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Abstract

Query optimizers of current relational database systems use several statistics maintained
by the system on the contents of the database to decide on the most efficient access plan for
a given query. These statistics contain errors that transitively affect many estimates derived
by the optimizer. We present a formal framework based on which the principles of this error
propagation can be studied. Within this framework, we obtain several analytic results on how the
error propagates in general, as well as in the extreme and average cases. We also provide results
on guarantees that the database system can make based on the statistics that it maintains.
Finally, we discuss some promising approaches to controlling the error propagation and derive
several interesting properties of them.

1 Introduction

Query optimizers of relational database systems decide on the most efficient plan for a given query
based on a variety of statistics on the contents of the database relations that the system maintains.
These are used to estimate the values of several parameters of interest that affect the decision of
the optimizer [S79]. In most cases, the statistics represent an inaccurate picture of the actual
contents of the database. This is due to two reasons: first, only aggregate information is maintained
by the system, e.g., maximum, minimum, and average value in an attribute, or a histogram with
the number of tuples in a relation for each of several value ranges in an attribute; second, as the
database is updated the information becomes obsolete. Hence, the query optimizer uses erroneous
data to accomplish its task.

The above would not be much of a problem if the desired estimates were derived by applying
some simple functions on the erroneous statistics only once. This is not the case, however, for many
complex queries that are processed as a sequence of many simpler operations, e.g., multi-join queries
processed as a sequence of 2-way joins. In that case, the query optimizer must estimate various
parameters of the intermediate results of the operations, and then use the obtained values to estimate
the corresponding parameters of the results of subsequent operations. Even if the original errors
in the statistics maintained by the database system are small, their transitive effect on estimates
derived for parameters of the complete query can be devastating. Consequently, the decision of the
query optimizer can be wrong since it is based on data with large errors. This phenomenon where
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the errors in the original system statistics affect the error in the derived estimates is called error
propagalion and is one of the main issues that challenge current query optimizer technology.

In this paper, we present a formal framework based on which the principles of error propagation
can be studied. Within this framework, we obtain analytic results on the problem under different
models of the statistics that are kept by the database system. We also obtain results giving intuition
on the methods that could be used to reduce the magnitude of the error propagation.

There are several parameters whose inaccurate estimation can lead a query optimizer in wrong
decisions. Moreover, there are several operators that can be present in a query and each one is
affected by errors in its operands differently. In this paper, we concentrate on the relation size and
the join as the parameter and the operator of interest respectively. This choice is motivated by their
importance in query optimization and their sensitivity to error propagation.

We are aware of no work in the area of error propagation in the context of database query
optimization. There is extensive literature on deriving good estimates for the parameters of the
result of database operations, which has been surveyed by Mannino, Chu, and Sager [MCS88]. This
is not the case, however, with the effect of the unavoidable errors in these estimates on the error
of a sequence of such operations. The folklore has been that errors propagate exponentially, and
therefore beyond a certain point, computed estimates are unreliable, but the problem has been
essentially ignored. The primary reason for that has been the low complexity of the queries that
current systems have to face. As the query complexity increases in future database applications, this
can no longer be the case. Formal techniques are necessary to increase our understanding of how
much query complexity can be tolerated before the combined errors in the individual relations of the
query become unacceptable. In hindsight, however, it becomes apparent that such an understanding
is needed even for the currently common, low complexity queries, where errors can grow enough to
cause erroneous decisions by the optimizers [Chr89, ML86a, ML86b, Sel89].

This paper is organized as follows. Section 2 introduces some notation for the study of error
propagation and states the assumptions made in this paper. Section 3 derives precise formulas for
the error in the result of a join query as a function of the errors in the query relations. Section
4 elaborates on the behavior of the formulas derived in the previous section as the interaction of
the errors in the query relations changes. The focus of this section is on extreme and expected
values of the result error. Section b addresses the case where the database system maintains some
thresholds for the error in the query relations and derives some upper bounds on the error in the
query result that can be guaranteed based on these thresholds. The results of all three of the last
sections are rather pessimistic, showing that the error propagates exponentially with the number
of joins. Section 6 discusses one form of controlling the error propagation by maintaining accurate
statistics about certain interesting values in the join attributes of relations. An example is also
shown where, with this form of correction, not only the error does not increase exponentially, but
in fact beyond a certain point, it decreases with the number of joins. Section 7 compares the effects
on the final error of imposing similar thresholds on the query relation errors vs. imposing different
thresholds on them. Finally, Section 8 summarizes our results and gives directions for future work.

2 Formulation

Consider a (tree) query of N joins in which relations Ry, ..., Ry participate. To avoid potential
confusion with the multiple use of the term ‘value’, we refer to the values of the join attributes of
these relations as the join elements. The study of error propagation in its most general form is
rather difficult. We make the following assumptions:

(A1) All joins are equality joins.



(A2) Only one attribute from each relation participates in joins (independent of the number
of joins it does s0).

(A3) The set of elements that appear in the join attribute of a relation is the same for all
relations. This set is the join domain of the query.

An obvious implication of (A2) is that all join attributes are of the same type. Also, we assume
some arbitrary ranking of the elements in the join domain, so that referring to the i-th join element
is meaningful. The following database parameters are of interest:

M The size of the join domain, i.e., the number of unique elements in the join attributes
of Rj,0<j<N.

ti; The number of tuples in R; whose join attribute contains the i-th element of the join
domain, 1 <i< M,0<j<N.

S The size of the result relation of the query.

For each relation R;j, 0 < j < N, the set Ly={t;;|1 < i < M} is called the join element distribution
in R;. Clearly, the above parameters are related with the following formula:

M N
S:ZHtij. (1)

i=1 j=0

Most often database systems have inaccurate knowledge of the join element distributions in the
query relations. Therefore, the estimate that they derive for the size S is inaccurate as well, and
this affects the decisions of their query optimizers.

Definition 2.1 Suppose that a certain quantity has a definite value A whereas the database system
approximates it by the value A°. The difference A—A® is the ezact error and the fraction (A—A®)/A®
is the relative error in the approximate value A°.

For any quantity of interest, the potentially erroneous value used by the system is denoted by the
same symbol as the correct value with an additional superscript ‘¢’. For example, the approximation
of the join element distribution is denoted by Lf = {tf;} and the corresponding estimated result
size is denoted by S¢. In the sequel, we concentrate on relative errors. If no confusion arises, we
occasionally use the term ‘error’ alone, the intended meaning being that of ‘relative error’.

For each relation R;, 0 < j < N, the set Ej={di;|di; = (t;;/t5;) — 1,1 < i < M} is called the
relative error distribution of R;. The maximum, average, and minimum values in Ej are called the
mazimum, average, and minimum errorsin R; respectively.

For a given set of relative error distributions for the relations R;, 0 < j < N, let D =(5/5¢)—1
be the corresponding relative error in the estimated size of the query result. Also, let D be the
value in the relative error distribution of the query result that is associated with the i-th element of
the join domain. We focus our attention on two issues related to the problem of error propagation.
First, we are interested in identifying the relationship between D and D; on one hand and {d;;} on
the other, which describes the behavior of error. Second, we are also interested in identifying the
relationship between D and D; and a variety of aggregations of {d;;}. This is because most often
database systems maintain only a handful of characteristic quantities that summarize the relative
error distributions for all relations. Therefore, it is very important for database systems to be able to
draw useful conclusions about the errors in the query result from this limited information. The first
problem is primarily discussed in Sections 3 and 4, whereas the second one is discussed in Section 5.



3 Error Behavior

3.1 Arbitrary Join Element Error

We seek to identify the relationship between D; and {d;;}. Such a relationship essentially addresses
the error propagation problem for a join query that is followed by an equality selection on one of
the join attributes.

Theorem 3.1 Under assumptions (A1)-(A3), for all 4, the following holds: 1+ D; = Hf;o(l +d;j).

Proof: Let S; be the number of tuples in the join result that have the i-th element of the join
domain in their join attribute. Equation (1) yields

N N

=T S"—va““ij S T[4 =14 ;=[]0 +di 2
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3.2 Average Join Element Error
Let & be the average error in the query result, ie., § = avg;c;<cp{Di}. The following theorem

provides a formula for 4.

Theorem 3.2 Under assumptions (A1)-(A3), the following holds:

= ;}ZH(H%) (3)

im]l j=0

Proof: By the definition of § and from Theorem 3.1, the following holds:

; M
1461423 Di= 3 ZH(Hd,J)
i=1

1—1 j=0

3.3 Query Result Size Error

When dealing with the size of the full join result without a selection on the join attribute, it is
difficult to extract a nice general formula like (2) for the corresponding relative error D. There is a
special case, however, in which a concise formula is derivable. This case is captured by the following
assumption.

(A4) For all relations, the approximation of the join element distribution that the database
system uses is uniform, i.e., for all 7 and j, tf; = ¢7, where t7 is a constant that depends
on the relation R; only.

Assumption (A4) is made by the query optimizers of several database systems, so the study of
error propagation under uniform distribution is of special interest. The following theorem derives a
formula for the error in the query result size for that case.



Theorem 3.3 Under assumptions (A1)-(A4), the following holds:

| M N
1+4D= *A—/IZH(1+dij)' 4)

i=] j=0

Proof: Assumption (A4) implies that 5* = M H?;O t. Hence, equation (1) yields the following:

M N g ] M N L Moy
SZZHtij=>~§=—AZZH?%=>1+D=7M—ZH(1+dﬁ).
i=1 j=0 i=1j=0 J i=1j=0

]

A comparison of equations (3) and (4) yields the following very interesting corollary for the case
of uniform approximation.

Corollary 3.1 Under assumptions (A1)-(A4), the error in the query result size is equal to the
average error in that result, i.e., D = é.

The primary implication of Corollary 3.1 is that all the forthcoming analysis and results for the
error in the query size apply to the average error as well.

3.4 Discussion

Theorems 3.1, 3.2, and 3.3 do not allow for much optimism. All types of error in an N-way join grow
exponentially with N. If there are both positive and negative values in {d;;}, the situation may
not be very bad, since their effect may be mutually canceled. It is very common, however, that the
same join element appears many (few) times in most query relations, the number of times it does
so is underestimated (overestimated) in most relations, and therefore, for the same 7, most values
in {d;;} are positive (negative). In these cases, the absolute value of the error continuously grows
with the number of joins. This can severely affect the ability of query optimizers to make correct
decisions.

4 Characteristics of the Error Behavior

As discussed above, the specific combination of positive and negative errors associated with the
various join elements in the query relations affects differently the corresponding errors in the query
result. In this section, we present results that provide some insight into the characteristics of the
error behavior under different such combinations. Suppose that the distribution followed by the
relative error in each relation R; is given, without specific information on the specific error value
associated with each join element. We consider all possible such associations and study the resulting
differences in the error behavior. Being independent of the specific such association, our results
provide relationships between the errors in the query result and the error in each query relation
independent of all others.

For each relation R;, let V;j={d;(k)|1 < k < M and there exists a unique 1 < i < M s.t.
d;(k) = d;;}. From the preceding discussion, we assume no knowledge of the specific association of
the i’s to the k’s. The following parameters are used in the coming subsections:

”‘EK) The I{_th moment about the origin of ‘/jl o {]_ -+ d;,(k)ll S k S M} fOI‘ R], i.e-v
K
”g. ) = a'VglskSM{(l + d](k))K}



8; The average relative error in Rj, i.e., 6; = avg;cx<pidj(k)} or §; = ,u(l) 1.
d;’ The maximum relative error! in Rj, i.e., dj = max;<k<m{d;(k)}.

d; The absolute value of the minimumrelative error? in Rj, i.e., dj = — minigp<amr{d;(k)}-

4.1 Maximum Value of the Error

This subsection gives a tight upper bound on the error in the query result size when V; is given.
The bounds obtained for individual join elements are the same with those obtained in Section 5, so
they are not presented here as well.

The following known inequalities from mathematics [Kaz64] are needed for obtaining the maxi-
mum value of D.

Theorem 4.1 If 1 +z > 0 and o > 1, then (1 +z)* > 1 + az.

Theorem 4.2 (Power Means Inequality: Schlémilch) For nonzero p and ¢ and a set of non-
negative numbers {a;|1 <i < M}, if p < g then

M i/p M 1/q
Dozl af < Y1 ag
M = M ’

Theorem 4.3 (Hdlder Inequality) For a set of positive numbers {p;|l <j < N } and N sets of
nonnegative numbers S; = {a;;|[1 <i< M}, 1 <j< N, if ZJ =1 1/pj = 1 then

> T < H(Za”’>1””

fml j=1 j=1 i=1
Equality holds iff, forall 1 < ¢,k < M and 1 < j,I <N, aij/ail = axj/ax.

Several interesting results can be obtained for the maximum value of D from the above inequal-
ities.

Theorem 4.4 Under assumptions (A1)-(A4), the following holds: 1+ D < (HN_,O /1§N+1)

)1/(N+1)

Proof: Theorem 3.3 yields

14+D= Z£1 Hj'vzo(l + dij)
= i .

Applying Holder’s inequality to the above with p; = N + 1 for all j yields

1/(N+1)
TTLo(0 (14 dig) V)M 4D (ﬁ S (Lt )V ) _
j=0

14D <

M M

N ag) MOV /(N +1)
(H M1+ (k) _+_> (II (M)

M K '
j=0

The next to last equality is by the definition of V; and the last one is by the definition of /L(N+1) a

1The maximum relative error is assumed to be positive.
2The minimum relative error is assumed to be negative.



Corollary 4.1 Under assumptions (Al)-(A4), if for all 0 < j,1 < N, = V; and u(N“)
pV+D = (N4 then the following holds: 1+ D < N+,

By Theorem 4.3, the upper bound given in Theorem 4.4 or Corollary 4.1 is tight. D reaches that
value when, for all 1 < k < M, the k-th largest error is associated with the same join element in all
relations and the relative magnitude of the error among the elements is the same. An interesting
question that arises is how this worst case behaves as N grows. The following result offers some
insight in that direction.

Proposition 4.1 Suppose that the average error in at least one relation is nonnegamve 1.e., without
1 /(N+1) /N
loss of generality, Zk:l dn(k) > 0. Then, (HN__O ﬂ§N+1)> > (HJ -0 (N)) .

Proof: The definition of u(N+ ) yields

1/(N+1) 1/(N+1)
T ) | F T+ di(R)NH
I = |1l i
]:

i=0

- (H TiL(+ 4 (L))NH) o (zﬁ:ilu 4 dN(k))N+1>1/(N+1)‘
M

By Theorem 4.2, the above yields

1/(N+1)

1/N

(H AT (k))”) (zﬁxudmk))“l)”wm:

v

M

1/N 1
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By Theorem 4.1 and by the premise of nonnegative average error in Ry, we have that

Shea (L dn ()M TR (L (V + D (k) _ N+1
0+ > Zem+ (7 . LdN(L) >L )
Combining (5) and (6) yields the result. ]

The result of Proposition 4.1 can be interpreted as follows. If for at least one relation, the
approximation of its join element distribution used by the database system does not on the average
overestimate the actual distribution, then the worst case error in the query result size monotonically
increases with the number of joins. This captures as a special case the situation when an accurate
average of the join element distribution is maintained, i.e., when the average error is zero.

A final comment on the upper bound of D is that it is always larger than a quantity that grows
exponentially with N. More specifically, one can easily prove the following result. (Recall that
d;.' = max;<g<mr{d;(k)} and that it is assumed positive.)

N “(N+1))1/(N+1)

Proposition 4.2 The following inequality holds: (H i=0 B

N



Proof: The following series of relationships proves the proposition.

1/(N+1) 1/(N+1) 1/(N+1)
N N M N -+
T] w0 - 11 k=i (1 + di ()N > 11 (L™
J M =\ M
j=0 ji=0 j=
1 N
= — H(l +d).
M j=0 !
0

The main conclusion that can be drawn from the above results are again rather pessimistic. In
the worst case, the error in the query result grows exponentially with the number of joins. Except
for very small queries, the error in the query result size becomes too large for the query optimizer
to trust it.

4.2 An Example

The above results on the error propagation problem hold for arbitrary join element distributions.
To obtain a better feeling for their implications, we apply them to a specific instance of the problem,
which will also be our running example for the entire paper. In particular, we examine the case
where the assumed join element distribution is uniform whereas the actual join element distribution
is Zipf [Chr84, Zip49]. The main characteristic of the Zipf distribution is that it assigns high values
to few join elements and low values to most join elements. Thus, this example deals with a quite
common special case, since the above is claimed to be a characteristic of the distribution in many
databases.

Assume that all relations in the database are equal to each other and the join element distribution
is Zipf, i.e., for all j,

w1

tij = 7}—1}4‘& ,
Ei:l l/rz

In (7), T; is the size of R; in tuples, and we assume that it is equal to 10000 for all relations.

Furthermore, we assume that the join domain contains M=100 join elements. Figure 1 is a graphical

representation of (7) for z = 0.0,0.02,...,0.1. One can see that the deviation from the uniform

distribution increases with z, but it is not very dramatic for the range depicted.

Suppose that the database system uses the Zipf distribution with z = 0 (uniform) as the approx-
imation to the actual distribution. Figure 2 is a graphical representation of equation (4) for that
case. Specifically, the relative error in the query result size is shown as a function of the number of
joins for various values of z. From the above discussion, the error in this case is equal to the upper
bound given in Theorem 4.4 or Corollary 4.1, since the k-th largest error has the same value and is
associated with the same join element in all relations. Hence, the error shown in Figure 2 is equal to
the (N + 1)-st moment of the sums of unity with each error in the individual relations. The speed
with which small errors in the individual relations propagate in the result is rather discouraging.

forall1<i< M. )]

4.3 Expected Value of the Error

The following parameters are used to represent the expected value of errors:

a The expected value of the relative error associated with some element of the join domain
in the query result.

A The expected value of the relative error in the query result size.
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Figure 1: Zipf join element distribution.
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The following result provides a relationship between a and {§;}.
Theorem 4.5 Under assumptions (A1)-(A3), the following holds:® 1+ a = Hj-vzo(l + ;).
Proof: Since there are M elements in the join domain and N +1 relations, there are M N+1 possible

associations of join elements to values from the given relative error distributions. By Theorem 3.1,
the expected value of the relative error when all such associations are considered is derived as follows:

N M N M N
l+a= ﬂ%ﬁ I a+ak) =11 Z’cﬂ(lﬂ; d(1) _ [T +6). (8)
j=0 j=0

j=0k=1

0O

If the approximation of the join element distribution is uniform, the following result provides a
relationship between A and {6;}.

Theorem 4.6 Under assumptions (A1)-(A4), the following holds: 1+ A = H?;o(l + 6;).

Proof: By its definition and assumption (A3), a represents the expected value of the average
error associated with an element of the join domain in the query result. By Corollary 3.1, under
assumptions (A1)-(A4), the average error in the query result is equal to the error in the query result
size. Hence, the expected value of D is equal to the expected value of é. The theorem is a direct
consequence of the above fact and Theorem 4.5. ]

Note that the above theorems imply that if for all j, §;=0, then a = A = 0 as well. That is, if
the average error in the individual relations is zero, the same is true for the expected values of the
error in the query result as well. These observations can be quite misleading. Errors can be both
positive and negative. Hence, an expected error value of zero provides no information on the actual
error in each specific instance, which can have an arbitrarily high absolute value.

Example 4.1 The Zipf distributions of Section 4.2 serve our purpose well in this case also. Assum-
ing that the Zipf distribution with z = 0 is used as the database approximation, the average error
in each relation is zero. According to Theorems 4.5 and 4.6, this implies that the expected value of
the error among all associations of join elements to distribution values is zero. However, for every
specific instance the error can be very significant. Such was the case presented in Section 4.2, where
the error grew exponentially (Proposition 4.2) with the number of relations. ]

5 Maintaining Thresholds on the Error

A reasonable mode of operation for database systems is to maintain a threshold on some aggregate
error among all join elements of each relation, and based on that, predict a corresponding threshold
for the error in the query result size. It has been proposed in the past that, for individual join element
errors, the average error in each relation is the one on which a threshold should be placed. However,
Theorems 3.1, 3.2, and 4.5 provide clear evidence for the inadequacy of that approach. Thresholds
on the average error only bound the expected value of the error in the query result, but provide no
guarantees for low errors in any specific case. Hence, we contend that, for individual join element
errors, imposing thresholds on the maximum (and minimum) error is the correct approach [Chr89].
Similar comments can be made about the error in the query result as well.

N

3By the definition of §;, this can also be writtenas 1+ a = Hj:o G

10



Let t+ (t7) be the maximum (minimum) value in the join element distribution of R;. We
assume that for each relation, the database system maintains both these extremes together with
t¢ (uniform approximation). Note that cl"' = (t‘L /t§) — 1 and dj =1~ (&7 /t5), so essentially the
da.tabase system maintains the extreme relatlve errors for each rela,tlon as well. We demonstrate in
the following subsections that, given the above, it is possible to obtain tight upper and lower bounds
on D; and D. These represent the values that the database system can guarantee not to be exceeded
by the individual join element error in the query result and the query result size error respectively.

5.1 Join Element Error

Given d+ and dj for each relation R;, the corresponding thresholds on the join element error in the
query result are denoted by Dt and D~ respectively. That is, =D~ < D; < D*. The following
theorem derives formulas for these thresholds.

Theorem 5.1 Under assumptions (A1)-(A3), for all 7, the following holds:

N

1+0t = J[a+df), (9)
j=0
N

1-D- = J[a-dp). (10)
j=0

Proof: This is a straightforward application of Theorem 3.1. The upper and lower bounds are
derived by setting d;; = df and d;; = —dj for all j in (2) respectively. 1

Clearly, D; can become equal to D* (—-D~) when the same join element is associated with
the maximum (minimum) relative error in all relations. Thus, Theorem 5.1 shows that the upper
bound that can be guaranteed for the maximum error in the query result grows exponentially with
the query size. The database system should enforce very strict thresholds on the error in the base
relations to achieve reasonable errors in multi-relation join queries.

Example 5.1 Consider again the example introduced in Section 4.2. Clearly, for this case, the
maximum (minimum) error is associated with the most (least) common element in the join do-
main. Applying Theorem 5.1 to this specific case yields the relative error for this element, which is
graphically shown in Figure 3 for the Zipf parameter 2=0.2, 0.4, and 0.8. Clearly, if not accurate
enough information is kept about the individual relations, the maximum error in the result becomes
untrustworthy after very few joins. O

5.2 Query Result Size Error

Given d]+ and d; for each relation R;, the corresponding thresholds on the query result size error
are denoted by 1"+ and '~ respectively. That is, -T~ < D < T't.

All previous results on D are based on assumption (A4), which states that the database system
uses a uniform distribution as an approximation of the join element distribution. There is no
restriction in (A4), however, on the characteristics of that uniform distribution, i.e., all these results
hold for arbitrary values of {t;} In many systems, the value of ¢ is equal to the average number
of tuples per join element in R; at some point in time. Hence, the previous results hold even in the
case where the assumed average is inaccurate because updates have been performed on the relation
since that average was obtained.

11
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Figure 3: Maximum and minimum errors in the query result.

Assumption (A4) is not adequate to obtain an accurate threshold for the query result size error
when the database system operates as described in the beginning of this section. Specifically, we
need to make the following assumption:

(A5) For each relation Rj, t; = (M )M

In other words, we study the problem of error propagation when the join element distribution
assumed by the database system is uniform and its value is the average value of the real distribution.
In that case, we say that the approximation of the join element distribution used by the system
is accurate uniform. Before we can proceed in calculating I't and I'~, we need some results on
majorization, which are presented in the next subsection.

5.2.1 Useful Results on Majorization

The following lemma is a generalization of a proposition by Marshall and Olkin [MO79].

Lemma 5.1 Whenever z1 > 23 > ... > «p the inequality v, a;z; > Y 1o, biz; holds for all
1<m<MiffSF e >YF biforall 1<k <M and D a = Y00, bi.

Proof: The proposition of Marshall and Olkin addresses only the case where m = M. Hence,
the only-if part of the lemma can be deduced from their result. For the if-part, we use a similar
technique to theirs as well. Let ypr = zpr and y; = zj — 41 for all 1 < j < M, which implies that
z; = EJMm y;. Hence, the following holds:

m m M
2 air; = E a; E Yi
izl i=1 j=i

m J

Zyj Zai + i yjiai

j=1 [ES ] j=m+1 i=1
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In the rest of this section, we make use of the decreasing step distribution, which is shown in Figure
4. More formally, a set {a;]1 < i < M} follows the decreasing step distribution with parameters
< Ahi;Alo;Ma > if
o ‘<
g = § Aw Hl<i< M, . (11)
A, M, +1<i<M
Similarly, a set {a;|1 < i < M} follows the increasing step distribution with parameters < Ap;, Ao,
M, > if the set {b;|]1 < i < M and b; = apr..i41} follows the decreasing step distribution with
parameters < Ap;, A1, M — M, >. The importance of the step distributions becomes evident in the
following resuit.

Corollary 5.1 Suppose that for all 1 <i < M, A, < a; < Ap; and that Zf‘il a; = A, for some
constants A4, Ao, Api. Also, assume for simplicity that M, = (A — M A1,)/(Ani — Ai,) is a positive
integer. Then, whenever 1 > z3 > ... > zp, the sum Z:’;l a;z; is maximized for all l <m < M
iff a; follows the decreasing step distribution with parameters < Ap;, Ao, Mg >.

Proof: It is easy to show that the decreasing step distribution maximizes any partial sum of the
form Y% a;x;. The specific value of the third parameter is obtained from the given constraints:

MyAp; + (M - Ma)Azo = A= Ma(Ahi w Azo) =A—-MA,.

5.2.2 Derived Thresholds on the Query Result Size Error

Based on the results of the previous section, one can now prove the following theorem on the
maximum possible size of a join result.

Theorem 5.2 Suppose that the database system maintains accurate values for t;", t;, and ¢, for
each relation R;. Assume that for all j, M; = M(t§ ~1;)/ (tf — ;) is an integer.* Further assume

4This premise is adopted for simplicity. Otherwise, there must be a join element whose distribution value is between
t;‘ and tJ-_ .
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that ¢ < k implies that t;0 < to, i.e., the join elements are arranged in decreasing order in Ro.
Then, under assumptions (A1)-(A5), the maximum possible size S of a join query result is achieved
when the join element distribution in all relations is the decreasing step distribution with parameters
<th, 47, M; >.

Proof: We prove the theorem by induction on the number of relations.

Basis: For N = 0, there is a single relation in the query. Due to assumption (A5), knowledge of
tg determines the size of Ry as well, and therefore, the specific join element distribution is irrelevant.
Thus, the theorem is vacuously true.

Induction Step: Assume that the theorem is true for queries with up to N relations. We prove
it for queries with N + 1 relations. Consider the subquery that results when Ry is removed. It
contains N relations (Ry, ..., Ry_1), and assuming that u; = Hj-v_,__ol tij, the size S of its result is
equal to §' = Zfil u; (equation (1)). Without loss of generality, assume that ¢ < k implies that
u; < ug. Consider the join of that result with Ry. By equation (1), the size of the result of that join
is equal to S = Efﬁl u;t;n. By Corollary 5.1, S is maximized when the join element distribution in
Ry is the decreasing step distribution with parameters < t?(,,t;,, My >.

From the above, the maximum size of S can be written as

My M My M
S=thY wtty Y, w=0h-ty) D iy ) w
i=1 i=Mn+1 =1 =1

By Lemma 5.1, both Eﬁ'{ u; and 8’ = Zfil u; are maximized together, and therefore, in order for
S to be maximized, S’ must be maximized as well. By the induction hypothesis, S’ is maximized
when the decreasing step distribution is followed by the join elements of relations Ry, ..., Rn-1.
Since in the previous paragraph this was shown for Ry as well, the theorem is proved. ]

Theorem 5.2 can now be used to derive I't. It implies that the error is equal to I't when the
join elements in all relations follow the decreasing step distribution. For M;, we use the following
alternative formula:

M; =M _—dJ:-w (12)

TTd 4 dy
Also, without loss of generality, we assume that the M; values are ordered based on the subscripts
of the corresponding relation names, i.e., j < [ implies that M; < M;. Based on that, we define D},
and D;’, as follows: ’

] o
+ ) Tiee(U4+d7) if k<1
D= { 1 otherwise

i . _ .
l“’D;,I:{ Hi:k(l"'di) 1fk_<_l

1 otherwise
The following series of results provides the formula for I't.
Lemma 5.2 For all k,1 such that k <, the following relationships hold:
(a) D;,I = Dl-c—,l—l +dy (1 - -D;,I—l)’
(b) DE‘,: = DAT+1,I +df(1+ D;:+1,1)-
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Theorem 5.3 Under assumptions (A1)-(A5), the following holds:

N

N
I+ =3 D5 4df (1+ Dfyy n) = 3 (1= Dy 1)d5 Dy v (13)
j=0 j=0

Proof: By Theorem 5.2, I't corresponds to the positive error in the query result size when the join
elements in all relations follow the decreasing step distribution. Then, the actual size of the result
relation is given by the following formula.

N N N-1 N
s = My([t5)+ @ - Moyeg ([T#5) + -+ (Mw = My )(TT 5)ek + (M = My ] &)
j =0 ji=1 j=0 j=0
’ N N N-1 N
= Mot —t5)JT 1) + Mutg tf — ) [T e) + -+ Mn(T] )k - tm) + M(TT 1)
j=1 Jj=2 j=0 j=0

Dividing the above formula by the approximation of the query result size S° = M (H;-V:O t7) and
taking into account equation (12) yields the following:

N N N-1 N
1+Tt = da‘(H(l+d}*‘))+(1-—d5)d;(H(1+dj’))+---+(H(1—d]'.'))d]“\,+(H(1-—d].‘))
j=2 j=0 )

j=1

dy (14 Df \)+ (1= d3)di (14 Dfy) + -+ (1= Dy y_q)dy + (1= Dg y)
N

(1~ Dg;_1)dy 1+ D;;LN) + (1= Dy ).
j=0

Using Lemma 5.2, one can show that Ef;o(l — Dg;_1)d; = Dy y and rewrite the above formula

as follows:
N

j=0

The other expression for I't is obtained by transforming the one above using Lemma 5.2 again. O

Note that, if Dy ;_; is replaced by its maximum possible value, i.e., Dy ;_; = 1, then I't = DT,N-
Assumption (A3) actually prohibits Dy ;_, from becoming equal to 1: all join elements must appear
at least once in every relation. If there are join elements, however, that appear very few times
in each relation, then Dg;_; can be very close to 1, and therefore 't can be very close to Df', N-
For real databases, this is a rather important observation, since experience shows that quite often
data follow distributions where few elements appear many times in an attribute and the remaining
elements appear very few times, thus resulting in minimum errors whose absolute value is very close
to 1.

Example 5.2 Given join element distributions that have the same maximum and minimum values
as the Zipf distributions of Figure 1, we compare the value of I't, as given by Theorem 5.3, with the
actual error when the Zipf distributions are used, as given in Section 4.2. The latter was shown in
Figure 3 as a function of the number of relations in the query. The corresponding curves are drawn
in Figure 5 for comparison. It is clear from the above figure that although the error in the Zipf
join element distribution case was growing very fast, there can be much worse situations for other
distributions that result in much higher errors. The main point is that when the database system
maintains the maximum, average, and minimum values of the join element distribution of relations,

15
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Figure 5: Maximum threshold on the query result size error.

the range of the error in the size of the join of the relations is extremely large even when relatively
few relations are involved. O

For I', similar formulas can be obtained as the ones given by Theorem 5.3. Their derivation is
a bit trickier, however, because for multiple joins, mathematical results provide no straightforward
way to characterize the necessary join element distributions in R; that produce the minimum query
result size. For two relations Ry and R;, however, the minimum size of their join and the value of
I'" are given by the following theorems.
Theorem 5.4 Under assumptions (A1)-(Ab), given precise values for t;', t;-", and tf, j € {0, 1}, the
minimum possible size S of the join of Ry and Ry is achieved when the join elements in Rp follow
the decreasing step distribution with parameters < tf,t;, Mo >, whereas those in R; follow the
increasing step distribution with parameters < t[)",tg , M — M; > or vice-versa.

Theorem 5.5 Under assumptions (A1)-(A5), the following holds:

r~ = { dody il Mo+ My <M _ min{d; d7 ,dfd}}.

didy fMo+Mi>M
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5.3 Discussion

Assume that for all j, dj‘ = d~ and d;-" = d*, for some constants d~ and d*, i.e., the maximum and
minimum errors are the same in all relations. Then, from (10) we have that

Dt =1 4dH)N+ 1. (14)

The above relates the following three parameters: the maximum error in the query relations d*,
the number of joins N, and the maximum error in the query result D*. Given desirable thresholds
for any two of the above three parameters, we can find a threshold for the third one. Thus, (14)
provides answers to three abstract problems. Given N and d*, finding D is the “error propagation”
problem, for which we have that

Dt < (1 +dHN+ 1.

One can see immediately that the error is exponential in the number of joins. Given N and D¥,
finding d* is the “required accuracy” problem, for which we have that

dt < W1+ Dt -1

In other words, the maximum join element error in each relation must be kept below the (N + 1)-st
root of the maximum allowed join element error in the result. Finally, given d* and D, finding N
is the “tolerable query complexity” problem, for which we have that

log(1 + DY)

= Tog(1+d+) ~ L

That is, given some threshold for the join element errors in the relations, the maximum number
of joins that can be performed that would still guarantee that no join element error in the result
exceeds some other threshold is roughly the quotient of the logarithms of the thresholds.

Similar statements can be made for D~ and for I't as well. For the latter, the following formula
can be obtained: 3 .

It = _4 —d——(l -
d-+dt d- +d*t

Comparing (14) and (15) yields that I't* increases exponentially with N, only at a slightly lower rate
than D%. This is captured by the following statement:

(1+dH)N+ 4 d-)yNF 1. (15)

Proposition 5.1 Under assumptions (A1)-(A5), if for all j, df = d~ and df = dt, then the
following holds:

14T+ S d-

14+ D+ = d- +d+’

In the above proposition, equality is attained only at the limit, i.e., when N — oco.

6 Partial Corrections

Given a set of relative errors {d;;} and a corresponding query result size error D, an interesting
question is how D is affected when some members of the relative error distribution are corrected.
Some current systems maintain accurate values for a small number of t;;’s for each relation (usually
the largest ones) [Sel89]. In this section, we investigate how this particular partial correction affects
D. In its general form, this approach is captured by the following assumption.
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(A6) The approximation of the join element distribution that the database system uses for
R; is accurate for L elements in the join domain and accurate uniform for the remaining
M — L elements.

If without loss of generality we assume that {t1;,%2;,...,%L;} is the set of values that are maintained
accurately for R; by the database system, then assumption (A6) implies that, for 1 <i < L, f; = &y,
and for L+1<i< M, = (ZKL,H ti;)/(M — L). We introduce the following additional notation
for R; under (A6).

t;(L) The value of the accurate uniform join element distribution that the system uses for

. L M
by bty e 650 = (DM 4 45)/(M — L),
dg_;-[’) The relative error distribution in R;. For convenience, we write d;; for dg-)). Note that
di) =0for1<i< L.

We first want to study the case where (A6) is applied to exactly one relation. Without loss of
generality, suppose that Ry is that relation. For all relations except Rp, assumption (A4) holds,
i.e., the system assumes uniform join element distribution. The following series of results show the
inadequacy of this approach to correcting errors when applied to a single relation.

Lemma 6.1 Under assumption (A6), for all 0 < L1, L, < M,

L, Lo
S tio+ (M — L)) = 3 tio + (M — La)tg™.
izl i=1
Proof: Both expressions are equal to the size of Rg. .

Theorem 6.1 Under assumptions (A1)-(A3) and (A6) for Ry and (Al)-(Ad) for R;, 1< j< N, D
has the same value independent of the value of L.

Proof: Based on the given assumptions, equation (1) yields the following:

M N S YL tio(TTiey ti)
S = (] 1 5 - = . 2

Zt (H N T g (Srey tio + (M — Ltg )T, 1)
S tio(TTj= (1 + dij)) '

= 1+D=
Mtg(g)

The last inference is due to Lemma 6.1. The final formula shows that D is independent of L, which
proves the theorem. ]

The above result can be interpreted as follows. When for all relations R;, 1 < j < N, the
join element distribution assumed by the database system is uniform, there is no advantage in
maintaining more accurate information for relation Rp. Simply maintaining the average of the
distribution accurately (or equivalently the size of Rg) results in the same error as maintaining the
full distribution.

Theorem 6.1 does not hold in general: if assumption (A6) is extended to more relations, simply
maintaining an accurate average for these relations is not equivalent to maintaining more information
about them. A straightforward extension of the theorem, which is given below, has no practical value,
because it requires for the database system to maintain statistics for nonbase relations. Its proof is
identical to that of Theorem 6.1. In what follows, we use Ry s to denote the result of the join of
relations Ryg,..., Ry.
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Theorem 6.2 Under assumptions (A1)-(A3) and (A6) for Ro...; and (A1)-(A4) for R;, J+1<j <
N, D has the same value independent of the value of L.

The next result that we want to present is for the case where the discussed style of correction is
applied to all relations. In particular we want to investigate whether the highest values in the join
element distribution are the most beneficial to maintaining or not. It is rather difficult to answer
this question for the error D in general. The following theorem addresses the case where for all
1 < k < M, the k-th largest value in the join element distribution is associated with the same
join element in all relations. As discussed in Section 4.1, under assumptions (A1)-(A4), this is a
necessary condition for D to reach the upper bound given in Theorem 4.4.

Theorem 6.3 Under assumptions (A1)-(A3) and (A6) for R;j, 0 < j < N, D is minimized when
the L values of the join element distribution maintained by the system are the L highest such values.

Proof: Based on the given assumptions, equation (1) yields the following:

S M (T tis)
T T R M)+ e (05
Y (T tis)
S (Mo tis) + (M = L) TTZo(Cia g4 tii/ (M = L))
_ Z?f:l (H?’:O tij) (16)
Zf':l(Hj-V:o tii) + (M—_lf,')‘ﬁ Hf:o Z£L+1 tij '

Since the nominator of the above fraction remains unaffected by changes to the approximation of
the join element distribution used by the database system, D is minimized when the denominator
(S°) is maximized. The later can be written as follows:

N N
Se:1Ht1j+...+1HtIJ G- L)NH Z tij- (17)
j=0 j=0

j=0i=L+1

L
Clearly, 1/(M — L)Y < 1 and, for each j, Ele ti; + (Ziﬂil,-}-l 1;;) remains constant (it is equal to
the size of R;). By Lemma 5.1, the above implies that S°® is maximized when 25;1 t;; is maximized

for all 1 < k < L. It takes an easy induction on k to show that this is achieved when for each j, the
set {t;;|1 < ¢ < L} consists of the highest L values in the join element distribution of R;. ]

Example 6.1 We show the effect of correcting L values in all relations of the example introduced
in Section 4.2. That is, we assume that the join elements of the relations follow a Zipf distribution
(Figure 1). We present the cases for z = 0.02 and z = 0.1, and we show the effect on the error when
L=1, 5, and 10 elements are maintained per relation. Figure 6 shows a graphical representation of
equation (16).

The results are rather impressive. We observe that in both cases, even maintaining a single
element has tremendous impact in reducing the total error. An even more surprising result is that,
in all cases with L > 0, the error as a function of N has a maximum. That is, beyond a certain
point, as the query size grows, the error decreases. This is because with more relations, the value of
the join element distribution for the most common elements becomes an increasingly larger fraction
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Figure 6: Query result size error under assumption (A6) for all relations: (a) z = 0.02 and (b)
z=0.1.

of the total size of the query result, thus reducing the error. As expected, this is more dramatic
for the more skewed distribution (z = 0.1). We must emphasize that, by Theorem 4.4, the case
presented corresponds to an upper bound on the size of the query result (and the error in the size).
If the Zipf distributions were associated with the join elements in a different way, then the error
would be even less than what is shown in Figure 6 for each value of L. Hence, this example gives
much hope for being able to optimize very large queries in some cases, without being overwhelmed
by the errors in the query relations. |

7 Combinations of the Error Distributions of Relations

Occasionally, the overall error D needs to be minimized when some function aggregating the errors
in all the query relations remains invariant. That is, different combinations of error distributions
in the query relations result in different query result size errors as well. The goal is to identify
the combination that minimizes the latter. In this section, we deal with the related problem of
minimizing D, which is an upper bound on D; and D (Section 5). Similarresults can be obtained for
D~ as well. Specifically, consider the errors d;-" and some aggregate function of them f(dg’, ce d}*\})
The goal is to identify a set of values for {dj’} that minimizes Dt while keeping f(dg,...,d%)
constant. Unfortunately, general analytic results are hard to derive for arbitrary functions f. An
interesting special case that accepts an analytic solution is when f is the sum of its arguments, ie.,
fdE,...,d%) = Zf;o d}" = ¢, for some constant ¢. The following two results address that case.
Proposition 7.1 D% is maximized when, for all j, dj’ =¢/(N +1).

Proof: It is well known that when the sum of a set of numbers is kept constant, their product is

maximized when the numbers are equal. The proposition follows by applying the above fact to (10).
)
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Proposition 7.2 D7 is minimized when, for some j, d;.; = ¢, and for all j # jo, d;-' = 0.

Proof: Let Cp denote the sum of all possible products of k elements of {dj-'}, eg.,Cy = Zj'vzo dJ'-"
(which is equal to ¢ in this case). By definition, the equality

N+41 N+1
D+:ZCk=C+ZCk
k=1 k=2

holds. The minimum possible value for D* is equal to ¢, which can be obtained if 35, Cj becomes
zero. Bach term of this sum is a product of at least two members of {df} Thus, this minimum can
be obtained only when at most one member of {d;’} is nonzero. Assuming that d:,-'; is that member,
from the value of function f, we conclude that it must be d;’o =c. O

The above results suggest that it is better to distribute the error unevenly among relations than
otherwise. For example, assume that a database system operates as described in Section 5. A
threshold is established by the database administrator (dba) on the tolerable error in the query
result size, which is then used to derive a threshold on the tolerable error in the approximation
of the join element distribution of the relations. Whenever the relation errors exceed the derived
thresholds, new estimates of the join element distributions are obtained. Propositions 7.1 and 7.2
imply that the dba should not assign the same threshold for all relations. On the contrary, the dba
should choose a set of as many relations as possible on which accurate estimates will be maintained
while the thresholds on the errors of the rest of the relations grow up to higher values. That way,
the best trade-off between high relation errors and low query result size errors is achieved.

Note that D* does not depend on the size of the relations on which the individual errors are
encountered. An important implication of the above is that the dba can choose the small and/or
infrequently updated relations to be the ones where accurate join element distributions are kept
(dj-' = 0), and let the large and/or frequently updated ones have higher errors. Under the assumption
that the cost of maintaining accurate estimates is an increasing function of the size and update
frequency of the relation, this provides a relatively efficient way of controlling the error propagation
in join queries.

Example 7.1 Consider the canonical EMP-DEPT-PROJECT example, and a join on the dno at-
tribute of all three relations. Consider the sizes of EMP, DEPT, and PROJECT to be 10000, 100,
and 2000 tuples respectively. If the desirable maximum error in the size of the result is 20%, the
tolerable error in the largest relation EMP can be 20%, if accurate distributions are maintained for
the smaller relations. On the other hand, if all relations must be treated equally, the maximum
tolerable error in each of them is 6.2%, which can be much more expensive to achieve for the EMP
relation than 20%. o

8 Summary

An understanding of the error propagation problem in the context of query optimization is essential
in complex database environments. Nevertheless, to the best of our knowledge, no previous work
exists on the subject. In this paper, we have presented a formal framework based on which the
principles of error propagation can be studied. Within this framework, we have obtained precise
formulas for the error in the result of a join query as a function of the errors in the query relations.
The behavior of these formulas has been studied with respect to the extreme and expected values
of the error. Analytic results have also been derived on the maximum error under various statistics
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maintained by the database system. All these results have shown that in general the error increases
exponentially with the number of joins. Finally, we have studied some promising approaches to
decreasing the effect of the error propagation and have derived several interesting characteristics of
them.

We believe that the results in this paper are only a first step towards understanding the effects
of error propagation and the appropriate methods to control it. They can be extended in several
directions so that the restrictions imposed by our model are removed, e.g., assumptions (A1)-(A3),
and the usefulness of other types of maintained statistics is explored, e.g., histograms approximating
join element distributions. In addition, further work is necessary to understand how errors affect the
values of other interesting parameters besides size, e.g., operator cost, as well as how they affect the
ranking of alternative access plans, which determines the final decision of the optimizer. We hope
that the results in this paper will be helpful in these directions as well.
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