CASE-BASED REASONING WITH
NOISY CASE BOUNDARIES:

AN APPLICATION IN MOLECULAR BIOLOGY

by

Jude Shavlik
Computer Sciences Technical Report #988

December 1990

This paper has been submitted (12/90) to the 1991 International Joint Conference on Artificial Intelligence.

Case-Based Reasoning with Noisy Case Boundaries:

An Application in Molecular Biology)

Jude Shavlik

Computer Sciences Department
University of Wisconsin
1210 W. Dayton Street
Madison, WI 53706 USA

shavlik@cs.wisc.edu
(608) 262-7784
(608) 262-9777 (fax)

ABSTRACT

Case-based reasoning is a promising approach to producing intelligent behavior. In this style of
reasoning, previous experience closely guides problem solving. Effectively using previous cases
requires that a reasoner first match, in some fashion, the current problem against a large library
of stored cases. One largely unaddressed task is the process of parsing continuous input into
discrete cases. If this parsing is not done accurately, the relevant previous cases may not be
found and the advantages of case-based problem solving will be lost. Parsing the data into cases
is further complicated when the input data is noisy. This paper presents an approach to applying
the case-based paradigm in the presence of noisy case boundaries. The approach has been fully
implemented and applied in the domain of molecular biology; specifically, a successful case-
based approach to gene finding is described. An empirical study demonstrates that the method is
robust even with high error rates. This system is being used in conjunction with a Human
Genome project in the Wisconsin Department of Genetics that is sequencing the DNA of the
bacteria E. coli.

* This research was partially supported by Office of Naval Research Grant N00014-90-J-1941 and National
Science Foundation Grant IR[-9002413.

Case-Based Reasoning with Noisy Case Boundaries:
An Application in Molecular Biology

INTRODUCTION

Recently, there has been substantial attention given to case-based approaches to intelligent
reasoning [DARPAS89]. This paradigm, which also goes by the names of memory-based reasoning
[Stanfill86] and instance-based reasoning [Kibler87], relies on memory of previous cases to solve
current problems. In contrast to more traditional approaches which create solutions from "scratch” by
reasoning from "first principles"”, case-based problem solvers retrieve similar episodes from the past and
use them to closely guide the solution to the current task. This style of Al problem solving has been
successfully applied to a wide range of problems including cooking [Hammond90], predicting the
structure of proteins [Zhang89], medical reasoning [Porter90], and legal reasoning [Ashley90].

Given a new problem to solve, the initial step a case-based reasoner takes is to recall relevant cases
from its memory. Since it is unlikely the current situation is completely identical to a previous one,
some sort of partial matching is needed. Often this involves selecting some cues and using these to
index into memory [Kolodner84]. However, this presupposes that the case-based reasoner is somehow
given a well-defined current situation — one where the "boundaries” of the current case are cleanly
defined. Unfortunately, the real-world is often "continuous”, and the problem of accurately parsing
experience into discrete cases is extremely challenging. This largely unaddressed task (one exception is
[Redmond89]) is made even more complicated when one’s sensors for measuring the world are noisy.
Even if one had a good idea of what constitutes the boundaries of a case, noise may easily blur these
signals.

This paper presents a method for performing case-based reasoning in the presence of noisy case
boundaries. The task domain is molecular biology, and we have successfully used our technique to find
genes in noisy DNA sequences. The following sections provide a brief introduction to molecular
biology and describe our algorithm. For now note that genes are subsequences in a lengthy string. Due
to the nature of the genetic code, certain types of noise in this string cause current partial-matching
algorithms for gene finding to fail.

Gene finding is a task highly amenable to Al solutions: there are rapidly-growing computer
databases (described below), most of the information is "discrete” (as opposed to involving, say, partial
differential equations as do most other forms of computational science), and much of the domain-
specific knowledge is heuristic. Several basic approaches are being investigated within the Al and
related communities:

(1) Development of algorithms that perform similarity matches to known genes (i.e., case-based
reasoning) [Lipman85, Myers90, this paper].

(2) Using machine learning to learn the general characteristics of genes [Lapedes89, Noordewier90,
Stormo82, Towell90].

(3) Creating grammars that can be used to recognize genes [Searls88, Searls89].
This remainder of this article presents an approach that falls into the first category.

A BRIEF INTRODUCTION TO MOLECULAR BIOLOGY

Since this paper describes an Al application in molecular biology, a brief introduction to genes and
proteins appears in this section. Sufficient detail is included so that the non-biologist can understand the

Case-Based Reasoning with Noisy Case Boundaries

rest of the paper; further information can be found in textbooks such as [Watson87].

DNA is a linear sequence from the alphabet {4, G, T, C}; each of these four letters is called a
nucleotide (or base). Human DNA is estimated to contain 3x10° nucleotides, while the common
intestinal bacteria E. coli contains about 5x10° bases. A DNA molecule usually involves two,
complementary sequences, organized as a double helix. An A in one sequence is paired with a T on the
other; G and C are similarly paired. This pairing forms the basis of cell replication, and its discovery by
Watson and Crick in 1953 revolutionized biology [Watson53]. However, replication is not addressed in
this paper, and the reader can think of DNA as a single, linear sequence (whose complement — or
reverse strand — can easily be calculated when needed).

The most important aspect of DNA, for the purposes of this paper, is that subsequences in it
encode proteins; these subsequences are called genes. Proteins are the "work horses” of the cell; for
example, enzymes are proteins, as are cell membranes. Proteins, too, are linear sequences. They come
from a 20-character alphabet; each of these letters is called an amino acid. In a process called

translation, a gene is read and a protein produccd.l Each consecutive three-letter string in a gene
encodes one of the 20 amino acids — this mapping from nucleotide triplets to single amino acids is

called the genetic code.? Each three-letter string is called a codon. Three are called STOP codons,
because they tell the cell to stop translating the DNA. Table 1 contains a hypothetical gene and shows
the protein it would encode; bars (|’s) are used to group the bases into codons. (This would be too short
to be a real gene — most genes are several hundred nucleotides long.)

Since the translation process involves grouping nucleotides into threes, the reading frame is of
extreme importance. There are three possible reading frames --- one where nucleotide i is the first item
in a codon, another where it is the second, and one more where it is the third. We will return to the
topic of reading frames later — they play a major role in this paper because they determine case
boundaries.

The Human Genome Project [Alberts88] is a massive, world-wide research project that has the
goal of determining the sequence of human DNA and locating all the genes within it. The genomes of
several other scientifically important species are also being sought. A genetics project at the University
of Wisconsin is sequencing the DNA of the common bacteria E. coli, and the research reported in this
paper is a result of collaboration with that project, headed by Prof. F. Blattner of the genetics
department. Blattner’s group has chopped up E. coli DNA into roughly 500 pieces. Each of these

Table 1. A hypothetical gene and its translation into a protein.

Gene: |AGC|ATG|CAA|TAG]
Protein: | S | M| Q | STOP

! There actually is an intermediate step called transcription, where DNA is copied into a similar molecule called RNA. This RNA is what
is then translated into proteins. However, this level of detail is not necessary to understand this paper; the reader can assume DNA directly
maps to protein.

2 Since there are 4° = 64 distinct three-letter DNA sirings, the genetic code is redundant.

Page 2

Case-Based Reasoning with Noisy Case Boundaries

pieces is called a contig (for contiguous sequence), and we are computationally analyzing each contig as
it is sequenced by Blattner’s laboratory.

Unfortunately, there is no absolute START codon; this makes gene finding a non-trivial task. (See
[Towell90] for a discussion on applying machine learning techniques to find a signal that indicates the
start of a gene.) The remainder of this paper describes a case-based approach to gene finding, one that
works in the presence of "noisy” DNA sequences. Sequencing is estimated to have an error rate of 1%
[Alberts88]; the wrong nucleotide can be recorded or, more disastrously, an extra nucleotide can be
inserted or an existing one can be missed. As further explained later, these insertions and deletions
greatly affect the translation process, due to the triplet nature of the genetic code.

FINDING GENES IN NOISY DATA

In any project to map and sequence an organism’s genome, the interpretation of the final sequence
is an undertaking of great magnitude. The inherent potential for errors in the recorded sequence further
complicates such analyses. The Wisconsin E. coli sequencing project is producing large amounts of
"anonymous" DNA; we are computationally analyzing this data. There are two closely-related, main
goals of this research. First, we wish to correct sequencing errors by noting inconsistencies with other
biological data. Second, we wish to locate and identify those regions of the sequence that encode
proteins — both known and heretofore unknown.

We are undertaking two complementary approaches. One involves performing robust similarity
matches with known protein sequences (this paper), while the second involves detecting DNA segments
that have the general characteristics of genes (see [Towell90]). Our long-term aim is to assign a
function to all regions of the "anonymous" DNA produced by the Wisconsin sequencing project.

Our primary concern, with respect to error correction, is to locate frameshift errors (the mistaken
insertion or deletion of a nucleotide, which can cause a gene to "shift" into an improper reading frame).
Due to the triplet nature of the genetic code, such errors can be disastrous if they occur inside a putative
gene. Once the translation process is "out of frame", the remainder of a predicted protein bears no
resemblance to the correct protein and partial matching will fail. The computational methods this paper
presents are designed to locate genes and be robust in the presence of frameshift errors.

There are several international databases that store biological sequence data, most notably
Genbank [Bilofsky88] and Protein Information Resource (PIR) [George86]. These databases store
"cases": complete genes (GenBank) and complete proteins (PIR). A number of researchers have
developed "case-based" algorithms that partially match DNA subsequences (or the corresponding
amino-acid sequences) to these databases (e.g., [Lipman85, Myers90]); however, their methods all
suffer from being extremely sensitive to frameshift errors.

These previous approaches do an excellent job of matching in the presence of substitution errors —
mistaking an A for a C, say. In fact, one of their primary strengths is that they can find homologous
matches. A homologous protein is one from another species that is similar in terms of its amino-acid
sequence (and biological functionality); due to the process of evolution, homologous proteins abound
and locating them is of major importance. When genes are sequenced on a case-by-case basis,
frameshift errors are much less frequent and the primary biological task is to find similar matches to
known proteins. The previous algorithms were designed for this problem and have been rather
successful. However, with the advent of massive sequencing projects, noisy DNA with unknown
functionality and unknown codon boundaries is rapidly being produced. For these conditions, a new
case-matching algorithm is needed.

Page 3 ®

Case-Based Reasoning with Noisy Case Boundaries

A CASE-BASED GENE FINDING ALGORITHM

We have developed a case-based algorithm for gene finding that is robust in the presence of
frameshift errors. Our FIND-IT algorithm builds on the BLAST similarity-search program [Myers90].
BLAST efficiently produces approximate matches, but these matches do not extend across frameshift
errors. The FIND-IT method described below coherently combines partial matches (to a given protein) in
different reading frames, thereby overcoming missing and extra nucleotides in sequenced DNA.

Table 2 describes our algorithm. Given a sequence of DNA, the algorithm collects all open-
reading frames (ORFs)? in the sequence and its complement. Next, the algorithm translates these ORFEs
to proteins and uses a variation of BLAST to match each protein against the PIR database. We convert to
proteins, rather than directly matching DNA to GenBank entries, because only partial matches to amino
acids are biologically well-defined; BLAST uses the PAM 120 matrix [Dayhoff78] to define the similarity
between two amino acids. Also, due to the genetic code’s degeneracy and the different codon-usage
patterns of various species, vastly different DNA sequences may lead to quite similar protein sequences.
Finally, matches to GenBank can be easily effected by translating the genes in that database to proteins,
and then applying Table 3’s algorithm.

A useful feature of BLAST is that a protein need not match in its entirety; rather, it reports matching
subsequences. A match may terminate within a protein due to a frameshift error; in this case the
remainder of the protein will match another ORF (examples of this follow).

A match returned by BLAST maps a portion of the DNA sequence to a segment of a protein.
Figure 1 schematically shows three matches; the numbers following the matches indicate their reading
frame. Note that matches A and C provide a consistent "covering" of the protein, while match B is
inconsistent with the other two. Also note that by combining matches A and C, an extra nucleotide in

Table 2. The FIND-IT algorithm for matching known proteins to
new DNA sequences in the presence of frameshift errors.

Given a sequence of DNA:

(1) Collect all of the open-reading frames (ORFs), in each of the three possible reading frames on
the DNA and on its complementary strand (for a total of six frames). No minimal length is
required to be considered an ORF; because sequencing errors may have introduced false STOP
codons, no stretch of DNA is discarded.

(2) Translate each ORF into a amin-acid sequence and apply BLAST [Myers90] to produce partial
matches (with gaps) to the Protein Information Resource (PIR) database. Note that all of the
DNA in a sequence, in all six frames, is translated and matched.

(3) Collect all of the matches to each PIR protein encountered.
(4) By piecing together matches, look for consistent coverings of each protein (see text for details).
(5) Score the combined protein matches, sort, and report the best matches.

3 An ORF is the DNA between two successive STOP codons; note all ORFs contain genes, but, if there are no sequencing errors, all genes
lie within some ORF.

Page 4

Case-Based Reasoning with Noisy Case Boundaries

the DNA can be identified (the one marked with an X). Below we define what it means to be a
consistent collection of matches to a given protein (which we call a "covering").

Assume match i maps the DNA segment [A, B] to the protein segment [P, O], while match j maps
the DNA segment [C, D] to the protein segment [R, S]. If matches i and j both belong to a consistent
covering, then the following constraints hold:

(1) If C>A then R>P. That is, the left-to-right order on the DNA is the same as that on the protein
sequence. Also, they must be on the same DNA strand (i.e., forward or reverse).

(2) If matches i and j intersect on one sequence (DNA or protein), they also intersect in the
corresponding locations on the other. (Since there may be extra or missing nucleotides in the
DNA sequence, "small" discrepancies are ignored.)

(3) This distance between DNA locations B and C is approximately three times the distance between
protein locations Q and R. That is, the amount of DNA between the end of one match and the
beginning of the next roughly corresponds to the number of amino acids between the two
matches. (This constraint can be relaxed if FIND-IT is applied to eukaryotic DNA from advanced
species, where genes are not necessarily contiguous pieces of DNA. Hence, the approach
elegantly extends to the recognition of "exons" among intervening sequences.)

In our current experience, FIND-IT generally looks for consistent coverings for a given protein from
a set of about 100 matches (a given DNA contig partially matches several thousand different proteins);
successful coverings usually contain from one to five matches. There are on the order of 21% possible
combinations when given 100 matches. We have devised several heuristics to greatly prune the number
of possibilities considered; however, our program still spends a considerable amount of time searching
for consistent covers. One of the major open issues is to understand the computational complexity of
this task and devise efficient algorithms for it; a later section further discusses this topic.

DNA Sequence

b llllII||Ill]llllllII'III!IIIXII|Illlll|lIllllllil"'
0 .

2

BLAST Matches

o

Protein

Figure 1. Combining BLAST matches to overcome frameshift errors.

Page 5

Case-Based Reasoning with Noisy Case Boundaries

SAMPLE RESULTS FROM TWO E. COLI CONTIGS

We have applied our algorithm to two E. coli contigs already sequenced: EC17-115 and EC21-76. On
the first of these, 14 matches to E. coli proteins were found, and 27 "strong" matches to proteins of other
species were found. (A "strong" match is defined to be one where at least half the protein sequence is
matched. When several homologous proteins match the same stretch of DNA, FIND-IT retains the
strongest-matching one.) Overall, these matches accounted for 47.6% of the contig’s DNA. On contig
EC21-76, four E. coli proteins were encountered and 32 homologous matches were detected; 29.8% of
this contig was covered. In our current research, we are trying to increase these numbers.

Figure 2 contains all those matches to contig EC17-115 that were combined into one of the 41
protein coverings; each arrow-headed segment represents one match produced by BLAST.

We have also tested FIND-IT on the DNA sequence of the completely-sequenced bacteriophage
called A; all of the A proteins in PIR were found, as well as several matches to non-A proteins. Some, but
not all, of these homologies are noted in the PIR annotation; these previously-unknown homologies are
of substantial biological interest.

USING MULTIPLE MATCHES TO DETECT SEQUENCING ERRORS

This section presents two actual composite matches produced by FIND-IT. One (Figure 3) involves
matching an E. coli protein, while the other (Figure 4) is a match to a human protein. These matches
illustrate how sequencing errors can be detected and show that both known E. coli and homologous
genes can be located.

Figure 3’s covering of the entire protein sequence of phosphoserine phosphatase involves four
BLAST matches. Each match begins with DNA[#], reports the frame it appears in, and contains three
protein sequences; # is the matching score reported by BLAST and represents the sum of the PAM 120
matrix scores. The top line in a match is the translated DNA, while the bottom is the protein sequence.
Numbers at the end of lines represent nucleotide positions in the entire DNA contig and amino-acid
positions in the protein, respectively. The middle line presents the alignment; letters represent identical
matches, +’s represent positive-scoring partial matches, periods represent matches that score zero, and
blanks represent negative-scoring matches. Dashes (-’s) represent gaps4 introduced by BLAST during its
matching process. The reason for lower-case letters appears below. Finally, braces ([]’s) indicate the
"seed" match in the BLAST algorithm.

Note that in addition to characterizing a portion of a contig, a covering suggests frameshift errors.
In Figure 3, there were three frame transitions; careful inspection of the boundaries between successive

Deoand — - Pea— L - Lo

——— P P03 — — e 9t - - » e ——

oK 18K

Figure 2. Consistent matches to contig EC17-115.

4 Some amino acids in a protein may have only an insignificant function and during evolution these amino acids may disappear without
effect. Matching with gaps accommodates this phenomenon.

Page 6

Case-Based Reasoning with Noisy Case Boundaries

Protein: PAECS (Phosphoserine phosphatase - Escherichia coli #£C-number 3.1.3.3 | 286.0)
Protein Length=322; Protein Coverage=100.00%; Forward Strand

DNA[691]: 8176 [MPNI]TWCDLPEDVSLWPGLPLSLSGDEVMPLDYHAGRSGWLLYGRGLDKQRLTQYQSK 8349
frame=1 [MPNT] TWCDLPEDVSLWPGLPLSLSGDEVMPLDYHAGRSGWLLYGRGLDKQRLTQYQSK
Protein: 1 [MPNI)TWCDLPEDVSLWPGLPLSLSGDEVMPLDYHAGRSGWLLYGRGLDKQRLTQYQSK 58

8350 LGAAMVIVAAWCVEDYQVIRLAGSLTARATRLAHEAHL-MSPRWKIPHLRTPGLLVMDMD 8526
LGAAMVIVAAWCVEDYQVIRLAGSLTARATRLAHEA+L-++P KIPHLRTPGLLVMDMD
59 LGAAMVIVAAWCVEDYQVIRLAGSLTARATRLAHEAQLDVAPLGKIPHLRTPGLLVMDMD 118

8527 STAIQIECIDEIAKLAGTA 8583
STAIQIECIDEIAKLAGT+
119 STAIQIECIDEIAKLAGTG 137
DNA[163]: 8568 tgr [ngEM])VAEVTERAMRGELDFTASLRTRVATLKGADA-IF 8687
frame=3 +g~[.gEM] VAEVTERAMRGELDF TASLR+RVATLKGADA-T.
Protein: 134 ag~-[tgEM]VAEVTERAMRGELDFTASLRSRVATLKGADANIL 173
DNA[182]: 8681 [NILQ)QVRENLPLMPGLTQLVLKLETLGWKVAIAPGAL 8791
frame=2 [NILQ] QVRENLPLMPGLTQLVLKLETLGWKVAIA+G+.
Protein: 171 [NILQ]QVRENLPLMPGLTQLVLKLETLGWKVAIASGGF 207
DNA[603]: 8779 S[AGFT)FFAEYLRDKVRLTAVVANELEIMDGKFTGNVIGDIVDAQYKAKTLTRLAQEYE 8952
frame=1 S[+GFT] FFAEYLRDK+RLTAVVANELEIMDGKFTGNVIGDIVDAQYKAKTLTRLAQEYE
Protein: 204 S[GGFT)FFAEYLRDKLRLTAVVANELEIMDGKFTGNVIGDIVDAQYKAKTLTRLAQEYE 261

8953 IPLAQTVAIGDGANDLPMIKAAGLGIAYHAKPKVNEKAEVTIRHADLMGVFCILSGSLNQK 9135
IPLAQTVAIGDGANDLPMIKAAGLGIAYHAKPKVNEKAEVTIRHADLMGVFCILSGSLNQK ‘
262 IPLAQTVAIGDGANDLPMIKAAGLGIAYHAKPKVNEKAEVTIRHADLMGVFCILSGSLNQK 322

Figure 3. Sample match to an E. coli gene (in contig EC17-115).

matches leads to the prediction of missing or extra nucleotides. Also, other sequencing errors and
ambiguities can be located by noting the discrepancies between the protein sequence and the translated
DNA. Finally, gaps indicate nucleotide insertions and deletions whose length is a multiple of three.
These hypotheses can then be checked by reviewing the original sequencing gels in the genetics
laboratory; sequencing errors or database (PIR or GenBank) errors can be corrected as appropriate.

To illustrate the error-correction process, consider the top two matches in Figure 3. The last four
protein elements in the first match are repeated in the second. The matches at the end of the first match
are stronger, so we can discard the first five matches (due to the insertion of the gap) in the second
match. These deleted matches appear in lower case in the figure. Since five amino acids are dropped
from the second match, its new beginning on the DNA sequence is 8568+15=8583. Note that this is the
last nucleotide in the first match. Hence, one nucleotide is used twice — as the last item in one codon
and the first item in the next. Clearly, the sequencing process missed one nucleotide. Inspection of the
genetic code (the map between codons and amino acids) shows that an A nucleotide needs to be inserted
after position 8583, which will shift the second match to the first reading frame in accordance with the
first match’s reading frame. Similar analyses can be applied to the other matches in the figure.

AN EXPERIMENT: EVALUATING FIND-IT’s NOISE SENSITIVITY

This section contains an experimental evaluation of our gene-finding method; noise sensitivity of
the algorithm is studied. The experimental method is as follows: a known gene (of length 999) was
extracted from the GenBank database (the gene for replication protein O in bacteriophage A) and

Page 7

Case-Based Reasoning with Noisy Case Boundaries

Protein: S04092 (Acetyl-CoA acyltransferase precursor - Human #EC-number 2.3.1.16)
Protein Length=424; Protein Coverage=74.29%; Forward Strand

DNA{109]: 6199 SAPLDDIYWGCVQOTLEQGFN~I~ARNAALLAEVPHSVPAV[TVNR]LCGSSMQALHDAA 6366

frame=1 +..L.DI---CV ..L+.G .-I-AR A .L+++P +VP [TVNR] C+S5++QA+ . A
Protein: 80 PEQLGDI-——CVGNVLQPGAGAIMARIAQFLSDIPETVPLS[TVNR]QCSSGLQAVASIA 134
6367 RMIMTG~--D-AQACLVGGVEHMG 6426

I .G=~=~D~-+ AC~~-~-GVE M+
135 GGIRNGSYDIGMAC~~-GVESMS 154
DNA[486]: 6498 [MGLT]AEMLARMHGISREMQDAFA—GAHARAWAATQSAA—FKNEIIP‘-TGGHDPDGVL 6659
frame=3 [MG+T]+E +A GISRE.QD+FA-+++ +A-A +QS +-F..EI+P--T HD G.

Protein: 181 [MGIT]SENVAERFGISREKQDTFALASQQKA—ARAQSKGCFQAEIVPVTTTVHDDKGTK 237
6660 KQFNY——DEVIRPETTVEALATLRPAFDPVNGMVTAGTSSALSDGAAAMLVMSESRAHEL 68313

+ .. =-=-DE IRP TT+E+LA L+PAF -+G .TAG.SS +SDGAAA+L+ S+A EL

238 RSITVTQDEGIRPSTTMEGLAKLKPAFKK~-DGSTTAGNSSQVSDGAAAILLARRSKAEEL 296

6834 GLKPR-ARVRSMAVVGCDPSIMGYGPVPASKLALKKAGLSASDIGVFEMNEAFAAQILPC 7010
GL~P -+ +RS AVVG P.IMG GP. A +AL.KAGL+.SD+.+FE+NEAFA+Q C
297 GL-PILGVLRSYAVVGVPPDIMGIGPAYAIPVALQKAGLTVSDVDIFEINEAFASQAAYC 355

7011 IKDLGLIEQIDEKIN-LNGGAIVGHPLGCSGARISTTLLNLMERKDVQ-FGLATMCIGLG 7184

+ L L~ .--EK+N-L.G+. +GHPLGC+GAR .TLLN + R+. +-+G+.+MCIG G
356 VEKLRL~PP-~EKVNPLGGAVALGHPLGCTGARQVITLLNELKRRGKRAYGVVSMCIGTG 412
7185 QGIATVFE 7208
G A+VFE
413 MGARAVFE 420

Figure 4. Sample match to a non-E. coli gene (in contig EC21-76).

various amounts of noise added to it in each of ten experimental runs. Following this, we applied FIND-
IT and counted the times it found the initial gene. We investigated three simple noise models and one
composite model: '

Replacement
With probability p, a given nucleotide is replaced with another one.

Deletion
With probability p, a given nucleotide is deleted.

Insertion
With probability p, a nucleotide is inserted after a given nucleotide.
Combination
With probability p, one of the above three changes occurs at a given nucleotide. All three
possibilities are equally likely.
These noise models are somewhat simplistic — due to the nature of the sequencing process, insertions
and deletions are most likely to occur within runs of the same nucleotide (e.g., --- AAAAA ---).
Nevertheless, these models are sufficient for our present purposes.

Figure 5 contains the results of this experiment. This experiment indicates that, under all four noise
models, FIND-IT is unaffected until the noise rate exceeds 5%. The combination approach has the lowest
error rate; most likely this is because the number of insertions and deletions balances, producing a noisy
DNA sequence with approximately the same length as the original sequence. Recall that the estimated
error rate in sequencing is 1%; thus, the FIND-IT approach should robustly find genes in the sequences

Page 8

Case-Based Reasoning with Noisy Case Boundaries

replacements only —

\ deletions only . e .

100% insertions only e~ ~ -
all three equally likely

80%
Chances
of 60%
Finding 40%
Original Gene
20%
1% 5% 10% 15% 25%
Amount of Noise Added

Figure 5. FIND-IT’s chances of finding a gene as a function of sequence noise.
(Results averaged over 10 experimental runs.)

biological laboratories are producing.

CURRENT RESEARCH ISSUES

We are improving and extending the FIND-IT method. Current activities include improving the
algorithm’s efficiency, tuning its parameters, and adding the ability to locate good, "dense" matches that

do not cover a sizable portion of a protein. The last of these will prove useful for finding matches to

protein "domains">; unfortunately, in the present implementation, locating such matches is unacceptably

expensive computationally.

We are studying the computational complexity of the "covering" problem defined in a previous
section and devising efficient (possibly heuristic) algorithms for it. The problem of constructing
consistent covers (defined above) can be modeled by a combinatorial optimization problem known as
maximum weight matching in an interval graph. A restricted version of this problem, where all the
weights are one, can be solved in O(N log N) steps [Golumbic88, Masuda88], and preliminary work by
Wisconsin computer science graduate student J. Meidanis has shown that an O(N log N) algorithm is
also possible for the general case. This algorithm shows promise as a tool for rapidly finding consistent
coverings; we plan to implement it, and to decide which edge-weighting scheme leads to the most useful
overall covers.

When no similarity matches to known proteins are possible, we need alternative methods for
recognizing genes. We are investigating some complementary approaches, some of which involve
neural-network learning, that either (1) identify regions of DNA that have the same general, "global"
statistics of known genes or (2) locate stretches of DNA that are known to "signal" some biological
activity (e.g. promoter tegions bind the protein that initiates transcription, which is followed by
translation [Towell90]). Research along the lines of the first approach includes [Gribskov84, Staden82].
Approach two has also been investigated [Lapedes89, Noordewier90, Stormo82, Towell90].

5 A domain is a portion of a protein that possesses some "stand-alone” function.

Page 9

Case-Based Reasoning with Noisy Case Boundaries

CONCLUSION

We have presented a case-based approach to gene finding that is robust in the presence of errors —-
both in the input data and in the case libraries. These errors, particularly frameshift errors, greatly
complicate the task of determining the boundaries of cases, due to the triplet nature of the genetic code.
If the current case is improperly delimited, partial matching with previous cases will fail. Our algorithm
addresses the problem by producing multiple, partial matches and then combining some subset of them
into a consistent whole. This leads to error detection and correction. Our general idea for robust case
matching promises to be applicable in other domains involving "continuous" data, such as speech
recognition and vision. We are successfully applying the FIND-IT method in support of a Human

Genome project in a Wisconsin genetics laboratory, and have already found several previously unknown
genes.

ACKNOWLEDGMENTS

Discussions with Fred Blattner, Donna Daniels, Guy Plunckett, Eric Bach, Debby Joseph, Prasoon Tiwari,
Mick Noordewier, and Joao Meidanis greatly improved this research.

REFERENCES

[Alberts88] B. M. Alberts, Mapping and Sequencing the Human Genome, National Academy Press,
Washington, D.C., 1988. (National Research Council)

[Ashley90] K. Ashley, Modeling Legal Argument, MIT Press, Cambridge, MA, 1990.

[Bilofsky88] H. S. Bilofsky and C. Burks, "The GenBank® Genetic Sequence Data Bank," Nucleic Acids
Research 16, (1988), pp. 1861-1864 .

[DARPASI] DARPA, Proceedings of the Case-Based Reasoning Workshop, Morgan-Kaufmann, Los Altos,
CA, May 1989.

[Dayhoff78] M. O. Dayhoff, Adas of Protein Sequence and Structure, National Biomedical Research
Foundation, Wash., D. C,, 1978.

[George86] D. G. George, W. C. Barker and L. T. Hunt, "The Protein Identification Resource," Nucleic
Acids Research 14, (1986), pp. 11-15.

[Golumbic88] M. C. Golumbic and P. L. Hammer, "Stability in Circular Arc Graphs," Journal of Algorithms
9, (1988), pp. 314-330.

[Gribskov84] M. Gribskov, J. Devereux and R. R. Burgess, "The Codon Preference Plot: Graphical Analysis
of Protein Coding Sequences and Prediction of Gene Expression,” Nucleic Acids Research 12,
(1984), pp. 539-549.

(Hammond90] K. J. Hammond, "Explaining and Repairing Plans that Fail," Artificial Intelligence 45, 1-2
(1990), pp. 173-228.

[Kibler87] D. Kibler and D. W. Aha, "Learning Representative Exemplars of Concepts: An Initial Case
Study,” Proceedings of the Fourth International Workshop on Machine Learning, Irvine, CA,
June 1987, pp. 24-30.

[Kolodner84] J. L. Kolodner, Retrieval and Organizational Strategies in Conceptual Memory, Lawrence
Erlbaum and Associates, Hillsdale, NJ, 1984.

[Lapedes89] A. Lapedes, C. Barnes, C. Burks, R. Farber and K. Sirotkin, "Application of Neural Networks
and Other Machine Learning Algorithms to DNA Sequence Analysis," Computers and DNA,
SFI Studies in the Sciences of Complexity VII, (1989), Addison-Wesley.

[Lipman85] D. J. Lipman and W. R. Pearson, "Rapid and Sensitive Protein Similarity Searches,” Science
227, (1985), pp. 1435-1441.

[Masuda88] S. Masuda and K. Nakajima, "An Optimal Algorithm for Finding a Maximum Independent Set
of a Circular Arc Graph," Society for Industrial and Applied Mathematics Journal of Computing
17, (1988), pp. 41-52.

Page 10

[Myers90]

[Noordewier90]

[Porter90]

[Redmond89]

[Searls88]

[Searls89]

[Staden82]
[Stanfili86]

[Stormo82]

[Towell90]

[Watson53]
[Watson87]

[Zhang89]

Case-Based Reasoning with Noisy Case Boundaries

E. W. Myers, W. Miller, S. F. Altschul, W. Gish and D. Lipman, "Basic Local Alignment
Search Tool," Journal Molecular Biology 214, (1990).

M. O. Noordewier, G. G. Towell and J. W. Shavlik, "Training Knowledge-Based Neural
Networks to Recognize Genes in DNA Sequences," IEEE Conference on Neural Information
Processing Systems, Denver, CO, 1990.

B. W. Porter, R. Bariess and R. C. Holte, "Concept leamning and Heuristic Classification in
Weak-Theory Domains," Artificial Intelligence 45, 1-2 (1990), pp. 229-264.

M. Redmond, "Learning from Others’ Experience: Creating Cases from Examples,"
Proceedings of the Second Case-Based Reasoning Workshop, Pensacola Beach, FL, May 1989,
pp- 309-312.

D. B. Searls, "Representing Genetic Information with Formal Grammars," Proceedings of the
Seventh National Conference on Artificial Intelligence, St. Paul, MN, August 1988, pp. 386-
391.

D. B. Searls, "Investigating the Linguistics of DNA with Definite Clause Grammars,"
Proceedings of the North American Conference on Logic Programming, 1989, pp. 189-208.

R. Staden and A. D. McLachan, Nucleic Acids Research 10, (1982), pp. 141-156.

C. Stanfill and D. Waltz, "Toward Memory-Based Reasoning," Communications of the
Association for Computing Machinery 29, 12 (1986), pp. 1213-1228.

G. D. Stormo, T. D. Schneider, L. M. Gold and A. Ehrenfeucht, "Use of the 'Perceptron’
Algorithm to Distinguish Translational Initiation Sites," Nucleic Acids Research 10, (1982), pp.
2997-3010.

G. G. Towell, J. W. Shavlik and M. O. Noordewier, "Refinement of Approximate Domain
Theories by Knowledge-Based Artificial Neural Networks," Proceedings of the Eighth
National Conference on Artificial Intelligence, Boston, MA, July 1990.

J. D. Watson and F. H. C. Crick, " "Molecular Structure in Nucleic Acids: A Structure for
Deoxyribose Nucleic Acid"," Nature 171, (1953), pp. 737-738.

J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz and A. M. Weiner, The Molecular
Biology of the Gene, Benjamin-Cummings, Menlo Park, CA, 1987.

X. Zhang and D. Waltz, "Protein Structure Prediction using Memory-Based Reasoning,”
Proceedings of the Second Case-Based Reasoning Workshop, Pensacola Beach, FL, May 1989,
pp. 351-355.

Page 11

