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Abstract

In order to build very-large-scale multiprocessors while retaining high processor efficiencies, a scal-
able design must be used. While intuitively clear, there is no consensus on the exact meaning of scalabil-
ity. We provide a useful, working definition of scalability that lends insight into the suitability of a
design for implementation with a very large number of processors. We then propose a topology (the k-
ary n-cube) and a cache coherence mechanism (pruning cache directories) for use in large scale systems.
Using scalability arguments, we demonstrate that a system based on the k-ary n-cube topology and prun-
ing caches, will scale properly to very large numbers of processors.
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1. INTRODUCTION

Very-large-scale multiprocessors offer the possibility of enormous computing power. However, the
straight forward extension of existing system configurations to large numbers of processors can lead to
significant per-processor performance degradation. Intuitively, these systems need to be scalable, in
order to be efficient with large numbers of processors. Scalability, however, is not a well defined pro-
perty. Though the term is widely used, there is no consensus as to its meaning. We claim that while a
precise (but useful) definition of scalable may not be possible, a useful working definition can be given.
We find that "scalable” is generally used to mean "suitable for very large systems". This requires that the

system avoid bottlenecks that preclude implementations with large numbers of processors.

Scalability is not an end goal, in itself. For a given implementation, cost and performance are the
primary concerns. However, as system size increases, a scalable design will eventually provide higher
performance than a non-scalable design. For example, a ring interconnect may provide higher perfor-
mance than a 3-dimensional mesh for small system sizes, due to smaller switching delays. However, the
traffic over a link in the ring (assuming uniform communication) is proportional to the system size, while
the traffic over a link in the mesh is proportional to the cube root of the system size. A 3-dimensional
mesh, therefore, will perform better than a ring for sufficiently large systems. Even a 3-dimensional mesh
will saturate eventually, however. We are interested in designs that can be efficiently implemented with
thousands, or tens of thousands, of processors. How a design scales can lend valuable intuition as to its

behavior for such large system sizes.

This paper focuses on shared-memory multiprocessors with hardware-maintained cache coherence.
It is widely agreed that these machines present a convenient abstraction to the programmer, and, while
not the only choice, they are at least an important class of multiprocessors. The bottlenecks in such sys-
tems can be due to software, hardware (communication topology) or the communication protocol (includ-
ing the cache coherence mechanism). As a minimum, the software must have a parallel component that
can be grown while keeping the serial component fixed [Gust88]. However, the three components cannot
always be considered in isolation, as their interaction can significantly affect scalability. This will be

addressed more fully in later sections of the paper.

In this paper, we suggest a topology and coherence mechanism that we believe is appropriate for
very large systems. The notion of scalability is developed in order to gain insight into how this and other
systems will behave as system sizes increase. In section 2, we present a working definition of scalability,
complete with several caveats concerning its meaning and application. In section 3, we examine the sca-

lability of multiprocessor topologies, and choose a topology (the k-ary n-cube) for use as a framework for



discussing cache coherence mechanisms. In section 4, we examine the scalability of various cache coher-
ence mechanisms. We propose a novel mechanism (pruning caches) for maintaining hierarchically-
distributed directories that has excellent scaling properties. Finally, concluding remarks are given in sec-

tion 5.

2. SCALABILITY

As was mentioned in the introduction, there is no consensus on a precise definition for scalability.
Amdahl [Amda67] originally pointed out that the efficiency of a parallel computer will decrease as more
processors are used to solve a fixed-size problem. This is due to the (reasonable) assumption of a fixed
serial portion of the algorithm. As the number of processors executing the parallel portion of the algo-
rithm increases, the relative time spent doing the serial computation increases. This eventually dooms
attempts to speed up the execution of a program by using more processors. Gustafson [Gust88] suggested
that instead of increasing the number of processors used to solve a fixed-size problem, the execution time
should be held constant and the parallel portion of the problem should be increased with the number of
processors. We agree that this is a necessary condition to maintain high processor efficiency as system

size increases.

There have been several suggestions as to what scalability means. Patton [Patt85] stated that a scal-
able design "can be adjusted up or down in size without loss of functionality to scale effects". Goodman,
et al [Good89], define a scalable algorithm as one whose serial portion does not grow with problem size
and whose parallel portion contains parallelism at least proportional to the algorithm’s complexity. They
define a scalable system according to the speed at which it executes a scalable algorithm. Johnson
[John90] presents a rigorous set of definitions for scalable hardware which is independent of the work-
load. Using asymptotic behavior, he defines 11 classes of scalability, including uniformly, architecturally
and implementationally scalable. Hill [Hill90], on the other hand, questions whether scalability can be
usefully defined at all. He challenges the technical community to either define the term rigorously, or
stop using it altogether. Still others [Leno90, Cher89, Hage89] use the term without accompanying

definition.

We believe that a rigorous definition of scalability may be of little use, but that we can arrive at a
useful working definition. Several qualifications need to be offered at the start, however. First, scalabil-
ity is not a simple binary property. Certain designs may be more or less scalable than others, however
that does not preclude some designs from being clearly not scalable. Second, scalability, in and of itself,

says nothing about the cost or performance of a given, fixed-size system. It is useful primarily for




providing insight into the behavior of a system as the number of processors grows very large. Third, even
though we are interested in the performance for very large systems, asymptotic behavior of a system may
not be of any interest. The state of the art is pushing thousands of processors. The behavior of systems

with billions of processors is simply not relevant for the foreseeable future.

2.1. A Working Definition of Scalability

We define scalability in terms of three metrics: cost, latency, and bandwidth. Each of these can be

approximated as growing by some order of N, the number of processors in the system.

Cost: The cost of the system is measured in terms of the required hardware. A full crossbar inter-
connect, for instance, requires OV 2y switching elements. An Omega network requires O logN)
switching elements. A ring requires only O(N) switching elements. Another effect on the cost metric is
the size of memory needed to store directory information. If a directory scheme requires that every line
of memory be accompanied by a tag that is proportional to N in size, then the tag memory must grow as
O(N?) (we assume that the size of main memory grows linearly with N). Some COSts should be ignored,
as they are practically constant for all but truly asymptotic behavior. For instance, the number of bits
used to specify a processor grows as O(logN). But if a single word (32 bits) is used, this effect is not seen
until the number of processors exceeds 232 This sort of behavior can be ignored for scalability con-
siderations. For a system to be considered scalable at all, we require that the cost be less than O(N?). By
this measure, a full crossbar is not considered scalable. Beyond that, a system may scale better or worse
than another regarding cost. For example, a 2-dimensional mesh scales better in cost (O(V)) than an
Omega network (O(N 1logN)).

Latency: The latency metric is the average latency of a memory request. This is affected by the
topology of the system, and can also be affected by the communication protocol and the workload.
Ideally, we would like the average latency to remain O(1) as system size increases. Realistically, this is
not possible for more than incremental growth of the system. Several interconnection networks (such as
the Omega network) provide O(logN) latency upon first approximation. Eventually, however, wire
lengths grow, and latency must increase at least as OV 173y, due to propagation of signals in 3-
dimensional space. A three dimensional cube topology, which can be implemented with constant length

wires, provides latency of O(N'/?).

We argue, however, that asymptotically, the latency of any system must increase as at least
O(N'?). Consider an idealized sphere of processors with radius ». The sphere contains O(r?) processors.

The communication distance between any two processors is O(r). The bisection area of the sphere is



O(r?). The traffic across the bisection (assuming uniform communication) is proportional to the number
of processors, or O(r%). Thus the traffic density across the bisection increases as 7. This cannot be sup-
ported asymptotically. If the traffic density is kept constant, then the sphere may only be packed with
O(r?) processors. The communication latency is then O(V/2). As an example of this phenomenon, the

Tera Computer System populates a 3-dimensional mesh of size r3 with only r? processors [Alve90].

Considering this, the tightest absolute requirement that we can impose is that latency cannot grow
faster than O(N'!/2). Even for very large systems, however, we may be able to ignore the asymptotic
latency of a design, so certain topologies may scale better than others (O(N 3) versus O(N1/?), for
instance). Recall, also, that for a given size (even a very large one) a specific system may perform better

than another, even if the other has better scaling properties.

Bandwidth: The bandwidth metric is the maximum of the average traffic over each wire and
through each node resulting from every processor issuing a single memory request. The traffic can be
caused by the requests themselves, by associated data, or by extra traffic generated by the cache coher-
ence mechanism (to retrieve data from another processor or to invalidate lines after a write, for instance).
For limited scalability, a system may be able to handle O(N '/?) or O(N !/3) traffic, but eventually this will
saturate the available bandwidth. Thus, we require the traffic to be O(logN) or less in order for the system

to be considered scalable.

2.2. The Effect of Software on Scalability

The three scalability metrics are affected by a combination of hardware, software and the communi-
cation protocol. The default assumption about software is the uniform workload model. The processors
make a uniform distribution of requests to different memory modules. In addition, the percentage of
accesses that are writes to shared variables remains fixed as system size increases. This means that the
number of invalidations per request per processor remains roughly constant. If the scalability of a topol-

ogy is discussed without mention of the software, it is the uniform workload model that is being assumed.

Under a hot-spot workload, processors make a higher than average fraction of their requests to a
particular memory location or module. This will prevent a system from scaling unless the hardware or
communication protocol takes explicit steps to handle it. Concurrent read requests are expected to occur
frequently, such as after a barrier synchronization or after a widely read variable is invalidated. Con-

current write requests are not expected to occur often.

In contrast to the hot-spot workload, a conspirator workload can make a multiprocessor scalable

that otherwise would not be scalable. For example, if the workload has high geographic locality of




communication that matches the physical layout of the system, and the communication protocol allows
for localized communication, then the average message will traverse only a fraction of the distance across
the system, and an otherwise non-scalable system may scale. Another example of a conspirator workload
is one whose fraction of writes to shared variables decreases with system size. This makes the rate of
invalidations per request per processor decrease as system size grows larger. This sort of workload

occurs, for instance, when shared variables are read by all processors between successive writes.

3. A SCALABLE TOPOLOGY

Using our definition, it is easy to identify certain topologies as non-scalable. A ring will not scale
(for all but extreme conspirator workloads) because both the traffic across each link and the average com-
munication latency increase as OV). A single shared bus will not scale, because the traffic on the bus
increases as O(N). In addition, though it may not be immediately apparent, the latency of shared bus
accesses increases with N (apart from the queueing delay). This is because the physical length of the bus,
as well as its capacitance, increases with N. This suggests an important point: a ring of point-to-point
links can be used to simulate a bus. Both have the same scaling properties, but point-to-point links can be
clocked at a higher rate (independent of N), leading to higher performance. A broadcast operation is
simulated by passing a message completely around the circle. This does not provide global event order-

ing, however, so modifications are necessary for snooping protocols that depend on this.

One topology that has been widely studied [Wils87, Wins88, Verng9, Baer83] for large numbers of
processors is the bus hierarchy (see figure 1). This topology will not scale, however, for uniform work-
loads. Each time a line is written, if a copy exists in any of the other primary subtrees of the hierarchy, an
invalidate or other message will have to travel over the root bus. Thus the traffic over this bus is O(V),
and the system does not scale. For a conspirator workload, where the fraction of writes to shared vari-
ables decreases with N, the traffic over the root bus can remain O(1). A recent analysis of hierarchical
bus-based multiprocessors [Vem89] concluded that the systems scale well only if the average fraction of
processors that read a shared line between writes, fgy,» Temains large as system size increases. This can
only be accomplished with the conspirator workload mentioned above. If the fraction of writes to shared
variables, fys, remains constant, then the average number of processors that read a shared line between

1-fws

o I=fws . : .
writes is limited to . Thus, fry is limited to —Xl}_—’ which decreases with system size (the paper
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accidentally used a workload where both fws and fp; remained fixed as system size increased). Their
analysis showed that when fgy is small, the system is extremely inefficient for large numbers of proces-

sors (due to contention for the root bus).
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Figure 1: A Hierarchical Bus-based Multiprocessor

Another widely advocated topology is the k-ary n-cube. Rings, 2-dimensional toruses, 3-
dimensional toruses and hypercubes are all sub-classes of this topology. The k-ary n-cube has n dimen-
sions, with k processors in each dimension, for a total of N =k" processors. For example, a 2-
dimensional torus with 64 processors is a 8-ary 2-cube. While a torus implies point to point links, an &-
ary n-cube can also be implemented with buses (with k processors per bus and n buses per processor).
Figure 2 shows a 4-ary 3-cube, implemented with buses. The buses may either be actual buses or logical

buses implemented with rings of point-to-point links.
The k-ary n-cube is scalable, according to our definition, if it is grown in the proper way. The cost

of the system is O(Nn), where n =log,N. There are N processors and %ﬂ buses (Nn links). The average

distance between two processors is O(n) bus hops (O(nk) link hops). Thus, assuming uniform traffic, the
latency of a communication request is O(nk), and the traffic over a bus or link is O(k). The cost and
latency metrics do not preclude scaling, by our definition, regardless of how the system is grown. The
bandwidth requirement, however, can only be met by increasing the dimensionality (). Thus a fixed

dimension network (a 2-dimensional torus, for instance), is not scalable, due to increasing link traffic.
Dally [Dall90] concludes that for optimum performance, both & and n must be increased as system
size increases (in fact, he increases k primarily). His work assumes, however, that the network is being

implemented on a single VLSI chip, and is thus limited by wiring density. He constrains the bisection
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Figure 2: A 4-ary 3-cube Multiprocessor (N =64, k=4, n=3)

Each processor is connected to 7 buses, and each bus is connected to k processors (if implemented with point-to-
point links, each processor would have 2n links, one incoming and one outgoing in each dimension, and each "bus"
would be a ring of k processors). Each processor is accompanied by a portion of main memory and one or more
levels of cache. Memory is interleaved by cache lines amongst the memory modules. For any given memory
module, a tree of busses is formed as shown in 2(b). This tree is equivalent to the one shown in figure 1, given that
each parent node (those in the rightmost plane of figure 2(b)) is allowed to be one of its children. This allows com-
munication protocols based on a hierarchical topology to be implemented.

width of the network to be held constant for a given system size as the dimensionality of the network is
chosen. The constant bisection constraint causes the width of the links to be substantially reduced as the
dimensionality increases for a given system size. For a multiple-board-level multiprocessor, however, a
constant pinout per processor constraint may be more realistic. Agarwal [Agar90] studies &-ary n-cubes
with the constant pinout per processor constraint, and also models processing overhead in the switching
elements, which Dally’s work did not. He does not specifically address how a system should be grown,
but finds that higher dimensional systems should be chosen under the constant pinout per node constraint
than under the constant bisection constraint. He further finds that heavier traffic calls for higher dimen-
sionality. This agrees with our observation that the traffic over a link is O(k) and supports the claim that

the systems should be grown by increasing n.



4. A SCALABLE DIRECTORY FOR CACHE COHERENCE

The basic function of a cache coherence mechanism is to make sure that after a memory location is
modified, subsequent reads of that location return the new (modified) value. Unfortunately, in a multipro-
cessor system, it is difficult to specify the exact time of a write; because of nondeterministic delays to
access memory, requests to different locations and from different processors may complete in a different
order than that in which they were issued. In addition, as system sizes increase, so does the interval of
time between when an event occurs, and when that event can be observed in other parts of the system.
The cache coherence mechanism need only make the following two guarantees. First, writes to a given
memory location by a given processor, cannot be observed by any processor to occur out of program
order. Second, there must exist some global ordering of writes to a given memory location, such that no

processor observes any other order.

In addition to cache coherence, a multiprocessor may guarantee some level of sequential con-
sistency, which makes some guarantee about the global ordering of writes to different memory locations
[Lamp78, Dubo86, Adve90]. Providing sequential consistency can significantly impact the cache coher-
ence mechanism. In order to make any assertions concerning a global ordering of writes, the system must
be able to determine when all processors have seen the new value of a write (or at least can no longer see
the old value). This paper does not address the issue of sequential consistency other than by placing this

constraint upon the cache coherence mechanism.

We assume that coherence is maintained over cache lines, and that each line of memory has an asso-
ciated state (such as modified, shared or private) in each processor cache where it resides and possibly in
main memory as well. When a line is written, all shared copies must be either updated or invalidated.
The choice of whether a write update or write invalidate protocol should be used has been analyzed by
Eggers and Katz for single-shared-bus multis [Egge89]. They concluded that write invalidate protocols
were preferable for the workloads they analyzed. We further argue that write invalidate protocols become
more appropriate as system size increases. As systems grow beyond a single bus, the bandwidth used to
broadcast a modified block to all processors (or all processors that previously read the block) becomes
increasingly larger relative to the bandwidth used by a read request. Thus, in situations where write
updates must be broadcast (or where only a small fraction of processors that currently have a copy of the
line will by reading the new data) it is potentially far more economical to broadcast (or multicast) the
smaller invalidation message. For these reasons, we will assume the use of invalidates rather than write

updates.




4.1. Broadcast Invalidate

One simple coherence mechanism is to broadcast an invalidate to all processors whenever a shared
line is written. This is the approach used for single bus multiprocessors, where a broadcast requires only
a single bus transaction. We can immediately see, however, that this approach does not satisfy our notion
of uniform scalability. As the system size increases, each processor will receive invalidations at a rate
proportional to N. This will saturate the network or the processors at some point, regardless of topology,

and therefore this mechanism is not appropriate for very large systems.

Formally, if the fraction of requests that are writes to shared variables remains fixed (the uniform
workload assumption), then O(V) invalidations are generated on each request, each of which must be sent
to every processor. From a latency viewpoint, queueing of messages in the network implies that the aver-
age latency of a request will grow as O(N), clearly violating the requirement for scalability. From a
bandwidth viewpoint, since the number of input lines to any processor can grow by at most O(logN) (the
cost requirement for scalability), and the number of incoming invalidation messages per request is O(N),
the traffic per line per request grows as at least O(N /10gN), again, clearly violating the requirement for

scalability.

It should be noted that for a conspirator workload in which the fraction of writes to shared variables
decreases as O(1/N), a broadcast invalidate protocol can scale. In addition, for sufficiently small imple-

mentations, a broadcast invalidate protocol may be quite feasible and relatively simple to implement.

4.2. Global Directory

Another possible coherence mechanism is {0 keep track of all shared copies of a line in a global
directory. The directory can be distributed along with the memory of the system (as opposed to a "cen-
tralized" directory, which would create a bottleneck in the system). Censier and Feautrier [Cens78] pro-
posed keeping a bit vector of size N for each line, with the corresponding bit set for every processor that
has a copy of the line. When the line is invalidated, individual messages are sent to each processor whose
bit is set. This does not violate the bandwidth requirement for scalability, assuming that general read
traffic scales, because the number of invalidation messages is directly proportional to the number of origi-
nal read requests that caused the directory bits to be set. However, it clearly violates the cost require-
ment. The amount of memory storage needed to implement this directory is O(N 2y (we assume the size
of the memory is O(V)). In addition, the latency of such an invalidate grows linearly with the number of

shared copies, which precludes scalability for workloads with heavy read sharing.



Another way to maintain a global directory is to have a fixed number, i, of processor pointers in
each directory entry. Either the number of shared copies of a line must be limited to i, or when the
number exceeds i, this fact must be recorded and a broadcast invalidate must be issued when the line is
modified. Agarwal, et al [Agar88] suggested a label of Dir;B or Dir;NB to represent the versions of this
protocol which do, and do not, use broadcast, respectively. We restrict our attention to Dir;B, as Dir;NB
does not allow data to be globally shared.

In order to scale to very large systems, the number of processor pointers that are stored in each
directory entry cannot be significantly increased (our cost requirement for scalable systems allows it to
increase only as logN). Therefore, the bandwidth and latency requirements will only be met if the
number of shared copies of a line is well behaved for very large systems. This means that upon invalida-
tion, the number of shared copies of a line must be less than or equal to #, or it must be on the order of N.
If a fixed fraction of the invalidations require broadcasts when the number of shared lines is only slightly
larger than i, then the bandwidth of the system will not scale, as discussed in section 4.1. Certain work-
loads may display the correct behavior for large systems, but it is not clear whether programs will behave

correctly in general.

Weber and Gupta [Webe89] analyzed five parallel traces and recorded the distribution of the
number of shared copies that needed to be invalidated on a write, for 4, 8 and 16 processor systems .
They found that the number of shared lines that needed invalidation on a write was typically low, but that
the distribution did spread out as the system size increased. It is difficult to say what the distribution
would look like with 100, 1000, or 64K processors.

Agarwal, et al [Agar88], evaluated Dir {NB and DiryB as well as two snooping protocols (Write-
Through-With-Invalidate and Dragon) for three 4-way-parallel traces and found DirgB to be competitive
with the Dragon protocol. Unfortunately, their traces were of limited parallelism and the topology simu-
lated was a single shared bus (where there is little difference between a point-to-point message and a
broadcast), so it is difficult to draw conclusions from this work regarding the scalability of the directory

protocols.

4.3. Hierarchical Directories

In systems with a hierarchical topology (such as cubes and trees) and a multicast capability, the
directory can be partitioned hierarchically in order to fit the topology. As a framework for discussing
such systems, we will use a n-dimensional cube topology, as discussed in section 3. We will assume the

use of buses with k processors per bus, but, as was emphasized in section 3, the buses can easily be
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implemented as rings of point-to-point links. Recall that every address in our system has a home
memory, and, for each address, there exists a n-deep tree with branching factor , that is rooted at the

home memory and includes all processors (figure 2(b)).

At each level of the hierarchy, a directory entry consists of a pruning vector of length k. A bit in the
vector is set if the corresponding subtree beneath the vector may contain one or more copies of the line.
When a line is invalidated, the invalidate is placed on the root bus along with the top-level pruning vec-
tor, and it is propagated only to those subtrees that may contain a copy of the line. This process is
repeated at lower levels by looking up pruning vectors in sub-directories. A total of n—1 levels of sub-
directory accesses are needed (the lowest level is arguably not needed, as it only reduces traffic when a

copy resides in the parent of a leaf node, but not in any of its children).

There are several advantages to such an approach for very large systems. First, invalidation
bandwidth is reduced over a global (non-hierarchical) directory, because multiple invalidates share part or
all of their path through the network (recall, however, that the bandwidth of a global directory still
scaled). Second, invalidation latency is reduced by not serializing invalidation messages. Lastly, the
hierarchical organization allows the directory to be maintained while concurrent read requests are com-
bined in the network. With a global directory, each read request must be routed to the directory. This
will not scale for workloads with concurrent read contention. The cube topology, however, allows
requests to be combined on their way 1o memory. When a request reaches a node where there is currently
an outstanding read request for the same line, the request may be dropped, and the result obtained when
the first request completes. This is compatible with a hierarchical directory, as the second request would
have been from the same subtree as the first request, and thus would not have affected any directory

entries above the point at which combining took place.

The hierarchical directory, however, still does not scale in cost. It uses O(V) bits ([N '-1]—16%) dis-

tributed over several directory structures, for each directory entry. Thus, just as the global bit vector, this

scheme requires O(N 2) storage for the directories.

4.4. Multi Level Inclusion

A coherence mechanism that is similar to hierarchical directories in some ways is the multi level
inclusion (MLI) property {Lam79, Wils87, Baer88]. The MLI property requires that a cache in a hierar-
chy contain a superset of all lines residing beneath it it the hierarchy. When the line is invalidated, a
parent only propagates the invalidate to its children if it has a copy of the line. This prunes a broadcast

invalidate in much the same way as a hierarchical directory. In order to save space, the parent may be
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required only to have directory information about all lines beneath it in the subtree. This can be kept in
inclusion caches. An inclusion cache simply contains tags for each cache line residing within the
corresponding subtree. The logical inclusion bit for a line is considered to be set if there is an entry for

that line in the inclusion cache, and cleared if there is no entry.

The VMP-MC system[Cher89] enforces multi level inclusion within a VMP node, but uses direc-
tory entries similar to pruning vectors rather than inclusion bits. A pruning vector at a given node is sim-
ply the collection of its childrens’ inclusion bits for the same line. The directory entries in VMP-MC are
associated directly with memory and cache lines, so MLI is required for the actual data, as opposed to just

the tags.

The directory overhead required to enforce MLI does not grow as O(N 2), because inclusion infor-
mation for a line is not maintained in subtrees that do not contain the line. Rather, the required directory
space grows as O(NlogN). Each of the O(N) lines in the leaf caches requires inclusion information in at
most O(logN) parent caches. This overhead is further reduced if data in the leaf caches is shared.
Although the directory overhead for MLI scales, it can still be quite large. This will be addressed further

in section 4.5.4.

4.5. Pruning Caches - A New, Scalable Solution

We now propose a variation of hierarchical directories that is similar in flavor to MLI. We imple-
ment hierarchical directories as described in section 4.3, but limit their size and manage them as caches
(pruning caches) [Good89]. We no longer require a sub-directory to contain the pruning vector for a
given line when it is accessed on an invalidate. If it does contain the entry, then we proceed as with the
hierarchical directory. If it doesn’t contain the entry, then we must make the conservative assumption
that any subtree may contain a copy of the line (a pruning vector of all ones) and propagate the invalidate

to all subtrees.

4.5.1. Pruning cache performance

The performance of this mechanism depends upon the hit ratio, 4, of the pruning caches. When
h=1, the pruning caches act identically to a full hierarchical directory. When A =0, the top level pruning
vector acts as a coarse vector [Gupt90]. The invalidation traffic in this case is less than with a broadcast
scheme, but still does not scale. In order to demonstrate that a system with pruning caches will scale, we

must demonstrate that the bandwidth and cost requirements are both met.
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Recall that to provide sequential consistency, we must be able to know when an invalidate has been
seen by all processors. This requires returning acknowledgements from all processors that received the
invalidate. In a hierarchical system, acknowledgements from a broadcast invalidate can be combined at
each level such that each parent propagates a single acknowledgement up, after receiving the ack-
nowledgements from its children. Parents that propagate an invalidate down onto a leaf bus, may
immediately propagate an acknowledgement up. When each of these acknowledgements is received by
the next parent up, it will propagate an acknowledgement up to the next level. Except for the invalidate
on the root bus, there is a one-to-one correspondence between invalidates and acknowledgements. How-
ever, because some parents and children are the same node in a cube-based hierarchy, 1/k* of the ack-
nowledgements will not actually have to be placed on a bus. The number of buses in a broadcast tree is

n——
—%——11—, so the bus load for a full broadcast invalidate is

k"—1 k"1 k-1 k"=1
Bb’”d—{k—l]Jr{k-l -IH k } - {k—l

Given the hit rate, h, we can compute the expected number of bus operations needed using pruning caches

+K" -1 (1)

to invalidate m shared copies randomly distributed throughout the system. Label the buses as in figure
2(b). A subtree at level i contains the kf processors that come at or below the dimension i bus in the tree.
The probability that at least one copy exists in a given level i subtree is

_ bk"—k',m)

Pc(iim)=1
c(i,m) b (")

(2)

where b (x,y) is the binomial function. If we exclude the kit processors in the level i subtree whose path
to the root of the tree does not traverse the level i bus, then the probability that one of the m shared copies
resides in the level i subtree is equivalent to the probability that an invalidate packet must traverse the

level i bus on an invalidation, and is given by

bk ki +k " m)

P'c(im)y=1-~- 3
c(i,m) b ) €))
The expected load from an invalidate using pruning caches with a hit rate of & is
n . n-1 » ) k-1
Bpe(m) = k"™ Pinyar(im) + 3 k" Pinyai (ism) = )
i=1 i=1

where P;,,q(i,m) is the probability that an invalidate reaches a bus at level i, which is given by

13



n-2

Pimya(lm) = P'c(lm) + 3, [[1"'c(i+1,m)—l”c(i,m)}(1—h)f‘"’*2 + [Pc(i,m)—P'C(j,m)](1-h)f~i+1}

Jj=i

The first term of P;,,(i,m) is the probability that an invalidate was supposed to traverse the bus at level i.
The remaining terms account for the probability that an invalidate reaches the bus due to pruning cache
misses. The first term inside the summation is due to invalidates that were supposed to traverse the level
j+1 bus, but were not supposed to reach the level j subtree. The second term inside the summation is due
to invalidates that were supposed to reach the the level j subtree, but not traverse the level j bus. The last
term of P4 (i,m) is equal to the second term inside the summation for a value of j=n~-1. For this value

of j, the first term inside the summation does not exist because the top-level directory never misses.

If k=1, then all traffic due to pruning cache misses goes away, and equation (4) gives us the
expected bus load used by a full hierarchical directory. Figure 3 plots the expected bus load of an
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o] i i . 1 (o] ] T
L e R 74 ; | |
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Figure 3: Pruning Cache Performance
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invalidate versus m, for two example systems. The bus load is shown for a full broadcast (equation 1) and
for pruning cache systems with various values of h (equation 4). Since pruning vectors for the root bus

are kept in directories, a significant reduction in traffic is seen even when the pruning caches never hit.

The assumption of a random distribution gives somewhat conservative results, as shown in figure 4.
This figure plots the best-case, random, and worst-case bus load caused by a completely pruned invalidate
versus the number of shared copies, m, in the system, for a 4096 processor system with k=8 and n=4. In

the best-case distribution, shared copies are grouped along leaf buses as much as possible. This gives a

bus load of
n m__ki—-l n-1 m m
B = - + - -

In the worst-case distribution, shared copies are spread out among leaf buses as much as possible. This

gives a bus load of

n . n-1 . .
Bworsl case = Zmin (kn—l,m) + Zmin (kn—‘—k”"_l ,m) (7)
i=1 i=1
The random distribution assumed in figure 3 gives bus load estimates very close to the worse case, indi-
cating that there is possibly much to gain by organizing sharing along leaf buses when possible. As an
added incentive, sharing along leaf buses would increase the efficiency of pruning caches and read com-

bining in the network.

To meet the bandwidth requirement for scalability, the invalidation traffic over each bus caused by
each processor making one request must be O(1). This implies that the traffic caused from a single invali-
date, divided by the dimensionality of the system and the number of shared copies being invalidated,
must also be O(1). For a system that uses a single message for each shared copy, an invalidation requires

m messages, each of which requires O(n) bus operations, so the bandwidth requirement is met.

Figure 5 shows the normalized invalidation traffic for broadcast and pruning cache-based systems,
as system size increases. Part (a) shows the scaling behavior with a fixed, small number of shared copies.
Part (b) shows the scaling behavior when the number of shared copies grows as the root of the system
size. For the global directory scheme, the normalized traffic would be two, for all system sizes, regard-
less of m. We see that with a pruning cache hit rate of 100%, the normalized traffic appears almost con-
stant as system size increases (this traffic is constant asymptotically). With even a modest hit rate of
75%, invalidation traffic increases very little with system size, With m fixed at 8, traffic increases by a

factor of 10 as system size increases by a factor of 32K. By contrast, broadcast invalidation traffic
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Figure 4: Distribution’s Effect on the Bandwidth of Broadcasts (N =64K,k=16,n=4,h=1)

increases by a factor of 10000. This indicates that, given high enough hit rates, pruning cache-based sys-

tems will scale to very large numbers of processors.

4.5.2. Pruning cache space overhead

The question that remains to be addressed is whether the size of pruning caches can be kept to
O(logN), while maintaining the same level of performance. This can be answered with the following
argument, which shows that the size of a pruning cache must grow as O(n). The only entries that need be
present in the pruning caches are those for actively shared lines. Entries for private, read-only and inac-
tive shared lines may drop out of the pruning caches without harm (in fact, entries for private lines, if they
can be identified, do not have to be placed in pruning caches at all). Assume that each processor cache
contains a size-S set of actively shared data. Because memory is interleaved amongst the memory

modules, we can assume that the home memory modules of the shared data are roughly spread out

throughout the system. A given pruning cache, therefore, must contain approximately :l% entries for each
of the & caches along its level 1 bus (see figure 2(b)), ;S-Z- entries for each of the £ caches along its level

entries for each of the k"~ caches along its level n—1 bus and below.

2 bus and below, ..... , and
kn—l

The total number of entries needed in a pruning cache is thus (n—1)$ and pruning caches should retain the

16




I 163841 I 64q--rm-rmmmemmmomesmesm o e
n n
v 81924 v
a a
1 40964 L 3
0O 2048 g
p
s 10244 P A S
P 5124 P
e e
r 256+ r P /AU
C 128+ c
o o
p 64 p
y Y o g
P 321 P Broadcast
e
‘r" 16 z , : B
p 8 D
i
nlrx 41 m
e e | A O S O
n 24 o1
8 14 $ h=100%
1 1 (Full Directory)
a 05 : ; : : . o 05 . : : : .
: 64 512 4096 32K 256K M 64 512 4096 32K 256K 2M
System Size (N) System Size (N)
(a) Small number of shared copies (m=8) (b) Large number of shared copies (m_._.\[ﬁ )
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same level of performance if they scale in size as O(n).

4.5.3. Pruning cache maintenance

Pruning caches are maintained as read results and invalidates propagate down through their respec-
tive trees. When a parent supplies a line to a child in response to a read request (the parent could have
either had a copy of the line being requested, or have propagated the request up the tree and just received
the result now) it must do two things. First, it looks up the corresponding pruning vector in its own prun-
ing cache and includes it with the line (recall that if the cache misses, an all-ones vector is assumed).
Second, if the pruning vector was in the cache, the bit corresponding to the child is set. When the child
receives the line, if its bit in the supplied pruning vector is zero, then it knows that no cache in its subtree
previously had a copy of the line, and it can create an all-zero pruning vector for the line in its pruning
cache. If it in turn passes the line down to one of its children, then the appropriate bit in this newly
created, all-zero vector would be set. The top-level pruning vector for a line is kept in the directory with

main memory, and thus is always present.
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On an invalidate, memory clears its pruning vector, as do all pruning caches that the invalidate
passes through. An actual implementation may use the pruning cache entries to combine acknowledge-
ments. In this case, a pruning cache entry would be locked into its cache when an invalidate for its line
passed down. As acknowledgements propagated up, the corresponding bits would be cleared and an ack-

nowledgement propagated up to the next level when the vector became zero.

An important issue relating to pruning caches is their replacement policy. Since the potential
penalty for losing a pruning vector is greater the nearer the vector is to the root, a reasonable choice is to
base replacements on dimension. Priority would be higher for higher-dimension vectors. An LRU policy
would also be reasonable, as vectors for higher dimensions would tend to be accessed more frequently,

and we want rarely used vectors to drop out of the cache.

4.5.4. Comparison to inclusion caches

The key difference between inclusion caches and pruning caches, is that multi level inclusion
requires an inclusion cache to contain entries for all lines beneath it. This means that either an inclusion
cache must be built such that all lines that can possibly reside simultaneously in the subtree beneath it can
also reside simultaneously in it [Baer88], or when an inclusion cache has to throw out a line, it must
invalidate that line in the subtree beneath it [Wils87]. The first solution is only practical in a single tree
system (such as that in figure 1) where the number of caches decreases at each higher level. As was noted
earlier, these systems do not provide scalable bandwidth. The second solution is feasible in a cube-based
systern, but provides inferior performance to a pruning cache-based system [Scot90]. The penalty for
purging an entry from an inclusion cache is that the line must be prematurely invalidated in the subtree
beneath the cache. This may cause subsequent cache misses within the subtree. The penalty for purging
an entry from a pruning cache is that a later invalidation of the line may have to be broadcast underneath

the entry, increasing the bus traffic. The former penalty is greater.

The practical upshot of the differences between pruning and inclusion caches is that inclusion
caches must be considerably larger than pruning caches to afford the same level of performance [Scot90].
An inclusion cache must store information for all lines residing beneath it. A pruning cache need only
store information for actively shared lines. Pruning vectors for lines that are not actively shared can fall

out of their pruning caches while the data remains in the caches below.
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5. CONCLUSIONS

We have provided a working definition of scalability and demonstrated its use on several topologies
and cache coherence mechanisms. The basic notion is to keep the cost, communication latency and link
traffic from growing too fast as system size increases. When used in the wrong way (considering scalabil-
ity before performance, for instance), the concept of scalability can be abused, but when used correctly,
scalability provides useful intuition about the behavior of very large systems. This intuition should prove

valuable as efforts continue to build ever larger multiprocessors.

The k-ary n-cube is a promising topology for future, large-scale multiprocessors. When the dimen-
sionality of cube networks is increased with size, the networks meet our criteria for scalability. They also
provide a substitute for single-tree-based networks (which do not scale for uniform workloads) as a plat-
form for hierarchical communication protocols. The equivalence of buses and rings, which came out of
our definition for scalability, allows for cube networks to be implemented with either technology, and still
employ the same basic protocols. It is likely that "simulated” buses, constructed from point-to-point
links, will provide higher bandwidth than their conventional counterparts as logic speeds continue to out-

pace bus speeds.

The cache coherence mechanism used, greatly affects the scalability of a multiprocessor. A
mechanism is needed that scales in both space, latency and bandwidth. The full hierarchical directory
scales for latency and bandwidth. In addition, it allows for combing of concurrent read requests in the
network, allowing for workloads with heavy read sharingr to scale well. Unfortunately, it requires O(N k!
space for the directory information. Pruning caches approach the performance of a full hierarchical direc-
tory, and yet require only O(N logN) space. Space is additionally conserved because pruning caches need

only contain entries for actively shared data. As such, they should scale well to very large systems.
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