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Abstract. Current query optimization techniques are inadequate to support some of the emerging
database applications. In this paper, we outline a database query optimization problem and describe the
adaptation of a genetic algorithm to the problem. We present a method for encoding arbitrary binary trees
as chromosomes and describe several crossover operators for such chromosomes. Preliminary computational
comparisons with the current best-known method for query optimization indicate this to be a promising
approach. In particular, the output quality and the time needed to produce such solutions is comparable to
and in general better than the current method.

1 Introduction

Genetic algorithms [Hol75, Gol89] are becoming a widely used and accepted method for very
difficult optimization problems. In this paper, we describe the implementation of a genetic
algorithm (GA) for a problem in database query optimization. In order to give a careful
formulation of our GA, we first give a broad outline of this particular application.

The key to the success of a Database Management System (DBMS), especially of one
based on the relational model [Cod70], is the effectiveness of the query optimization module
of the system. The input to this module is some internal representation of a query ¢ given
to the DBMS by the user. Its purpose is to select the most efficient strategy (algorithm) to
access the relevant data and answer the query. Let S be the set of all strategies appropriate
to answer a query q. Each member s of S has an associated cost ¢(s) (measured in terms of
CPU and/or I/O time). The goal of any optimization algorithm is to find a member s of S
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that satisfies

c(s0) = I;élgl c(s).

Query optimization has been an active area of research ever since the beginning of the
development of relational DBMSs. Good surveys on query optimization and other related
issues can be found elsewhere [JK84, KRB86]. Specifically, in the relational model, data is
organized in relations, i.e., collections of similar pieces of information called tuples. Relations
are the data units that are referenced by queries and processed internally. A strategy to
answer a query ¢ is a sequence of relational algebra operators applied to the relations in the
database that eventually produces the answer to ¢. The cost of a strategy is the sum of the
costs of processing each individual operator. Among these operators, the most difficult one
to process and optimize is the join, denoted by X. It essentially takes as input two relations,
combines their tuples one-by-one based on certain criteria, and produces a new relation
as output. Join is associative and commutative, so the number of alternative strategies to
answer a query grows exponentially with the number of joins in it. Moreover, a DBMS usually
supports a variety of join methods (algorithms) for processing individual joins and a variety
of indices (data structures) for accessing individual relations, which increase the options even
further. Thus, all query optimization algorithms primarily deal with join queries. These are
the focus of this paper as well.

In current applications, each query usually involves a small number of relations, e.g.,
less than 10, so the size of the strategy space is relatively small. Most commercial database
systems use variations of the same query optimization algorithm, which performs an exhaus-
tive search over the space of alternative strategies, and whenever possible, uses heuristics to
reduce the size of that space. This algorithm was first proposed for the System-R prototype
DBMS [S*79], so we refer to it as the System—-R algorithm.

Current query optimization techniques are inadequate to support the needs of some of the
newest database application domains, such as artificial intelligence (e.g., expert and deduc-
tive DBMSs), CAD/CAM (e.g., engineering DBMSs), and other disciplines (e.g., scientific
DBMSs). Simply put, queries are much more complex both in the number of operands and in
the diversity and complexity of operators in the query. This greatly exacerbates the difficulty
of exploring the space of strategies and demands that new techniques be developed.

One of the proposed solutions is to use randomized algorithms. Simulated Annealing,
Iterative Improvement, and Two-Phase Optimization (a combination of the first two) have
already been tried on query optimization with some success [IW87, SG88, IK90], giving
ample reason to believe that a GA will perform well. Many of the operators used in these
studies can be adapted for use in a GA and incorporated into a standard GA code. An
advantage of our version of the GA [AF90], is that it is designed for a parallel architecture
and significant computational savings over the other randomized methods can be obtained
by a parallel implementation.

This paper is organized as follows. Section 2 defines two strategy spaces that are of inter-
est to query optimization, which were used in our experiments. It also contains a description
of the System-R algorithm, which is used as a basis for comparison of our results. Section 3



Figure 1: Query Graph

describes the specific genetic algorithm that we developed, including the representation that
we used for the chromosomes for the two strategy spaces and the adopted crossover opera-
tors. Section 4 contains the results of our experiments. Finally, Section 5 gives a summary
and provides some direction for future work.

2 Query Optimization Specifics

2.1 Strategy Spaces

Most query optimizers do not search the complete strategy space S, but a subset of it,
which is expected to contain the optimum strategy or at least one with similar cost. To
understand the various options we need some definitions related to databases. In a slight
abuse of notation, consider the following query:

(A X C)and (B W C)and (C W D)and (D M E)and (D M F) (1)

Each join is associated with a constraint (omitted for clarity of presentation) that specifies
precisely which tuples of the joined relations are to appear in the result. Query (1) can be
represented by a query graph [Ul182], which has the query relations as nodes and the joins
between relations as undirected edges, as shown in Figure 1. Throughout, we use capital
letters to denote relations and numbers to represent joins. In this paper, we study tree
queries, i.e., queries whose query graph is a tree. The answer to a given query is constructed
by combining the tuples of all the relations in a query based on the constraints imposed by
the specified joins. This is done in a step-wise fashion, each step involving a join between a
pair of relations whose tuples are combined. These can be relations originally stored in the
database or results of operations from previous steps (called intermediate relations). As a
very strong and effective heuristic, database systems never combine relations that are not
connected with a join in the original query. This is because such an operation produces the
cartesian product of the tuples in the two relations. Not only is this an expensive operation,
but its result is also very large, thus increasing the cost of subsequent operations. Most
query optimizers confine themselves into searching the subspace of S of strategies with no
cartesian products. This heuristic is adopted in the work presented in this paper as well.
Given the above, each strategy to answer a query can be represented as a join processing
tree. This is a tree whose leaves are database relations, internal nodes are join operators,
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Figure 2: (a) Left-deep Tree; (b) Bushy Tree

and edges indicate the flow of data from bottom-up. In addition, the chosen index for each
database relation and the chosen join method for each join is specified. If all internal nodes
of such a tree have at least one leaf as a child, then the tree is called linear. Otherwise, it
is called bushy. Most join methods distinguish the two join operands, one being the outer
(left) relation and the other being the inner (right) relation. An outer linear join processing
tree (left-deep tree) is a linear join processing tree whose inner relations of all joins are base
relations. In this study, we deal with two strategy spaces: one that includes only left-deep
trees, which is denoted by £, and one that includes both linear and bushy ones, which is
denoted by A. Examples of a left-deep tree and a bushy tree for query (1) are shown in
Figure 2 (avoiding the details of the join constraints and the join methods). The interest in £
stems from the fact that many DBMSs are using it as their strategy space, and is the one on
which the System-R algorithm can be applied. We experiment with 4 as well, because quite
often the optimum strategy is not in £. We present results for applying a genetic algorithm
on both spaces and compare them with the results of applying the System-R algorithm on

L.

2.2 The System—R Algorithm

The System-R algorithm is based on dynamic programming. Specifically, the complete
space L is constructed, occasionally pruning parts of it that are identified as suboptimal.
The space is constructed by iteration on the number of relations joined so far. That is, at the
k-th iteration, the best strategy to join k relations from the query is found, for all such sets of
k relations. In the next iteration, strategies of k + 1 relations are constructed, by combining
each strategy from the previous collection with the appropriate remaining relations. For each
set of k+ 1 relations, multiple strategies are usually constructed, of which only the one with
the least cost is kept, since it can be shown that all the rest cannot be part of the optimum
final strategy. This process needs as many iterations as there are relations in the query to
complete. The main disadvantage of the algorithm is its memory requirement, which grows
exponentially with the number of joins in the query. This makes the algorithm inapplicable
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to queries with more than 10 or 15 relations.

The above informal description of the algorithm is slightly simplified. In the interest of
space, we have not discussed various complications that arise from side-effects that the use
of specific types of indices can have on the desirability of a strategy. However, the version
of the algorithm that was used in our experiments did address all these complications as
well. The interested reader can find further details in the original paper on the System-R
algorithm [S*79].

3 Genetic algorithm

In this section, we describe the implementation of a genetic algorithm to solve the problem
outlined above. For completeness, we briefly review our terminology, details of which can
be found in [AF90]. Our GA works with a population of chromosomes, each of which can
be decoded into a solution of the problem. For each chromosome ¢ in the population, a
measure of its quality is calculated, called its fitness, f(¢). Chromosomes are selected from
the population to become parents (based on fitness) after which reproduction (which for this
implementation consists of crossover and mutation) occurs between pairs of chromosomes
to produce offspring. The newly created population becomes the next generation and the
process is repeated. The model we use has a fixed population size N.

Our GA [AF90] uses a neighborhood scheme in which the fitness information is only
transmitted within a local neighborhood, see for example [M&9]. A model algorithm for a
scheme in which fitness information is only compared locally is as follows.

Local Neighborhood Algorithm:

repeat
for each chromosome 1 do

evaluate (i)
broadcast {(i) in the neighborhood of i
receive f(j) for all chromosomes j in the neighborhood
select chromosome k to mate from the neighborhood of i based on fitness
reproduce using chromosomes i and k
replace chromosome i with one of the offspring

until population variance is small

In the experiments that we report below we have used a neighborhood structure we call
ring6, which is defined by stating that chromosomes i and j are considered neighbors if

min(i — j|,|i + N —j|,[i = N —j]) <3

This can be viewed as each chromosome residing on a ring with neighbors that are chromo-
somes no further than three links away. In the problem we are considering, the aim is to
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minimize the cost of the strategy. To generate a fitness distribution in a neighborhood, we
take the negative of this value (to convert to maximization) and use a linear scaling of these
values in each neighborhood so that the maximum fitness is some proportion (user supplied)
of the average fitness. Details of this scaling routine are found in [AF]. Since each chromo-
some 7 only selects one mating partner, selection is carried out by choosing chromosome k&
from the neighborhood with probability

il 32 fi

J€nhd(i)

Reproduction produces two offspring. The current chromosome is replaced with its best
offspring provided this offspring is better than the worst chromosome in the neighborhood
(see [M89)).

We now specialize to the particular problem of query optimization. We describe two ways
of encoding this problem which attempt to incorporate as much problem specific information
as possible (see [Gre87]), and show how mutation, initial population choice and crossover
are carried out. We break our discussion into three parts, the first dealing with left-deep
strategies, the second with bushy strategies, and the third dealing with crossover operators.

3.1 Left—deep strategies

Each chromosome represents a left-deep strategy. A natural encoding of this search space
is to let a gene consist of a relation and a join method. We associate the join method with
the inner (right) relation of each join. A chromosome is then an ordered list of these genes,
for example,

JA JC JB JD JF JE

represents the left—deep strategy in Figure 2(a), where J represents some join method.

To recreate the join processing tree, join the first and second relations using the method
associated with the second relation. Then join the resulting intermediate relation with the
next relation according to the specified method. Repeat until no relations remain. At each
step verify that an edge exists in the query graph (Figure 1) between the current relation
and one of the relations that occurred previously in the chromosome. If no such edge exists,
then the query strategy contains a cartesian product, and the chromosome is penalized with
an infinite cost. Note that the join method associated with the first relation is ignored.

Using this encoding, the problem is similar to a constrained traveling salesman problem
(TSP) with a choice of methods of transport between the cities. However, the query opti-
mization function is much more expensive to evaluate than typical TSP functions, since each
join, or equivalently the cost of traveling directly between cities, can be dependent on the
route previously taken and/or the future cities to be visited. As an indication of the above
complexity, we want to emphasize that the cost of a join between two relations is a function
of the sizes of the relations. That size depends directly on the precise set of joins that have
occurred previously. It also depends on the joins that remain to be processed later, because
much of the data that is necessary for their execution is contained in those relations.
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Mutation is of two types. The first type changes the join method randomly, and the
second swaps the order of two adjacent genes. A left—deep strategy generator ensures that
the initial population contains no cartesian products. This is achieved by cycling through a
randomly generated permutation of the relations, only adding a relation to our chromosome
if this can be done without introducing a cartesian product. The join methods are generated
randomly.

3.2 Bushy strategies

Quite often the best strategy for a query is in £. In order to look at A, we encode a bushy
tree into a chromosome by considering each join as a gene, so that k/ represents join k
with some join method J and its constituent relations (found on the query graph) ordered
by o (for instance (a)lphabetically or (r)everse-alphabetically). The chromosome is then an
ordered list of these genes

1757 2] 37 4]
Note that this list represents the strategy given in Figure 2(b).

The decoding of this list into a solution is more costly than the left-deep decoding but
has the ability to represent many more strategies. The decoding process grows the bushy
tree from the bottom up. It maintains a list of intermediate relations waiting to be joined.
Scanning from left to right, it finds the constituent relations in each join(gene) by examining
the query graph. The order information in the gene indicates which relation is the outer
(left) and inner (right) relation. If the right relation has been used in the formation of
intermediate relation in the list, the intermediate relation is substituted as the right relation
and the intermediate relation is removed from the list. The same process is done for the left
relation. The left and right relations are joined according to the method in the gene, and
the resulting relation is added to the list. After all the genes are processed, one intermediate
relation remains in the list. The corresponding query strategy is guaranteed not to contain
a cartesian product. Thus the decoding of the chromosomes guarantees that the constraints
of the problem can never be violated. This coding has the additional advantage that it may
now be possible to beat the System-R solution. However, the search space has been greatly
increased giving the GA a more difficult task.

Mutation is carried out in two ways. The first way is to randomly change the join
method or the order information. The second way is to perform reordering of genes on the
chromosome by transposing a gene with its neighbor. Together, these guarantee that the
search space is connected. The initial population is generated randomly.

3.3 Crossover

In order to complete the discussion of our method we describe the two crossover operators
that we investigated. In each of the encodings above the chromosome is an ordered list of
genes. In the left-deep case the genes can be identified by their relation letter and in the



bushy case by their join number. We describe the crossover operators solely in terms of these
genes.

The first method, modified two swap (M2S) modifies the local improvement algorithm
given in [LK73] to incorporate information from both parents and can be described as follows.
Given two parent chromosomes, X and ), randomly choose two genes in X and replace them
by the corresponding genes from Y, retaining the order from Y, to create one offspring. For
example, in the bushy case, suppose the parent chromosomes X and Y are given by

X =155 27 3 4, Y =375, 1747 27

where m and n represent particular join methods and and we randomly choose genes labeled
1 and 3. The resulting chromosome is

R

We interchange the roles of X and Y to create another offspring. The use of M2S was partly
motivated by the Swap transformation that has been used for database query optimization
in the context of other randomized algorithms [SG88, IK90]. The two transformations are
quite similar, except that, as a crossover, the transformation takes into account two strategies,
whereas in its previous use it simply operates on one.

The second method, which we refer to as CHUNK, is adapted from [CS89, M&9]. Here,
we generate a random chunk of the chromosome as follows. Suppose the number of genes
in the chromosome is I. The start of the chunk (of genes) is a uniformly generated random
integer in [0, /2] and the length of the chunk is uniformly generated from [I/4,1/2]. Suppose
we randomly generate the chunk [3,4], then one resulting chromosome copies the third and
fourth genes of A into the same position in the offspring, then deletes the corresponding genes
of Y, using the remainder of )’s genes to fill up the remaining positions of the offspring. In
the example above, the resulting chromosome is

5T 1™ M 3™ 4

Again, another chromosome is created by interchanging the roles of X and Y.

4 Performance results

In this section, we report on an experimental evaluation of the performance and behavior
of the above genetic algorithm on query optimization compared to the System-R algorithm.
First, we describe the testbed that we used for our experiments, and then we discuss the
obtained results.

4.1 Testbed

For our experiments we assumed a DBMS that supports the nested—loops and merge—scan
join methods [S*79]. Tree queries were generated randomly whose size ranged from 5 to 15
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Figure 3: Scaled Cost of Strategy at Convergence: (a) average and (b) best of 5 runs

joins. The limit on the query size was due to the inability of the System-R algorithm to run
with larger queries, primarily because of its huge memory requirements. Moreover, not all
generated 15-join queries were runnable by the System-R algorithm, so a large number of
them were generated until we could find among them a large subset of runnable ones for our
results to be meaningful. Thus, for large queries, the genetic algorithm is clearly superior to
the traditional algorithm.

In the interest of space, we do not present the precise formulas that were used in this
study. They capture the I/O cost of the various join methods and indices used and can be
found in any textbook on databases. We also avoid presenting any details on the assumed
physical design of the database. The specifics are exactly as in previous studies [IK90].

We implemented all algorithms in C, and tested them on a dedicated DecStation 3100
workstation. All experiments were conducted with a population size of N = 64. Ten different
queries were tested for each size up to 15 joins. For each query, each algorithm was run five
times.

4.2 Output quality

The cost of the average output strategy produced by the algorithms as a function of the
query size is shown in Figure 3(a). The x—axis is the number of joins in the query. The
y—axis represents scaled cost, i.e., the ratio of the output strategy cost over the cost found
by the System-R algorithm. For each size, the average over all queries of that size, of the
average scaled cost over all five runs of each query is shown.

The results are rather interesting. We observe that on the average, when GA is applied
to £, it fails to find the optimum strategy, but is clearly within a small range (20%) of



optimality. For small queries (5 joins), both crossovers always find the optimum. As the
query size grows, however, the algorithm becomes less stable and the quality of its output
deteriorates, primarily due to the dramatic increase in the size of the strategy space. A
noteworthy observation is that when GA is applied to £ for 15-join queries the results
obtained are better than for 10-join queries. This is due to the specific 15-join queries used
in our experiments. As we mentioned above, we worked with queries on which the System-R
algorithm was runnable, i.e., queries whose corresponding £ space was relatively small. This
bias was helpful to GA on L as well, which thus had a relatively better performance with
15-join queries than with 10-join queries.

When GA is applied to A4 the results improve. On the average, for all three sizes, the
algorithm found a better strategy than the best left-deep tree, with the gains ranging up to
9%. Interestingly, the relative performance of the GA algorithm between 10-join and 15-join
queries is exactly the opposite of what was observed in £. In this case, the degradation in
performance is primarily due to the significant increase in the size of the A strategy space
for large queries. The bias towards queries that are easy for System-R has also an effect but
not as dominant as in £. A small set of experiments with an increased population size has
given very promising results for improving the output quality in large queries as well.

Another interesting comparison is that between the two crossovers. When GA is applied
in £, M2S is the preferred crossover, with CHUNK having much worse performance. This is
due to the fact that, when the relations are the genes of the chromosome, applying CHUNK
produces many offspring with cartesian products. Therefore, in that case, the algorithm
spends much time in useless matings, thus failing to converge to a good strategy. On the
other hand, M2S produces much fewer strategies with cartesian products and is the overall
winner.

To overcome some of the inherent problems of randomized algorithms, it is occasionally
proposed that such algorithms are run multiple times on a given instance problem, and
the best solution among those found be chosen. With that in mind, we also compare the
best output found among the five runs of each version of the GA algorithm for each query.
We show the average of that over all queries of a given size in Figure 3(b). We now see
that in £, M2S is perfect, always finding the optimum strategy. CHUNK is considerably
improved as well, but is still has inferior performance for the reasons explained above. Similar
improvements are seen in the A space as well. Especially in the large joins, both crossovers
find very good strategies. Moreover, there is no evidence for any significant differences
between 10-join and 15-join queries as was for the average case. All these results indicate
that multiple runs of the GA algorithm may be a plausible way to avoid some of its potential
instabilities and produce high quality results.

4.3 Time

The average time results are presented in Figure 4 where the x—axis represents the number of
joins in the query, and the y—axis represents the processing time in seconds. Briefly, System-
R performs faster for queries of size 5 and 10, but the GA in £ is much faster for queries of

10



400 - P + GAin L with CHUNK

[ —— © GAin L withM2S /
/
Gy System-R in L /"
s GA IR A with M25 / Ia
5
300 4 JR—— a GAin A with CHUNK J;’J /
T
i
m
e
(2004
8
e
¢
)
1004 X
€ R et $
0 g:: ______ ¥ 1
0 5 10 15
Number of Joins

Figure 4: Average Processing Time

size 15. The increase in times for GA in £ is almost linear. There is a large increase in the
time for GA in A from problems of size 10 to 15. However, we believe that this increase is not.
exponential in the number of joins, whereas the increase in time for System-R is exponential.
Also recall that large time differences can be expected since £ is a much smaller space than
A.

Furthermore, this version of the GA is designed to be ported to a parallel machine. In
a parallel implementation, each chromosome in the population resides on a processor and
communication is carried out by message passing. The total communication overhead is thus
minimal. Based on results on other optimization problems [AF] where the evaluation of the
fitness function dominates the processing time, as is the case with query optimization, we
expect linear speedups in execution time. Since only limited parallelism can be incorporated
into System-R, the time to execute the parallel GA should become much smaller than that
of System-R.

5 Conclusions

We have presented a genetic algorithm for database query optimization. In doing so we have
introduced a novel encoding/decoding of chromosomes that represent binary trees together
with associated new crossover operators. Although we did not exploit it in this paper, an
important characteristic of the algorithm is its efficient parallelization. Our computational
experiments with sequential implementations of the algorithm have shown the method to
be a viable alternative to the commercially established algorithm for the problem. In fact,
for large queries, one implementation of the GA found comparable solutions in much better
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time, whereas a different implementation found better quality solutions at the expense of
additional time. Moreover, the GA was capable of optimizing large size problems on which
the established algorithm fails.

In the future, we plan to adapt our parallel implementation of the GA to query opti-
mization and verify our claims on its superiority over the System-R. algorithm. In addition,
we plan to investigate its applicability to query optimization in more complex database
environments, e.g., parallel database machines.
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