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Abstract

Database programming languages like O,, E, and O++ include the ability to iterate through a set. Nested
iterators can be used to express joins. We describe compile-time optimizations of such programming constructs that
are similar to relational transformations like join reordering. Ensuring that the program’s semantics are preserved
during transformation requires paying careful attention to the flow of values through the program. This paper
presents conditions under which such transformations can be applied and analyzes the 1/O performance of several
different classes of program fragments before and after applying transformations. The analysis shows that the
transformations can significantly reduce the number of 1/Os performed, even when both the initial and transformed
programs use the same join method.
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1. Introduction

Many researchers believe that an object-oriented database system (OODBS) must be computationally
complete—that programmers and database administrators must have access o a programming language to write
methods and application programs [ATKI89]. While the programming language for such a system must include the
ability to iterate through a set, giving programmers this power allows them to write programs that can be orders of
magnitude slower than the desired computation actually requires. Thus, compilers must be extended to include

database-style optimizations.

It is especially important that compilers optimize join-like operators. These operators come from at least three
sources. First, it is unlikely that there will be a pointer between every pair of objects that need to be related. Some
relationships are needed infrequently, and thus are not worth storing explicitly; other relationships may be missed
while designing the database. Thus, value-based joins will be needed. Second, the use of pointers leads to implicit
joins. If we blindly follow pointers in the order specified by the user, the execution of the join may become
unnecessarily slow [SHEK90]. Third, some join-like operations will result from calling functions from within a set

iteration-—since the functions may also iterate through sets.

We will concentrate on value-based joins. Database programming languages like PASCAL/R, O, Rigel, DBPL,
E, and O++ [AGRA89,ATKI87,LECL89,RICH89] have constructs to iterate through a set in some unspecified
order. The iterators may be nested to express joins. The following is an example of a nested iterator expressed in

O++:

(1) for D in Dept ({
deptcnt++;
for E in Emp suchthat (D->id == E->deptid) {
D->print (),
E->print ();
newline():;

}
} /* group-by loop */

We call the iteration through a set and its nested statements a set loop—the for D loop is a set loop that contains
the statement deptcnt++ and another set loop. Due to the enclosed statements, the method of producing
Dept|X|Emp in (1) is more constrained than it would be in the relational setting—the join stream must be grouped
by Dept. We call loops like (1), where set loops contain other set loops (and possibly other statements), group-by
loops. If each set loop, except the innermost, contains only another set loop, we say the loop is a simple group-by

loop. If the statement deptcnt-++ was removed from (1), query (1) would be a simple group-by loop.

As illustrated by (1), nested iterators can be used to express a join with a grouping constraint. However, as
demonstrated in relational optimization, the associativity and commutativity properties of the join operator are vital
properties for query optimization. Thus, it is useful to remove as many ordering constraints as possible so that the
join computation can be reordered. However, the flow of values through the program and the presence of output
statements constrain the reorderings that can be made without violating the program’s semantics. The transforma-

tions presented in Section 4 add extra set scans, use temporary sets, Sort sets, and rewrite statements embedded in
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set loops to enable more reorderings to be made without modifying the program’s semantics.

This paper’s transformations and analysis are designed for value-based joins (i.e., group-by loops). The transfor-
mations can also be used to improve the performance of queries that involve implicit joins through pointers, though
the analysis presented here will not directly apply to this case. However, using a technique from [SHEK90], pointer
dereferencing can be executed in a manner similar to value-based joins when the appropriate extents (sets of all
objects of a particular type) exist. This is because, in an implicit join, the join predicate essentially compares the
value of a pointer field in one set of objects with the object identifiers of the objects in another set. Given this view
of pointer-based joins, the ransformations and analysis presented here are indeed applicable. In the third case, the
case where a nested function call also contains a set loop, the transformations and analysis can only be used if the

function call is in-lined.

The remainder of this paper is organized as follows. First, in Section 2, we survey related work. Then, in Sec-
tion 3, we consider program analysis that allows permuting inner/outer set relationships in simple group-by loops.
We define a class of statements that we call self-commutative. If a simple group-by loop contains a self-
commutative statement, it can be optimized like a relational join. In Section 4, we use the concept of self-
commutativity and some analysis of the flow of values through the program to rewrite both simple group-by loops
and more complicated group-by loops into a more efficient form. In Section 5, we carefully characterize the class of

self-commutative statements. Our conclusions are contained in Section 6.
2. Related Work

The work most closely related to ours can be found in [SHOP80]; the transformation that [SHOPS80] called loop
inversion is explored in Section 4.3.3. Loop inversion is the only transformation that is carefully characterized in
[SHOP80}—other transformations are illustrated with examples, but the conditions under which they are applicable
are not stated.

Our work is similar to work done in [KATZ82,DEMOS85] to decompile CODASYL DML into embedded rela-
tional queries. In [KATZ85], data flow analysis and pattern matching are used to transform CODASYL DML state-
ments into DAPLEX-like statements. This transformation makes some flow of control statements unnecessary, so
these statements are removed. Finally, the DAPLEX-like statements are transformed into relational queries.
[DEMOS5] uses more sophisticated analysis to decompile a larger class of programs. Both our work and theirs tries
1o take an imperative program and make it as declarative as possible while maintaining the program semantics.
Both use dataflow analysis and pattern matching. However, their work has a different objective than ours; their goal
is to identify set loops in CODASYL DML and rewrite them as embedded relational queries. In our setting, the pro-
gram syntax makes identifying set loops trivial. Our aim is to transform a group-by loop from the programmer
specified form to a more efficient form. A key difference is that they ignored some semantic issues that are central
in this paper. Since they only looked at DML statements and a few other COBOL commands that affect the flow of
currency, they ignore grouping constraints. This is reasonable because COBOL DML has no way of expressing a

join without grouping constraints—but it does require that the programmer check the transformed program to see if



it has the proper semantics. Our use of the concept of self-commutativity allows us to convert group-by loops into
joins without modifying a program’s semantics. Their work (once modified to take grouping constraints into

account) can be used as a preprocessing step that allows our transformations to be applied.

The work in this paper is also related to the work by Won Kim on transforming nested query blocks in SQL into
equivalent queries with no nesting [KIM82]. The style of transformation is similar. He starts with a simple kind of
nested query and shows how to transform it into a join query that does not have a nested query in the where clause.
Other transformations take a more complicated nested query and produce two or more subqueries that compute the
same result. Some subqueries are not flat, but their nesting patterns are simpler than the nesting pattern of the
untransformed  query. These subqueries can be simplified further by other transformations.
[DAYA87,GANS87,MURAS89] corrected errors in Kim’s technique by replacing joins with outerjoins.
[DAYA87,MURAS89] developed pipelining techniques that remove some of the temporary relations introduced by
Kim’s technique. We, too, break a complicated subquery into several parts. We combine the execution of a

subquery with the partitioning phase of a hybrid hash join—which is similar to using pipelining.

The idea of interchanging loops appears frequently in work on vectorizing FORTRAN
[PADUS86,WOLF86,WOLF89]. For instance,

doI=1, N
do =1, N
S =8 + B(I,J)
A{I,J+1) = A(I,J)*B(I,J) + C(I,d)
enddo
enddo

cannot be directly vectorized. However, if we interchange the T and J loops, the definition of A (I, J+1) canbe
vectorized. The definition of S involves a reduction operation. A reduction operation reduces the contents of an
array to a single quantity in an order independent manner—examples include producing the sum or product of array
elements. Reductions do not inhibit loop interchange if the user allows loop interchange to be carried out (because
of the finite precision of computer arithmetic, interchanging loops for a reduction can lead to a different answer—
even though mathematically the same answer should be computed). The interchanges are only performed if loop
carried dependences satisfy certain properties. We also use dataflow analysis to interchange loops. However, since
our emphasis is on sets and not arrays, our analysis has a different flavor. Thus the general idea is similar although

the analysis used is different.

Loop fission has been used to optimize FORTRAN programs. Loop fission breaks a single loop into several
smaller loops to improve the locality of data reference. This can improve paging performance dramatically
[ABUS1]. Our transformations serve a similar function—breaking a large loop into several small ones to enable
database style optimization.

3. Introduction to Self-commutativity

Before examining the different transformation strategies that we have developed, we first examine when a simple

group-by loop can be optimized like a relational join, since this is the base case of our optimization strategy. We

-3



introduce O++ syntax for expressing a join. The SQL query

(2) select(D.all, E.all) £romD in Dept, E in Emp where D.id=E.deptid
can be expressed in O++ without adding unnecessary constraints as the following join loop:

(3) for D in Dept, E in Emp suchthat (D->id == E->deptid) {
D->print () ;
E->print ();
newline();
} /* join loop */
Ignoring output formatting, the two statements are equivalent. To identify when a simple group-by loop can be
rewritten as a join loop, we introduce a class of statements that we will call self-commutative. Consider the follow-

ing simple group-by loop:

(4) for X; in Setl suchthat Predl (X;)

for X, in Setm suchthat Predm(X;, ..., Xp)
S;

Definition: The statement S in (4) is self-commutative relative to X, X5, ..., and X,,, if any execution of

(5) for X; in Setl, ... , X, in Setm suchthat
Predl (X;) && ... && Predm(X;, ..., X)
S;

produces the same program state as executing (4).

We will leave off the phrase relative to X, X3, ..., and X,, unless it is necessary for clarity. This definition
requires that the inner/outer relationship among the sets can be permuted arbitrarily during the evaluation of the join
and that any join method can be used without changing the final computation of the program. It should be noted that
this definition is only satisfiable if none of the sets are physically or logically embedded in other sets (ie. Ai<js.t.
Setj =X;->set). If such embeddings exist, the inner/outer relationships among sets must obey the partial ordering
that if a set Si is embedded in an object of set So, then the join must have the set loop for Si inside the set loop

for so.!

Few computations are likely to satisfy this definition in practice. Due to the finite precision of real arithmetic and
the possibility of overflow or underflow, rearranging the loops may lead to a different result. Thus we provide two
generalizations. A statement S is self-commutative ignoring overflow if it would be self-commutative on a
machine where integer overflow (and underflow) errors cannot occur. A statement S is self-commutative ignoring
finite precision if it would be self-commutative on an infinite precision machine. Note that if S is self-

commutative ignoring overflow, it is also self-commutative ignoring finite precision, since overflow is the result of

1 ¥ there is another set that contains all the objects of an embedded set (for instance, if there is an extent, a set of ail the objects of a particular
type), (4) could be rewritten to access them through this other set. The rewrilten query might well have no embedded sets. Then S might be
self-commutative relative to the new list of sets even though it was not self-commutative relative to X1, X5y and X, We will ignore such
rewrites in this paper; [SHEK90] employs this technique.



the finite representation of numbers. If S is self-commutative ignoring overflow and neither overflow nor underflow
occurs at S in either the transformed or the non-transformed program, the same value will be computed by S in
both. This is not true if S is only self-commutative ignoring finite precision. The values computed are likely to

differ by a small amount.

We assume that the optimizer can be configured to ignore overflow, to ignore finite precision, or t0 worry
about everything. A reasonable default value would be ignore overflow. From now on, we will use the term
self-commutative to denote self-commutative ignoring overflow, self-commutative ignoring finite precision, or sim-

ply self-commutative depending on the optimizer’s configuration.

To identify members of the set of self-commutative statements, we make the observation that any given execution
of a loop of the form (4) where none of the predicates have side-effects will produce the same program state as the
execution of some loop-free code segment.? Conceptually, we are unrolling the loops on a per execution basis. We
then have a large number of S-like statements that vary only in the values forX, ... X,. It may be that executing
an arbitrary permutation of this sequence of S-like statements will produce the same program state as (4) for a

given execution. If this is true for all possible program executions, then S is self-commutative.

Self-commutative statements can be identified with a simple test. If any two adjacent S-like statements can be
permuted without changing the final computation of the program, S is self-commutative (since we can continue this

process to produce an arbitrary permutation).

Examples include the computation of a sequence of aggregates. For example, in

(6) for D in Dept

for E in Emp suchthat (D->id == E->deptid) {
totpay += (E->basepay*D->profitsharing) /100 + ChristmasBonus;
empcnt++;

}
the statement sequence that increments totpay and empcnt is self-commutative ignoring overflow. Since

integer addition is associative and commutative, ignoring the effects of overflow, an arbitrary pair of instantiations
of

(7) totpay += (E->basepay*D->profitsharing) /100 + ChristmasBonus;
empcnt++;

like

2If Emp = { [Joe,1], [Jim,2], [Ralph,1] } and Dept = { [Shoe,1], [Candy,2] } and there are persistent pointers E1-E3 to Emp elements and
D1-D2 to Dept elements, then the execution of (1) that produces

Shoe 1 Joe 1

Shoe 1 Ralph 1

Candy 2 Jim 2
will produce the same program state as:

pl->print (); El->print(); newline();
Dl->print (}; E3->print(); newline();
D2->print {); E2->print(); newline ()



(8) totpay += (20000*110) /100 + 500; empcnt++;
totpay += (30000%120) /100 + 500; empcnt++;

can be flipped without changing the final value of empcnt or totpay (assuming no overflow/underflow takes
place). We call statements like those in (7) reductions because they reduce a subset of a set or Cartesian product to
a single value in an order independent manner. Reductions are self-commutative. A more complete description of

the class of self-commutative statements will be presented in Section 5.
Two Other Uses of Self-commutativity

The notion of self-commutativity is valuable for compiler diagnostics. The compiler should flag statements in set
loops that are (potentially) not self-commutative unless an order on the elements of the set has been specified. Oth-
erwise, the result of the computation will (potentially) be non-deterministic.> Such statements are likely to be

€ITors.

We also note that we cannot execute group-by loops using a blocked-nested loop join algorithm unless S, the

inner statement, is self-commutative. To see this, suppose that this is not the case. Consider the execution of

(9) for D in Dept
for E in Emp suchthat (D->id == E->deptid) {
printf("%$s %d %s",D->name,D->id,E->name); newline();
}

under the assumption that two objects fit on a page and two buffer pages are available. Let Emp = { Doe,11,
[Jim,2], [Ralph,1] } and Dept = { [Shoe,1], [Candy,2] }. If (9) is executed using a blocked nested loops algo-

rithm, the output sequence

Shoe 1Joe
Candy 2 Jim
Shoe 1 Ralph

is produced. However, this violates the group by semantics of (9). Most other join algorithms including hybrid

hash, index nested loops, and sort-merge will, however, produce legal groupings.
4. Optimizations

As illustrated by (9), nested iterators can be used to express a join with a grouping constraint. These grouping
constraints can negatively impact performance by preventing the reordering of join computations, so it is useful to
remove as many of them as possible. However, the flow of values through the program and the presence of output
statements constrain the reorderings that can be made without violating the program’s semantics. The transforma-
tions presented in this section employ extra set scans, temporary sets, set sorting, and nested statement rewrites (for
instance, rewriting the printf in (9) to use elements of a temporary set instead of elements of Dept and Emp)

to enable more reorderings to be made without modifying the program’s semantics.

3Examples of non-determinism resulting from non-self-commutatative statements can be found in Sections 43.1 and 5.1.



4.1. Simple group-by loops

The simplest loops that may be rewritten are of the form:

(10) for X, in Setl suchthat Predl (X;)
for X, in Setm suchthat Predm(X;, ..., Xn)
S;
If S isa self-commutative statement, then, by the definition of self-commutativity, (10) is equivalent to:

(Tl) for X; in Setl, ... , X, in Setm suchthat

Predl (X;) && ... && Predm(X{, ..., Xu)
S;

Even if S is not self-commutative, if S does not modify Set1-Setm or the variables used in the predicates,

(10) can be rewritten as a join followed by a sort:

(T2) Temp = {};
for X, in Setl, ... , X, in Setm suchthat

Predl (X;) && ... && Predm(X;, ..., X,)
Insert <Needed(X;), ..., Needed(X,)> into Temp;
Sort Temp on composite key (Xi, X2, ..., Xm-1)7

for T in Temp /* in the sorted order */
s’;
In transformation (T2), the Temp set loop contains a statement S’ that looks like S, except that uses of the fields
of Seti Vi 1<i<m are replaced by uses of the fields of Temp. Needed (X;) refers to the fields of Seti that
are used in statement S or that are needed for sorting. It includes a unique identifier for each X; object other than
X,, for use in sorting; if the user has not supplied a primary key, Needed (X;) includes the object identifier (OID)
of X; as the identifier. The asymmetric treatment of X,,, in transformation (T2) allows the transformed program to
maintain the proper semantics while minimizing cost. Program semantics do not require iterating through the sets in
the same order each time; they only require that X varies the most slowly, followed by X, X3, ... Sorting on the
composite key maintains something slightly stronger than this semantic requirement. The transformed program will
behave as if it was iterating through Set1-Setm-1 in the same order each time, although it may behave as if it
was iterating through Setm in a different order each time. Thus, the asymmetric treatment maintains the program

semantics without wasting space in each Temp object for a unique identifier for the relevant X,, object.
4.1.1. Analysis of simple group-by loop optimizations

To simplify the analysis, we will analyze only the case where two sets are iterated over. We assume that disk
reads will only be performed while reading Set1-Setm (i.e. S does not chase any disk pointers or iterate through
any sets). In the analysis, we will refer to the inner set as R and the outer set as S. We assume that each element
in the smaller set that satisfies the selection criterion will join with exactly k elements of the larger set and that each

join operator is an equijoin.



To simplify the following analysis, we only analyze the I/O costs in this paper. Since the amount of CPU time

required by each algorithm is roughly proportional to the number of 1/Os performed, we do not believe that incor-

porating CPU costs would significantly change the results obtained. The notation in Table 1 will be used in the

analysis below.
Name Description
Pg.1=250 Pg,2,=5000 Pr,pm,=1250
P size of a disk page in bytes Serl Ser2 Temp
15000 4

M number of memory buffer pages
1] number of objects in set § 1/Os
sizeg size in bytes of an object in set § 10000
nwidths  size in bytes of projected subobject
selg predicate selectivity

P 5000
Os number of objects per page, Og = l - J

Sizég
_ |18
Pg number of pages, Pg = 0 0
¢ 0 1000 2000 3000 4000 5000 6000 7000

F size of a main memory hash table for S is F - Py Pages of main memory

Table 1

Figure 1

We will assume that queries are evaluated using the hybrid hash algorithm. [DEWI84] describes the hybrid hash

algorithm as follows:

(1) Scan R, selecting those objects of R that satisfy the selection criterion, projecting out unnecessary attributes

to produce R’. Objects of R’ are divided into B-+1 partitions Ry, R, and Rp on the basis of a hash function

applied to the join attribute. The same is done for S—this implies that R; will only join with S; Vi 0<i<B.

The value of B is chosen so that: (1) S, can be joined in memory with Ry as S is being partitioned, and (2)

the hash table for R; can fit in memory Vj 1<j<B. R is kept in a main memory hash table; the R; are written
to disk.

(2) After S has been partitioned and S has been joined with Ry, each R; is joined with S; Vi 1<i<B. R; isread

into memory, and each R; object is hashed on its join value and inserted into a hash table. S; is read into

memory, and the join attribute of each S; object is used to probe the hash table to find R; objects that it joins

with.

[DEWI84,SHAP86] provide the following analysis of hybrid hash’s performance that we extend to include the

effects of selection and projection. Let B = {

(Pp - F)-M
M-l

and g = MB (q represents the fraction of set R’

F'PR'




represented by R o; (M—B) is the amount of space available for the hash table for R, while (F - Pg-) is the size of a
hash table for all of R’. Thus, ¢ must be no larger than one and no smaller than zero, and must be adjusted accord-

ingly in some cases). The cost of executing a query using the hybrid hash algorithm is:

Pp+Pg Read Rand S
(Pg+Pg)-2-(1-q)  Writing and rereading hash partitions

Our formula for hybrid hash is similar to the one in [DEWI84]. There are only two differences: (1) following
[SHAPS6], we do not distinguish between random and sequential /O, and (2) R’ and S’ replace R and Sinthe
definitions of B and ¢ and in the second line of the cost formula. For hybrid hash to be applicable, M 2 \/I_’;-—F_
and one page must always be available for reading the next page into—this page is not included in the M pages that
we have direct control over. Note that the smaller R’ is, the larger ¢ will be, and a larger g means that a smaller
number of page I/Os will be performed. Thus, the selection of the inner and outer sets can have a significant impact

on the execution time of this algorithm. In general, the smaller set should be the inner set.

Here, the concept of self-commutativity becomes useful because the optimizer cannot choose the probing set in
(10) (as (T1) allows) unless the statement S is freely-permutable. Figure 1 compares the performance of the
untransformed simple group-by loop (10) and the optimized query (T1) when Pg,; = 250 and Pg,» = 5000. Fol-
lowing [DEWI84], we assume F = 1.2. The size of memory was increased in 200 page increments until increasing
the memory size did not change performance. The curves flatten when the inner set’s hash table fits in main
memory, since then each set is read only once. Using self-commutativity analysis to allow the smaller set, Setl,

to be used as the inner set dramatically decreases the cost of the query.

Next, we analyze the effectiveness of transformation (T2). Note that it would be pointless to use transformation
(T2) unless it permits the use of a more efficient join method or it allows Set2 to become the outer set. We con-
sider only the second case. The cost of the first loop in (T2) can be determined using the analysis above if M is
replaced by M ;=(M-1) (since one page is needed to hold Temp objects). By our hypothesis that each element of the
smaller set, Sef,,,;, that satisfies the selection criterion joins with exactly k elements of the larger set, ITempl| =

(ISetsman - S€lse_, - k). Note that sizer,, = (widthse + nwidthg,,;). Given this, Pr,,,, can be calculated using the

formula in Table 1. Assume that M > '\’ T;"'P . Using the analysis found in [SHEK90], this implies that Temp

can be sorted in two passes. Thus, the cost to execute the query resulting from transformation (T2) is:



join cost of Set2[X|Set1 Join using Set.2 as the outer set

with M, = (M-1)
+UnbufferedPages(Pr.mp) Write pages of Temp that cannot be buffered during join
+UnbufferedPages(Premp) Read pages of Temp written during join for first pass of sort
APTemp " 2 Write runs, and read them back for sort
-min(Premp, M - ~Temp. )-2  T/O savings if extra memory available during sort

2

The memory resident hash table for Set1 has first claim on memory during the join, s0 if (Ps.; - F) 2 M1, all of
Temp must be written to disk during the join. If, however, there is enough room for a hash table for all of Set1,
any leftover pages can be used to buffer Temp. There will then be (M ~Ps,,; - F) pages available for buffering, so
only (Premy—(M 1-Pse1 - F)) pages must be written to disk. This formula is too simplistic if main memory can hold
both Temp and a hash table for all of Set1 with room to spare, because then this formula will calculate a negative
number. It must, therefore, be changed to max (0,(Premy+Psec1 - F—M1)). Thus,

PTemp l.‘f(PSell ‘F)zM,
(11) UnbufferedPages(Premp) =1 (0,(Premp*+Pser1 - F-M 1)) otherwise

In Figure 1, we graph the performance of queries (10) and (T1) against the performance of the query produced by
transformation (T2), assuming that Pr,,,, = 1250. The initial drop in the cost of executing (T2) occurs because the
cost of the join with Set1 as the inner set drops when Set1’s hash table fits in main memory. The smaller subse-
quent reductions are due to the buffering of more pages of Temp during the join and sort. The curve flattens when
Set1’s hash table and the set Temp both fit in main memory. Note that the performance of the query after it has
been rewritten using transformation (T2) is between that of (10) and (T1). This is not surprising since transforma-
tion (T2) uses hybrid hash with Set2 as the outer set and then sorts Temp, the result of the join. Since Temp is
only one fourth the length of Set2, this is less expensive than using Set2 as the inner set. Thus, transformation

(T2) can be an attractive option for executing (10) queries when statement sequence S is not self-commutative.
4.2. General Group-by Loops

The group-by loops exemplified by (10) are the simplest possible—each set loop except the innermost contains a
single statement, a set loop. Only the innermost loop contains a statement sequence. In general, however, each set

loop will contain a statement sequence. For example, the following query

(12) for X in Setl suchthat Predl (X) {
S51;
for Y in Set2 suchthat Pred2 (X,Y)
S2;
S3;
}

exemplifies the general case.

In the following sections, unless stated otherwise, we will assume that none of the statements S1-S3 insert

(delete) elements into (from) Setl or Set2. We further assume that S1 and S3 do not change the values of
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elements of Set2 or the values of elements of Set1 other than the current X.
4.3. Optimizing General Group-by Loops

If a variable v is defined in the inner and the outer loop and both definitions reach a use outside the inner loop,
we will say that the two loops interfere. If the loops interfere, (12) cannot be rewritten unless the conditions in Sec-

tion 4.3.3 are met. The following is an example of interference:

(13) for D in Department ({
cnt = 0; //S1
for E in Employee suchthat (D->id == E->deptid)
cnt++; //82
printf ("%s %d", D->name, cnt); newline(); //S3
}

Since the definitions of cnt in S1 and S2 both reach the use of cnt in the printf statement, the two loops
interfere. Example (13) can be rewritien using the technique described in Section 4.3.3. However, even when
interference prevents transformation, any join method that maintains the proper grouping semantics (any standard
join method except blocked-nested loops) can be used to evaluate a group-by loop, but Set2 must be the inner set

for the join.
4.3.1. General Group-by Loops Without Flow Dependencies into the Inner Loop

If values do not flow from the inner to the outer loop or from the outer to the inner loop, and the loops do not

interfere, (12) can be rewritten as:

(T3) for X in Setl suchthat Predl (X) |{
S1;
S$3;
}
for X in Setl suchthat Predl (X)
for Y in Set? suchthat Pred2(X,Y)
S2;

Actually, the conditions must be tightened to require that at least one of the following three conditions hold: (1)
Set1 is iterated over in the same order in both set loops; (2) the sequence S1; S3 is self-commutative relative to
x; or (3) S2 is self-commutative relative to X and Y. Requiring that one of these conditions hold is necessary to

avoid subtle forms of inconsistency. Consider:

(l4) t1 = new Tree; t2 = new Tree; //create empty trees
for X in Setl {
tl->Insert (X->1i); //Not self-commutative
for Y in Set2
t2~->Insert (X->1i); //Not self-commutative
}

Suppose Set2 has exactly one element. Then, since there are no predicates, (14) will produce the same program

state as:
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(15) t1 = new Tree; t2 = new Tree;
for X in Setl {
tl1->Insert (X->i);
£2->Insert (X->1i);
}

However, if (14) is transformed using (T3) to:

(16) tl1 = new Tree; t2 = new Tree;
for X in Setl //iterate in order {[11,[2]}
tl->Insert (X->1);

for X in Setl //iterate in order {[2],[1]}
for Y in Set2
t2->Insert (X->1i);

an inconsistency may occur. Suppose that Set2 has exactly one element, and that we iterate through Set1 in the
order {[11,[2]} in the first set loop and in the reverse order in the second set loop. Then after the execution of (16),
t1 will be a tree with the value one in the root node, and t2 will have the value two in the root node. This is
inconsistent with the program semantics. However, a smart storage manager might produce this iteration order if
steps are not taken to prevent it. Since the order of iteration through a set is unspecified, the storage manager might
produce set elements in different orders in both iterations, because it might have some pages of the set still resident
in main memory. Rather than produce objects in the same order, it could first iterate through objects still in main
memory and then go out to disk. This must be prevented if transformation (T3) is to be applied unless either condi-
tion (2) or (3) is met. This problem will only occur when there are non-self-commutative statements of similar form

in the inner and outer loop bodies. Thus, if either condition (2) and (3) is met, this problem will not occur.

We expect that one of the three conditions will almost always be satisfied, so that transformation (T3) can be
applied. The group-by loop produced by (T3) may be optimized using the techniques described in Section 4.1.

Analysis and Example of Flow Dependence Free Optimization

Transformation (T3) is beneficial if S1 or S3 chase disk pointers or iterate through a set. However, we will
only analyze the case where transformation (T3) is used to make Set2 the outer set. Since Setl then becomes
the inner set, scanning Set1 for the first set loop can be combined with the partitioning of Set1l in preparation

for the execution of the join loop. Thus, the I/O cost of the query resulting from transformation (T3) is:
Set2 | Setl Join with Set2 as the outer set. Combine scanning and partitioning Set1.

Note that if the outer loop had been a join loop instead of a set scan, this analysis is too simplistic. For instance, for

(17) for A in Seta, B in Setb suchthat Predl (A,B) {
S1;
S3;
}
for Y in Set2 suchthat Pred2 (X,Y)
for A in Seta, B in Setb suchthat Predl (A,B)
S2;

it is likely that all the buffer pages will be needed for computing Setalx|Setb. Thus, the scanning and partition-
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ing will probably have to be done in separate passes. A formula that covered join loops would have to include the
cost of producing the join Setalx|Setb and then of writing the result of the join to disk so it could be used by the
second set loop in (17). Similar comments can be made about future transformations where the analysis assumes

that scanning and partitioning are performed simultaneously.

As an example of transformation (T3), consider:

(18) for Dept in Department {

Companybudget += Dept->budget;

for Emp in Employee suchthat Dept->id == Emp->deptid {
cnt [Dept->floor]++; /* Calculate number of emps/floor */
if ( Dept~>sales > (CompanySales/5) )

High Sales_dept_sals += Emp->salary
}
}

Note that the statement sequence in the Employee loop is self-commutative. Using (T3), query (18) can be
transformed to the following (skipping a few intermediate steps):

(19) for Dept in Department
Companybudget += Dept~>budget;

for Emp in Employee
for Dept in Department suchthat Dept->id == Emp->deptid {
cnt [Dept->floor]++; /* Calculate number of emps/floor */
if ( Dept->sales > (CompanySales/5) )
High Sales_dept_sals += Emp->salary
}

Hybrid hash can be used for both (18) and (19). This is clear for (19), but (18)’s implementation is somewhat
more complex. Instead of using hybrid hash to compute the join for (18), it must be used to compute the outer join.
An outer join is required to ensure that Companybudget will be incremented once for each Department, even

for Departments withno Employees. The group-by loop in query (18) must be treated like:

//Compute the outerjoin and not the join Department|X|Employee
for Dept in Department
for Emp in Employee suchthat Dept->id == Emp->deptid ({
if (Dept has changed since previous time through loop)
Companybudget += Dept->budget.;
if (Dept->id==Emp->deptid) { //if current Dept,Emp pair part of join
cnt [Dept->floor]++;
if ( Dept->sales > (CompanySales/5) )
High Sales_dept_sals += Emp->salary

}

Suppose that Department consists of 50 pages, that Employee consists of 1000 pages, and that there are
300 buffer pages. We assume that F=1.2 and ignore the effects of projections. Using the analysis in Section 4.1.1,
the set loop in (18) will cost 2633 page reads. However, the join in (19) will only cost 1050 page reads, since a hash
table for all of Department will fit in main memory. We simultaneously scan Department for the first set

loop while partitioning it for the join loop, so the total cost of (19) is 1050 I/Os.
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Even if scanning and partitioning cannot be combined, the extra scan may not cost anything—multi-query optimi-
zation may eliminate the cost. For example, assume that CompanyTotalSales () is an in-line function to cal-

culate the total sales of all Departments. Then the following code fragment

CompanySales = CompanyTotalSales();
for Dept in Department //from (19)
Companybudget += Dept->budget;

can be expanded to
(20) dint t = 0;
Department * D;
for D in Department
t += D->sales;
CompanySales = t;

for Dept in Department
Companybudget += Dept->budget;

Simple multi-query analysis, allows (20) to be rewritten as:
(21) int t = 0;
for Dept in Department {
t += Dept->sales;
Companybudget += Dept->budget;

}
CompanySales = t;

Since CompanySales is used in the inner loop of (18), the evaluation of CompanyTotalSales () could
not have been pushed inside the Department loop of (18). Thus, transformation (T3) creates opportunities for
multi-query optimization. This style multi-query optimization can be useful as a final clean-up pass after all the
other transformations have been performed, since it can merge loops that result from transformations and from in-
lining functions. Transformations like (T3) make it easier to determine which loops may be merged because they

produce simpler loops.
4.3.2. General Group-by Loops With Flow Dependences into the Inner Loop

Transformation (T3) works well if no information flows in either direction between the inner and outer loop. In
statements of the form (12), however, values computed in the outer loop will often be used in the inner. If no values
flow from S2 to the outer loop, the loops do not interfere, and S2 does not modify any elements of Setl; but
values do flow from S1 or S3 into the inner loop, a somewhat more complicated transformation than (T3) is
required. Let vy, ... ,v, be the variables written by 51 and S3 that are used by expressions in the inner loop. Then

(12) can be rewritten as:
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(T4) SetTemp = []1; //empty sequence

for X in Setl suchthat Predl (X) {
S1;
Append <Needed(X), Vi, ... (V,> to SetTemp.
S3;

}

for T in SetTemp /* in insertion order */
for Y in Set2 suchthat Pred2(T,Y)
sz’ ;
s27 is S2 rewritten to use fields of SetTemp instead of v; Vi 1<i<n and instead of fields of Setl.
Needed (X) contains the fields of X used in Pred2 (X,Y) and S2. Note thatif Predl (X) is very restrictive
or objects in Set Temp are shorter than objects in Set.1, (T4) may be preferable to (T3) because the cost of stor-
ing and rereading the necessary objects might be less than the cost of recomputing the stream. It should also be kept
in mind that neither transformation (T3) nor (T4) will be useful unless the simple group-by loop produced by the
transformation can be further transformed, S1 or S3 contains a statement that may cause disk activity (i.e. pointer
dereferencing or a set loop), or multi-query optimization can be used to eliminate the cost of the extra scan of

Setl. If 52 is self-commutative, SetTemp may be a set.
Analysis and Example of Optimization in the Presence of Flow Dependences

As noted above, the application of transformation (T4) makes sense under several conditions. However, we will

consider only the first case, the case where S2 is self-commutative. In this case, the two loops can be flipped. Note

n
that sizeseremp = (rwidthg,,+ Y sizeof (v;)), and that [Set Temp| = (ISet 1] sels.,;). Once again, we can combine
i=1

scanning and partitioning, so the overall cost of (T4) will be:

Pser Scanof Setl
+join cost of Set2|x|SetTemp  Join with Set2 as outer set
“Psettemp Combine scanning Set 1 with partitioning Set Temp

As an example of a case where rewrite (T4) is profitable, consider a slightly modified version of the previous
example in which the floor of a Department is not directly stored in the Department object. Instead, it is

contained in an object that contains information about the part of the building belonging to the Department.

(22) for Dept in Department {
floor = Dept->buildinginfo->floor; //Sl
for Emp in Employee suchthat Dept->id == Emp->deptid
cnt [flooxrl++; //S2
}

Note that our analysis does not directly characterize this case since it does not cover persistent pointer dereferenc-
ing. However, the extensions necessary for this example are trivial. We can use (T4) and a loop interchange to
rewrite (22) as:
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(23) SetTemp = {}; //S2 is self-commutative

for Dept in Department {

floor = Dept->buildinginfo->floor;

Append <Dept->id, floor> to SetTemp;
}
for Emp in Employee

for T in SetTemp suchthat T->id == Emp->deptid
ent [T->floorl++; // Calculate number of emps/floor

Another alternative would be to use copy propagation to move Dept->buildinginfo->floor into the
loop and eliminate the assignment to £loor, producing a group-by loop witha self-commutative statement inside.
We can then swap the loops to produce:

(24) for Emp in Employee

for Dept in Department suchthat Dept->id == Emp->deptid
cnt [Dept->buildinginfo->floor]++;

Assume that there are 300 buffer pages, that Department consists of 50 pages and 500 objects, and that
Employee consists of 1000 pages and 10,000 objects. Suppose that the objects that buildinginfo points to
are contained in a large set. Then, every time buildinginfo->floor is dereferenced, one page read is per-
formed.

Given these assumptions, the original query (22) will incur 2633 page reads for the join and another 500 page
reads for the dereferencing operations. Query (23) costs 50 1/Os to read Department and 500 I/Os for the dere-
ferencing operations. Since P geyrenp iS S0 small, SetTemp can be buffered in main memory, so the cost of the
join will only be the 1000 I/Os to read the Employee set. Thus, the total cost of query (23) is 1550 I/Os. Alterna-
tive (24) is the worst plan. The dereferencing operations alone require 10,000 I/Os (assuming each Employee

joins with exactly one Department).
4.3.3. General Group-by Loops Used As Aggregates On Grouped Values

The transformations presented so far do not allow the optimization of aggregate functions such as:

(25) select(D.name, count(*)) £romD in Department, E in Employee where D.id=E.deptid
This SQL query can be expressed in O ++ as:

(26) for D in Department {
ent = 0; //81
for E in Employee suchthat (D->id == E->deptid)
cnt++;  //82
printf ("$s %d", D->name, cnt); newline(); //S3

}

We consider a transformation from [SHOP80] to rewrite queries involving aggregate functions such as (26). In
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(27) for ¥ in Setl suchthat Predl (X) {
Sl;
for Y in Set2 suchthat Pred2 (X,Y)
82;
S3;
}

suppose that S2 is self-commutative relative to X and Y, and that S1 can be partitioned into two sets of state-

ments: those whose values flow only to S1 and to outside the for X loop and those that assign constants to vari-

ables v, ..., v,.* The vy, ..., v, must be assigned to during each pass through S1. In S2, they may be employed
only in reduction operations; in S3, they may be read but not written. Statements in S3 may only have values
flow back to S3 and to outside the for X loop. S2 and $3 must not modify any elements of Setl. Finally,

Set2 must not be nested inside an object of Set1. If these conditions are met, (27) can be rewritten as:

(T5) Temp = {};

for X in Setl suchthat Predl (X) {

S1;

Insert <Needed(X), Vi, ..., V,> into Temp.
}
for Y in Set2

for T in Temp suchthat Pred2(T,Y)
327;

for T in Temp
537
Needed (X) are the fields of Set1 mentionedin $2, $3,or Pred2(X,Y). S2’ and S3’ are rewritten ver-
sions of S2 and S3 that replace uses and definitions of v; with uses and definitions of T->v;. They also replace

uses of fields of Set1 with uses of the fields of Temp (i.e. X->a isreplaced with T->a).

Analysis and Example of Optimizing Aggregate Computation

n
In analyzing (T5), note that sizer,,,, = (twidths, 1+, sizeof (v;)) and that scanning Set1 and partitioning Temp

i=1

can be carried out simultaneously. Given this, the analysis is as follows:

Pg.1 Scan of Setl
+join cost of Set2|x|Temp Join with Set.2 as outer set
“Premp Combine partitioning of Temp with scan of Set1
2 Premp if Temp’s hash table does Write dirty pages of Temp during join and
not fit in main memory then reread for scan unless all of Temp can
0 otherwise be buffered in main memory

Using transformation (T5), query (26) can be rewritten as:

4Actually, commutative assignments to variables V1, ..., V, are allowed. The phrase commutative assignment will be defined in Section 5.1.
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(28) Temp = {};

for D in Department {
ent = 0; //S1
Insert <D->id, D->name, cnt> into Temp;

}

for E in Employee
for T in Temp suchthat (T->id == E->deptid)

T->cnt++; //827

for T in Temp {
printf ("$s %d", T->name, T->cnt); newline(); //83’
}

Using the same parameters as before, the unmodified query (26) performs 2633 1/Os. The rewritten query (28)
requires 50 reads to scan Department. Temp is inserted in a memory resident hash table during this scan. Thus,
the join does 1000 reads, since only Emp needs to be read. The final processing of Temp does not incur any I/Os
since Temp is already in main memory. Thus, the total cost of query (28) is 1050 I/Os.

4.3.4. Optimizing More Deeply Nested Loops Using Previous Rules

The transformations of the previous sections can be used repeatedly to optimize more deeply nested loops than

we have considered. We will give an example where (T3) and (T5) are both used. Consider:

(29) for D in Department {
deptentt++;
for P in Professors suchthat P->deptid==D->id ({
studentstaught = 0;
for E in Enroll suchthat E->profid==P->id
studentstaught += E->studentcount ();
printf("%s %s %d4",D->Dname,P->Pname, studentstaught);

}

Enroll objects contain an embedded set of students enrolled in a particular course section. The method stu-
dentcount () counts the number of students in the set. Transformation (T3) applies because no values flow from

the Department outer loop to the inner loops or from the inner loops to the outer loop. Thus, (29) can be rewrit-

ten as:

(30) for D in Department
deptcnt++;

for D in Department
for P in Professors suchthat P->deptid==D->id {
studentstaught = 0;
for E in Enroll suchthat E->profid==P->id
studentstaught += E->studentcount ();
printf ("$s %s %d",D->Dname,P->Pname,studentstaught);
}

Transformation (T5) can then be applied to the second loop to produce:
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(31) for D in Department
deptcnt++;

Temp = [1;
for D in Department
for P in Professors suchthat P->deptid==D->id {
studentstaught = 0;
Append <D->Dname,P~->Pname,P->id, studentstaught> to Temp;
}

for E in Enroll
for T in Temp suchthat E->profid==T->id
T->studentstaught += E->studentcount ();

for T in Temp
printf("%$s %s %d",T->Dname, T->Pname, T->studentstaught);

Actually, the transformation employed was a variant of (T5), since Temp is a sequence and not a set in (31);

Temp must be a sequence instead of a set because the printing must be grouped by Department.

Suppose Ppepariment=2, Pprofessors=40, Prnon=4000, M = 250, and F=1.2. The Enroll objects are quite large
because they each contain an embedded set. The original query (29) incurs 42 I/Os to evaluate
Department|x|Professors. The result of the join is an 80 page sequence Resultl. The evaluation of

Resultl|X|Enroll incurs 11,848 I/Os.

The rewritten query (31) will incur 2 I/Os scanning Department, which it will buffer in main memory. The
size of the result sequence Temp will be somewhat larger than in the original query since each Temp object con-
tains a studentstaught field. Assume Pr,,,=90. Then Temp, Department, and Professors will all
fit in main memory. Thus, the Department|x|Professors query will incur 40 I/Os to read Professors.
Since a hash table for Temp will fit in main memory, the Enroll{x|Temp query will only incur 4000 I/OS. The
final scan of Temp does no I/Os since Temp is cached in main memory. Thus, the rewritten query requires 4042
1/Os.

4.3.5. An Analogue to Relational Join Associativity
As demonstrated in relational optimization, associativity is a vital property for query optimization. The following

query

(32) for X in Setl suchthat Predl (X) {

51;
for Y in Set2 suchthat Pred2 (X,Y) {
52;
for 7 in Set3 suchthat Pred3(X,Y,Z)
s$3;
S4;
}
s85;

}
essentially specifies joining Setl with Set2 and then joining the result of that join in a pipelined fashion with

Set3. We present an associative rule for transforming (32) provided two conditions are met: (1) statements S1-
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S5 do not modify Set2 or Set3,and (2) Set2 and Set3 are not nested in objects of Setl. Provided these
two conditions are met, statements may make arbitrary changes to Set1 and the loops may interfere. To use (T3),
(T4), or (T5) to transform query (32), conditions on the flow of values must be met. Thus, the associativity rewrite

will sometimes be applicable when the others are not. The associativity rewrite is the following:

(T6) Temp = []; /* Empty sequence */
for Y in Set2 suchthat Pred2’ (Y) {
for Z in Set3 suchthat Pred3’ (Y, Z)
Append <0ID(Y), Needed(Y), Needed(Z)> to Temp;

if (nothing was added to Temp in for Z loop)
Append <OID(Y), Needed(Y), NULL> to Temp;
/* Doing an outer join */
Y // TOID Needed(Y),Needed (Z) (Quterjoin (Cp.gy (Set2),Set3))) group by OID

for X in Setl suchthat Predl (X) {
S1;
last = NULL;
for Y7 in Temp suchthat Pred2’’ (X,Y) ( // in insertion order
if (last !'= YZ->0ID)
g82'r; //Do 8277 if there is a new Y value
if (Y2 does not have NULL for Needed(Z) && Pred3’'’ (X,Y,Z2))
§377; //bo 83’7’ if there is a real 2 value && Pred3’’
if (last != YZ->QID)
s4arr; [//Do S4'' if there is a new Y value
last = YZ~->QID;
}
S5;
}

Needed (Y) are the fields of Set2 mentionedin $2-$4 orused in Pred2 (X,Y) or Pred3(X,Y,2). The
definition is similar for Needed (Z). Pred2’ (Y) and Pred3’ (Y, 2) are derived from Pred2 (X,Y) and
Pred3 (X, Y, 2Z) by making them less restrictive. All clauses of the predicate that involve either X or variables
written by S1-S5 are replaced by new clauses that do not mention them and that do not reject any values that
would have passed the original predicates. If the original predicate does not have any NOTSs, this can be done by
replacing all such clauses with TRUE. The ’‘ notation means that the statement or predicate has been rewritten to

use YZ->ainstead of Y->aand YZ->binstead of z->b.

We would like a simple transformation like (Set1 |X| Set2) |x] Set3 — Setl |X] (Set2 [X] Set3) where
the left-hand side corresponds to (32). However, since S2 and S4 must be executed for every qualifying object of
Set2, care must be taken. Ensuring that $2 and S4 are executed the proper number of times requires that no
qualifying Set2 objects are lost. As a result, an outerjoin must be used. If S2 and S4 are null statement
sequences, the check for NULL can be removed, the outerjoin can be replaced with a join, and OID (Y) will not

need to be stored in  Temp objects.

A sequence is used to ensure that S2, S3,and S4 are executed in the same order as they probably would have
been in the unmodified query (32). Since Temp is a sequence, objects of Temp will be partitioned in insertion

order. By maintaining the scan order within the partition—which will be done in a straightforward implementation
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of hybrid hash—the second join in (T6) will be done in insertion order.
Analysis and Example of Associativity Rewrite

In this rewrite, sizer,m, = (sizeof(OID) + Twidthg,, o +rwidthg,3). Assuming once again that exactly k = 1 ele-
ments of the larger set join with each element of the smaller set, Sef;yy, that passes the join criterion, |Temp| =
(ISetsman - selse;_, k). Temp must be writien to disk as it is produced, and so one page is required as an output

buffer. Thus, the overall cost is:

join cost of Set2|xjSet 3 Join with Set?2 as the outer set

with M ,=(M-1) buffer pages  Need one page for Temp’s output buffer
+Pemp Write pages of Temp to disk as they are produced
+join cost of Set1[X|Temp Join with Set 1 as the outer set

As an example of transformation (T6), consider a query to list employees by department:

(33) for D in Dept {
D->print (); //S1
for E in Emp suchthat (D->id == E->deptid)
for J in Job suchthat (J->id == E->job) {
E->print (); printf(" %s ", J->title); newline(); //S3
}
}

which can be rewritten as:

(34) Temp = [];
for E in Emp {
for J in Job suchthat (J->id == E->3job)
Append <E’s fields, J->title> to Temp;
if (No Job joined with E->job)
Append <E’s fields, NULL> to Temp;
}

for D in Dept {
D->print{(); //S1
for T in Temp suchthat (D->id == T->deptid)
if(T->title != NULL) {
T->print (); printf ("™ %s ", T->title); newline(); //s3’
}
}

Note that in (34), since S2 and S4 are empty, the outerjoin and the check for NULL could have been elim-
inated. We included them for illustrative purposes. Suppose Department has 10 pages, Employee has 100
pages, Job has 20 pages, F=1.2, $izep.parimen=2 " SiZ€Employee, aNd the buffer pool has 31 pages. For (33),
Department|x|Employee will be evaluated using 30 pages since one page will be used as an output buffer for
the result of the join. The join will cost 283 1/Os using the analysis of hybrid hash. We assume that each
Employee joins with exactly one Department. Since each Employee and Department is printed in its

entirety, the objects resulting from this join will be three times longer than Employee objects, so 300 pages must
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be written to disk. We then join this 300 page result with Job. Since Job will fit in a main memory hash table,
this join will only require reading the Job and the results of the Department|X|Employee join once— so only
320 I/Os will be needed. The total cost of (33) is 903 I/Os.

For (34), since only the title is needed from Job, we will assume that sizer,,,, is about 20% longer than sizeg,,,.
Since each person has one job, Pr,, will be 120 pages. Job will fitin a main memory hash table, so the join will
incur only 120 I/Os. Writing Temp will require another 120 I/Os. Computing Department|X|Temp will cost
344 1/0s. Thus (34) will cost 584 1/Os.

5. Self-commutativity

The notion of self-commutativity was extensively in Section 4. However, the class of self-commutative state-

ments was never carefully characterized. We will now examine the class.
5.1. Self-commutative arithmetic operations

Self-commutativity is defined for a statement S relative to a group-by loop of the form

(35) for X, in Setl suchthat Predl (X;)
for X, in Setm suchthat Predm(X;, ..., X,)
S;
We begin the identification of self-commutative statements by first considering individual statements that perform

numeric computation. Throughout this paper we have used the C/C-++ convention that

v = v op E;

can be abbreviated

v op= E;
Some +=, -=, and *=, operator assignments are self-commutative ignoring overflow. Suppose the statement

(36) v op= £(Xy, -+ s XmeVir «-- 1Va):
is contained in S. This statement is self-commutative ignoring overflow if v;, ... ,v, are variables that are not

modified by S, f is a mathematical function (an expression that produces a value and has no side-effects), and v
is an integer variable that is not used in any loop predicates in (35). To see this, consider an example when the nest-
ing is only one level deep (i.e. m=2).
(37) for D in Dept
for E in Emp suchthat (D->id == E~>deptid)
totpay += (E->basepay*D->profitsharing)/100 + ChristmasBonus;
Since integer addition is associative and commutative, ignoring the effects of overflow, an arbitrary pair of instantia-

tions of

totpay += (E->basepay*D->profitsharing)/100 + ChristmasBonus;
like
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totpay += (20000*110) /100 + 500;
totpay += (30000%120)/100 + 500;

can be flipped without changing the final value of totpay (assuming no overflow/underflow takes place). The
same principle holds for an arbitrary statement of the form (36) and for deeper nestings. It is important to under-
stand that operations of this form are sufficiently powerful to compute an arbitrary aggregate once the requirement
that v be an integer variable is relaxed. We call operations of the form (36) reductions because they reduce a sub-
set of a set or Cartesian product to a single value in an order independent manner. This is a natural extension to the

concept of array reduction, a concept used in the optimization of programs for supercomputers [WOLF89].

If the right-hand side of (36) evaluates to a positive integer and v is known to be positive, a /= operation of the
above form is also self-commutative ignoring overflow [BATE90]. (The result of integer division where one of the
operands is negative is implementation dependent in the C language.) Also, the + and - operators for integers can be
treated as inverses ignoring overflow (The * and / operators are not inverses since 0= (1/3)*3 #(1*3)/3=1).
Inverses are important because S may contain several statements of the form (36) that involve the same v. If the
operators used in these statements are identical or inverses, these statements are equivalent to a single statement of
the form (36). For instance, the statement sequence v+=El; v-=E2 is equivalent to the single statement
v+=(E1) - (E2), which is of form (36). However, the statement sequence v+=E1; v*=E2 is not equivalent to

any statement of the form (36).

The +=, -=, *=, and /= operators for reals of the form (36) (where v is now a real variable that is not used in any
loop predicates) are self-commutative ignoring finite precision. The argument is the same as the one for integers.

The + and - operators can be treated as inverses ignoring finite precision, as can the * and / operators.

Actually, the rule for being self-commutative can be loosened a bit. We define a commutative assignment to be
a statement of the form r = £(X;, ... ,Xn/Vi, ... ,V,) wWhere f isa mathematical function and the v;
are either variables not modified by the loop or temporaries. A temporary is a variable that must be defined by a
commutative assignment before any use in S. Also, no assignment to a temporary may reach any use outside of
5.5 Since temporaries are always defined before they are used in S and only the current iteration of the loop uses

the value, commutative assignments are always self-commutative.

We can loosen our characterization of a reduction. The v; in (36) can either be variables constant for the duration
of the set loop or temporaries. Since the original characterization of (36) includes only self-commutative state-
ments, the looser characterization includes only self-commutative statements as well. The two characterizations can
be seen to be logically equivalent by considering the definition of a temporary to be a macro definition. For exam-

ple,

5 If the assignment reached outside the innermost loop and the loops were interchanged, this would not violate the program semantics, but this
would violate the definition of being self-commutative. A different permutation of statements would lead to a different value reaching the use of
the temporary. Thus, a different program state would be produced.
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//b is a temporary

x +
is equivalent to:

x 4= ( (X;=>3 < 5) 2 (X;=>3 + 3) : (X;=>1 * 2) ) + 4;
which is of the form (36). The presence of conditional statements makes the equivalent macro expression unintui-
tive, but our restrictions on predicates in Section 5.3 will ensure that each use of a temporary is equivalent to the use
of a complicated expression of the proper functional form (involving the 2 operator). Thus, the looser characteri-
zation makes the operator assignment less complicated by using the temporaries, but does not increase the class of

computations that are self-commutative.

The class of self-commutative statements also includes statements of the form (36) that use max= or min= as
the operator. We could continue adding cases, but these rules are sufficient for optimizing standard computations
over sets such as variance, standard deviation, and SQL-like aggregates. They are simple and easily eliminate state-

ments that are not self-commutative like

v += v + £(X;):;

and

v += £(X1); r += v;
These statements are admittedly strange—the first is equivalentto v = v + v + £ (X;). They are eliminated
because v appears to the right of the += operation; and v—which is not a temporary— is modified during the exe-
cution of the loop. Such statements are not self-commutative because they make explicit use of intermediate values
of v. This causes values of X; from previous iterations of the loop to be used again during the computation made

during the current iteration of the loop—which makes iteration order significant. For instance, in

(38) v = 0;
for X in Setl //Setl = {[1],[21}
v 4= v + X=>i;

if we iterate in the order {[2],[1]1}, v will have the value five at the end of the loop. If we iterate in the reverse
order, v will have the value four. The first value in the iteration stream is used twice. Thus, if a statement make
explicit use of v in S, that statement is not self-commutative. As can be seen from the examples, non-self-

commutative numeric computations are likely to be rare in practice.
5.2. Other Self-commutative operations

Other sources of self-commutative operations are set insertion (into a set other than Set1, ..., or Setm) and
deletion of a set element (from a set other than Setl, ..., or Setm). For the insertion or deletion statement to be
self-commutative, the elements inserted or deleted must be of the form £ (X, ..., Xpn,V1,...,V,) Where £is
a mathematical function and the v; are either temporaries or variables not modified in S. Note that any of the v; can

be a set that is not modified by statements in S. Arbitrary read-only queries can be evaluated against the set v; to
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compute f.

Another source of self-commutative statements are some abstract data type (ADT) method invocations. For an
ADT method invocation to be self-commutative, all parameters to the ADT method being invoked must be of the
form £(Xy,...,XmsV1s---,V,) Where f isa mathematical function and the v; are either temporaries or vari-

ables not modified in S. Further, the optimizer must be aware that the method commutes with itself.

The ADT implementor must supply information about which operations logically commute, since there is no way
a compiler can identify all and only such operations. The permutability of an operation is dependent on what the
data structure is intended to represent. For instance, tree insertion is a self-commutative operation if the tree is used
to implement a dictionary, since a dictionary does not have an operation that allows the program to find the position
of an element in the tree. However, tree insertion is not self-commutative if the data structure is being used as a gen-
eral tree, since tree traversal can produce this information. Thus, maintaining insertion order is unimportant in the

first case, but crucial in the second.
5.3. Self-commutative sequences of operations

Suppose each individual statement in S is self-commutative when viewed in isolation. Then s is self-

commutative if it satisfies some additional properties. Suppose variable v is defined by a statement of the form

(39) v op= £(X1, .. XmiVir oo V)i
in S. Then all of the definitions of v in S must be reductions and the reduction operators must be either identical
or inverses (i.e. v += El and v -= E2 are allowed, since this pair is equivalent to v += (E1)-(E2).
However, v += El and v *= E2 are not allowed, because this pair cannot be expressed in form (39)). If this
condition holds for all variables defined by reduction operations in S, we say that S is self-commutative relative

to reduction operations.

If Tisan ADT instance that invokes methods M, ..., M, in S, then Vi 1<i<p Vj 1<j<p M; must commute with
M;. If the two adjacent S-like statements in an unrolled version of the program are swapped, then the M; invoca-
tion in the second S-like statement will move before the M1, ... , M,, invocations of the first. Thus M; must com-
mute with all of them. For example, a dictionary might have operations Insert and Reorganize, where the
second operation does not affect the logical structure of the dictionary, but only improves the efficiency of diction-

ary lookup. In order for the statement sequence

(40) D->Insext (X;->name); D->Reorganize;
to be self-commutative, an arbitrary pair of instantiations such as

D->Insert ("Joe"); D->Reorganize();
D->Insert ("Jim"); D->Reorganize();

must be interchangeable Thus Insert must commute with both Insert and Reorganize for the statement
sequence (40) to be self-commutative. If this condition holds, we say that S is self-commutative relative to ADT

operations.
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Statements in S may insert elements into or delete elements from a set but not both unless we are absolutely sure
that the insertion and deletion sets are disjoint. Otherwise, an unrolled version might insert an element in one S-like
statement and delete it in the S-like statement that followed; in which case, the set will not contain the element
upon completion. If the S-like statements were flipped, the final set would contain the element. If this condition

holds, we say that S is self-commutative relative to set operations.

In summary, suppose that S is straightline code and that each statement in S is self-commutative when viewed
in isolation. Then § is self-commutative if it is self-commutative relative to reduction operations, ADT opera-

tions, and set operations.

If s isof the form

(41) sS1;
if( b(X1, X2, .. Xy Vir -c- V)
82;
S3;

then § is self-commutative if the sequence of statements S1; S2; $3 is self-commutative, b is a mathematical
function, and the v; are either temporaries or variables not modified by S. The rule for switch statements is analo-
gous. The intuition is that a sequence of self-commutative statements can only lose this property by having state-
ments added. Deleting statements leaves the sequence self-commutative. A conditional statement merely removes

some statements from the final unrolled version.
6. Conclusions and Future Work

Database programming languages (DBPLs) like O,, E, and O++ include the ability to iterate through a set.
Nested iterators can be used to express joins with grouping constraints. These grouping constraints can negatively
impact performance by preventing the reordering of join computations, so it is useful to remove as many of them as
possible. In this paper, we defined a class of statements, the class of self-commutative statements, that do not inhi-
bit loop interchange in an application program written in a DBPL. We used the concept of self-commutativity and
some analysis of the flow of values through a program in a series of compile-time optimizations that are similar to
familiar relational transformations like join reordering. The transformations presented employ extra set scans, tem-
porary sets, set sorting, and nested statement rewrites to transform program fragments without modifying the
program’s semantics. We also analyzed the I/O performance of several classes of program fragments before and
after these transformations have been applied. The results obtained demonstrate that the transformations can
significantly reduce the number of I/Os performed, even when both the initial and transformed programs use the

same join method.

There are several issues to pursue, While we have developed a number of transformations, we need to develop
heuristics to decide which transformations may be useful for a given loop. In addition, we need to develop methods
to combine several loops that appear sequentially in the program text into a single large loop (in some ways finding
an inverse of transformations (T3) and (T4)—closely related to multi-query optimization [SELL88]). We examined

how this could be done as a clean-up pass, but we did not integrate it with the transformation process. Having seen
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parallels between this work and work on parallelizing FORTRAN, we would like to determine whether or not our
analysis will enable the parallelization of sequential set iteration code written in a DBPL. We would also like to
determine whether a standard relational transformation-based optimizer can be extended to incorporate our ideas.
We are currently examining ways to express the transformations presented in this paper in an algebraic manner. The
strategy we are considering is to perform the analysis necessary to transform the program text into a tree of opera-
tors. Then, a transformation-based optimizer can apply the transformations to the tree instead of to the original pro-
gram. The goal is to transform nested statements (like S which is transformed to S’ by (T2)) only when abso-
lutely necessary—io transform nested statements only for the query plan chosen by the optimizer. This should

significantly speed up the optimization process by eliminating unnecessary work.
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