CACHE CONSISTENCY AND
SEQUENTIAL CONSISTENCY

by

James R. Goodman

Computer Sciences Technical Report #1006

February 1991

CACHE CONSISTENCY AND SEQUENTIAL CONSISTENCY

James R. Goodman
goodman@cs.wisc.edu
Computer Sciences Department
University of Wisconsin-Madison
1210 W. Dayton St.
Madison, WI 53705

This Technical Report was originally prepared in February 1989 for a tutorial for the IEEE
Futurebus Working Group. It was circulated with the Futurebus minutes and later circulated to
the IEEE Scalable Coherent Interface (SCI) Working Group, where it has been referenced as
Technical Report Number 61, March 1989. It appears here unchanged except for typographical
corrections and minor clarifications.

Memory Consistency and Multiprocessor Synchronization

A von Neumann processor has an implied order in which memory accesses are logically
executed. For a single processor, program order implies that for any memory location, a read to
that location will return the value most recently written to it. For a multiprocessor, however, an
additional requirement may be placed on the memory system: the order in which memory opera-
tions occur may be observed by other processors to achieve implicit synchronization. Consider
the following example of such use of memory ordering:

Process 1:
a = f£();
barrier = 0;

Process 2
while (barrier)
; /* wait */

b = g(a);
Initially, barrier is non-zero. Process 2 is using barrier to guarantee that a has been set
to the value returned by £ (). If Process 2 reads barrier as non-zero it assumes that Process
1 has not yet completed the computation of £ (). Thus memory is used implicitly to synchron-
ize a producer and a consumer.

While the synchronization function is essential for a shared-memory system, it is only
occasionally that the memory is used in this way. For example, all references during the compu-
tation of £ () are probably not even shared. Even if they are, it is unlikely that a program

would want to use the values while Process 1 is computing £ () ' So what really matters, in
general, is that at a certain point in the execution of a program, a new value (or set of values) has
been computed and after that point other processors will access the new values.

Such a point is usually synchronized through explicit synchronization mechanisms, such
as a semaphore or a barrier[Jord78]. It is generally regarded as good programming technique to
synchronize explicitly, rather than depending on the memory system to provide implicit syn-
chronization. While there are well-known methods for implementing semaphores from a
memory in which all reads and writes are observed to occur in a globally consistent way
[Pete81], it is customary to provide atomic hardware primitives, such as Test-and-Set, Enqueue,
Dequeue, or Compare-and-Swap, to simplify the synchronization operations. The use of such
primitives, with the added guarantee that all pending memory operations are completed before
such an atomic operation, provides several advantages. Among them are that code is easier to
understand and, perhaps more importantly, easier to debug. More efficient hardware implemen-
tations are also possible.

Strong Consistency

We have identified three levels of consistency that might be guaranteed by a parallel com-
puter. The strongest and most restrictive is called sequential consistency by Larnport,2 with the

There are asynchronous SOR algorithms, for example, that converge faster by working with the “latest value” of a
variable.

following definition:

A multiprocessor is said to be sequentially consistent if the result of any execution is the same
as if the operations of all the processors were executed in some sequential order, and the opera-
tions of each individual processor appear in this sequence in the order specified by its program.

A system that adheres to this level of consistency is said to be a strongly ordered system
[DuSB88]. This definition implicitly excludes parallel write operations. While conceptually
clean, its cost in performance is likely to be high for a large-scale parallel machine.

Weak Consistency

The weakest form of consistency only guarantees that accesses to a given memory loca-
tion are strongly ordered. Thus writes to different memory locations may be observed to occur
in different order by different processors. This is in fact sometime called simply cache con-
sistency: each read of a memory location is guaranteed to obtain the most recently written value.
In practice, this is of course inadequate, since no guarantee of synchronization is possible with
such a system. Thus some stronger form of ordering is provided conditionally, only for certain
variables. These typically are explicit synchronization variables, such as that specified in a
Test-and-Set instruction. An implementation technique for guaranteeing consistency at a
specified point is the fence primitive [BrMW85]. When a fence operation is initiated by a pro-
cessor, execution is blocked until all pending write (and possibly, read) operations have com-
pleted. If this operation is applied at the time of a synchronization operation only it is know as a
weakly ordered system [DuSB88]. The use of a fence can potentially result in higher perfor-
mance because write operations emanating from a single processor can be overlapped with reads
and ensuing writes, except when a fence is encountered. Also, truly parallel writes can occur.
Unfortunately, it is necessary for the programmer to state explicitly whenever a fence must be
inserted, though such a requirement can be inferred, for example, whenever a Test-and-Set
instruction is encountered. Problems arise, of course, when such points are not explicitly
identified. For example, the IBM System/370 architecture includes a Test-and-Set instruction,
but no Unset instruction, whose function can nominally be achieved with a simple write opera-
tion. The result is that code written for the 370, including MVS, will not execute correctly on a
weakly ordered system [Brya89].

Processor Consistency

There is an intermediate level of consistency, stronger than weak ordering, but weaker
than strong ordering, that guarantees correct behavior in all but pathological cases, and permits
substantially higher performance than strong ordering. We call it processor ordering, or proces-
sor consistency.

A multiprocessor is said to be processor consistent if the result of any execution is the same as
if the operations of each individual processor appear in the sequential order specified by its
program.

Thus the order in which writes from two processors occur, as observed by themselves or a third
processor need not be identical, but writes issuing from any processor may not be observed in

21.. Lamport, “How to make a multiprocessor computer that correctly executes multiprocess programs”, IEEETC-
28,9, September 1979.

any order other than that in which they are issued.

It is possible to construct a situation in which processor ordering fails, but to date we have
been unable to identify a single application for such code. An example is the following:

Process 1:

if (b == 0) kill Process 2;

== () kill Process 1;

Initially, a and b are zero. If the memory system guarantees strong ordering, both processes
can never be killed. But with processor ordering it is possible.

A system with processor ordering may also implement fence operations in conjunction
with synchronization operations, though it is our belief that such operations are generally
unnecessary. We note that many processors that appear be strongly ordered in fact are only pro-
cessor ordered. For example, any processor that prefetches operands or instructions is not
strongly ordered. For processors that are capable of prefetching operands, the compiler may
actually introduce incorrect behavior by scheduling the code if a program depends on something
more than weak ordering. This is very difficult to detect for any program that requires strong
ordering (not just processor ordering). The Digital VAX 8800, in particular, guarantees proces-
sor consistency, and includes warnings that strong ordering is not guaranteed[FuKH87].

Choosing and Guaranteeing the Appropriate Level of Consistency

In a system where a single ordering of write operations is universally observed, processor
consistency is guaranteed. This is true for any system where there is a single path connecting
any two processors (e.g., a bus), if write notification signals (including cache invalidations) are
propagated in order, i.e., writes may never pass other writes (they may pass read requests).
However, if there is more than a single path connecting two processors (e.g., parallel buses),
even if the path for a given memory location is unique, processor consistency is not easily
guaranteed. A straightforward way to guarantee processor consistency is to limit the number of
outstanding writes to one, thereby guaranteeing that all write operations emanating from the pro-

cessor will be observed in program order. This limit implies some kind of completion signal
for every write operation. Such a mechanism is also required for a system supporting only weak
ordering for determining when the fence operation may unblock the processor.

Given the requirement of an acknowledgement for every write issuing from any processor,
we now have the framework for defining the levels of consistency in a uniform way. Each pro-
cessor keeps a count of the number of write operations that have been initiated but not yet

3This method is actually slightly stronger than processor consistency. Notice, for example, that a single write before
the if statements for both processors in the above example will now guarantee correct behavior. With processor
consistency, this would only be true if both processors wrote to the same location.

acknowledged. Then weak ordering can be guaranteed by implementing a fence operation,
which blocks the processor from reading or writing anything until the count is zero. Processor
ordering can be guaranteed by blocking the processor from writing whenever the count is non-
zero. Strong ordering can be guaranteed by blocking the processor from reading or writing
whenever the count is non-zero.

Such policies could be changed under processor control, allowing the programmer to
choose the appropriate level of consistency. This approach allows a nice separation of mechan-
ism (the counter) from policy (the event ordering).

Weak Processor Strong
Read oo oo 0
Write oo | 0
Fence 0 1 (V)]

Count for which, if exceeded, processor must be blocked.

References
[BrIMWS85] W.C. Brantley, K.P. McAuliffe, and J. Weiss, “RP3 Processor-Memory Element,”

[Brya89]
[DuSB88]

[FuKH87]

[Jord78]

[Pete81]

1985 International Conference on Parallel Processing, (August 1985), pp. 782-
789.

Ray Bryant, Private Communication, January 1989.

M. Dubois, C. Scheurich, and F. A. Briggs, “Memory access buffering in multipro-
cessor,” Proceedings of the 13th International Symposium on Computer Archtiec-
ture, June 1986, pp. 434-442.

J. Fu, J.B. Keller, and K.J. Haduch, “Aspects of the VAX 8800 C box design,”
Digital Technical Journal, No. 4, (February 1987), pp. 41-51.

H. F. Jordan, “A special purpose architecture for finite element analysis,” Proceed-
ings of the 1978 International Conferecne on Parallel Processing, pp. 263-266,
1978.

G. L. Peterson, “Myths about the mutual exclusion problem,” Information Process-
ing Letters, Vol. 12, No. 3, (June 1981), pp. 115-116.

