scope string Sj, Sj-1, ** "> S;-» identifies a sequence of unmatched in-edges in L (Tail) and therefore
in L (Valid—Path). Similarly, a scope string SjsSjats * 771 Sjun of Form 3 identifies a sequence of
unmatched out-edges in £ (Head) and therefore in L (Valid—Path). And finally, a skeletal scope string of
Form 4 can be broken into Sj,Sj-y, =+, S;-» and Siemtts S8 i which identify sequences in
L (Head) and L (Tail), respectively; thus, their concatenation is in £ (Valid--Path).

To complete the proof, we show that replacing the substrings removed from a general scope string to
obtain a skeletal scope string does not affect the acceptance of a path in £ (valid—Path). The key observa-
tion is that a string in £ (Valid—Path) results whenever the non-terminal Path is added between any two
symbols of a string in L (Valid ~Path). Thus, having sequences of balanced scope strings interspersed in a
skeletal scope string does not affect the argument that the corresponding path is a valid path. Therefore, x
and y are connected by a valid path. [

Result 3: The Dual Path Lemma

The Dual Path Lemma puts together the results of the Delta Slice Lemma and the Valid Path Lemma to
show that if two paths v~ ——)Z, £x” and u” —-)2' FXx~ exist in roll -out(A) then v is in the delta-slice taken
with respect to u (i.e. v b2f2f1 (A, u) ub2 bl f1 (A, w)). In the proof, the vertex names are the same as in
the proof of the Delta Slice Lemma and Figure 6.4.

LEMMA (DUAL PATH LEMMA). If v ——): fx= and u” ——):. £x= in roll -out(A) then
ve b22f1 (A, u)ub2blfl(A, u).

PROOF. The Valid Path Lemma implies v —>" x and u —'Px. The path v —>" x can be divided at a
vertex ¢ such that v —"t € L(Head) and t —>"x € L(Tail) and the path u —>"P x can be divided at a ver-
tex z such that u ="z € L (Head) and z —>"x € L(Tail). The first half of the proof shows either (1) that
P, (transitively) calls P, and the path from u to x goes through P, (shown in Figure 6.4a) or (2) that P,
(transitively) calls P, and the path from v to x goes through P, (shown in Figure 6.4b); the second half of
the proof shows that these paths satisfy the premise of the Delta Slice Lemma. The result then follows
from the Delta Slice Lemma.

The proof of the first half begins by showing that either P, (transitively) calls P, or P, (transitively) calls
P,. This can be done by contradiction: P, and P, both call P,, but if neither transitively calls the other then
the expansion of the call-sites by which P, calls P, and those by which P, calls P, include separate copies
of P, in the scopes resulting from the expansion of calls in P, and P,. Thus, the paths from v~ and u”™
reach different occurrences of x, which contradicts the assumption that v= -, fx~ and 4~ - X7
therefore, either P, calls P, or P, calls P,.

To complete the first half of the proof, we show (again by contradiction) that when P, calls Py, the path
from u to x goes through P, (the proof that when P, calls P,, the path from v to x goes through P, is virtu-
ally identical). The contradiction used to prove this step is similar to the one above: if the path from u and
x does not go through P, then some procedure, P, called between P, and P, transitively calls both P, and P,
from different call-sites. The expansion of these call-sites includes separate copies of P, in the scopes pro-
duced form P, which means the paths from v~ and u™ reach different occurrences of x—a contradiction.

Given that either P, calls P, and the path from u to x goes through P, or P, calls P, and the path from v to
x goes through P,, the second half of the proof is to show that v —>"P x and u —>"? x satisfy the premise of
part (a) or (b) of the Delta Slice Lemma. In the P, calls P, case, there is a vertex w in P, that divides
2 —" x such that z—>"w —>"x € L(Tail) and, by assumption, u —"z and v —"t are in L (Head) and
y—>"xis in L(Tail). If we let y=1 then y —"x becomes t—>"y —"x. Finally, because v= —>; s~
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and u”™ —-): £x” reach the same occurrence of x, y—>"x and w —"x must have the same unmatched in-
edges; thus, part (a) of the Delia Slice Lemma implies that ve b2f2fI(A,u) <
b2f2f1 (A, u)o b2 bl f1 (A, u).

In the P, calls P, case the proof is similar. First, there is a vertex y in P, such that
t—"y —>"xe L(Tail) and, by assumption, u —>"z and v—>"t are in [ (Head) and w—>"x is in
L(Tail). If we let w=z then w—>"x becomes z—>"w —>"x. Finally, because v~ —>.5x~ and
u>™ —>; ;x~ reach the same occurrences of x, y —>"x and w —" x must have the same unmatched in-
edges; thus, part (b) of the Delta Slice Lemma implies that ve b2b2bl(A,u) <
b2f2f1 (A, u)u b2 blfl1(A, u). O

Result 4: Directly Affected Points Lemma

The fourth and final result used to prove the A Inclusion Lemma is the Directly Affected Points Lemma.
Recall that the goal of the A Inclusion Lemma is to prove that if vertex occurrence v” is in.
A= (roll -out(A), roll -out(Base)) then v is in AS(A, Base). The sets A= (roll -out(A), roll -out(Base)) and
AS(A, Base) are constructed from the sets DAP ™ (roll -out(A), roll -out(Base)) and DAPS(A, Base), respec-
tively. Ideally, we would like to prove that if vertex occurrence u™ is in
DAP=(roll -out(A), roll -out(Base)) then u is in DAPS(A, Base). The A Inclusion Lemma would then fol-
low immediately from the Dual Path Lemma. Unfortunately, DAP>(roll -out(A), roll -out(Base)) and
DAPS(A, Base) are not related in this way.

The Directly Affected Points Lemma proves that a weaker relationship holds between
DAP=(roll -out(A), roll -out(Base)) and DAPS(A, Base), which can be explained as follows: Let U™ be
the set of occurrences from roll -out(A) of vertices in DAPS(A, Base). The lemma first shows that U™ is a
subset of DAP = (roll -out(A), roll -out(Base)). However, the containment in the other direction does not
hold (ie.  DAP=(roll-out(A), roll-out(Base)) £U~). The lemma does show  that
DAP=(roll -out(A), roll -out(Base)) is a subset of the vertices in the forward slice of roll-out(A) taken
with respect to U=. This weaker form of containment relationship is sufficient to prove that
A= (roll -out(A), roll -out(Base)) and b f~ (roll -out(A), U™) contain the same vertex occurrences, which
is sufficient to prove the A inclusion Lemma.

LEMMA (THE DIRECTLY AFFECTED POINTS LEMMA).
Let U™ = {u™ € occurrences (roll -out(A),u) | u € DAPS(A, Base) ).
(@) U™ c DAP = (roll-out(A), roll -out(Base)),
(b) DAP=(roll -out(A), roll -out(Base) < f~ (roll -out(A), U*), and
© b= f(roll-owt(A), U)=A"(roll -out(A), roll -out(Base)).

PROOF.

(a) By definition, u € DAP 5(A, Base) iff it is in A but not in Base or it has different incoming edges in A
and Base (recall that a def-order edge is viewed as a hyper-edge that is an incoming edge of the wit-
ness vertex). If u is in A but not in Base then no occurrences of u exist in roll -out(Base); therefore,
all occurrences of u in U™ are in DAP ~(roll -out(A), roll -out(Base)).

Now suppose that, u is in A and Base, but has different incoming edges. Because parameter-in, call,
and parameter-out edges are ignored when computing DAP*(A, Base), we need only consider control,
flow, and def-order edges. For these kinds of edges, a vertex occurrence’s incoming edge occurrences
in roll-out(A) are occurrences of the vertex’s incoming edges in A. Thus, determining if u is a
directly affected point requires considering only the incoming edges for u. This local information is
not affected by the expansion of call-sites, so, if u € DAPS(A, Base) then every occurrence of u has
different incoming edge occurrences in roll-out(A) and roll -out(Base), and is therefore, in
DAP™(roll -out(A), roll -out(Base)). This implies that U* cDAP=(roll -out(A), roll -out(Base)).
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(b) Besides  occurrences of vertices from  DAPS(A,Base) (ie,  besides U=,
DAP=(roll -out(A), roll -out(Base)) includes occurrences of vertices that are in roll-out(A) but not
roll -out(Base) because of the expansion of call-sites from A that are not in Base. While these vertex
occurrences are not necessarily occurrences of vertices in DAPS(A, Base), the call-site vertices of the
call-sites in A that are not in Base are in DAPS(A, Base). Since the vertex occurrences in roll -out(A)
because of the expansion of these call-sites are in the 1= slice of roll-out(A) taken with respect o
occurrences of these call-site vertices, they are in the f~ slice of roll -out(A) taken with respect U”.
Thus, DAP = (roll -out(A), roll -out(Base) c f~ (roll -out(A), U™).

(c) The proof that b=f~ (roll-out(A), U™)=A"(roll -out(A), roll -out(Base)) is by simple formula mani-

pulation.
(1) f(roll-out(A),U~) c f~DAP =(roll -out(A), roll -out(Base)) Apply f~ to both sides
) of the result in part (a)
(2) f~DAP>(roll-out(A), roll-out(Base)) < f~f(roll-out(A), U™) Apply f~ to both sides
of the result in part (b)
(3) f~DAP=(roll-out(A), roll -out(Base)) < f~(roll-out(A), U™) f~ is idempotent
@) f(roll-ow(A),U™) = f~DAP=(roll -out(A), roll -out(Base)) Combine (1) and (3)
(5) b=f(roll-out(A),U™) = b= f~DAP*(roll -out(A), roll -out(Base))  Apply b™ to both sides
of 4)
= A”(roll -out (A), roll -out(Base)) by definition
0
The A Inclusion Lemma

The A Inclusion Lemma, which brings together the Directly Affected Points Lemma and the Dual Path
Lemma, captures a critical relationship between A= (roll -out(A), roll -out(Base)) and AS(A, Base).

LEMMA (A INCLUSION LEMMA). Ifv™ € A=(roll -out(A), roll -out(Base)) then v € AS(A, Base).

PROOF. Part (c) of the Directly Affected Points Lemma implies v~ € bf~(roll -out(A), =) where
u= e {occurrences (roll -out(A), u) | ue DAPS(A, Base)). We can divide b= f(roll -out(A),u™) at a
vertex x> such that v= € b= (roll -out(A), x™) and x~ € f~(roll-out(A),u”™). By definition these slices
imply that paths v~ —>;, rx and 4™ —>¢ ;x™ exist in roll-out(A), and therefore, by Dual Path Lemma,
ve b2f2f1 (A, u)ob2bl f1(A, u). Thus, because ue DAPS(A, Base), it follows that ve AS(A, Base)
because AS(A, Base) = b2 f2f1 DAP®(A, Base) wb2 bl fI DAPS(A, Base). O

Lemma 2

Using the A Inclusion Lemma, it is possible to prove Lemma 2, the second half of the mutual-containment
argument used to prove the Sufficiency Theorem.

LEMMA 2. If no Type I or Type 1l interference exists in the integration of Base, A, and B then
Gy~ S Grolt-ou )

PROOF. The proof considers first the vertices and then the edges of G-

Vertices

For each occurrence v in Gy-, we must show that v= € V (roll -out(M)). By definition, v~ must come
from roll -out(Base), roll -out(A), or roll -out(B) where it is associated with a vertex v and a sequence of
call-sites S. If v and the call-sites from § are in Gy then v* is in roll -out(M). Because Gy~ is constructed
from the three terms Pre” (roll -out(A), roll -out(Base), roll -out(B)), A (roll -out(A), roll -out(Base)), and



106

A=(roll -out(B), roll -out(Base)), we consider three cases:

v= € Pre=(roll -out(A), roll -out(Base), roll -out(B)).

If v=e Pre=(roll-out(A), roll -out(Base), roll-out(B)) then it must be in roll-out(A),
roll -out(Base), and roll -out(B); thus, A, Base, and B all contain v and the sequence of call-sites §.
Because b= (roll -out(A), v=) = b=(roll -out(Base), v=) = b= (roll -out(B), v™), b2(A, v), b2(Base, v)
and b2(B, v) must all be equal, which implies v e Pre5(A, Base, BYcV(Gy). To show that the
call-sites in S are also in Gy, we show that they too are in Pre®(A, Base, B). This follows from the
definition of Pre™, since all the vertices in b™(roll -out(A),v™) must have the same slice in
roll-out(A), roll-out(Base) and roll-out(B) and these slices include the scope vertices that correspond
to the call-sites in S (i.e. the scope vertices that represent the scope statements that replace the call
statements represented in S). Having v and the call-sites from § in Gy implies v™ € V(Gror-oui))-

v= e A”(roll -out(A), roll -out(Base)).
The A Inclusion Lemma implies v is in AS(A, Base). Thus, it remains to be shown that the call-sites
in § are also in M. These call-sites correspond to scope vertices in b~ (roll -out(A), v™). Because A™
is backwards closed (i.e. if v € A™(roll -out(A), roll -out(Base)) and x> € b™(roil -out(A), v™) then
x>~ € A”(roll -out(A), roll -out(Base))), these scope vertices are also in
A™(roll -out(A), roll -out(Base)). Thus, the A Inclusion Lemma implies that the corresponding call-
sites in § afe'in AS(A, Base); thus, in Gy, which implies v™ € V(G rott-oui))-

v= e A”(roll -out(B), roll -out(Base)).
The argument here is the same as that for v= € A™(roll -out(A), roll -out(Base)).

Edges

For each edge e = x™ — ¥~ in E (Gp~), we must to show that ™ € E (Gron-owuy)- As in the vertex case,
e must exists in roll -out(Base), roll -out(A), or roll -out(B) where it is associated with an edge ¢ and a
sequence of call-sites S. If e and the call-sites from § are in M then e is in G yy1.oua)- Because Gy~ is
constructed from the three terms  Induce Pre™(roll -out(A), roll -out(Base), roll -out(B)),
Induce A™(roll -out(A), roBase), ot Induce A”(roll -out(B), roll -out(Base)), we consider three cases:

e” =x=—>y” € E(Induce Pre>(roll-out(A), roll -out(Base), roll -out(B))).
The vertex argument implies x and y (and the witness vertex of a def-order edge) are in
Pre®(A, Base, B). Therefore e € E (Induce PreS(A, Base, B)) cE(Gy). As in the vertex argument,
the call-sites corresponding to the scopes enclosing e™ are also in PreS(A, Base, B) and hence in
Gy Together these imply e™ € E (Groi-ou))-

e= =x=—>y" € E (Induce A~ (roll-out(A), roll -out(Base))).
The A Inclusion Lemma implies x, y (and the witness vertex of a def-order edge) are in AS(A, Base).
Therefore e is in Induce AS(A, Base) CE(Gy). As in the vertex argument, the call-sites correspond-
ing to the scopes enclosing e are also in A%(A, Base) and hence in Gy. Together these imply
e” e E(Groll -ou!(M))-

e= =x"—>y" € E (Induce A(roll -out(B), roll -out(Base))).
The argument here is the same as that for e* € Induce A™(roll -out(A), roll -out(Base)).

a

The Sufficiency Theorem

We use the results of Lemma 1 and Lemma 2 to prove that the homogeneity test is sufficient. In other
words, whenever the integration of Base, A, and B is successful and produces system M and Base, A, B, and
Gy pass the homogeneity test then Gy~ is equivalent to G,onowey (Which by definition implies that M~ is
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homogeneous). In Section 6.4 we show that the integration of the rolled-out systems is in fact successful,
but first in Section 6.3 we show that the homogeneity test is a necessary test, that is whenever M~ is homo-
geneous, Base, A, B, and Gy pass the homogeneity test.

THEOREM (SUFFICIENCY THEOREM). If Base, A, B and Gy pass the homogeneity test and no Type I or
Type II interference exists in the integration of Base, A, and B then M™ is homogeneous and
Grott-ouMy = Om-

PROOE. The theorem follows immediately from Lemmas 1 and 2. O

6.3. The Necessity Theorem

Whereas, the Sufficiency Theorem proves that the homogeneity test is sufficient, the Necessity Theorem
proves its necessity (i.e., it proves that whenever Gy~ is homogeneous, Base, A, B, and G pass the homo-
geneity test). The proof makes use of the Witness Lemma, which states that every vertex in Gy is wit-
nessed in Gy-. A first glance this result may appear to be subsumed by Lemma 1. However, Lemma 1
assumes that Base, A, B, and G, pass the homogeneity test; this assumption cannot be made in the Neces-
sity Theorem (or the Witess Lemma) because the argument would then be circular: in the Necessity
Theorem we are trying to prove that Base, A, B, and Gy pass the homogeneity test from assumption that
Gy~ is homogeneous.

LEMMA (WITNESS LEMMA). For every vertexv in Gy, Gy~ contains an occurrence of v.

PROOF. Assume v is in the procedure dependence graph for procedure P. Vertex v is in Gy because it is
in PreS(A, Base, B), AS(A, Base), or A°(B, Base). We consider separately these three possibilities. First,
if v e PreS(A, Base, B) then b2(A, v), b2(Base, v), and b2(B, v) are, by definition, equivalent. In this case,
let v= be the depth-zero occurrence of v (recall that this occurrence, as defined in Section 6.1, is the one
associated with the expansion of the empty sequence of call-sites). The equivalence of b2 slices implies
b=(roll-out(A),v=) = b~(roll-out(Base), v) = b=(roll-out(B),v=); thus, v~ is in
Pre™(roll -out(A), roll -out(Base), roll -out(B )) and hence in Gy~

If ve AS(A, Base) (the proof for AS(B, Base) is identical) then, by definition, a vertex u exists in
DAPS(A, Base) such that v is either in b2 b1 fI (A, u) or b2f2f1 (A, u); because the proofs for these two
cases are virtually identical, we assume that v € b2 bl fI (A, u). The first column of the following table
shows the breakdown of this slice into its component slices (the intermediate vertex names are the same as
those in Figure 6.4b). The second column of the table shows the corresponding slices in roll -out(A) (note
that for ye bifl(A,z) in line 2, y and z are in the same procedure; thus, the relationship
y= € b”f(roll -out(A), z) holds for all occurrences of y and 2).

Breakdown of b2 bl f1 (A, u) Corresponding slice in roll -out(A)

z € fI(A, u) = Vz™ 3u™ such that z= € f=(roll -out(A), u™)
ye blfil(A, 2) = Vy* Vz* such that y~ € b>f~(roll -out(A), z”)
t € bl(A,y) = V¢ 3y such that 1= € b= (roll -out(A),y")

v e b2(A, 1) = V= 3v= such that v=e b= (roll -out(A), ™)

For example, to see why zefI(A,u) in the first line corresponds to Vz~3u™ such that
2= € f~(roll -out(A), u™), let z~ be an arbitrary occurrence of z in roll -out(A). Because the only interpro-
cedural edges considered by an f7 slice are parameter-out edges, procedure P, transitively calls procedure
P,; therefore, a P,-scope is expanded into every P,-scope, which means that every occurrence of z can be
associated with an occurrence of u. Assume that ¥~ is the occurrences of u associated with z”. Because
u* is connected to z™ by occurrences of the edges that connect z and u, zefI(A, u) implies
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z* € f(roll-out(A), ™). Similar relationships hold for the other lines of the table.

The combination of the slices from the second column of the table, imply some occurrence of v is in
b= b= b f~ f~(roll-out(A), u™). Because b~ and f~ are idempotent and, by the Directly Affected Points
Lemma, u™ e DAP™(roll -out(A), roll -out(Base)), this implies that ve is in
b> f~ DAP>(roll -out(A), roll -out(Base)), which, by definition, implies
v € A”(roll -out(A), roll -out(Base)). Therefore, an occurrence of v exists in Gy-.

O
COROLLARY. The scope containing v= (as identified in the Witness Lemma) is also in Gy-.

PROOF. Since the final operator of Pre and A™ is b and the scope vertex for the scope containing v=
is in the b= slice with respect to v>, the scope containing v* is also in Gp-. [0

THEOREM (NECESSITY THEOREM). If Gy~ is homogeneous then Base, A, B, and Gy pass the homo-
geneity test.

PROOF. We prove the contrapositive: if Base, A, B, and Gy fail the homogeneity test then G- is inho-
mogeneous. Recall that, by definition, Gy~ is inhomogeneous if there is no system S such that
G rolt-ous(s) = Gy One way that this can happen is if Gy~ contains two P-scope’s such that one contains an
occurrence of some vertex v and the other does not. For each point of failure in the homogeneity test (see
Figure 5.10), we show that this sitnation occurs (i.e., that G- is, in fact, inhomogeneous).

Base, A, B, and Gy, fail the homogeneity test if either call on the function ExtraOccurrences in Figure
5.10 returns true. Assume, without loss of generality, that this happens when ExtraOccurrences is called
with the set of vertices in G, but not B. The proof breaks down into three cases corresponding to the three
points at which the function ExtraOccurrences may return true:

Case I: The absent-vertex test determines failure in line {4] in Figure 5.10.
If the absent-vertex determines failure then there must be a vertex v from Gy that is not in B and not
in bl f1 DAPS(A, Base). Assume that v is in procedure P and let v~ be the depth-zero occurrence of
v. Since v blfl DAPS(A, Base), any directly affected point that causes Integrate® to include v in
AS(A, Base) must do so because it is connected to v by a path that includes a call-site on P. Because
none of the scopes corresponding to these call-sites enclose roll-out(A,P), v™ is not in
A=(roll -out(A), roll -out(Base)). Furthermore, since v* is not in roll-out(B) (recall that v is not in B),
it is not in A”(roll -out(B), roil -out(Base)) or Pre™(roll -out(A), roll -out(Base), roll -out(B)). Thus,
it is impossible for v* is be in Gy-.
The preceding argument implies that v, the depth-zero occurrence of v, is not in Gy-. If the scope
for this occurrence is in Gy~ then Gy~ is inhomogeneous because the Corollary to the Witness
Lemma implies that Gy~ contains a P-scope with an occurrence of v.

On the other hand, if the scope for the depth-zero occurrence of v is not in G-, we conclude that
Gy~ is inhomogeneous by the following argument: (1) the Corollary to the Witness Lemma implies
that Gy~ contains a P-scope; therefore, any system S whose roll-out is isomorphic to Gy~ must con-
tain a procedure P. (2) Any system S that contains a procedure P contains roll-out(S, P), the scope for
the depth-zero occurrence of v. Together (1) and (2) imply that no system S exists such that
G rott-owtsy = Gu~: consequently, Gy~ is inhomogeneous.

Case II: The subset-test of the absent-call-site test determines failure in line [7] of Figure 5.10.
In this case there is a vertex v in a procedure transitively callable from a call-site ¢ that is in Gy but
not B such that v is not in A. If ¢q is not in bl f1 DAPS(A, Base) then, by Case I, Gy~ is inhomogene-
ous. Otherwise, if cq is in blfI DAPS(A, Base), then every occurrence of ¢ in roll-out(A) is in
A>(roll -out(A), roll -out(Base)) and therefore in Gy-. Now, consider the sequence of call-sites
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Cg» "+ *»Cp Where ¢, calls the procedure containing v. It is shown below that either (a) one of the
scopes resulting from the expansion of a call-site ¢; (0<i <n-1) does not contain an occurrence of
¢;+1 or that (b) the scope resulting from the expansion of call-site ¢, does not contain an occurrence of
v. Thus, Gy~ is inhomogeneous because the Corollary to the Witness Lemma implies that a scope
with an occurrence of ¢;,; and a scope with an occurrence of v exist in Gy~

Consider any scope produced by the expansion of ¢¢ in roll -out(A). Because ¢ is not in B the ver-
tex occurrences in this scope in Gy~ must come from A= (roll -out(A), roll -out(Base)). If this scope
does not contain an occurrence of ¢ then use ¢, for ¢; in Case (a) above. If the occurrence of ¢ isin
A=(roll -out(A), roll -out(Base)) then repeat the preceding argument with ¢, and c; in place of cy and
¢y, respectively. Continue repeating this argument until either an occurrence of ¢; is not in
A= (roll -out(A), roll -out(Base)) or an occurrence of Cn is included in
A=(roll -out(A), roll -out(Base)). In the later case, Gy~ contains a scope created from c, without an
occurrence of v, since v is not in A, which corresponds to Case (b) above.

Case ITI: The slice-need-set test of the absent-call-site test determines failure in line [13] of Figure 5.10.

In this case there is a call-site co and a vertex v such that ¢, is in M but not B and Linkage(v) is
transferred backward through a sequence of call-sites cg, * -,y 10 the slice-need set for the pro-
cedure called by ¢ where it is then mapped, at cg, t0 a set of actual-in, call-site, and actual-out ver-
tices that are not DAP-connected (see lines [8]-[10] of Figure 5.10). Let P; denote the procedure that
contains call-site ¢;. The proof considers the expansion of ¢cg - * * ¢, that includes the root occurrence
of ¢ (this expansion takes place in roll-out(A, Py)). As shown below, either there exists a scope
without an occurrence of ¢; or there exists a scope without an occurrence of v. Thus, as in Case II,
Gy~ is inhomogeneous because the Corollary to the Witness Lemma implies that a scope with an
occurrence of ¢; and a scope with an occurrence of v exist in Gy~

We now prove that a scope without an occurrence of ¢; or a scope without an occurrence of v exists
in Gp-. First, the argument for call-sites is the same as in Case II: starting from the scope produced
by the expansion of ¢y, if the scope produced by the expansion of ¢; does not contain an occurrence of
¢;+1 then Gy~ is inhomogeneous.

On the other hand, if the scopes produced by the expansion of cg - C, are all in Gy~ then we

prove, by contradiction, that v, the occurrence of v produced by the expansion of cq, * ** ,Cns is not
in Gy-. Recall that v* is the occurrence of v in roll-out(A, P ), and that, since co is notin B, v™ is in
Gy~ iff it is in A= (roll -out(A), roll -out(Base)). Thus, we assume

v= € A”(roll -out(A), roll -out(Base)) and prove that this contradicts the assumption of Case III that v
causes the slice-need-set test to determine failure.

To begin with, v7e A= (roll -out(A), roll -out(Base)) implies that v~ is in
b=f~DAP=(roll -out(A), roll -out(Base)) and thus, by the Directly Affected Points Lemma, v* is in
b=f=(roll-out(A),u~) where u” is in DAP=(roll-out(A), roll-out(Base)) and u is in
DAPS(A, Base). In addition, since in order for u™ to cause v~ to be included in
A=(roll -out(A), roll -out(Base)), it must be in roll-out(A, Py), u must be in a procedure (transitively
called from) either P;, for 0<i<n, or P,. Finally, the observation that v= € b=f~(roll -out(A), u™)
implies there exists a vertex x™ and paths v© —->:, 7x~ and u™ —-): fx inroll -out(A).

First, consider the case where u is in P, (the procedure containing v) or a procedure transitively
called by procedure P,. In this case the paths v —. fx~ and u” - £x~ imply that v is in
bl f1 DAP5(A, Base) which means that v is excluded from begin considered by the slice-need-set test
and thus, cannot cause this test to determine failure. This contradicts the assumption of Case IIl that v
causes the slice-need-set test to determine failure.
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Before considering the general case of u being in P; (or a procedure transitively called by procedure
P,) for 0<i <n, we consider the case where u is in P, (or a procedure transitively called by procedure
P,). In this case, either v= —-): FxToru” —): #x~ must include a transfer-in, scope, or transfer-out
vertex associated with the scope produced by the expansion of ¢,. The portion of these paths in the
same scope as v~ implies that Linkage(v) contains the corresponding formal-in, entry, or formal-out
vertex; the remainder of these paths implies that, at c,, the corresponding actual-in, entry, or actual-
out vertex is DAP-connected. This contradicts the assumption that Linkage(v) is propagated to ¢
through ¢, (and ¢, * <, Cyy)-

Now, consider the general case where u is in P; or a procedure transitively called by procedure P;,
for 0<i<n. The proof of this case is identical to the case where u isin P, of a procedure transitively
called by procedure P,, except that the portions of v= —>; ;x~ and u” —>;.7x~ in the scopes pro-
duced by the expansion of ¢;, -+, c,_; imply that the transfer functions for P;, -+, P, transfer
Linkage(v) to ¢; (where it is mapped to a DAP-connected vertex).

The above argument shows that the assumption of Case III leads to a contradiction; thus, it must be
the case that v™ is not in A (roll -out(A), roll -out(Base)) and therefore not in Gy-.

6.4. The Type I Interference Theorem

The final theorem used in the proof of the Syntactic Correctness Theorem is the Type I Interference
Theorem, which proves the equivalence of Type I interference in Integrate® and Integrate™ under certain
assumptions given below. The proof makes use of three results about directly affected points (lemmas I1,

12,

and I3), which because they apply to both systems and rolled-out systems, are stated without superscript

designators. The proofs of lemmas I1, 12, and I3 make use of the four ways a vertex may be in DAP(X, Y),
which are shown in Figure 6.5.

LEMMA I1. DAP(X,uX,,Y) ¢ DAP(X,,Y)uDAP(X,,Y).

o e N

1 2 3 4

Figure 6.5. The four possible ways a vertex v can be in DAP(X,Y) are (1) if v exists in X but not Y, (2) if v has an edge
(y —>v) in X but not ¥, (3) if v has an edge (y —> ) in Y but not X, and (4) if the direction of a def-order edge between
two of v's predecessors is reversed (i.e., v has different incoming def-order edges).
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PROOE. The proof refers to the four cases shown in Figure 6.5.
(1) Without loss of generality assume v exists in X ,; vertex v is not in Y; therefore, v € DAP (X, Y).

(2) Without loss of generality assume y —> v exists in X,; edge y — v does not exist in Y; therefore,
ve DAP(X,.Y).

(3) y —> v does not exist in Xy (or X ;) and exists in Y; therefore, ve DAP(X,, Y).

(4) Without loss of generality assume x —> 4 () y €xists in X; edge y =>4, X exists in Y; therefore,
ve DAP (X, Y).

O
LEMMA 12. DAP (Induce A(A, Base), A) = DAP (Induce Pre(A, Base, B),A)=2.

PROOF. The proofs for A(A, Base) and Pre(A, Base, B) are virtually identical. Thus, we prove only the
case for A(A, Base); let v be a vertex from A(A, Base).

(1) If v exists in A(A, Base) then, by definition, it exists in A; therefore, Case (1) cannot arise.

(2), (3), and (4)
(For system dependence graphs A and Base, we do not need to consider formal-in, entry, and actual-
out vertices, because, by definition, such vertices are in DAP(X, Y) iff they are inXbutnotY.) Ifvis
not a formal-in, entry, or actual-out vertex then all of v’s immediate predecessors from A are included
in A(A, Base) by the backward slice that includes v. Therefore, cases (), (3), and (4) cannot arise.

a
LEMMA I13. DAP(Gy, A) < DAP (Induce A(B, Base), A).

PROOF. Because Gy, is the union of A(A, Base), A(B, Base), and Pre(A, base, B), the lemma follows
from Lemmas I1 and 12. O]

The Type I Interference Theorem

For reference, the definition of Type 1 interference in both Integrates and Integrate™ is repeated before the
proof the Type I Interference Theorem.

DEFINITION. (Type I Interference).
Interference*(A, Base, B) £
A%(A, Base)n DAPS(Gy, A)# @D or
AS(B, Base) nDAPS(Gy, B) # Q.

Interference ™ (roll -out(A), roll -out(Base), roll-out(B)) &
A=(roll -out (A), roll -out(Base)) n DAP~ (Gy-, roll -out(A)) =D or
A™(roll -out(B), roll -out(Base)) " DAP~(Gy-, roll -out(B))#Q.

LEMMA (TYPE I INTERFERENCE LEMMA).

(1) Assume M= is homogeneous, if Interference®(A, Base, B) then
Interference * (roll -out(A), roll -out(Base), roll -out(B)).

(2)  If Interference™(roll-out(A), roll -out(Base), roll -out(B)) then Interference S(A, Base, B) or Gy is
feasible.

Note that this lemma indicates that Interference” is “weaker” than Interference™ because Interference®
cannot test differences in interprocedural edges. Such differences arise when in Gy there is either a call-
site such that two actual-in vertices are connected to a single formal-in vertex or two formal-out vertices
are connected to a single actual-out vertex. Although Interferences cannot detect these situations, in both
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cases

Gy is infeasible (and so Integrate® reports Type II interference rather than Type [ interference).

PROOF. (1). We first show that when Interferences (A, Base, B) holds, there is a vertex v in AS(A, Base)
and AS(B, Base) that has different incoming edges in A and B. We then argue that occurrences of v with
different incoming edge occurrences exist in roll-out(A) and roll-out(B), and from this that
Interference = (roll -out(A), roll -out(Base), roll -out(B)) holds. First, by definition, the existence of
Interference® implies AS(A, Base)nDAPS(Gy, A)#@ or AS(B, Base)n DAP*(Gy, B)=@; without loss
of generality assume the former and let v be a vertex in both A%(A, Base) and DAP*®(Gy, A). Thus, by
Lemma I3, v is in DAPS(Induce AS(B, Base), A), which implies v is in A°(B, Base). Finally, because v is
in DAPS(Induce AS(B, Base), A) and also in A, it must have different incoming edges in A and B (cases 2-4
of Figure 6.5). (Note this rules out v being a formal-in, entry, or actual-out vertex because these vertices
are in DAP®(Induce AS(B, Base), A) only if they are not in A).

We now demonstrate that Interference ™ (roll -out(A), roll -out(Base), roll -out(B)) holds because of an
occurrence of v. By the Witness Lemma, v € AS(4, Base) and v e A(B, Base) imply that there are
occurrences of v, v and v§, in A™(roll-out(A), roll-out(Base)) and A=(roll -out(B), roll -out(Base)),
respectively. Because vz and vz have different incoming edge occurrences in roll -out(A) and roll -out(B)
(this follows from v having different incoming edges in A and B), and because M= is homogeneous (and
therefore all occurrences in Gy~ have the same incoming edges), either v € DAP™(Gy-~, roll -out(A)) or
vy € DAP~(Gy-, roll -out(B)).  Consequently, because v3 € A™(roll-out(A), roll-out(Base)) and
vy € A~ (roll -out(B), roll -out(Base)), Interference™ (roll -out(A), roll -out(Base), roll -out(B)) must hold.

(2). Similar to Case 1, if Interference ™ (roll -out(A), roll -out(Base), roll -out(B)) holds, then without
loss of generality there is a vertex occurrence Vv~ in A= (roll -out(A), roll -out(Base)) and
DAP*(Gy~, roll-out(A)).  Also  similar to Case 1, this implies that v~ is in
A”(roll -out(B), roll -out(Base)) and has different incoming edge occurrences in roll-out(A) and
roll -out(B).

Our goal is to demonstrate that Interference®(A, Base, B) holds because v in is A%(B, Base) and
DAP5(Gy, B). The argument makes use of the fact that v= is in A=(roll-out(A), roll -out(Base)) and
A™(roll -out(B), roll -out(Base)) and has different incoming edge occurrences in roll-out(A) and
roll -out(B) but does not use the fact that v™ is in DAP™(Gy-, roll -out(A)). Thus, we can assume, again
without loss of generality, that the difference in incoming edge occurrences for v is an edge y™ —>v™ that
exists in roll -out(A) but not roll -out(B).

Because v™ € A”(roll -out(B), roll -out(Base)), the A Inclusion Lemma implies that v is in AS(B, Base).
Thus, what remains to be shown is that v € DAPS(Gy, B). The latter argument is complicated by the fact
that y~ —> v> does not identify a unique edge in G,. This is because transfer-in, scope, and transfer-out
vertices correspond to pairs of vertices in A; therefore, y= —> v may identify two or even three edges in
A. We first prove v € DAPS(Gy, B) under the restrictions that y™ and v~ are not transfer-in, scope, or
transfer-out vertices and then remove these restrictions.

First, under the restriction that the edge occurrence y~ —> v™ identifies a unique edge y —>vin A, the
edge y —> v is in Induce AS(A, Base) and thus in Gy, because the A Inclusion Lemma implies that y and v
are in AS(A, Base). In general, an edge occurrence e™ exists in Grou-ou) if there isan edge ein Gy and a
sequence of call-sites from B whose expansion produces occurrences of the statements represented by the
endpoints of e. Thus, because y~ —>v™= does not exist in roll-out(B), either y —> v is not in Gg or the
necessary sequence of call-sites is not in B. However, since having v™ in roll -out(B) implies that B con-
tains the necessary call-sites, we conclude that y —> v is not in B. Together , having y —> v in Gy (from
Induce AS(A, Base)) but not B, implies v is in DAPS(Gy, B).
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The preceding argument shows that Part (2) of the Type I Interference Theorem holds if y~ and v~ are
not transfer-in, scope, or transfer-out vertices we now consider removing these restrictions, by first remov-
ing the restriction on v™ and then the restriction on y=. If v* is a transfer-in, scope, or transfer-out vertex
then v* corresponds to two vertices v, and v, in A (for example, if v* is a transfer-in vertex then v, is an
actual-in vertex and v, is a formal-in vertex). Thus, y~ —> v identifies edges y —>v, and v; —>v, in A,
In general, y™ —>v™ is not in Go.ow(py beCause either y —> v, or v, —> v, are not in G, or one of the
necessary call-sites is not in B. By definition, because v™ exists in roll -out(B), the necessary call-sites are
in B and v, and v, are all in Gp. Since interprocedural edges are determined solely by their endpoints, this
implies v; —> v, is in G and thus for y~ —>v"~ to be absent from roll -out(B), y —> v, must be absent
from B. Similar to the restricted case, the A Inclusion Lemma implies that y—>v; is in
Induce AS(A, Base) and thus Gyy; therefore, v € DAPS(Gy, B).

Lifting the restriction on 'y‘” is slightly more complicated because y~ is not guaranteed to exist in
roll -out(B); we use the assumption that Gy is feasible (in particular that each parameter position is occu-
pied by exactly one parameter) to show that v e DAP3(Gy, B). If y~ is a transfer-in, scope, or transfer-out
vertex then y™ —> v™ identifies the two edges y; —>yz and y, —>v in A (if v™ is a transfer-in, scope, or
transfer-out vertex then let v be v, from the preceding paragraph). Because y™ —> v~ is not in roll -out(B)
but v= is, either y; —>y3, y2 —> v, or both are not in Gg. We consider the second the third possibilities
together before considering the first:

a) y,—>visnotin Gg.
The A Inclusion Lemma implies that y, —> v is in Induce AS(A, Base) and thus in Gyy; therefore,
v € DAPS(Gy, B).

b) Gjp containsy, —>vbutnoty; —>y:

In any feasible system dependence graph (i.e. an sysiem dependence graph that corresponds to some
system), the vertices representing a call-site are always in 1-1 correspondence with the linkage ver-
tices of the called procedure (otherwise, there would be two actual parameters corresponding to a sin-
gle formal parameter or two formal parameters corresponding to a single actual parameter). Because
y, exists in B and y; —>y, does not, the 1-1 correspondence of the vertices representing a call-site
with linkage vertices implies there must be a vertex y’ such that y —>y, in Gp. Let y™ be the vertex
in roll -out(B) that represents the condensation of y” and y,. Because ¥y =>v= is in G -owsy and
v= is in A= (roll -out(B), roll -out(Base)), y’* is also in A” (roll -out(B), roll -out(Base)); therefore, by
the A Inclusion Lemma, y’ and y, are in A%(B, Base) and thus y’ —>y, is in Gy. Since y; —>y, is
also in Gy (from Induce AS(A, Base)), Gy contains y; —>y and y' —>y2, which makes it infeasible
(both y; and y’ correspond to the parameter position associated with y,). This contradicts the assump-
tion that Gy, is feasible; therefore Case (b) cannot arise.

a

6.5. Syntactic Correctness Theorem

Putting together the pieces in the preceding sections, it is now possible to establish that Integrate® satisfies
the requirements onJ S from Version 2 of the Revised Model of Program Integration (See Chapter 4).

THEOREM (SYNTACTIC CORRECTNESS THEOREM). Integrates satisfies Properties (2)(ii) and (2)(iii) of
Version 2 of the Revised Integration Model of Program Integration. In other words,
@@ If Integrate’(A, Base, B) succeeds and produces M, and Base, A, B and Gy pass the homogeneity
test then Integrate™ (roll -out(A), roll -out(Base), roll -out(B)) succeeds and produces M™ such that
M= is homogeneous and M~ = roll -out(M).
() If Integrate™(roll -out(A), roll -out(Base), roll -out(B)) succeeds and produces M* and M* is homo-
geneous then Integrate 5(A, Base, B) succeeds and produces M such that Base, A, B and Gy pass the
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homogeneity test, and roll -out(M)=M".
PROOF.

(a) To show that Integrate™(roll-out(A), roll -out(Base), roll -out(B)) succeeds requires showing that
Interference ™ (roll -out(A), roll -out(Base), roll -out(B)) is false and that Gy~ is feasible. By assump-
tion, Integrate(A, Base, B) succeeds, which implies that Interference’ (A, Base, B) is false and Gy is
feasible. Thus, the contrapositive of Part 2 of the Type I Interference Lemma implies that
Interference = (roll -out(A), roll -out(Base), roll -out(B)) is false. By definition, Gy~ is feasible if
there is a set of programs P such that Gp=Gy-. The Sufficiency Theorem implies that
G rolt -ouamy = Gy~ thus, roll -out(M) is one set of programs whose set of procedure dependence graphs
is isomorphic to Gy-. This implies that no Type II interference exists and thus
Integrate™ (roll -out(A), roll -out(Base), roll -out(B)) succeeds in producing set of merged programs
M=. Finally, because the Sufficiency Theorem implies that Gron-owpn =Gum-, Gy~ is, by definition,
homogeneous and M~ =roll -out(M).

(b) To show the Integrate’(A, Base, B) succeeds requires showing that Interference’(A, Base, B) is false
and that Gy is feasible. By assumption, Integrate™(roll-out(A), roll-out(Base), roll-out(B))
succeeds, which implies that Interference = (roll -out(A), roll -out(Base), roll -out(B)) is false and Gy~
is feasible. Thus, the contrapositive of Part 1 of the Type I Interference Lemma implies that
Interference (A, Base, B) is false. By definition, M~ is homogeneous iff system N exists such that
G rott-owv) = Gu=. We show below that Gy is isomorphic to Gy; thus, Gy is feasible (i.e., there is no
Type II interference) since N is a system whose system dependence graph is isomorphic to Gy.
Therefore Integrate’(A, Base, B) succeeds in producing a system M. Finally, because the Necessity
Theorem implies that Base, A, B, and Gy pass the homogeneity test and no Type I or Type II interfer-
ence exists in the integration of Base, A, and B, the Sufficiency Theorem implies that G rou-ouM) = Gu-
(and thus, roll -out(M)=M").

We now prove that Gy = Gyy; the proof is by mutual containment.
GyaGy:
Vertices

For a vertex v € V(Gy), an occurrence v™ of v exists in G pon-owqvy and therefore in Gy-. To be in Gy=, v°™
must be in at least one of A”(roll -out(A), roll -out(Base)), Pre> (roll -out(A), roll -out(Base), roll -out(B)),
or A*(roll -out(B), roll -out(Base)). For A”, the A Inclusion Lemma implies that v € AS. For Pre™,v™ is
in roll-out(A), roll-out(Base), and roll-out(B) where b~ (roll-out(A),v™) = b= (roll -out(Base),v~) =
b=(roll-out(B), v>"). This implies v is in A, Base and B and further that b2(A, v), b2(Base, v) and b2(B, v)
are all equal; thus, ve PreS(A, Base, B). Finally, since v is in at least one of A%(A, Base),
PreS(A, Base, B), or A5(B, Base), itis in Gy.

Edges

First, the interprocedural edges of Gy can be determined from the vertices of Gy; therefore, the vertex
argument implies that all the interprocedural edges from Gy are in Gy. Second, for an intraprocedural
edge e € E (Gy), an occurrence e” of e exists in G pop.ouvy and therefore in Gy~-. The remainder of the
argument is similar to the argument for vertices. Occurrence e~ is in at least one of
Induce A” (roll -out(A), roll -out(Base)), Induce Pre” (roll -out(A), roll -out(Base), roll -out(B)), or
Induce A= (roll -out(B), roll -out(Base)) and by the vertex case the end points of e (and the witness vertex
for def-order edges) are in AS(A, Base), Pre®(A, Base, B), or A°(B, Base). Because, an occurrence of e
exists in Induce A= (roll -out(A), roll -out(Base)), Induce Pre™(roll-out(A), roll-out(Base), roll -out(B)),
or Induce A= (roll -out(B), roll -out(Base)) iff e exists in A, Base, or B, respectively, e must be in at least
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one of Induce AS(A, Base)), Induce PreS(A, Base, B), ot Induce AS(A, Base)), which implies e € E (Gyy).
GM [ GN:
Vertices

For v e V(Gy), the Witness Lemma implies an occurrence of v exists in Gy-. Because G ,oprouvy =0Oum=»
this occurrence is in G ,op.ouqyy and therefore v must be in V(Gy).

Edges

First, the interprocedural edges of Gy can be determined from the vertices of Gy,; therefore, the vertex
argument implies that all the interprocedural edges from Gy are in Gy. Second, consider an intrapro-
cedural edge e=x —>y € E(Gy). While the Witness Lemma implies that an occurrence of y, Y~ exists in
G-, the proof of the Witness Lemma actual proves a stronger result:

(1) ifyisin PreS(A, Base, B) then y™ is in Pre™ (roll -out(A), roll -out(Base), roll -out(B)),
(2) ifyisin AS(A, Base) then y~ is in A™ (roll -out(A), roll -out(Base)), and
3) ifyisin AS(B, Base) then y~ is in A” (roll -out(B), roll -out(Base)),
We use this stronger result to prove that e is in Gy. By definition, e is in (at least one of)

Induce AS(A, Base), Induce AS(B, Base), or Induce Pre®(A, Base, B). Therefore, we consider three cases
(for a def-order edge @ —>4o (o) b, € replaces y, and a and b replace x in the following arguments).

1) e=x —>y € E (Induce Pre*(A, Base, B)).

(1) ye Pre 5(A, Base, B) by assumption

(2) Ty~ s.t.y= € Pre™(roll-out(A), roll -out(Base), roll -out(B)) by the proof of the
Witness Lemma

(3) y~ € V(roll-out(Base)) by definition of Pre™

4) x—>y € E(Base) by assumption

(5) Ax=s.t. x~ —>y~ € E(roll -out(Base)) follows from (3) and (4)

(6) x>~ € Pre=(roll-out(A), roll -out(Base), roll -out(B)) follows from (2) and (5)

(7 x*—>y~ € Induce Pre™(roll -out(A), roll -out(Base), roll -out(B))  from (2), (5), and (6) by
definition of Pre™

@®) x* >y~ e Gy~ from (7) by definition of Gy~
2) e=x —>y € E (Induce A%(A, Base)).

(1) y € AS(A, Base) by assumption

(2) 3y~ s.t.y~ € A™(roll -out(A), roll -out(Base)) by the proof of the Witness Lemma

(3) y= € V(roll-out(A)) by definition of A™

@) x—>yeE() by assumption

(5) Ix=s.t.x” —>y" € E(roll -out(A)) follows from (3) and (4)

(6) x= € A™(roll-out(A), roll -out(Base)) follows from (2) and (5)

(7 x=—>y™ € Induce A (roll -out(A), roll -out(Base))  from (2), (5), and (6) by definition of A™

@®) x—>y~ e Gy from (7) by definition of Gy~

3) e =x —>y € E (Induce A*(B, Base)).
The proof is the same as the proof forx —>y € E (Induce AS(A, Base)).

The above argument implies an occurrence of e exists in Gy-. By assumption, this occurrence of is in
Gmll-oul(N) and therefore ¢ is in GN' 0



CHAPTER 7

ROLL-OUT IS A SEMANTICS-PRESERVING TRANSFORMATION

This chapter demonstrates that roll-out is a semantics-preserving transformation and thus justifies the use of
roll-out in Version 2 of the Revised Model of Program Integration given in Chapter 4. Recall that we used
the concept of roll-out in this model to relate the sequences of values produced by a statement s in different
contexts during the execution of system § with the sequences of values produced by the occurrences of s in
the evaluation of roll-out(S). This relationship allows us to prove that M (the result of integrating Aand B
with respect to Base) captures the changed and preserved behavior of A and B with respect to Base, by
proving that M ™ (the result of integrating roll -out(A) and roll -out(B) with respect to roll -out(Base)) cap-
tures the changed and preserved behavior of roll -out(A) and roll -out(B) with respect to roll -out(Base).

In addition to showing that roll-out is a semantics-preserving transformation, two other results are
required. First, we must show that the diagram in Figure 7.1 commutes (i.e., that Integrate™ o roll-out
equals roll-out o IntegrateS); this was done in Chapter 6 where we demonstrated that roll -out(M)=M"
holds if either integration is successful. The second result we need to show is that M™ captures the
changed and preserved behavior of roll -out(A) and roll -out(B) with respect to roll -out(Base); this is done
in Chapter 8. The results of Chapters 6 and 8, when combined with the result from this chapter, imply that
M captures the changed and preserved behavior of A and B with respect to Base: (1) M= captures the
changed and preserved behavior of roll-out(A) and roll -out(B) with respect to roll-out(Base), (2)
M= =roll -out(M), and (3) roll-out is a semantics-preserving transformation.

5
Concrete: Base, iB/ Integrate @

roll-out roll-out

 J
Conceptual: roll -out(Base), roll -out(A), W Integrate @

Figure 7.1. The commutative square that captures Version 2 of the Revised Model for Multi-Procedure Integration.
This chapter deals with the transition from the concrete level to the conceptual level, which is highlighted in bold.
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The proof that roll-out is a semantics-preserving transformation requires first proving that call-site
expansion is a semantics-preserving transformation. Before tackling these proofs, we present a denota-
tional semantics for systems, finite rolled-out systems, and infinite rolled-out systems. It is assumed that
the reader has some familiarity with the denotational description of languages; those lacking such back-
ground are referred to [Gordon79] or [Schmidt86].

To simplify matters, the following assumptions are made in this chapter: procedures have a single
parameter and this parameter is (always) potentially modified by the procedure (i.e. in GMOD). The first
assumption avoids the added complexity of an induction over the number of parameters. Augmenting a
denotational semantics to include procedures having more than one parameter is discussed in [Gordon79].
The second assumption simplifies the equations for call and scope statements. For example, without this
assumption two kinds of scope statements must be handled: those with transfer-out statements and those
without. Neither assumption affects the technical results contained in this chapter.

7.1. Meaning Functions for Systems, Finite Rolled-out Systems, and Infinite Rolled-out Systems

Figure 7.3 defines the auxiliary functions used in the equations, shown in Figure 7.2, that define the mean-
ing function M for systems and finite rolled-out systems;! the meaning function M= for infinite rolled-out
system is given at the end of this section. Ms arguments are a list of statements; a procedure environ-
ment, which maps a procedure name to the procedure’s formal parameter and body (denoted by Penv
through-out this chapter); a (calling-)context, which is a sequence of call-site tags2; a state, which is a map-
ping from variables to values; and a bucket function, which is explained below. Suppose that SL is the list
of statement that make up the main procedure of a system or finite rolled-out system. The result of M
applied to SL, Penv, the empty context (i.e. <>), an initial state and the initial bucket function (defined
below), is a final state and a final bucket function.

A bucket function maps a context and a program point to the sequence of values computed at the pro-
gram point in the context. (For single-procedure programs all contexts are empty; hence, the bucket func-
tion degenerates into a mapping from program points to sequences of values.) Informally, a bucket func-
tion can be thought of as a two dimensional array of buckets, where rows are labeled by contexts, columns
by program points, and each bucket contains a sequence of values. As a formal device, this array contains
too many entries. For example, if point p is in procedure P and context C is <Callp> then the array has an
entry for the pair (C, p), but this entry cannot be assigned any values because p cannot execute in context C
(only statements from procedure Q can execute in context C). Thus, for a given system §, we are only
interested in those context-point pairs that may be associated with a sequence of values. These pairs are
captured in the following definition.

DEFINITION (Legal Context-Point Pairs). For system S, context-point pair (C, p) is legal if

(1) For all sub-sequences f;,t,4; of C the call-site with tag ¢; calls the procedure containing the call-site with
tag £y, and

(2) point p can execute in the context given by C (e.g., if the last call-site in C is “call P (a)” then p must be
in procedure P).

! The function M does not define the values computed at call-site and scope, entry, formal-in, and formal-out points because these
values can be determined from the values computed at the following points: the enclosing predicate, the set of corresponding call-site
points, the set of corresponding actual-in points, and the set of corresponding actual-out points, respectively.

2 Ag discussed in Chapters 2 and 5, each program component has a unique tag. While tags are necessary for identification of
corresponding components in integration, they are not required for the results in this chapter. All that is required here is that a unique
identifier be associated with each program point; the point’s tag is a convenient choice.
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M statement — procedure-environment —» context — state, — bucket-function, — (state, x bucket-function )

M[[sl;s2]] PenvC o B=

let
(@ B)=M[s!] Penv C o B
in
M[s2]] Penv C o, By
ni
M[[i:=exp]] PenvC o B =
let
v=E[ep] o
_ b=(C point(i =exp))
in
' (oli/v], update B b v)
ni

M [[if expression then sl else s2]] Penv C 6B = -+
M [[while expression do s1]] Penv C G B= -
M[[call P(@)]] Perv C 6 B =

let
f, body=Penv [P]
b, =(C, point{a -before))
b, =(C, point(a-after))
C*=C | point (Callp)
B, =update B b, (Ef a]] o)
o, =zerostate [fI‘E [a]] 6]

in
let
. G2, 32=M[b04yﬂ Penv C* o B,
in
) (ola/‘E[[f] o,), update B, by (E{f] 62))
ni
ni

M [[scope P(f =a;a:=f)body]] Pew C 6B =
let
b, =(C, point ([f=a]]))
b, =(C, point(fa:=f]]))
B, =update B b, (Ef a]] o)
o, =zerostate [fI E[[a]] o]

let
O2, 32=Mﬂ'bOdYﬂ Penv C oy By

(cla/‘E[[f] o), update B, by (E[f] ©,))

in
ni
ni
E: expression —» state — value,

Eleplo=---

Figure 7.2. M is the meaning function for finite statement lists. The definitions for if and while statements are left
unspecified; they differ from a standard definition (see [Gordon79]) only in the updating of a bucket function. ‘E, the
semantic function for expressions, is also left unspecified; informally, given an expression exp and a state © the result
of E [[exp]c is either the value of the expression or L if an error occurs. Finally, the above functions are assumed 10
all be strict: if one of their arguments is | then they produce L as a result. (Formally the function M produces Las
(the undefined element for the domain of program meanings, which is defined as (AV. Lyequencer MC-AP. L sequence ) howev-
er, for the sake of clarity, we omit subscripts from L in the remainder of this chapter.)
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Auxiliary Functions

function type ‘ definition

| (infix) list —> element — list list | element = append (list, [element ])
71 (a—=b)y—a-—-sb—-(a—b) x[y/z]=dw.if w=ythenzelsex w

R a->b-axb a, b=(a, b)

Penv procedure -name —» formal -parameter X body procedure environment

zerostate variable —value Av.0
point program -component - program ~point (see below)

update bucket -functions — bucket — v — bucket -function update B b v=P[b/(B b)|v]

Figure 7.3. Auxiliary functions for the semantic equations shown in Figure 7.2. The function point returns the
program-point (in most cases the tag) used to identify the program component (statement) that is its argument (for actu-
al parameters the suffixes “-before” and “_after” are used to identify the point for an actual parameter before and after
the call, respectively—these correspond to the actual-in and actual-out vertices for the parameter, respectively). The
function update appends the new value v to the current contents of bucket b.

In this chapter, B, B, etc., denote bucket functions, Binisiat denotes the initial bucket function that maps
every context-point pair to the empty sequence (.. Binisat & ACAp.<>). To be complete, the bucket
functions used in the chapter should be “wrapped” in a function that checks, for a given system S, that the
arguments to the function are legal (i.e., the function

check—legality(B, S, C, p) 4 if legal(S, C, p) then B(C, p) else L ).

However, since we only apply bucket functions to legal context-point pairs, this “wrapper” function is
omited to simplify the presentation.

Example. Figure 7.4 shows a system § and the final bucket function obtained when M is applied to
(the statement list of) the main procedure of §, the context <>, any initial state, and Binigar-

tags’ System S Final bucket function for §
procedure Main points
1 =1 context| 1 2 4
24 call P(3) <¥ <> <I> 3>
end
57 procedure P (x) .
8 x =x+2 points
9 it x <3 then context |8 9 10 12
1012 call P (x) <tag (Callp)> |<3> <F> < <
fi
return

! The tags for actual-in and actual-out vertices, and formal-in and formal-out vertices appear on the same line as the
corresponding call statement or procedure declaration, respectively. The tags for call-site and entry vertices are not
shown; they are 3, for the call-site in Main, 11, for the call-site in P, and 6, for P’s enter vertex.

# & denotes both the empty context (i.e. the empty sequence of call-site tags) and the empty sequence of values, which
is computed by a statement that is not executed in a given context.

Figure 7.4. An example system and its final bucket function.
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A Meaning Function for Infinite Rolled-out Systems

The meaning of an infinite rolled-out system, given by the function M=, is the least upper bound of the
meanings of all finite approximations to the infinite rolled-out system. These approximations are obtained
using a pruning operation that removes from a program all statements having depth greater than & (i.e., all
statements nested within more than k scope statements). Furthermore, an abort statement is added to all
scope statements at depth k (those whose bodies have been removed); executing an abort statement causes
a program to terminate abnormally.

DEFINITION. (Pruned Programs) The operation prune applied to a program roll-out(S) and a integer k,
denoted by pruney(S), is roll-out(S) with all statements nested within more than k scope statements
replaced by an abort statement.

The least upper bound that defines M™ uses the following least upper bounds.
DEFINITION. (Least Upper Bounds).

Type Least Upper Bound

simple values viuvy & viifvi=voorvy=1,vpifvy= 1 and is undefined otherwise.?
sequences of values s, Lis2 L 5, ifs;=sq0rs0=1,52if 5y = | and is undefined otherwise.’
states (0, UG)(x) £ o (x)Ls,(x)

bucket functions (B1UB2XC, p) £ Bi(C, p)uBa(C, p).

pairs (P1.P2)U@G1,92) £ (P1Uq1,P2142)

DEFINTTION. (Meaning of an Infinite Rolled-out System).
M= [roli-out(S) ]| Penv <> G Binisat 2 M= [[roli-ouS, Main)]] Penv <> © Binisiat
and

M= [roll-out(S, Main) ]| Penv <> 6 Binis 2 EJOM [prune;(S)]] Penv <> & Binisiar-

Example. For system § shown in Figure 7.4, Figure 7.5 shows (the main programs of) prune o(8) and
prune (S), and (part of) the infinite program roll-out(S, Main). Let B; denotes the final bucket function

produced prune;(S). The figure also shows Bo, B1, and @0[3,- (‘goﬁi is the final bucket function for

M= [[roll-out(S)]], which can be simplified to B; since p;=f; for all i=1 and B, is everywhere
undefined).

7.2. Call-site Expansion is a Semantics-Preserving Transformation

The Expansion Lemma, stated below, shows that call-site expansion is a semantics-preserving transforma-
tion: i.e. it shows that call-site expansion does not alter the sequences of values computed by a system. The
only effect an expansion has on the computation of a system is to change the context-point pair that maps
to a particular sequences of values (thought of as an array of buckets, the affect of an expansion is to delete
the row for the context associated with the expanded call-site and to create new columns for the points of
the scope added to the main procedure; the expansion also relabels those buckets containing the expanded
call-site in their context). The preservation of sequences of values (semantics), modulo this change in the
context-point pair associated with a given sequence of values, is captured by the notion of a bucket-
function congruence o simply a congruence.

3 Because values and sequences of values each form a flat domain (i.e. 51532 iff 51 =53 or 5y = 1) and if M[[pruneS)]] is not L
then, for all j 2i, M [prune (S)]] = M [ prune;(S)] and, for all j <i, M fprune;($)] = M prune;(S)] or L, the least upper bounds
used in this chapter are never undefined.
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Programs
tags prune(S, 0) prune(S, 1) roll-out(S, Main)
procedure Main procedure Main procedure Main
1 i=1 i=1 Q=1
2:54:7 scope (x :=i;i:=Xx) scope (x :=i;i:=Xx) scope (x :=i;i:=Xx)
3:8 abort x =x+2 x=x+2
3:9 epocs if x <3 then if x <3 then
3:103:12 end scope (x =x ;x:=x) scope (x =X ;X =X)
abort s
epocs epocs
fi fi
epocs epocs
end end

! The tags for transfer-in and transfer-out vertices appear on the same line as the corresponding scope statement. The
tags for scope vertices are not shown; they are 3:6, for the singly nested scope in prune(S, 0), prune(S, 1), and
roll-out(S, Main), and 3:11:6, for the double nested scope in prune(S, 1) and roll-out(S, Main).

The final bucket functions for prune(S, 0), prune(S, 1), and roll-ou(S, Main) (all contexts are <>).

Program points

| 1 2:55 47 3:8 3.9 3:10 3:12
prune(S, 0) 1l 1L 4
prune(S, 1) <l> <1> B> B> <> <> <

roll-out(S, Main) |<1> <1> <3> 3> <F> <> <

Figure 7.5. Three programs derived from system § of Figure 7.4 and their final bucket functions. The program are
prune(S, 0), prune(S, 1), and roll-out(S, Main) (only the main programs are shown).

DEFINITION. (Congruence). Bucket functions By and B, are congruent iff there exists a bijection y such
that for all context-point pairs (C, p), B1(C, p)=B2(w(C, p))-

The Expansion Lemma also makes use of the following definition of a compound tag.
DEFINITION. (Compound Tag). Tag ¢,:t, denotes the compound tag created from tags ¢; and ¢5.

Compound tags are introduced when call statement “call P (a)” is expanded as follows (assume P has
formal parameter f):
(1) The new scope statement is given the compound tag tag (Callp):tag (Enterp).
(2) The transfer-in statement “f:=a” is given the compound tag tag (Callp.fis):tag (Enterp.fis).
(3) The transfer-out statement “a :=f" is given the compound tag tag (Callp f,,.):tag (Enterp.fou)-
(4) The copy of statement s from the body of P is given the compound tag tag (Callp):tag (s).

For the example shown in Figure 7.5, the occurrence of the statement “x :=x+2” in the main procedure of
prune | (S), which was introduced by the expansion of call-site Callp (“call P (i)”) in the main program of
system §, is given the compound tag tag (Callp):tag (“x:=x42"),i.e.,3:8.

LEMMA. (EXPANSION LEMMA). Let S be the result of expanding call-site “callP (a)" from the main
procedure of system S, Penv the procedure environment for S, and  the bijection between the context-
point pairs of S and S’ given by the following table (where P is assumed to have formal parameter f and
because Callp is in the main procedure and there are no recursive calls on the main procedure, it must be
the first call-site of any context in which it appears):
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y Table
w(C,p)=(C".p)

c p c r

tag (Callp) & C peP C P

tag (Callp) ¢ C peP C p

<tag (Callp), ty, **,t,> pé&P <tag(Callp)ity, ** ", s> P

<tag (Callp),ty, ***,1,> Ppé€P <tag (Callp)t,, -+, ty> P (ty, -, ty is not empty)
<tag (Callp)> peP <> ﬁf (ty, <+, 1ty is empty)

15 denotes a point associated with the new scope; the tag of P is compound tag determined by the expansion of Callp.

Table7.1

Assume that

1) oisastate,

2) P and B’ are congruent, and

3) s is a statement and C a context from S, and § is a statement and C’ a context from S’ such that
y(C, point (s))=(C’, point(s")) (if more than one point is associated with s, as in the case of the two
points (before and after) for a call statement or the n points of a statement list, then the equivalence
(given by ) must hold for corresponding points of s and s).

If s terminates when initiated on G then s’ terminates when initiated on & and M{[s[JPenv C G B and
M [JPenv C’ o B’ yield the same final state and congruent final bucket functions.

PROOF. The proof is an induction over the number of applications of M used to derive the final mean-
ing of s (operationally, this is approximately an induction over the number of intermediate states entered
into by the computation). The base case is trivial: if zero applications of M are used then s and 5" are
empty statement lists, in which case s terminates and o, B, and P’ are unchanged; therefore
M[s]Penv C o P and M[s[JPenv C’ o B’ yield the same final state (0) and congruent final bucket
functions (B and B").

Proving the inductive step requires showing that if the lemma holds when k applications of M are
required to determine the final meaning of M[[s][Penv C o B then it holds when k+1 applications of M
are required. For all but one case, s and s” are the same syntactic statement; in these cases, the inductive
step is trivial. The one exception to this is when s is “call P (a)"—the call statement from S that was
expanded to obtain §’. In this case, 5', is the scope statement that replaces “call P (a)”; assuming procedure
P has formal parameter f and body body this scope statement is “scope P(f:=a ;a :=f) body”.

Given that “call P (¢)” terminates and its meaning is obtained using k+1 applications of M, we demon-
strate below that “scope P(f:=a;a:=f) body” also terminates and that M [[call P (a)]JPenv C ¢ B and
M [[scope P(f:=a ;a:=f) body]JPenv C’ c ' yield the same state and congruent bucket functions. The
remainder of the proof refers to the values shown in the following table (in which the contexts C and C” are
empty, i.e., equal 0 <, because “call P (a)” is in the main procedure).
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Auxiliary Variable Values (variables names are the same as in Figure 7.2)
For M [[call P (a)][Penv <> o B For M [[scope P(f:=a;a:=f) body J[Penv <> c [’

f P’s formal parameter

body the body of procedure P

by (<>, point (a -before)) b1 (<>, point (f :=a))

b, (<>, point (a-after)) b3 (<>, point(a:=f))

c* <> | point(Callp)= <point(Callp)>

Gy zerostate [fI E [[a]] o] o} zerostate [f1‘Ef[a]] ]

B update B by (E[[a]l o) B1 update B’ b1 (Ef[a] o)
oy, B2 M[[body ]| Penv C* o, B, 02, B2 M{[body]] Penv <> o] B

The proof has three parts: (i) showing that “f :=a” terminates, 6; =07, and B, and B are congruent; (ii)
showing that body terminates, 6, =03, and B, and B3 are congruent; and (iii) showing that “a:=f" ter-
minates, the final states are equal, and the final bucket functions are congruent.

®

(ii)

To begin with, since call P (a) terminates, ‘Efa]] o= 1; thus, the evaluation of “f:=a” terminates.
Let v="E[a]] 6. States 6, and o} are both zerostate[f/v] and therefore equal. Finally, to show that
B, and P} are congruent requires showing that they map corresponding context-point pairs to the same
sequence of values (i.e. B(C, p)=B" w(C, p)). By definition,

B, =update Bbyv =B[b /(B b1))Iv] =Aw.if w=b, then B b;)|velse p w,and
B, = update B’ b} v = P'Ib} /(B b})) [v] = Aw. if w=b] then (B’ b})|v else B’ w

First consider B, b;, which simplifies to (B b,) | v, and Bj y(b,), which, because assumption 3
implies y(b)= b1, simplifies to B b1 =(B" b7) | v. Because P and B’ are congruent and y(b)=>b1,
B b, and B’ b} are equal (i.e. the same sequence of values); appending v to these sequences yields
equal sequences of values. Now consider any legal context-point pair b other than b; and let
y(b)=b". B, b=Pb and Biy(b)=P; b'=Pp’ b’ (because y, as given by Table 7.1, is a bijection
b’ #b?). By assumption B and B’ are congruent; therefore, B b and B’ b’ are equal. Finally, consider
any illegal context-point pair b. Since y maps illegal context-point pairs in § to illegal context-point
pairs in §” and, when applied to an illegal context-point pair, any bucket function produces L, B; and
By’ yield the same sequence of values when applied to b and y(b), respectively. Hence, 3, and B,” are
congruent, since B, b and B, y(b) yield the same sequence of values, for all possible context-point
pairs b.

For the second step we must show that the body of the scope statement terminates on o7, that 6, =07,
and that B, and B3 are congruent. Step (ii) follows from the inductive hypothesis because only k
applications of M are required to derive the final meaning of M[[body ]| Penv C* o, B;. The induc-
tive hypothesis can be applied because the three assumptions of the Expansion Lemma are satisfied by
M| body ]| Penv C* o, B, and M [[body ]| Penv <> o} B{: Step (i) establishes that assumptions 1
and 2 are satisfied and, as shown below, assumption 3 is satisfied; therefore, because only k applica-
tions of M are required to derive the final meaning of M [[body J] Penv C* o, B, the inductive
hypothesis implies that the evaluation of body terminates, 6, =03, and B, and B; are congruent.

Assumption 3 states that for each point p in the body of procedure P, y(C*, p) must equal (<>,p"),
where p’ is the corresponding point in the body of “scope P(f:=a ;a :=f) body”. By construction, p’
is assigned the compound tag tag(Callp): tag (p) during the expansion of “call P (a)”. Because the
last line in Table 7.1 maps (C*, p) to (<>,p) where the tag of p is tag(Callp): tag (p), ¥(C*, p)
equals (<>,p") (recall that C* = <tag (Callp)>); thus, assumption 3 is satisfied.
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(iii) For the final step, we must show that “a :=f” terminates, that the final states are equal, and that the
final bucket functions are congruent. First, since callP(a) terminates, ‘E[f]] o, #1; thus, the
evaluation of “a =f" terminates. Let v="E[[f]] o2. The final states are both o{a/v] and are there-
fore equal; the final bucket functions are update B, by v and update 33 b v. The argument that these
two are congruent is similar to the argument that the updates that produced B, and Bi are congruent
(see Part (i)).

a
The Expansion Theorem extends the Expansion Lemma to non-terminating executions of a system.

THEOREM. (EXPANSION THEOREM). Let Penv be the procedure environment for S. If S’ is the result of
expanding a call-site in the main procedure of S then, for any state G, MS ] Penv <> 6 Piniiat and
MYS’]] Penv <> O Biniiat yield the same final state and congruent final bucket functions.

PROOF. Let body be the body of the main procedure of S, body’ the body of the main procedure of §’.
The proof breaks down into two cases: one where § terminates when run on ¢ and one where § fails to ter-
minate when run on o. To begin with, if § terminates when run on o then, by the Expansion Lemma,
M [[body ]| Penv <> G Biniriat and M[[body']] Penv <> G Binisia yield the same state and congruent bucket
functions.

If S fails to terminate when run on G but S’ does not then an induction similar to the one in the Expansion
Lemma would imply that S also terminates when run on G, which contradicts the assumption that § fails to
terminate when run on ¢. Thus, for a state ¢ on which § fails to terminate, S’ must also fail to terminate
when run on . This implies M[S] Penv <> 6 Biniiar and MS’] Penv <> 6 Biniiar both equal

(Av.L,ACAp. 1) and therefore yield the same state and congruent bucket functions. [J

COROLLARY. If 8 is the result of expanding a series of call-sites from S (where each call-site is in the
main procedure after the preceding expansions) then, for any state G, M[S] Penv <> G Biniia and
MS’]] Penv <> O Binisa Yield the same final state and congruent final bucket functions.

PROOE. The Expansion Theorem proves both the base case and inductive step of an induction over the
number of call-sites expanded to produce §” from S. [

73. Roll-out is a Semantics-Preserving Transformation

The Expansion Theorem demonstrates that call-site expansion is a semantics-preserving transformation;
the Consistent Semantics Theorem, stated below, extends this to roll-out. The proof makes use of a partial
or limited roll-out in which only some of the call-sites in system are expanded. This is formalized in the
following definition.

DEFINTTION. (Limited Roll-out). The i-limited-roll-out of system S to depth i, denoted by S;, is obtained
from S by (repeatedly) expanding call statements having depth <i (i.e., in §; there are no call statements
having depth <i).

S; is related to the pruning of S at depth i (i.e., prune;(S)) in two ways. First, syntactically S; and
prune;(S) are identical except where the scopes that contain abort statements in prune;(S) are replaced in S;
by scopes that contain call statements. Second, this implies semantically that S; and prune;(S) compute
identical sequences of values provided prune;(S) does not execute an abort statement.

THEOREM. (CONSISTENT SEMANTICS THEOREM). Roll-out is a semantics-preserving transformation.
if
Gl,ﬁl = MﬂSﬂPenv <> Gﬂwaal and
Gy, B2 = M”ﬂroll-oul(S)ﬂPenv <>0 Bim’tial
then G, =0, and B, and B, are congruent.
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PROOF. First the finite case. If roll-out(S) is finite then, for a sufficiently large value of i, roll-out(S) and
S, are syntactically identical programs. This implies that M [roll-out(S)[JPenv <> G Biniia =
MS;:JPenv <> 6 Binisar; therefore, MYS;[JPenv <> & Binisiat = G2, B Because S; is obtained from § by
a series of call-site expansions the Corollary to the Expansion Theorem implies 6, =G, and B, and B, are
congruent. Thus, in the finite case, roll-out is a semantics-preserving transformation.

If roll-out(S) is infinite then consider the execution of S on . If S terminates when run on ¢ then, for a
sufficiently large value of i, prune;(S) does not execute an abort statement but prune;.., (S) does (i is one
Jarger then the maximum depth of the call stack). This has three implications; first, for all legal context-
point pairs in prune;(S) (since the only legal context in prune;(S) is the empty context, ie., <, this is
equivalent to “for all points in prune; S,

for all j i, M[[prune;(S)]] Penv <> 6 Binisa = M [[prune;(S)]] Penv <> O Binisai

(Note that those context-point pairs legal in prune;(S) but not prune;(S) produce the
empty sequence because no statements having depth greater than i are executed.)

Second,
for all j <i, M [[prune;(S)]] Penv <> & Binisiat = L.
And third,
M|[[prune;(S)] Penv <> O Biniia = MJS. ] Penv <> 6 Binitiar-

Since M™ [roll-out(S)]] Penv <> G Biniiat is defined as .EJOM [prune;(S)]] Penv <> G Binisiat, these
]:

three implications imply that, for all legal context-point pairs in prune;(S),

M= [[roll-out(S)]] Penv <> © Bipisar = _DOEM [prune;(S)] Penv <> © Binitiat
J =

=M[ erune;(S )] Penv <> O Binisiat
= M”S,” Penv <> 0 Biru'n'al-

Let MS.] Penv <> 6 Binisar €qual o, B and recall that M~ [roll-out(S)] Penv <> O Biniir €quals
G,,B,. The above equality establishes that o, equals o and that, for legal context-point pairs in prune;(S),
B and B are congruent. To extend this congruence to all context-point pairs in S; and roll-out(S) require
three observations. First, because only the statements in prune;(S) are executed, E(E) = Ba(by = <>, for
legal context-point pairs b from S; and b, from roll-our(S) that are not legal in prune;(S). Second, for all
illegal context-point pairs,  and E produce 1. Third, the composition of the isomorphisms given by Table
7.1 for the remaining expansions required to obtain roll-out(S) from S; produces an isomorphism that maps
legal context-point pairs from S; that are not legal in prune;(S) to legal context-point pairs from roll-out(S)
that are not legal in prune;(S) and illegal context-point pairs in §; to illegal context-point pairs in
roll-out(S). Together these observations extend the congruence between B and E for legal context-point
pairs in prune;(S) to all context-point pairs; thus, B and B are congruent.

Finally, as in the finite case, the Corollary to the Expansion Lemma implies that ¢y =o and that B, and B
are congruent bucket functions. Thus, o; =0, because they both equal &, and B, and B, are congruent
because they are both congruent to E (the isomorphism between the context-point pairs of B; and B, is the
composition of the isomorphism for B, and B and the isomorphism for B, and B, which is itself an isomor-
phism). Therefore, in the case where § terminates on &, roll-out is a semantics-preserving transformation.

Finally, if § fails to terminate when run on ¢ then the meaning of § is the everywhere-undefined state
and the everywhere-undefined bucket function (i.e. 6 =Av.L and B; =AC.Ap..L). For all values i, this is
also the meaning of prune;(S) because prune;(S) either executes an abort statement or enters into the same
infinite loop as S.  Therefore, 03,0, = M= [roll-out(S)]] Penv <> 6 Bipisiat =
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EJOMH prune(S)]] Penv <> G Binisar = (w.L,ACAp.1) and consequently, ;=0, and B; and B, are

congruent. Thus, in all cases, roll-out is a semantics-preserving transformation. []




CHAPTER 8

Integrate” SATISFIES THE REQUIREMENTS ON ™

This chapter proves the Infinite Integration Theorem, which demonstrates that Integrate™ satisfies the
requirements on /* from Version 2 of the Revised Model of Program Integration given in Section 4.3. In
terms of the commutative square shown in Figure 8.1, the Infinite Integration Theorem deals with the bot-
tom line labeled “Conceptual:”. That is, it proves that M~—the result of applying Integrate™ to
roll -out(Base), roll -out(A), and roll -out (B }—captures the changed and preserved behavior of roll -out(A)
and roll -out(B) with respect to roll -out(Base).

This theorem is used to establish that M—the result of applying Integrate’ to Base, A, and B—captures
the changed and preserved behavior of A and B with respect to Base as follows. First, because as shown in
Chapter 6, M™ and roll -out(M) are syntactically equivalent, the Infinite Integration Theorem implies that
roll -out(M) captures the changed and preserved behavior of roll -out(A) and roll -out(B) with respect to
roll -out(Base). Finally, when combined with the result from Chapter 7, which states that roll-out is a
semantics-preserving transformation, this implies that M captures the changed and preserved behavior of A
and B with respect to Base.

The proof of the Infinite Integration Theorem is a reduction to a previously known result: the (Finite)
Integration Theorem [Yang90], which proves that Integrate™" (the integration algorithm discussed in
Chapter 2) satisfies the integration model from Section 1.1 for finite single-procedure programs. This

N
Concrete: Base, ff/ Integrate @

roll-out roll-out

Integrate™ -
Conceptual: (roll -out(Base), roll -out(A), roll -out(B M
/

Figure 8.1. The commutative square that captures Version 2 of the Revised Model for Multi-Procedure Integration.
This chapter deals with the bottom line of the figure, which is highlighted in bold.
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reduction is possible because the requirements on /™ apply only to initial states o for which roll -out(Base),
roll -out(A), and roll-out(B) terminate. For such states, there exists an integer & such that prune,(Base),
prune,(A), and prune,(B) are semantically equivalent to roll -out(Base), roll -out(A), and roll -out(B),
respectively. Let M, be the program produced by Integrate ko (prune,(A), pruneg(Base), pruney(B)). Our
goal in this chapter is to prove that M= captures the changed and preserved behavior of roll -out(Base),
roll -out(A), and roll -out(B) by proving that M~ is semantically equivalent to My, which by the Finite
Integrate Theorem, captures the changed and preserved behavior of prune(Base), prune,(A), and
prune;(B).

Unfortunately, there are two problems with the above argument. Both of these arise because prune;
does not capture syntactic properties of roll -out(A) and roll -out(B) relevant to integration. The first prob-
lem, which we call the severed-path problem, is the failure of the function prune, to preserve certain paths.
The second problem, which we refer to as the cutout-slice problem, is specific to integration. This problem
arises because prune,(M™) contains (pruned) slices that are not part of M,.

In order to avoid confusion in the following discussion we formalize the depth of statements, vertices,
and edges.

DEFINITION. (Depth). The depth of a staiement is the number of scope statements that enclose it. The
depth of vertex v, denoted by depth(v), is the depth of the statement represented by v (i.e. the statement
labeling v). The depth of edge x —>y is the greater of depth(x) and depth(y). Finally, the depth of def-
order edge x —>4,(;) ¥ is the greatest of depth (x), depth (y), and depth (z).

Note that because transfer-in and transfer-out statements are not in the scope they parameterize, they have
the same depth as the scope statement. For example, in roll-out(S) of Figure 8.3, the depth of the statement
“x:=y+z” is 1. The depth of all other statements—including the three transfer-in statements “x :=a”,
“y:=b", and “z :=¢”, and transfer-out statement “a:=x"—is 0.

The remainder of this chapter is organized as follows. We first solve the severed-path problem by intro-
ducing a replacement for prune called cutoff. We then solve the cutout-slice problem by converting the
cutoffs of roll-out(A) and roll-out(B) into semantically equivalent programs that “reintroduce” cutout
slices. We then use cufoff and convert, to reduce the proof of the Infinite Integration Theorem to that of the
Finite Integration Theorem. Finally, in Section 8.4, we summarize how the principal results from this
chapter and Chapters 6 and 7 are combined to prove that Integrate® is an acceptable multi-procedure

roll -out(Base), roil -out(A), w Integrate

prune,

hpr
@), prune;(A), P@ Integrate @

Figure 8.2. A pictorial outline for the proof of the Infinite Integration Theorem.
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program-integration algorithm.

8.1.1. The Severed-Path Problem

The severed-path problem refers to the fact that paths between vertices having depth <k can be severed in
prune(S). In particular, those paths that contain edges having depth greater than k are severed when these
edges are pruned. This is illustrated in Figure 8.3 where the paths from vertices “b:=1"and “c :=2" to the
vertex “t :=a” do exist i Gprune(s)-

To solve the severed-path problem, we introduce the operation cutoff, which is similar to prune. The
major difference between cutoff and prune is that a cutoff program includes edges that splice together the
paths severed in a pruned program. This splicing is done by replacing transfer-out statements having depth
k with dummy-out statements that, by referencing variables defined by certain transfer-in statements of the
same scope, induce flow dependence edges that replace pruned paths (this is illustrated in Figure 8.4).
There is one special case for this replacement: if none of the transfer-in vertices are connected to a
transfer-out vertex then the dummy-out vertex replacing it must not induce any edges into the cutoff pro-
gram. This is accomplished by using the right-hand-side expression 0 in the dummy-out statement;

roll-out(S) pruney(S)
Procedure Main Procedure Main
a:=0 a=0
b:=1 b:=1
c:=2 c:=2
scope P(x:=a,y:=b,z:=c¢; scope P(x=a,y =b,z:=c;
a:=x) a:=x)
X =y+z abort
epocs epocs
t=a t=a
end end
G roll-ou(S) Gprun‘o(S)

Figure 8.3. The severed-path problem. Unlike G oiomts)r Gpruneots) does not contain paths from the vertices labeled
“p:=1" and “c =2 to the vertex labeled "t :=a". (In this figure, and the remaining figures in this chapter, only the
main procedure of each program is shown.)

1 Notice that in prune o(S) an unwanted path connects “g =0"to“t :==a".
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because this right-hand-side references no variables, it induces to flow dependence edges and thus
preserves the (lack of) paths from transfer-in vertices (this is illustrated in Figure 8.5).

The definition of cutoff also introduces abort scopes—ihe execution of an abort scope, like the execution
of an abort statement, causes a program to terminate abnormally. Cutoff introduces abort scopes rather
than using abort statements because the program M, produced by applying Integrate ker to the cutoffs of
roll -out(Base), roll -out(A), and roll -out(B) must abort if it executes a scope statement at depth k. Unfor-
wunately, when abort statements are used, the slices that make up M, may include a scope at depth k but not
the abort statement in the scope. In this case, it is impossible to prove that such scopes are not executed by
a terminating execution of M,. In contrast, abort scopes, which tie together the scope statement and the
abort statement, avoid this separation; thus, using abort scopes, termination guarantees that M, executes no
scope statements having depth k.

DEFINITION. (Cutoff). The cutoff of roll-out(S) at depth k, denoted by S !k, contains all the statements of
roll-out(S) that have depth <k with the following modifications:

1) Suppose transfer-out vertex t-out represents a transfer-out statement “a:= - ” at depth k in
roll-out(S). Let T be the set of transfer-in statement associated with the same scopes as -out. In Sk,
t-out is replaced by the dummy-out statement “a:= --- ®x® ---”, where the variables x on the
right-hand-side are a function of the paths in roll-out(S) from elements of T to t-out. In particular, if
the transfer-in vertex label “x := - - - ” is connected to t-out by a path of edges having depth greater than
k or a single edge from the transfer-in vertex to t-out then x appears on the left-hand-site of the
dummy-out statement. If, however, no such paths or edge exists then the statement “a :=0" replaces
the transfer-out statement. Finally, for the purposes of integration, a dummy-out statement retains the
tag of the transfer-out statement it replaces.

2) Scopes having depth k are abort scopes; executing an abort scope causes § !k to terminate abnormally.

The actual operation denoted by @ in a dummy-out statement is unimportant because the scope associated
with a dummy-out statment is always an abort scope; thus, dummy-out statements are never executed.

Example. Figure 8.4 shows Gg, for system S shown ir Figure 8.3. In Ggio, the dummy-out vertex
labeled “a :=y ®z” replaces the transfer-out vertex labeled “a:=x" of G ou.ou(s)- Because “a=ydz”
references the variables y and z, the dummy-out vertex is the target of flow dependence edges from the

enter Main

Sie ;:::
" t

Figure 8.4. The solution to the severed-path problem applied to the example from Figure 8.3.

\
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transfer-in vertices labeled “y :=b" and “z:=c”. These flow dependence edges replace the paths in
G rol-our(s) from these transfer-in vertices to the transfer-out vertex labeled “a :=x".

8.1.2. The Cutout-Slice Problem

Since cutoff, unlike prune, preserves paths, one might think that M, (the result of
Integrate™ (A \k, Base 'k, B 1k)) would equal M*!k. Unfortunately, as illustrated by Figure 8.5, this is not
the case. The problem is that certain slices present in A™ (roll -out(A), roll -out(Base)) may not be present
in APr(A lk, Base k). In effect, when cutoff removes program components having depth greater than k, it
may also remove affected and directly affected points whose slices are part of
A= (roll -out(A), roll -out(Base)). In this case, we say the slices have been cut out of
A= (roll -out(A), roll -out(Base)). Because cutout slices are not part of A*"(A 'k, Base k), M, may not con-
tain vertices that are in M~ k.

There are two kinds of cutout slices. First, for an affected point ap having depth greater than k, the back-
ward slice of roll-out(A) taken with respect to ap is a cutout slice. Such a slice is part of
A=(roll -out(A), roll -out(Base)), but not A" (A lk, Base k) because ap is not in Alk. Second, for a
directly affected point dap having depth greater than k, the forward slice of roll -out(A) taken with respect
to dap is a cutout slice. Such a slice (and backward slices taken with respect to each vertex in it) are part of
A=(roll-out(A), roll -out(Base)), but not A*"(A tk, Base 'k) because dap is not inAlk.

Example. The cutout-slice problem is illustrated in Figure 8.5 by the affected point v
(v € f(roll-out(A), DAPI)) and the directly affected point DAP2. A™(roll -out(A), roll -out(Base)) con-
tains the statement “@ :=2" because it is in b>(roll -out(A), v) and (the backward slice with respect to) the
statement “b :=a” because it is in f~ (roll -out(A), DAP 2)). In contrast, because Base !0 and A !0 are ident-
ical A*"(A Ik, Base !k) is empty (thus, the slices with respect to v and DAP2, which have depth greater their
0, have been cutout).

The conversion of A !k, which “reintroduces” the two kinds the cutout slices, is a two-step process (the
conversion of B 1k is similar). First, for an affected point ap having depth greater than &, the portion of the
slice b=(roll-out(A),ap) having depth <k is reintroduced into A*7(Alk,Base!k) by adding a new
dummy-use statement to certain scopes having depth k. (Dummy-use statements, which have depth k+1,
are the only statements with depth greater than k in a converted cutoff program.) Because dummy-use
statements do not exist in Base !k, they are directly affected points in the converted version of Alk; how-
ever, by construction, they have no outgoing edges and therefore contribute only a backward slice to Ak,
This backward slice replaces the part of b= (roll -out(A), ap) having depth <k.

The second step of the conversion reintroduces slices cutout because directly affected points having
depth greater than k are not part of Alk. Let dap be a directly affected point having depth greater than k.
The portion of the slice f~ (roll -out(A), dap) having depth <k is reintroduced into A" (A \k, Base k) by
assigning new tags to certain dummy-out statements. In particular, if a transfer-out vertex having depth &
is in f=(roll -out(A), dap) then the dummy-out vertex that replaces it is assigned a new tag (the definition
given below also treats the special case where a new tag must be assigned to the same vertex in the conver-
sion of Alk and B!k). This causes Integrate™®” to determine that the dummy-out vertex is a directly
affected point and thus to take iis forward slice as part of the construction of APr. This forward slice
replaces the part of = (roll -out(A), dap) having depth <k.

The following definition formalizes the operation convert, which solves the cutout-slice problem. It is
important to note that for an a priori fixed initial state ¢ on which no statements at depth greater than k are
executed, we have the freedom to place additional program elements at depth £+1 without altering the pro-
gram behavior on ©. These additional elements, however, affect the program produced by Integrate her,
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roll -out(Base) roll -out(A) AlO
Procedure Main Procedure Main Procedure Main
a:=2 a:=2 a=2
scope P(x :=a; scope P(x =a; scope P(x:=a;
a:=x) a:=x) a:=0)
tl:=1 =
12 =x+tl 2 :=x+tl
x:=2
epocs epocs epocs
b:=a b:=a b:=a
end end end

Figure 8.5. The cutout-slice problem is illustrated by the b™ slice taken with respect to affected point v and the f~ slice
taken with respect to directly affected point DAP2. While both of these slices are part of
A~ (roll -out(A), roll -out(Base)), neither is part of A" (A10, Base!0). (In this figure boxed statements indicate the
modifications to A and encircled vertices denote directly affected points.)

DEFINITION (Convert). Formally the operation convert is applied to the five arguments A'k, Bk,
roll -out(A), roll-out(B), and roll -out(Base) and produces, in tandem, the converted versions of Ak and
B 'k; however, for brevity we write convert as a unary function that produces a single result (e.g., we write
convert(A k) in place of SelectFirst(convert(A 'k, Bk, roll-out(A), roll -out(B), roll -out(Base)))). The
function convert syntactically modifies A !k and B !k as follows:

1) If a transfer-out vertex f-out having depth k is in the forward slice of roil-out(A) with respect to a
directly affected point having depth greater than & then d-out, the dummy-out vertex replacing t-out in
Ak, is given a new tag. This same conversion step is applied to B 'k; however, if d-out is given a new
tag in convert(A k) and convert(B k), and b= (roll -out(A), t-ouf) equals b™ (roll -out(B), t-out) then
d-out is assigned the same new tag in convert(A k) and convert(B lk). (Note that, if d-out is given a
new tag in convert(A k) and convert(B k), and b*(roll-out(A), t-out) # b= (roll -out(B), t-out) then
Type I interference exist and integration is unsuccessful. Because we are only interested in proving
properties for successful integrations, this case is left undefined.)

2a) If a transfer-in vertex t-in having depth £ is in the backward slice of roll -out(A) with respect to an
affected point having depth greater than k then a new dummy-use statement (having depth k+1) is
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placed in -in’s scope. For the transfer-in statement “x:= ---”, this dummy-use statement is
“NewA :=x" where NewA is a new variable not otherwise used in roll-out(A), roll-out(B),
convert (A k), or convert (B k) and this assignment statement is given a new tag. The same conver-
sion step is applied to B !k.

2b) If a scope vertex having depth £ is in the backward slice of roll -out(A) with respect to an affected
point having depth greater than k and none of the transfer-in vertices of the scope are in such a slice,
then the new dummy-use statement “NewA :=0" is placed in the scope (as in Case (2a), NewA is a
variable not otherwise used in roll -out(A), roll-out(B), convert (A'k), or convert(Blk) and this
assignment statement is given a new tag). The same conversion step is applied to B k.

If multiple dummy-use statements are placed in a scope their order is irrelevant because they each assign to
a different new variable. Also, because each dummy-use statement is assigned a new tag, the same
dummy-use statement is never placed in convert (A k) and convert (B k).

Example. Figure 8.6 shows Gyi.ou(a) and G omen(atoy for the program roll -out(A) shown in Figure
8.5. In this example, the conversion adds the dummy-use statement “NewA :=x" 10 A 10 because the
transfer-in vertex labeled “x := a” (which has depth 0) is in b= (roll -out(A), v) (v is a affected point having
depth greater than 0). The conversion also assigns dummy-out vertex “a:=0" a new lag, because the
transfer-out vertex it replaces (i.e., “a:=x") is in f~(roll -out(A), DAP2). Because of these conversions,
A" (convert (A k), Base k) correctly includes the vertex U labeled “a:=2" because
u € b (convert (A k), NewA :=A) and (the b**" slice with respect to) the vertex labeled “b := a”, which is
an affected point because it is in " (convert (A k), a :=0).

8.2. Integrate™ Satisfies the Extended HPR Integration Model

This section proves Integrate™ satisfies the HPR integration model, discussed in Section 1.1, extended to
allow infinite programs. This is done by showing that whenever
Integrate™ (roll -out(A), roll -out (Base), roll -out(B)) is successful in producing M=,
Integrate ™" (convert (A’\k), Base lk, convert (B’'k)) is successful in producing M, such that M =M"'k.

Groll -out(A) Gconwrt(A 10)

Figure 8.6. The solution to the cutout-slice problem applied to roll -out(A) in Figure 8.5 is illustrated in G omverita 10)-
(Encircled vertices denote directly affected points.)
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This reduces the proof for Integrate™ to the proof for Integrate her  (Thought the remainder of this section,
we use the notation A’k and B’k to denote convert (A’k) and convert (Blk), respectively.)

The proof of the Infinite Integration Theorem in Section 8.2.4 is based on results from Sections 8.2.1
through 8.2.3. Section 82.1 proves that when restricted to vertices having depth <k,
A”(roll -out(A), roll -out(Base)) equals A" (A \k, Base !k); Section 8.2.2 proves the similar result for Pre”
and Pre™". Finally, two interference results are proven in Section 8.2.3. (An overview of the structure of
the entire proof is provided in Figure 8.7, where the numbers indicate the order in which the theorems and
lemmas are proven.)

8.2.1. The A Equivalence Lemma

The A Equivalence Lemma proves that A™(roll -out(A), roll -out(Base)) and AT (A"\k, Base k) contain the
same vertices having depth < k. The proof is based on two supporting results: the Path Equivalence Lemma
and the DAP Equivalence Lemma. The Path Equivalence Lemma demonstrates that vertices having depth
<k are connected by a path in Goy.ouay iff they are connected by a path in G4g. The DAP Equivalence
Lemma demonstrates that DAP ™ (roll -out(A), roll -out(Base)) equals DAP ker(A’\k, Base k), when res-
tricted to vertices having depth <k.

Path Equivalence Lemma

LEMMA. (PATH EQUIVALENCE LEMMA). For all vertices x and y having depth <k (thus excluding dummy-
use vertices), x —>., 7Y in Gron-ow) iff - £y in G (if x or y is a dummy-out vertex in Gany then itis
a transfer-out vertex in G i1 -oum(a))-

Path Eqmvalence Lemma DAP Eqmvalence Lemma

AP Eqmvalence Lemma

A Equxvalence Lemma I Pre Equivalence Lemma

v, -Gy~ Isomorphism Lemm

sy ~Gr=u Isomorphism Lemma)e

Infinite Integration Theorem

9

Type I Interference Lemma

Figure 8.7. A pictorial breakdown of the proof that Infegrate™ satisfies the HPR model for single procedure integra-
tion. The proofs are given in the order indicated.
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PROOF.

=: A pathx —-—): 7Y 1 Gront ouray €an be divided, at transfer-in and transfer-out vertices having depth &,
into a series of sub-paths altemately containing edges having depth <k and edges having depth > k. A
sub-path of edges having depth >k from a transfer-in vertex to a transfer-out vertex in Gou-ou(a) 18
summarized in G 4 by an edge from the transfer-in vertex to the dummy-out vertex that replaces the
transfer-out vertex; a sub-path of edges having depth <k in G rolt-oustay COrTESPONds to a subpath in
Gak- (This correspondence, for each edge, is given by the identity function except for edges whose

" source or target is a transfer-out vertex having depth k; these edges in G, our(a) correspond to edges
in G4 whose source or target, respectively, is the dummy-out vertex that replaced the transfer-out
vertex.) Connecting the endpoints of these sub-paths with the endpoints of the edges from transfer-in
vertices to dummy-out vertices identifies a path x -, £y in Gape.

«: In the other direction, a path x - #¥ in Gy can be broken into a series of sub-paths of edges hav-
ing depth <k interleaved with edges from transfer-in to dummy-out vertices. This second kind of
edge in Gay exist because, in Gron-ou(a)» paths of edges having depth greater than k£ connect the
transfer-in vertices to the transfer-out vertices replaced by the dummy-out vertices; as is the previous
case, each sub-path of edges having depth <k in G corresponds to a sub-path of edges having depth
<k in Gon.owa)- The concatenation of these alternating sub-paths produces a path x>, £y in
Grott-ouay- B

DAP Equivalence Lemma

LEMMA. (DAP EQUIVALENCE LEMMA). Restricted to vertices having depth <k, and excluding dummy-out
vertices and the transfer-out vertices to which they correspond, DAP = (roll -out(A), roll -out(Base)) equals
DAP*"(A’\k, Base \k).

PROOE. The proof is by mutual containment: it shows that, when restricted to non-dummy-out vertices
having depth <k, DAP>(roll -out(A), roll -out(Base)) < DAP™" (A"\k, Base k) and DAP %" (A’\k, Base !)
c  DAP*(roll-out(A), roll -out(Base)). First, let u be a directly affected point from
DAP™(roll -out(A), roll -out(Base)) having depth <k; thus, by definition, ¥ is in Gron-ow(ay but not
G olt -out(Base) OF 14 has different incoming edges in G, o oua) A0 Grott our(Base): 10 the former case, because
depth(u)<k, u is in Gan and, because u is not in Gyoit-ous(Base)> ¥ 1S DOt in Gpgasen; hence u is in
DAP""(A’lk, Base k). In the latter case, because, depth(u) < k and u does not correspond to a dummy-out
vertex in G4y, the incoming edges of u in G ot -ou(ay A4 G ol our(Base) 1€ the same as the incoming edges
on % in Gy and Gpgse 11, TEsSpectively; therefore, u has different incoming edges in G 4 and Gpas. i, Which
implies it is in DAP %" (A"\k, Base k).

The second half of the mutual containment argument requires showing that all non-dummy-out vertices
in DAP " (A"tk, Base \k) are in DAP = (roll -out(A), roll -out(Base)). Let u be a non-dummy-out vertex in
DAP™ (A’\k, Base !k); thus, by definition, u is in Gy, but not Gpa 1, O 4 has different incoming edges in
Gan. and Gpger. In the former case, u is in Gon-omeay but N0t Gron-out(Base) and therefore in
DAP™(roll -out(A), roll -out(Base)). In the latter case, because u is not a dummy-out vertex, the incoming
edges on u in Gy and Gpgg 1 are the same as the incoming edges on % in G oy-ousa) a4 Groll-ou(Base)s
respectively; therefore, u has different incoming edges in G ou-owa) N4 Groit-ous(Base)» which implies it is in
DAP*(roll-out(A), roll -out(Base)). O

A Equivalence Lemma

LEMMA. (A EQUIVALENCE LEMMA). Restricted to vertices having depth <k (thus excluding dummy-use
vertices), A” (roll -out(A), roll -out(Base)) equals AMT(A"\k, Base k).
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PROOF. The proof is by mutual containment: it shows that for vertices having depth <k,

() A=(roll-out(A), roll -out(Base)) < AYT(A"\k, Base k) and
() A™"(A’lk, Base k) < A™(roll-out(A), roll -out(Base)).

Case 1. A vertex v in A”(roll-out(A), roll -out(Base)) having depth <k is, by definition, in
b=f~DAP = (roll -out(A), roll -out(Base)) and therefore, for some u € DAP ™ (roll -out(A), roll -out(Base)),
y is in b=f(roll-out(A),u). This implies the existence of a vertex x and two paths, v —>, f£x and
u—>; £% 10 Grop.oway- The remainder of the proof for Case I breaks down into two cases: depth(x)<k
and depth(x) > k (for depth(x) <k, there are two subcases).

1a) depth(x) <k, depth(u)<k, and u is not a transfer-out vertex having depth k.
The Path Equivalence Lemma implies v - fx and u -7 sx exist in Guy; consequently,
v e b*" f#r(A'lk, u). Because the DAP Equivalence Lemma implies u is in DAP ker(A’\k, Base k), v
is in b*"f*¥TDAP " (A’\k, Base k), which implies v is in A" (A"lk, Base !k).

1b) depth(x) <k and either depth(u) > k or u is a transfer-out vertex having depth k.

The path from u to x must contain at least one transfer-out vertex having depth k. Let t-out be one of
these transfer-out vertices; let d-out be the dummy-out vertex that replaces t-out in Gy Because
t-out is on the path from u to x, it (like x) is in f~DAP*(roll -out(A), roll -out(Base)); therefore, the
conversion operation assigns d-out a new tag, which causes d-out to be in DAP ker(A"\k, Base k).
Similar to Case (1a), the Path Equivalence Lemma implies v —>;, ;x and d-out —>;, px exist in G
thus, putting these paths together with d-oute DAP*"(A'\k, Baselk), v is in
b f%r DAP " (A'\k, Base k), which implies v is in A*"(A’lk, Base k).

2) depth(x) > k.

The path from v to x must contain at least one transfer-in vertex or scope vertex having depth k; let
t-in be one of these vertices. Because, like v, t-in is in b™f~ DAP>(roll -out(A), roll -out(Base)), a
dummy-use statement “NewA := - - - ” exists in A"lk such that d -use, the vertex representing this state-
ment, is the target of an edge from t-in. Because the Path Equivalence Lemma implies the path from v
t0 t4in i Gop.ouay €Xists in Gary and an edge connects t-in to d-use, v is in b*Pr(A’\k, d -use).
Finally, by construction, d-use is in DAP*"(A"\k, Base !k); therefore v & b*" DAP*"(A’\k, Base k)
< b*" f* DAP™" (A"\k, Base !k), which implies v is in A¥"(A"k, Base k).

Case II. The preceding half of the mutual containment argument shows that when restricted to vertices
having depth <k, A”(roll -out(A), roll -out(Base)) < A" (A"\k, Base 'k); the second half of the argument
shows that, when restricted to vertices having depth <k, A¥'(A'lk,Baselk) <
A”(roll -out(A), roll -out(Base)). By definition, if ve A (A"\k, Base k) then there exists a directly
affected point 4 and a vertex x such that ve b*r(A’lk, x) and x € f¥7(A’\k, u). The proof breaks down
into three cases, based on the type of u.

1) u is a dummy-out vertex given a new tag when A !k is converted into A'lk.
Let t-out be the transfer-out vertex in Gy ow(a) T€placed by dummy-out vertex u. The proof follows
from two observations: first, the Path Equivalence Lemma ensures us that v —>., px and t-out —>o X
exist in G rolt -out(a)- Second, u is given a new tag because
t-out € f"DAP™(roll -out(A), roll -out(Base)). Since t-out -, £% 0 Gpont-ou(ay, this second observa-
tion implies x € f*DAP=(roll -out(A), roll -out(Base)); therefore, because v —>; ¢ in Grolt-outa)
implies v € b=(roll-out(A), x), v is in b= f~DAP=(roll -out(A), roll -out(Base)), which implies that v
is in A (roll -out(A), roll -out(Base)).

2) u is a dummy-use vertex.

The proof for this step has three parts. First, by construction, a dummy-out vertex is the target of at
most one flow dependence edge from a transfer-in vertex and a control dependence edge from a scope




137

vertex. If u has an incoming flow dependence edge then let t-in be the transfer-in vertex at the source
of this edge; otherwise, let t-in be the scope veriex at the source of the control edge. Second, since v
is in b*" fT(A"lk, u), but, by definition, dummy-use vertices have no outgoing edges, v is in
b*r (A'lk, u); therefore, a path, which ends with the edge t-in —> u, connects v to u in G4ny. Third, the
conversion operation places u in A’lk because t-in is in b= f"DAP=(roll-out(A), roll -out(Base)).
Finally, since, the Path Equivalence Lemma implies that v - pt-in 18 in Grott oma)s Vs like t-in, is in
b f~DAP=(roll-out(A), roll -out(Base)), which implies that v is in A™(roll -out(A), roll -out(Base)).

3) u is any other vertex.
The DAP Equivalence Lemma implies u is in DAP>(roll-out(A), roll -out(Base)). Therefore,
because the Path Equivalence Lemma implies paths exist such that v is in b= f~ (roll -out(A), u), v is in
b=f"DAP* (roll -out(A), roll -out(Base)), which implies that v is in A= (roll -out(A), roll -out(Base)).
0

8.2.2. The Pre Equivalence Lemma

The second result used to prove the Infinite Integration Theorem is the Pre Equivalence Lemma, which
states that when restricted to vertices having depth <k, Pre™(roll -out(A), roll -out(Base), roll -out(B)) and
Pre™ (A’tk, Base 'k, B'tk) contain the same vertices. The proof is based on the Path Equivalence Lemma,
the DAP Equivalence Lemma, and one new lemma: the Affected Points Equivalence Lemma, which shows
that AP = (roll -out(A), roll -out(Base)) and AP™" (A'k, Base \k) contain the same vertices having depth <k.

The Affected Points Equivalence Lemma

LEMMA. (AFFECTED POINTS EQUIVALENCE LEMMA). Restricted to vertices having depth <k,
AP (roll -out(A), roll -out(Base)) equals AP ker(A’\k, Base k).

PROOF. The proof is by mutual containment. First, consider a vertex v in
AP=(roll -out(A), roll -out(Base)). By definition, a directly affected point u exists such that v is in
f=(roll-ouwt(A),u). If depth(u)<k and u is not a transfer-out vertex having depth k then the Path
Equivalence Lemma implies v is in (A", u) and the DAP Equivalence Lemma implies
u € DAP™T(A'lk, Base \k); therefore, v is in f*" DAP*'(A’lk, Base!k), which implies that v is in
AP*"(A"\k, Base k).

Otherwise, if depth(u)>k or u is a transfer-out vertex having depth k then the path from u to v in
G oll ow(a) CONLAINS at least one transfer-out vertex having depth <k; let t-out be one of these transfer-out
vertices. Thus, paths connect u to t-out and f-out to v in Gron-ow(a), Which imply that
t-out€ f*DAP™(roll -out(A), roll -out(Base)) and v € f(roll -out(A), t-out). Let d-out be the dummy-out
vertex that replaces f-out in Gy By construction, d-oute DAP™ (A’\k, Base k) and, by the Path
Equivalence Lemma, v is in f*"(A"lk, d-out); therefore, v is in f*" DAP*"(A’lk, Base k), which implies
that v is in AP *"(A"\k, Base k).

The preceding argument shows that when restricted to vertices having depth <k,
AP=(roll-out(A), roll -out(Base)) < AP™r(A’\k, Base k). The second half of the mutual containment
argument shows that when restricted to vertices having depth <k, AP ker(A"\k, Base k) <
AP>(roll-out(A), roll -out(Base)). Let v be a vertex from AP (A’!k, Base !k) (v is not a dummy-use ver-
tex because these vertices have depth k+1, which is greater than k). By definition a directly affected point
u exists such that v is in f*7(A’lk, u). If u is not a dummy-out vertex having depth k then the DAP
Equivalence Lemma implies that u € DAP=(roll -out(A), roll -out(Base)); therefore, because the Path
Equivalence Lemma implies that v € f~(roll-out(A), u), v is in fDAP>(roll-out(A), roll -out(Base)),
which implies v is in AP~ (roll -out(A), roll -out(Base)).



138

Otherwise, if u is a dummy-out vertex having depth k then, by definition, it replaces a transfer-out vertex
t-out that is in f°DAP>(roll -out(A), roll -out(Base)). The Path Equivalence Lemma implies t-out —, rv
exists in G,on oua); therefore, v is also in fDAP>(roll -out(A), roll -out(Base)), which implies that v is in
AP > (roll -out(A), roll -out(Base)). []

The Pre Equivalence Lemma

LEMMA. (Pre EQUIVALENCE LEMMA).  Restricted to  vertices  having depth <k,
Pre®(roll -out(A), roll -out(Base), roll -out(B)) equals Pre br(A"\k, Base \k, B'lk).

PROOE. Because AP*"(A, Base) contains all the vertices whose slices differ in A and Base, it must be
the case that V (G,) —AP*" (A, Base) contain all the vertices of A whose slices are the same in A and Base.
Together with the similar observation for B, this implies that Pre ker and Pre™ can be defined as follows:

Pre* (A, Base, B) & (V(G4)-AP" (A, Base)) n (V(G3)—AP*"(B, Base)).

Pre™(roll -out(A), roll -out(Base), roll -out(B)) 2 (V(Grott -ouiny) —AP = (roll -out(A), roll -out(Base))) n
(V (Grott o)) —AP = (roll -out(B), roll -out(Base))).

Therefore, when restricted to vertices having depth <k, Pre™(roll-out(A),roll -out(Base), roll -out(B))

equals Pre* (A’lk, Base 'k, B\k) if

(1) V(G ) — AP (A’lk, Base k) equals V (G on-oua)) — AP~ (roll -out (A), roll -out(Base)) and

) V (Ggnx) — AP (B’lk, Base k) equals V (G rout-ouea)) — AP~ (roll -out(B), roll -out{Base)).

Because (1) and (2) have the same proof, only the proof of (1) is given below.

A vertex v is in V(Gaq) — AP (A\k, Base k) iff it is in G4y and not in AP""(A’Mk, Base k). Since
Ganwe and G o owa) contain the same vertices having depth <k (assuming dummy-out vertices are
identified with the transfer-out vertices they replace) and the Affected Points Equivalence Lemma implies
that when restricted to vertices having depth <k, AP""(A"\k, Base k)  equals
AP =(roll -out(A), roll -out(Base)), v is in G, and not AP*"(A"\k, Base \k) iff it is in Grypr-ousay and not
AP>(roll -out(A), roll -out(Base)), or equivalently, iff v is in
V(G rott - ousay) — AP~ (roll -out(A), roll -out(Base)). [

8.2.3. Two Interference Resuits

This section proves that the absence of Type I and Type II interference from the integration of
roll -out(Base), roll -out(A), and roll -out(B) implies the absence of Type I and Type II interference from
the integration of Base !k, A"k, and B’lk. (In the remainder of this chapter, let Gy~ denote the intermediate
graph produced by Integrate = (roll -out(A), roll -out(Base), roll -out(B)); similarly, Gy, denotes the inter-
mediate graph produced by Integrate ker(A’\k, Base 'k, B’'k).)

The Type I Interference Lemma, which proves the absence of Type I interference, follows from the A
Equivalence Lemma, the DAP Equivalence Lemma and a new lemma, the Gy, -Gy~ Isomorphism Lemma.
The absence of Type II interference follows by extending the Gy, -Gy~ Isomorphism Lemma to the Gy, -
Gy~y. Isomorphism Lemma. A corollary of this second lemma proves the existence of a program P,
derived from M ™!k, whose PDG is isomorphic to Gy, (recall that Type II interference exists if no program
exists whose dependence graph is Gy, ).

The kind of isomorphism proven to exist by the Gy, -Gy, Isomorphism Lemma and the Gy, -Gy~ 1so-
morphism Lemma are limited isomorphisms (i.e., they apply only to a restricted portion of Gy, ). This lim-
ited type of isomorphism captures the relationship between G ,oi1.ousy and Gy for any system S. In partic-
ular, when restricted to vertices having depth <k, G ronow(s) and Gsy have identical vertex sets (i.e.,
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V(G rottours))=V (Gsu))- However, for edges having depth <k, EcE, but E¢E because edges
between transfer-in vertices and dummy-out vertices are not in G ity If we ignore these edges, i.e.,
for edges having depth <k, excluding those whose source is a transfer-in vertex, then £ =E. This limited
kind of isomorphism is formalized as a k-limited isomorphism by the following definition.

DEFINITION. (k-limited isomorphism). A k-limited isomorphism is an isomorphism between Grott-oura)
and G restricted to vertices and edges having depth <k in which the following assumptions are made.
(1) The bijection for vertices maps transfer-out vertex t-out at depth k from G,y ouay to the dummy-out
vertex d-out in G 4y, that replaces t-out.
(2) Edges from transfer-in vertices having depth k are ignored.

In addition, since when restricted to vertices and edges having depth <k, A"tk and A lk differ only in the
retagging of certain dummy-out statements, there is a k-limited isomorphism between G our.ow(ay and Gare.

The Gy, -Gy~ Isomorphism Lemma

Putting together the results from the previous two sections, it is now possible to prove the existence of a k-
limited isomorphism between the merged graph Gy produced by
Integrate™(roll -out(A), roll -out(Base), roll -out(B)) and the merged graph Gy, produced by
Integrate*" (A"\k, Base 'k, B'\k).

LEMMA. (Gp, -Gy~ ISOMORPHISM LEMMA). Gy, and Gy~ are k-limited isomorphic.

PROOF. Gy~ and Gy, are both the union of three sub-graphs (i.e., Induce A(A, Base),
Induce A(B, Base), and Induce Pre(A, Base, B)). If k-limited isomorphisms exist between corresponding
subgraphs then a k-limited isomorphism exists between Gy~ and Gy, . First, because a k-limited isomor-
phism exists between Grottoway and Gan and the A Equivalence Lemma implies that
A~ (roll -out(A), roll -out(Base)) and A" (A’\k, Base k) contain the same vertices having depth <k, the res-
triction of the k-limited isomorphism between G,on our(a) and G, to these vertices produces a k-limited
isomorphism between Induce A (roll -out(A), roll -out(Base)) and Induce AM"(A"\k, Base k). A similar a
k-limited isomorphism exists between Induce A= (roll-out(B), roll -out(Base)) and
Induce AP (B'\k, Base k).  Finally, because the Pre Equivalence Lemma implies that
Pre=(roll -out(A), roll -out(Base), roll -out(B)) and Pre*"(A’\k, Base !k, B"'k) contain the same vertices
having depth <k, the restriction of the k-limited isomorphism between G -ou(Base) and Gpgse1x tO these
vertices produces a k-limited isomorphism between Induce Pre=(roll -out(A), roll -out(Base), roll -out (B))
and Induce Pre™ (A"\k, Base lk, B''k). Thus, because k-limited isomorphisms exist between correspond-
ing subgraphs, Gy~ and Gy, are k-limited isomorphic. U]

The Type I Interference Lemma

Before stating the Type I interference Lemma, the definitions of Type I interference, for
Integrate® (A'\k, Base \k, B’lk) and Integrate™(roll -out(A), roll -out(Base), roll -out(B)) are repeated for
reference.

Interference*"(A"\k, Base !k, B'lk) exists iff
A""(A"\k, Base k) n DAP¥"(Gy,, A'\k) =D or
A""(B’\k, Base k) nDAP¥"(Gy,, B'1k) #D.
Interference ™ (roll -out(A), roll -out(Base), roll -out(B)) exists iff

A=(roll -out(A), roll -out(Base)) ADAP=(Gy-, roll -out(A)) #Q ot
A™(roll -out(B), roll -out(Base)) ADAP= (G-, roll -out(B)) #0.



LEMMA. (TYPE I INTERFERENCE LEMMA). If Interference = (roll -out(A), roll -out(Base), roll -out(B)) is
false then Interference ker(A"\k, Base 'k, B’!k) is false.

PROOF. Because it is more direct, a proof of the contrapositive is given (i.e., it is shown that
Interference*" (A’\k, Base 'k, B''k) implies Interference™(roll-out(A), roll -out(Base), roll -out(B))). To
this end, assume, without loss of generality, that Interference kr(A"\k, Base \k, B'\k) returns true because
vertex v is in both A*"(A’\k, Base 'k) and DAP ""'(GMk,A'!k). The proof breaks down into three cases,
based on the type of v.

1) v is neither a dummy-use nor a dummy-out vertex.
First, because the G, -Gy~ Isomorphism Lemma implies that Gy~ and Gy, are k-limited isomorphic,
(the argument in) the DAP Equivalence Lemma implies that v is in DAP™(Gy-, roll -out(A)).
Second, the A Equivalence Lemma implies that v is in A™(roll -out(A), roll -out(Base)); therefore,
Interference ™ (roll -out(A), roll -out(Base), roll -out(B)) retumns true.

2) v is a durnmy-use vertex.
This case cannot arise because it is impossible for a dummy-use vertex to be in AMT(A"\k, Base 'k) and
DAP™"(Gy,,A'tk). In the case of vertex v, because v is in Gau (this is required for v to be in
AMT(A’\k, Base |k)) it cannot be in B’k (the same dummy-use statement is, by definition, not in both
A’lk and B'1k). Therefore, the only incoming edges on v in Gy, are the incoming edges of v in G,
which implies that v is not in DAP*"(Gy,, , A"tk).

3) v is a dummy-out vertex.
When v is a dummy-out vertex, the transfer-out vertex that v replaces is not necessarily in
DAP=(Gy-~, roll-out(A)). However, to be in DAP*" (Gy, »A''k), v must have an incoming edge e in
Gy, that is not in G4 (Case 2 from Figure 8.8). The remaining ways v can be in DAP"P’(GM,‘, A'lk),
as shown in Figure 8.8, cannot arise: Case 1, where v is in Gy, but not in G4, cannot arise because
v e A®T(A’1k, Base k) implies that v is in Gaqg. Case 3, where v has an incoming edge in G4 but
not in Gy, , cannot arise because v € AMT(A’lk, Base k) implies that any incoming edge on v in G4

Lo
o

5

1 2 3 4

Figure 8.8. This figure repeats Figure 6.5. It shows the four ways a vertex v can be in DAP(X,Y): (1) if v exists in
X but not ¥, (2) if v has an edge (y —>v) in X but not ¥, (3) if v has an edge (y —>v) in Y but not X, and (4) if the
direction of a def-order edge between two of v’s predecessors is reversed (i.e., v has different incoming def-order
edges).
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is in Induce A" (A’\k, Base k) and therefore in Gy, . Finally, Case 4, where v has different incoming

def-order edges, cannot arise because, by construction, dummy-out vertices (such as v) have no
incoming def-order edges.

Thus, consider an edge e =¢-in—> v that is in , but not G4y, In general, the only way an edge not
in Gy, can be in Gy, is if it is in Induce A" (B'\k, Base k), which, in the case of edge e, implies that
v is in A""(B’lk, Base k). In Goii.ou), € Summarizes a path p, which ends with t-out, the transfer-
out vertex replaced by v. Because the A Equivalence Lemma implies that v is in
A=(roll -out(B), roll -out(Base)), this path is in Induce A (roll-out(B), roll -out(Base)) and therefore
in Gp~. Since path p is not in G .owm(a) (€ is not in G 41x), Type I Interference exists: first, following
the edges of p backwards from v there must be an edge x —>y of p such that y is in Gop.oua) but
x —>y is not. Since x —>y is in G-, this implies that y is in DAP= (G-, roll-out(A)); second,
because a subpath of p connmects y to v and, by the A Equivalence Lemma, v is in

A= (roll -out(A), roll -out(Base)), y is also in A~ (roll -out(A), roll -out(Base)).
O

The Gy -Gy=1x Isomorphism Lemma

The second interference result is for Type II interference; recall that Type II interference exists for
Integrate™” if no program exists whose procedure dependence graph is isomorphic to Gy,. The Gy,-
G-y Isomorphism Lemma proves Gy is isomorphic to Gy, when restricted to vertices and edges hav-
ing depth <k (but including edges from transfer-in vertices having depth k). The corollary to the Gy, -
Gy~ Isomorphism Lemma identifies a program P (derived from M™!k) whose procedure dependence
graph is isomorphism to Gy, (without any restricions). Thus, the corollary proves the absence of Type II
interference when Integrate ™ is applied to Base !k, A"k, and B'lk.

The first assumption made in the statement of the Gy, -Gp=1x Isomorphism Lemma is necessary because
it implies program M !k is well defined: it implies there exists a (set of) programs M > whose (set of) pro-
cedure dependence graphs is Gy-.

LEMMA. (Gup-Gy=1e ISOMORPHISM  LEMMA). Assume Gy~ is  feasible and

Interference ™ (roll -out(A), roll -out(Base), roll -out(B)) is false. Restricted to vertices and edges having
depth <k, Gy, and Gy~ are isomorphic.

PROOF. The proof first demonstrates that Gy, and Gp~y are k-limited isomorphic and then extends this
k-limited isomorphism to include the edges from transfer-in vertices to dummy-out vertices.

By construction Gy~ and Gy~ are k-limited isomorphic; by the Gy, -Gy~ Isomorphism Lemma Gu,
and G- are k-limited isomorphic. The composition of these isomorphisms implies Gy, and G-y are k-
limited isomorphic (note that dummy-out vertices d-out; and d-out, from Gy, and Gy, respectively,
correspond under the vertex bijection of this isomorphism iff they both replace the same transfer-out vertex
in GM").

Extending this k-limited isomorphism to an isomorphism for all vertices and edges having depth <k
requires showing that the same edges connect transfer-in vertices to dummy-out vertices in Gy, and Gy=i.
The proof is by mutual containment: it first proves that such edges in G, are in G~y and then that such
edges in Gy=; are in Gy,. To begin with, let t-in—> d-out be an edge in Gy, from transfer-in vertex t-in
to dummy-out vertex d-out. Edge t-in—>d-out is in Gy, because is it s in
Induce Pre™ (A’\k, Base 'k, B'\k), Induce A¥"(A"'k, Base k), or Induce AMT(B’\k, Base k). The proof
that t-in —> d-out exists in G-, considers each of these possibilities separately (recall that t-in —> d-out
summarizes a path p of edges in the procedure dependence graph of one or more of roll-out(Base),



142

roll -out(A), and roll -out(B)):

1) t-in — d-out is in Induce Pre*" (A’lk, Base !k, B'lk).
Because d-out is in Pre™ (A’'k, Base'k,B’lk) it is mnot in DAP ker(A’\k, Base \k) or
DAP""(B’\k, Base k); thus, t-in—>d-out exists in Gpace Ganx, and Gy and path p exists in
roll -out(Base), roll -out(A), and roll -out(B). This implies that p exists in Gy-; therefore, an edge
t-in —> d-out summarizing p exists in Gy=.

2) t-in —> d-out is in Induce A" (A"k, Base k).
When t-in — d-out is in Induce A" (A’\k, Base k) then it is in G 4, which implies that in G rolt -ous(a)
path p connects t-in to t-out (the vertex replaced by d-out). Because the A Equivalence Lemma
implies that t-out is in A™(roll -out(A), roll -out(Base)) and the final operator applied by A™ is b~, the
vertices and edges of p are in Induce A™(roll -out(A), roll -out(Base)) and consequently in Gy-; there-
fore, the edge t-in —> d-out, which summarizes p, is in Gy

3) t-in — d-out is in Induce AT (B’\k, Base \k).
The proof of this case is identical to the proof of Case (2).

The preceding argument, which is the first half of the proof, demonstrates that the edges from transfer-in
vertices to dummy-out vertices in Gy, exist in Gy=x; The second half of the proof involves showing that
such edges in G~y exist in Gy,. Let t-in—>d-out be an edge in Gy=y from transfer-in vertex t-in to
dummy-out vertex d-out and assume t-out be the transfer-out vertex in Gy that is replaced by d-out. Asin
the first half of the argument, there are three cases to consider:

1) t-out is in Pre*(roll-out(A), roll -out(Base), roll -out(B)).
Because f-out is in Pre=(roll-out(A), roll -out(Base), roll -out(B)), the path of edges p that gives rise
to t-in —> d-out in Gy=y, must exist in Gmll-om(ﬂme)r Gron -out(A)» and G,o out(B) Therefore, the edge
t-in —> d-out exists in Gpaee ik G, and Ggis which implies it exists in GM;’

2) t-out is in A™(roll -out(A), roll -out(Base)).
When t-out is in A”(roll -out(A), roll -out(Base)), the A Equivalence Lemma implies d-out is in
A" (A’'k, Base k). If the path p that gives rise to t-in —> d-out in Gy=y exists in G oy.ou(a) then the
edge t-in—>d-out that summarizes p must also exist in Guq. This edge is in
Induce A" (A’\k, Base k) and thus in Gy, because its presence in G s implies that t-in is also in
A" (A’lk, Base k). Otherwise, if path p does not exist in G,oi oua) then Type I Interference exists,
which violates our assumption that no interference exists, interference exists because by following the
edges of p backwards from t-out there must be an edge x —>y of p such that y is in Gon-oua) but
x —>y is not. Since p and thus x —> y are in Gy, this edge places y in DAP *(Gy-, roll -out(A)); y is
also in A™(roll-out(A), roll-out(Base)), because it is connected to t-out and f-out is in
A”(roll -out(A), roll -out(Base)); thus, Type I interference exists.

3) t-out is in A= (roll -out(B), roll -out(Base)).
The proof of this case is identical to the proof of Case (2).

0

COROLLARY. Let P be the program obtained by adding to M~k the dummy-use statements represented
by dummy-use vertices in Gyy. (1) Gy, is feasible, and (2) Gp is isomorphic to Gy, .

PROOF. To show that Gy, is feasible requires finding a program whose procedure dependence graph is
isomorphic to Gy, ; thus, (1) follows immediately from (2). To show that Gp is isomorphic to Gy, Tequires
extending the argument in the Gy, -Gy~ Isomorphism Lemma, which implies that Gp and Gy, are iso-
morphic when restricted to vertices and edges having depth <k. Thus, we must show that Gp and Gy,
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contain the corresponding vertices and edges having depth k+1 (Gp and Gy, contain no vertices or edges
having depth greater than k+1).

First, the construction of P implies that Gy, and Gp contain corresponding vertices having depth k+1
(i.e., corresponding dummy-use vertices). Second, Gy, and Gp contain corresponding edges having depth
k+1 because they contain corresponding control, flow, and def-order edges having depth k+1. The cases
for control edges and def-roder edges are straightforward. First, the only control edges in Gy, and Gp hav-
ing depth k+1 are from a scope vertex to a dummy-use vertex; therefore, since Gy, and Gp have
corresponding dummy-use vertices they must have corresponding control edges. Second, Gy, and Gp con-
tain no def-order edges having depth k+1.

For flow dependence edges, first consider a flow dependence edge in Gp from transfer-in vertex t-in to
dummy-use vertex d-use. By construction d -use exists in Gy, where is must come from G or Gpys
without loss of generality, assume that d-use comes from G . Thus, the conversion of A !k added the
statement represented by d-use to Alk, which, by construction, implies t-in —>yd-use exist in G-
Finally, Because no dummy-use vertices exist in Base 'k, d-use is in DAP*"(A’\k, Base k) and hence
t-in—>sd-use is in Induce AP (A'tk, Base k) since having t-in—>pd-use in Gau implies ¢-in is in
AM"(A"\k, Base k).

Now consider a flow dependence edge t-in —>d-use in Gy, from transfer-in vertex {-in to dummy-use
vertex d-use. By construction, Gp contains d-use and, by the Gy, -Gy~ Isomorphism Lemma, it contains
t-in (since the depth of t-in is k). For the rest of the we assume that t-in assigns to variable x. Edge
t-in—>pd-use exists in Gp provided there are no definitions of x (other than t-in) in the scope. No such

definitions exists because for a given scope at most one transfer-in statement can assign to a variable, and
dummy-use statements assign to new (previously unused) variables. [

8.2.4. The Infinite Integration Theorem

From the two results on interference proven in Section 8.2.3, it is now possible to prove that Integrate™
satisfies the HPR integration model, extended to sets of infinite programs (hereafter referred to as the
extended integration model). (The original HPR model from Section 1.1 is repeated below for reference.)
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(Original) HPR Model of Program Integration

(1) Programs must be written in a simplified programming language that has only scalar variables and
constants, assignment statements, conditional statements, while loops, and final output statements
(called end statements); by definition, only those variables listed in the end statement have values
in the final state. The language does not include input statements; however, a program can use a
variable before assigning to it, in which case the variable’s value comes from the initial state,

(2) When an integration algorithm is applied to base program Base and variant programs A and B, and
if integration succeeds—producing program M—then for any initial state o on which Base, A, and
B all terminate normally,? the following properties concerning the executions of Base, A, B, and M
on ¢ must hold:

(i) M terminates normally.

(ii) M captures the changed behavior of A: for any program component ¢ in variant A that pro-
duces different sequences of values in A and Base, component ¢ is in M and produces the
same sequence of values as in A (i.e., M agrees with A at component c).

(iii) M captures the changed behavior of B: for any program component ¢ in variant B that pro-
duces different sequences of values in B and Base, component ¢ is in M and produces the
same sequence of values as in B (i.e., M agrees with B at component o).

(iv) M captures the behavior of Base preserved in A and B: for any program component ¢ that pro-
duces the same sequence of values in Base, A, and B, component ¢ is in M and produces the
same sequence of values as in Base (i.e., M agrees with Base, A, and B at component o).

(3) Program M is to be created only from components that occur in programs Base, A, and B.

Integrate™ satisfies the extended model if it satisfies Properties 1, 2, and 3. By definition, Integrate™
satisfies Properties 1 and 3; thus, we must prove that it satisfies Property 2. We do this below by reducing
the question of Integrate™ satisfying Property 2 of the extended model to the question of Integrate her satis-
fying Property 2 for the original model. This later question has been answered in the affirmative by the fol-
lowing theorem.

THEOREM. (FINITE INTEGRATION THEOREM [Yang90]).? Integrate " satisfies the HPR integration model.

The key to the reduction is the following observation: for any arbitrary fixed initial state o for which
roll -out(A), roll-out(Base), and roll -out(B) terminate normally, there exists a finite integer & such that,
when evaluated on G, Baselk, A'lk, and B’lk are semantically equivalent to (i.e. compute the same
sequences of values as) roll -out(Base), roll -out(A), and roll -out(B), respectively.

THEOREM. (INFINITE INTEGRATION THEOREM). Integrate™ satisfies Property 2 of the extended integra-
tion model.

PROOF. Let © be any arbitrary state for which roll-out(Base), roll -out(4), and roll-out(B) all ter-
minate. Let k be one greater than the maximum depth of any executed statement when roll -out(Base),
roll -out(A), and roll -out(B) are evaluated on ©. This choice of k implies that Base 'k, A"k, and B’k do
not execute an abort scope and are therefore semantically equivalent to roll -out(Base), roll -out(A), and
roll -out(B) (for state o).

Now consider the integration of Base !k, A’tk, and B’lk. Property 2 of the extended model supposes that
the integration of roll -out(Base), roll-out(A), and roll -out(B) is successful; thus, no Type I or Type II

2 The proof in [Yang90] actually applies to finite single procedure programs without scope statements; however, because scope state-
ments can be removed using variable renaming, the result applies to finite single procedure programs that contain scope statements.
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interference exists in the integration of roll-out(Base), roll -out(A), and roll -out(B). Therefore, the Type 1
Interference Lemma and the Corollary to the Gy, -Gau=1k Isomorphism Lemma imply that no Type I or
Type II interference exists in the integration of Baselk, A’lk, and B’lk. Consequently,
Integrate ™" (A"\k, Base 'k, B k) is successful and returns a program whose program dependence graph is
isomorphic 10 G,

The remainder of the proof follows from the Finite Integration Theorem and the Strong Form of the
Equivalence Theorem [Reps88], which proves that two (single-procedure) programs with isomorphic pro-
gram dependence graphs are semantically equivalent (i.e., compute the same sequences of values at
corresponding program points). First, the Finite Integration Theorem implies that the program produced by
Integrate™" (A’\k, Base 'k, B k) satisfies Property 2 of the HPR Model for Program Integration. Second,
the Strong Form of the Equivalence Theorem implies that P, the program obtained by adding dummy-use
statements 10 M =1k (as in the Corollary to the Gy -Gu=1e Isomorphism Lemma), also satisfies Property 2
of the HPR Model for Program Integration because its program dependence graph is isomorphic to Gy,
(this was shown in the Corollary to the G, -Gy=1 Isomorphism Lemma).

Because P satisfies Property 2.i it terminates normally on ¢ and therefore executes no abort scopes. This
implies M~ terminates normally on state G since, when restricted to statements having depth <k, P is syn-
tactically identical to M™ (this was proven by the Gy, -Gy~ Isomorphism Lemma); thus, M™ satisfies
Property 2.i of the extended integration model. Furthermore, this syntactic equivalence also implies that,
on state o, P and M~ produce the same sequences of values at corresponding program points. Thus,
because P satisfies Properties 2.i though 2.iv of the HPR Model for Program Integration, M~ satisfies Pro-
perties 2.i though 2.iv of the extended integration model.

The above argument applies for any arbitrary fixed initial state on which the evaluations of
roll -out(Base), roll -out(A), and roll -out(B) terminate, and thus, implies that Integrate™ satisfies Property
2 of the extended integration model. (1

8.3. Chapters 6, 7, and 8 Prove that Integrates is an Acceptable Integration Algorithm

This section discusses how Chapters 6, 7, and 8 combine to prove that Integrate’ is an acceptable multi-
procedure program-integration algorithm. Defining the term “acceptable”~—especially in the presence of
procedures—is a nontrivial task. Chapter 4 considers this problem; the result is Version 2 of the Revised
Model for Program Integration. This model uses the concept of roll-out to relate the integration of pro-
grams with procedure calls to the (conceptually simpler) integration of programs without procedure calls
(the Consistent Semantics Theorem of Chapter 7 justifies this use of roll-out). Because it uses roll-out,
Version 2 of the Revised Model for Program Integration involves the concept of integration at two levels:

(1) The conceptual level concemns the integration of rolled-out (possibly infinite) programs.
(2) The concrete level concerns an actual algorithm for multi-procedure integration (i.e., an operation that
applies to finite representations of programs).

These two levels are syntactically related by roll-out. They are also semantically related by roll-out
because the Consistent Semantics Theorem of Chapter 7 proves that roll-out is a semantics-preserving
transformation; thus, the syntactic and semantic properties of an operator at the conceptual level can be
used to determine the syntactic and semantic properties of the corresponding operator at the concrete level.

In Chapter 4, we introduced the conceptual integration operator Integrate™ as the operator (0 which our
concrete-level integration algorithm would be related; in Chapter 5, we developed algorithm Integrate® as
the concrete-level integration operator. The requirements of the two-level model, viewed in terms of
operators Integrate™ and Integrate’ , are as follows:
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(1: a semantic requirement)
The “conceptual” integration operator Integrate™ must satisfy the original HPR model (given in Sec-
tion 1.1), extended to sets of infinite programs.
(2: a syntactic requirement)
'The concrete integration operator Integrate® must
(i) deal with finite systems,
(i) succeed in producing M iff Integrate™ succeeds in producing M~, and
(iii) be consistent with Integrate™ (i.e. roll -out(M) must equal M™).

Property (1) places syntactic and semantic requirements on [ntegrate™. Chapter 8 proves that
Integrate™ satisfies Property (1), which includes proving that the set of merged programs produced by
Integrate™ (semantically) captures the changed and preserved behavior of its three arguments. Property
(2) is syntactic; in essence, it states that the system produced by operator Integrate’ must be syntactically
consistent with the set of programs produced by operator Integrate™. Chapter 6 establishes that Integrate™
and Integrate® satisfy Property (2). Thus, Integrate™ and Integrate’ satisfy Version 2 of the Revised
Model for Program Integration.

To see why satisfying this model implies that Integrate’ is an acceptable integration algorithm, let
M =Integrates (A, Base, B) and M~ =Integrate* (roll -out(A), roll -out(Base), roll -out(B)). Now, assume
that M ™ is homogeneous and that either integration is successful (it follows from the Syntactic Correctness
Theorem of Chapter 6 that both integrations are successful). To begin with, Chapter 8 proves that M™
(semantically) captures the changed and preserved behavior of roll -out(A) and roll -out(B) with respect to
roll -out(Base). Because Chapter 6 proves that M™ (syntactically) equals roll -out(M), roll -out(M) also
(semantically) captures the changed and preserved behavior of roll -out(A) and roll -out(B) with respect to
roll -out(Base). Finally, since Chapter 7 proves that roll-out is a semantics-preserving transformation, this
implies that M (semantically) captures the changed and preserved behavior of A and B with respect to Base.
Thus, because the merged systems it produces capture the changed and preserved behavior of its argu-
ments, Integrate® is an acceptable integration algorithm.



CHAPTER 9

CONCLUSION

9.1. Work Accomplished

The research described in this dissertation covers three topics: the system dependence graph; precise inter-
procedural slicing; and the integration of multi-procedure programs. The algorithm Integrate’, discussed
in Chapter 5, is the first algorithm for semantics-based multi-procedure program integration. Semantics-
based integration represents a fundamental advance over text-based approaches (e.g., the UNIX utility diff3).
While previous semantics-based integration algorithms treat only single-procedure programs the ability of
Integrate® to integrate multi-procedure programs is an essential step toward integrating programs written in
a full-fledged programming language.

Unlike the integration of single-procedure programs, where the execution behavior of a program can be
modeled by the sequences of values produced by program components, a model for multi-procedure
integration must provide a finer level of granularity because it is necessary to account for the calling con-
text in which each sequence of values is produced. The notion of roll-out is used in the two models for
multi-procedure integration given in Chapter 4 to capture this finer level of granularity; in essence, the
roll-out notion distinguishes between the different calling contexts in which a program component may be
executed.

Algorithm Integrate®, presented in Chapter 5, satisfies Version 2 of the Revised Model of Program
Integration given in Chapter 4 and is thus the first algorithm for semantics-based multi-procedure program
integration that takes into account the calling contexts of the changes made to Base in A and B. For exam-
ple, it permits changes in both variants A and B 1o affect the computation of the same program point, pro-
vided they do so in different calling contexts (the direct extension of the HPR algorithm discussed in
Chapter 4 fails to integrate such examples because it fails to take calling context into account).

As proven in Chapters 6,7, and 8, Integrate® satisfies the second Integration Model from Chapter 4 and
therefore correctly accounts for calling context when determining the changed and preserved behavior of
Variants A and B with respect to the Base. In particular, Chapter 6 demonstrates that roll -out(M) and M™
are syntactically identical programs. Because roll-out is a semantics-preserving transformation (as shown
in Chapter 8) this implies that M and M~ produce the same sequence of values (where the sequence pro-
duced “in a context” in M is produced “by an occurrence” in M™). Finally, in order to conclude that M
satisfactorily integrates Variants A and B with respect to Base, we have proven in Chapter 8 that M™ satis-
factorily integrates roll-out(A) and roll -out(B) with respect to roll -out(Base); therefore, M, the merged
program produced by Integrate’(A, Base, B) isa semantically acceptable result for the integration of A and
B with respect to Base.

Accounting for calling context in Integrate® requires accounting for calling context in the various steps
of Integrate’; the results from these steps have uses outside program integration. For example, the term
AS(P, Q), which captures the differences between programs P and Q, can be used to determine a
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subprogram of P that computes all the changed behavior of P when compared with the behavior of Q.
Such information has obvious uses in software development and software maintenance. For example, if a
program maintainer has produced P from Q as the result of a bug fix, then, rather than retesting all of Q’s
functionality, only that portion represented in AS(P, Q) must be retested since the remainder of P is
semantically equivalent to Q. This is particularly beneficial when AS(P, Q) is small and P and Q are large.

Precise interprocedural slicing is an important part of Integrate®. As with multi-procedure integration,
the chief difficulty in interprocedural slicing is correctly accounting for the calling context of a called pro-
cedure. Chapter 3 develops an algorithm for interprocedural slicing that correctly handles the calling con-
text problem using the transitive dependence (summary) edges in a system dependence graph in conjunc-
tion with a two-pass traversal of the graph. This approach leads to more precise slices than previous inter-
procedural slicing algorithms and provides greater efficiency than other interprocedural slicing algorithms
that have similar precision, particularly when computing multiple slices of a single program.

The underlying data structure used by our interprocedural slicing algorithm and Integrate® is the system
dependence graph. An important property of the system dependence graph is that it captures the meaning
of a system in the sense that two systems with isomorphic system dependence graphs have the same mean-
ing (as defined by the meaning function given in Chapter 7). In addition, the system dependence graph has
two important features: the explicit representation of (direct) control and data dependence including the
dependences that exist across procedure boundaries, and the transitive dependence (summary) edges added
at call-sites. Direct dependence edges, which encode a directly affected relation, are useful in determining
transitive affected relations (e.g., an interprocedural slice, A%(A, Base), etc.). In particular, the direct
dependence edges between procedures allow interprocedural edges to be treated as any other edges during
certain transitive computations.

Summary edges permit information about a called procedure to be obtained without “descending” into
the called procedure. This is significant because it avoids the need to record calling-context information
when “descending” into the called procedure. Consequently, algorithms that deal with connections
between vertices (e.g., interprocedural slicing) can be stated as simple vertex-marking algorithms, rather
than more complicated algorithms in which the simple marks are replaced by more complex data structures
that record calling context (e.g., a stack of call-site names).

9.2, Future Work

"This section discusses four areas for future work on (multi-procedure) program integration: a replacement
for the homogeneity test, procedure specialization, algebraic properties of multi-procedure integration, and
extending program integration to a full-fledged programming language.

9.2.1. A Replacement for the Homogeneity Test

If we omit the homogeneity test from Integrate®, the resulting algorithm may produce an acceptable
integrated program (both intuitively and as defined by the stronger integration model given below) even
though the program would be rejected by the homogeneity test. For example, the program M shown in Fig-
ure 9.1 is determined to be unacceptable because the homogeneity test determines that M, as produced by
Integrate™ and shown in Figure 9.1, is inhomogeneous.! However, Integrate™ represents only one opera-
tion that satisfies the requirements on /™ as given by Version 2 of the Revised Model of Program Integra-
tion in Chapter 4. For this example, Integrate™ fails to produce a homogeneous program; however, there

! The homogeneity test fails because “call P (b)" € M-B, “t:=x" is in a procedure called by “call P(b)" in M and
—DAPConnected(Map(Callp, Linkage ("t :=x"))).
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Base

Variant A

Variant B

M

procedure main
a=1

procedure main

procedure main
a:=1

procedure main
a:=1

b=2 b=2 b=2 bi=2
call P(a) call P (a) call P (a) call P (a)
call P (b) call P(b) call P (b)
c:=a c:=a
end end end end
procedure P (x) procedure P (x) procedure P (x) procedure P (x)
12 1=x+2
t=x t:=x t=x t=x
return return return return
roll-out(Base, Main) roll-owt(A, Main) roll-out(B, Main) Mainof M~

procedure main
a:=1

procedure main
a=1

procedure main
a=1

procedure main
a=1

b:=2 b:=2 b:=2
scope P (x :=a;) scope P (x :=a;) scope P (x:=a;) scope P (x:=a;)
12 :=x+2 2 :=x+2
ti=x t=x t=x t=x
epocs epocs epocs epocs
scope P (x :=b;) scopelP|(x=B];) scope P (x :=b;)
12 =x+2 2 :=x+2
ti=x
epocs epocs epocs
c=a c:=a
end end end end

Figure 9.1. The resuit of Integrate’ (A, Base, B) fails the homogeneity test; however, the merged program labeled M
captures the changed and preserved execution behavior of A and B with respect to the execution behavior of Base. The
boxes in A and B indicate the changes made in A and B; the boxes in roll -out(A) identify the slice that must be grafted
onto M~ to make it homogeneous.

could be other candidate operations for /™ that—in addition to producing a program that satisfies all the
other requirements of the integration model—also produce a homogeneous result. For the example shown
in Figure 9.1, such an operation is the following:

Apply Integrate™, except graft onto (i.e., union into) the merged graph Gy~ the slice of
roll-out(A, Main) with respect to the second occurrence of “t:=x" (this slice is
highlighted in roll-out(A, Main) of Figure 9.1).

Unfortunately, the idea of defining a better I” operation by augmenting Integrate™ to graft additional
slices from roll -out(A) (or roll -out(B)) onto the merged graph does not always work. For example, in
Figure 9.2 grafting the slice of roll-out(A) with respect to the second occurrence of “¢:=1/x" onto M~
makes Gy~ infeasible: an edge from the assignment “p:=(” to the transfer-in statement “x :=b" already
exists in Gy~ and an edge from the assignment “b:=2" to this transfer-in statement is in the slice of
roll -out(A) with respect to “¢ := 1/x”; because in the dependence graph for any program, edges from both
definitions cannot simultaneously reach the use of b, Gy~ plus the slice from roll -out(A) is infeasible.

In summary, Integrate™ provides only a single farget for roll -out(M). The capability to provide multi-
ple targets would reduce the number of examples on which a (different) homogeneity test must return
failure due to inhomogeneity. Characterizing the conditions under which alternate targets can be obtained
(by grafting slices onto the result of /nfegrate™ or some other technique) is an open problem.
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Base Variant A Variant B M
procedure Main procedure Main procedure Main procedure Main
a=1 a:=1 a:=10
b=2 bi=2 15 :=0] b:=0
call P (a) call P(a) call P (a) call P(a)
call P (b) call P (b) call P(b) call P (b)
end() end() end() end()
procedure P (x) procedure P (x) procedure P (x) procedure P (x)
t:=1/x t=1/x t=1/x
x =x+1 x=x+1 x=x+1 x =x+1
return return return return
roll -out(Base) roll -out(A) roll -out(B) M=
procedure Main procedure Main procedure Main procedure Main
a=1 a:=10 =1 a:=10
b:=2 b=0 b:=0
scope P (x :=a; scope P (x =a; scope P (x =a; scope P (x :=a;
a:=x) a:=x) a:=x) a:=x)
t=1/x t=1/x t=1/x
x =x+1 x=x4+1 x:=x+1
epocs epocs x=x+1 epocs
scope P (x :=b; scope [P} [x:=D}; epocs scope P (x :=b;
b:=x) b:=x) scope P (x :=b; b :=x)
t=1/x = I/x[ bi=x)
x=x+1 x:=x+1 x=x+1
epocs epocs epocs
end() end() x =x+1 end()
procedure P (x) procedure P (x) eng}())ocs procedure P (x)
t:=1/x t:=1/x
x =x+1 x =x+1 procedure P (x) x=x+1
return return return
x =x+1
return

Figure 9.2. This example, which repeats the one from Figure 5.6, illustrates why a slice of roll-out(A) (or roll -out(B))
cannot always be grafted onto M. The boxes in A and B indicate the modifications made to Variants A and B; the
boxes in roll -out(A) identify the slice that would be grafted onto M~

Although an operation that satisfies this goal is unknown, we can capture it in the following stronger
model for multi-procedure program integration:

Integration produces an acceptable integrated program whenever any operation In-
tegrate™ (of which Integrate™ is only one candidate) and Integrate® (with the homo-
geneity test replaced by some other test) satisfy the requirements on /™ and / S from
Version 2 of the Revised Model for Program Integration.

9.2.2, Procedure Specialization

Even when slices cannot be grafted onto M~ to make it homogeneous, it is possible for integration to
succeed provided we relax one of the requirements from the integration models given in Chapter 4. Recall
that these models require M to be constructed from only components of Base, A, and B. However, if we
allow copies of a procedure to be created (with new names) then procedure specialization is possible: mul-
tiple versions of a procedure, each containing different slices (statements) may exist in the merged pro-
gram. For example, consider again the integration example shown in Figure 9.2. A specialized merged
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system that captures the changes from A and B is shown in Figure 9.3.

Conceptually, one way to view procedure specialization is as follows: starting with M ™, replace those
scopes that contain the same statements with a call on a procedure having those statements; if two scopes
containing different statements have the same name then rename one of the procedures.

Practically, because M is a potentially infinite program, we must identify other techniques for pro-
cedure specialization. One such approach would be to make use of information obtained form the (failed)
homogeneity test; recall that the homogeneity test detects inhomogeneity if either the absent-vertex test or
the absent call-site test discovers that an extra occurrence exists in roll -out(M). We outline below the
actions needed when the absent-vertex test discovers an extra occurrence; the actions taken when the
absent-call-site test discovers an extra occurrence are the same except that they are limited to the call-sites
in the procedures callable from the absent call-site.

Suppose the absent-vertex test fails because of a vertex v in procedure P of M. In this case, M™ contains
a P-scope with an occurrence of v and a P-scope without an occurrence of v. Thus, the specialized merged
program must have two versions of procedure P: one with the statement represented by v (P -with-v) and
one without (P -without -v). It is also necessary 10 determine which call-sites on P should be redirected to
P -with-v and which should be redirected to P -without-v. Furthermore, this process must be iterated
because a call on P in procedure Q may require that two versions of procedure Q be created.

9.23. Algebraic Properties of Multi-Procedure Integration

Both [Reps90] and [Ramalingam90] discuss the algebraic properties of program integration. (For exam-
ple, showing that integration is associative with respect to a given base program, i.e., that
Integrates(lntegrates(A, Base, B), Base, C) = Integrate’(A, Base, Integrate®(B, Base, C)).)  The
approach taken in [Reps90] is to represent (single-procedure) programs as downwards-closed sets of
single-point slices (a set of slices S is downwards closed with respect to the order “is-a-slice-of”, denoted
by <, iff Vye S, if x<y then x € S: a single-point slice is any graph G such that for some ve V(G),
G =b"" (G, v)). Integration is then recast as an operation in a Brouwerian algebra whose lattice elements
are sets of downwards-closed single-point slices. In this framework it is possible to prove that a rich set of
algebraic properties, including associativity, hold for single-procedure integration.

The construction of a Brouwerian algebra by forming downwards-closed sets can be applied to any par-
tially ordered set. Consequently, one obvious place to begin the search for an algebra in which the integra-
tion operation corresponds to Integrate’ is with some sort of partial order of single-point b slices. Unfor-
tunately, the relation “js-a-slice-of” is not a partial order for b slices: consider a vertex x encountered dur-
ing the b, pass of b(S, v); the slice b(S, x) is not a slice of b(S, v) because only some of x’s calling-

Specialized Merged Program
procedure Main procedure P1{x) procedure P (x)
a:=10 t=1/x
b:=0 x:=x+1 x:=x+1
call P1(a) return return
call P(b)
end()

Figure 93. A specialized merged system for the integration shown in Figure 9.2 that satisfies a relaxed version of the
Integration Model from Chapter 4.
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contexts are in b(S, v), whereas all of x’s calling-contexts are in b(S, x).

Because “is-a-slice-of” is a partial order on b, slices, the construction of a Brouwerian algebra using
downwards-closed sets of single-point b, slices is possible. However, in the resulting Brouwerian algebra,
the integration operation corresponds to the HPR algorithm with b*" replaced by b (and F*" replaced by
f1). Since this operation does not correspond to Integrate®, the algebra based on b, slices does not say
anything about the algebraic properties of Integrate®.

It should not be too surprising that the integration operation of the algebra based on b slices does not
correspond to Integrate® since it does not take calling context into account. Furthermore, even if the con-
struction based on b slices had produced a Brouwerian algebra, it too would be unlikely to contain an
integration operation that corresponds to Integrate® because Integrate® not only handles the calling-
context problem when determining slices, it also handles the calling-context problem when determining
other parts of the integrated program (e.g., A%).

A more recent algebraic approach is described in [Ramalingam90] as follows:

In this paper, we present a new approach to studying program-integration algorithms. In particular, we in-
troduce a new algebraic structure, fin-algebra. Here, the concept of program integration derives from the
concept of program nwdi_ﬁcdtions and the idea of combining program modifications. If each variant is
thought of as having been obtained by performing a certain modification to the base program, an integration
algorithm creates a merged program by first combining all the modifications and then applying the resultant

modification to the base program. Thus, while the work reported in [Reps90] is based on an algebra of pro-
grams, the work reported here is based on an algebra of program modifications [Ramalingam90].

In [Ramalingam90] two fin-algebras are defined; any integration algorithm that satisfies the axioms of
either algebra is guaranteed to have certain properties including, for example, associativity. Further work
is need to determine if Integrate® satisfies the axioms of either algebra.

9.2.4. Extending Integration to Realistic Languages

Our ultimate goal is to build a practical integration system to assist programmers with developing and
maintaining software. To achieve this goal it is necessary to extend program integration to realistic
languages. The ability to integrate programs with procedures and procedure calls represents an important
step toward this goal. Thus, the multi-procedure integration discussed in this dissertation is an important
step toward the semantics-based integration of programs written in a full-fledged programming language.

Full-fledged programming languages include features such as declarations, nested procedures, input and
(unrestricted) output, data types (including arrays, pointers, and records), and control structures (including
do-until loops, break, and goto statements). To handle most of these features requires at the very least the
application of more powerful data-flow and control-flow analysis techniques during the construction of the
procedure dependence graphs. For some features, nested procedure declarations for example, additional
changes to the algorithms presented in this dissertation may be required. Although progress has been made
on the integration of programs containing some of these features [Horwitz89a, Ball91, Bates91], further
study is still required to extend (multi-procedure) program integration to handle the constructs found in a
full-fledged programming language.
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