ON THE EXPECTED SIZE OF
RECURSIVE DATALOG QUERIES

by

S. Seshadri and Jeffrey F. Naughton

Computer Sciences Technical Report #1019

March 1991

On the Expected Size of Recursive Datalog Queries *

S. Seshadri and Jeffrey F. Naughton

{seshad, naughton}@cs.wisc.edu
Department of Computer Sciences
University of Wisconsin-Madison

Abstract

We present asymptotically exact expressions for the expected sizes of relations defined
by three well-studied Datalog recursions, namely the “transitive closure”, “same genera-
tion” and “canonical factorable recursion”. We consider the size of the fixpoints of the
recursively defined relations in the above programs, as well as the size of the fixpoints of
the relations defined by the rewritten programs generated by the Magic Sets and Factoring
rewriting algorithms in response to selection queries. Our results show that even over rel-
atively sparse base relations, the recursively defined relations are within a small constant
factor of their worst-case size bounds, and that the Magic Sets rewriting algorithm on the
average produces relations within a small constant factor of the corresponding bounds for
the recursion without rewriting. The expected size of relations produced by the Factor-
ing algorithm, when it applies, is significantly smaller than the expected size of relations
produced by Magic Sets. This lends credence to the belief that reducing the arity of the
recursive predicate is probably more important than restricting the recursion to relevant
tuples.

1 Introduction

A great deal of work has been done on recursive queries and query rewriting techniques. Sur-
prisingly, however, almost nothing is known about the expected-case behavior of these queries
or their rewritten versions. In this paper, we derive analytic expressions for the sizes of the
fixpoints of the recursively defined relations in the “transitive closure”, “same generation” and
the “canonical factorable recursion” Datalog programs. Similarly, we derive analytic expres-
sions for the size of the fixpoints of relations defined by the rewritten programs generated by
the Magic Sets and Factoring rewriting algorithms in response to selection queries over these
Datalog programs. Our experimental results show close agreement with the analytic formulas
even for small base relation sizes.

*This work was supported by NSF grant IRI-8909795 and by a grant of the Wisconsin Alumni Research
Foundation.

The actual programs for the three recursions that we consider are presented in Section 2.
The transitive closure is a basic and well-studied Datalog recursion. We have chosen the same
generation query because it is simple, yet it gives a lot of insight into more complex recursions.
We have chosen the canonical factorable recursion because it is representative of an important
class of easily evaluable recursions, the factorable recursions.

The Magic Sets rewriting technique attempts to use a selection query to restrict the fixpoint
evaluation of the recursion to search and generate only those portions of the relations that are
relevant to the query. The Factoring rewriting technique, in addition to restricting the fixpoint
evaluation, also reduces the arity (number of arguments) of the recursive predicate. The analytic
expressions we derive give insight into how successful these techniques are over random base
relations.

To investigate the expected behavior of these recursions, we view the (binary) base relations
as random digraphs. That is, there is a tuple (z,y) in a relation if and only if there is a
directed edge from z to y in the corresponding digraph. In the model of random digraphs
we have adopted, denoted D, ,, each edge of an n node digraph is present with probability
p, independently of the presence or absence of other edges. The size of the recursive relations
depends critically on np, the expected out-degree of a vertex. In the following, let a and b be the
base relations for the programs we consider in Section 2. Let np be a constant ¢ > 1, and let the
digraphs corresponding to a and b be chosen randomly from D, ./,. (For clarity of exposition,
we will assume that the out-degrees of the a and b digraphs are the same. The extension to
different out-degrees is straightforward.) Also, let © be the unique root in [0, 1] of the equation
1—gz—e~ =0, and let ©' be the unique root in [0, 1] of the equation 1 —z — (1 —0)e™*® = 0.
A summary of the key results appears in Table 1. TC refers to the transitive closure, SG refers
to the same generation program and CFR refers to the canonical factoring program in the
following table. More detailed results appear in later sections and a graph of these formulas vs.
the constant ¢ appears in Figures 3 and 4.

recursion expected size (+ lower order terms)
TC (no rewriting) 0%n?

TC (magic sets) 0*n?

TC (factoring) 0%n

SG (no rewriting) 0%n?

SG (magic sets) O4n?

CFR (no rewriting) 0(20' — 0)n?

CFR (magic sets) 03(20" — O)n?

CFR (factoring) 020" - O)n

Table 1: Summary of main results.

As noted above, the constant © ranges between zero and one. For ¢ = 2 (recall that c is
the average out-degree of the digraph), we have © = 0.799, so ©2 = 0.638 and ©* = 0.408.
If we apply the Magic Sets transformation to evaluate a selection query of the form ¢(Y") :-
sg(1,Y) on digraphs with ¢ = 2, Table 1 tells us that the relation materialized will on the

2

average contain 0.408n? tuples. On 10,000 node digraphs (20,000 expected tuples in each of a
and b), the relation materialized after rewriting by Magic Sets will thus on the average contain
more than 40 million tuples.

While a statement about random relations does not imply anything about any specific
“real world” instance of the problem, this result is worth noticing because it is in such stark
contrast to the situation for non-recursive queries. For example, if we consider the join query
q2(Y) = a(1,W),b(W,Y) on the same two digraphs , the expected answer size is four tuples.
Furthermore, a selection-pushing evaluation strategy (in the presence of appropriate indices)
will compute this answer with work proportional to the final answer size. As can be seen
from Table 1, though the Magic Set Strategy buys you a factor of @2 over the corresponding
program without rewriting, as © grows (which corresponds to higher average out-degree for the
underlying graphs), the gap between the two narrows until they are almost identical. For ¢ = 4,
we have @ = 0.98, ©? = 0.96 and ©* = 0.923 which means that the program produced by the
Magic Sets rewriting strategy will materialize only 4% fewer tuples than the original program.

On the transitive closure and the canonical factorable recursion, Factoring does roughly a
factor of n better than Magic Sets (Factoring does not apply to the same generation query).
This gain of a factor of n is not due to better “focusing” properties of the rewritten factored
program; rather, it is due to the fact that the Factoring strategy reduces the arity of the
recursively defined predicate. Our results lend credence to the hypothesis, stated in [BKBR87],
that using a selection to reduce the arity of the recursion is far more important than using the
selection to avoid irrelevant tuples.

Related work on the performance of recursive queries and their evaluation algorithms [BMSU86,
BRS88, GKS91, HN88, HL.86, MSPS87, Nau88, SZ87] has considered either worst-case perfor-
mance, or performance over structured synthetic databases, or empirically measured perfor-
mance over randomly generated relations. There is a vast and growing body of literature
pertaining to random graph theory [Bol85]; the most closely related work to ours is a recent
paper by Karp on the transitive closure [Kar90]. Many of the background results in Section 2
are taken from this paper.

The remainder of this paper is organized as follows. Section 2 develops necessary terminology
and presents relevant previous results in random graph theory. Deriving our bounds on the
expected sizes of relations required some new results about properties of random digraphs; we
present these new results in Section 3. Section 4 gives our results about sizes of answers to the
three recursions we consider, while Section 5 gives the results of empirical tests of our formulas.
We conclude in Section 6.

2 Background

2.1 Recursions and Graph Problems

The three recursions we consider in this paper are the transitive closure, same generation, and
the canonical factorable recursion.
1) In Datalog, the transitive closure can be written

tc(X,Y) - a(X,2), tc(Z,Y).
te(X,Y) :- a(X,Y).

We will call the above program T'C henceforth. In response to a query t¢(1,Y)?, the Magic Sets
rewriting strategy [BMSU86, BR87, Ram88] will generate the program (which we call TCy,,
henceforth)

m(1).
n{W) :- m(X), a(X,W).

ntc(X,Y) :- m(X), a(X,Z), mtc(Z,Y).
mtc(X,Y) :- m(X),a(X,Y).

The Factoring rewriting strategy [NRSU89] will produce the program (which we call T'C'yoctor
henceforth)

m{1).
n{W) :- m(X), a(X,W).

ftc(W) - ftc(X), a(X,W).

Treating the base relation as a digraph, we can easily see that (z,y) is in the relation tc if and
only if there is a path from z to y in the a graph. In the case of relation mtc, the additional
constraint is that z should belong to the magic set (the relation m). Notice that the magic set
is the reachability from 1 in the a graph. Finally, y belongs to the relation fic if and only if
there is a path from 1 to y in the a graph.

2) In Datalog, the same generation is written

sg(X,Y) :- a(X,W), sg¥W,2), b(Y,2).
sg(X,X).

We will call the above program SG henceforth. In response to a query sg(1,Y)?, the Magic
Sets rewriting strategy will generate the program (which we call SG,y henceforth)

m(1).
m(W) :- m(X), a(X,W).

msg(X,Y) :- m(X), a(X,W), msg(W,Z), b(Y,Z).
msg(X,X) - m(X).

The Factoring rewriting strategy does not apply to queries on the same generation. Treating
the base relations as digraphs, we can easily see that (z,y) is in the relation sg if and only if
there is a path from z to some vertex 2o of length 7 in the a graph, and there is a path of the
same length ¢ from y to zp in the b graph. In the case of relation msg, the additional constraint
is that z should belong to the magic set (the relation m). Notice that the magic set is the
reachability from 1 in the a graph. Therefore if z is in the magic set, any vertex reachable from
z is also in the magic set.

3) The canonical factorable recursion we consider is

t(X,Y) :- a(X,W), t(W,Y).
t(X,Y) :- t(X,Z), b(Y,2).
t(X,X).

We will call the above program C F'R (for canonical factorable recursion) henceforth. In response
to the query #(1,Y)?, the Magic Sets rewriting strategy will produce the program (which we
call CFR,, henceforth)

m(1).
nW) :- m(X), alX,W).

nt(X,Y) :- m(X), a(X,W), mt(W,Y).
mt(X,Y) :- m(X), mt(X,Z2), b(Y,Z).
mt(X,X) :- m(X).

The Factoring rewriting strategy will produce the program (which we call C F R f.t0r henceforth)

m(1).
n(W) :- m(X), a(X,W).

ft(Y) - m(Y).
ft(Y) :- ££(2), b(Y,Z).

For this query, (z,y) is in the relation ¢ if and only if there is a path from z to some vertex
Zp in the a graph and there is a path from y to zp in the b graph. In the case of relation mt,
the additional constraint is that z should belong to the magic set (the set of vertices reachable
from 1 in the a graph). Finally, y belongs to ft if and only if there is a path from y to z in
the b graph, where zy belongs to the magic set.

We now have a graph theoretic formulation for the problem of finding the sizes of fixpoints
of the relations. For example, to compute the size of the fixpoint of the relation ¢, we have to
compute the number of vertex pairs (z,y) such that there is a path from z to some vertex zg
in the a graph, and a path from y to z in the b graph. Once we have this correspondence
established, we can work with graphs rather than relations. Henceforth, we talk about graphs
and the corresponding problems on graphs only.

2.2 Relevant Previous Results in Random Graph Theory

Consider a random digraph drawn from D, ,. The following theorem demonstrates an important
gap phenomenon: when np = ¢, where ¢ is a constant greater than 1, the number of vertices
reachable from a given vertex is very likely to be either very small (in the interval [0, Bln n])
or very large (in the interval [@n — w(n)y/n, On + w(n)y/n)).

Definition 2.1 X(r) is defined to be the set of vertices reachable from vertex 7 in a directed
graph. Y (7) is defined to be the set of vertices that can reach vertex r in a directed graph. In
other words X (7) is the forward reachability and Y (r) is the reverse reachability. A vertex is
reachable from and can reach itself by definition. O

By symmetry, all the arguments in this paper hold for forward as well as reverse reachability.

Theorem 2.1 [Kar90] Let ¢ be a constant greater than 1. Let d be a positive constant. Let B
be a constant greater than (d 4 1)c(c — 1)72. Let w(n) be a nondecreasing unbounded function.
Let © be the unique root in [0,1] of the equation 1 —z — e~ = 0. Let D be drawn from D, o/,
Then, Pr[|X(r)| ¢ [0, Bln n]U [@n — w(n)y/n, On+w(n)y/n]] < ¢ for all sufficiently large n.

For digraphs drawn from D, ./,,, where ¢ > 1, the set of vertices reachable from vertex r
is called large if | X (r)] lies in the interval [@n — w(n)\/n, On + w(n)\/n], and small otherwise.
The following theorem tells us that the probability that X (r) is small tends to a constant that
depends on ¢ alone. Furthermore, the expected size of X(r), given that X (r) is small tends to
another constant that also depends only on c.

Theorem 2.2 [Kar90] Let D be drawn from D,, o/, where ¢ > 1. Then as n tends to infinity,

1. the probability that X(r) is small tends to 1 — O, where © is the unique root in [0,1] of
the equation 1 — z — e~ = 0;
2. the expected size of | X (r)|, given that X (r) is small , tends to T———c(%———@) .
The following theorem throws a lot of insight into the structure of a random digraph. It
states that the fraction of vertices that have a large reachability in a random digraph is a
constant that depends on ¢ alone, plus an error term that goes to 0 as n goes to infinity.

A similar result is shown for the fraction of vertices that have a large forward and reverse
reachability.

Theorem 2.3 [Kar90] Let LARGEOUT be the set {u|X(u) is large}, LARGEIN be the set
{v|Y'(v) is large}, and LARGE be the set {u|X(u) is large and Y (u) is large}. Let w(n) be a
non-decreasing unbounded function. Then, with probability tending to 1, |LARGEOUT —@On| <
w(n)y/nlogn, and |LARGEIN - On| < w(n)y/nlogn, and |LARGE — 02| < w(n)y/nlogn.

O O

LARGEIN

G v LARGEOUT

Y
Figure 1: A Typical Random Digraph

Notice that the set LARGFis contained in the set LARGFEIN as well as the set LARGEOQUT.

The following is the fundamental Giant Strong Component Theorem for digraphs. It states
that there will be exactly one strong component with more than A ln n vertices for some constant
A. In fact, the proof shows that the set LARGE of the previous theorem corresponds to the
Giant Strong Component.

Theorem 2.4 [Kar90] Let w(n) be a nondecreasing unbounded function. Let ¢ be a constant
greater than 1. There is a constant A such that with probability tending to 1, a digraph drawn
from Dy, ., has ezactly one strong component with more than Alnn vertices, and the number
of vertices in that strong component differs from @%n by at most w(n)y/nlogn.

Roughly speaking, in all likelihood a graph drawn randomly from D, ./, will have a huge
strong component (LARGE of previous theorem) and its size will be ®%n. Apart from this the
graph will have roughly (O — ©?)n vertices that can reach some vertex in the strong component
but are themselves not in the strong component. These vertices along with LARGE are the
vertices of the set LARGEQUT. Similarly, there will be (@ — ©%)n vertices that can be reached
from a vertex in LARGE but are themselves not in LA RGF. These vertices along with LARGE
are the vertices of the set LARGEIN. The rest of the (20 — ©%)n vertices can neither reach
a vertex in LARGFE nor can be reached from LARGE. They are the ones that have a small
forward and reverse reachability. Figure 1 shows how a typical random digraph looks.

The following theorem states that nearly all the vertices of a digraph drawn from D, .,
can be expected to lie either in the largest strong component or in a strong component of size
1. In particular, almost certainly, all the cycles in the graph will lie in LARGE.

Theorem 2.5 [Kar90] Let ¢ be a constant greater than 1. Let © be the unique root in [0, 1]
of the equation 1 - z — e~ = 0. In digraph D, call a vertex exceptional if it lies in a strong
component of size greater than 1 but is not in the unique largest strong component. Let the
random variable s be the number of exceptional vertices in a digraph drawn from D, ... Then

the ezpected value of s is bounded above by a function of n that converges to the positive constant
2¢2(1-©)? 2 (1-0)t
1-¢(1-8) ~ 1—¢(1-9)?"

The following theorem shows that a random digraph contains a long simple cycle almost
certainly. Note that the presence of a large strong component does not imply the existence of
a long simple cycle.

Theorem 2.6 [AKS81] Let ¢ be a constant greater than 1. Let D be a digraph drawn from
Dy c/n- Then with probability tending to 1, there exists a simple cycle of length at least en,
0<e<l1,inD.

3 New Results On Random Digraphs

In this section we state our new results on random digraphs, which will play a key role in the
next section when we derive analytic bounds on the sizes of fixponts of recursive relations. As
before, let D be a typical graph drawn from Dy, ¢/n> € > 1,let w(n) be an arbitrary nondecreasing
unbounded function and let ® be the unique root in [0, 1] of the equation 1 — z — e=% = 0.

In the following theorem, we show that almost certainly there will be two cycles in the Giant
Strong Component whose lengths are relatively prime.

Theorem 3.1 For sufficiently large n, with probability tending to 1, there exist two cycles in
the unique largest strong component of D of lengths | and k respectively such that ged(l,k) = 1.

Proof: Let ¢(n) be the cardinality of the set {m | m < n and ged(m,n) = 1}. It was
proved in [R562] that a lower bound for ¢(n) is n/loglogn. This implies that given a cycle of
length k, there are k¢(k) possible edges between non-consecutive vertices on the cycle whose
presence would result in a cycle whose length is relatively prime to k. We will call these edges
distinguished edges.

The idea behind the proof is to show that at least one of the distinguished edges for the
long simple cycle mentioned in Section 2.2 will exist with overwhelming probability. For this
purpose, we will view the graph D as being built in two stages. At the first stage will put in
enough edges so that a big simple cycle is created in the graph with overwhelming probability.
In the next stage we will add additional edges to create at least one of the distinguished edges
for this simple cycle, again with overwhelming probability.

We will label the edges we add in the first stage “blue” and the edges we add at the second
stage “red”. In the final graph an edge from z to y exists if and only if there is either a blue
edge or a red edge from z to y. The blue edges will be added with probability p; and the red
edges with probability p;. Therefore, the probability that there will neither be a blue edge nor
a red edge between any two vertices is (1 — p;)(1— p;) which is 1 — (p1+ p2 — p1p2). Therefore,
if we choose p; + p; = ¢/n, the graph we obtain by the two stage process will have an edge
probability smaller than ¢/n. So if the theorem holds for the graph obtained by the two stage
process, then it will hold for a digraph drawn from Dy, cjn- Choose p; to be ¢;/n for some
¢1 > 1. Then, p, = %2, After adding the blue edges alone the graph will have a cycle of

8

length en by Theorem 2.6. By Theorem 2.5, with probability tending to 1, this cycle will lie in
the unique largest strong component. Now add the red edges. The probability that none of the
red edges added is one of the distinguished edges for the above cycle is (1 — &=)end(en) which
goes to zero as n tends to infinity. O

The following theorem derives an upper bound on the number of vertices that have short
paths to a particular vertex.

Theorem 3.2 Let Z(r) be the number of vertices that have a path to r of length Inln n or less
in D. Then, Pr[Z(r) > n}/™] tends to zero as n tends to infinity, for any constant m > 0.

Proof: Let W(¢) stand for the in-degree of vertex i. Let « stand for In In(n). Let k be the
maximum of the in-degrees of any vertex in Z(r). Then it is easy to see that Z (r) < 1“—?:11:1
The second term in the previous inequality is the number of vertices in a tree where each vertex
has in-degree k and there are & + 1 levels. If k < 1, then Z (r) is at most & and hence theorem
holds. Assume k > 1 for the rest of the proof. Z(r) > nl/™ implies ko*+! > pl/m, Therefore,
Z(r) > n'/™ implies k > n7@TD and hence

Pr(Z(r) > nl/™]

Pr(3z |z € Z(r) A W(z) > pt/m(e+1)]

Pr{dz | W(z) > nm]

nPr[W(s) > nain]

IAN N IA

1
We will now prove that n Pr{W(s) > n=¥1)] goes to zero as n goes to infinity and the theorem
will follow.

We will require the following bound on the tail of the binomial distribution [Rag86]. Let
the random variable X have the distribution BIN (n,p). Then, for every positive real B,

- np
Pr[X > Bnp] < (5;7—1-)

The in-degree of any vertex has the distribution BIN (n,¢/n). Hence the above inequality

1 _ 1
gives that nPr[W(s) > nml] < n (e—ng)c < (1/6)6(577;—)@, where ¢ = n™(+1), It can be
verified that (3 grows faster than logn and that (logn)°8™ grows faster than n which implies

that the above expression goes to zero as n tends to infinity. O

Theorem 3.3 Let Z(r) be the number of vertices that have a path from r of length Inlnn or
less in D. Then, Pr[Z(r) > n'/™] tends to zero as n tends to infinity, for any constant m > 0.

Proof: The proof is similar to the previous theorem except that we will need to look at the
distrbution of the out-degree of the vertices rather than their in-degree. O

We will now prove that given Inn random vertices, the probability that all of them have
small reachability goes to zero as n tends to infinity.

Lemma 3.1 Let U represent the event that X (u) is large and V represent the event that X(m),
X (v2),. . , X (v) are all small, where u, vy, vy . . . vy are distinct vertices in a graph D drawn from
Dy cjn If k <nm, then Pr{U|V] > 0 — O(In® n/n).

Proof: In [Kar90], a lemma similar to this one was proved. The difference is, the event V
there denoted that the reachability of a single vertex was small. We adapt that proof to suit
our lemma. Consider an experiment to determine, by a fanning out process, whether X (u)
is large. This experiment terminates as soon as Alnn vertices are reached. The experiment
is unaffected by the information that X (v1),X(vs),... X (vg) are all small, unless a vertex in
X = X(v1) U ... U X(v) is reached during the process. The probability that a random set
X (u) of size at most Alnn intersects X is at most éh’—:lﬂ. So, the probability that they do
not intersect is at least 1 — éi:l:?ﬂ. Hence, we conclude that Pr[U|V] > ©(1 — O(In® /n)),
since | X | is at most O(In% n).

O

Corollary 3.1 Let U represent the event that X(u) is small and V represent the event that
X (v1), X(v2),... X(vx) are all small, where u,v,vs...v; are distinct vertices in a graph D
drawn from Dy c/n. If k <Inn, then PrlU|V] < (1 - 0) 4+ O(In® n/n).

Theorem 3.4 Let A(u) represent the event that X (u) is small in D. Let V1,V2,..., 0 be k
distinct vertices in D, where k = Inn. Then Pr[A(v;) A A(vy). .. A(vy)] goes to zero as n tends
to infinity.

Proof: Let B(i) denote A(v;) A A(vi31)...A A(vg). Using Corollary 3.1, we get

PriA(vi) A ... A A(wg)]
= Pr[A(v1)| B(2)] Pr[B(2)]
< {(1 =)+ O(In n/n)} Pr{A(vz)| B(3)| Pr{B(3)]

< {(1=)+ O(In* n/n)}*

which goes to zero as n tends to infinity. O

The rest of this section will derive a theorem that is needed for the CFR programs alone.
Let ky and k2 be two positive constants such that ky -+ ky = 1, and let us randomly label kyn
of the vertices of a random digraph type A vertices and kon of the vertices type B vertices.

Definition 3.1 Let 6, be a 0 — 1 random variable defined for each vertex r as follows: b =1,
if X(r) is small and X (r) contains no type A vertex; 6, = 0, otherwise. O

Lemma 3.2 Pr[§, = 1] tends to 1 - ©' where ©' is the unique root in [0,1] of the equation
1z = koe ",

10

Proof: If r is of type A, then §, = 0. Therefore,

Pr[6, = 1]
= Pr[6, = 1|r is not of type A]Pr[r is not of type A]
= ko Pr[6, = 1|r is not of type A]

We will show that Pr[é, = 1|r is not of type A] is 1=9' py 5 branching process argument.
k2 g g

The following argument is similar to one presented in [Kar90] for a simpler problem. Con-
sider a fanning out process for constructing the set X (7). The process constructs a sequence
(Bo, By ..., By...), where the set B; consists of vertices that have been reached during the first
i iterations of the process. Here, By = {r} and B;;; = B; U succ(v) where v is some vertex of
B; that has not been scanned so far (v is the vertex scanned at iteration 7 + 1) and w lies in
the set suce(v) if and only if the digraph D contains the edge (v, w). The process terminates
when, for some t, B; = t; i.e., termination occurs when every vertex that has been reached has
also been scanned. The number of vertices reached for the first time at iteration ¢ 4 1 has the
probability distribution BIN (n — 1~ |B;|,c/n). We will concentrate on the early stages of this
process when |B;| < Inn, and then this distribution is closely approximated, for large n, by the
probability distribution BIN(n - 1,c¢c/n).

The evolution of the fanning out process during its early stages can closely be approximated
by a branching process which starts with a single progenitor, and in which the number of children
of each individual, independently of the behavior of all other individuals has the distribution
BIN(n —1,¢/n). In this branching process, let us say that an individual is mortal if his total
number of descendants is finite. Let g,, be the probability that the progenitor is mortal and none
of its descendants are of type A, given that the progenitor is not of type A. To determine the
behavior of g, as n tends to infinity, note that BIN(n ~ 1,¢/n) converges in distribution to the
Poisson distribution with mean ¢. Consider a Poisson branching process in which the number
of children of any individual, independently of the behavior of other individuals has the Poisson
distribution with mean c. Let ¢ be the probability that the progenitor of this process is mortal
and has no descendants of type A, given that the progenitor is not of type A. The conditional
probability that an individual is mortal and has no descendants of type A given that it has k
children and it is not of Type A is (k2¢)F. Unconditioning, we get ¢ = Y 52 e“c%(kgq)k, which
leads to the equation g = e~°e*29. Substituting ~1—k'—;—“1 for ¢ in the above we get 1 — z = koe™".

'
Hence, ¢ = 1;? .

]
Corollary 3.2 Pr[X(r) contains no Type A vertex | X(r) is small] tends to —11—3%.

Proof: Note that Pr[X(r) is small] tends to 1 — © and the corollary follows from Lemma 3.2.
(W

Lemma 3.3 Pr[6, = 0|6, = 1] > Pr[§, = 0] — O(log® n/n)

11

Proof: A proof similar to Lemma 3.1 will work for this lemma. O
Corollary 3.3 Pr[é, = 1|6, = 1] < Pr[6, = 1] + O(log? n/n)

Theorem 3.5 Let § = [{u | 6, = 1}|. Then, with probability tending to 1, IS~ (1-0)n|<

w(n)\/;z-logz n.

Proof: Since, § = 3" 6., E(S) = (1 - ©')n. Also, E(S?) = E(S)+ n(n — 1)E(8.6,), where
u and v are any two distinct vertices. By Lemma 3.3 we have that E(6,68,) < E(6.)(E(8y) +
O(log? n/n)). It now follows that variance of S is O(nlog? n) and the desired conclusion now
follows from Chebyshev’s inequality. O

We will need the following two refinements of the results of Section 2.2 for our future
discussions.

Lemma 3.4 With probability tending to 1, | X (r)| (recall Definition 2.1) in a digraph D drawn
from D, s, will be bounded above by Inlnn, given that X (r) is small.

Proof: We will need Markov’s inequality, which states that for a random variable X that takes
only nonnegative values, Pr[X > f] < E%—l, where 8 > 0 and E(X) is the expected value of
X . The result now follows from Markov’s inequality and the fact that given X (r) is small, the
expected size of | X(r)| is a constant (Theorem 2.2). O

Lemma 3.5 Recall that an exceptional vertex is one that lies in a strong component of size
greater than 1 but not in the unique largest strong component. Let the random variable s be
the number of exceptional vertices in a digraph D drawn from D, .,. Then with probability
tending to 1, s is bounded above by Inln n.

Proof: The result follows from Markov’s inequality and the fact that the expected size of s is
a constant (Theorem 2.5). O

4 Main Results

In this section, by size of the answer to a program, we mean the number of tuples in the fixpoint
of the recursively defined relation in that program. We recall that the a and the b graphs are
drawn from D, ./, and © will denote the unique root in [0,1] of the equation 1 — z — €™ = 0.
We will use the graph theoretic formulation for the problem of finding the sizes of the fixpoints
of the recursively defined relations we derived in Section 2.1 to derive our bounds.

Recall that LARGEOUT is the set {u|X (u)is large}, LARGEIN is the set {v|Y (v) is large},
and LARGE s the set {u|X(u) and Y (u) is large}. We will denote LARGEOUT of the a graph
by LOUT, and LARGEIN of the a graph by LIN,. Similarly, we will denote LARGEOUT of
the b graph by LOUT}, and LARGEIN of the b graph by LINs.

12

4.1 Transitive closure

Here, we derive analytic bounds for the sizes of answers to the T'C', TC\ng, and T'Csqctor Datalog
programs.

Lemma 4.1 Let D be drawn from D, .,,. Let = be some vertex in LARGEOUT of D. With
probability tending to 1, the number of vertices not in LARGEIN that are reachable from z is
at most O(n°),0 < € < 1.

Proof: If z belongs to LARGEIN also, the lemma is trivially true. If not, let y be some vertex
in LARGE. From Theorem 2.1, the forward reachability of y is at least On — w(n)\/n and the
forward reachability of z is at most ®n + w(n)./n. Since y is in the forward reachability of z,
it follows that the number of vertices not in LARGEIN that are reachable from z is at most

2w(n)+/n, which is O(n®). O

Theorem 4.1 With probability tending to 1, the size of the answer to TC is ©2r%+0(n!*€),0 <
e<1.

Proof: Let £ € LOUT,. Then every vertex y € LIN, is reachable from z and hence in the
answer to T'C'. Tt now follows from Theorem 2.3 that the number of vertex pairs (z, y) such that
¢ € LOUT, and y € LIN, that will be in the answer to T'C is 022 +O(n1+€). By Lemma 4.1,
the number of vertices y ¢ LIN, that are reachable from z is O(n®). Therefore, the number
of vertex pairs (z,y) such that « € LOUT, and y ¢ LIN, that will be in the answer to T'C is
O(nl*e).

Let ¢ LOUT,. By Theorem 2.1, the forward reachability of = is at most Bln n, for some
constant B. This means the number of vertex pairs (z,y) such that = ¢ LOUT, that are in the
answer to T'C is O(n'*€). O

Theorem 4.2 With probability tending to 1, the size of the answer to TCpg, if the magic set
is big, is ©3n? + O(n!?¢), 0 < e < 1.

Proof: Recall that the magic set is the reachability set from vertex 1 in the a graph. If the
magic set is big, it contains all vertices of LIN, and probably some vertices of LOUT, that are
not in LIN,. Let £ € LARGE of the a graph. Then every vertex y € LIN, is reachable from
z and hence in the answer to T'Cy,g. Moreover no other vertex is reachable from z. It now
follows from Theorem 2.3 that the number of vertex pairs (z,y) such that ¢ € LARGE that
will be in the answer to T'C is @3n? 4+ O(n!*¢).

Let z be in LOUT, but not in LIN,. By Lemma 4.1, the number of vertices ¢ ¢ LIN,
that are reachable from 1 is O(n¢). Therefore, the number of vertex pairs (z,y) such that z is
in LOUT, but not in LIN, that will be in the answer to TCy,, is O(n'*e).

Let z ¢ LOUT,. By Theorem 2.1, the forward reachability of z is at most Bln n, for some
constant B. This means the number of vertex pairs (z,y) such that z ¢ LOUT, that are in the
answer to TCp,g is O(n'*€). O

13

Theorem 4.3 The expected size of the answer to TCp,g tends to @4n? + O(n!*€), 0 < e < 1.

Proof: The result follows from the fact that the probability that the magic set is big is © and
an upper bound on the size of the answer to TCp,, when the magic set is small is O(n'*¢). O

Theorem 4.4 With probability tending to 1, the ezpected size of the answer to TCactor 18
0ln+0(nf),0<e< 1,

Proof: The answer to T'Cfsctor consists of all tuples reachable from 1. If the magic set is big,
the size of the answer is On 4 O(n¢). If the magic set is small, the size of the answer is O(n°).
The result now follows from the fact that the probability that the magic set is big is ©. O

4.2 Same Generation

Here, we derive analytic bounds for the sizes of answers to the SG, SG g, and SG jactor Datalog
programs.

The following theorem identifies a set of vertices that will almost certainly be in the answer
to SG. That gives a lower bound on the size of the materialized relation for SG.

Theorem 4.5 With probability tending to 1, the size of the answer to SG will be al least
0%n? 4+ O(n!te),0< e < 1.

Proof: We know that there will be more than Inn vertices in LIN, with probability tending
to 1. It follows from Theorem 3.4 that the probability that all these lnn vertices will have
a small reverse reachability in the b graph tends to zero. Therefore, with probability tending
to 1, there exists at least one vertex which is in LIN, as well as in LINy. Let 2o be one such
vertex.

Let k; and k; be two natural numbers such that ged(ki, k2) = 1. Then it is a well known
fact that every natural number N > Ny, for some Ny, can be expressed as iky + jkz where 1
and j are some non-negative integers. We can then conclude, from the above and Theorem 3.1,
that there exists a positive integer N, such that for N > N,, every vertex z in LOUT,, will
have a path of length N to zo in the a graph. Similarly, there exists a positive integer N, such
that every vertex y € LOUT, will have a path of length N to zp in the b graph, where N > Np.
This proves that every vertex pair (z,y) such that z € LOUT, and y € LOUT, will be in the
answer to SG. The number of such vertex pairs is ©2n% + O(n'*€) from Theorem 2.3 and the
desired result follows. O

We will now prove that the lower bound of the previous theorem is in fact an upper bound
too. In other words, the contribution from the vertex pairs other than those identified in the
previous theorem is of a smaller order than n?.

The following definitions are needed before we can proceed to the next theorem.

14

Definition 4.1 The set R(i) is defined as follows for ¢ = 1,...,n: R(¢) is the set of vertex
pairs (z,y) such that the following are true

e 2 ¢ LOUT, ory ¢ LOUT,

e There exists some non negative integer k such that there is a directed path of length &
from z to % in the a graph and a directed path of length k from y to ¢ in the b graph.

il

Definition 4.2 The set P(7) is defined as follows:
P(i) = {(z,9) | (z,9) € R(i) Az ¢ LOUT,}

and the set Q(7) is defined as follows:

Q@) = {(z,v) | (z,9) € R(i) Az € LOUT,}

O

Theorem 4.6 With probability tending to 1 , an upper bound on the size of the answer to SG
will be ©%n? + O(n*e), 0 < e < 1.

Proof: We have shown in the last theorem that with probability tending to 1, all vertex pairs
(z,y) where z € LOUT, and y € LOUT, will be in the answer to SG. We will now derive
an upper bound on the number of vertex pairs (z,y), where z ¢ LOUT, or y ¢ LOUT}, that
will be in the answer to SG. We will show that the number of such vertex pairs is O(n!*¢),
0<e<l.

It can be seen that 5°7 , R(¢) is an upper bound on the number of distinct vertex pairs
(z,7) such that ¢ ¢ LOUT, or y ¢ LOUT} that are produced as answer to SG . We will derive
an upper bound on R(r) and then multiply it by n to get an upper bound on the above sum.
We consider a case by case analysis based on the position of r in the a and b graphs.

CASE1: 7€ LOUT, and r € LOUT,
R(r) = 0 from the definition of R(r).

CASE 2: r ¢ LOUT, and r ¢ LOUT,

Since R(r) = P(r) U Q(r), we will derive upper bounds on P(r) and Q(r) and add them up
to get an upper bound on R(r). The argument for both cases is similar, we will present the
argument for P(r) alone.

Let § = {z | (z,y) € P(r)}. All vertices in S have a forward reachability which is at most
Inlnn by Lemma 3.4. Tt is now easy to see that | S| is less than or equal to Z(r), where Z(r)
is the number of vertices that have a path to r of length Inln n or less in the a graph. We can

15

therefore infer from Theorem 3.2 that |S| is O(n!/™). If Y(r) (recall Definition 2.1) of the a
graph does not have an exceptional vertex in it, all paths from vertices in § to r in the a graph
are simple paths (a path where no vertex is repeated). If they were not simple, then there is
a directed cycle and that implies the presence of a strong component of size greater than 1.
Therefore all paths from the vertices in § to 7 in the a graph are at most InIn n in length, since
a simple path of length greater than Inlnn would imply a reachability bigger than Inlnn. The
number of y’s that can now be paired with vertices in § is at most O(nl/ ™), from Theorem 3.2.
The reason here is that the length of the path from y to r in the b graph has to be the same
as the length of the path from z to r in the a graph, if z and y are to be paired. So, if Y(r)
of the a graph does not contain an exceptional vertex, an upper bound on P(r) is O(n?/™).
If Y(r) of the a graph has an exceptional vertex in it, the vertices in .S could potentially have
long paths to 7 in the a graph and at worst O(n) y’s could be paired with z and so an upper
bound on P(r) in this case is O(n!+1/™).

CASE 3: risin LOUT, and 7 is not in LOUT;
This case is argued similar to Case 2 and we conclude that R(r) is O(n?/™) whenever Y (r) in
the b graph does not contain an exceptional vertex. Otherwise R(r) is O(n!+1/™).

CASE 4 : ris not in LOUT, and r is in LOUT,
This case is argued similar to Case 2 and we conclude that R(r) is O(n?/™) whenever Y (r) in
the a graph does not contain an exceptional vertex. Otherwise R(r) is O(n!+1/™).

The number of vertices in the a graph that have an exceptional vertex in their reverse
reachability set is at most O((Inlnn)?), since there are at most Inlnn exceptional vertices
(Lemma 3.5) in the a graph and each of these vertices has a forward reachability of at most
Inlnn. Similarly, the number of vertices in the b graph that have an exceptional vertex in their
reverse reachability set is at most O((Inln n)?). Therefore, the number of vertices that have an

exceptional vertex in their reverse reachability set in at least one of the a or b graphs is at most
O((Inlnn)?).

Therefore, ", R(3) is O(n'+1/™(Inln n)? + n*+2/™). The first term is the contribution of
those i’s that have an exceptional vertex in Y (%) of the a graph or in Y (i) of the b graph and
the second term is the contribution of those i’s that have no exceptional vertices in either of
their reverse reachability sets. It follows now that the sum is O(n'*¢),for 0 < e < 1. O

Theorem 4.7 With probability tending to 1, the size of the answer to SGrnyg, if the magic set
is big, is at least ©3n? + O(n1*¢), 0 < e < 1.

Proof: Recall that the magic set is the reachability set from vertex 1 in the a graph. If the
magic set is big, then all the vertices that are in LIN, are in the magic set. We can now prove
similar to the proof for SG that every vertex pair (z,y) such that z € LARGE of the a graph
and y € LOUT, will be in the answer to SGy,g. Therefore, from Theorem 2.3, the number of
such vertex pairs is ©3n% 4+ O(n!*€) and the desired result for SG gy follows. O

16

Theorem 4.8 With probability tending to 1, an upper bound on the size of the answer to SG g,
if the magic set is big, is ©3n? 4+ O(n!+¢), 0 < e < 1.

Proof: We have seen in the previous theorem that, if the magic set is big, then all the vertices
of LIN, are in the magic set and all vertex pairs (z,y) such that 2 € LARGE of the a graph
and y € LOUT, will be in the answer to SGpg. If 1 is not in LARGE of the a graph, then the
vertices of the magic set that are in LOUT, but not in LIN, form a subset of the vertices that
have a path from 1 of length less than Inlnn. From Theorem 3.3 we can conclude that the
number of vertices in the Magic set that are in LOUT, but not in LIN, is ()(nl/ ™) and the
contribution to the answer is going to be at most O(n1t1/™) from these extra vertices. We are
left to deal with the contribution from vertex pairs (z,y) such that z ¢ LOUT,. A reasoning
similar to the proof of Theorem 4.6 shows that this contribution is O(n!*€). O

Theorem 4.9 The expected size of the answer to SGp,q tends to ©1n? + O(nte), 0 < e < 1.

Proof: The proof follows from the fact that the probability that the magic set is big is © and
an upper bound on the size of the answer to $G,, when the magic set is small is O(n'*¢). O

4.3 Canonical Factorable Recursion

Here, we derive analytic bounds for the sizes of answers to the CFR, CFR,g, and CF Ryactor
Datalog programs.

Theorem 4.10 Let ©' be the unique root in [0,1] of the equation 1 —z = (1 — O)e™**. With
probability tending to 1, the size of the answer to CFR is ©(20' — ©)n? + O(n'*),0 < e< 1

Proof: Recall that (z,y) is in the answer if and only if there is a path from z to some vertex zo
in the a graph and a path from y to 2o in the b graph. For a fixed ¢ the number of vertices, that
do not belong to LOUT, and have a path to i is less than or equal to Z(3), and hence, O(n'/™)
by Theorem 3.2. Similarly, the number of vertices that do not belong to LOUT}, and have a
path to ¢ in the b graph is O(n1/™). Therefore, for a fixed i, there are at most O(n?/™) vertex
pairs (z,y) such that z ¢ LOUT, and y ¢ LOUT, and = has a path to ¢ in the a graph and y
has a path to ¢ in the b graph. Hence, the number of vertex pairs (z,y) such that ¢ LOUT,
and y ¢ LOUT; that are produced as an answer to CF'R is bounded above by O(n'*¢).

Consider the vertex pairs (z,y) such that y € LOUT;. Let us partition the vertex set of the
a graph as follows: Mark the vertices that belong to LI Ny as T'ype A in the a graph and the rest
as Type B. Let 6. be a 0 — 1 random variable as defined in Definition 3.1. Recall that 6, = 1 if
X (r) is small and X (r) contains no T'ype A vertex, and 6, = 0 otherwise. It can be seen that
k, = O (the number of vertices of T'ype A) and ky = 1—0. For afixed r, if 6, = 1, X(7) (in the
a graph) contains only vertices that are not in LIN, in the b graph. So, each vertex of X (r)
will have a reverse reachability in the b graph of O(Inn). Further, | X(7)| is O(Inn). Therefore,
the number of vertex pairs of the form (r,%) in the answer is O(In® n). Therefore, there will be

17

at most O(nln?n) vertex pairs of the form (z,y), where y € LOUT;. For a fixed z, if 6, = 0,
then all vertex pairs (z,y) such that y € LOUT}, will be in the answer. The reason is that if
6z = 1, then it either has a large reachability, in which case a proof similar to Theorem 4.5
will prove the preceding claim; or it has a small reachability that contains a Type A vertex.
Therefore, total number of vertex pairs (z,y) such that §; = 0 and y € LOUT} that will be in
the answer is (n — Y7, 6;)(On). This expression is ©’'@n? + O(n'*¢) by Theorem 3.5.

Consider the vertex pairs (z,y) such that z € LOUT,. This will also yield ®'©@n? + O(n'*)
by a similar argument as above. But, we have counted the vertex pairs (z,y) such that = €
LOUT, and y € LOUT, twice. So subtracting ©?n? for that, we get the final expression
0(20' — O)n? + O(nlte). O

Theorem 4.11 Let ©' be the unique root in [0,1] of the equation 1 —z = (1 — O)e™*. With
probability tending to 1,

1. The size of the answer to CF R,,,, when the magic set is big, is ©%(20' — O)n? + O(n'*e),
O<ex1

2. The size of the answer to CFRyqctor when the magic set is big is ©'n + O(n®) and the
expected size of the answer to CFRjqct0r when the magic set is small is (1 — li‘-’_—%)@n +
O(n), 0< e< 1.

Proof: Notice that the expression for CFR,,, is exactly © times the expression for CFR. The
extra factor of ©® comes about because only vertex pairs (z,y) where z belongs to magic set
can appear in the answer to CFR,,,. An argument similar to the proof of Theorem 4.10 will
give the desired result for CFR,,.

Recall that y belongs to the answer to CF Ryqctor if and only if there is a path from y to 2
in the b graph, where zy belongs to the magic set. We now analyze C FRqcior when the magic
set is big. Let us now partition the vertex set of the b graph as follows: Mark the vertices that
belong to the magic set as Type A and the rest as Type B. Let 6, be a 0 — 1 random variable
as defined in Definition 3.1. It can be seen that k& = © and ky; = 1 — ©. All vertices r such
that §, = 0 will be in the answer (and no other vertex will be in the answer). This is because
from previous arguments, it follows that all the vertices in LOUT} will be in the answer and all
vertices of the b graph that have a vertex of the magic set in X (r) will also be in the answer.
Therefore, the desired result for CF Rfqctor, When the magic set is big, follows from Theorem
3.5.

We now turn to CFRfqc0r when magic set is small. Notice that what we actually need to
know in this case is if any of the vertices in the magic set is in LARGEIN of the b graph. If
not, then we will have O(n) vertices only in the answer. If there is at least one, then we will
have @n 4+ O(nf) vertices in the answer. It then follows from Corollary 3.2 that the probability
of the second event is 1 — 11%%'. Hence the desired result follows when magic set is small for

CFRfactor- g

18

Fraction
of Maximum 0.5 —
Possible Size

[I
2 3 4

Average Qutdegree c

Figure 2: Results for TC Programs
Theorem 4.12 Let ©' be the unique root in [0, 1] of the equation 1 — z = (1-0)e=,

1. The ezpected size of the answer to CFRmg tends to ©3(20 — @)n2 4 O(n!+¢), 0 < ¢ < 1

2. The ezpected size of the answer to CFR t4c4,r tends to 0'0n+(1-0)(1- a—:—%i)@n—!—()(nc),
which simplifies to (20" — O)n + O(nf), 0 < € < 1.

Proof: If the magic set is small, the size of the answer to CFRyy is O(n'*¢). Since, the
probability the magic set is big is ©, the expression for the expected size of the answer to
CF Ry, follows from Theorem 4.11.

The result for CFR 410 follows from Theorem 4.11 and the fact that the probability the
magic set is big is ©. O

5 Experimental Results

In this section we describe experimental results that demonstrate the convergence of the above
results. We generated random digraphs for various values of n and p and we wrote simple pro-
grams to compute the tuples that would have been generated by a fixpoint evaluation algorithm
with those random graphs as the base relations.

We present one set of experiments here wherein we held the number of nodes in the graph
constant at 256, while we varied ¢ from 1.25 to 4.0, in steps of 0.25. The results for the transitive
closure program is shown in Figure 2, the results for the same generation program is shown
in Figure 3, and the results for the canonical factorable program is shown in Figure 4. The
dashed line in all cases is the coefficient of the highest order term in the corresponding analytic
expression. The lower solid line (labeled MR) in each figure gives the average number of tuples
materialized by Magic Sets rewriting strategy, divided by n2. The upper solid line (labeled

19

Fraction
of Maximum 0.5 —
Possible Size

| I I
2 3 4

Average Outdegree c

Figure 3: Results for Same Generation Programs

Fraction
of Maximum 5 _
Possible Size

I I [
2 3 4

Average Outdegree ¢

Figure 4: Results for CFR Programs

20

NR) in each figure gives the average number of tuples materialized by the program without any
rewriting, divided by n?. The dotted line (labeled FR) in Figures 2 and 4 gives the average
number of tuples materialized by the Factoring rewriting algorithm, divided by n (as opposed
to n? for other cases). It can be seen that in all cases, the results are in close agreement with
the analytic formulas.

6 Conclusion

We derived analytic formulas for the sizes of materialized relations for the “same generation”
and the “canonical factorable recursion”. We considered the programs without rewriting as
well as the rewritten programs produced by the Magic Sets Strategy and Factoring technique in
response to selection queries. We ran experiments that agree closely with the analytic formulas.
Our results demonstrate that unless the arity of the recursive predicate can be reduced or the
base relations are extremely sparse, pushing selections by restricting the fixpoint evaluation
produces only a small savings over evaluating the original, non-rewritten program.

The approach we adopted was to use random digraphs to model the base relations. Then, the
question of the size of the materialized relation transforms into a question about the properties
of a random graph or the interaction between some number of random graphs. We believe
that this approach can be used effectively for a wider class of recursions than that considered
here; furthermore, we conjecture that most Datalog recursions will exhibit the key property
that as the “density” of the base relations increases above some low threshold, the size of the
recursively defined relation will quickly approach its worst-case bound, and virtually all tuples
in this relation will be relevant to the computation of selection queries on this relation.

Acknowledgements

We would like to thank G. Ramalingam for providing useful comments.

References

[AKS81] M. Ajtai, J. Komlds, and E. Szemerédi. The longest path in a random graph.
Combinatoria, 1, pages 1-12, 1981.

[BKBR87] Catriel Beeri, Paris Kanellakis, Francois Bancilhon, and Raghu Ramakrishnan.
Bounds on the propagation of selection into logic programs. In Proceedings of the
ACM Symposium on Principles of Database Systems, pages 214-226, San Diego,
California, March 1987.

21

[BMSUS6]

[Bolg5]

[BRST]

[BRSS]

[GKS91]

[HI.86]

[HN88]

[Kar90]

[MSPS87]

[Nau8sg]

[NRSUS9]

[Rag86]

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic
sets and other strange ways to implement logic programs. In Proceedings of the
ACM Symposium on Principles of Database Systems, pages 1-15, Cambridge, Mas-
sachusetts, March 1986.

Béla Bollobés. Random Graphs. Academic Press, London, 1985.

Catriel Beeri and Raghu Ramakrishnan. On the power of magic. In Proceedings of
the ACM Symposium on Principles of Database Systems, pages 269-283, San Diego,
California, March 1987.

Francois Bancilhon and Raghu Ramakrishnan. Performance evaluation of data in-
tensive logic programs. In Jack Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 439-517, Los Altos, California, 1988. Morgan Kauf-
mann.

S. Ganguly, R. Krishnamurthy, and A. Silberschatz. An analysis technique for
transitive closure algorithms: a statistical approach. In Proceedings of the IEEE
Data Engineering Conference, 1991. To appear.

Jiawei Han and Hongjun Lu. Some performance results on recursive query processing
in relational database systems. In Proceedings of the International Conference on
Data Engineering, pages 533-541, 1986.

Ramsey W. Haddad and Jeffrey F. N aughton. Counting methods for cyclic relations.
In Proceedings of the ACM Symposium on Principles of Database Systems, pages
333-340, Austin, Texas, March 1988.

Richard M. Karp. The transitive closure of a random digraph. Random Structures
and Algorithms, 1(1):73-93, 1990.

Alberto Marchetti-Spaccamela, Antonella Pelaggi, and Domenico Sacca. Worst-case
complexity analysis of methods for logic query implementation. In Proceedings of
the ACM Symposium on Principles of Database Systems, pages 294-301, San Diego,
California, March 1987.

Jeffrey F. Naughton. Benchmarking multi-rule recursion evaluation strategies. Tech-
nical Report CS-TR-141-88, Princeton University, 1988.

Jeffrey F. Naughton, Raghu Ramakrishnan, Yehoshua Sagiv, and J effrey D. Ullman.
Argument reduction through factoring. In Proceedings of the Fifteenth International
Conference on Very Large Databases, pages 173-182, Amsterdam, The Netherlands,
August 1989.

P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating
packing integer programs. In Proceedings of the 27th Annual IEEE Symposium on
Foundations of Computer Science, pages 10-18, 1986.

22

[Ram88]

[RS62]

[$Z87]

Raghu Ramakrishnan. Magic templates: A spellbinding approach to logic programs.
In Proceedings of the International Conference on Logic Programming, pages 140
159, Seattle, Washington, August 1988.

J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime
numbers. Illinois Journal of Mathematics, 6:64-94, 1962.

Domenico Sacca and Carlo Zaniolo. Magic counting methods. In Proceedings of the
ACM-SIGMOD Symposium on the Management of Data, pages 49-59, San Fran-
sisco, California, June 1987.

23

