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Abstract

This thesis discusses four sets of results on number theoretic algorithms.

A positive integer n is a perfect power if there exist integers a,b > 1 such that n = ab.
We give a new sieve algorithm to recognize perfect powers. This algorithm has a linear
median running time, and it has a subquadratic average running time assuming the extended
Riemann hypothesis. Previous algorithms to recognize perfect powers require at least cubic
average time. We also show unconditionally that the set of perfect powers is in the parallel
complexity class N'C?. This is joint work with Eric Bach.

We give the first randomized parallel algorithms that run in polylog time using a subex-
ponential number of processors for factoring integers and computing discrete logarithms over
finite fields of prime order. This solves a problem posed by Adleman and Kompella in 1988.

We present the new k-ary greatest commmon divisor (GCD) algorithm, a generalization of
the binary algorithm of Stein. In a sequential implementation, this algorithm outperformed
many previous algorithms, including the binary algorithm and the Euclidean algorithm. In
addition, the complexity of a parallel version of the k-ary GCD algorithm matches that of
the best previous parallel GCD algorithms.

And finally, we analyze the number of integers factorable in random polynomial time
using Pollard’s p — 1 factoring algorithm. We show that, in random polynomial time, the
p — 1 method can factor more integers than trial division but fewer than Lenstra’s elliptic
curve method. This is joint work with Carl Pomerance.
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Chapter 1

Introduction

Number theory is the study of the additive and multiplicative properties of integers. One
basic concept in number theory is that of a prime number, which is a number with no
divisors aside from itself and 1. The fundamental theorem of arithmetic says that every
positive integer can be expressed in precisely one way as the product of powers of prime
numbers.

Algorithmic number theory is the design and analysis of algorithms for solving problems
that arise in number theory. - Naturally, one of the more important such problems is the
complete factorization problem which arises from the fundamental theorem of arithmetic:
given an integer, factor it into a product of powers of primes. Other problems include
determining if an integer is prime, computing the greatest common divisor of two integers,
and computing discrete logarithms over finite fields.

The study of number theoretic algorithms has a long history. For example, over 2000
years ago Euclid described what is now called the Euclidean algorithm for computing greatest
common divisors (see Knuth [Knu81b, Section 4.5.2]). This algorithm withstood the test of
time; even today, in many circumstances it is the algorithm of choice.

The relatively recent invention of the digital computer has sparked new interest and new
developments in this field. For example, the binary algorithm of Stein [Ste67] for computing
greatest common divisors is, on most computers, more efficient than Euclid’s algorithm. In
addition, number theoretic algorithms now have applications in the areas of cryptography,
algebraic and symbolic computation, pseudo-random number generation, and complexity
theory.

In this thesis we will present:

e new algorithms for determining if an integer is a perfect power,

e new parallel algorithms for factoring integers and computing discrete logarithms,
e a new algorithm for computing greatest common divisors,

e and a new analysis of an integer factoring algorithm.

The rest of this introduction is organized as follows. In the next section we give a detailed
overview of the results outlined above. We then review some notation and background
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material in number theory and computation theory. Finally, we present several fundamental
number theoretic algorithms.

1.1 An Overview

As we mentioned above, this thesis discusses four sets of results on number theoretic algo-
rithms. These results are presented in four chapters beginning with chapter 2, and each of
these chapters may be read independently of the others. Below we give an overview of this
material.

An integer n is a perfect power if there exist integers a and b, both greater than 1,
such that n = a®. The correctness of many integer factoring algorithms and primality tests
requires that the input not be of the form p° where p is prime and e > 2. Since all numbers
of this form are perfect powers, an algorithm to recognize perfect powers can be used to
screen out such inputs for factoring and primality testing algorithms.

In chapter 2, we give several algorithms to recognize perfect powers, including both an
efficient sieve algorithm and the first unconditional N'C algorithm (NC is Nick’s class, a
parallel complexity class; see section 1.3). The sieve algorithm has a subquadratic average
running time, assuming the extended Riemann hypothesis (ERH), a cubic worst-case running
time, and a linear median running time. Previous NC algorithms rely on the ERH for
correctness [Mil89], and the best previous sequential algorithm (which seems to be folklore)
has a supercubic running time.

Our new sieve algorithm requires some precomputation, but it is practical and very
efficient.

This is joint work with Eric Bach, and appeared previously in [BS89b].

Let G be a cyclic group written multiplicatively, and let g generate G. The discrete
logarithm problem is, given a element a of G, compute an integer = such that ¢° = a.
Typically G is taken to be the multiplicative group of a finite field.

In 1988, L. Adleman and K. Kompella asked if there are unbounded fan-in, probabilistic
boolean circuits for factoring integers or computing discrete logarithms having both polylog
depth and subexponential size [AK88]. We answer this question in the affirmative in chap-
ter 3. We also give sublinear depth, subexponential size circuits with bounded fan-in for
both problems.

Previous boolean circuits of subexponential size to solve either problem require a super-
linear depth (see [AK88]).

This work appeared previously in [Sor89].

The greatest common divisor (GCD) of two integers u and v is the largest integer d such
that d divides both u and v. In chapter 4, we describe the new k-ary greatest common divisor
algorithm, a generalization of the binary algorithm of Stein. This algorithm is notable for
two reasons, which are discussed below.

First, in a sequential, multiple-precision implementation, the k-ary GCD algorithm out-
performed many of the best previous algorithms, including the binary algorithm and the
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Euclidean algorithm. We show that this new algorithm has an O(n?/log k) worst-case run-
ning time on n-bit inputs when k is a prime power. When k is chosen to be roughly n, this
yields an algorithm with a subquadratic running time. Most previous GCD algorithms, such
as the Euclidean and binary algorithms, require quadratic time.

Second, it leads to several interesting parallel algorithms. For the concurrent read, con-
current write (CRCW) parallel random access machine (PRAM) model, the k-ary GCD
algorithm gives both an Oc(n/logn) time, O(n'*¢) processor algorithm and an O(log® n)
time exp[O(n/ log? n)] processor algorithm, for d > 1. Both of these algorithms match the
best previous parallel GCD algorithms due to Chor and Goldreich [CG90]. There are also ex-
clusive read, exclusive write (EREW) and concurrent read, exclusive write (CREW) versions
of the algorithm.

This work appeared previously in [Sor90c].

Many integer factoring algorithms have exponential worst-case running times, and yet for
inputs of a certain form they run in polynomial time. One simple example is the trial division
algorithm, which can quickly factor integers with small prime divisors. The question, then,
is how many integers can an algorithm factor in polynomial time?

In chapter 5, we answer this question for the p — 1 algorithm of Pollard. In the process
we show that, in random polynomial time, the p— 1 method factors more integers than trial
division but fewer than the elliptic curve method.

Trial division and Lenstra’s elliptic curve method were analyzed previously by J. Hafner
and K. McCurley [HM89].

This is joint work with Carl Pomerance, and is an improvement of [Sor90al.

1.2 Number Theory Background

In this section we review some concepts and facts from number theory. Throughout this
thesis, we use logz to denote the natural logarithm of z, and lgz to denote the binary
logarithm of z. We also write log" = to mean (logz)t. If S is a set, we write #5 to denote
the cardinality of S. If z is a real number, we write |z| to denote the largest integer less
than or equal to z, and [z] to denote the smallest integer greater than or equal to .

1.2.1 Order Notation

Let f and g be real-valued functions. We say f = O(g) if there exists an absolute constant
¢ > 0 such that f(z) < ¢- g(z) for all z > zo. Equivalently, f <« g means f = O(g).
f=0(g)if f=0(g) and g = O(f). f=0(g) ifg= O(f). Equivalently, f > g means
F=90(g). f=olg) if lims—cs f(z)/9(z) = 0. We say f ~ g if limgeoo f(z)/9(z) = 1.

IfO, 2,0, >, or < is subscripted by a variable, for example f = O(g), then the implied
constant is a function of that variable.

Notice that lgz = O(logz), so the two are interchangeable with respect to O, ©, and .
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1.2.2 Divisibility and Primality

Let Z denote the ring of integers.

For positive integers u and v, u mod v is the remainder when u is divided by v, that is,
umodv = u— |u/v]-v. Wesay v | u (v divides u) if u mod v = 0, and »° || u (v° fully
divides u) if v¢ | w and v**! fu.

An integer p is prime if p > 1 and the only positive integers than divide p are itself and 1.
An integer that is not prime is composite. Throughout this thesis, p will always denote a
prime, and ¢ will always denote a prime or a power of a prime.

Theorem 1.2.1 There are infinitely many primes.

Theorem 1.2.2 (Fundamental Theorem of Arithmetic) For every integern > 1 there
corresponds a unique prime factorization

n=pree gy
where the py,...,p, are distinct prime numbers, and the e; > 0.

The largest number of distinct prime divisors an integer n can have is O(logn/loglog n).
In fact, the average number of prime divisors is O(log logn); see Hardy and Wright[HW79].
See also Ireland and Rosen [IR82].

1.2.3 The Ring Z/(n)

We say a is congruent to b modulo n, written @ = b(modn), if n | a — b, or equivalently
if a modn = b mod n. Congruence modulo n for any positive integer n is an equivalence
relation, and the set of equivalence classes, the integers modulo n, is denoted by Z/(n).
Typically, Z/(n) is represented as the integers from 0 to n — 1. Z/(n) is a cyclic group
of order n under addition modulo n. Other common notations for the integers modulo n
include Z/nZ and Z,.

The greatest common divisor (GCD) of two integers u and v is the largest integer d such
that d | v and d | v. This is written ged(u,v) = d. Note that ged(u,0) = u. If ged(u,v) =d,
then there exist integers z,y such that zu +yv = d. We say that u and v are relatively prime
if ged(u,v) = 1. “

Let (Z/(n))* denote the subset of integers in Z/(n) that are relatively prime ton. Euler’s
totient function ¢(n) is the cardinality of (Z/(n))*. So ¢(n) = n—1 if and only if n is prime.

Theorem 1.2.3 (Euler) For every a € (Z/(n))*, a*™ =1(modn).

Corollary 1.2.4 (Fermat’s Little Theorem) If p is prime, then for every a € (Z/(p),
a?~! = 1(mod p).

If n and m are relatively prime, then ¢(nm) = ¢(n)-¢(m). Forpa prime, ¢(p°) = p* ' (p—1).
(Z/(n))* is an abelian group under multiplication modulo n. For p a prime, e 2 1, (Z/(p°))*
is cyclic, and Z/(p) is a finite field of order p, sometimes written as GF(p).
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Theorem 1.2.5 (Chinese Remainder Theorem) Let n and m be relatively prime inte-
gers. Then we have

Z/(nm) = Z/(n)®Z/(m).
This may be applied recursively so that, if n = pi* --- p¢, then
Z/(n) = Z/(p1)®---DZ/(pY)
For a reference, see Hardy and Wright[HW79] or Ireland and Rosen[IR82].

1.2.4 The Distribution of Primes

Let 7(z) denote the number of primes up to z, and let Li(z) = [;°(logt) 'dt. Note that
Li(z) ~ z/log z. The following version of the prime number theorem is due to Vinogradov.

Theorem 1.2.6 (Prime Number Theorem) There ezists an absolute constant ¢ > 0
such that

x(z) = Li(z)+ Oz exp|—c(log z)*/®)).
The following is equivalent to the prime number theorem:
dologp ~ =
p<z

Sums over the variables p and ¢ are always assumed to be sums over primes. We also have
the following estimates, the second of which is Mertens’s Theorem:

Zl = loglogz + B + o(1);
p<z P

I1 (1 - '}-) ~

sz \ P logz’

Here v = 0.57721--- is Euler’s constant and B = 0.26149 ... See Rosser and Schoenfeld
[RS62].
Let k& and ! be positive, relatively prime integers with | < k. Let m¢ (z) denote the

number of primes p < z such that p = I (mod k). The following theorem was first proved by
Dirichlet.

Theorem 1.2.7 (Prime Number Theorem for Arithmetic Progressions) If [,k are
fized, relatively prime, positive integers with | < k, then

1

Tz ———Li(z).
@~ Gmt

The Riemann hypothesis (RH) is the assumption that the nontrivial zeros of the Riemann
zeta function lie on the line R(s) = 1/2 in the complex plane. It is equivalent to the

(unproven) statement that w(z) = Li(z) + O(v/zlogz). The extended Riemann hypothesis
(ERH) is the same assumption about the zeros of Dirichlet L-functions, and is equivalent
to a similarly strong version of the prime number theorem for arithmetic progressions. For
more see Bach, Giesbrecht, and McInnes [BGM91], Davenport [Dav80], and Ingham [Ing32].
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1.2.5 Smooth Numbers

A positive integer n is y-smooth if every prime divisor of n is at most y. Let ¥(z,y) denote
the number of integers < z that are y-smooth.
The Dickman p-function is defined as the continuous solution to the equations
p(uy = 1 for0<u<l,
p(v) = —plu—1)/u foru>1l.

De Bruijn [dB51] proved that
p(w) = exp[—ulogu — uloglogu + O(u)] = w1,

For large «, ¥, it is well known that ¥(z,y) is roughly equal to zp(u) where u = log z/ logy;
see for example Hildebrand [Hil86] and Canfield, Erdés, and Pomerance [CEP83].

1.2.6 Number Theoretic Problems
Below we define four of the more important problems of algorithmic number theory.
Greatest Common Divisors. Given as input positive integers u and v, compute the greatest
common divisor of v and v.
The extended greatest common divisor problem is to compute integers z and y so that

zu + yv = ged(u, v). Notice if ged(u,v) = 1, then z = u~! (modv).

Primality Testing. Given as input an integer n > 1, determine whether n is prime or com-
posite.

Integer Factoring. Given as input an integer n > 1, compute a list of powers of primes

Cr

P, ..., p¢r such that their product is exactly n.

Often this problem is stated as finding a non-trivial divisor d of n if it exists; clearly any
algorithm that solves this problem can be iterated to give the complete factorization.
To avoid confusion, we will refer to finding a non-trivial divisor of n as splitling n,
and we will refer to finding the complete prime power factorization of n as completely
factoring n.

Discrete Logarithms. Given a cyclic group G, a generator g for G, and a group element
a € G, compute an integer z such that ¢° = a.

In number theory, often G is taken to be (Z/(p))* for p a prime.
For many more problems, see the survey paper by Adleman and McCurley [AMS8T].

1.3 Computation Theory Background

In this section, we review several standard models of computation and informally define
several complexity classes.
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1.3.1 Models of Computation

Let n be the length of the input to an algorithm. For example, if the input to an algorithm
is a positive integer z, then n = |lgz| 4 1, the number of bits in the binary representation
of . Zero has a 1 bit representation. The goal of algorithm analysis is to determine the
resources used by an algorithm, such as time and space, as a function of n. To do this
rigorously requires a model of computation for describing the algorithm. Below we review
several models used in this thesis.

Sequential Models

Perhaps the most popular model for number theoretic algorithms is the random access ma-
chine (RAM). This model consists of an infinite number of registers each of which represents
an integer in binary, and a finite list of instructions. The model computes the value of a
function by executing the instructions in the obvious way, using the registers for work space.
Allowed instructions include reading or writing the contents of a register, conditional trans-
fers of control (which implies a comparison), copying the contents of one register to another
(with indirect addressing allowed), the testing or setting of individual bits in a register, and
a fixed set of arithmetic operations. The usual arithmetic operations allowed are addition,
subtraction, multiplication, and division with remainder.

We calculate the running time of a RAM program to be the sum of the times of each
instruction executed in the computation. We calculate the space used by a RAM program
to be some function of the total number of registers used.

Let u and v be two integers (stored in registers) with |u| > |v|, and let n and m be the
number of bits in their binary representation. In the naive bit complezity model, we assign
a cost to each instruction as follows:

e To compute u £ v costs n + m.

e To compute uv costs nm.

To compute |u/v] and u mod v costs (n —m + 1)m.
e To compare u to v costs n + m.
e To read or write u or to copy u to another register costs n.

All other instructions, including bit operations, have a cost of 1. The running time is the sum
of the costs of all instructions executed. The space used is the sum, over all registers used,
of the maximum number of bits stored in each register. See Knuth [Knu81b] for descriptions
of the classical algorithms for basic arithmetic operations.

In the arithmetic complezity model, all operations listed above have cost 1. The running
time is the total number of instructions executed, and space is the number of registers used.
It is assumed that register lengths are bounded by a polynomial in n.

For a more rigorous definition of the RAM model, see Bach and Shallit [BS90] or Aho,
Hopcroft, and Ullman [AHU74]. Note that they charge for indexing and indirect addressing,
where we do not.
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We will also mention the Turing machine, which consists of a finite state control and
an infinite, two-way tape with a read/write head. For this model, the running time is the
number of states visited in the control, and space is the number of tape cells written. For
more, see Hopcroft and Ullman [HU79].

Parallel Models

The parallel random access machine (PRAM) consists of an infinite number of processors,
each of which is a sequential RAM. These processors execute instructions in lockstep and
utilize a globally shared infinite number of memory registers. Since each register is essentially
an array of bits, multiple processors may work together, each on a different part of the same
register. This model has several variations depending on how read/write conflicts to shared
memory are resolved:

e Exclusive-Read, Exclusive-Write (EREW): Processors are not allowed to conflict, or
in other words, a conflict causes the machine to “crash.”

o Concurrent-Read, Exclusive-Write (CREW): Multiple processors may read the same
memory bit concurrently.

e Concurrent-Read, Concurrent-Write (CRCW): Concurrent writes are allowed. We as-
sume that, if multiple processors write to the same memory bit at the same time, the
resulting value of that bit is arbitrarily chosen to be one of the values written.

A boolean circuit is a directed, acyclic graph, where each node of the graph is called a
gate. There are three different kinds of gates:

e Gates of indegree zero are the input gates. The value computed by the ith input gate
is the ¢th bit of input to the circuit.

e Cates of outdegree zero are the output gates. These gates have indegree one. The
input bit to the ith output gate becomes the ith bit of the output string.

o All other gates are labelled with one of the symbols V, A, or —. The value computed
by one of these gates is the logical or, and, or not of the input bits.

A boolean circuit family is a sequence of circuits, one for each input length.

A circuit family has bounded fan-in if the indegree of all gates of all circuits in the family
is at most 2. Otherwise the circuit family is said to have unbounded fan-in.

We say a boolean circuit family is S$(n)-space uniform if the circuit in the family for
inputs of length n can be constructed by a deterministic, O(S(n)) space-bounded Turing
machine.

The size of a circuit is the number of gates. The depth of a circuit is the length of the
longest path from an input gate to an output gate.

Any “reasonable” algorithm described in terms of a boolean circuit family can be ported
to the PRAM model. The basic idea is to assign one processor to each gate of the circuit,
and the bits that travel on the edges or wires of the circuit are stored in the global shared
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memory. Conversely, a PRAM algorithm can be simulated on a boolean circuit. Here the
idea is to construct subcircuits to perform each instruction and then “paste” the subcircuits
together to form a circuit.

Informally, the depth of a bounded fan-in circuit corresponds (to within a constant factor)
to the time of an EREW PRAM algorithm, and the depth of an unbounded fan-in circuit
corresponds (to within a constant factor) to the time of a CRCW PRAM algorithm. The
size of a circuit corresponds (to within a polynomial factor) to the number of processors used
by a PRAM algorithm.

The complexity of the basic arithmetic operations for the PRAM model are as follows.

e The sum of two n-bit integers can be computed using an O(logn) time, O(n) processor
EREW PRAM algorithm or an O(1) time, O(nloglogn) processor CRCW PRAM
algorithm (see Chandra, Fortune, and Lipton [CFL85]).

o The product of two n-bit integers can be computed using an O(log n) time,
O(nlognloglogn) processor EREW PRAM algorithm (see Schonhage and Strassen
[SST1]).

e The quotient and remainder of two n-bit integers can be computed using either
O(log nloglogn) time and O(n logn log log n) processors (see Reif and Tate [RT89]) or
O(logn) time and n®®) processors (see Beame, Cook, and Hoover [BCHS6]).

Beame, Cook, and Hoover’s division algorithm, when realized as a boolean circuit, is not
known to be O(log n)-space uniform.

For more on parallel models and algorithms, see Cook [Coo85], Karp and Ramachandran
[KR90], and Greenlaw, Hoover, and Ruzzo [GHRI1].

Probabilistic Computation

We also consider models of computation which use randomness as follows:

e For the sequential RAM, we add an instruction to generate a uniformly chosen integer
from the interval 0,...,a — 1. In the naive bit complexity model, the cost is |lga] +1,
and in the arithmetic complexity model, the cost is 1.

e For the PRAM, we allow each processor to generate one random bit (with a value of 0
or 1 with probability 1/2 each) at a time cost of 1. Several processors can be combined
to generate larger random numbers.

e For boolean circuits, we add gates of indegree zero which produce a random bit as
their output value.

1.3.2 Complexity Classes

Let S be a (potentially infinite) set of binary strings. An algorithm A computes the char-
acteristic function for S if on input z, A outputs a 1 when z € S, and A outputs a 0 when
z ¢ S. Typically, a complexity class is defined as a class of sets whose characteristic functions
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have algorithms that satisfy certain properties. Below we give some standard definitions of
well-known complexity classes.

To classify problems that involve calculating the output of a function, such as computing
greatest common divisors, we state a corresponding decision problem by specifying the bits
of the binary representation of the function value. For example, we can define ihe set GCD
to be the set of all triples (u,v,i) such that the sth bit of gcd(u,v) is equal to 1. If we have
an algorithm to compute the characteristic function for such a set, then we can compute the
actual function value by making multiple calls to the characteristic function. For a sequential
computation model, these calls can be performed in a loop. For a parallel model, they may
be done in parallel.

We say f(n) is polynomial if there exists an integer ¢ such that f(n) = O(n°). Let n be
the length of the binary encoding of z. As mentioned above, if z is a positive integer then
n=|lgz| +1.

Nick’s class (NC). For k > 1 an integer, S € NC* if there exists an EREW PRAM al-
gorithm that runs in O(logF n) time using a polynomial number of processors which
accepts = if and only if z € S.

We may also define N'C in terms of boolean circuits: S € N CF if there exists an
O(log n)-space uniform, boolean circuit family of depth O(log* n) and polynomial size
which accepts z if and only if z € S. By our observations about the equivalence of the
PRAM and boolean circuit models, both definitions of A C* are equivalent.

We define NC = UR N CF.

All the basic arithmetic operations (4, —, x, /) are in NC. Computing integer square
roots via Newton’s method is also in NC.

Polynomial Time (P). S € P if there exists a RAM or Turing Machine algorithm that runs
in polynomial time that accepts z if and only if z € 5. Sincea PRAM can be efficiently
simulated sequentially by a RAM or Turing Machine, we have NC C P.

Greatest common divisors can be computed in P, but no NC algorithm is known for
this problem. If the ERH is true, then the set of primes is in P (see Miller [Mil76}).

Random Polynomial Time (RP). S € RP if there exists a randomized polynomial time
RAM or Turing machine algorithm such that, if z € 5, the algorithm accepts z with
probability at least 1/2, and if z € S, the algorithm always rejects. Clearly P C RP.

S € Co-RP if the complement of S is in RP.
The set of primes is in RP N Co-RP (see Adleman and Huang [AHS8T7]).

Non-deterministic Polynomial Time (N'P). S € NP if there exists a set of ordered pairs
A € P such that z € S if and only if there exists a string y of length bounded by a
fixed polynomial in n such that (z,y) € A. In other words, z € S if there exists 2
“proof” y of z’s membership in S that can be checked in polynomial time. Notice that
RP can be formulated the same way, with the additional constraint that random coin
tosses can be used to guess some appropriate value of y with probability at least 1/2.

Thus RP C NP.
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S € Co-NP if the complement of S is in N'P.

Both integer factoring and computing discrete logarithms are in AP. No polynomial
time algorithm, even probabilistic or heuristic, is known for either problem.

Ezponential Time (EXP). S € EXP if there exists a RAM or Turing Machine algorithm
that runs in time exp[O(n)] which accepts z if and only if z € S.

All problems discussed in this thesis are in EXP.

Aside from the fact that P # EXP, it is unknown whether any of the class containments
mentioned above are proper. For more, see Hopcroft and Ullman [HU79], Garey and Johnson
[GJ79], Gill [Gil77], Karp and Ramachandran [KR90], and Greenlaw, Hoover, and Ruzzo
[GHRO1].

1.4 Basic Algorithms

We conclude our background material by briefly describing, in Pascal-like pseudocode, several
fundamental, sequential number theoretic algorithms.

The first algorithm, the Sieve of Eratosthenes, finds all primes up to a bound n using
O(n loglogn) arithmetic operations. This gives a running time of O(n log nloglogn) in the
naive bit complexity model (see section 1.3). The algorithm uses an array s[] of n bits.

Sieve of Eratosthenes
Input: positive integer n

For z := 2 to n do: s[z]:=1;
For p:=2 to /n do:
If s[p] =1 then
For z := p* to n step p do:
slz] == 05
For z := 2 to n do:
If s[z] = 1 then output(z);

Note that |y/n] can be found using binary search in at most O(log®n) bit operations. For
more, see Bach and Shallit [BS90] and Sorenson [Sor90b].

The second algorithm, the Euclidean algorithm, computes the GCD of two positive inte-
gers u and v in O(logulogwv) bit operations.
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Euclidean GCD Algorithmn
Input: positive integers u, v

While v # 0 do:
r := u mod v;
U=V V=T,
Output(u);

For more, see Collins [Col74], Knuth [Knu81b], and Norton [Nor90].
The third algorithm computes a® mod m using the binary or repeated squaring method.
It runs in O(log b) arithmetic operations, which is O(log blog? m) bit operations.

Modular Exponentiation
Input: positive integers a,b, m

T =1;

While b > 0 do:
If bis odd then z := z - a mod m;
b:= [b/2];
a := a? mod m;

Output(z);

For more, see Bach and Shallit [BS90] and Knuth [Knu81b].

The fourth algorithm is a probabilistic compositeness test due to Miller and Rabin [Mil76,
Rab80]. On input a positive integer n, if n is prime it outputs “Prime”; if n is composite
it outputs “Prime” with probability < 1/4, and it outputs “Composite” with probability
> 3/4. Note that the algorithm may be repeated to reduce the probability of error.

Miller-Rabin Primality/Compositeness Test
Input: positive integer n

Write n — 1 = 2° - m with m odd;
Choose a € Z/(n) uniformly at random;
z := a™ mod n;
If z = 41 (mod n) then Output(“Prime”) and Halt;
Fori:=1toe—1 do:

z := z2 mod n;

If z = —1(modn) then Output(“Prime”) and Halt;
Output(“Composite”);

This algorithm uses O(log n) arithmetic operations, or O(log® n) bit operations. For details,

see Miller [Mil76], Rabin [Rab80], or Bach and Shallit [BS90].
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The fifth and final algorithm, trial division, removes prime divisors below a bound y from
an integer n.

Trial Division
Input: positive integer n and bound y

Find the primes up to y using the Sieve of Eratosthenes;
For each prime p < y do:
While p | n do:
Output(p);
n = n/p;
Output(n);

This algorithm requires O(y loglogy + ylogn + log? n) bit operations. If one is interested
in arithmetic complexity, the use of the sieve of Eratosthenes should be removed, and all
integers up to y should be used as trial divisors; the number of arithmetic operations used
by this modified algorithm is O(y + logn).

A primality test may be added so that the algorithm will halt if n is discovered to be
prime. Possible choices for a primality test include those of Adleman, Pomerance, and
Rumely [APR83], Goldwasser and Kilian [GK86], Miller-Rabin (discussed above) [Mil76,
Rab80], or Solovay and Strassen [SS77].

Trial Division with Primality Test
Input: positive integer n and bound y

If n is prime then Output(n) and Halt;
Find the primes up to y using the Sieve of Eratosthenes;
For each prime p < y do:
While p | n do:
Output(p);
n:=n/p;
If n is prime then Output(n) and Halt;
Output(n);

Let t(n) denote the cost of one primality test. Then the number of bit operations is at
most O(y loglogy + ylogn + log?n + t(n) logn) since n has O(logn) prime divisors (with
duplication). For more, see Knuth and Trabb Pardo [KTP76] and Knuth [Knu81b].

Other general references for number theoretic algorithms include Angluin [Ang82], Bach
[Bac90], Bach and Shallit [BS90], Dixon [Dix84], Lehmer [Leh69], Lenstra and Lenstra
[LL90], Koblitz [Kob87], and Pomerance [Pom87].



Chapter 2

Sieve Algorithms for Perfect Power
Testing

2.1 Introduction

This chapter presents fast and practical algorithms for deciding if a positive integer n is a
perfect power, that is, can be expressed as z* for integers z,k > 1. By trying all possible
powers, this problem is solvable in O(log® n log log log n) steps in the worst case. Unfortu-
nately, the average running time for this method is not much better than the worst-case
running time. We give algorithms in this chapter that perform much better on typical in-
puts. One of our methods has an average running time of O(log®n), and another runs in
O(log? n/ log® log n) average time, with a median running time of O(logn). Our average-case
results assume that a table of certain small primes is precomputed; as a practical matter
this table is quick and easy to construct, and once constructed it uses only O(logn) space,
but we need to assume the extended Riemann hypothesis (ERH) to bound the largest prime
in the table. We also improve the worst-case running time to O(log®n) steps; parallelizing
this leads to an A'C? algorithm.

In number theory, most analyses of algorithms address worst case complexity, although
there are some studies of average behavior [Col69, GK86, HM89, KTP76, Sho90]. However,
we are unaware of any average-case results for this problem.

Before describing our methods, we indicate some applications for them. The fastest
known methods for integer factorization [Dix81, Pom87] find non-obvious solutions to the
congruence z? = y? modulo n; if ¢ and y are solutions with z different from +y, then
ged(z — y,n) splits n. However, if n is odd, such = and y will only exist if n is not a prime
power, and this condition should be checked before attempting to factor n. It is simplest to
check that n is not a perfect power, for if it is, then we have a factorization.

Similar comments apply to many other factoring algorithms [BMS86, BS89a, Len87,
Pol74]; it is common when analyzing them to make the assumption that the input is not a
perfect power.

We also mention an application where the average case behavior of a perfect power
algorithm is significant; in fact, it is the source of the present problem. Eric Bach published
an efficient algorithm for generating random integers in factored form [Bac88]; we will not

14
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discuss this algorithm in detail except to say that it repeatedly draws integers (according
to some distribution) and rejects them when they are not prime powers, saving the prime
powers for further processing. Since the perfect powers are rare, any perfect power test that
performs well on the average will be useful in this context.

Our sieve algorithm is based on the following idea: if a number n is not a pth power mod
q for some small prime g, then it cannot be a pth power. The time to check this condition
is roughly proportional to the length of n, much less than the time needed to compute a pth
root of n to high precision. Of course, this advantage is offset somewhat by the fact that
a pth power modulo ¢ need not be a pth power. Hence, tests using more than one ¢ are
necessary; our algorithm does enough of these tests to ensure that a pth root computation
will be rare.

We also present an algorithm that combines perfect power testing and trial division;
this algorithm performs even better on the average than the method outlined above. This
latter algorithm is useful as a preprocessing step for factorization, since factoring programs
usually start by performing trial division. Indeed, in practical factoring one often learns
that a number is not a perfect power as a by-product of trial division. This perfect power
algorithm is the most efficient one known to us.

Sieving ideas for testing pth powers have been suggested by Cobham [Cob66] and
V. Miller [Mil89]. Cobham, assuming the ERH, showed that a sieve method for testing
if a number is a perfect square is optimal to within a constant factor in its use of work space.
To prove this, he showed that if a number is not a perfect square, then it must fail to be a
square mod ¢ for some small g. Miller generalized this last result to pth powers of algebraic
numbers; for certain fields, he found that a sieve algorithm outperforms methods based on
root approximation in the worst case.

In contrast, we do not attempt to make the sieve part of the algorithm completely fool-
proof. Instead, we use pth power tests modulo ¢ to make the relatively expensive root
computations rare on the average. Hence our algorithms are always correct, and our proba-
bilistic results only apply to the running time.

Throughout this chapter we discuss algorithms to solve the decision problem for the set
of perfect powers. Any of them could be easily modified to output roots and exponents
when the input is a perfect power, or compute the value of Golomb’s arithmetic function
4(n) (which counts the positive integral solutions to n = a®) [Gol73], but we leave such
modifications to the reader.

2.2 Notation and Definitions

Let k be a positive integer. We call a positive integer n a perfect kth power if n = z* for
some integer £ > 1. In this case, we refer to k as the ezponent, and z as the root. If n is a
perfect kth power for some integer k > 1, then we say n is a perfect power.

In our analysis, we will use the naive bit complexity model. This implies that when a
and b are positive integers, computing ¢ = a® takes O(log? ¢) steps.

In the sequel, p and ¢ will always be prime. For z > 0, 7(z) denotes the number of
primes less than or equal to z, and 7,(z) the number of primes less than = and congruent
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to 1 modulo p.

2.3 Root Computation Algorithms

In this section, we review the usual root-finding algorithm for perfect powers, which seems
to be folklore. We present a slight variation of one given and analyzed by Shallit [Sha89].

The idea is very simple. If n is a perfect kth power, k < lgn. So, we compute an integer
approximation ¢ of n'/* for each such k, starting with k = 2. If for some k, ¥ = n, we
accept n and halt. If we reach k = lgn without finding an exact root z, we reject n and
halt. We can do a little better by noting that only prime values of k need be tried. Putting
this together we get Algorithm A.

Algorithm A.
Input: positive integer n

For each prime p < lgn do:
Compute z := |n'/?]
If n = z? then Accept and Halt
Reject and Halt.

To compute = = |n'/?|, we first use the value of Ign to get a rough upper limit for z,
say 2U87/pl+1 Then we do a binary search between 2 and this limit. To test each possible
pth root y encountered in the search, we can compute y? using any reasonable powering
algorithm.

Theorem 2.3.1 Given as input a positive integer n, Algorithm A will decide if n is a perfect
power in time O(log® nlogloglogn).

Proof: Clearly Algorithm A is correct.

Each time a pth root is computed, binary search will iterate O(logn/p) times. During
each iteration, an approximation y of the pth root of n is raised to the pth power. This takes
time O(log® n). So then for a fixed exponent p, |n!/?| can be computed in time O(log® n/p).
Summing over all prime exponents p gives

>, ! log®n =0 (1og3 n log loglog n) .
p<lgn

All that remains is the time to find the primes up to lgn. Using the Sieve of Eratos-
thenes, this can be done in O(logn log loglog n) additions. Hence the overall running time
is O(log® n logloglogn), as we claimed. O

Note that there are more efficient algorithms than the Sieve of Eratosthenes for finding
all the primes below a bound m. Pritchard'[Pri83] discusses some of these, and presents an
algorithm which uses only O(m) additions and O(y/m) space. See also Sorenson [Sor90b].
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By replacing binary search with Newton’s method, we can improve the running time of
Algorithm A. However, without a good starting point, Newton’s method is no better than
binary search. So we first prove that if the first lgp bits of nl/? are provided, Newton’s
method converges quadratically.

Lemma 2.3.2 Let f(z) = z? — n, and let v > 0 satisfy f(r) = 0. Suppose zo satisfies
0 < (zo/r) —1 < 1/p. Then Newton’s method, using zo as an initial estimate for r, will
obtain an estimate of absolute error less than 1 in O(log(logn/p)) iterations.

Proof: Newton’s method computes successive approximations i,Zz,... to r using the
iteration Tmy1 = g(Tm), where g(z) = z — f(z)/f'(z). Note that g(r) = r and ¢'(r) = 0.
Using a Taylor expansion for g around z = r, the mean value theorem implies that for some
a,r<as Tm,

g(mm) —r = g (a)(z;n - ’I‘) - (—%‘g;%_‘%ﬁ(wm _ 7‘)2 < %(zm _ 7‘)2.

Since g(Tm) = Tm41, dividing by r gives

Trt1 p Ty 2 D (Tm 2
e B () < 2(E=oa)
T - 2a/r)\r - 2\r !

Thus, if (zm/r) —1 < 9-(grt+3) for some i > 0, then (Tpy1/r) — 1 < 2-(gpt2i+1)  Tp other
words, at each step we double the number of bits of 7 we have found. To get an error less than

1 means we only have to match O(lgn/p) bits, so the number of iterations is O(log(lgn/p))-
]

Note that this result still holds if we use |g(z)] for the iteration function, which is easy
to compute. Now we assume that |r!/?] is computed by obtaining the first g p bits of nl/?
with binary search, and the rest with Newton’s method. Calling this the Modified Newton
Method, the following theorem holds.

Theorem 2.3.8 Using the Modified Newton Method to find roots, Algorithm A runs in time
O(log®n).

Proof: For each p, lg p iterations of binary search and O(log(lgn/p)) iterations of Newton’s
method are required for a total of O(loglogn). Since the cost of each iteration is O(log? n),
the total running time is

> O(log’nloglogn) = O(log®n).
p<lgn
]

Corollary 2.3.4 Computing integer approzimations of kth roots (for k > 1 an integer) and
solving the recognition problem for the set of perfect powers are both in logspace-uniform

NC2.
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Proof: Let n be the input. From Lemma 2.3.2 we know that O(loglogn) iterations of
binary search, followed by O(loglogn) iterations of the modified Newton method, suffice
to compute an integer approximation to the kth root of n. Each iteration requires a power
computation and possibly a long division. By methods of Beame, Cook, and Hoover [BCH86]
(see also [KR90]), these two tasks can be done by a circuit of depth O(loglogn) and size
polynomial in logn.

These circuits are not known to be logspace uniform, but the only nonuniformity is a
requirement for certain products of small primes, which can be generated easily by logspace
uniform circuits of O(log?logn) depth. So we use an N C? circuit for generating these,
followed by O(loglogn) levels of binary search and O(loglogn) levels of Newton’s method,
to compute kth roots. The total depth is O(log? log n).

For recognizing perfect powers, we note that the circuit size for computing pth roots can
be bounded independently of p, and simply compute pth roots of the input for every prime
p < lgn, in parallel. O

Of course, finding an approximate pth root of n is a special case of finding roots of
polynomials over the integers. This more general problem has efficient sequential methods
(see, for example, Pan [Pan85]), and recently Neff [Nefd0] showed finding the roots of a
polynomial is in NC.

One might ask whether the modified Newton method helps in practice. The answer is
yes; in section 2.7 we support this with timing results comparing binary search with the
modified Newton method when used in Algorithm A.

2.4 A Simple Sieve Algorithm

In this section we present a second algorithm that improves on Algorithm A’s average running
time. Our main idea is the following. Most numbers are not perfect powers, so the algorithm
will run better if it can quickly reject them. We will do this using the following lemma.

Lemma 2.4.1 Let p and q be primes, with ¢ = 1(modp). Further suppose that n is a
perfect pth power, and ged(n,q) = 1. Then nla=1/? = 1 (mod q).

Proof: If n = zP, then by Fermat’s theorem, nla=1/P = g9-1 = 1 (mod ¢). O

In other words, if n(¢=1/? % 1 (mod ¢), then n cannot be a perfect pth power, assuming
all the other hypotheses are satisfied. We will call this computation a sieve test for exponent
p, and the prime modulus g the sieve modulus. We say n passes the test if n(9~V/P =
0,1(mod q); it fails the test otherwise. (Note that we are evaluating the pth power residue
symbol mod g¢; see [IR82].)

We modify Algorithm A as follows. Before computing an approximate pth root, we do a
certain number of sieve tests on n for exponent p. The number of tests, [2loglgn/log pl,
will be justified later; it results from balancing the goals of accuracy (few non-perfect powers
should pass all the sieve tests) and efficiency (not too many sieve tests should be done).
These modifications give the following procedure.
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Algorithm B.
Input: positive integer n

For each prime p < lgn do:
Perform up to [2loglgn/log p]| sieve tests on n
If n passed all the tests then:
Compute « := |[n!/?]
If n = z? then Accept and Halt
End if
Reject and Halt.

To analyze this procedure, two questions must be answered.

1. Do enough sieve moduli exist, and if they do, how large are they? Moreover, how do
we find them?

2. What are the chances n will pass all the sieve tests for a fixed p?

Regarding the first question, Dirichlet showed that any “reasonable” arithmetic progression
contains infinitely many primes (see [IR82]). Although this guarantees the existence of
enough sieve moduli, it says nothing about their size. To reasonably bound this we will have
to assume the ERH; in section 2.6 we will prove the following result.

Lemma 2.4.2 (ERH) For an input less than n to Algorithm B, the largest sieve modulus
needed is O(log® nlog*logn).

This suggests that the required sieve moduli are all small, and our experience with the
algorithm confirms this. In fact, we believe that the above result is still an overestimate,
and offer in section 2.7 a heuristic argument and numerical evidence for a sharper estimate
of lgnlog®(lgn). In practice, the sieve of Eratosthenes will suffice to quickly generate the
primes less than this bound, and hence the required list of sieve moduli.

Regarding the second question, we first argue informally. The chance an integer n is a pth
power modulo ¢ is about 1/p. If we perform [2loglgn/ log p| sieve tests whose results are
independent, the chance n passes them all is about (1/ p)2losl8™/ 18P — (1 /1gn)?. However,
the tests are not quite independent and we must modify this rough argument. In section 2.6
we will prove the following result, which uses the ERH only to bound the magnitude of the
sieve moduli.

Lemma 2.4.3 (ERH) Let n be an integer chosen uniformly from an interval of length
L, and assume for every such n, L > (logn)31°31°31°5“. Then the probability n passes
[2loglgn/logp| different sieve tests for a fized exponent p in Algorithm B is bounded above

by
loglogn
0( log” n )
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We expect that any implementation of our algorithm will have available a list of sieve
moduli. For this reason, we will analyze Algorithm B under the assumption that they have
been precomputed. In particular, we assume that Algorithm B has available a table, called
the sieve table, which contains, for each prime p < lgn, a list of the first [2loglgn/log p]
sieve moduli for p. Note that the number of entries in this table is at most

Z [QIOgIgnl _ 0 ( logn >
p<lan logp loglogn
and so the total space used by the table, once computed, is O(logn). Using the Sieve of
Eratosthenes, or a variant, the table can be constructed in (log n)?+°() time. In practice this
is pessimistic, as we demonstrate in section 2.7.
We also note that computing the exact values of [2loglgn/ log p] for each prime p < lgn
can be done using the methods of Brent [Bre76b] easily within the above time bound. In

practice, of course, this is not a concern.
Assuming the above lemnmas, we now present our average-case result.

Theorem 2.4.4 (ERH) Let n and L be as in Lemma 2.4.3, and assume that a sieve table
is available. Then Algorithm B will decide if n is a perfect power, and the running time of
Algorithm B, averaged over all inputs in L, is O(log? n).

Proof: The correctness of Algorithm B follows immediately from Lemma 2.4.1; it is inde-
pendent of the ERH.

To get an upper bound on the running time, we may assume that all the possible sieve
tests are actually done. By Lemma 2.4.2, logg = O(loglogn). Since the sieve table is
precomputed, the time to find each sieve modulus ¢ is O(1). Computing n~Y/? mod ¢
can be done using one division and then modular exponentiation in time O(logn logq +
log® ¢) = O(log n log log n+log® logn) = O(log n loglogn). If [2loglgn/ log p] sieve tests are
performed, the total time spent is at most O(logn log? logn/ log p) for each prime exponent
P.

From the proof of Theorem 2.3.3, the time needed to approximate the pth root of n and
compute its pth power is O(log? nloglogn). However, by Lemma 2.4.3, the probability that
we even have to make the computation is O(log logn/ log? n). Thus, the average time spent
is O(log? logn).

Hence, for each prime exponent p, the average time spent is
O(log nlog? log n/ log p). Since we have

1 O( B )
< logp log? B

by splitting the sum at VB and using the prime number theorem, this gives the average
time of O(log?n), and the proof is complete. O

In connection with Algorithm B, the following question is also of interest: “Can we guar-
antee that n is a perfect power by only performing sieve tests?” By applying quadratic
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reciprocity and Ankeny’s theorem, Cobham [Cob66] showed that O(log?n) sieve tests suf-
fice to check that n is a square, if the ERH is true. V. Miller [Mil89] has recently ex-
tended this result: if one assumes the Riemann hypothesis for certain Hecke L-functions
then O(p® log*(np)) sieve tests for the exponent p will prove that n is a pth power. Since
we are only interested in p < lgn, this would imply that O(log®*n) tests suffice to check
perfect powers. Note that this leads to another N'C algorithm for perfect power testing.

It is also of interest to ask what can be proved without assuming the ERH. The main
difficulty with this seems to be in finding a large number of sieve moduli efficiently. When the
sieve moduli are not bounded by a small polynomial in logn, then the Sieve of Eratosthenes
and its variants are no longer practical for finding them. As an alternative, one might
use probabilistic search, but then the sieve moduli found must be proved prime. It is an
interesting theoretical question as to how this might be done, but such an approach is
unnecessary in practice, and we discuss it no further here.

2.5 A Sieve Algorithm with Trial Division

In the previous section we discussed Algorithm B, a substantial improvement over Algo-
rithm A, which used a simple sieving idea to weed out non-perfect powers. In this section,
we will use trial division by small primes to further improve Algorithm B. The resulting
method may be of use in situations, such as factorization, where trial division is done any-
way.

Our basic idea is the following. To test n, we see if n has any small prime divisors by
checking all primes < b. The trial division bound b is much smaller than n; we take b to be
about logn. There are two ways this modification can help:

1. If we find a prime r that divides n, we can compute the integer e such that r® || n.
Then if n is a perfect pth power, p must divide e. Since e will typically be quite small,
this will greatly reduce the number of possible prime exponents p that must be checked.

2. If we do not find any divisors of n below b, then if n is a perfect pth power, its pth root
= must be larger than b. Hence p < log, n = logn/ log b, which will also save time.

Qur new algorithm does trial division up to some bound b, and then applies either 1. or
2. above, depending on whether or not a divisor is found. It then uses an appropriately
modified version of Algorithm B. Algorithm C gives the details.
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Algorithm C.
Input: positive integer n

Compute the smallest integer b such that blog?b > logn
S:={p: p<logn/logb}
Trial divide n by each prime r < b:
If a divisor r is found then:
Find e such that r® || n

S={p:p|e}
Stop trial division
End if

While S # 0 do:
p := the smallest element of S
Perform up to [2loglgn/logp| sieve tests on n for p:
If for some sieve modulus ¢, ¢ | n, then:
Find e such that ¢° || n
S:=SNn{p:p|e}
End if
If n passed all the tests and p € S, then:
Compute z := |n!/?]
If n = zP then Accept and Halt
End if
$:= S - {p)
Reject and Halt.

To analyze this algorithm we will need a technical lemma.

Lemma 2.5.1 Let P be a set of primes, and for a positive integer n, let e(n) denote the
largest e such that p° | n for some p € P. If n is chosen uniformly from an interval of length
L, then the ezpected value of e(n) is at most (#P)lgn/L + O(1).

Proof: At most L/p® + 1 integers in the interval are divisible by p°. Since e(n) > k if and
only if p* | n for some p € P, Prle(n) > k] £ Xpep 1/p* + (#P)/L. Using this,

US“J n =] n
Ble(n)] = 3 Prle(n)>k < -(-—ﬂjz)l—g——+1+zz-$k— < iﬂpr—g—m.
k=1 pEP k=2
0

Theorem 2.5.2 (ERH) Let n be an integer chosen uniformly from an interval satisfying
the hypotheses of Lemma 2.4.3. Then Algorithm C will decide if n is a perfect power in time

log?n
0 (log2 log n)

on the average.
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Proof: Correctness follows from Theorem 2.4.4 and from the two observations made at the

beginning of this section. All that remains is to prove the average running time bound.
First we note that bis @(logn/ log® logn), from which it follows that log b = ©(loglogn).
By a large sieve estimate of Jurkat and Richert [JR65, 4.2] the probability that no prime

below b divides n is ) !
p —
E, ( p ) ( log L

provided that L, the interval length, satisfies logb < (log L)/(2loglog(3L)). By our choice
of L, this holds for sufficiently large n, so by Mertens’s theorem (see [HW79], p. 351), the
probability of escaping trial division is O(1/ log ), a fact we will need later.

We break the running time into four parts: the time spent on trial division, the time
spent computing maximal exponents e for various primes, the time spent on approximating
pth roots and computing pth powers of these approximations, and the time spent performing
sieve tests.

The time spent on trial division is O(T <, logn log p). Combining this with our estimate
for b shows that the expected time for trial division is O(log® n/ log’ logn).

By Lemma 2.4.2 no sieve modulus or trial divisor is larger than O(log*** n), so the time
spent finding a maximal exponent e for any such base is O(elognloglogn). By Lemma
2.5.1 the expected value of e is O(1), so the expected work for finding maximal exponents is
negligible.

To estimate the third part, we note that the time spent computing pth roots and their
pth powers is no more than the time Algorithm B would spend in the same task, on a given
input. Hence the argument used to prove Theorem 2.4.4 applies, and we find that the total
expected time for this part is 3"p<iogn O(log? logn), which is O(logn loglogn).

To estimate the expected time for sieve tests, we condition on whether or not a divisor
is found. If a divisor r of n is found, its maximal exponent e is at most lgn. Thus e has
at most lglgn prime divisors, which is how many exponents remain to be tested. From the
proof of Theorem 2.4.4, we know the maximum time spent on each possible prime exponent
p is O(logn log? logn/log p). Thus the average sieve time, given that a divisor is found, is
O(lognlog®logn). If no divisor is found, the average sieve time is similarly found to be
O(log? n/log b). Multiplying this by the probability that no divisor is found and using the
asymptotic value of log b gives the result. O

The distribution of Algorithm C’s running time exhibits the following anomaly. Although
its expected running time is high (consider the fraction 1/logb of inputs for which all trial
divisions are performed), its median running time is much lower, in fact O(logn). We prove
this below.

Theorem 2.5.8 Let n be chosen uniformly from an interval of length L, and assume for
every such n, L > f(n), where limgo f(z) = o0. Then the median running time of
Algorithm C is O(logn).

Proof: We must show that there is a set of inputs, of probability at least 1/2, on which
the running time is O(logn). First consider the asymptotic probability that some prime less
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than B divides n, and the least such prime divides n exactly once. This is

S Pr(nog<pdividesnandplin] = > (}—H(l——-l-))

p<B p<B p q<p q

If B = 20, this is some constant «, greater than 1/2. Hence with probability o, e = 1
at the end of the trial division phase. Given that this happens, no further work will be
required. Furthermore, the work of trial division is O(log n), since no r greater than 20 and
no exponent larger than 2 was ever used on these inputs. O

2.6 Technical Results

In this section we will prove Lemmas 2.4.2 and 2.4.3 with the aid of the ERH.

Let 7,(z) denote the number of primes less than or equal to z which are congruent to 1
modulo p; these are the possible sieve moduli for p. Below we give an estimate for the density
of such primes. This result is due to Titchmarsh [Tit30, Theorem 6]. See also Davenport
[Dav80, p. 125].

Theorem 2.6.1 (ERH) Let z be a positive integer, and p a prime. There is a constant
A > 0, independent of p and z, such that

1
m(z) 2 p—1

Li(z) — AVzlogz.

Corollary 2.6.2 (ERH) Let p be prime. There is a constant B > 0, independent of p,
such that for any v > 2, if z > Bp*v(logpv)* then mp(z) 2 pv(log pv)3.

Proof: Let A be the constant from Theorem 2.6.1, and choose B > 3 so that vB/(log B)* >
12 + 36A. Since Li(z) > (z — 2)/ log z, Theorem 2.6.1 and some algebra gives us

ro(z) >, (Bpu(logpv)*)

> po(logpv)® (

§1og B -1—6A\/'1§10g3).

Our choice for B guarantees that the coefficient of pv(log pv)® is at least 1. O
We now prove the sieve modulus bound.

Lemma 2.4.2 (ERH) For an input less than n to Algorithm B, the largest sieve modulus
needed is O(log? nlog* logn).

Proof: We must show that, for each prime p < lgn, the [2loglgn/log p|th sieve modulus
is O(log? nlog*logn). In other words, we must find an z for each prime p such that z =
O(log?nlog*logn) and m,(z) > [2loglgn/log pl.
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If p > /logn, we choose z = Bp®vlog*(pv) with v = 2, where B is the constant
from Corollary 2.6.2. Clearly z = O(log® nlog*logn), and Corollary 2.6.2 gives us m,(z) >
2+/Togn > [2loglgn/ log p].

If p < +/Togn, by choosing = = Bp?vlog*(pv) with v = 2loglogn, Corollary 2.6.2 gives
us m,(z) > v > [2loglgn/log p] with z = O(log n(loglogn)®). O

Now we will prove Lemma 2.4.3, which states that an input n to Algorithm B is unlikely
to pass multiple sieve tests.

Lemma 2.4.3 (ERH) Let n be an integer chosen uniformly from an interval of length
L, and assume for every suck n, L > (logn)3'8loslos™  Then the probability n passes
[2loglgn/ log p| different sieve tests for a fized exponent p in Algorithm B is bounded above

by
loglogn
o ((oton)
g n

Proof: Let T be the set of sieve moduli from the sieve table for p, and let ¢ = #T', the
cardinality of T. Define m = [[ ¢7 ¢, and note that t = [2loglgn/logp]. Write L = dm +r
where d and 7 are integers satisfying d > 0, 0 < r < m. The chance that n passes all
[21loglgn/ log p] sieve tests is, by the Chinese Remainder Theorem, at most

dm {q;-—‘l (l) 1] T dm ¢ 1( p-l) T
— — =] +=|+5F = —]l-{1+— )+
L 51 ¢ \p qi L L gp qi L

where g1, . . ., g; are the primes in T in increasing order. Since g; > ip, 1+(p—1)/q < (i+1)/3,

so the first term is at most
1 i+l loglogn
—_— = 0| —=].
lg2n g i ( log?n

To estimate the second term, let = be the largest sieve modulus in T'. By Corollary 2.6.2,
z = O(p*t{log pt)*). Since r < m, it suffices to show m/L = o(1/log? n), which is true since

m — H q g (Et — (lOg n)Zlogloglogn(1+o(1)).
q€T
a

It would be interesting to show that this result holds for intervals of “polynomial size,”
that is, L > log®n for some ¢ > 0. We require slightly larger intervals, in which only the last
Q(loglogn log loglog n) bits of the input vary.

Finally, we remark that these results hold for the interval [1,n].

2.7 Implementation Results

In this section we give empirical results on our algorithms. As the performance of Algorithms
B and C is sensitive to the size of the entries in the sieve table, we also give a heuristic
argument, backed up by experimental data, that this table is efficiently computable.
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Lemma 2.4.2 indicates that the sieve table will have entries bounded by O(log***n).
In practice, we have found this bound to be pessimistic, and believe that lgnlog®lgn is
a more accurate estimate. Below we give a heuristic argument, patterned after one by
Wagstaff [Wag79], that results in this bound.

Let p be the largest prime less than or equal to B = lgn. We consider a sieve modulus
bound m > B and estimate the probability that this suffices to obtain enough sieve moduli
for all primes up to B. Call a prime “small” if it is less than (g n)'/3, and “large” otherwise.
If n is sufficiently large, then Lemma 2.4.2 guarantees enough sieve moduli for small primes.
For large primes, we need at most t sieve moduli, where ¢ = 6 (the particular constant
does not matter). We now make the heuristic assumption that an integer z is prime with
probability 1/logz, and estimate the probability that more than t sieve moduli exist for all
large primes. This probability is at least

Pr| ¢ sieve moduli exist for p |7,

assurning that the chances of success for each p are independent and monotonically decreas-

ing. Now consider a sequence of m/p integers p + 1,2p+ 1,...,m. The probability that
there are at most ¢ primes in this sequence is at most

mfp—t
(mt/P) (1 _ 1 ) < (m/p)te(t-—m/p)/logm.

logm
Write the right-hand expression as e¥ where y = tlog(m/p) + (t — m/p)/logm; then
Prfat least t sieve moduli exist forall p< B] > (1-— e¥)B.

We wish this estimate to be e~ for some small positive c. Setting these equal we find that
e¥ = 1 — e~*/B ~ ¢/ B; taking logarithms of both sides and simplifying we find that

m Bt m
~ B - (-—)
Togm log B — Blogc+ logm + Btlog B

(note that p ~ B). If c is a constant, this implies that
m ~ BlogZ?B = Ignlog’(lgn).

(We can also take ¢ = 1/(log B)¥ — 0 and get the same result.)
Although its derivation is suspect, this bound seems reasonably precise, as the table
below shows.
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Building the Sieve Table

Decimal | Maximum | Heuristic | Table | CPU Time
Digits | Modulus | Bound | Memory in sec.
10 373 407 48 0.003
25 1609 1622 94 | . 0.004
50 3769 4341 147 0.012
100 9767 11197 245 0.031
250 24229 37525 498 0.113
500 78577 91327 865 0.293
1000 152017 218398 1510 0.707
2500 527591 676371 3289 2.262
5000 1449271 | 1568522 5981 5.402
10000 2839301 | 3600522 10977 12.710
25000 9731863 | 10655493 24781 38.790
50000 | 21021569 | 23998967 46169 89.064

In this table, the first column lists various values of d for n = 10¢. Magzimum Modulus is
the largest sieve modulus, where the first [2loglgn/logp] were taken for each p < lgn.
Heuristic Bound is the value of lgnlog®lgn. Table Memory gives the number of integers
needed to store all the sieve moduli (the space in words was about double this). Finally,
CPU Time indicates the number of CPU seconds used to construct the sieve moduli from
scratch and store them in a table.

In conclusion, we needed the ERH to give provable bounds on the size of the sieve moduli,
and the resulting bounds forced us to use precomputation to construct the table. In practice
this is not a problem, as the results above demonstrate.

Next we give the results of our implementations of Algorithms A, B, and C. We coded all
three algorithms using the same multiple precision arithmetic routines on a DECstation 3100.
The table below gives these results.

Running Time Results
Decimal A-BS A-MN B C
Digits | CPU sec | CPU sec | CPU sec CPU sec
10 0.0289 0.0282 0.0016 | 0.0007 (8)
25 0.1106 0.0866 0.0056 | 0.0012 (8)
50 0.3863 0.2454 0.0147 | 0.0025 (7)
100 1.8744 0.9210 0.0394 | 0.0033 (10)
250 21.9904 7.7954 0.1487 | 0.0119 (8)
500 | 163.0009 | 47.8809 0.3997 | 0.0208 (9)
1000 | 1283.4628 | 323.7992 | 1.4937 | 0.0638 (8)

Decimal Digits is the size of the inputs; we ran each algorithm on the same 10 pseudo-random
integers and tabulated the average running time for each algorithm. There are two columns
for algorithm A: the first gives timings using binary search, and the second gives timings
using the modified Newton method. For Algorithm C we also give the number of times (out
of 10) a divisor was found during trial division.



28 Algorithms in Number Theory

For Algorithm B we did not precompute the sieve table. Instead, a modified version of
the Sieve of Eratosthenes found all the primes below the heuristic bound, which were then
stored in a bit vector. When sieve moduli were needed, we searched for them sequentially in
this bit vector.

For Algorithm C, we first found the primes below b, the trial division bound. Ouly when
trial division failed did we find all the primes below the heuristic bound.

The system’s timing clock has unreliable low order digits, so we ran each algorithm several
times on the same input and timed the whole group. The number of times per input was
inversely proportional to an algorithm’s average running time.




Chapter 3

Polylog Depth Circuits for Integer
Factoring and Discrete Logarithms

3.1 Introduction

In this chapter, we develop polylog depth, subexponential size probabilistic boolean circuits
to factor integers and compute discrete logarithms over prime finite fields. These are the
first results of this type, and they answer a previously open question posed by Adleman and
Kompella [AK88], who asked whether such circuits exist for these two problems.

Recall that the complete integer factorization problem is to write the input IV as a product
of powers of primes. The discrete logarithm problem is, given a finite group G written
multiplicatively, a generator g, and an element a € G, to find a solution z to ¢* = a. In this
chapter we consider only multiplicative groups of finite fields.

Our results on these two problems are motivated by work done on the rigorous analysis of
subexponential time sequential algorithms to factor integers and compute discrete logarithms
[AdI79, Dix81, HR82, OdI85, Pom82, Pom87, Valdl, LP91] and also by the recent work done
on parallel number theoretic algorithms [AK88, BS89b, BCHB6, BvzGHS82, BK83, CG90,
FT88, KMR87, PR85, Mul87, vzG87]. Our proofs rely heavily on a replication technique.
This allows us to reduce the error probability of probabilistic boolean circuits at the cost of
increased circuit size, much as iteration reduces the error probability of randomized sequential
algorithms at the cost of a longer running time.

We base our integer factoring circuit on Dixon’s algorithm [Dix81], which uses the dif-
ference of squares method. Our discrete logarithm circuit is based on the index-calculus
method as described by Adleman [Ad]79]. See also Pomerance [Pom87]. Faster methods
exist for both of these problems, but we discarded them for one of two reasons, which are
discussed below.

The first reason is that some of these methods, such as the Quadratic Sieve of Pomerance
[Pom85], Coppersmith’s algorithm [Cop84], and Number Field Sieve techniques [LLMP90,
Ad191, Gor91] rely on unproven conjectures in their running time analyses. Such gaps in
the theory behind these algorithms are acceptable if one is primarily interested in practical
algorithms. However, our results are largely of theoretical interest, so using fully rigorous
algorithms as the basis of our circuits is essential. By choosing Dixon’s and Adleman’s

29
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algorithms, which are both fully rigorous, we satisfy this criterion.

The second reason is that those faster methods which are fully rigorous, such as Vallée’s
algorithm [Val91] or the class group based algorithm of Lenstra and Pomerance [LP91], do
not improve enough on Dixon’s or Adleman’s algorithms to be useful to us. Choosing such a
method would only change the implied constants in the exponents of the sizes of our circuits.

We say a positive integer is smooth if its prime divisors are small. Adleman’s and Dixon’s
algorithms use smooth numbers in a similar fashion. They start by choosing a bound B and
finding all primes below that bound. Then they generate random elements with special
properties until they get at least B of them which factor completely over the primes below
B. For integer factoring, these special elements are random squares modulo N, where N is
the number to be factored, and for discrete logarithms, these elements are random powers
of the generator. Using these elements, they construct a system of linear equations whose
solution leads to either a proper divisor of the input or the discrete logarithm of the input.

In optimizing the running times of these algorithms, one analyzes the tradeoff involved
in choosing a value for B. If B is small, both finding all the primes and solving the system
of equations are fast, but many random elements must be generated, since the probability
an element factors over the primes below B is low. If B is large, then generating elements
which factor completely over the primes below B is fast, however more of these elements
must be generated and solving the system of equations takes a long time.

Let n be the length of the input, and let L(n) = exp[v/nlogn]. It is widely known that for
most sequential algorithms, B should be L(n)° for ¢ a small positive constant. The resulting
running times are proportional to a small power of L(n). Pomerance [Pom87] showed that an
improved version of Dixon’s algorithm runs in time L(n)*/i‘*“’(l). He also achieved the same
running time for an improvement to Adleman’s algorithm for discrete logarithms. Vallée's
algorithm [Val91] runs in time L(n)\/4—/_3+°(1). Lenstra and Pomerance have the fastest known
rigorous factoring algorithm [LP91] with a running time of L(n)t+e),

Our idea is to set B = n’(™, where §(n) = log®n for d > 0 a constant. We then prove
the existence of:

e Probabilistic boolean circuits of depth O(log?®*? n) and size exp[O(n/ log? n)] for com-
pletely factoring a positive integer with probability 1 — o(1), and

o Probabilistic boolean circuits of depth O(log?®*? n + log®n) and size exp[O(n/ log? n)]
for computing discrete logarithms in the finite field GF (p) for p a prime, with proba-
bility 1 — o(1).

Considering the size of these circuits, it is clear that unbounded fan-in is necessary to achieve
a polylog depth. However, we also give sublinear depth circuits with bounded fan-in of
subexponential size for these problems; we use §(n) = nl/3+o(1) to get bounded fan-in depth
O(n2/3+°(M) and size exp[n?/3+1)].

For an introduction to factoring and discrete logarithm algorithmns, see Koblitz [Kob87].
For surveys of some of the currently best algorithms, along with detailed analyses and further
references, see Pomerance [Pom82, Pom87] and Odlyzko [OdI85].

The rest of this chapter is organized as follows. In section 3.2, we discuss some notation
and definitions. We introduce the replication technique and present our circuits for com-
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pletely factoring integers in section 3.3. In section 3.4 we give our circuits for computing
discrete logarithms. We conclude with some remarks in section 3.5.

3.2 Preliminaries

In this section we discuss some notation and definitions.

All our algorithms are given as probabilistic boolean circuits. We define probabilistic
boolean circuits similarly to standard boolean circuits, but we also allow gates which can
toss a fair coin and use the result for their output. In addition, we also have two special
bits of output; one called the correctness bit, and one called the output bit. The output bit
is 1 if the rest of the circuit’s output “means” something, or in other words, if the circuit
computes something for the function value. The correctness bit signals whether this output
is certain to be correct. The output may be correct without the correctness bit being set. If
the output bit is 0, then the value of the correctness bit is irrelevant.

We will say that a probabilistic circuit has zero-sided error if, whenever the output bit
is on, then the correctness bit is also on. An example is a circuit that attempts to find a
non-trivial divisor of the input. If one is found, then it is always “correct.” If one is not
found, then the output bit is off.

We say a circuit has one-sided error if the correctness bit is on at least some of the time
when the output bit is on. An example is a circuit to test primality by attempting to factor
the input. If a divisor is found, then the circuit is certain the input is not prime, but if no
divisor is found, then the input is only probably prime.

Finally, a circuit has two-sided error if the correctness bit is never on. An example is a
circuit that attempts to completely factor its input; it may not be sure that the divisors it
outputs are prime.

For more information on parallel computation and circuits, see Cook [Coo085] and Karp
and Ramachandran [KR90].

GF(q) is the finite field of ¢ elements, where ¢ = p° for a prime p and e > 1 an integer.
The prime p is called the characteristic of the field. A finite field is prime or has prime order
if e = 1. In this case, GF(q) = GF(p) & Z/(p). GF(q)* is the multiplicative group of the
field. An element g € GF(q)* is a generator if every nonzero field element can be written as
a power of g. Let a € GF(q)* and assume that g is a generator for GF’ (¢)*. Then we can
write g% = a for & an integer; = is called the index or discrete logarithm of a, x is unique
modulo the order of the group GF(q)* which is ¢ — 1, and we write ind ;(a) = =.

3.3 Integer Factoring

In this section we present our polylog depth probabilistic boolean circuit for completely
factoring integers. We begin by reviewing Dixon’s random squares method for splitting
(finding a proper divisor) of a composite integer. We then discuss the replication technique,
and we present a circuit for splitting integers. Finally, we use the circuit for splitting integers
to construct a circuit that completely factors integers.
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3.3.1 Dixon’s Random Squares Method

Dixon’s algorithm is based on the following idea. Given a composite integer N which is not
a prime power, if we can find integers a and b, @ # £b(mod N), such that a® = b* (mod N),
then gcd(a 4+ b, N) is a proper divisor of N. To find a and b, we first find some smooth
squares modulo N. Then we find a linear dependency among them in factored form, which
leads to a perfect square. Dixon [Dix81] proved that this method works with probability at
least 1/2. To make this more precise, here is an outline of Dixon’s factoring algorithm.

Dixon’s Algorithm
Input: positive integer N, not a prime power.

1. Choose a positive bound B, find all the primes below B, and call this the prime base.
Let p1,...,pr be the primes of the prime base, with k = =(B).

2. Repeat until at least k + 1 B-cmootk squares are found:
a) Choose a random integer r uniformly from [2, N —1].
b) Let s = r? mod N. Factor s over the prime base to see if it is smooth.

3. For each smooth square s;, 1 < j < k+ 1, compute the indices e;; such that s; =
15, piY. Let v; = [e1j, .- -, ek;]T mod 2, a column vector over GF(2).

4. Form A = [vi,...,Vks1] and solve the system Ax = 0 for a nonzero vector x over
GF(2). Since A has more columns than rows, such a solution must exist. This can be
found using Gaussian elimination.

5. Writing x = [z1,...,Tk41]7, form a = Hf_if; ry and b = Hf;r} sy’ modulo N. Then
a? = b (mod N) because s; = r?, so ged(a + b, N) is a proper divisor of N with
probability at least 1/2.

For a proof of correctness, see Dixon [Dix81] or Pomerance [Pom87]. One important question
to ask at this point is: What is the probability that an integer is smooth? The following
answers this question.

Lemma 3.3.1 (Canfield, Erdés, Pomerance [CEP83]) Let v = logz/logy. Then
there ezists a constant ¢ > 0 such that ifu > ¢, z > 1, then ¥U(z,y) > zu™%,

Essentially, this lemma says that if w is chosen uniformly between 1 and z, then w 1s y-
smooth with probability at least u~3*, where u = logz/logy. Better estimates are available
for this probability, but this will suffice for our purposes.

Let n = |lg N| + 1, the length of the input N in binary. We can now give an estimated
running time for Dixon’s algorithm. Roughly speaking, if we set u = n/lg B, then the
expected running time of the algorithm is about Bu3*+ B3, ignoring polynomial time factors.
The first term reflects the time needed to find about B distinct B-smooth squares, since
the probability a number is B-smooth is at least u~3 by Lemma 3.3.1. The second term
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reflects the time for Gaussian elimination to find our solution x. Optimizing gives B =
exp[O(v/nlogn)]. For a more exact run time analysis see Pomerance [Pom82, Pom87].

We, however, are interested in an efficient parallel algorithm, or in other words, a shallow
circuit. Since the random squares can be generated simultaneously, the dominant cost is
the depth needed to solve the system of linear equations. Using known methods [BvzGHS82,
Mul87, PR85] a system of m linear equations in m unknowns over GF(2) can be solved in
depth O(log® m) using m©M) gates. For our application, m < B, so this can be done in depth
O(log? B) using at most BO(!) gates. If we set B = exp[O(v/nlogn)] as above, we get depth
O(nlogn), which is clearly not good enough. If we set B = n°M), a polynomial in n, the
depth is fine, but then we must generate u3¥n %) squares, which is no longer subexponential
in n. We compromise by setting B = n®™ where §(n) is a non-decreasing function of n.
In our analysis later, we will leave §(n) as a parameter, which we will optimize for both
unbounded fan-in circuits and bounded fan-in circuits. As we mentioned earlier, to get the
polylog depth circuit for factoring, we use §(n) = log? n for d a positive constant.

3.3.2 The Replication Technique

Before we prove our main result, we must first develop a simple replication technique. The
idea is to increase the probability with which a probabilistic circuit computes its output
correctly by duplicating that circuit several times in parallel.

Let C, be the circuit for inputs of length n in the probabilistic circuit family C. C,
computes a function probabilistically, so let p(n) be the probability that Cy’s output is a
correct function value.

Let g(n) be our target error probability. In other words, we want to duplicate C enough
times so that with probability at least 1 — g(n), at least one of the C, subcircuits computes
its output correctly.

We construct a new probabilistic circuit family R, where each circuit R, is as follows.
First, R, runs m(n) copies of C, in parallel, where m(n) > (1/p(n))log(1/g(n)). Then we
use a simple fan-in structure to select a C,. subcircuit whose output and correctness bits
are both set, if there is one. Numbering these subcircuits from 1 to m(n), we choose the
lowest numbered such subcircuit for the output of R,. If no subcircuit generates a correct
function value as output with certainty, then R, either uses the output of the first circuit
which generates an output, if there is one, or chooses some “best” circuit to copy. How
this choice is made we leave to the specific application of the technique. If no C; subcircuit
generated an output, then R,’s output bit is turned off.

The probability that all the Cy, subcircuits fail is at most

1 -p(n)~ ! logq(n) |
(1= p(n))™® < (1—P(n)~l> < e = g(n),

as desired.
The size of the circuit R, is O(m(n) - size(C,)), and the depth of R, is O(logm(n) +
depth(C,,)) for the bounded fan-in case or the depth(Cn) + O(1) for the unbounded fan-in

case.
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Notice if C, has zero- or one-sided error, then so does R,. This technique can also
be applied to circuits with two-sided error, but not in all cases; R, must be modified to
somehow choose which C, subcircuit has the “best” output, if that is possible. If it is, then
the resulting circuit R, has two-sided error.

For example, if a circuit C,, produces correct output with probability 1/n, we can copy
C, 2nlogn times using this technique to get a new circuit which produces correct output
with probability 1 — 1/n?.

We will apply this replication technique repeatedly throughout the rest of this chapter.

3.3.3 A Circuit for Splitting IV

Theorem 3.3.2 Let §(n) be a non-decreasing function of n, §(n) < O(y/n/logn). There
exist both

1. an n/§(n)-space uniform probabilistic circuit family with bounded fan-in of depth
C(v/nlog*® n + §(n)?log’ n + n/6(n)) and size exp[O(n/é(n))], and

2. an n/8(n)-space uniform probabilistic circuit family with unbounded fan-in of depth

O(6(n)?log® n) and size exp[O(n/8(n))]

which on input N, a positive composite integer of n bits, produce as output a proper divisor
of N with probability at least 1/2 — o(1).

Proof: We will describe how to parallelize each step of Dixon’s algorithm.

We can safely assume that N is not a prime power, since we can compute integer roots
in NC? (see chapter 2).

Let B = nf(™.

Step 1.

To find all the primes in the prime base, we perform trial division in parallel. This can be
done in depth O(log B) = O(8(n) logn) and size BO®.

Steps 2 and 3.

Next, we construct a subcircuit to do the following. First, choose r € (2, N — 1] uniformly
and set s = r? mod N. For each i, compute e; such that pf' fully divides s. If 15, pf = s,
then s is B-smooth, so output s, r, and v = [e,..., ex)T

The total depth of this subcircuit is at most O(8(n) log?n), and the probability that
it generates an output is at least u™>* where u = n/(8(n)lgn), by Lemma 3.3.1, for n
sufficiently large.

We then duplicate this subcircuit creating k+ 1 groups of (2log B)u®* subcircuits. Using
the replication technique, the probability this results in at least k + 1 smooth squares is at

least 1 — (k+1)/B*=1—o(1).
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The size is now exp[O(n/é(n))] since

w3t < n3n/(5(n)lgn) < eO(n/&('n))

and the k and B factors are absorbed in the constant of proportionality by the bound on
§(n). The unbounded fan-in depth is still O(8(n) log? n), but the bounded fan-in depth has
grown to O(n/8(n) + 6(rn)log’ n).

Step 4.

Now we construct the matrix A = [vy,...,Vgs1]. We then search for a non-zero solution
to the equation Ax = 0 over GF(2), where we have reduced the entries in A modulo 2.
This can be done by solving the k + 1 linear equations Ay = v; in parallel, where A; is
simply A with the jth column removed. One of these equations must give a solution. If we
find one for some index j, then x = [y1,...,¥i-1,1,j,---,¥k]? is a solution to the original
system, where y = [y1,...,y]7. This can be done in depth O(6(n)?log? n) and size BO®)
(see [BvzGH82, Mul87, PR85]).

Step 5.

Now, using our solution x, we form

k+1 k+1 2 kLR e
T Tj ) iy T3 .
a=[[r and b= |[[s7| =1Ipi="="" modulo N.

j=1 J=1 =1

Since @ and b are random with a2 = b* (mod N), by Dixon [Dix81], we have gcd(a + b, N) as
a proper factor of N with probability at least 1/2. To compute the greatest common divisor,
we use the probabilistic circuit of Adleman and Kompella [AK88] which has unbounded
fan-in depth of O(log® n), bounded fan-in depth of O(y/nlog>® n) and size exp[O(v/n logn)].
It only succeeds with probability 1/2, but it has zero-sided error, so we can copy it 2logn
times and apply the replication technique to decrease its error probability to 1 /n.

The total size of this integer splitting circuit is exp[O(n/8(n))]. The unbounded fan-in
depth is dominated by solving the linear equations (Step 4) at O(6 (n)? log® n). The bounded
fan-in depth is O(y/n log?® n + 6(n)? log? n + n/8(n)).

Since our circuit is composed of large numbers of relatively small circuits together with
simple fan-in structures, our circuit is clearly O(n/é(n))-space uniform. O

If we set §(n) = log®n for d > 0 a constant, we get an O(log?®*% n) depth circuit of size
exp[O(n/log?n)]. The bounded fan-in version has optimal depth for 6(n) = n'/3/ log?*n
giving a depth of O((n log n)?/®) and size exp{O((n log n)?/3)].

Also notice that this circuit has zero-sided error. If a proper divisor is found, then that
is the output, and there is no doubt about its correctness. If only a trivial divisor is found,
then the circuit simply turns off its output bit.



36 Algorithms in Number Theory

3.3.4 A Circuit to Completely Factor N

Now we are interested in constructing a probabilistic circuit which takes as input an n-bit
integer N and computes as output the complete factorization of N into powers of primes.

Once we have an algorithm to find a nontrivial divisor of a composite number, creating
a sequential algorithm to completely factor that number is relatively easy. Our task is a bit
more complex; we want to find a complete factorization in parallel. One approach might be
to attempt to show that the factoring algorithm splits N into two divisors of roughly the
same size; then we can factor these two divisors in parallel and repeat. The goal would be
to show that this process would halt in O(logn) levels, where each level is the depth of one
splitting circuit. This approach might work, however we opt for something a little simpler;
by replicating the splitting circuit many times in parallel, there is a good chance that each
prime power divisor appears as the output of one of these circuits.

Let N =[I™, ¢i' be the prime factorization of N. Let B = nf(") as before. Assume that
we removed all prime factors below B from N. Then, the number of distinct primes left is
m < logg N = n/(6(n)lgn).

Let s be a quadratic residue modulo N. Then modulo each prime power divisor g, s
has exactly 2 square roots (we can safely assume B > 2 so that N is now odd). Thus,
modulo N, s has exactly 2™ square roots. Let a and b be arbitrary square roots of s.
Then ged(a — b, N) will be the product of those prime powers g5 for which a = b(mod ¢;*).
Similarly, gcd(a + b, N) gives those prime powers where a = —b.

Let d be the output of a splitting circuit. Then the probability d or NV /d is a prime power
is at least 2™, which is no less than 9-n/(6(m)lgn)  This observation is merely an extension
of Dixon’s theorem [Dix81].

Corollary 3.3.3 Let §(n) be a non-decreasing function of n, §(n) < O(y/n/logn). There
exist both

1. an n/8(n)-space uniform probabilistic circuit family with bounded fan-in of depth
O(v/nlog>* n + 6(n)?log’ n + n/6(n)) and size exp[O(n/8(n))], and

2. an n/8(n)-space uniform probabilistic circuit family with unbounded fan-in of depth

0O(8(n)?log® n) and size exp[O(n/6(n))]

which, when given as input a positive integer N of n bits in length, output the complete
factorization of N as a product of prime powers, with probability 1 — o(1).

Proof: We will now describe how to construct the circuit. Correctness will follow from the
discussion above.

First we will construct a subcircuit which produces a prime divisor of N with nonzero
probability. This subcircuit is composed of four steps.

1. We remove all prime factors smaller than B from V.

2. We factor N using the splitting circuit from Theorem 3.3.2. By the discussion above,
the probability that the result is a prime power is at least 9= n/(8(n)lgn)
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3. We compute the smallest exact integer root of each of the two divisors generated in the
previous step using the V'C root computation algorithm of Bach and Sorenson [BS89b)
(see chapter 2). (If one of those divisors was a prime power, we now have a prime
divisor.)

4. We now take the integer roots from the previous step, which we hope are primes, and
perform a prime test on them. To do this, we attempt to factor each 4n? times in
parallel. By the replication technique and Theorem 3.3.2, if we do not have a prime,
then with probability at least 1 — e~™, for sufficiently large n, we will discover this
fact by finding a proper divisor.

So this subcircuit will give a prime divisor of N as its output with probability 9=/ (5(n)lgm)
Notice that this subcircuit has two-sided error. The probability that it says it has found a
prime divisor and is wrong is at most e~™. This error is small enough that we can essentially
ignore it.

Second, we copy this subcircuit (3 logn)2™/ (é(m)1en) times using the replication technique
to get a circuit which finds some prime divisor of N with probability at least 1 —1 /n3. Our
“best” subcircuit whose output gets copied is the first one which generates an output.

Third, we copy this circuit n? times to get n? prime divisors of N, obviously with some
of them duplicated. By the above discussion and Dixon’s theorem [Dix81], each prime is
equally likely to occur, so clearly the probability that one of them is omitted from this list
of n? primes is o(1). We then sort this list and remove duplicates. We finish by raising the
remaining primes to appropriate powers and computing their product. This should equal N.
The probability that this results in a complete factorization is 1 — o(1).

The size and depth of the resulting circuit are dominated by the size and depth of the
integer splitting circuits, with larger constants of proportionality. O

As for the splitting circuit, setting é(n) = log? n for some constant d > 0 gives a polylog
depth, subexponential size circuit. The bounded fan-in version has optimal depth for §(n) =
n1/3/log?®n for a total depth of O((nlogn)?/3) and size exp[O((nlogn)*/®)]. Notice that
this circuit has two-sided error in the sense that it never knows if its output is indeed a
complete factorization or not, so its correctness bit is always off.

3.4 Discrete Logarithms

In this section we give probabilistic circuits of polylog depth and subexponential size to
compute discrete logarithms over certain finite fields. First, we will outline the index-calculus
method for computing discrete logarithms as given by Adleman [AdI79]. Second, we will
present our circuit for prime finite fields. And finally, we will sketch the construction of a
circuit for finite fields of small characteristic. :

The index-calculus method for computing discrete logarithms has many algorithmic sim-
ilarities to the random squares method for factoring integers. Therefore we expect that most
of our ideas for factoring integers will apply to computing discrete logarithms. Below we
outline Adleman’s index-calculus algorithm for the field GF'(p).
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Adleman’s Discrete Logarithm Algorithm

Input: p a prime, g a generator for GF(p)*, and a € GF(p)*.
Phase I:

1. Find all the primes below B. Call this set of primes the prime base. Let k = n(B).
Let py,...,px be the primes of the prime base, and write po = 1. Let [ = 2logk + 3.

2. For each 4, 1 < i < k, repeat (a) and (b) until at least ! distinct B-smooth numbers
are found, and for ¢ = 0 until at least kI such numbers are found:
a) Choose an integer r uniformly from [1,p — 1].
b) Let s = g"p; mod p. Factor s over the prime base to see if it is smooth.

3. For each smooth number s;, 1 < j < 2kl, compute the indices e;; such that s; =
15, pi7. Let v; = [exj,...,ex;]. For s; = g7ip; with ¢ > 0, subtract 1 from the ith
entry in v;.

4. Form A = [vq,...,veu]T and r = [ry,...,rou]7. With probability at least 1 —1/2k,
A is a rectangular matrix of full rank (see [Pom87]). Find a solution to the equation
Ax = r(modp — 1). This can be done by factoring p — 1 and using the Chinese
remainder theorem. Solutions are found modulo each prime power factor and combined.
Writing x = [z1,...,2x]T, we have ind o(pi) = z:.

Phase II:

1. Choose p € [1,p— 1] until @ = ag” mod p is B-smooth.

2. Factor a over the prime base to get the equation a = 15, p*. Taking logs of both

sides then gives p + ind ;(a) = 5, eiind 4(p;), which determines ind ,(a).

For a rigorous analysis of the running time and correctness see Adleman [Ad179],
Odlyzko [0dI85], or Pomerance [Pom87]. If B = L(n)° for some small constant c, then
the sequential running time of this algorithm is exp[O(+/nlogn)], just as for integer factor-
ing.

Theorem 3.4.1 Let §(n) be a non-decreasing function of n, 6(n) < O(y/n/logn). There
ezist both

1. an n/8(n)-space uniform probabilistic bounded fan-in circuit family with depth

O(6(n)?log?n + +/nlog®® n + n/é(n)) and size exp[O(n/6(n))], and

2. an n/§(n)-space uniform probabilistic unbounded fan-in circuit family with depth
O(6(n)?log? n + log® n) and size exp[O(n/6(n))]

which, on inputs p a prime, g a generator of G’F(p)*,‘ and a € GF(p)* of total length n in
binary, solves the discrete logarithm problem in GF(p) with probability 1 — o(1).
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Proof: (sketch) The structure of the proof of this theorem strongly resembles that of
Theorem 3.3.2, so we merely sketch the differences. Again, let B = nb(m,

Steps 2 and 3 compute random powers of the generator and also multiply by primes
from the prime base. This uses Adleman and Kompella’s modular exponentiation circuit for
prime modulus [AK88], which has unbounded fan-in depth O(log® n), bounded fan-in depth
O(yv/nlog** n), size exp[O(v/nlogn)], and has zero-sided error. We apply the replication
technique to reduce its error probability from 1/2 to o(1).

Once the system of linear equations is assembled, in Step 4 a solution is found modulo
p—1. Since the ring Z/(p — 1) is well-endowed as defined by Borodin, Cook, and Pippenger
[BCP83], finding a solution to the system is in MC%. For more details in the sequential case,
see Pomerance [Pom87] or Odlyzko [0d185].

Finally, we add Phase II, which is simply choosing p € [1,p — 1] until g°a is B-smooth.
We can do this in parallel using techniques similar to what we use to generate random powers
of the generator. Finally, we factor over the prime base to get a solution.

The overall size of the circuit is exp[O(n/6(n))]. For the unbounded fan-in case, the depth
is dominated by the depth of the subcircuit for solving the system of linear equations modulo
p—1, and modular exponentiation, which is O(6(n)? log? n+log®n). For the bounded fan-in
case, the total depth is at most O(6(n)?log’n + n/é(n) + v/nlog>* n). O

As for the factoring circuits, setting 6(n) = log? n for some constant d > 0 gives a polylog
depth, subexponential size circuit for computing discrete logarithms. The bounded fan-in
version has optimal depth for &§(n) = n/3/log*®n for a total depth of O((n log n)?/) and
size exp[O((n log n)?/3)], the same bounds as for integer factoring. Also note that this circuit
has zero-sided error.

We can also apply these methods to finite fields of small characteristic; we will now
outline the changes necessary.

Our finite field is GF(q) = GF(p™). We will assume that we are given a representation
for the field of the form GF(p)[z]/(f), where p is the characteristic of the field, and f(z)
is a monic irreducible polynomial of degree m over GF(p). Elements of the field, then, are
represented as polynomials of degree less than m over GF(p).

Our algorithm is based on Hellman and Reyneri’s [HR82]. There two main differences
from the proof of Theorem 3.4.1. The first is that an element is smooth if it factors as a
polynomial into irreducibles of small degree. Thus, the prime base is the set of all monic irre-
ducible polynomials with degree less than some bound < m. We need something analogous
to Lemma 3.3.1 to bound from below the probability that a randomly chosen polynomial is
smooth. Odlyzko [0d185] does give such a result. See also Pomerance [Pom87]. The second
difference is that we need modular exponentiation in the field. This problem was shown to
be in NC by Fich and Tompa [FT88], and so is not a difficulty.

Solving the system of linear equations is largely the same. Thus, we have a result similar
to Theorem 3.4.1 for finite fields of small characteristic.

The computation of discrete logarithms for finite fields of moderate size characteristic
is still largely an open problem in the sequential case. It seems that any new results there
would imply parallel algorithms of the type given here, as long as the underlying methods
use the index-calculus technique.
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3.5 Remarks

We have presented polylog depth probabilistic circuits to factor integers and compute discrete
logarithms over finite fields of prime size or small characteristic, but there are still many
unresolved questions.

Is it possible to extend our discrete logarithm results to fields of intermediate size char-
acteristic? El Gamal gave heuristic sequential algorithms for the case GF(p™) for m fixed
[EG85b, EG85a]. It might be possible to parallelize these algorithms using our methods,
once they are made rigorous.

Our circuits, though subexponential in size, are still quite large. Might it be possible to
reduce these very large circuits to something around exp[O(y/nlogn)] and still maintain a
polylog depth?

Finally, Adleman and Kompella [AK88] suggested their results might lead to sublinear
space bounds for computing integer GCD’s and modular exponentiation. Sirnilarly, our
results might also lead to sublinear space bounds for factoring and discrete logarithms.
Intuitively, the parallel computation thesis, which asserts that sequential space and parallel
depth (or time) are equivalent in some sense, implies that all these problems might have some
kind of sublinear space bounds. And in fact, if these circuits were deterministic instead
of probabilistic, this would be the case. Unfortunately, the fact that these circuits are
probabilistic seems to be more than simply an inconvenience in proving sublinear space
bounds. We will now outline how a sublinear space bound proof would proceed if these
circuits were in fact deterministic, followed by an explanation of the difficulty involved in
applying this approach to probabilistic circuits.

Borodin [Bor77] proved that, given an O(S(n))-space uniform circuit of depth O(S(n)) to
compute a function f for inputs of length n, then in fact f is computable in space O(S(n)).
The basic construction is to evaluate the circuit using a Turing machine, and the uniformity
condition is used to give a subroutine for constructing the needed pieces of the circuit. The
total space used is proportional to the stack space needed for evaluating the circuit plus
the space needed to construct pieces of the circuit. The stack space is proportional to the
circuit’s depth, and the construction space is bounded by the uniformity condition.

Adleman and Kompella’s circuits for integer GCD and modular exponentiation are
nl/2+o(1)_gpace uniform of depth n/2*°(), and our factoring and discrete logarithm cir-
cuits are n?/3+°()_space uniform of depth n?3+°(). If these were deterministic circuits,
we could apply Borodin’s methods to get corresponding sequential space bounds of n!/2to()
and n2/3+o(1)'

Converting Borodin’s results to the standard probabilistic Turing machine model as given
by Gill [Gil77] apparently does not work. The reason is that, during the evaluation of the
circuit by the Turing machine, the output of any one gate may be needed more than once.
Each time the gate’s output is evaluated, we must get the same answer. Thus, if that gate
performs a coin toss, the same result must be used each time, which seems to imply that the
result of the toss must be saved, which in turn means storing the result on tape. This is fine,
but the number of coin tosses used by these circuits is much too large for this approach to
give sublinear space bounds. One way around this problem is to redefine the probabilistic
Turing machine which evaluates the circuit to use a read-only, two-way tape for its source of




3. Parallel Factoring and Discrete Logs 41

random coin tosses. But then we have transformed the original problem to that of analyzing
the differences between two models of probabilistic Turing machines.

Attempts to prove a sublinear nondeterministic space bound will run into a similar sit-
uation. So using this approach to prove sublinear space bounds for these problems seems
difficult at best, whether it be on a probabilistic or nondeterministic Turing machine.

Currently, no bound better than linear, deterministic space is known for any of these
problems.



Chapter 4

The k-ary GCD Algorithm

4.1 Introduction

Given two positive integers 4 and v, the greatest common divisor (GCD) of u and v is the
largest integer that evenly divides both u and v. In this chapter, we present the k-ary GCD
algorithm, a generalization of the binary algorithm of Stein. Interestingly, this new algorithm
has both a sequential version that is very practical and parallel versions that rival the best
previous parallel GCD algorithms.

Applications for greatest common divisor algorithms are numerous, and include com-
puter algebra systems, symbolic computation, cryptography, and integer factoring. Perhaps
the most famous and well-studied GCD algorithm is attributed to Euclid and has a ©(n?)
worst-case running time on n-bit inputs. Other algorithms with a ©(n?) running time in-
clude the least-remainder Euclidean algorithm, the binary algorithm of Stein (see Brent
[Bre76a]), the binary algorithm using left shifts [Bre76a], Purdy’s algorithm which exploits
carry-free arithmetic [Pur83], and Norton’s shift-remainder algorithm [Nor87}. In addition,
there are variants of many of these algorithms; for instance Lehmer designed a variant of
the Euclidean algorithm for multiple precision inputs [Leh38]. The fastest known sequen-
tial GCD algorithm is due to Schonhage [Sch71]. It uses Fast Fourier Transform methods to
achieve an O(n log® nloglog n) running time, but it is not considered practical for reasonably
sized inputs. Bshouty [Bsh89] modified Stein’s binary algorithm by “compressing” multi-
ple iterations and using precomputed tables. The resulting algorithm uses only O(n/logn)
arithmetic operations and is optimal for certain models of computation, though the algo-
rithm does not appear to be practical. For multiple precision inputs, many consider the
binary and left shift binary algorithms to be the best in practice. For general references on
GCD algorithms, see Knuth [Knu81b] and Bach and Shallit [BS90].

In this chapter, we show that the k-ary GCD algorithm has a ©(n?/logk) worst-case
running time when k is a prime power. If £ is chosen to be roughly n, this gives a subquadratic
algorithm. In terms of the number of operations used, this new algorithm matches Bshouty’s
algorithm. More importantly, we demonstrate that this new algorithm is very practical.
We implemented a multiple-precision version of the algorithm, and for & carefully chosen,
the k-ary GCD algorithm outperformed several other algorithms, including the Euclidean
algorithm by a factor of 12, the binary algorithm by a factor of 2, and the left shift binary
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algorithm by 35%.

The parallel complexity of computing greatest common divisors is a long-standing open
problem. Deng [Den89] showed that certain GCD related problems are NC-equivalent to
finding the optimal solution of a two-variable linear program. Although there are several
sublinear time parallel GCD algorithms, no M'C algorithm is known, and computing GCD’s is
not known to be P-complete. See also the paper by Greenlaw, Hoover, and Ruzzo [GHR1].

In this chapter we discuss parallel algorithms in terms of the parallel random access ma-
chine (PRAM) model. Previous parallel GCD algorithms include those by Kannan, Miller,
and Rudolph [KMR87], who gave the first sublinear time algorithm, Adleman and Kompella
[AK88], who gave a polylog time randomized algorithm using a subexponential but super-
polynomial number of processors, and Chor and Goldreich [CG90], who currently have the
fastest deterministic parallel algorithms. Chor and Goldreich’s algorithms are based on the
linear time algorithm of Brent and Kung [BK83] for systolic arrays. For a general reference
on the PRAM model of computation and parallel algorithms, see Karp and Ramachandran
[KR90].

We give four new parallel algorithms based on the k-ary method:

e An EREW PRAM algorithm with a running time of O(n) using O(nlognloglogn)

processors.

o A CRCW PRAM algorithm with a running time of O(n/logn) and a CREW PRAM
algorithm with a running time of O.(n loglogn/logn), both using O(n'*¢) processors.
These algorithms match the complexity bounds obtained by Chor and Goldreich.

e A CRCW PRAM algorithm with a running time of O(log® n) using exp[O(n/ log® n))
processors for any d > 1. This deterministic, polylog time algorithm with a subexpo-
nential number of processors matches a result of Chor and Goldreich. Adleman and
Kompella’s algorithm has a running time of O(log? n) using exp[O(+/nlogn)] proces-
sors, but requires randomness.

Although the k-ary GCD algorithm is more complicated than, say, the Euclidean or the
binary algorithms, a straight-forward parallelization of the algorithm is sufficient to rival
the best previous algorithms. We believe the k-ary GCD algorithm is simpler than either
Bshouty’s algorithm or Chor and Goldreich’s algorithm, both of which “compress” multiple
iterations of simpler sequential algorithms into one iteration using table lookup.

The rest of this chapter is organized as follows: In the next section, we present the k-ary
GCD algorithm in detail. In section 4.3, we discuss the sequential version of the algorithm,
proving a subquadratic worst-case running time when k is a prime power and presenting the
implementation timing results. In section 4.4, we discuss the four parallel algorithms. We
conclude with some open problems.

4.2 A Description of the Algorithm

In this section we describe the k-ary GCD algorithm. Although our point of view is sequential
in nature, the ideas presented here apply to parallel versions of the algorithm as well.
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We begin by presenting the binary algorithm. From that we generalize to the k-ary
algorithm, which we describe in detail. We then analyze the number of iterations required
by the algorithm.

4.2.1 The Binary Algorithm

Since the k-ary GCD algorithm is a generalization of the binary algorithm, we begin with a
review of the latter. Let u and v be the inputs to the algorithm, and assume they are both
odd. Then the binary algorithm consists of the following steps:

Binary GCD Algorithm
Input: odd positive integers u, v

while u # 0 and v # 0 do:
if u is even, u := u/2
else if v is even, v := v/2
else
t:=|u—v|/2;
if u>v then u:=t else v :=1t;
if u =0 then t := v else t 1= u;
Output(t);

Notice that division by 2 does not affect the gcd(u,v), as u and v are both initially odd.
Since each iteration reduces the product uv by a factor of 2 or more, the number of iterations
of the algorithm is at most 1g (uv) + O(1).

The binary algorithm is very practical because a multiple precision division subroutine is
not required. In addition, the divisions by 2 can often be implemented with a shift operation.
For multiple precision inputs, this makes the binary algorithm significantly faster than the
Euclidean algorithm on many computers.

There is much literature devoted to the analysis of the binary algorithm, and it has many
variations. For more, see Brent [Bre76a], Knuth [Knu81b], or Bach and Shallit [BS90]. For
an extended version of the binary algorithm, see Norton [Nor85] or Knuth [Knu81b].

4.2.2 The Main Ideas

We now wish to generalize the binary algorithm to use any positive integer k in place of 2.
Let u and v be the inputs to the algorithm, and assume that they are relatively prime to k.
Then the main loop of the algorithm is as follows:
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while u # 0 and v # 0 do:
if ged(u, k) > 1, v :=u/ ged(u, k)
else if gcd(v, k) > 1, v := v/ ged(v, k)

else
find nonzero integers a, b satisfying au + bv = 0( mod k);
t:= |lau + bv|/k;
if u>wv thenu:=1telsev:=1t
Notice that if we set k = 2, @ = 1, and b = —1 we have the binary algorithm as a special
case.

The integer pairs a,b can be precomputed and stored in a table, as can the ged(z, k) for
0 < z < k. The tables are then indexed using v mod k and v mod k. We will postpone the
discussion of how these tables are constructed.

If we are to build a GCD algorithm around our main loop, we must address the following
two questions:

1. Can the main loop be modified to correctly compute the ged(u,v)?

2. How large are the values of a and b, and can they be found efficiently?

In answer to the first question, notice that initially » and v are relatively prime to
k, so divisions by divisors of k will not affect gcd(u,v). However, replacing (u,v) by
(min{u, v}, |au + bv|/k) does not preserve the greatest common divisor of u and v in general.
But we prove the following:

Lemma 4.2.1 For u, v, a, and b integers, if ¢ = gcd(u,v) and b = gcd(v, au + bv), then
g|hand hfg|a.

Proof: The lemma follows by noticing h = ged(v, au). O

For the k-ary GCD algorithm to work, then, before the main loop we must remove and
save common divisors of u and v that may divide possible values of a and b, and after the
main loop, we must remove the factors introduced by the divisors of @ and b. For this to be
practical, we must show that a and b are always small, which leads us to the second question
above and its answer, the following lemma:

Lemma 4.2.2 Let k > 1 be an integer. For every pair of integers (u,v), there ezists a pair
of integers (a,b) with 0 < |a| + |b] < 2[Vk] such that au + bv = 0 (mod k).

Proof: We use a simple pigeon-hole argument. Consider the mapping (a,b) — au +
bv mod k. There can only be k distinct images to this map. If we let a and b range over
1 <a,b< [\/E] + 1, we have more than k pairs in the domain. Thus there must be
two pairs (a1,b;) and (ag,bz), with aq #£ a; or by # by, that map to the same residue
class modulo k. This means the pair (a; — ag,b; — b2) maps to 0, and further it satisfies
0< |a1 —_ a2| + !bl - bgl < 2[\/7;] a

Kannan, Miller, and Rudolph [KMR87] prove results similar to Lemmas 4.2.1 and 4.2.2.
Their algorithm searches in parallel for an integer a < n such that au —qv = O(u/n), where

g = lau/v].
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Lemma 4.2.2 implies that for k£ a prime, uv is reduced by a factor of Q(vV'k) each time
through the main loop, which implies only O(n/log k) iterations are needed.
The complete algorithm will consist of four phases:

1.

The precomputation phase constructs a table of @ and b values needed in the main
loop and a table containing the ged(z, k) for 0 < z < k.

The first trial division phase removes and saves common divisors d of u and v satisfying

dS\/E+1ord]k.

. The main loop, which is described above.

The second trial division phase removes divisors d < vk + 1 introduced by the main
loop and then restores the divisors saved in phase 2.

We give more details in the next subsection. At this point an example is in order.

An Example

Let u = 263, v = 151, and k = 7. We assume the precomputation phase has been performed,
and the first trial division phase finds no common divisors. We proceed to the main loop:

1.

We find that v = v = 4(mod7), so we use @ = 1 and b = —1, and calculate |au +
bv|/7 = |263 — 151|/7 = 16 and set u = 16 since u was larger.

We have v = 16 = 2 and v = 151 = 4(mod 7), so we use a = 2 and b = —1 to give
lau + bv|/7 = |32 — 151|/7 = 17, which we assign to v since v was larger.

We now have u = 16 =2 and v = 17 =3 = —4(mod 7). So we use a = 2 and b =1
this time and calculate |au + bv|/7 = |32 + 17|/7 = 7 which we assign to v again since
it was larger.

Now v is divisible by k = 7, so we divide to get v = 1.

We have u = 16 =2 and v = 1 = 1(mod7), so we use a = 1 and b = —2 to give
lau + bv|/7 = |16 - 2|/7 = 2 which we assign to u.

For the last step we have u = 2 and v = 1 so @ = 1 and b = —2 again to give
law 4 bv|/7 = 0, which we assign to u, and we are done since u is zero.

Since v has no divisors, the final trial division phase has no effect, and we conclude that the
GCD of 263 and 151 is 1, the value of v. As both the inputs are in fact prime, this is correct.

4.2.3 The Detalils

Let u and v be the inputs to the k-ary GCD algorithm. We now give a detailed description
of the algorithm by phase.
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Phase I: Precomputation

The goal in the precomputation phase is to construct a table A of pairs (a,b) such that,
when given integers u and v, we can quickly look in the table to find a and b satisfying
au + bv = 0(mod k) with |a| + |b| minimized. We will also compute a table P of prime
divisors used in the trial division phases, a table G of GCDs, and a table I of inverses
modulo k. All these tables can be implemented using one-dimensional arrays with a total of
O(k) storage locations or O(k log k) bits.

Tables I and G:

We store ged(z, k) in G[z], and if G[z] = 1 we store 1/z mod k in I[z], for 0 < z < k.
Both can be computed using the extended Euclidean algorithm in O(klogk) arithmetic
operations. Alternatively, GCD computations can be avoided as follows: Using the sieve
of Eratosthenes, factor all integers up to k and compute the entries for table G from this.
Table I can be computed using the identity £~ = z*%)~! (mod k).

Table A:
Given u and v relatively prime to k, let = u/v (modk). Then u — zv = 0(mod k). If
we can find a value of a such that both |a| and |az| are small, we then use b = —az ( mod k).

In the main loop we can easily compute z = u/v using table I described above. So in
table A we store the optimal value of a for each z.

Table A can be constructed using exhaustive search in O(kv'k) arithmetic operations,
since by Lemma 4.2.2 the largest value of a we ever need is O(V'k). The table may also be
constructed as follows: (1) Loop over all values of a and b up to vk + 1. (2) For each pair
a,b find all solutions z to the equation b = —az ( mod k). Note that not every pair a,b has
a solution z. (3) For every solution & with ged(z, k) = 1, store a in A[z]. This requires only
O(klog k) arithmetic operations using an extended GCD algorithm.

Table P:

The prime divisors needed in phases 2 and 4 are stored in table P. These are just the
primes below vk + 1 and the prime divisors of k. Using trial division and the Sieve of
Eratosthenes, all can be found in O(v/k log k) arithmetic operations.

For example, for k = 7 we have the following tables:

T 01 2 3 4 5 6
Table I z~ L 1 -3 2 2 3 -1
Table A a: 1 1 2 2 1 1
Table G ged(z,k): 7 1 1 1 1 1 1
Table P 2 3 7

Suppose u = —3 and v = 2(mod 7). We begin by using table I to find v=! = —3. We then
compute z = u/v = 2. Using table A we find @ = 1, and we compute b= —az = —2. Sure
enough, au + bv =1 x (=3) + (=2) x 2 = 0(mod 7).

Note that if the k-ary GCD algorithm is to be used more than once, the precomputation
phase need not be repeated, as the tables constructed depend only on k and not on the
inputs.
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Phase II: Trial Division

The purpose of the first trial division phase is to remove all common divisors d of u and v
where d < vk + 1 or d | k. Possible values of d are listed in table P. We save the common
divisors found in g.

g:=1
for every d in table P do:
while d | u and d | v do:
u:=u/d;v:=v/d; g:=g xd;

Phase III: Main Loop

The main loop of the k-ary GCD algorithm was discussed earlier. Below we show how the
tables are used to compute GCDs and find the a, b pairs:

while u # 0 and v # 0 do:
u' :=u mod k; v’ := v mod k;
if G[u'] > 1 then u := u/Gu']
else if G[v'] > 1 then v := v/G[v']
else
z :=u' x I[v'] mod k;
a:= Alz]; b:= —a x £ mod k;
t = |au + bv|/k;
if u>vthenu:=telsev:=t

Phase IV: Trial Division

The final trial division phase removes the extraneous divisors introduced during the main
loop, and restores those removed in the first trial division phase.

ifv=0 then t := u else t := v;

for every d in table P do:
while d | ¢, t :=t/d;

g:=1xg

Output(g);

4.2.4 Counting Iterations

We conclude this section by proving upper and lower bounds on the number of iterations
of the main loop for all values of k& > '1. The difficulty here is to bound the number of
iterations which perform the transformation u := u/gcd(u,k). The idea is to show if we
repeat this transformation twice, the first time we must get a large GCD. We begin with
some definitions.

Let Q(n) = min{p® : p° || n, and p is prime }. For example, if n is a prime power,

Q(n) = n. Also Q(40) = 5 and Q(20) = 4.
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Although not important for our application, note that computing the value of Q(n) is
polynomial-time equivalent to factoring n. We also have Q(n) < v/n unless n is a prime
power, (1/z) Tnes @(n) ~ z/(2logz), and #{n < z: Q(n) < 23} > z/2 for z sufficiently
large.

Interestingly, the number of iterations of the main loop of the k-ary GCD algorithm
depends on Q(k).

Theorem 4.2.3 Ifk > 1, k = o(log?(wv)), and ¢ = Q(k), then on positive integers u and v
as input, the k-ary GCD algorithm computes g = ged(u,v), and in the worst case the number
of iterations is O(log(uv)/logq).

We prove this using the following lemmas:

Lemma 4.2.4 Let u and k be positive integers, p a prime, and e > 0 such that p° || k. Also
let g = gcd(u, k) and h = ged(u/g,k). If p| h then p° | g.

Proof: Suppose p | h and pf || g with f < e. Since h | u/g, gh | v and p*' | u. But
p't! | k as well, implying p/*! | g since g = gcd(u, k), a contradiction. O

Lemma 4.2.5 Ifk > 1 and g = Q(k) then the number of iterations of the main loop of the
the k-ary GCD algorithm is O(log(uv)/ logq).

Proof: Consider any two consecutive iterations of the main loop of the algorithm. It suffices
to show that the product uv decreases by a factor d with logd = Q(log q).
Case 1:

Suppose one of these two iterations performs the transformation

(u,v) — (min{u, v}, |au + bv|/k).

By Lemma 4.2.2, this reduces the product uv by a factor of d > k/(2 [VE]) > VE/2 = 1/2.
This gives logd = Q(logk), and k > q.

We assumed that vk/2 —1/2 > 1, or k > 9. However, one can show only O(log(uv))
iterations are needed for all values of k from 2 to 9; simply construct the tables of @ and b
values to see that the product uv decreases by a factor larger than 1 at each iteration.
Case 2:

Alternatively, suppose both iterations perform divisions by ged(u, k) or ged(v, k). Since
one of u and v must be relatively prime to k at each iteration, without loss of generality we
assume ged(v, k) = 1. Let g = ged(u, k), the divisor used for the first of the two iterations,
and h = ged(u/g, k), the second divisor used. Let p be a prime divisor of h; p must exist,
for g,h > 1. By Lemma 4.2.4, p° | g, where p° || k, and so d = gh > p**! > ¢ = Q(k). Thus
logd > logg, as desired. O

Lemma 4.2.6 Let k > 1 and ¢ = Q(k). There exist infinitely many inputs u, v such that
the number of iterations of the main loop of the k-ary GCD algorithm is Q(log(uv)/ log q).
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Proof: Let f be a positive integer, let [ be the product of all primes below VEk+1, and let
u=q'kl+1 and v = 1. If f is sufficiently large, we may assume k = o(log?(uv)). By the
prime number theorem (see Hardy and Wright [HW179]), log! ~ vk = o(log(uv)). Since f
is at least (1/log q)(logu — log!—log k — 1), this means f = Q(log(uv)/ loggq). We will show
that the algorithm requires at least f iterations.

As u and v are both relatively prime to k and all primes below V'k, the trial division
phase does not alter u or v. The first iteration of the main loop will assign @ = 1 and b = —1,
changing u to |u —v|/k = ¢fl. The next f iterations will each remove a factor ¢ from u, plus
common divisors of k and [ if there are any. A full f iterations are needed because the GCD
computations cannot remove a divisor of ¢° larger than g at each iteration as ¢ = Qk) || &
O

Proof of Theorem 4.2.3: Lemma 4.2.5 implies the algorithm halts, and so correctness

follows from Lemma 4.2.1. The number of iterations follows from Lemmas 4.2.5 and 4.2.6.
(]

4.3 A Sequential Version

In this section we look at a sequential version of the k-ary GCD algorithm. We start by
proving that, on n-bit inputs v and v, the algorithm has an O(n?/log Q(k)) worst-case
running time according to the naive bit complexity model. We then derive an optimal value
of k to use in the k-ary GCD algorithm as a function of the input size. This results in an
algorithm with a subquadratic running time for k a prime power. Finally, we examine the
results of a multiple-precision implementation that compares the k-ary GCD algorithm with
several others, including the Euclidean and binary algorithms.

4.3.1 Complexity Results

We will use the naive bit complexity model for our sequential algorithm.

Lemma 4.3.1 Let n > m. Multiplication or division of n-bit integers by m-bit integers can
be done in O(n) time using precomputed tables of size at most O(m2¥™) bits.

Proof: We construct two, two-dimensional arrays M and D.

Let M([i, ] contain the 2m-bit product ¢ x j for all integers 0 < 1,7 < 2™. To multiply
in O(n) time, view an n-bit integer in base 2™, use the ordinary left-to-right multiplication
algorithm, and at each step the product of m-bit integers is computed through table lookup.

Let D[i,j] contain the m-bit quotient (i x 2™)/j for all integers 0 < 7,j < 2™. The
quotient of a 2m-bit integer by an m-bit can be computed in O(m) time using one table
lookup and a subtraction. To divide in O(n) time, again view an n-bit integer in base 27,
and use the ordinary left-to-right division algorithm.

The total number of entries in each table is O(2?™), and each entry is at most 2m bits
long. O

This also implies that multiplication or division of an n-bit integer by a cm-bit integer,
where c¢ is constant, can also be done in O.(n) time.
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Theorem 4.3.2 Let u and v be the inputs to the k-ary GCD algorithm, and let n = lg (uv).
If k = O(n?/ log®n), then the algorithm takes at most O(n®/log Q(k)) bit operations.

Proof: We calculate the complexity of the algorithm by phase:

1. Precomputation. This phase can be done using O(k log? k) bit operations.

We also will apply Lemma 4.3.1 with m = |log k/4], so that the tables needed are of
size O(Vk log k) bits and can be constructed in O(Vk log® k) time.

2. Trial Division. The two trial division phases have roughly the same cost.

We alter these phases slightly as follows: For each possible prime divisor p, let p® be
maximal such that p* < k. To trial divide u by p, we compute r = u mod p* while
saving the corresponding quotient at a cost of O(n) by Lemma 4.3.1. If r is zero, we
repeat the process with the quotient. If r was not zero, r must be the lazgest power of
p that evenly divides u.

By the prime number theorem, there are at most O(Vk/ log k) divisions that give a
non-zero remainder, one for each value of d = p°, for a cost of O(n\/E/ log k). The
total cost for divisions with a remainder of zero is O(n?logk), for if d;...d, are the
associated divisors, 3.7_; logd; < n. But each d; > vk, which implies log d; = Q(log k).
Thus there are at most O(n/logk) divisions.

So the cost for both trial division phases is O(n?/logk + nvk/ log k).

3. Main Loop. Each iteration costs at most O(n), and by Theorem 4.2.3 there are
O(n/ log Q(k)) iterations, giving a cost of O(n?/log Q(k)).

Thus the total cost is O(n?/log Q(k) -+ k log? k + nvk/ log k) = O(n?/ log Q(k)). O

For k a prime power we have Q(k) = k, and the algorithm has an O(n?/logk) running
time.

Corollary 4.3.3 Let u, v, and n be as in Theorem 4.3.2, and let k be a power of a prime.
Then the optimal value for k is ©(n?/log*n) giving a running time of O(n?/logn) for the
k-ary GCD algorithm.

Proof: Differentiate the running time n?/logk + k log? k + nvV'k/ log k with respect to k,
set to zero, and solve for k. O

In practice, the product or quotient of 32-bit integers can be computed in O(1) time on
most computers. As a result, the tables mentioned in Lemma 4.3.1 are not necessary to
give O(n) time operations for m < 32. Note that we cannot choose k larger than about
108 ~ 220 in practice because of the space needed for the tables of O(k) entries that arise in
the precomputation phase.
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4.3.2 Implementation Results

We will now discuss the results from a multiple-precision implementation of several GCD
algorithms. In the following discussion, we will present four tables of timing results.

All four tables have the same format: The leftmost column gives the names of the
algorithms. Across the top are the input sizes, which range from 10 to 1000 decimal digits
in length. Each algorithm was run on 5 pseudo-random pairs of integers of each size. In the
box indexed by the algorithm name and input size are two numbers. The top number gives
the average time spent by that algorithm on inputs of that size in CPU seconds. The times
for the k-ary algorithms include precomputation on every input. The bottom number is the
average number of iterations of the main loop for that algorithm.

All the algorithms used the same library of multiple-precision arithmetic routines, written
in Pascal, and run on a DECstation 3100 using the Ultrix operating system. The base used
for multiple-precision integers was 32768.

Below are the results of timing trials for several previous GCD algorithms.

Decimal Digits
Algorithm 10 | 25 | 50 | 100 | 250 | 500 | 1000
Euclidean 0.005 | 0.019 | 0.049 | 0.178 | 1.070 | 4.972 | 25.948
Algorithm 18 49 90 195 | 480 | 967 1929
Least-Remainder || 0.004 | 0.015 [ 0.039 | 0.135 | 0.791 | 3.591 | 18.438
Euclidean Alg. 13 34 65 136 | 338 | 673 1340
Purdy’s 0.005 | 0.016 | 0.044 | 0.130 | 0.652 | 2.389 | 9.156
Algorithm 88 225 | 477 | 938 | 2385 | 4824 | 9650
Binary 0.003 | 0.009 | 0.024 | 0.066 | 0.313 | 1.121 | 4.264
Algorithm 44 116 | 239 | 469 | 1167 | 2342 | 4709
Left-Shift 0.004 | 0.011 | 0.025 | 0.069 | 0.280 | 0.916 | 3.316
Binary Algorithm {| 22 55 105 223 551 | 1087 | 2196

If u > v, the left shift binary algorithm used here computes an integer e at each iteration
such that 2¢v < u < 2°*1v and then assigns to u the smaller of u — 2°v and 2°*'v — u.

We now illustrate how the best value for k increases with the input size. In the table
below we have results for the k-ary algorithm using the 10th, 25th, 50th, 100th, 250th, and
500th primes.
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Decimal Digits
Algorithm || 10 T 25 | 50 | 100 | 250 | 500 | 1000

29-ary 0.007 | 0.012 | 0.027 | 0.070 | 0.335 | 1.213 | 4.625
15 38 7 151 | 378 | 754 | 1315
97-ary 0.014 | 0.018 | 0.030 | 0.066 | 0.285 | 1.008 | 3.827
12 28 59 121 | 304 | 609 | 1213
229-ary 0.034 | 0.039 | 0.050 | 0.082 | 0.277 | 0.916 | 3.400
10 27 39 107 | 268 | 530 | 1065
541-ary 0.079 | 0.083 | 0.092 | 0.122 | 0.296 | 0.888 | 3.139
10 24 48 95 237 | 482 | 967

1583-ary | 0.244 | 0.247 | 0.256 | 0.285 | 0.447 | 0.976 | 2.978
9 21 43 87 217 | 430 | 854

3571-ary | 0.557 | 0.560 | 0.568 | 0.598 | 0.752 | 1.241 | 3.107
8 19 40 81 202 | 398 | 790

From this data, we deduce that a reasonable value for k is roughly 8n?/log*n where n
is the length of the inputs in base 32768.

Next we investigate whether the running time of the k-ary algorithm is indeed sensitive
to the factorization pattern of k as Theorem 4.2.3 suggests. Below we have results for four
values of k near 620, each with a different factorization pattern. We also list Q(k) under the
name of each algorithm in the table.

Decimal Digits
Algorithm 10 ] 25 ] 50 | 100 | 250 | 500 | 1000
619-ary 0.091 | 0.095 | 0.105 | 0.134 | 0.309 | 0.878 | 3.082
Q(619) =619 || 10 23 47 92 236 | 473 | 945
621-ary 0.071 | 0.075 | 0.085 | 0.115 | 0.298 | 0.894 | 3.189
Q(621) = 23 11 28 54 112 | 279 | 565 | 1122
624-ary 0.058 | 0.062 | 0.073 | 0.106 | 0.301 | 0.947 | 3.440
Q(624) =3 14 34 71 136 | 346 | 687 | 1375
625-ary 0.080 | 0.084 | 0.094 | 0.123 | 0.301 | 0.880 | 3.134
Q(625) =625 || 10 25 51 103 | 264 | 518 | 1047

For larger inputs, the algorithms’ running times are ordered according to the values of
Q(k), with the exception of 619 beating 625. In fact, this is what we expect; the 625-ary
algorithm often performs divisions by 5.

Finally, we have two adaptive versions of the k-ary algorithm to match against the binary
and left shift binary algorithms.

In light of the sensativity of the k-ary algorithm to the factorization of k, we had our
adaptive algorithm choose k a prime to insure Q(k) is large.

We also use a base-adaptive algorithm, which is an adaptive algorithm that chooses a
value of k of near-optimal size which also divides the multiple precision base. In this case
this means choosing k a power of 2. The results are below.



54 Algorithms in Number Theory

Decimal Digits

Algorithm 10 | 25 [ 50 [ 100 | 250 | 500 | 1000
Binary 0.003 | 0.009 | 0.024 [ 0.066 | 0.313 | 1.121 | 4.264
Algorithm 44 | 116 | 239 | 469 | 1167 | 2342 | 4709
Left-Shift 0.004 | 0.011 | 0.025 | 0.069 | 0.280 | 0.916 | 3.316

Binary Algorithm || 22 55 105 | 223 | 551 | 1087 | 2196

Adaptive k-ary ]| 0.006 | 0.012 | 0.025 | 0.068 [ 0.270 [ 0.861 [ 2.905
15 | 36 | 70 | 128 | 211 | 489 | 884

k= 29 31 43 79 211 463 | 1151
Base-Adaptive 0.005 | 0.011 | 0.023 | 0.051 | 0.202 | 0.612 | 2.067
k-ary 17 45 81 162 | 334 | 601 | 1125

k= 32 32 64 64 256 | 512 | 1024

Note that the k-ary algorithms in general are faster than previous algorithms, and adapt-
ing k to the multiple precision base is very beneficial.

We also implemented these algorithms on a VAXstation 3200 II running Unix. This
machine has a slower processor with a much larger instruction set, and on this machine the k-
ary algorithm does slightly better compared to previous algorithms than on the DECstation.
One unusual point is that on the VAX, the binary algorithm consistently outperformed the
left shift binary algorithm.

That concludes our discussion of sequential implementations for the k-ary GCD algo-
rithm.

4.4 Some Parallel Algorithms

As we mentioned in the introduction, in this section we give four different PRAM algorithms
based on the k-ary method discussed in section 4.2. Let n denote the length of the inputs
in bits, and let M(n) = nlogn loglogn.

We prove two lemmas concerning the parallel complexity of the precomputation and trial
division phases, and then give our PRAM algorithm results.

Lemma 4.4.1 The preprocessing phase takes O(log k) time on an EREW PRAM and
O(loglogk) time on a CRCW PRAM, both using O(k*M(logk)) processors.

Proof: Completely factor all the integers up to k in parallel. From this information tables
G and P are easily computed. Table I is computed by multiplying together all pairs of
integers up to k to see if the result is 1 mod k. Finally, table A is computed using exhaustive
search. O

Lemma 4.4.2 On an EREW PRAM, the trial division phases of the k-ary GCD algorithm
take either :

o O(Vklog®n) time and O(M(n)) processors, or

e O(logn) time and (nk)°®) processors.
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Proof: For the first one, we sequentially test each of the O(vk) divisors d by performing
a binary search to compute the largest e such that d° | u or d° | v. Each binary search will
require O(logn) iterations, constructing d° will take O(log? n) time, and the division takes
O(logn log logn) time, all using at most O(M(n)) processors. That proves the first half of
the lemma.

For the second one, we simply test all powers of all possible prime divisors in parallel
using Beame, Cooke, and Hoover’s division algorithm. We then in parallel find the largest
power of each divisor that divided both u and v. These powers of divisors are then multiplied
together using the iterated product N'C' reduction to division, and this product is divided
out of both u and v. O

Theorem 4.4.3 Let € > 0. If k = 2" with r = Q(logn) and r < (1/2 — €)logn, then the

k-ary GCD algorithm has a running time of O(n) using O(M(n)) processors on an EREW
PRAM.

Proof: By Theorem 4.2.3 there are O(n/logn) iterations of the main loop. Division by
k takes O(1) time and O(n) processors, since integers are represented in binary. Thus each
iteration of the main loop requires only O(logn) time and O(M(n)) processors. The main
loop then takes O(n) time and O(M(n)) processors, and so the result follows from Lemma
4.4.1 and the first part of Lemma 4.4.2. O

Theorem 4.4.4 Let € > 0. If k = 27 with r = |elogn]| + O(1) such that r is even, then the
k-ary GCD algorithm has running times of Oc(n/logn) and Oc(n loglogn/logn) on CRCW
and CREW PRAMSs respectively, using O(n'*¢) processors.

Proof: By Theorem 4.2.3 there are O(n/logn) iterations of the main loop. We will show
how each iteration takes O(1) time on a CRCW PRAM. We use many ideas from Chor and
Goldreich [CG90].

As in Theorem 4.4.3, division by k takes O(1) time and O(n) processors since integers are
represented in binary. We also precompute a table of O(k) entries to contain the products
of all integers < O(v'k), allowing the product of integers with O(log k) bits to be computed
in O(1) time using a table lookup. This additional precomputation time is O(loglogk)
using O(kM (log k)) processors, easily within our claimed bound. We now can compute each
iteration in O(1) time and O(M(n)) processors aside from computing the products au and
bv. For this we use the following idea in Chor and Goldreich.

To compute au, do the following. First write u in base Vk = 277? as u = Tl ui(VE)?
where [ is roughly 2logu/logk. Note that since r is even, the u; can be computed in O(1)
time. Second, compute z and y such that u = z + y where z is the sum of the odd terms in
the above expansion for u, and y is the sum of the even terms. For example, if VEk =10 (for
human readability) and u = 123456, then = 103050 and y = 020406. The products az and
ay can then be computed in O(1) time with table lookups using O((n /log V'k)-k) processors,
since there are no carries. We then compute au = az + ay. Following our example, if a =5
then az = 515250 and ay = 102030, giving au = 617280. By our choice of %k, this uses
O(n!*¢) processors. We compute bv the same way.
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Since k = O(n¢), the theorem now follows from Lemma 4.4.1 and the first part of Lemma
4.4.2 for the CRCW case.

The CREW PRAM algorithm is much the same, however a multiplicative factor of
O(loglogk) = O(loglogn) time is needed for table lookups, and the additions must be
pipelined. O

The results of this last theorem match those by Chor and Goldreich [CG90]. Note that
they use a common CRCW PRAM; it allows concurrent writes only if the same value is
being written. Theorem 4.4.4 can be easily modified to use the same model.

Corollary 4.4.5 Let d > 1. Ifk =27 forr = |n/ log?n|, then the k-ary GCD algorithm
takes O(log?n) time and exp[O(n/ log®n)] processors on a CRCW PRAM.

Proof: Follows from the proof Theorem 4.4.4, only use the second part of Lemma 4.42. O

4.5 Remarks

We have show that the k-ary GCD algorithm gives both practical sequential algorithms and
several interesting parallel algorithms. We close with a few questions and comments, and we
mention some current and future work:

e Another special case of the k-ary GCD algorithm is the trinary algorithm (k = 3)
which was given by Knuth [Knu81b, Section 4.5.2, Exercise 5].

e One important application for GCD algorithms is integer factoring. The k-ary GCD
algorithm is especially well-suited for factoring algorithms that use many GCD calcu-
lations, for in this case the precomputation step need only be done once, and in many
cases the first trial division phase can be skipped altogether. Examples of such fac-
toring algorithms include the various cyclotomic methods [BS89a, Pol74, Wil82] and
Pollard’s p-method [Pol75]. See also the paper by Montgomery [Mon87].

o Current work on the k-ary GCD algorithm includes the developement of a left-shift
version of the algorithm that makes use of Farey fractions (see Hardy and Wright
[HW?79]) and the extension of both algorithms to compute multiplicative inverses.

e Sam Pottle, Rob Winter, and the author are implementing several parallel versions of
the k-ary GCD algorithm. Two implementations are planned for the Sequent Symme-
try, one of which uses a software pipeline for the main loop. An additional implemen-
tation is planned for the Connection Machine.

o We proved that the number of iterations of the main loop is ©(n/log Q(k)). Is it
possible to compute the implied constant? Does the average number of iterations
depend on the factorization of k as well?

e In the worst case, the second trial division phase might involve the complete factoriza-
tion of an integer with Q(log(uv)) bits. Is this indeed true? Is this the average case,
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or can one show this integer is small on the average? If this number is large on the
average, it may be that periodic trial division steps within the main loop to remove
the extraneous divisors accumulated so far will speed the algorithm.

e D. H. Lehmer gave a multiple precision variant of the Euclidean algorithm [Leh38],
and Knuth mentions a similar variant for the binary algorithm due to R. W. Gosper
(see Knuth [Knu81b]). Is such a variant possible for the k-ary algorithm?



Chapter 5

An Analysis of Pollard’s p—1
Factoring Algorithm

5.1 Introduction

Given a positive integer n, the complete factorization problem is to write n as a product of
prime powers. In this chapter, we estimate the number of integers that can be completely
factored in random polynomial time using Pollard’s p — 1 factoring algorithm.

Traditional algorithm analysis focuses on finding the worst-case running time of an al-
gorithm. This information often predicts the behavior of an algorithm in practice. It also
provides a basis for comparing different algorithms that solve the same problem.

However, many integer factoring algorithms with an exponential worst-case running time
have the ability to factor numbers of a special form in polynomial time. One example of this
is the trial division algorithm, which can quickly factor integers that are composed entirely
of small primes. Note that practitioners often use trial division as their first choice when
trying to factor a number, resorting to algorithms with a better worst-case running time,
such as the elliptic curve method or quadratic sieve, when it appears trial division will take
too long.

So in addition to the worst-case running time, it is useful to know the number of integers
an algorithm can factor in random polynomial time. To be precise, we wish to compute
F(z,t, A), the number of integers n < z that algorithm A can completely factor with prob-
ability at least 1/2 using at most ¢ arithmetic operations. By arithmetic operations, we
mean additions, subtractions, multiplications, divisions, gcd computations, and comparisons
of O(log ¢)-bit integers. Using classical methods such as those described in Knuth [Knu81b}
these operations have bit complexity O(log? ). Using fast multiplication techniques, this
reduces to (log z)*°()) [SS71, Sch71).

Thus, F(z,(logz)®"), A) gives the number of integers that algorithm A can factor in
random polynomial time. Also, the limit of F (z,(logz)°W, A)/x as ¢ — oo gives the
density of this set of integers. Previously, F(z,t, A) was estimated for trial division and
the elliptic curve method by Hafner and McCurley [HM89]. In this chapter, we estimate
F(z,t, A) for Pollard’s p — 1 integer factoring algorithm. As a consequence, we show that
the p — 1 algorithm factors more integers than trial division, but fewer than the elliptic

58




5. The p — 1 Factoring Algorithm 59

curve method. As an immediate consequence, the density of integers factorable by the p—1
method is zero. We discuss both this previous work and our new results below.

Previous Work

Knuth and Trabb Pardo [KTP76] analyzed the trial division algorithm (T'D) and gave esti-
mates for F(z,z'/*, TD) when u > 1 is fixed.

Hafner and McCurley [HM89] analyzed a trial division algorithm that uses a probabilistic
compositeness test (T'DC) and a version of the elliptic curve algorithm that has an initial
trial division phase and a probabilistic compositeness test (ECM). For trial division, they
showed that if logt = o(log z) and t/(log® z loglog z) — co then
T

F(z,t,TDC) ~ e”’l logt, (5.1)

ogz

where + is Euler’s constant, and €” = 1.78107241---. This implies TDC can completely

factor O(z loglogz/logz) integers below z in random polynomial time. For the elliptic

curve method, they showed that for any C < 6/5, if t > log* « and logt = o((log z)*/¢) then
F(z,t, ECM) >

T

c
Iog:v(log t)*~. (5.2)
This implies that for any § > 0, ECM can completely factor at least
(z/ log z)(log log z)®/~¢+°(1) integers in random polynomial time.

Assuming the Riemann hypothesis, Hafner [Haf90] improved on this by showing that if
a > 4 then

z (loglogz)?

F(z. log*z. ECM a ’
(z,log" z, ) > log z log log log =

New Results

We analyze Pollard’s p — 1 integer factoring algorithm. We assume this algorithm uses a
probabilistic compositeness test. Our results imply that the p — 1 algorithm factors more
integers than trial division, but fewer than the elliptic curve method. We also show that the
density of integers factorable by the p — 1 method is zero. We elaborate below.

Let 6 > 0. We show that if ¢ > (log z)?*® and logt < (logz)!~? then

. .. F(z,t,p-1)
lim inf (2] log o) log ¢ (5.3)
Under the same conditions, we also show that
) F(z,t,p—1)
. 5.4
limsup e?(z/logz)logt e (5.4)

Thus the p — 1 algorithm factors O(z loglogz/log ) integers in random polynomial time.
If we assume that for a prime p, p — 1 factors completely over small primes with the same
probability as a randomly chosen integer near p, we show that

z logt (5.5)

-F(x,t’p'—l) ~ C"'eqlogm
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where ¢, = 1.685- - -.

Note that (5.1) and (5.3) imply that for a given ¢, the p — 1 algorithm factors more
integers than trial division, which is interesting considering they have approximately the
same worst-case running time. Also (5.2) and (5.4) imply that the elliptic curve method
outperforms the p— 1 algorithm. These findings are not surprising; in fact they substantiate
the common belief among researchers that the p — 1 method falls between trial division and
the elliptic curve method in its effectiveness.

The rest of this chapter is organized as follows. In section 5.2 we review some facts about
the p— 1 algorithm, characterize those integers it can factor, and introduce a purely number
theoretic function to count them. In sections 5.3 and 5.4 we approximate this function. We
conclude in section 5.5 with a few remarks.

5.2 Pollard’s p — 1 Factoring Algorithm

We begin by reviewing Pollard’s p — 1 algorithm.

Let p and g be primes, and we wish to factor n = pq. Further suppose p — 1 factors
completely over prime powers below a bound y. Let py,...,p, be the primes below y, and
let e; be the largest integer such that pf < y. Let E = [I}, p§*, and let M be odd and e > 0
such that £ = 2°M.

Choose a € (Z/(n))* uniformly at random, and compute z = ¢” mod n. Since p—1 | E,
we have z = 1(mod p) by Fermat’s Theorem. If ¢ — 1 J E, then with probability at least
1/2, the order of a modulo ¢ does not divide E, and so z # 1(modm). In this case
d := ged(z — 1,n) is a proper divisor of n.

If ¢— 1| E, then with probability at least 1 /2, there exists an integer j, 1 < j < e, such
that a¥™ # +1(modn) but a®"'M = 1(modn). In this case, d := gcd(a¥M —1,n) is a
proper divisor of n.

For proofs, see Bach, Miller, and Shallit [BMS86] or Bach, Giesbrecht, and Mclnnes
[BGMY1]. Note that this method will work when n is the product of more than two primes.

The procedure described above will find a divisor of n with probability at least 1/2. By re-
peating the procedure [2lglgn] times, we can reduce the probability of error to O(1/ log® n).
In addition we add a probabilistic compositeness test such as Solovay-Strassen [SST7] or
Miller-Rabin [Mil76, Rab80], to determine if the divisors found by the above method are
prime (with some chance for error) and to know when n has been completely factored. We
also use a perfect power testing algorithm such as one by Bach and Sorenson [BS89b] to
insure that 7 is not a prime power (see chapter 2). Below is a pseudocode description of how
the p — 1 algorithm can be implemented to completely factor an integer n.

E
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The p — 1 Factoring Algorithm
Input: a positive integer n and bound y

Function Split(n,E):
Compute M odd such that E = 2°- M;
Repeat up to [2lglgn] times:
Choose a € (Z/(n))* uniformly at random;
z := a™ mod n;
Repeat e + 1 times:
d:=ged(z — 1,N);
If 1 < d < n then Return(d); { Divisor Found }
z := 2? mod n;
Report failure and Halt;

Procedure Factor(n,E):
If n is probably a prime power then
Output(n);
Else
d :=Split(n,E);
Factor(d,E);
Factor(n/d,E);

Mainline:
Find all the primes p; < y, and compute the e;.
Let E = [1p{;
Factor(n,E);

Note that E and M do not have to be explicitly calculated; a list of primes may be passed
to the function Split and the calculation = := a™ mod n can be done in a loop:

T = a;
For each p; # 2 do:
vi= Py

z := 2" mod n;

Let us informally compute the number of arithmetic operations performed by the p—1
algorithm.

Function Split essentially computes af mod n at most O(loglogn) times for a total
of O(log Eloglogn) operations. Since log E ~ y by the prime number theorem, this is
O(y log logn).

Let w(n) denote the number of prime divisors of n. Note that w(n) = O(log n). Procedure
Factor invokes function Split at most w(n) times for O(yw(n) log log n) operations. Procedure
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Factor also performs up to w(n) prime power and compositeness tests. At O(logn loglogn)
operations apiece, this is O(log® nloglogn) operations. Let § > 0. If y > (log n)**% then the
cost of compositeness and perfect power tests is negligible. So in this case procedure Factor
uses O(yw(n) loglogn) arithmetic operations total.

Finding the primes up to y can be done with the sieve of Eratosthenes in O(yloglogy) =
O{y log logn) operations. The e; can be found in O(1) operations for each prime p; by using
the approximation e; = |logy/logpi], for a total of O(y/logy) operations by the prime
number theorem.

Thus, the total number of operations used by the p — 1 algorithm is O(yw(n)loglogn).

Obviously the algorithm can not compute w(n) before factoring n. So we will assume
that w(n) < 5loglogz, and if n has more divisors than that, the algorithm reports failure.

Note that in the worst case, the p — 1 algorithm uses at most n'/?>+°(!) arithmetic oper-
ations, the same as trial division, since y must be chosen close to \/n to insure all divisors
are found with high probability. ,

To summarize, the p-—1 algorithm uses the primes below a bound y to attempt to remove
prime divisors from n. If we give the algorithm ¢ arithmetic operations, then

e y = O(t/(w(n) loglogn)) = O(t/(loglogn)?) and

o the p— 1 algorithm can completely factor n if n = p®-m where p is prime and for every
prime ¢ dividing m, ¢ — 1 factors completely over the primes below y.

We now make some definitions. Let P(m) denote the largest prime divisor of m. Let G(y)
be the set of all integers m > 0 such that, for every prime ¢ dividing m, P(¢ — 1) <y. Let
A(z,y) be the number of integers n < z such that n = p*m where p is prime, e is a positive
integer, and m € G(y).

We have the following:

Lemma 5.2.1 Let § > 0. Ift > (logz)?*° then
F(z,t,p—1) = A(z, 1oy 4 o(z/ log z).

Proof: The algorithm chooses y = ©(t/(loglog z)?) = t'+°(!) when ¢ > (log z)**®. So we
need to show that n = p¢ - m for p prime and m € G(y) if and only if the p—1 algorithm
can completely factor n with probability > 1/2, with a number of exceptions not to exceed
o(z/ log z).

Suppose the p — 1 algorithm completely factors the integer n with probability > 1/2.
Let ¢ be a prime divisor of n removed by the algorithm. Then the algorithm can find an
integer a such that o = 1(modq) with probability at least 1/2. If there is a prime divisor
r >y with r | g, clearly r J E. Since a is chosen with order dividing ¢ — 1 but not dividing
r, the number of such a is at most (¢ — 1)/r. Thus the probability of finding such an a is
O(1/r) = O(1/y). This is a contradiction; therefore there exists no divisor r > y of ¢ — 1,
and hence g € G(y). Thus n is of the form p° - m with p prime and m € G(y).

Suppose n = p° - m with p prime and m € G(y). By our discussion above, if ¢ || m, then
the p—1 algorithm can remove the divisor g/ with high probability if é(¢)) = ¢ Hg-1) | E.
Thus » falls into one of the following classes:
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1. the p— 1 method factors n with probability > 1/2,

2. n has more than 5loglog z prime factors,

3. there is a prime ¢ | m and a prime 7 and g > 1 such that » <y, 79| ¢—1, and 79 > y,
4. or there is a prime ¢ | n with ¢ > y and ¢* | n.

It suffices to show that the number of integers n in classes (2) (3) and (4) is o(z/ log z).
From Erdés and Sarkdzy [ES80], the number of n < z in class (2) is o(z/ log z).
Let B(z,y) be the set of primes ¢ < z with ¢ € G(y) such that there exists a primer <y
with r9 | ¢ — 1, 79 > y. By the prime number theorem for arithmetic progressions,

#B(z,y) < =

p .
<y 1oy T logz

Let v(r) be the smallest integer such that r*(") > y. Since 32,1 /rF = O(1/r9), by splitting
the sum according the the values for v(r) we have

Igy T
#B(z,y) < Y, >
yligr<yt/i=1)

i
pard rtlogz

l{‘j T ( T
< _— = O —.
= yl-1l/ilogz ﬁlogw)

Then the number of integers n < z in class (3) is at most

> 2 = oW+ [ Td#B(ty))

q€B(=z,y) g

z T z z loglog =
——dt+ 0 _—_—
< |, et (ﬂlogw> i

using integration by parts. Since y > (log z)**%/2, this is o(z/ log z).
Finally, the number of integers n < z in class (4) is at most

Z% < -:—;— = o(z/logz).

92y
a
There exist several extensions and improvements to the p — 1 algorithm, which have

little effect on our results, and we will not discuss them here. For details, see Montgomery
[Mon87], Montgomery and Silverman [MS90], and Pollard [Pol74].
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5.3 Estimating A(z,y)

Now we concentrate on estimating A(z,y).

Let U(z,y) be the number of integers n <  such that P(n) < y. Let G(y, z) be the
set of all integers m such that m € G(y) and P(m) < z. Let 7'(z) be the number of prime
powers p* < z. Also let

1
s(y) = 11 <1+—-—1>.
>y, 9€G(Y) q9-

Theorem 5.3.1 Let § > 0. Iflogy < (logz)'~¢ and y > (logz)** then

Mew) = sto)- e tiogy) (140 (s + o3 ).

logy 1og6/ Sz
To prove this, we use the following lemma.
Lemma 5.3.2 Let § > 0. Iflogy < (log2)'~%, then
1 1
Y o < > — < exp[-(log2)’]

g>z, 9€G(y) q m>z-1, P(m)<y m

for all z > zo(9).

Proof: The first inequality is clear since if ¢ > z and ¢ € G(y), then 1/¢ < 1/(g —1) where
g - 1 is an integer m with m > z — 1 and P(m) < y. For the second sum we use partial
summation, obtaining that it is at most

1
-/z—-l %-Z'\I’(t,y)dt.

Using the estimate from Canfield, Erdés, and Pomerance [CEP83] on ¥(z,y), we get the
upper bound exp[—(6 + o(1))(log z)° log log z] from which the result follows. O

Proof of Theorem 5.3.1: Let z = exp[(logz)'~%/?]. If n is counted by A(z,y), then n is
in at least one of the following classes:

1. n is divisible by a prime q € G(y) with ¢ > z,
n has more than 5 log log z prime factors,

n € Gy, 2),

- W N

all other n counted by A(z,y).
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We first show that the contribution to A(x,y) from n in the first 3 classes is o(z/ log? ), so
is negligible.
The number of n < z in the first class is at most

> 2 < = exp [—(logz)‘s/z] = o(z/log’z),
9>z 9€G(y) ¢

by Lemma 5.3.2. From Erdos and Sarkézy [ES80] it follows that the number of n < z in class
(2) is o(z/ log® z). Finally, the number of n < z in class (3) is at most ¥(z, 2) = o(z/ log? z)
from [CEP83].

Let w = exp[(logz)!~%/3]. If n is in class (4), then n has a unique representation as p°m,
where m € G(y,2), m < w, and p € G(y,z). Indeed, we only need to prove m < w. But
since n is not in classes (1) or (2), we have m < 2°1°81°6% < 4 for all large z.

We conclude that

Az,y) = 3 D 1 + ofz/logz).

m<w  p°<z/m
meG(y,2) pgG(y,2)

Since m < w, the inner sum is

7'(z/m) — O ( > log(w/m)) = 7'(z/m) + O(zlog(z/m))

pEG(y,2)

— z : 5/3
= loss (1+0(1/10g"2 z)).
Thus the theorem will follow if we show
1 .
> = = s(y)-e"(logy) (1 +0(1/ logy)). (5.6)

m<w, meEG(y,z)
First we note that the restriction m < w in (5.6) may be dropped, since Lemma 5.3.2
implies
> — = ol).
m>w, mEG(y,z) m
But

B L) - L)

meG(v,2) m 9€G(%,2) 9€G(y,2) 9=

gt b, )

¢—1 7>y, 9€G(y) q q>z, g€G(y) ¢—1
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The first product is e”(logy) + O(1); this is Mertens’s Theorem (see Hardy and Wright
[HWT9]). The second product is s(y) by definition. Finally, the logarithm of the last product
is

1 1
- > log (1 + "('I'-__—l') < >, = = ol/logy),

>z, 9€G(y) 9>z, 9€G(y) q

by Lemma 5.3.2. We have (5.6). O

5.4 Results on s(y)

Now we need to bound s(y).
Theorem 5.4.1 1 < s(y) < 1.

From Theorem 2.2 in Pomerance [Pom89] we have log s(y) ~ S ec(y), o>y 1/9 = O(1) so that
s(y) < 1. It remains to show that s(y) > 1, which we do with the following lemma. Let
II(z,y) denote the number of primes ¢ < z such that ¢ € G(y).

Lemma 5.4.2 Ifa > 1 and b > 0 are such that (z,z'/*) > br(z) for sufficiently large z,
then liminf s(y) > a® > 1.

Proof: Simply integrate by parts twice and use the prime number theorem:

1 o ]
log s(y) ~ > = = —dIl(t,y)
0€G(v), a>v I /y t
O(t,y)|™ , < 0{,y) v br(t)
L2} —220gt >
al +/y 2V > O(l/logy)-}-/y ot

= 0(@1/logy)+ >, % ~ bloga.

y<p<y®
O

Pomerance [Pom80] proves the lower bound II(z,+/z) = br(z)(1 + o(1)) for b = 1 —
4log(5/4) ~ 0.10742. Using this, Lemma 5.4.2 gives s(y) = 1.0773 for large y.
Lemma 5.2.1 and Theorems 5.3.1 and 5.4.1 combine to prove (5.3) and (5.4).

We conclude this section by giving a heuristic approximation for s(y), which leads to
the estimate s(y) ~ 1.685---. Our heuristic is the following: for ¢ a prime, ¢ — 1 factors
completely over the primes below y with the same probability as a randomly chosen integer
below g¢.

Let p(u) denote Dickman’s rho function. The probability a randomly chosen number
below z factors completely over primes below y is asymptotically p(logz/ logy). (See, for
example, Hildebrand [Hil86].) So we are assuming the following.

Hypothesis 5.4.3 Let u = logz/logy. Then Il(z,y) ~ 7(z)p(u) when 1 < u < loglogy.
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Theorem 5.4.4 Hypothesis 5.4.3 implies s(y) ~ exp [[7°(p(u)/u)du].

Proof: Let § > 0 and let z = exp[(logy)**®]. By Lemma 5.3.2 we have
1 N - 1
logs(y) = o)+ > = = o)+ > -

q€G(v), 9>y q 9€G(v,2), 9>y 9

= ofl) + /y ) #i—dII(t,y)

yloglogyl z 1
= o+ [T ey + [ )

= 0(1) + El + E27

say. For E;, Hypothesis 5.4.3, the prime number theorem, and integration by parts gives

E, = o(l)+/10glogy E—({iﬂdu = o(l)+/1°° -p—%—)—du.

1

For E,, integration by parts and noticing y < t1/10glogy gives

z TI(¢. $1/ loglogy z W(¢, 11/ loslogy
Ey < / —(-’—-—————-)-dt < ( . )dt.
ylog log y 2 yloslog y 2

Using Hildebrand [Hil86] this gives

z p(loglo .
E, _/yloslosy——(———g—{~g—3/)-dt < p(loglogy)logz = o(l).

O

Using Simpson’s rule to approximate p(u) and the above integral leads to the estimate
s(y) = 1.685---.

Let s*(y) be the same as s(y), but with the infinite product truncated to 10°. We wrote
a program to calculate actual values of s*(y), and the table below compares these actual
values to what our hypothesis predicts for s*(y).

s*(10) s*(100) 5*(1000) s*(10%) s*(10°)
Predicted Value | 1.685 1.685 1.674 1.620 1.514
Actual Value 1.887 1.817 1.760 1.677 1.548

The fact that p—1 is even makes it slightly more likely to be smooth than a random number.
Also p—1 is divisible by 3 with probability 1/2, which is higher than for a random number.
These observations fade into the background for large p’s, but are more important for small
p’s. Thus smaller primes p have a higher chance of having p — 1 be p'/*-smooth than larger
primes, for a fixed value of u. Thus we guess that s(y) converges to its conjectured limit, as
y — oo, from above, and our data above supports this.

In summary, Lemma 5.2.1 and Theorems 5.3.1 and 5.4.4 prove (5.5), and that concludes
our results for Pollard’s p — 1 algorithm.
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5.5 Remarks

We conclude with some remarks.

Let us examine a subtle point in the definition of F(z,t,A). Notice that F(z,t, A)/z
gives the probability a randomly chosen integer below z can be factored by algorithin A
with probability > 1/2 in t arithmetic operations. This is different from the probability a
randomly chosen integer below z can be factored by algorithm A in ¢ arithmetic operations;
there may be many integers below z that algorithm A can factor with a very small positive
probability, and F(z,t, A) does not count these. However, if we alter our definition of
F(z,t, A) to denote the sum over integers n < z of the probability that n can be factored
by algorithm A in ¢ steps, we can show the result is asymptotically the same for the p —1
algorithm.

Much of the work presented here on the p — 1 algorithm generalizes to the higher cyclo-
tomic factoring algorithms such as the p + 1 method (see Williams [Wil82] and Bach and
Shallit [BS89a]). Carl Pomerance and the author are currently working on this generalization
and on computer calculations to determine whether Hypothesis 5.4.3 and similar heuristics
are reasonable in practice.
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