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Abstract

In a pipelined communication network, multiple bits may be simultaneously in flight on a
single wire. This allows the cycle time of the network to be independent of the wire lengths,
significantly affecting the network design tradeoffs. This paper investigates the design and per-
formance of pipelined k-ary n-cube networks, with particular emphasis on the choice of dimen-
sionality and radix. Pipelined networks are shown to provide lower latency and higher
bandwidth than their synchronous counterparts, especially for high dimensional networks. The
optimal dimensionality of pipelined networks is found to be higher than that of synchronous net-
works. Pipelined networks should be grown by increasing the dimensionality, leaving the radix
roughly constant. The effects of switching overhead, message lengths and queue sizes are also
investigated. We indicate where results for pipelined networks agree with and differ from previ-
ous results obtained for synchronous networks. Our analysis and simulations take switching,
decoding, and transmission delays into account. Networks are investigated under the constant
link width, constant node size and constant bisection width constraints.
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1. INTRODUCTION

The interconnection network used in a multiprocessor or multicomputer can have a major impact on system
performance and cost. Understanding the tradeoffs in network design thus becomes a critical requirement for
building cost-effective, high-performance systems. A wide variety of interconnection networks have been pro-
posed (see [Feng81] or [Sieg79] for a summary), each of which can be classified as either direct or indirect.
Indirect networks, such as the omega network [Lawr75], connect processors and memories through multiple inter-
mediate stages of switching elements. The performance of these networks has been extensively analyzed in the
literature [KmsSS,PateSl,Dias83,Le684,Yoon87]. Direct networks incorporate the processing elements within
the network itself, allowing for direct communication between processors [Seit84]. The performance of these net-
works has been the subject of more recent attention [Abra89, Agar91, Dall90, Adve91]. Direct networks are gain-
ing in popularity and have been employed in many recent existing or proposed machines, including the Connec-
tion Machine [Hill85], Intel iPSC, Cosmic Cube [Seit85], Tera supercomputer [Alve90], CMU-Intel iWarp
[Bork88], and Stanford DASH multiprocessor [Leno89].

The most commonly used direct networks are variants of the k-ary n-cube [Sull77]. The k-ary n-cube con-
sists of N=k" nodes, arranged in n dimensions, with k nodes per dimension (n is the dimensionality, k is the
radix). Figure 1 illustrates a 4-ary 3_cube. A node is connected via a direct link to its nearest neighbors in each of
n dimensions. Links can be bi- or uni-directional, and, if bi-directional, the wrap-around links may be omitted.
Examples of k-ary n-cubes include the ring (n=1), 2D mesh or torus (n=2), 3D torus (n=3) and hypercube (k=2).
The generality and flexibility of the k-ary n-cube make it an excellent choice for investigating network design
tradeoffs.

For a given system size, the primary design choice is the dimensionality of the network. The default
assumption, when varying the dimensionality of a network, is to keep the width of the network links fixed.
Design constraints, however, may limit the freedom to do this. Dally has investigated network performance under
the constant bisection width constraint [Dall90]. This constraint is motivated by wiring area limitations in VLSI,
and holds the number of wires crossing the bisection of a network constant as the dimensionality is varied. This
causes the link width to decrease as dimensionality is increased. Agarwal has investigated network performance
under the constant node size constraint as well as the default constant link width constraint [Agar91]. The con-
stant node size constraint is motivated by pin limitations on boards and chips, and holds the number of wires per
network node constant as the dimensionality is varied. This also causes the link width to decrease as dimen-

sionality is increased, but to a lesser extent than the constant bisection width constraint.

The dimensionality of a network can affect wire lengths, as well as link widths. When the number of logical
dimensions exceeds the number of physical dimensions in which the network is constructed, nodes can no longer
be connected solely to their physical neighbors, and the length of the longest wire must grow. This will be dis-
cussed further in Section 2.2.1. Dally’s model of communication latency included wire delay, but did not include

delay through the network switches. Coupled with the constant bisection constraint, this led to the conclusion
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Figure 1: A 4-ary 3-cube Network (N =64, k=4, n=3)

that low dimensional networks (2 to 3 dimensions) provided superior performance for up to many thousands of
nodes. Agarwal’s model included switching overhead. Coupled with the looser constraints, this argued for
higher dimensionality than did Dally’s model.

In this paper, we investigate the effect of pipelining the transmission of data along the network wires. By
allowing multiple bits to be in flight on the same wire, the throughput along a link is divorced from the latency.
This has a significant impact on the network design tradeoffs. Previous work has assumed synchronous networks,
in which the cycle time of the network must include the transmission time across the longest wire in the network.
This exacts a heavy penalty on high-dimensional networks because their longer wires give rise to slower cycle
times. Pipelined networks are asynchronous, meaning that data is clocked onto the wires at a rate determined by
switching speed and independent of wire length. This type of network is used in the IEEE Scalable Coherent
Interface (SCI) standard [IEEE90].

The remainder of this paper presents a performance study of pipelined k-ary n-cube networks, with particu-
lar emphasis on how the design tradeoffs differ from those of synchronous networks. Section 2 develops equa-
tions for latency in an unloaded network. We discuss the implementation of a pipelined network, and show how
pipelining changes the network design tradeoffs, arguing for higher dimensionality than with synchronous net-

works. Section 3 discusses network bandwidth and presents simulation results for synchronous and pipelined
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networks. Section 4 investigates the effects of switching overhead, message length, and queue sizes. Finally,

concluding remarks are presented in Section 5.

2. UNLOADED LATENCY

An important metric of network performance is the mean latency of message transmission in the absence of
contention (the unloaded latency). Both switching and wire transmission delay contribute to this latency. The
manner in which switching and transmission delays interact is a primary difference between pipelined and syn-
chronous networks. This will be further explained in the following sections. In Section 2.1 we describe our net-
work node model and other assumptions, and in Section 22 we derive formulas for the unloaded latency in pipe-

lined and synchronous networks.

2.1. Model and Assumptions

Recall that a k-ary n-cube network consists of N =" nodes. Our model of a network node appears in Figure
2. Routing a message between two points consists of transmitting the message around 7 rings, one in each dimen-
sion. A dimension is skipped if the message source and destination have the same coordinate in that dimension.
A low-level protocol handles the transmission around each ring, independent of the other dimensions and any
higher-level, end-to-end protocol. The ring interfaces are based loosely on the SCI logical layer protocol
[IEEE90]. The links are unidirectional and W bits wide. A message of L bits is decomposed into P flits, with P

| L
P‘[W] (1)

Routing is similar to virtual cut through routing, discussed in [Kerm79]. Upon being placed in the input queue by

given by

the CPU, a message is switched to the output queue for the appropriate dimension and gated onto the output link
(Tswirer Cycles). It then uses Tyire cycles to travel to the next network node. When the head of the message
arrives at a node, Ty.coqe Cycles are spent decoding the message. The number of decode cycles is determined by
the number of flits needed to form the node address of the message destination:

logzN
Tgecode = ""W"-}

2)

If continuing in the current dimension, the message is routed through the ring buffer and gated onto the ring out-
put link (Tpass cycles). If changing dimensions, the message is routed through the input queue, switched to the

appropriate output queue and gated onto the output link for the new dimension (Tgyick CYCIES).

We will assume values of Tpae=1 and Towich=2. The overhead for changing dimensions is greater than that
for continuing in the same dimension, due to the extra switching step involved. To reduce the complexity and

increase switching speed, the switch could be implemented as a n-element ring. Contention on the ring would be
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Figure 2: A Node from a Pipelined k-ary n-cube Network

minimal, because the majority of the traffic would be routing to the next dimension and would thus need to travel
only one hop along the ring. In this case, of course, the switching delay would be greater for messages changing
to other than the next highest dimension.

Low-level routing in each dimension is based on the logical layer of the IEEE SCI protocol [TEEE90].
When a message is removed from a ring (either switched to the processor or to a different dimension), an echo
packet is routed the remainder of the way around the ring to acknowledge the receipt of the message on this ring.
Messages are stored at the node in which they first enter a ring until the ring acknowledgement is received. It is
possible that an input queue will have insufficient space to accept a message (due to contention), in which case a
negative acknowledgement is returned around the ring instead. When a negative acknowledgement is received,
the message is retransmitted. Ring acknowledgements are needed due to the asynchronous, pipelined nature of
the networks. Acknowledgements are provided on a per-message basis after a complete ring traversal, rather than
a per-flit basis on each link, as is done in a synchronous network. Acknowledgements can also provide fault toler-
ance by checking a CRC at the end of the message [IEEE90]. Unlike the input queue, the ring buffer is
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guaranteed to be able to accept a flit on every cycle. The output queue is given priority to initiate a message
transmission on an output link, but only if the ring buffer has enough free space to hold a message of equal length.
In this way the ring buffer cannot fill up before the message has been completely drained from the output queue.

2.2. Latency Equations

The unloaded latency can be derived by simply accounting for the latencies described in Section 2.1. The

mean number of hops traveled by a message is given by
mean hops = n{-&%} 3)

Since our switching overhead is greater for changing dimensions than for continuing in the same dimension, we

. . . . . . . I
must break this down by dimension. A message routes in a dimension with probability = and traverses a

mean of % hops in a taken dimension. The total mean unloaded latency, in cycles, is

k=11] k k-2
Latency 'pipe = 1L switch +h Py (Twire T decode bas Tpass T gwiten |+ P-1 4)
k 2 2

Note that the delay due to wire transmission is added to decoding and switching delays; it does not affect the
switch cycle time. This allows the cycle time to be kept small and prevents transmission delay from affecting the
queueing delay in the switches and the delay between the head and tail of a message. The value of T, and W

will be explored in the following sections.

2.2.1. Wire length

’ The wire length is not necessarily equal for all links. We assume that the network is being implemented in
3 physical dimensions. This differs from [Dall90], where only 2 dimensions are assumed (primarily to reflect the
two-dimensional nature of an all-VLSI implementation). For networks with 3 or fewer logical dimensions, wire
lengths are independent of system size and uniformly short.! Let S be the ratio of switch cycle time to wire
transmission delay for a 3-dimensional network. Since the wire delay must round up to an integral number of
cycles, Tyire 1S equal to [1/8]. For a network with n>3 dimensions, we can no longer run all links between physi-

cal neighbors. We embed n/3 logical dimensions in each physical dimension, and the length of the longest wire

1Tn order to avoid the long wrap-around wire illustrated in Figure 1, an actual implementation can weave the links of a ring such that
half of the nodes in the ring are visited left to right, and the other half visited right to left. This is referred to as a folded torus in {Dall90].
We note that this introduces a factor of 2 increase in wire lengths and hereafter deal with non-folded networks and ignore the wraparound

overhead for simplicity without loss of generality.



in the system grows as (k”/ 3"1}. The maximum wire delay is then given by

K3
Twirem = S (5)

In synchronous networks, the cycle time must accommodate the transmission delay over the longest wire,
and thus the maximum wire delay is effectively suffered over all links. This has the effect of increasing the total
delay due to wire transmission as the dimensionality of a network is increased, even though the mean number of
hops between two nodes decreases. This has been a severe handicap to higher-dimensional networks in previous
studies [Dall90, Agar91]. In a pipelined network, however, the number of cycles spent traversing a given wire is a
function of that wire’s length only; increased wire delay is suffered only for the longer wires. The mean wire
delay, therefore, is determined by the mean wire length. The mean wire length grows when the number of logical
dimensions exceeds the number of physical dimensions, but the total wire traversed between nodes does not
grow. Figure 3 illustrates this point by showing 4 logical dimensions embedded in a single physical dimension.
The node on the left can reach any of the other 15 nodes by following up to 4 of the links shown with arrows.
The mean number of links traversed is less than it would be with only nearest-neighbor links, but the mean link

length is longer. The two factors cancel out, and the mean distance traveled is the same in either case; the

higher-dimensional network does not cause backtracking.?

We can calculate the mean wire length in an n-dimensional network by dividing the mean distance between

nodes (number of hops in a 3-dimensional network) by the mean number of hops in the n-dimensional network.

Figure 3: Four logical dimensions embedded in one physical dimension

2If the number of logical dimensions is not an even multiple of the number of physical dimensions, then there will actually be a small
amount of backtracking in the remaining logical dimensions, causing the mean distance traveled to be slightly higher for high-dimensional
networks. However, high-dimensional networks also save some wire length by reducing the wrap-around penaity and reducing the number

of off-board or off-chip transitions. Both these effects will be ignored.
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The mean distance is 3( 1 and the mean number of hops is given in equation (3). The mean wire length

when n=3 is thus

n/3__
mean wire length = [k P 11} {%] 6)

and T,;,=[mean wire length]. To obtain an accurate value for Ty, the wire transmission delay must be
rounded up to a whole number for each wire (we cannot simply round up the mean). There are n/3 logical dimen-

sions embedded comglletely in each physical dimension. The wire length for the j’h logical dimension in a physi-
(50
3

cal dimension is {k ] Another n mod 3 logical dimensions are embedded amongst all 3 physical dimen-

sions. The wire length for the j th wexira" dimension can be set to j. For each wire length /, the transmission delay
is [1/8].

They key attribute of pipelined networks with respect to wire length, is that the cycle time is decoupled
from the transmission delay, so the maximum wire length does not determine network performance. The total
wire traversed by a message is roughly independent of the dimensionality of the network. As such, wire length

becomes a non-issue when determining the optimal dimensionality of the network.

2.2.2. Link width

The link width W is affected by the dimensionality of the network and the constraint under which it is being
designed. The default assumption is the constant link width constraint. It assumes that the link width, which
determines the number of flits into which a message must be decomposed, is independent of the dimensionality of
the network. Since the number of wires attached to a node is equal to 2nW, this causes the total number of wires
per node to increase as the dimensionality of a network is increased. The constant node size constraint keeps the
wires per node fixed as the dimensionality is varied. The link width is then some constant divided by n. The con-
stant bisection constraint keeps the number of wires across the bisection fixed as the dimensionality is varied.

The number of wires across the bisection is 2Wk" 1, so link width is given by

(D

bisection width
2N

Weonst bisec = k[

The constant bisection constraint is used in [Dall90] in order to reflect the limited wiring area of a network
implemented entirely in VLS. We believe that for a multiprocessor implemented across several boards, the con-
stant node size constraint is much more realistic. This is due both to pin limitations off-chip and off-board.
Depending upon the technology used to implement the network, the constant link width constraint may be realis-
tic as well. Intranode data paths, for example, may dictate the link width and the pin limitations may not be res-
trictive. In [Agar91], all three constraints are considered, with the emphasis on the constant link width constraint.



2.2.3. Synchronous networks

In a synchronous network, the cycle time must include both switch operation and wire transmission. As
such, the maximum wire transmission delay has a multiplicative effect on overall latency. The synchronous

latency is given by

k=11| k k=2
Latency, synch = 4T yire max Tswitch +n "—Tdecode+ Tpass + Tswitch +P -1 (8)
k 2 2

The time unit in equation (8) is the switch cycle time not including wire transmission delay, which allows for

direct comparison with equation (4). The first factor, {1+Tw,~,em], represents the increased cycle time of the syn-

chronous network due to wire transmission delay. The remaining factor (enclosed in curly braces) represents the
number of cycles used to transmit the message. Equation (8) is the same as equation (4), save that wire delay is

taken out of the cycle count, and instead is used to increase the cycle length.

2.3. Optimal Dimensionality as System Size Grows

Using equations (4) and (8), we can now calculate the dimensionality that gives the lowest unloaded latency
for a given system size and constraint. We will consider several network variants. The first, Synch, assumes a
synchronous network, and is characterized by equation (8). The second, PipeAvg, assumes a pipelined network,
and is characterized by equation (4), with T, derived using the mean wire length. We also consider two unreal-
istic networks for purposes of comparison. The first, PipeMax, assumes a pipelined network, but uses the max-
imum wire length to derive T. This network is unnecessarily conservative, but allows us to separately identify
the two main performance advantages of pipelined networks. The difference between Synch and PipeMax is due
to the de-coupling of cycle time from transmission latency. The difference between PipeMax and PipeAvg is due
10 the fact that the wire delay in a pipelined network is determined by the mean wire length, rather than the max-
imum wire length. The second unrealistic network, UnitDelay, assumes unit wire delays for all links. This has

been a common assumption in previous studies.

Figure 4 plots the optimal dimensionality and radix of a network (based solely on unloaded latency) as sys-
tem size grows. Note that the optimal dimensionality and optimal radix each are related by the equation N=k".
Parts (a), (b) and (c) assume the constant link width, node size, and bisection width constraints, respectively.
Each graph includes results for each of the 4 network variants. The ratio of switch cycle time to base wire delay,
S, is 2. The latency is the sum of two message latencies: one with a 16 byte packet and one with an 80 byte
packet. These correspond to the address and data packet sizes in SCI [IEEE90].

To compute the optimal dimensionality, we have treated all discrete quantities as continuous. Thus, wire
and decode delay cycles as well as the dimensionality and radix of the networks can be fractional. When all
discrete effects are included, the graphs jump erratically and the general trends cannot be clearly seen. The results

are also very sensitive to arbitrary values such as the normalized link width. When we calculate actual latencies
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in Section 4, we will use only discrete values.

Figure 4(a) assumes a constant link width of 32 bits. Thus the dimensionality does not affect the decode
delay or the number of flits. As the dimensionality of a given sized network is increased, the mean number of
hops for a message decreases, but wire lengths increase. UnitDelay and PipeAvg are not affected by wire length
increases, so they always perform best with the highest dimensionality (a hypercube) due to the reduction in mes-
sage hops. PipeMax and Synch are both affected by wire length, but to varying degrees. The optimal dimen-
sionality for the pipelined network is over 2 greater than that for the synchronous network for system sizes up to
4096. As system size increases to 1M, the wire lengths begin to dominate latency and the optimal dimensionality
for PipeMax actually decreases slightly. Asymptotically, the optimal dimensionality for both Synch and PipeMax
will go to 3, the number of physical dimensions.

Figure 4(b) assumes a constant node size of 192 wires (W=32 when n=3). The optimal dimensionality for
all four networks is lower under this constraint than under the constant link width constraint. This is due to the
effect of decreasing the link width as dimensionality is increased. The radix for UnitDelay still remains constant
as N increases, but the optimal radix is now 5 instead of 2, and the optimal dimensionality is correspondingly
lower. There is now a difference between UnitDelay and PipeAvg due to the fact that the total wire delay for
UnitDelay decreases when dimensionality is increased. As before, the wire lengths for PipeMax and Synch
become dominant for very large system sizes, causing the optimal radix to increase. The optimal dimensionality

for PipeMax is still about 1 greater than that for Synch.

Figure 4(c) assumes a constant bisection width, normalized to a hypercube with W=2. The optimal dimen-
sionality for all networks is lower than in parts (a) and (b), due to the tighter constraint on link width. For small
system sizes, the link width is the dominant effect. As system size increases, the number of hops becomes more
important, and the optimal radix decreases. For larger system sizes, the wire length begins to dominate, and the
optimal radix for PipeMax and Synch begins to increase. The ordering of the 4 network types in terms of optimal

dimensionality remains the same.

The striking conclusion to be drawn from Figure 4 is that pipelining a network significantly impacts the
choice of dimensionality. Pipelining argues for higher dimensionality. Let us compare PipeAvg o Synch (Unit-
Delay is overly optimistic and PipeMax is overly pessimistic). The radix of the pipelined network should be kept
constant as system size is increased. When link width is unconstrained, the hypercube provides superior perfor-
mance for all system sizes. When link width is constrained by either the constant node size or bisection width
assumptions, the optimal radix increases. Other factors might also affect the optimal radix. An increase in the
penalty for switching dimensions (Tswires) Would increase the optimal radix, and an increase in switch cycle time
would decrease the optimal radix. Regardless of the optimal radix, however, the networks should still be grown
by increasing the dimensionality, not the radix. This is not the case for the synchronous network, where the wire
delay directly affects cycle time. The optimal dimensionality is limited by the longer wire lengths for high

dimensions, and the optimal radix increases significantly for large system sizes.
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The analysis thus far has considered only unloaded latency. When bandwidth is considered, the argument
for keeping the radix fixed becomes more compelling. Under uniform traffic, the rate of traffic across a link is
proportional to the radix of the network [Scot91]. Thus, if the network is grown by increasing the radix, the rate

of traffic per link will also increase. Section 3 explores bandwidth considerations in more detail.

3. THROUGHPUT AND CONTENTION

Real networks carry traffic. To obtain a clear picture of a network’s performance, latency must be viewed in
conjunction with throughput. Latency rises significantly as the rate of traffic approaches the network’s maximum
capacity. The maximum capacity is affected by the link width and dimensionality of the network. In this section,
the maximum throughput of a network will be derived, and a simulation study of pipelined and synchronous net-

works will be presented.

The maximum throughput is determined by the message length in bits, L, the number of wires traversed by
the message, W, and the total number of wires in the network, Wi, The maximum throughput, in bits per

cycle per processor, is

L Wlot 1
Xpipens = NW,,:g ©)
The number of wires in the network is given by
Wioat =NnW (10)

To derive L and W,,,,, we assume the use of two message packet formats: address only (L4 bits) and address
plus data (L., bits). A fraction fama Of the packets generated are data packets, with the remainder being address
only. The ring acknowledgement packets described in Section 2.1 are L, bits. The mean message length in bits
is

L = faaia Laata + Jaddr Laddr (1n

When a message traverses a ring, it travels part way as a data or address packet, and the remainder of the way as
an acknowledgement packet. Taking this into account, and the fact that the message length must be rounded up

to the nearest multiple of W, the total number of wires traversed by a message is given by

f .‘_Ldala + f Laddr T Lack
data W addr W W

2

Wi =W n(k~1) (12)

Substituting equations (10), (11) and (12) into equation (9) yields
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z(fdala Ldala + f addr Laddr) w

X pipe e = =
- Laata Ligaar Lgc k-1) 13
(k—l){fdam{m‘;v‘ 1+fadd,{ = %{WW_ICU =

Assuming that packet lengths are an integral number of flits, the maximum throughput is proportional and

approximately equal to ( kvfl) .

For synchronous networks, the maximum throughput is the same, except that it must be scaled down to
reflect the longer cycle time needed to include wire transmission. With the time unit set equal to that in equation
(13) (one cycle, not including wire transmission time) to allow direct comparison, the maximum throughput in a

synchronous network is

Xoynchow = 731 (14)

For synchronous networks, not only does the latency increase as wire lengths grow, but the traffic capacity of the

network decreases.

Equations (13) and (14) give throughput maximums, but do not explain the relationship between throughput
and latency. For this, either a queueing model or simulation is necessary. The following section describes a
simulator that models the network node shown in Figure 2 with great detail and uses an iterative solution tech-

nique to efficiently provide performance results for arbitrary network sizes.

3.1. Simulation Model

The simulation model used in this paper is based upon the network described in Section 2.1 and illustrated
in Figure 2. Parameters to the model include the radix and dimensionality of the network, the link width, the size
of the input queues, output queues and ring buffers, the size of the address and data packets, the ratio of address to
data packets and the ratio of switch cycle time to base wire delay. Only a single node is simulated. The arrival of
packets from the processor and each ring is a Poisson process with rates determined by the system size. Let the

packet arrival rate from the CPU be r, of which a fraction f,, are data packets and the remainder address pack-

k=1 .. . . . .
ets. Each packet traverses a mean of — links in each dimension, and causes an acknowledgment packet to

=1 ... . . . . s .
traverse a mean of ~k—i-~ links in each dimension. The base packet arrival rates at each of the n switch input links

is thus (k—1)r, with —% the packets being acknowledgements, -@;—m— of the packets being data packets, and

1"f data
2

of the packets being address packets. A fraction 72(- of all acknowledgement packets received at the
switch are destined for this node and can thus be discarded. The remaining acknowledgement packets must be

passed along the same dimension. A fraction % of all data and address packets are also destined for this node,
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with the remainder to be passed along the same dimension. The address and data packets destined for this node
are either switched to another dimension or routed to the CPU. A packet arriving from dimension i is switched to
-1

n—i
dimension i+j with probability [(l/: 1)}] The packet is switched to the CPU with probability {—Ilc‘] .

If all packets were accepted by the switch, then the simulator could use the above arrival rates and routing

probabilities to simulate the entire network. The time to pass through the switch in each dimension, and the time
to switch into each dimension would be calculated, and these could be used to construct the total latency through
the network for the given CPU request rate. However, some packets may not be accepted, causing negative ack-
nowledgements to be returned, which in turn cause the packets to be retransmitted. This not only increases the
latency through the network (because a packet may have to be sent around a ring more than once), but increases

the traffic as well.

The relationship between the fraction of packets that are dropped, the base traffic, and the extra traffic gen-
erated as a result of dropped packets is as follows (let B be the base traffic, E be the extra traffic, and f be the frac-

tion of dropped packets):

_ _pl _|.B_
(B+E)f=E = E= B{ l_f} = (B+E) = [ 1_f} (15)

The simulator uses an iterative technique to arrive at a solution for the above equations. The initial arrival rates
are sct according to the system size and the processor request rate as described above. The system is simulated
and the fraction of dropped packets is calculated for each dimension for both packet types (address and data).
These are used to calculate new arrival rates for each dimension and packet type, using the rightmost formula in
cquation (15). The base rates are calculated used the realized throughput of CPU requests from the previous itera-
tion. The arrival rates of acknowledgment packets are simply the base rates, but the arrival rates of data and
address packets increase (provided the fraction of dropped packets is nonzero). The arrival rates of negative ack-
nowledgments are equal to the sums of the increased arrival rates for address and data packets.
In order to calculate latency, the following quantities are measured for both address and data packets.
\; = fraction of packets dropped in dimension ¢
o = Tpqqs for dimension i

Bi

¥; = Thean time between accepting a packet and transmitting the corresponding acknowledgement

Tywiten Tor packets leaving dimension i

packet
8, = mean time between accepting a negative acknowledgement packet and retransmitting the
corresponding packet

The corresponding latency is
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The throughput, address packet latency and data packet latency are calculated after each iteration, and the itera-
tions continue until the relative change in the results is below 2%. Smaller thresholds are impractical due to the
inherent randomness in the simulation output (simulation error becomes dominant within a few iterations). The
90% confidence intervals for the results, derived using the method of batch means, are mostly under 1%, and

occasionally as high as 5%.

3.2. Simulation Results

Figures 5 through 10 present system configurations and simulation results for various system sizes, con-
straints and network types. Parameter values are Lgqs=128, Laia=640, Lo =64, S=2, faa1,=0.3 and all queue and
buffer sizes are 100 bytes.

Figure 5 (a-c) presents alternative configurations for a 4096-node, pipelined network. The dimensionality
of the network is varied under the constant link width, node size and bisection width constraints. Each table
includes the link width, node size, and bisection width for each configuration, and holds one of the three quanti-
tics constant according the the appropriate constraint. Decode delay cycles per hop (determined by the link
width) and maximum throughput (in bits per cycle per processor) are also shown. Finally, wire delay cycles per
hop and total unloaded network latency are shown under two assumptions: that the maximum wire delay is
applied to all wires, and that the actual wire delays are used. The values shown represent actual system
configurations; all discrete quantities are indeed discrete. The wire delay when using actual wire lengths is calcu-
lated by rounding up wire delays for each dimension before averaging. As in Section 2.2, the latencies are for a
round trip message consisting of one address packet followed by one data packet.

Under all constraints, the wire delay increases as the dimensionality is increased. Under the constant node
size and bisection width constraints the decode delay increases as well. The maximum throughput increases with
dimensionality, but at a different rate, depending upon the constraint. For higher-dimensional networks, the
unloaded latencies using maximum wire delays are different than the unloaded latencies using actual wire delays.
This can lead to a different choice of optimal dimensionality based upon unloaded latency, as was seen in Figure
4. The latencies under the two assumptions converge under heavy loads, however, because the maximum

throughput is the same in both cases.

Figure 6 presents the simulation results for the networks listed in Figure 5. The differing traffic capacities
of the networks can be clearly seen. Figure 6(a) shows latency versus throughput for networks under the constant
link width constraint. The higher-dimensional networks are clearly superior, providing lower latency for a given

throughput and a substantially greater maximum throughput.
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Max Wire Lengths Actual Wire lengths
Li Wires Wires Decode :
ink Maximum - - - -
Dim | Radix per across Delay 1\)7‘111re ioﬁnd‘;ﬂ;’ I\)N;re I[{;:lmd;ng
Width o Throughput clay nloade elay oade:
' Node Bisection Cycles rouenpy Cycles Latency Cycles Latency
2 64 32 128 4096 1 0.837 1 407.9 1.00 4079
3 16 32 192 16384 1 3.514 1 166.6 1.00 166.6
4 8 32 256 32768 1 7.529 1 117.0 1.00 117.0
6 4 32 384 65536 1 17.569 2 107.0 1.50 98.0
12 2 32 768 131072 1 52.706 4 110.0 2.00 86.0
(a) Constant Link Width
Max Wire Lengths Actual Wire lengths
Link Wires Wires Decode Maxi
in aximum - - - -
Dim | Radix per across Delay Wire Roundtrip Wire Roundtrip
Width Nod Biseati v Throughput Delay Unloaded Delay Unloaded
ode Lsection yeies Cycles Latency Cycles Latency
2 64 48 192 6144 1 1.094 1 400.9 1.00 400.9
3 16 32 192 16384 1 3.514 1 166.6 1.00 166.6
4 8 24 192 24576 1 5.333 1 126.0 1.00 126.0
6 4 16 192 32768 1 8.784 2 131.0 1.50 122.0
12 2 8 192 32768 2 13.176 4 194.0 2.00 170.0
(b) Constant Node Size
Max Wire Lengths Actual Wire lengths
Li Wires Wires Decode .
ink Maximum - - - -
Dim | Radix per across Delay ;)Nllre It{]ollmd;ng I\i\/;re I;o?nd;ng
Width o Throughput elay nloade clay nloade
' Node | Bisection | Cycles rougnpt Cycles Latency Cycles Latency
2 64 128 512 16384 1 2.844 1 389.9 1.00 389.9
3 16 32 192 16384 1 3.514 1 166.6 1.00 166.6
4 8 16 128 16384 1 3.765 1 141.0 1.00 141.0
6 4 8 96 16384 2 4.392 2 197.0 1.50 188.0
12 2 4 96 16384 3 6.588 4 302.0 2.00 278.0

In Figure 6(b), the constant node size constraint is enforced. The 6-dimensional network is superior in this
case. Although there is very little difference between the unloaded latency of the 4- and 6-dimensional networks,
the 6-dimensional network performs significantly better under heavy traffic. Similarly, the 3- and 12-dimensional
networks have nearly equal unloaded latencies (the 3-dimensional latency is slightly lower), but the 12-
dimensional network performs better as traffic increases. This illustrates why unloaded latency alone is inade-
quate to characterize the performance of a network. It is interesting to note that the 6-dimensional network

achieves higher throughput than the 12-dimensional network even though it has a lower maximum throughput.

Figure 5: Actual System Configurations (Pipelined, N =4096)

(c) Constant Bisection Width

This is because of its larger link width, which allows a more uniform utilization of its links.
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Figure 6: Latency versus Throughput (Pipelined, N =4096)

Figure 6(c) uses the constant bisection width constraint. It is less clear here which network provides the

best performance. While the 4-dimensional network has the lowest unloaded latency, the 3-dimensional network
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has slightly lower latency under heavier loads. The higher-dimensional networks are severely penalized by
smaller link widths and greater decode delays.
Figure 7 presents network configurations for pipelined, 1M-node networks. Several observations can be

made in comparing the values to those for 4096-node networks. One is that there is now a significant difference

between the unloaded latency when assuming maximum wire delay and the unloaded latency when assuming

Max Wire Lengths Actual Wire lengths
Link Wires Wires Decode Maximum
Dim | Radix per across Delay Wire Roundtrip Wire Roundtrip
Width Node Biscetion Cycles Throughput Delay Unloaded Delay Unloaded
Cycles Latency Cycles Latency
2 1024 32 128 65536 1 0.052 1 6168.0 1.00 6168.0
3 102 32 192 665856 1 0.522 1 940.9 1.00 940.9
4 32 32 256 2097152 1 1.700 2 529.7 1.75 498.7
5 16 32 320 4194304 1 3.514 4 4854 2.80 3954
10 4 32 640 16777216 1 17.569 13 491.0 5.50 266.0
20 2 32 1280 | 33554432 1 52.706 26 606.0 8.05 247.0
(a) Constant Link Width
. Max Wire Lengths Actual Wire lengths
Link Wires Wires Decode Maximum
Dim Radix per across Delay Wire Roundtrip Wire Roundtrip
Width Node Biccction Cyeles Throughput Delay Unloaded Delay Unloaded
Cycles Latency Cycles Latency
2 1024 40 160 81920 1 0.058 1 6164.0 1.00 6164.0
3 102 26 156 541008 1 0.403 1 946.9 1.00 946.9
4 32 20 160 1310720 1 0.997 2 544.7 1.75 513.7
5 16 16 160 2097152 2 1.757 4 584.4 2.80 494.4
10 4 8 160 4194304 3 4.392 13 623.0 5.50 398.0
20 2 4 160 4194304 5 6.588 26 854.0 8.05 495.0
(b) Constant Node Size
i . Max Wire Lengths || Actual Wire lengths
Link Wires Wires Decode Maximumn
Dim | Radix per ACTOSS Delay Wire Roundtrip Wire Roundtrip
| e | i | e | Mo | 2| ) 2|
2 1024 512 2048 1048576 1 0.250 1 6147.0 1.00 6147.0
3 102 51 306 1061208 1 0.710 1 932.9 1.00 932.9
4 32 16 128 1048576 2 0.850 2 671.7 1.75 646.7
5 16 8 80 1048576 3 0.878 4 707.4 2.80 6174
10 4 2 40 1048576 10 1.098 13 1121.0 5.50 896.0
20 2 1 40 1048576 20 1.647 26 1730.0 8.05 1371.0

(c) Constant Bisection Width

Figure 7: Actual System Configurations (Pipelined, N =1048576)
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actual wire delays. The maximum wire delay is a full 26 cycles for the hypercube (which corresponds to over 50
times the base wire delay), but the mean wire delay is only 8.05 cycles. Because pipelined networks do not have
to increase their cycle time to accommodate these long transmission times, and because the maximum wire
transmission time does not affect the shorter wires, pipelined networks appear especially promising for very large
systems. Another interesting observation is that the difference in maximum throughput between the 2- and 20-
dimensional networks is very large. It is a factor of 1000 under the constant link width constraint. For the con-
stant node size constraint, where the total number of wires in the system is independent of dimensionality, the

difference in the maximum throughputs is still a factor of 100.

Figure 8 presents simulations results for the networks listed in Figure 7. The differences in traffic capacity
can be clearly seen. Under the constant link width constraint (Figure 8(a)), the hypercube is clearly superior. The
low-dimensional networks provide much higher latencies and only a small fraction of the capacity. When the
node size is constrained (Figure 8(b)), the 10-dimensional network provides superior performance, followed by
the 20-dimensional network. The 10-dimensional network provides slightly higher throughput even though the
20-dimensional network has a higher maximum throughput. As before, this is due to the larger link width allow-
ing for better link utilization. Under the constant bisection width constraint (Figure 8(c)), the 4-dimensional net-
work provides superior performance. The 10- and 20-dimensional networks suffer too greatly from the decreased

link width and increased decode delays.

In Figure 9, configurations for a synchronous, 4096-node network are shown. Wire delay is now given as
"Cycle Time Increase", the factor by which it increases the cycle time. The unloaded latency and maximum
throughput are in terms of the base cycle time (without wire delay), to allow direct comparison with figures 5
through 8. The hypercube no longer gives the maximum throughput under the constant node size and bisection
width constraints. This is due to the increase in cycle time for the higher-dimensional networks. The unloaded
latency also displays a different relationship to the dimensionality, becoming much larger for higher-dimensional

networks than was the case for pipelined networks.

Figure 10 presents simulation results for the networks listed in Figure 9. The results are noticeably different
than those in Figure 6. Under the constant link width constraint (Figure 10(a)), the 6-dimensional network now
provides superior performance. The 3- and 4-dimensional networks both provide slightly lower unloaded latency,
but the 6-dimensional network clearly performs better as network traffic increases. Under the constant node size
constraint (Figure 10(b)), the 3- and 4-dimensional networks are now best. The 12-dimensional network is now
the worst choice. Finally, under the constant bisection width constraint (Figure 10(c)), the 3-dimensional network
is clearly the best. The 6- and 12-dimensional networks provide very poor performance due to the greater wire
delay and smaller link widths.

Several conclusions can be drawn from the data presented in Section 3. First, it is important to consider

bandwidth as well as latency. The unloaded latency does not characterize the performance of a network as traffic
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20



Wires

Wires

Cycle

Decode

Roundtrip

Link Maximum
. per across Time Delay Unloaded
Width Node | Bisection | Increase | Cycles Latency Throughput
2 32 128 4096 1.50 1 422.9 0.558
3 32 192 16384 1.50 1 182.4 2.342
4 32 256 32768 2.00 1 178.0 3.765
6 32 384 65536 3.00 1 213.0 5.856
12 32 768 131072 5.00 1 310.0 10.541
(a) Constant Link Width
Link Wires Wires C_ycle Decode | Roundtrip | aximurm
Width per across Time Delay Unloaded Throughput
Node | Bisection | Increase | Cycles Latency
2 48 192 6144 1.50 1 412.4 0.729
3 32 192 16384 1.50 1 182.4 2.342
4 24 192 24576 2.00 1 196.0 2.667
6 16 192 32768 3.00 1 285.0 2.928
2 8 192 32768 5.00 2 730.0 2.635
(b) Constant Node Size
Link Wires Wires %ycle %ﬁc}ode %o?ndérig Maximum
. per across ime clay nloade
Width Node | Bisection | Increase | Cycles Latency Throughput
2 128 512 16384 1.50 1 395.9 1.896
3 32 192 16384 1.50 | 1824 2.342
4 16 128 16384 2.00 1 226.0 1.882
6 8 96 16384 3.00 2 483.0 1.464
12 4 96 16384 5.00 3 1270.0 1.318

21

(¢) Constant Bisection Width

Figure 9: Actual System Configurations (Synchronous, N =4096)
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Figure 10: Latency versus Throughput (Synchronous, N =4096)

increases. Second, pipelined networks favor higher dimensionality than synchronous networks do. Pipelining
allows the maximum wire length to grow without increasing the cycle time or causing the transmission delay

across all links to grow. Finally, pipelining allows for much higher throughput than with synchronous networks.
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This is illustrated by comparing figures 6 and 10. The throughputs aitainable in the pipelined networks are con-

siderably higher than those in the synchronous networks.

4. OTHER FACTORS IN NETWORK PERFORMANCE

This section explores several other factors in the performance of pipelined networks. Sections 4.1 and 4.2
investigate the effects of varying switching overhead and message length, respectively. The results differ some-
what from results obtained previously for synchronous networks [Agar91]. Section 4.3 investigates the effect of

varying the queue and buffer sizes in a pipelined network switch.

4.1. Effect of Switching Overhead

Figure 11 shows the unloaded latency versus dimensionality for a pipelined, 4096-node network as the ratio
of switch cycle time to base wire delay, S, is varied from O to 8. Latencies are normalized to the cycle time with
S=2. As in Figure 4, discrete quantities are treated as continuous to better illustrate relationships. In parts (a) and
(b), the maximum wire length penalty is imposed on all links. In parts (c) and (d), mean (actual) wire lengths are
used. Parts (a) and (c) assume the constant link width constraint, while parts (b) and (d) assume the constant node
size constraint. The network with latency calculated using maximum wire length is presented only to aid intui-
tion concerning wire-length effects.

The optimal dimensionality is determined by balancing three components of latency that are affected by the
dimensionality. (1) The mean number of hops is always reduced as dimensionality is increased. (2) Under the
constant node size constraint, the required number of flits increases as dimensionality is increased. (3) Using the
maximum wire penalty, wire delay is increased as dimensionality is increased. The delay due to the first two fac-
tors is proportional to the switch cycle time, while the delay due to the third factor is dependent on wire transmis-
sion time. Varying the ratio of switch cycle time to wire delay, therefore, affects the choice of dimensionality
when the first or second factor is being balanced against the third factor. This is the case in figures 11(a) and (b).
Increasing S makes the delay due to switching overhead more important relative to wire delay, and thus the

optimal dimensionality increases. This agrees with previous results for synchronous networks [Agar91].

In figures 11(c) and (d), the mean (actual) wire length is used. As was explained in Section 2.1.2, the total
wire delay in a pipelined network is roughly independent of dimensionality. Therefore, the optimal dimensional-
ity for a given network size is determined solely by the link width and number of hops. The ratio of cycle time to
base wire delay, S, does not affect the optimal dimensionality. 1t does affect the degree to which the dimensional-
ity affects the latency, however. For small S, the impact of dimensionality on unloaded latency is small. For
large S, the impact is greater.

As switching speeds continue to increase, the value of S is likely to become smaller. In this case, the impact
of dimensionality on the unloaded latency of pipelined networks will be reduced. However, bandwidth considera-

tions will still favor the use of higher-dimensional networks. The advantage of pipelined networks will become
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Figure 11: Effect of Switch to Wire Time Ratio
(N=4096, Pipelined Network)

greater as the switching rate grows in relation to the inverse of the wire latency. The optimal dimensionality of
synchronous networks, which are greatly affected by wire latency, will shrink as the fraction of latency due to

wire delay increases. This will reduce traffic capacity, especially for very large networks.
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4.2. Effect of Message Lengths

Figure 12 shows the unloaded latency versus dimensionality for a pipelined, 4096-node network as the mes-
sage length, L, is varied from 64 to 1024 bits. In parts (a) and (b), the maximum wire length penalty is imposed
on all links. In parts (c) and (d), mean (actual) wire lengths are used. Parts (a) and (c) assume the constant link

width constraint, while parts (b) and (d) assume the constant node size constraint.

In synchronous networks, longer message lengths decrease the optimal dimensionality [Agar91]. This is
because long messages lengths dominate the number of hops in the latency equation (8), making the reduction in
number of hops in high-dimensional networks less important relative to the increased wire delay. A similar
phenomenon can be seen in pipelined networks under the constant node size or bisection width constraints.
Longer message lengths make the number of flits, P, a greater component of the latency (see equation 2), and the
constraints favor low-dimensional networks, for which the link width is larger. This can be observed in figures
12(b) and (d). Under the constant node size constraint, using mean wire lengths (Figure 12(d)), the optimal
dimensionality changes from 3, when L=1024, to 6, when L=64.

Under the constant link width constraint, however, the message length does not affect the optimal dimen-
sionality. In this case, P still becomes a greater fraction of the latency for long messages (see equation 2), but
since P is independent of dimensionality, it doesn’t change the optimal dimensionality. This can be observed in
figures 12(a) and (c), where L has no affect on the shape of the curves. The reason that pipelined networks behave
differently than synchronous networks in this respect is due to the interaction between the number of hops, the
number of flits and the wire lengths, as detailed in equations (4) and (8). In a synchronous network, the number
of flits and the number of hops are added before being being multiplied by the wire length. The number of flits
thus affects the balance between the number of hops and the wire lengths. In a pipelined network, where wire
length does not determine cycle time, the number of flits is added to the product of wire length and number of

hops. Thus, it does not affect their balance.

4.3. Effect of Queue Sizes

Figure 13 contains simulation results showing the effect of queue size on the performance of a pipelined
network. The network size is 4096 (4 dimensional), the link width is 32 bits, and the latency is for a round trip
message with 16 and 80 byte packets, as in Section 3. Queue sizes are given in flits. Except where noted, the ring
buffer, input queue and output queue are all 100 bytes (25 flits).

The ring buffer must be at least as large as the largest message (80 bytes) in order to guarantee that it will
never fill up while the output queue is transmitting a message onto the output link. In Figure 13(a), the size of the
ring buffer in flits is varied from 20 to e, The network is surprisingly insensitive to the buffer size. When the
network is heavily loaded, it behaves slightly better with larger buffers, but the behavior is independent of buffer
size throughout the normal operating region of the network. An actual implementation, therefore, should not
spend extra resources making the ring buffers large.
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Figure 13: Effect of Queue Sizes
(N=4096, Pipelined Network)

The input queue also must be large enough to hold the longest message, as its free space is checked when a

message arrives in order to determine if the message can be accepted. An alternate design could accept an
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incoming message one flit at a time, and send a negative acknowledgement only if the queue fills up completely.
At the time the queue runs out of space, the switch could have already started sending the acknowledgement, in
which case it must be able to stomp the end of the acknowledgement, turning it into a negative acknowledgement.
This scheme is used in the SCI [TEEE90]. In Figure 13(b), the input queue size in flits is varied from 20 to oe. As
with the ring buffer, the network is quite insensitive to the input queue size. Performance is identical for all
buffer sizes throughout the network’s normal operating region. Under heavy loading, larger queue sizes actually
increase the latency. The packet drop rate is higher for the smaller queues, but the waiting time in each queue is

substantially lower. The input queue, therefore, should not be made larger than necessary.

The output queues do not have to be large enough to hold an entire message. If a message is partially
accepted into an output queue and the queue runs out of space, the message is simply backed up in the switch,
preventing the connected input queue from draining. In Figure 13(c), the output queue size is varied from 1 to o
flits. As with the ring buffer and input queue, the output queue does not affect performance until the network is
heavily loaded. The latency under heavy loading rises somewhat as the queue size is increased from 1 t0 4 to 16
flits (for the same reason the latency rises as the input queue size is increased), and then drops when the queue
size is set to 64 flits. Further experiments have indicated that the drop in latency occurs when the output queue is
large enough to hold an entire data packet. This reduces the probability that a message is blocked while "stra-
dling" the switch. Depending upon the implementation costs, it may be worthwhile to make the output queues

large enough to hold the largest message.

5. CONCLUSIONS

This paper has examined the performance of pipelined, -ary n-cube networks. The key attribute of pipe-
lined networks is that, by allowing multiple bits to be in flight on the same wire, the throughput of a link is
divorced from the latency. The switch cycle time is independent of wire length, and can be kept small, as it does
not include transmission time. This removes the primary disadvantage of high dimensionality for large networks,
that of increased latency and decreased throughput due to long wires. By doing so, the network design tradeoffs
are significantly changed.

The optimal dimensionality of pipelined networks is higher than that of synchronous networks. In a syn-
chronous network, wire delays discourage the increase of dimensionality as system size is increased. This has the
effect of making the optimal radix increase with system size. In a pipelined network, wire delays have little affect
on the choice of dimensionaiity. The optimal radix remains roughly constant as system size is increased. When
the link width is unconstrained, a hypercube (radix of 2) always provides the best performance. Under the con-
stant node size constraint, the optimal radix is between 5 and 10. Since the dimensionality and radix of a network
must be whole numbers, actual design choices will be limited. A 4096-node network, for example, can have a

radix of 2, 4, 8, 16 or 64. Under the constant node size constraint, the best choice is 4 (6-dimensional).
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It is important to consider throughput as well as latency, as the two are intimately related. Since the traffic

density per link is proportional to the network radix, high-radix networks have a correspondingly lower traffic

capacity. Under the constant node size constraint this is offset by their larger link widths, but the capacity still

decreases as radix increases. In a synchronous network, the optimal radix increases with system size, causing the

per processor traffic capacity to decrease. If the radix is kept small, then the high dimensionality causes the max-

imum wire length to grow, thus increasing the cycle time and decreasing throughput. In a pipelined network, the

optimal radix, and thus the per processor traffic capacity, remain constant as system size grows.

Pipelined networks offer higher throughput and lower latency than do synchronous networks. The advan-

tages of pipelined networks will become greater as system sizes increase, and as switching times become smaller

relative to transmission delays.
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