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Abstract. We are concerned with enlarging the domain of convergence for solution methods of nonlinear
equations. To this end, we produce a general framework in which to prove global convergence. Our framework
relies on several notions: the use of a merit function, a generalization of a forcing function and conditions on
the choice of direction. We also incorporate the idea of a nonmonotone stabilization procedure as a means
of producing very good practical rates of convergence. The general theory is specialized to yield several
well known results from the literature and is also used to generate three new algorithms for the solution of
nonlinear equations. Numerical results for these algorithms applied to the nonlinear equations arising from
nonlinear complementarity problems are given.

1 Introduction

In this paper we shall be concerned with proving global convergence of an algorithm to solve
nonlinear equations. The algorithm we propose unifies many of the results given in the
literature and also allows us to give new criteria under which a method can be expected to
be globally convergent.

There are many known results on the global convergence of Newton type methods for
nonlinear equations. Most of these methods are based on the use of a merit function. Sev-
eral different types of merit function have been proposed in the literature (see for example
[Bur80, SB80, Pol76, HPR89, HX90]). One of the main differences between many of the
approaches is whether or not the underlying equations are smooth or nonsmooth. In the
smooth case, global convergence is proven in many instances: we note in particular the results
of Stoer[SB80]. However, many of the approaches for solving the nonlinear complementarity
problem consider reformulations of the problem as a system of nonsmooth equations. Global
convergence can also be established here, for example, some pertinent results are given in

[HPRS9, Ral9l].
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The emphasis of this paper will be on establishing many of the known results under very
general conditions on a merit function via the use of a auxiliary function (a generalization of
the familiar notion of a forcing function). While most of the paper deals with general condi-
tions which a search direction must satisfy, the motivation for these conditions comes from
considering Newton and Gauss—Newton methods for systems of n equations in n unknowns.

Several new ideas are encompassed in our framework. For instance, a nonmonotone stabi-
lization procedure is used to overcome some of the difficulties associated with ill-conditioning
and to enable a steps of length one to be taken much more frequently in Newton-type meth-
ods. Computationally, this has proven very effective, see for example, [GLL86] where the
poor performance on the Rosenbrock problem has been overcome by nonmonotone linesearch
(also [BS91]).

For different problems, several types of merit function have been proposed in the liter-
ature. By far the most popular is to use the Euclidean norm of the residual as the merit
function. Other forms which can be considered are p—norm merit functions and co-norm
merit functions. We will show that all of these forms of merit function can be treated in our
framework.

While there is a wide literature on Gauss—Newton methods for the nonlinear least squares
problem, only limited attention has been given to modifications of the search direction.
In this paper, we propose several modifications of the search direction when the Newton
direction cannot be found. Most of these find their basis in solving the equations in a least
squares sense; see the survey paper of [Fra88] for several search direction modifications in
least squares problems.

Much of this work was motivated by a desire to solve nonlinear complementarity problems.
We are interested in using the smooth equations determined by Mangasarian[Man76] which
are equivalent to the nonlinear complementarity problem. The essential difference is that
while in least squares problems, the optimal value will not be zero, in this case it is, and so
various new methods have been proposed. In particular, the method of Subramanian[Sub85]
gives a direction which is consistent. The results in this paper show that our method can be
used to establish global convergence in the case where the Jacobian is singular at the solution
point (Dennis and Schnabel [DS83] give other results using the trust region approach).

The paper is organized as follows. The main theoretical results of the paper are given
in Section 2. We describe the notion of a nonmonotone stabilization algorithm and give
general conditions which are required for such a technique to give global convergence. These
conditions are formulated in terms of a merit function, an auxiliary function (which resembles
a forcing function) and the directions determined by the algorithm in question. We prove
a general convergence result under these assumptions, without specifying the particular
merit function, the auxiliary function or the direction, but only the conditions they must
satisfy. We give several applications of this theory in Section 3 and describe three new
algorithms which satisfy our conditions. Section 4 outlines several instances of work in
the literature which can be formulated as special cases of our framework. In Section 5 of
the paper we present some numerical results when the proposed algorithms are applied to
nonlinear complementarity problems. Several standard examples are solved, including some



equilibrium problems and the Karush-Kuhn-Tucker conditions for nonlinear programming.

2 Stabilization strategies for nonlinear equations

In this section we define general stabilization schemes to enable the solution of
H(z)=0 (1)

where H:IR™ — IR" is a given function.

We use locally Lipschitzian merit functions § with the property that 6(z) > 0 for all
¢ € IR™ and 6(z) = 0 if and only if H(z) = 0 and we apply techniques from unconstrained
optimization to effect the minimization of this merit function.

The algorithm we consider has the form

o = o+ apd® k=0,1,...

where z° € IR™ is a given starting point, d* # 0 is the search direction and ay is the
stepsize. OQur formulation also relies on an auxiliary function, o: R™"*! — IR, which is a
generalization of the familiar notion of a forcing function [OR70]. The relationship between
these constructs will be described in the sequel.

In order to to obtain a method for the solution of (1) we define a general stabilization
scheme that includes different strategies for enforcing global convergence without requiring
a monotonic reduction of the objective function. The proposed algorithm is similar to the
one proposed by [GLL90].

NonMonotone Stabilization Algorithm (INMS)
Data: z°, A, >0, 3 € (0,1), v € (0,1) and N > 1.
Step 1: Set k=0, £ =0, A =A,. Compute 6(z°) and set W = 0(z°).
Step 2: If k = £+ N compute 6(zF). If §(z*) = 0 stop; otherwise:
(a) if 8(z*) > W, replace z* by z*, set k = £ and go to Step 4;

(b) if 8(zF) < W, set £ = k, update W;
if ||d*]| < A, set a = 1, A = BA and go to Step 5; otherwise go to Step 4.

Step 8: If k # £ + N compute d*. If ||d*|| = 0 stop; otherwise:
(a) if ||d¥|| < A, set set o =1, A = BA and go to Step 5;

(b) if ||d*|| > A, compute §(z*); then:
if 8(z*) > W, replace z* by 2, set k = £ and continue; otherwise set £ = F,
update W and continue.

Step 4: Find the smallest integer from ¢ = 0,1, ... such that
0(z* +27'd") < W — y2 oy (at, d*), (2)
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and set o, = 27, £ = k + 1, update W and continue.

Step 5: Set zF*t! = 2F 4+ a;d*, k = k + 1, and go to Step 2.
A

In the description of the algorithm, £ denotes the index of the last accepted point where
the objective function has been evaluated. For later reference we introduce a new index j
which is set initially at j = 0 and incremented each time we define £ = k. Then we indicate
by {z*¥)} the sequence of points where the objective function is evaluated and by {W;} the
sequence of reference values. Furthermore, we also need the index ¢(k) defined by:

q(k): = max[j : £(7) < K], (3)

thus £(q(k)) is the largest iteration index not exceeding k where the merit function was
evaluated.

In order to complete the description of the algorithm we must specify the the criterion
employed for updating W;. The reference value W; for the merit function is initially set to
6(z°). Whenever a point z%0) is generated such that 8(z%?)) < W;, the reference value is
updated by taking into account a prefixed number m(j) < M of previous function values of
the merit function. To be precise, we require that the updating rule for W, satisfies the
following condition.

Given M > 0, let m(j + 1) be such that
m(j + 1) < min [m(j) +1, M],

and let
- 2(j+1—1)
Fin = _max O ); (4)

choose the value W, to satisfy
0(«V) < W1 < Fi. (5)

These conditions on the reference values include several ways of determining the sequence
{W;} in an implementation of the algorithm. For example, any of the following updating
rules can be used:
P — e(j+1- )
Wit = Fin o Z.félgéﬂ)e(w ), (6)
1 m(j+1) :|
3

S — g(mf(Hl-i))
m(j+1)+1 Z‘;

Wit1 = max l:e(me(jﬂ)),
. 1 .
Wiss = min|[Fypa, 5 (W +00))] . (8)

We note that (6) is the easiest to satisfy, while (7) and (8) define conditions which guarantee
“mean descent”.



We now describe the conditions which will ensure the global convergence of the afore-
mentioned method. We will make frequent use of the following compactness assumption on
the level set of the merit function

C: Qo:= {z] 6(z) < 0(z")} is bounded

The auxiliary function, o, the merit function, # and the search direction must satisfy the
following properties:

A1: oi(z*,d¥) — 0 implies 8(z*) — 0
A2: 0> —op(zF, d¥) > 6P (zF; d¥)

A3: F7

i

7 < Loow(a*,d¥), pr 2 1, ps > 0, L > 0 and ||d*| < Ls
where 6P (z;v) is the Dini upper directional derivative of 8 at = in the direction v, defined as
0 Av) —
0P (z;v) = lim sup (z+ M) — 6(z)
L0 A
and q(k) is defined in (3) and Fy in (4).
It is easy to show that assuming (C) and (A2), the following assumption implies (A3).
A3’ “dk i < Loo(z*,d*), py > 2, Ly > 0

In order to prove convergence of our model algorithm, we must first prove that the stepsize
rule can be satisfied. The ensuing lemma establishes the existence of a step satisfying (2).

Lemma 1 Let 8 be locally Lipschitzian and y € (0,1) be arbitrary. Suppose that assumptions
(A1), (A2) and (A3) hold. Then, at Step 4 of Algorithm NMS, there exists a scalar & > 0
such that for all o € [0, @]

0(z* + adk) < Wy — fyaak(wk,dk)

Proof By the stopping criteria of Step 2 and Step 3, and by using assumptions (Al) and
(A3) we have that og(z*,d*) # 0. Assumption (A2) implies that 6°(z¥;d*) < 0 and thus
d* # 0. Assume therefore that d* # 0 but that the conclusion of the lemma is false. Then
there exists a sequence {a;} converging to zero such that

0(z* + d®) > Wy — youor(a®, d¥)
Using the definition of Wy it can be seen that
0(z* + oqd*) — 0(zF) > —yeyor(zF, d¥)
Dividing both sides by a; and passing to the limit we see
0P(a; ) > —yon(zt, )

Assumption (A2) gives
—ox(zF, d¥) > —yor(a*,d¥)

which implies that o (z*,d*) = 0, which is a contradiction. 0
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We shall need the following technical lemma in order to prove the convergence of the
model algorithm.

Lemma 2 Suppose 0 is locally Lipschitzian and 0, o and {d*} satisfy Assumption (A2),
then:

(a) if {z*} converges to T and Assumption (A8) holds then {ok(z*,d*)} is bounded;
(b) if {z*} is bounded and limy—co||d*|| = 0 then limy—oo ok(a*,d*) = 0.

Proof (a) Since 8 is locally Lipschitzian and {z*} converges, it follows that there exists a
constant L > 0 such that for all &

o7 (e a] < L]
By assumption (A2), we see
L“dkn > \OD(:Bk;dk)l > ox(z*, d¥)

The boundedness of {ox(z¥,d*)} now follows from (A3).

(b) If the conclusion of part (b) is false, then we have that lim sup;_,, o%(z*,d*) = & > 0.
Since {z*} is bounded, we can find a subsequence k¥ € K such that

lim ax(z*,d*) =3 > 0, (9)
lim zF = %, (10)
kEK
. Eyo_

lim 1 = 0. )

Then repeating the reasoning of part (a) we obtain:

L

& > 0P (a*;d")| > on(a*,d*), ke K (12)
and, by using (11) and (12), we have:
lim e, ) =0, (1)

which contradicts (9). 0

The next lemma shows some properties of the sequence {z*} produced by Algorithm

NMS.

Lemma 3 Assume that Assumption (C) holds and that Algorithm NMS produces an infinite
sequence {z*}; then:



(a) {z*} remains in a compact set;
(b) the sequence {F;} is non increasing and has a limit F;
(c) let s(j) be an indez in the set {£(5),4(j —1),...,£(5 —m(j))} such that:

9(338(3')) = F; = max H(wz(jmi)); (14)

0<i<m(j)

then, for any integer k, there exist indices hy and ji, such that:

0<h,—k<NM+1),  hi=3s(k),
ij = 0($hk) < Fq(k).

Proof The proof of lemma follows, with minor modification from the proofs of Lemma 1
and Lemma 2 of [GLL90]. O

The following result is central to our development. We show that the merit function
converges to a limit and also the product of the step size and the auxiliary function tends
to zero. Note that both of these conclusions are trivial in the case of a monotone line search
procedure.

Lemma 4 Let {z*} be a sequence produced by the algorithm. Suppose that Assumptions
(A1), (A2), (A8) and (C) hold and that  is locally Lipschitzian. Then: limg_.o () exists
and limg_, oo agog(z*, d*) = 0.

Proof Let {z*}x denote the set (possibly empty) of points satisfying the test at Step 2 (b)
or at Step 3 (a), so that:

¥ < AB,,  axr=1 for ke K (15)

where the integer ¢ increases with k € K. It follows from (15) that, if K is an infinite set,we
have ||d*|| — 0, for k¥ — oo and by (b) of Lemma 2:

Jim apoi(zF, d*) = 0. (16)
kek

Now let s(7) and ¢(k) be the indices defined by (14) and (3). We prove by induction
that, for any ¢ > 1, we have:

Jim a-i0)-i(a*~, a0~ = 0, (17)
lim (z°Y)"%) = lim (2°¥) = lim Fj = F. (18)
J—+00 J—+oo J—+00



Assume first that 7 = 1. If s(j) — 1 € K, (17) holds with k = s(j) — 1. Otherwise, if
s(j) — 1 ¢ K, recalling the acceptability criterion of the nonmonotone line search, we can
write:

Fj = 9(:L.S(,7)) = g(ws(j)—l -+ as(j)_lds(ﬂ—l)
< .Fq(S(j)——l) + ’)’as(j)_l(fs(j)_l(zs(J)-—l)’ ds(J)_l)_

It follows that:

Fytoy-1) = F5 2 705(5)-105(5)-2 (2" 1), d07) (19)
Therefore, if s(j) — 1 ¢ K for an infinite subsequence, from (b) of Lemma 4 and (19) we get
Jim a1y (2707, #0710, (20)

so that (17) hold for ¢ = 1.
It follows from (A3) and (20) that

4°()-1

p2:O

Hm a1 Fg )
and since {ay}, {F%}, {d¥} are bounded above and p, > 1, p3 > 0 that

Jim ers(j)-1 Fytaiy-1) |01 =0

We consider two cases. Suppose first that limsup;_,., @s(;)-1 d°U)-1| > 0. Then, since
lim;_., Fj exists, it follows that lim;_ F; = 0. However, by recalling that, by the definition
of F; and the description of the algorithm, we have that 0(z*D=1) < Fys()-1), hence it
is immediate that lim;_. 8(z*¥)~!) = limj_co F; = 0. Then (18) clearly holds for 7 = 1.
dsl)-1 ” = 0, which implies that lim;_, crs(j)-1 dsl-1 ” = 0.
2°U) — o)1 n -+ 0, so that (18) holds for ¢ = 1 by the uniform
continuity of  on the the compact set containing {z*} (see (a) of Lemma 3).

Assume now that (17) and (18) hold for a given i and consider the point z*(@)=(+1),
Reasoning as before, we can again distinguish the case s(j) — (¢ + 1) € K, when (16) holds
with k = s(j) — (¢ + 1), and the case s(j) — (¢ + 1) ¢ K, in which we have:

Otherwise, lim SUP; 00 Us(f)—1

This in turn shows that

0D 5) < Fyugiy—(is1)) -+ 70(3) (i) T (D), =)
and hence:

s(3)-i) ()=(41) go@)=(+1)y, 21)

Fy(s(i)~@+1)) — 0( > Y(j)-(i41) Ts ()~ (i+1) (Z

Then, using (16), (18), (21) and we can assert that equation (17) holds with ¢ replaced by
i+ 1.



Invoking (A3) and using a similar argument to that above we see that

]111,20 a,g(])—(‘k{'l)FQ(S(J)_(Z+1)) ds(])"(’l'{"l)U paneed 0

Again, we must consider two cases. Suppose first that lim sup;_, ., @s(j)-(i+1) Hds(j)"(i“)fL>
0. Then since lim;_, F; exists, it follows that lim; .., F; = 0, and using, again, that
f(z>-0+1)) < Fy(s(j)-(i+1) we have lim;_e 0(z°0)-(+1)) = lim; o, F; = 0. Thus, in
ds(j)»(i+1))‘

this case, (18) holds for j + 1. In the other case, limsup;_ ., ;s(j)—(i+1)

d“’(j)‘("“)ﬂ = 0. This implies, moreover, that

0, which implies that lim; . os()—(it1)

20t m“’(j)‘"(i“)“ — 0, so that by (18) and the uniform continuity of # on the compact
set containing {z*}:

lim §(z°W-0+)) = lim 6(z*0)~%) = lim F;,

J—oo J—roo J—*+00

so that (18) is satisfied with ¢ replaced by 7 + 1, which completes the induction.
Now let z* be any given point produced by the algorithm. Then by (c) of Lemma 3
there is a point = € {2°)} such that

0< hp—k<(M+1)N. (22)

Then, we can write:

hp—k
k= gl — Z ahk_idh"”’

=1
and this implies, by (17) and (22), that:
Jim ||zF — & || = 0. (23)

From the uniform continuity of 6, it follows that

lim 0(z*) = lim 6(z™) = lim Fj, (24)

k—+00 k—o0 F—ro0

so that we have proved that limy_. «9(:1:’“) exists.
If k ¢ K, we obtain 0(z*!) < Fyuy — yakox(z", d¥) and hence we have that:

Fq(k) - 0($k+1) > 'yakak(azk, dk) (25)
Therefore by (16), (24), (25), we can conclude that:

klim apoi(zF,d*) = 0.



We shall need the following assumption to complete our convergence proof.

A4 for every sequence {z*} converging to Z, every convergent sequence {d*} and every
sequence {Ax} of positive scalars converging to zero

k K\ o(ak
klim —ak(xk,dk) > lim sup 0(=" + )‘k;\l ) = 0(z)
~+oo k00 k

whenever the limit in the left hand side exists.

This assumption is a strengthening of (A2). In fact, we note that if 6 is subdifferentially
regular [Cla83] then both (A2) and (A4) are equivalent to

0> —oi(zF,d¥) > 0'(z; d¥)
We are now able to prove our convergence result.

Theorem 5 Let 8 be a locally Lipschizian merit function and suppose that (A1), (A2), (A3)
and (C) hold. Then

1. Iflimsup,_, ax > 0, then limg_,, 0(z*) = 0.

2. Iflimsupy_,., ax = 0 and if Z is an accumulation point of {z*} where (A4) holds, then
6(z) = 0.

Proof Suppose that limsup,_ . oz = & > 0. Since {z*} is bounded can find a subse-
uence k € K such that limpex o = @ and limgex ¥ = . By Lemma 2, it follows that
Ecrk(zck,dk) | ke K } is bounded. By taking further subsequences if necessary we may as-
sume that limgex ax = @ and limgex ok (¥, d*) exists. However, from Lemma 4 we have
limpex agor(z¥,d*) = 0. Since & > 0, it follows that limgeg ok(2¥,d¥) = 0. The assumption
(A1) gives limgex 0(z*F) = 0. Hence limy .o 8(z*) = 0 since from Lemma 4 the sequence
{6(z*)} converges.
Otherwise, lim sup;_,, & = 0 implying that limg_. o = 0. Let  be an accumulation
point of {z*} where (A4) holds and let {m’“ |ke K } converge to Z. Using Lemma 2, we may

assume that {:vkl ke K}, {dk| ke K}, {ax| k€ K} and {ak(mk,dk) | k€ K} converge
for some subsequence k € K. Now, for sufficiently large values of k and k € K, we have that
ar < 1 and, hence, that ay, k € K, is eventually produced at Step 4. Then by the properties
of the linesearch (2)

0(z* + (ar/v)d*) — Wy > (o [v)ox(z*, d¥)
and by the definition of Wy we have

0(z* + (ar/v)d*) — 0(z*) > —y(ar/v)ow(zF, d¥)
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Using assumption (A4) we have

k B\ k
_limoy(z*,d*) > limsup 0(z* + (o /v)d*) — 0(z)
keK s /v
2 —vfiged=d)

which implies that limgex or(z*, d*) = 0. It is now easy to show using (A1) that 8(z) = 0.

3 Computation of Search Direction

In this section we describe several methods for the computation of a search direction satis-
fying the assumptions of our model algorithm.

First of all, we specialize to the following situation. We assume the merit function 6 is
given by

0e):= 3 IH@)

and that H is continuously differentiable. Under this assumption, we note that (A4) is
equivalent to (A2).

We shall make the following assumption in order to guarantee that stationary points of
this merit function solve the equations:

Vé(z) = 0 implies f(z) = 0 (26)

There are several possibilities for the direction choice. Essentially, we have a system
of smooth equations and therefore it is possible to consider standard search directions for
systems of equations. A first choice is to let d* = —V0(z*). If we define oy(z*,d*): =
—V0(z*)d* then assuming (26), the assumptions (Al), (A2), (A3) and (A4) hold. In practice,
it is well known that this gives poor convergence, so a more reasonable choice is the Newton
direction for equations, that is, d* solves

H(z*) + VH(z*)d =0

If we assume (26) and the Jacobian of H is nonsingular, then by defining ox(z*,d"): =
—VO(z*)d* = 20(z*) we see that the assumptions (Al),(A2),(A3) and (A4) from Section 2
are satisfied if (C) holds.

In the remainder of this section we propose several techniques for dealing with the case
when V H(z) is singular or badly conditioned.

We consider three techniques for modifying the Newton direction. The first possibility
is to consider a modified Gauss—Newton direction, along the lines of the work of [Sub85].

Algorithm 1 Given z*, calculate the search direction as a solution of the following system
(VH(z")'VH(a*) + \I)d = =V H ()T H(z*) (27)
Determine z**! by using Algorithm NMS.

11






In an implementation of this algorithm we need to specify A;. In order that the results from
Section 2 might be applied we propose to define A\y:= cmaxXo<icm(N+1) NH (wk‘i)‘l (where
N and M are the constants used in Algorithm NMS). Note that the perturbation to the
Gauss-Newton direction gets smaller as we approach the solution.

Proposition 6 If we set oy(z*,d¥): = ”VH(wk)de[2+/\k ||d"“”2 then assuming (C) and (26),
any accumulation point Z of the sequence of points {z*} produced by Algorithm 1 is a solution
of (1).

Moreover, if there ezists an accumulation point & of {z*} where the Jacobian matriz
V H(Z) is nonsingular then the sequence {z*} converges superlinearly to z, the stepsize ay, = 1

is accepted for sufficiently large k and condition ||d*|| < A,B* holds eventually for any A, > 0
and B > 0.

Proof We show that assumptions (A1), (A2), (A3) and (A4) are satisfied. First of all, we
note that oy(z¥, d*) = —V0(2*)d* and so assumptions (A2) and (A4) are satisfied. Further-
more, if oi(z*,d*) — 0, then either Ay — 0 or ||d|| — 0. In the first case, 8(z*) — 0 is clear,
and in the second, the same conclusion follows from the definition of d* and (26). In order
to obtain the first part of (A3) we note that, by definition of Fy), we have:

< ki
Fowy < ogiég\lda()ﬁﬂ)a(m ),

and then we can take p, = 2 and p; = 1/2. For the second part of (A3) we have
NS < oue*,d) < |VO(*) ]
< |veeh] |#] < [aEn] [vaEh] ]

and, hence, the boundedness of {d*} follows from (C) and the fact that Az > ¢ HH (w’“)ll

As regards the superlinear convergence rate, first we observe that the Hessian matrix
V20(z) = VH(z)TVH(Z) is positive definite. Since Z is an accumulation point of {z*},
there exists an index k such that the point z* is sufficiently close to Z so as to have:

min (VH (2T H(2F) + AeI) > i;-fyn,jn (v*(z)) >0, (28)

where we have indicated by Ymin(B) the minimum eigenvalue of a matrix B. By (27) and
(28) we have )

Yemin(V?0(Z))
and by repeating, with minor modifications, the same reasonings of the proof of Proposition
1.12 in [Ber82] and by recalling that Theorem 5 implies that 8(zF) — 0, we have that
limpoeo ¥ = Z. Finally we can observe that the matrix VH(z*)TVH(z*) + Al, with
Ak = CIMaXg<i<M(N+1) ”H (zh Il, satisfies the Dennis—More condition which ensures both that
the unit stepsize is eventually accepted by the linesearch technique and that the sequence
{2*} converges superlinearly (see, for example, [Ber82, Proposition 1.15]). Finally, the last
statement of the proposition follows from the superlinear convergence rate of {z*}. 0

ld5]| < Ivo(= ),
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In the second case we take as our direction a solution of a modified system of equations,
where the Jacobian of H has been modified by a diagonal matrix. Unfortunately, the new
direction might not even be a descent direction for our merit function, so in certain cases we
revert to taking the direction of steepest descent for the merit function. A full description
of the method is given below.

Algorithm 2 Let A\ > 0, Ly > 0, Ly > 0 and Lg > 0. Given z*, if H(z*) = 0 stop,
else compute the smallest nonnegative integer m such that the matriz VH(z*) + mAI has
condition number less than Le/||H(z*)]|.

Calculate the search direction, d*, as a solution of the following system

(VH(z*) + mAI)d = —H(z")

Evaluate oy (z*,d¥): = —VO(z*)d*. If op(z*,d¥) < 0 let d* = —d*.
If ou(a*, d¥) < L |V8(a")| or ou(a*,d*) < Ls|d¥| then let d* = —V0(z*). Calculate
**1 by using Algorithm NMS.

Proposition 7 Assuming (C) and (26), any accumulation point T of the sequence of points
{z*} produced by Algorithm 2 is a solution of (1).

Moreover, if there exists a accumulation point T of {z*} where the Jacobian matriz
V H(%) is nonsingular then the sequence {z*} converges superlinearly to Z, the stepsize ay, = 1
is accepted for sufficiently large k and condition ||d¥|| < A,B* holds eventually for any A, > 0
and 8 > 0.

Proof The global convergence property of the algorithm follows easily by noting that the
conditions of the algorithm are determined precisely to ensure the satisfaction of assumptions
Al, A2 and A3’

By using the assumption that the matrix VH(Z) is nonsingular and recalling that the
first part of the proposition ensures that V8(z) = 0, we can find a neighborhood 2 of Z such
that for any z € @ and z # & we have:

Le
SVHED = (29)
%m«VH@FVH@DZ%%m(VH@VVH@»>Q (30)
| 1 i (VH@)VH ()
1]V0(:c)|| S Vinax (VH(:B)TVH(IE)) min E7 LS ’ (31)

where we have indicated by k(B), Ymax(B) and Ymin(B) the condition number, the maximum

eigenvalue and the minimum eigenvalue of a matrix B. )
Since Z is an accumulation point of the sequence {z*} there an index k such that z* € (.

Therefore by (29) we have that the direction d* is computed by solving the system:

VH(z")d* = —H(z"),

13



or, equivalently, by solving the following system:
VH(zF)TVH(")d* = —Vo(zF). (32)
This direction dF satisfies all the tests of Algorithm 2. In fact we have:
ox(aF, &) 2 VOEF)T (VH(RVH() ™ V()
IVo(5)|?
Ysx (V H(2F)TV H(2F))

Then by the preceding relation, (31) and (32) we obtain:
UE(xE7dE) 2 L4“V0(ml_c)”37
S Ey||3
G,;(:Ek,dk) > L5”V0(.’E )”
Yooin (VH (zF)TV H (2F))

Now the superlinear convergence property follows by repeating the same steps of the second
part of the proof of Proposition 6 after having noted that by (32) and (30) we have that

2
Ymin (VH(Z)TVH(Z)

3 2 LSHdE”a-

1d¥]] < )IIW(wE)II-

a

In practice, the constants in the algorithm have to be chosen appropriately. Further-
more, the choice of A can be estimated from a calculation of the condition number of the
matrix VH(z) + M at the previous iteration. Normally this information is available from a
factorization routine.

In the third case we try to modify the above technique in such a way as to guarantee at
least that for appropriate choice of A we obtain a descent direction for the merit function.

Algorithm 3 Let A > 0, Ly € (0,1) and Ls € (0,1). Given z*, if H(z*) = 0 stop, else
compute the smallest nonnegative integer m such that the following system

(VH(z*) +mAI) d = — (mAVH(a*)" + 1) H(z") (33)

admits a solution d* which satisfies the conditions:
ox(a¥,d*) > Lymin [|VO(a*)|, [|V0(z*)|] (34)
ou(a*,d*) > Ls min ||, |14 (35)

where oy(z*, d*): = —V(z*)d".
Evaluate z**' by using Algorithm NMS.
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Proposition 8 Assuming (C) and (26), any accumulation point T of the sequence of points
{z*} produced by Algorithm 3 is a solution of (1).

Moreover, if there exists a accumulation point T of {z*} where the Jacobian matriz
V H(Z) is nonsingular then the sequence {zF} converges superlinearly to Z, the stepsize o =1
is accepted for sufficiently large k and condition ld¥]| < A,B¥ holds eventually for any A, > 0
and g > 0.

Proof First we must show that condition (34) and (35) are satisfied for sufficiently large A to
show the algorithm is well defined. Let Cy:= maxseq, |[|H(2)|| and Cy: = maxzeq, [|VO(z)]|-

By (33) we have: IV H()| [VO(z)]|
(1 _ —-—-——) < ) + 2

mA mA

Therefore for m > my with my: = max[2Ci,1] /A we obtain:

k|| < 2C1 + 2C5: = Cs. (36)
Now, again from (33) we obtain:
1
ko By L ky 7k k
d* = —-V(z") — 3 (VH(:U Yd® + H(z )) (37)

If we premultiply (37) by —V6(z*)T and we take into account (36)then we have:

ou(at, &%) = [VOEH)F ~ — I VOECs, (38)
where Cy: = C3 maxgeq, |[VH(z*)|| + C1. By introducing the scalar

ma: = max [ma, Ca/((1 — La)X|VO(*)]))]

(condition (26) yields | V8(zF)|| # 0) we can see that for all m > m, (38) implies (34).
Now, if we premultiply (37) by (d¥)T and we use again (36), we have:

5|2 < ox(zF,d¥) + %0403 (39)
Recalling that conditions (26) and (34) yield that ox(z*,d*) # 0 we can define
ma: = max [ma, CsCaLs/((1 — Ls)Aow(a*,d"))]
and we can observe that, for all m > mg, (39) implies (35).

Now the global and superlinear convergence properties of Algorithm 3 follow directly by
repeating, with minor modifications, the same arguments of proof of Proposition 7 0
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4 Examples of the Method

In this section we will give examples of the application of the method to several problem
instances. In fact, some well known results from the literature can be cast in our framework.
In [HPR89], the following method is described. Let 6(z) = § ||H (z)||*> and choose the
search direction to satisfy
H(z*) + G(z*,d*) =0
at each iteration. Here, G(z*,d) is an appropriate approximation of the directional derivative
of H in the direction d at z*. The assumptions made in [HPR89] are essentially equivalent
to the ones we make in Section 2. This can be seen by defining ox(z*, d¥): = 20(z").
In the same paper, a Gauss-Newton method is also proposed. The same merit function
is used. In this case, the direction is calculated by solving
1
: k\NT (o k L
min H(e")"G(z", d) + 59(d)
The assumptions made to prove convergence are essentially equivalent to (Al), (A2),
(A3%) and (C). Particular instances of functions ¢, which are considered are

o Yr(d) = d¥ Bxd where By is a symmetric positive definite n x n matrix

o Yr(d) = ”G(ac’“,d)”2 + € ||d||* where € is a nonnegative scalar.

In [HPR89] the conditions on v require in the first case that the sequence {B;} should
have eigenvalues which are bounded away from zero and in the second case that {e;} should
be bounded away from zero. In the model we propose, we can relax these conditions by
essentially using the following forms

o Yi(d) = dTBrd + o1 Fy, Hd”2 where By, is a symmetric positive semidefinite n x n matrix

o Yu(d) = |Gt d)| + cuFeldl)

The motivation for this type of approach comes from the work of [Sub85] and can be thought
of a a generalization of Algorithm 1 from the previous section.
The work of Burdakov [Bur80] can also be seen to be a special case of the method given
in Section 2. In this case, the merit function is given by 6(z): = ||H(z)||" for some r > 0.
An interesting extension to the work of Pshenichny and Danilin [PD78] on minimax
problems can be seen by using our formulation. In this case the merit function is given by

0(z) = max |Hi()|

where H; are assumed to be continuously differentiable functions whose gradients satisfy a
Lipschitz condition. By defining the set

Is: = {i| [Hi(z)| = 0(z) — 6}

the linearization method of Pshenichny and Danilin has been shown to converge under the
following assumptions:
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1. 36 > 0 such that for all z with 6(z) > 0, 6(z) < 6(z®) the linearized system
VHi(z*)d + Hy(zF) = 0,4 € Ts (40)
is solvable.
2. Let d(z) denote the minimum norm solution of (40). Then, dc > 0 such that for all z
with 6(z) > 0 we have
lld()| < cb(z)
3. {z] 0(z) < 0(z°)} is bounded.
It can be shown that these assumptions imply the assumptions of the previous section. Let
or(z¥,d*) = ef(zF), for some € € (0,1). Assumption (Al) is then immediate. Assumption
(A2) follows from [PD78, Theorem 6.1] since it is shown that there exists an & > 0 such that

for all a € (0, ax)
0(z* + ad’) — 0(zF) < —eab(z*)

for any € < 1. Assumption (A3) follows immediately from 2. For assumption (A4), it is
proven in [Kiw85] that 6 is subdifferentially regular and hence (A4) is equivalent to (A2).

5 Application to Nonlinear Complementarity Prob-
lems

We consider applying the algorithms described in Section 3 to solve the nonlinear comple-
mentarity problem, NCP(F), namely to find z € IR" such that

22 0,F(2)>0,(z,F(z)) =0 (41)
for a given function F:IR™ — IR". We will use the following equivalent set of equations
H(z) = (Fi(z) — 2;)* — Fi(z) |Fi(2)| — zilzi|,i = 1,...,n (42)
The solution of these equations was shown to be equivalent to the nonlinear complementarity
problem. In particular, Mangasarian[Man76] proved the following theorem.
Theorem 9 z solves NCP(F) if and only if H(z) = 0, where H is defined in (42).

In particular, note that H is differentiable.
It can be shown that our regularity condition (26) is equivalent to

Ly [Fi(2)(Fi(z) = |Fi(2)] — 2:)* + @i(w: — |e:| = Fi@))(Fi(2) - |Fi(@)| - 2:)] VFi(2)
+ [Fi(2)(Fi(z) = |Fi(2)] = 2:)(zi — |2:| — Fi(2)) + 2i(e: — |2i| - Fi())*] ei = 0

implying that z is a solution of NCP(F).

Other algorithmic approaches for solving NCP(F) have been tried. Recently, much em-
phasis has been placed on approaches using nonsmooth equations[Rob88, Pan89, HPR89,
HX90]. We mention that there are many ways of formulating this problem as a system of
nonsmooth equations. For example, the following ways are well-known.
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1. The min operator technique, where
H;(z): = min{z;, Fi(2)}

or equivalently
H(z):=z — (2 — F(2))+

where the “plus” operator signifies projection onto the positive orthant, that is (z4):: =
max{z;,0}. It is easy to see that H(z) = 0 if and only if z solves (41). In the affine
case, the above H has been termed the “natural residual”.

2. The Minty equations
H(z):= F(zy)+ 2 — x4

It is easy to show that H(z) = 0 implies that z: = z, solves (41) and if z solves (41)
then z:= z — F(z) satisfies H(z) = 0.

We favor using the differentiable equations (42) since the direction finding subproblem
consists of solving a set of linear equations, rather than a mixed linear complementarity
problem. Furthermore, we believe that the trade—off for this easier subproblem manifests
itself in the form of ill-conditioning for which the nonmonotone line search technique has
proven effective[GLL86).

The condition (26) appears to be a mild assumption on the problem in this case. Cer-
tainly it is not implied by the conditions which are assumed to guarantee convergence for

the nonsmooth algorithms mentioned above. In particular, the following example satisfies
(26) but is not regular in the sense of [HPR89).

l—-z
z1
lem is {(0,6)] 0 <6 <1}. It can be shown that VO(z) = 0 implies that z solves the linear
complementarity problem and thus (26) is satisfied. However, all the solution points are not
regular in the sense of [HPR89, page 15].

Example 10 Let F(z) = 2 |. The solution set of this linear complementarity prob-

In order to justify performing a standard Newton method, we need the Jacobian of H to
be nonsingular. Mangasarian[Man76] gives the following sufficient conditions to guarantee
this nonsingularity.

Proposition 11 Let z solve NCP(F) and satisfy ¢ + F(z) > 0. If VF(z) has nonsingular
principal minors, then VH(z) is nonsingular.

We present some results on standard nonlinear complementarity problems found in the
literature. A fuller description of the problems can be found in [HX90]. Note that an entry
of F in the table signifies that the algorithm failed to converge.

In all the above examples we used the starting points suggested in [HX90]. In some
cases, we added extra starting points when the points chosen in the aforementioned paper
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Starting Point Algorithm 1 Algorithm 2 Algorithm 3
Gradient (Function) | Gradient (Function) | Gradient (Function)
Evaluations Evaluations Evaluations
(0,...,0) F 30(30) 35(14)
1,...,1) 9(3) 9(3) 8(3)
(100,...,100) 19(8) 19(8) 18(34)
(1,0,1,0) 8(3) 9(3) 8(8)
(1,0,0,0) 8(3) 9(3) 8(3)
(0,1,1,0) 20(4) 12(3) 8(5)

Table 1: Josephy’s example[Jos79]

LCP Dimension Algorithm 1 Algorithm 2 Algorithm 3
(Started at Gradient (Function) | Gradient (Function) | Gradient (Function)

Origin) Evaluations Evaluations Evaluations

8 23(4) 18(30) 8(8)

16 20(3) 16(28) 8(9)

32 17(3) 15(4) 8(11)

64 42(12) 18(4) 9(12)

128 21(3) 18(4) 9(14)

Table 2: Murty’s exponential linear complementarity problem|[Mur8§]

Starting Point Algorithm 1 Algorithm 2 Algorithm 3
Gradient (Function) | Gradient (Function) | Gradient (Function)

Evaluations Evaluations Evaluations
(2.5,5.5,1.5,4.5) 6(2) 21(4) 19(11)
(3.5,4.5,0.5,4.0) 7(3) 20(4) 22(16)
(2.5,1.5,1.5,3.5) 12(3) 21(4) 21(16)
(3.5,6.5,0.5,5.5) 8(3) 20(4) 22(15)
(1.0,1.0,1.0,1.0) F 20(4) 20(17)
(10.0,10.0,10.0,10.0) 15(4) 25(8) 23(11)

Table 3: Mathiesen’s Walrasian equilibrium model[Mat87]
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Starting Point Algorithm 1 Algorithm 2 Algorithm 3
Gradient (Function) | Gradient (Function) | Gradient (Function)
Evaluations Evaluations Evaluations
1 19(3) 15(3) 18(22)
s 23(4) 28(4) F
z; = (0.2,0.2,0.2,0.1,0.1,0.2,0.5, 0.0, 4.0, 0.0, 0.0, 0.0, 0.4, 0.0)
r2 = (0.1,0.1,0.1,0.1,0.1,0.2,0.5,0.0,4.0,0.0,0.0,0.0, 0.4, 0.0)

Table 4: Scarf’s economic equilibrium model[Sca73]

Starting Point Algorithm 1 Algorithm 2 Algorithm 3
Gradient (Function) | Gradient (Function) | Gradient (Function)
Evaluations Evaluations Evaluations
.0 15(3) 15(3) 13(18)
(10,...,10) 11(2) 11(2) 9(15)

Table 5: Nash noncooperative game example[Har88]

Starting Point Algorithm 1 Algorithm 2 Algorithm 3
Gradient (Function) | Gradient (Function) | Gradient (Function)
Evaluations Evaluations Evaluations
(0,...,0) 28(23) 28(40) 42(101)
(1,...,1) 33(18) 29(32) 27(72)
Ty 34(20) 25(40) 24(62)

z = (1.0,1.1,...,1.9,1.0,1.1,...,1.9,1.0,1.1,...,1.9,1.0.1.1,...,1.9,1.0, 1.1)

Table 6: Tobin’s spatial price equilibrium model[Tob88]
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Starting Point Algorithm 1 Algorithm 2 Algorithm 3
Gradient (Function) | Gradient (Function) | Gradient (Function)
Evaluations Evaluations Evaluations
Ty 53(7) 28(40) F
Ty 17(3) 29(32) 30(52)
T3 24(4) 28(40) 54(79)
T4 19(3) 29(32) 39(31)
z; = (0,2,2,0,0,2,0,0,1,1,0,0,0,0,0)
z2 = (0,3,3,0,0,3,0,0,1,1,0,0,0,0,0)
z3 = (0, 10, 10,0,0,10,0,0,1,1,0,0,0,0,0)
z4 = (0,5,5,0,0,5,0,0,1,1,0,0,0,0,0)

Table 7: Powell’s nonlinear programming problem[Pow69]

Starting Point

Algorithm 1
Gradient (Function)

Algorithm 2
Gradient (Function)

Algorithm 3
Gradient (Function)

Evaluations Evaluations Evaluations
(0,...,0) F 33(24) 35(34)
(10,...,10) 22(5) 18(5) 17(4)

Table 8: Spatial competition example[Har86]
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were considered too close to an optimal point. Furthermore, the functions and gradients were
coded without any problem specific knowledge. In particular, the use of fixing a numeraire in
the economic equilibrium problems was not used to force the Jacobian to be nonsingular at
the solution. Needless to say, this would improve our results, but this removes the essential
difficulty of the problems. While it is true that some of the iteration counts given above are
relatively large, we wish to emphasize that all these results were obtained with one setting
of the algorithm parameters and without particular fixes for specific problems.
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