CENTER FOR
PARALLEL OPTIMIZATION

SOLUTION OF MULTIPLE-CHOICE
KNAPSACK PROBLEM ENCOUNTERED IN
HIGH-LEVEL SYNTHESIS OF VLSI CIRCUITS

by
Renato De Leone, Rajiv Jain and Kenneth Straus

Computer Sciences Technical Report #980

November 1990

Solution of Multiple-Choice Knapsack Problem
Encountered in High-Level Synthesis of VLSI
Circuits

Renato De Leone
Center for Parallel Optimization
Computer Sciences Department

University of Wisconsin
1210 West Dayton Street
Madison, WI 53706

Rajiv Jain
Electrical and Computer Engineering Department
University of Wisconsin
1415 Johnson Drive
Madison, WI 53706

Kenneth Straus
Center for Parallel Optimization
Computer Sciences Department

University of Wisconsin
1210 West Dayton Street
Madison, WI 53706

Solution of Multiple-Choice Knapsack Problem
Encountered in High-Level Synthesis of VLSI
Circuits

Abstract

In computer-aided design, performance of digital designs can be enhanced by transfor-
mations to the input specification. the purpose of these transformations is to reduce
total chip area or chip delay. Examples of such transformations are tree-height re-
duction and hierarchical decomposition. Using existing formal predictive models of
cost and performance, the impact of these transformations on the design implementa-
tion can be evaluated. In this paper we address the question of what transformations
should be applied and how many times should each transformation be applied in order
to achieve an optimal chip design. We formulate the above problem as a multiple-
choice knapsack problem and propose a Lagrangian relaxation technique for finding
an approximate solution. Two simple but effective post-optimal heuristics which
improve the relaxation solution are also discussed. Results for several randomly gen-
erated problems indicate that the proposed approach is highly effective. In almost all
cases considered a design with 97% or above of optimality is achieved.

Keywords: High-level synthesis, digital design, computer-aided design of digital sys-
tems, multiple-choice knapsack problem, integer programming, Lagrangian relaxation

Subject Classification: Programming: integer, heuristics, relaxation.

1 Introduction

The mapping of a behavioral description (an algorithm expressed as a data flow graph
or a hardware descriptive language) to a register-transfer level (RTL) design is known
as high-level synthesis. An example data flow graph and an RTL design which can
implement this data flow graph are given in Figures 1 and 2 respectively 1, A variety
of candidate RTL designs can implement a given behavioral description. However, not
all designs are of equal quality. A design implementation is inferior when there exists
at least one other implementation which performs better in one or more figures of
merit, all other figures of merit being at least equal. All designs lie within a boundary
in the design space, which in our context is a 2-dimensional plane with area and delay
as its two axes?. A design point represents a design in this space. In the design space,
the cheapest (least area) and the fastest designs delimit the design space boundary
for a given behavioral description and design library (see Table 1 for an example
design library). A plot of the area versus delay of the non-inferior design points gives
a lower-bound area-delay tradeoff curve for the input description.

Let us consider the behavioral description given in Figure la in the form of a data
flow graph. Several non-inferior pipelined designs for this input description are shown
in Figure 3 (marked as “before”). Each point represents the area-delay characteristics
of an RTL design which will satisfy the input behavioral requirements. We observe
in Figure 3 that a fast design has a large area while a cheap design is slow. In general
a decrease in delay is achieved only at the expense of area and vice versa.

In order to achieve an area-delay efficient implementation of a given input specifica-
tion, designers generally apply transformations which modify the input specification
without altering the intended behavior of the final design. Examples of such trans-
formations are tree height reduction [11] [17], dead code elimination [1] [16] [18], loop
winding and loop unwinding (5], and bit-width decomposition. The effect of these
transformations is to move the area-delay curves in the design space; Figure 3 shows
the area-delay curves before and after applying a “decompose” transformation. Each
transformation modifies the curve differently. While some move the curve towards the
origin others may move it away from the origin. Furthermore, some transformations
may increase (or decrease) the number of design points or may extend (or restrict)
the design boundary (as in Figure 3).

1The RTL design was generated using a 0-1 integer linear programming formulation of data path
synthesis [2].

2The design space is not restricted to area vs. delay alone. A dimension could be any metric
important to the designer, like power or design time.

(a) Complex multiplication (b) 16-bit multiplication using 8-bit multipliers

Figure 1: Hierarchical decomposition transformation

S S U I O

Mult. Add _ Mult.
mux
| y

Reg. Reg. Reg.

Figure 2: An RTL design

Function Area | Delay | Bit
mil? ns | Width
addition 2000 | 225 16
addition 4200 | 340 32
subtraction 4200 | 340 32
multiplication | 13800 | 250 8
multiplication | 49000 | 375 16

Table 1: Design library

Area mil®

X

243000 -

216000 1

4 e

189000

162000 -

X
135000 1 o : Before
1 x : After

108000 A

81000 -

54000 A
+ X X x x X X X X

27000 A

t

T

%

T
[4
X

X

X X X X x

1 i i i >
>

700 1400 2100 2800 3500 4200 4900 5600 6300 Delay ns

Figure 3: Hierarchical Decomposition

It is important to choose the right transformations to apply to the behavioral de-
scription before synthesis since a wrong transformation can result in a poor design
inspite of efforts which may be made at the chip implementation level to improve the
quality. The benefits of some transformations like dead code elimination are obvious,
but for many other transformations this is not so obvious. For these transformations
the impact on the area-delay characteristics can be assessed only by synthesizing
all design points in the design space following each transformation (or sequence of
transformations). Since the synthesis process is computationally expensive (at least
O(n?) for each design point for n operations in the input description, and O(n®) for
the entire design curve [14]) one could use prediction tools as an alternative means of
assessing the impact [10] [9]. We will refer to these area-delay prediction tools as “AT
predictors”. The method proposed here is not limited to the predictors given in [10]
[9). The designer could very well choose to use some of his or her own prediction tools
instead. Also, these predictors could predict measures other than area and delay.

For an example of a transformation, consider the data flow graph given in Figure la to
be implemented as a pipelined design using 32-bit adder and 16-bit multiplier modules
(Table 1). Using the AT predictor [10], we get the design curve consisting of all lower-
bound design points (assuming pipelined implementation), shown in Figure 3. These
points are marked as “before”. Now let us apply the “decompose” transformation
shown in Figure 1b and decompose all 16-bit multiplication operations into 8-bit
multiplication operations. Once again, using the AT predictor we can get the area-
delay curve for the transformed data flow graph. This is marked as “after” in Figure
3. As a result of the transformation, we notice that design points of the transformed
data flow graph move away from the origin, i.e., towards the inferior design region.
However, the fastest design offered by the transformed data flow graph is faster than
any design produced by the original data flow graph. There is a penalty, however - an
increase in design area. If the design constraint permits the area to be greater than
204,400 mil?, or constraints the area to be less than 57,400 mil?, the the transformed
data flow graph offers better design solutions. Otherwise the transformation should
not be applied. Thus, a transformation can be either “good” or “bad” depending
upon the constraints and design goals.

This leads us to the problem which we wish to address in this paper: Given a design
constraint (for example, the area of the design should not exceed 50,000 mil?) and a
pool of transformations, select the transformations that result in better design solu-
tions and also determine the number of times each should be applied so as to achieve
an area-delay efficient implementation for the given input behavioral description.

2 Literature Survey
There are four aspects to the transformation problem:

1. Defining a transformation.
2. Identifying transformations which can be applied to the given input description.

3. Computing the impact of each applicable transformation on the metrics impor-
tant to the designer.

4. Finally, selecting the appropriate transformations which will help the designer
in achieving design goals while satisfying the design constraints.

Snow [16], Trickey [17] and Walker [18] have researched the first aspect of the trans-
formation problem. Snow [16] was the first to demonstrate the use of transformations
in preparing the input description for synthesis. He defined the following transforma-
tions: Constant folding, insertion of no-operations, dead code elimination, redundant
code elimination (also used in logic minimization as expression compaction), activity
splitting (adding redundant code), and moving code to improve scheduling and re-
source sharing. One other important transformation he defined is the loop unwinding
transformation. Many of these transformations are also used in compiler optimization
[1]. The techniques described in this paper can be used, along with some measure of
code optimization, to optimize compiler generated code as well.

Trickey [17] has proposed some additional transformations, the main one being tree
height reduction which reduces critical path delay of the input description. A special
case of the tree-height reduction where all nodes in the data flow graph are addition
operations has been researched in [7]. Another recent work on transformations is by
Walker [18]. Examples of transformations described in [18] are moving code in and
out of if conditions and loops, creation of inter-processes communication operations
and using the inter-processes communication operations to create pipeline stages.

Situations where these transformations can be applied and their effects on the input
description in isolated examples have been discussed in [16], [17], and [18]. However,
none of these references have mathematically characterized or systematically evalu-
ated the impact of the transformations on the area-delay characteristics (or any other
design characteristics) of the synthesized design.

The second aspect of the problem, i.e. identifying the transformations which can be
applied to the given input description, is a non-trivial task. In this sub-problem we
have to consider all possible sequences of transformations which can be applied to
the input description. For example, the application of one transformation may open
up possibilities for the application of another transformation. Examining every pos-
sible combination of the transformation applicability is a combinatorially exhaustive
process, and how to prune the search space to limit the combinatorial growth is an
open research problem. In [16], [17], and [18] the transformations are sequenced in
a demand driven fashion. That is, the transformations are prioritized according to
some criteria and then applied. For example, the transformation which reduces area
most is applied first [17). This technique of applying transformations is weak and
leads to locally optimal solution as against globally optimal solutions. In this paper
we assume that the second aspect has been performed, either manually or automati-
cally. The techniques developed here can be used to fathom the explosive growth of
this aspect of transformation problem efficiently.

The third aspect of the transformation problem was first demonstrated in (8] where
some transformations have been evaluated. The evaluation technique is based on
the area-delay models developed for pipelined and non-pipelined design styles. These
models examine the functional module’s area and delay parameters to predict a lower-
bound area-delay tradeoff curve for the input description. The models, and conse-
‘quently the evaluation proposed in [8], ignores the affect of register and multiplexer
area on the area-delay curve. Mlinar [12] has derived a model which estimates register
and multiplexer area and can be added to the model of [8] to provide an accurate
measure which can be used for transformation evaluation.

The fourth aspect of the transformation problem is the selection of the transformation
which would meet the design constraints and optimize the design goal, thus generating
the most efficient design. It is this aspect of the problem we are concerned with in
this paper. To the best of the authors knowledge this aspect of the problem has not
been researched previously.

In what follows we define our problem and develop the multiple-choice knapsack
formulation for the problem (Section 3). We then define the Lagrangian relaxation
of the problem and use two search technique for finding the Lagrangian multiplier
(Section 4). Section 5 discusses post-optimal heuristic methods employed to improve
the Lagrangian relaxation solutions. Finally, some results are presented in Section 6.

3 Theoretical Foundations

In this paper we will limit ourselves to evaluating the effect of transformations on the
area-delay characteristics since we have formal models to predict these measures. In
the paper itself, for the sake of brevity, we will restrict ourselves to the model given in
[10]. Other features that might be important to the designer are pin count, testability,
and power dissipation. However, the lack of formal models at this time restrict us to
area and delay measures alone. Further we will restrict ourselves to pipelined design
styles using the model in [10] to characterize the area-delay quantities. Similar results
for non-pipelined design style can be generated using the model in [9].

Given a pool of transformations and a design constraint along with formal models to
capture the area-delay characteristics, our objective is to solve the following problem:
Which transformations should be applied, and how many applications of each from
the set of applicable transformations to get an area-delay efficient implementation?

3.1 Characterizing Transformations

A data flow graph transformation r; operates on an input behavioral description B
and produces a new behavioral description B’ which is functionally equivalent to
B. Let A and T be the lower-bound area and delay of the design produced for the
behavioral description B (A and T can be computed using the model given in [10].)
Similarly, let A" and T' be the lower-bound area and delay of the design produced
for the behavioral description B'. In the remainder of this section we show how one
might characterize a transformation, i.e. quantify the delay penalty AT = T -T
and the area penalty AA = A" — A imposed by the transformation.

Some transformations such as the decomposition transformation can be completely
characterized (that is, their impact on the input description computed) with infor-
mation about the module set alone. For other transformations such as the critical
path reduction transformation, the actual instance of application needs to be speci-
fied. That is, each individual application of the transformation can have a different
impact. Consequently each individual application instance is treated as a separate
transformation.

We illustrate the characterization step with the aid of an example. Let us evaluate the
impact of decomposition transformation (Figure 1) on the area-delay curves on the

pipelined design style. There are two subcases to be considered. First, if the operation
which is being decomposed is not the slowest operation in the input description then
the change in delay AT = T' — T = 0 (since the clock cycle depends only on the
slowest module in the pipeline and thus remains unaltered). This implies that for zero
change in performance, there may be a change in the area. In the second subcase, let
the the slowest operation type be decomposed. Also, let there be n slowest operations
in the input description. Since the change AT is entirely dependent on the slowest
operation in the input description, AT remain zero until all the n slowest operations
have been decomposed.

Let k be the number of slowest operations which are decomposed, 0 < k < n.
k = 0 implies that none of the operations are decomposed. Let AAy = A - A
and ATy = T' — T be the area and delay penalty respectively, if the transfor-
mation is applied k times (note that a negative AA; implies decrease in area).
For k = 41 T’ - mawimurn(dSmult, d16adder) d32adde'r, d32subtractor)a for £k < 4 T, =
mawimum(dBmulta d16adder, lemulh d32adder7 d3‘2subtractor)a and T = mamimum(dm mults
d320dder> d32subtractor). For our example,

T —T ifk=n
0 otherwise

AT, = {
and,

AAg = k(4agmut + 5a16adder — a16mult)

where, agmuit, G16adder and Q1emu are the areas of the 8-bit multiplier, 16-bit adder
and 16-bit multiplier respectively. Using these values from Table 1, we have AAL =
16,200k, and ATy = ATy, = AT3; = 0 and ATy = —-35. We observe that for the
decomposition transformation AAy and ATy can be computed based on the module
set parameters and hence are completely defined by the module set.

3.2 Combining Transformations

So far we have shown how to characterize the effect of a single transformation on
a single design point of the area-delay curve. In this section we will outline the
formulation of the problem whereby we select only those transformations which lead
to efficient implementation and determine the number of times to apply them.

Denote the set of all possible transformations by R = {ry,re,- -7k }. Assume that
design area constraint is Amqs and the design goal is to minimize delay (i.e. maximize

8

throughput)?®. Let AA;x and ATy be the area and delay penalty of applying k times
the transformation r;. Then, the problem P of selecting appropriate transformations
and determine the number of times to apply each transformation is formulated as a
multiple-choice knapsack problem [15] as follows:

K d
minimize 0> (Y x ATy)
. ::].I{kzb‘.
S5 (Yik x AAp) € Az — A
t=1 k=0
oct ¢ ‘,
subject to ZY"’“:L i=1,2,--,K
k=
Ya={0,1}, k=1,---,d;i=1,--,K

where d; is the maximum number of times transformation r; can be applied on the
input description. The first constraint ensures that the area constraint imposed by
the designer is not violated while remaining constraints ensure that transformation
r; is either not applied, in which case Yo = 1, or applied exactly k times, in which
case Y = 1.

In the remainder of this section we will derive an equivalent ILP (Integer Linear Pro-
gramming) formulation of the 0-1 ILP problem given above. A Lagrangian relaxation
of the ILP formulation is then obtained.

Let t;(z;) be the savings in time when transformation r; is applied z; times (ti(z:) =
—ATy,). Similarly, let a;(z;) be the area penalty (increase) when transformation
r; is applied z; times (a;(z;) = AAiz;). Note that z; are non-negative integers and
are bounded above by d;, the maximum number of times transformation r; can be
applied. The area increase cannot exceed b = Ap.z — A. Furthermore, we assume
that for:=1,...,K:

t,’(O) =0, t,'(:Ei) > 0 when z; > 0, and t;(d,’) >0
a;(O) =0, a,-(x,-) > 0 when z; > 0, and ai(d,‘) >0

We assume b > 0 and, for all 7, ¢; and a; are increasing (not necessarily strictly). An
equivalent formulation of our problem is:

3A similar problem can be formulated for a delay constraint and a goal of minimizing area.

zp = Inaximize > ti(=i)

subject to "
<z; < d;, z;integer t=1,..., K

Under these assumptions, a solution of (1) always exists. Note that no assumptions
of linearity or continuity are made for any of our functions; in fact, they are only
defined on a discrete set. To further simplify the notation we define

K
T = [371,1"27 et >:L‘K]7 t(m) = Zt,((l),)

d:=[dy,d,...,dx], a(z) = Zai(iﬂi)

S:= {z:0<z;<d;, = integer t=1,...,K}

K
The set S is finite with | S| = J[(di +1). The problem (1) can be rewritten in more
1=1

compact form as

zp = mmaximize t(z)
- a(z) < b (2)
subject to €S

4 Relaxed Lagrangian Approach

In this section we define the Lagrangian relaxation of (2) and two methods of solving
the relaxation.

Let u be a nonnegative real variable. The Lagrangian relaxation of problem (2) is
defined as:

zia(u) == max t(z) — u(a(z) — b) (3)

10

and its Lagrangian dual is given by,

Zip 1= 1512161 zur(u) (4)

Theorem 4.1 (Weak Duality [13]) For allu >0, zua(u) > z¢ and therefore z,p 2>

Zp.

The theorem states that z,p is an upper bound for zp, the optimal value of problem
(2). Let z* denote a solution of the Lagrangian relaxation (3) for a fixed u, that is,

"= argg;ax (t(z) — u(a(z) — b)) (5)

The next lemma [3] shows that z* solves a perturbed version of our original problem:

Lemma 4.1 (Right-hand Side Perturbation) Vu > 0, z* solves the following
problem:

maximize t(z)
subject to { a(z) < a(z)
reS

Corollary 4.1 If for some @ > 0 a(z®) = b, then z* solves (2).

Corollary 4.2 Let uy, uz > 0 and z* be a solution of (2). Then, b < a(z*) < a(z™?)
implies that t(z*) < t(z™) < t(z2). Also, a(z*1) < a(z™) < b implies that t(z™) <
t(z*) < t(z*).

Corollary 4.2 shows that the difference a(z*) — b is a measure of error between t(z*)
and optimal solution z,. More precisely, if we define

Utens 1= arggr;in b a(z*) ®)
st b > a(z)

11

and
Thintess := argmin a(z*) — b
u>0 i (7)
s.t. a(z*) > b

and let 2 1= p¥es and g™ ;= gl then, among all feasible z¥, t(z"*) > t(z¥)
and, similarly, for all infeasible z* we have t(z*) > t(z™**). That is, 2"* and z"™**
are the best feasible and infeasible solutions of (2).

Note that, for a fixed value of u problem (3) is easy to solve. First, since b and u are
constants within the problem, the term ub can be dropped. Next, the problem can
be decoupled into the following K maximization subproblems, each of which can be
solved by simple enumeration. For ¢ = 1,..., K, solve:

zi(u) := max ti(z;) — uai(z:)

s.t. 0 < z; <d;, and integer,

and sum the solutions of the K subproblems:

zia(u) = Ez{(u) + ub

Furthermore, being independent of each other, these subproblems can be solved in
parallel. Thus, if we can find fy,, and ., the relaxation of (2) can be quickly
solved. The following lemma [3] can be used to find U, and inseas-

Lemma 4.2 Let f and g be any real-valued functions defined on a set W. Foru 2> 0,
let z* be a solution of

max f(z) — ug(z)-

Then ug > uy implies that g(z*?) < g(z*1).

The above lemma shows that a(z*) is a decreasing function* of u (an example of
a(z*) is shown in Figure 4).

4The solution z* of (3) may not be unique. Thus, it appears that a(z") is not well-defined as a
function. The difficulty is only apparent; we discuss this in Remark 4.2.2.

12

a(xV)

Figure 4: Graph of a(z*)

4.1 Bisection Search Technique

Thus, a natural way to find a 4 such that a(z*) = b (or, more likely, best near-
solutions ., and fi.,,) is to use a bisection method (also known as binary search
technique) [4]. Furthermore, since a(z) is a decreasing function of u, those u for
which z* is infeasible are on the left of & (0T @ingess); We label them wuy. Those u for
which z* is feasible are on the right of @ (or U.,); we label them uz. The Bisection
Algorithm terminates either with dineas and g, (as the final values of u, and ug,
respectively), or with 7.

Bisection Algorithm

Step 0: up, := 0,up := v/, choose € > 0

Step 1: @ := Us + U

Step 2: solve (3) with @ as lagrangian multiplier.

13

Step 3: if a(¢®) = b then stop. /* precise optimal solution */
Step 4: if a(z*) < b then uy = 4; else u, =1
Step 5: if up — uy < € then stop; else go to 1.

When u = 0, (3) is a relaxation of (2) and if a(z®) < b then z° is optimal for (2).
Apart from this (unlikely and fortunate) possibility, in which the area constraint is
actually superfluous, we can assume that a(z°) > b. Thus, the choice u, =0 in Step
0 of the Bisection Algorithm is appropriate.

Remark 4.1.1 The quantity u’ in Step 0 of the Bisection Algorithm must be chosen
so that a(z*) < b. A possible choice is

2

v = () + 1.
min a(z)
z:a(z)>0

To see this, let
$%:={z e S:a(z)=0} and S’ :={z € S:a(z) # 0}

and

Apin = gélsr} a,(:l))

Since the function t(z) is non-decreasing in each component, we have that t(d) >

t(z), Yz € S. Therefore:
(@ _)

Qmin a(z)

el

,Vze S’
Let v’ = -ﬁ% + 1. Then

u' > E(_rc_)_, Vz e S
a(z

)

or equivalently,

t(z) ~v'a(z) <0, Vz € §". (8)

Yz € S°, we have
t(z) — v'a(z) =t(z) 20 (9)

14

By (8) and (9), the solution z* of

P / .
max t(z) — v'a(z)

must be an element of S°, and therefore a(z¥) =0 < b, as required.

figess and TUiness are not unique. The graph in Figure 4 is typical, in that any point
from the interval [us, u4) may be chosen as t.,,, while any point from [ug, us) may be
chosen as ;... € must be small enough such that at the termination of the algorithm
u,, and ug belong to two adjacent intervals.

4.2 Tangential Approximation Search Technique

The Bisection Algorithm is a simple method to obtain the best feasible and infea-
sible Lagrangian solutions as defined in (6) and (7). However, one shortcoming of
this algorithm is that it only uses uy, us, a(uy), and a(ug) in choosing trial points
and deciding to terminate and ignores zya(u.) and zyr(ug). The Tangential Approx-
imation Algorithm, we will describe in this section, does not have this shortcoming.
The following theorem establishes some properties of z,z(u) used by the Tangential
Approximation Algorithm.

Theorem 4.2.2 The function zx(u) (defined in (3)) is a piecewise-linear convez
function (with a finite number of pieces).

Proof: For all u > 0,

zir(u) = rilea,gt(:r) —u(a(z) —b).

For each element z7 in S define
fi(w) = t(a?) — u (a(e?) - b)

f;(w) is an affine function of u. Furthermore, since the set S is finite there are a finite
number of these functions. Therefore, z,5(u) is the maximum of a finite number of
affine functions:

fi(u).

ZLR(U') = Jegl,ai?lcsn

15

Thus, zpa(u) is a piecewise-linear convex function. |

We have:
(t(z!) —u(a(z!)—b), 0L u<uy
t(z?) —u(a(z?) —b), ur<u<u

zia(u) = ¢ (10)

 t(z") —u(a(z™) —b), Up-1 Su,< 00

where n < |S|. The slope of each linear function is given by b — a(z') . Since zup(u)
is convex, these slopes strictly increase as 7 increases.

Let A .
t;:=t(z') and p;:=b—a(z').

We will refer to the interval endpoints u;, i = 1,...,n — 1, in the definition of z1x(u),
as “corner points”.

Each u > 0 lies in a unique interval [u;_;,u;) and is associated with a unique slope
p; corresponding to that interval (we sometimes refer to this as “the slope at u”).
Strictly speaking, this is the right-hand derivative at u. Moreover, for each corner
point u;, piui + i = piyati + tiga

Lemma 4.2.3 For the piecewise-linear conver function z.x(u), the final slope (the
slope of the last linear piece) is positive and, if z° is not feasible, the initial slope (the
slope of the first linear piece) is negative.

Proof: From Remark 4.1.1, we have that a(z*) = 0 when

t(d)

MiNg.q(z)>0 ¢(T)

U >

Thus, for all u sufficiently large,
zir(u) = t(z*) + ub

and the slope will equal b. Hence, p, = b > 0. If z° is not feasible, then a(z®) > b
and the initial slope p; must be negative. u

16

Figure 5 depicts a typical plot of zya(u). The graphs in Figures 4 and 5 are closely
connected: the decreasing step values of a(z*) in Figure 4 correspond exactly to the
increasing slopes, b — a(z*), of the linear pieces in Figure 5.

Let u* denote argmin,syzia(u) and u; be the final value of u, generated by the
algorithm. The Tangential Approximation Algorithm, exploiting the convexity of
zur(u), takes its new trial point at the intersection of two tangent lines, one with
negative slope (on the left) and one with positive slope (on the right).

z LF(u)

Figure 5: The Lagrangian relaxation function

Figure 6 illustrates the steps taken by the Tangential Approximation Algorithm to
find u*.

17

Tangential Approximation Algorithm

Step 0: uy :=0, ug :=u, t, = t(z*),p, := b—a(z**) ,
tg := t(z"R), pr 1= b— a(z*R)

t;, — ts
Prn — Do

Step 1: 4 :=

Step 2: solve (3) and set £ :=t(z?), p:=b— a(z®)

Step 3: if p = 0, then u* := @; stop.
/* We have z?* as the precise solution to (2) */

Step 4: if zyp (@) = pL@ + t., then u* := 4 and u := uy; stop.
/* x‘u‘ — xfeas and (Eui — mfeaa */ .

Step 5: if p < 0, then uy := 14, t,

A = {7 pL = ﬁ;
else ug := 1, g :=1, pr := P;

Step 6: go to step 1.

In Step 0, v/ must be selected such that a(z*') < b (as was done in the Bisection
Algorithm).

The quantity @ in Step 1 is the minimum point of the piecewise linear function:

maz{t, + upy,ts + ups}

Since p, < 0 and ps > 0 the minimum value of the above function is achieved at
the intersection of these two tangent lines. The equation in Step 1 for finding a new
trial point u has been taken from [6]. However, [6] does not use the notion of a
piecewise-linear convex function.

The next theorem establishes an upper bound on the number of iterations required

by Tangential Approximation Algorithm to find u™.

Theorem 4.2.3 At most n — 2 iterations are required by the Tangential Approzima-
tion Algorithm to find u* (thus solving the Lagrangian dual problem (4)). If u* is
unique, then u* is some corner point u; and we have uf € (i1, ui).

18

2

Figure 6: Tangential Approximation Algorithm

The proof is given in Appendix A.

Corollary 4.2.3 If z.x(u) has a unique minimum point, then u* = U, and uj =

. . . . ~ * o .
finrens- If the minimum is not unique, then u* =4 and z* solves the original problem
infeas 3

(2)-

Proof: If there is a unique minimum, then Yu € [u}, u*) C [ui_1, u:), the slope of
zr(u) is constant. Therefore, a(z") = a(z*). So, for u < uf,

*

a(z*) > a(z"r) > b,

For u > u*, we have that
a(z*) <a(z") <.

Thus u* = fges, and U] = Uinteas-

19

If the minimum is not unique, the slope at u* is 0. This implies that a(z*") = b,
u* = 4 and by Corollary 4.1 z*° solves (2). |
The Tangential Approximation Algorithm has two advantages over the Bisection Al-
gorithm. It terminates finitely and it has clear termination criteria that guarantees
desired results. Furthermore, the worst case number of iterations required is of the
order of the number of linear segments in z5(u). In the experiments we conducted
the algorithm terminated after a small number of iterations. Also, if criterion given
in Step 4 is satisfied we have that up = Uinteas and Up = Ugen,-

In contrast, for the Bisection Algorithm we must choose an € small enough to guaran-
tee that u, and ug are on adjacent intervals (and hence up = Uinteas, Un = Tgeas) When
ug — u, < €. In practice, to insure proper termination of the algorithm the value
of ¢ is usually chosen much smaller than needed, which results in wasted iterations.
This is another reason why the Bisection Algorithm requires more iterations than the
Tangential Approximation Algorithm (see Section 4).

Remark 4.2.2 Calculating za(u) implies solving (3). If (3) has more than one
solution we select the one with minimum area. This makes a(z*) well-defined as a
function of u and resolves point mentioned in footnote 3. This choice corresponds
to selecting the right-hand derivative as the “slope at u”. Multiple solutions to (3)
(which occur only at the corner points u;) do not affect our algorithms, except possibly
at u*, where a better solution to (2) might be overlooked. This is a rare occurrence
and we do not attempt to handle it.

From Corollary (4.2) we have
t(wﬂfeas) S Zp S t(mﬁinfeas).
Therefore an estimate of the accuracy in using z™e is given by:

t(xﬁfeas)
t(m‘{"infcas)

Accuracy 2>

5 Post-optimal heuristic methods

feas

In this section we discuss two post-optimal methods to improve the solutions z
and zi"** obtained from the Bisection Algorithm or the Tangential Approximation

20

Algorithm. We call the first heuristic the “split-the-difference” method and the second
is called the “best-ratio” method. For both methods we initialize

io feas

° =1z and "=z

infeas

The “split-the-difference” method computes the midpoint, ™, of the line segment
joining z** and z™. A new trial point, z, is then formed with components equal to
the integer part of the corresponding components of ™. If the new point is feasible,
set z° = z, otherwise set " = z. This process is repeated until z = z'. Note that
when this algorithm terminates, we have, for each component %, either z¥ = z}' or
7' + 1 = z%. The split-the-difference algorithm is given in Appendix B.

The “best-ratio” method (Appendix C) successively increments those components of
z* that produce a feasible point and a large increase in the objective function with
small increase in the area. Specifically, the “best-ratio” algorithm searches for the
component ¢ that solves:
ti(zlo+1)—ti (o0
16?%&)]([{} a.'(:c‘-°+1;—a.-((:ci°))
s.b. a(z®) + ai(z? + 1) —ai(z?) < b

The ith component of z*° is incremented and the search repeated until no further
feasible increase in z" can be made.

The algorithm operates on z" in a similar fashion, decrementing the components of
g that give the most decrease in area for the least decrease in time and still stay
infeasible.

At the termination of these post-optimal procedures four new points, two feasible
points and two infeasible points, are generated. Let z*° to be the better of the two
feasible points and z** to be the better of the two infeasible points °.

Extending the error analysis presented earlier, we now have
.t(x*lo)

Accuracy > W

(11)
Note that t(z**) is not, in general, an upper bound on the optimal value t(z*).
However, in most cases, it turns out that t(z*™) is an upper bound for ¢(z*) and the
previous bound can be sharpened.

5Determining the “better” solution in infeasible case is more involved than in feasible case. We
select the point that violates the constraint less, unless the selected point gives a lower value for the
objective function than z*!°, in which case, we select the other infeasible point as z*hi,

21

6 Computational Results

The procedures described in the preceding sections were tested on randomly gener-
ated test problems. We generated four data sets. The number of transformations
was varied from five to twenty and the number of times each transformation can be
applied ranged from five to ten. Twenty problems with different maximum permissi-
ble area were solved for each data set. The results are given in Tables 2 through 5
for increasing values for K and d;. In these tables column 2 gives the optimal value
of the Lagrangian relaxation problem (3); columns 3 and 4 contain the values of the
objective function for the best feasible and infeasible points obtained from the La-
grangian relaxation problem. The area used by the best infeasible solution and the
value of the right-hand-side of the constraint, b, are shown in column 5 (separated by
a slash). The next 2 columns report the original objective function values for the best
feasible and infeasible points obtained after applying post-optimal heuristics. As be-
fore, the area for the infeasible point and the value of b are then given in the following
column (column 8). The number of iterations required by Tangential Approximation
Algorithm and Bisection Algorithm is given in column 9 (marked lter.). For Tables
2 and 3 the last column shows the true optimal value for the original problem. In
Tables 4 and 5 the estimated percent accuracy (as defined by (11)) is shown in the
last column.

In Table 2 results are reported for randomly generated problems with K = 5 and
di=5 VYi=1,...,K. The average number of iterations required for convergence
of the Tangential Approximation Algorithm for the problems in Table 2 was 4.6. We
make the following observations. In many cases, the objective function value for the
feasible point obtained by the Lagrangian relaxation algorithm is close to the true
optimal value. In fact, the exact optimal value was obtained for Problems 4, 5, 6,
12 and 14. Using the post-optimal heuristics, we were able to substantially improve
upon the initial solutions. For example, in Problem 2, we raised the accuracy from
82 % to 96 %. Note that, for Problem 12, the Lagrangian relaxation yields a solution
that satisfies the constraint as an equality. Thus, post-optimal heuristics were not
performed (and we reported 0 in columns 6, 7 and 8).

The violation of the area constraint for the post-optimal infeasible solution is relatively
small. Thus, if the area constraint is flexible the designer may opt to use a slightly
infeasible solution in order to make a substantial gain in time. For example, in
Problem 17, raising the area constraint by only 6 units, yields a time gain of 64 units.

Table 3 shows the results for data-set 2 with K =10 and d; =7 Vi=1,...,K. For

22

these larger size problems, the solution provided by the Lagrangian relaxation method
is substantially better than in Table 2, and the worst feasible solution produced by
the post-optimal heuristics was within 3 % of the optimal value. Despite the increase
in the problem size the number of iterations required by Tangential Approximation
Algorithm and Bisection Algorithm increased by a small amount. The average number
of iterations required for convergence of the Tangential Approximation Algorithm for
the problems in Table 3 was 5.6.

Tables 4 and 5 show results for data-sets 3 and 4, respectively. Here, K = 20 and
d; =10 Vi =1,..., K. The problems considered in Table 4 and 5 differ in the values
of the data used. On average, the values of the data for the problems in Table 5
are thrice the value of the data for the problems in Table 4. Except for a few cases
the estimated percent accuracy is above 97 %, showing that the proposed approach
produces good solutions for larger problems.

The average number of iterations required for convergence of the Tangential Approx-
imation Algorithm was 6.8 for Table 4 and 6.6 for Table 5.

Figure 7 summarizes the accuracy (as defined in (11)) achived for these problems.
For each data set the minimum value, the maximum value and the average accuracy
is shown.

7 Conclusions

In this paper we have addressed the problem of transformation selection for an area-
delay efficient RTL implementation. We have presented a solution to the problem
of selecting a transformation and determining how many times each transformation
must be applied. The problem has been formulated as a multiple-choice knapsack
problem and an approximate solution using algorithms based on Lagrangian relax-
ation have been developed. Moreover, two post-optimal heuristics which improve the
final solution have also been used.

We tested our approach on a large number of problems of different sizes and in
almost all cases the accuracy of the solution obtained by the Lagrangian relaxation
algorithm and the post-optimal heuristics was above 97%. The computer runtimes
for the heuristics ranged between 0.1s and 0.3s on a SUN SPARGstation 1 with 16
Mb main memory.

23

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1986.

[2] R. De Leone and R. Jain. Optimal Resource Allocation and Binding of Non-
Pipelined Designs. Technical Report TR 972, Department of Computer Sciences,
University of Wisconsin, October 1990.

[3] H. Everett. Generalized Lagrangian Multiplier Methods for Solving Problems of
Optimum Allocation of Resources. Operations Research, 11(3), 1963.

[4] B. L. Fox and D. M. Landi. Searching for the Multiplier in One-Constraint
Optimization Problems. Operations Research, 18(2), 1970.

[5] E. Girczyc. Loop Winding - A Data Flow Approach to Functional Programming.
In Proceedings of the IEEE International Symposium on Circuits and Systems.
IEEE, May 1987.

[6] H. J. Greenberg. The One-Dimensional Generalized Lagrange Multiplier Prob-
lem. Operations Research, 25(2), 1977.

[7] R. L. Hartley and A. E. Casavant. Tree-Height Minimization in Pipelined Ar-
chitectures. In Proceedings of the International Conference on Computer-Aided-
Design. ACM/IEEE, November 1989.

[8] R. Jain. High-Level Area-Delay Prediction with Application to Behavioral Syn-
thesis. PhD thesis, Department of Electrical Engineering, University of Southern
California, July 1989.

[9] R. Jain, M. J. Mlinar, and A. C. Parker. Area-Time Model for Synthesis of Non-
Pipelined Designs. In Proceedings of the International Conference on Computer-
Aided-Design. ACM/IEEE, November 1988.

[10] R. Jain, A. C. Parker, and N. Park. Predicting Area-Time Tradeoffs for Pipelined
Designs. In Proceedings of the 24th Design Automation Conference. ACM/IEEE,
June 1987.

[11] D. J. Kuck. The Structure of Computers and Computations - Volume 1. John
Wiley & Sons, New York, 1978.

[12] M. J. Mlinar and A. C. Parker. Estimating Register and Multiplexer Costs in
VLSI Design. Technical report, Department of Electrical Engineering, University
of Southern California, 1988.

24

i
1
|
|
l,
|
|
|

[13] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.
John Wiley & Sons, New York, 1988.

[14] N. Park and A. C. Parker. Sehwa: A Software Package for Synthesis of Pipelines
from Behavioral Specifications. IEEE Transactions on Computer-Aided-Design,
7(3), March 1988.

[15] P. Sinha and A. A. Zoltners. The Multiple-Choice Knapsack Problem. Operations
Research, 27(3), May-June 1979.

[16] E. A. Snow, D. P. Siewiorek, and D. E. Thomas. A Technology-Relative
Computer-Aided Design System: Abstract Representations, Transformations,
and Design Tradeoffs. In Proceedings of the 15th Design Automation Confer-
ence. ACM/IEEE, 1978.

[17] H. Trickey. Compiling Pascal Programs into Silicon. PhD thesis, Department of
Computer Science, Stanford University, July 1985.

[18] R. A. Walker and D. E. Thomas. Behavioral Transformation for Algorithmic
Level IC Design. IEEE Transactions on Computer-Aided-Design, 8(10), October
1989.

25

T =1AG = p ‘g =) ‘T 1es-ejep 0] s}[usoy :g 9[qe],

10L 81/ | 689/TLL #SL T0L | 689/668 1.8 189 00S°€TL | 0%
006 @2/ | FWIT/OVIT 006 ¥88 | ¥PIT/G8IT G¥6 118 eI1'136 | 61
8L0T T1g/S | L¥L/SVL 9901 GSOT | LPL/GSL LOTI 896 90070011 | 81
L99 61/9|20/80¢ 069 9z9 | T08/80S 069 L19 967789 | LT
698 61/ | S08/€S8 €06 ¢8 c08/€s8 €06 ¢h8 $9€°1L8 | 9T
¢IL 81/9|099/6LS 68L 90L | 09%/€89 16L z0L 819°0¥L | ST
Gl6 To/s | €98/888 086 GL6 | £98/%%6 8EOT L6 120266 | ¥1
0L6 €3/% | 819/689 166 0.6 | 819/97L 8III 028 ¥92°686 | €1
¢e6 6/t | 126/0 0 0 126/0€21 %201 Ge6 000°6€6 | 2T
668 12/¥ | 9L9/%1L 906 Gag 99/%1L 906 89L 2987928 | TT
TI€T 2¢/% | 6L6/186 €CE1 88T | 6L6/9%1T 8L¥I 981T 66C T¥EI | 01
¥L0T 61/% | ¥€L/9€L 080T 0901 | $EL/LSL 1811 ¢h6 1L0°L3TT | 6
680T 61/9 | LE0T/6%0T GIIT G901 | LEOT/€S0T GTIT ZP0T 9E0°CITT | 8
0L0T ¥%2/¥% | ¢6L/098 ¥OIT 0L01 | g6L/196 T61T €e0T TEL'€80T | 4
16T 1¢/G | S601/8211 ¥Lg1 1€¢1 | S60T/81CT HSET 1621 60€'292T | 9
206 ¥o/q | 098/968 Q16 T06 | 088/606 L¥6 206 £LE°L06 | G
8IET ©2/S | €STT/OLIT 8Z€T SIET | €STIT/OLIT 8ael 8IET 8LTETEI | ¥
G80T T1¢/S | 806/616 L60T 6L0T | 806/%20T 90CT 9¢0T 0S8'CITT | €
1eS LI/¥ | T16/€1¢ L8S QIS T18/1€9 1.9 e 708698 | ¢
2611 1¢/%|996/686 L9g1 88IT | 996/686 L9CI 8811 OV LTl | 1
/()2 ()t (onT)?
qdQ ey rewrjdo-jsog 9/ (eeoyu)P (eeou®)? (wea®)? %2 | 'qo1g

26

V.N. Coes nH — ~> aN. — .uww pOﬁ = V~‘ ﬁN u@mv@&dﬂu .HO,% mm:.:mmv\m nm @.—Q.N_HL

gcoe ¢z/c | 018z/0187 8%0& L10€ | 018%/¥.6C 061€ 662 9%0°6.0€ | 0T
yeLT €2/9 | e1e1/ovel ¥9LT WELT | SIGT/0¥FT 8861 6G9T F88°6ELT | 61
6£9¢ 1T/9 | 89%8/CSE 189€ 6£9¢ | 89¥E/6TSE LG9E 8Z9¢ FEL6°FPOEL | 81
1662 ¥a/¢ | 1281/TL81 966 L9S¢ | 1.81/6L61 €0L% 29€T €89°F19Z | LT
0L8C TZ/L | 9291/299T O01%C 0LEC | 929T/1GL1 €0ST 881¢ L8G'78ELe | 9T
£9ze 7T/L | 62C0/€99C GlLTe S¥TE | 60SG/€59% 69EE 9728 9LT'¥%L3€ | GT
€867 VT/S | $87T/98CC 8S6T €96T | ¥82T/61¥% S60E TL8T L¥TT86T | V1
e1ve €7/¢ | 1818/0L38 O0E¥E €1¥E | L8T1E/098E T6¥E e1¥e €06°€TI¥E | €1
8¥87 2/S | ¢h6T/1L6C 198% S¥8T | &¥60/782¢ 0E0E 0¥8C 19,6187 | ¢1
6261 22/9 | SPET/L¥ET L¥6T 0061 | SPET/SEVI 9¥0C €181 890°9Y%6T | 1T
0191 €2/G | 00TT/LSTT 60L1 OT9T | OOTT/LSTT 60LT 0191 686°9%9T | 0T
€197 €2/S | £002/210C 96SC LSST | €00%/960% 8LT 1660 LLT'6%9C | 6
9687 €7/S | 8GLT/09LT TL8T 978G | 8GLI/¥861 9TIE 7697 6ELT16C | 8
121¢ €0/S | 1992/899% 880¢ ¥90E | 1992/98L% 8ETE £86¢ 000°€STE | L
00L2 ¥2/9 | 91¥¢/81%C €892 L99% | 91%5/019% 0.8% 068G SP8LTLT | 9
19Le €2/C | 61€8/1¥EE 1SLE GELE | 61EE/¥6¥E ¥.8E $89¢ L39°GLLE | S
70ve €2/S | $L08/1808 €6€E€ 998¢ | $L0€/ST11E T1G¥E I81¢ 9TL'STIE | ¥
66L1 T2/9 | LL¥T/9€ST 96LT L8LT | LL¥1/¥16T 861C €8LT 0996081 | €
c9LT €2/9 | Te21/0SeT 9¥LT SELT | 2€eT/9L21 8T8I 8¥ST 90L°T8LT | ¢
9ccz €g/L | 6e1T/LE1T L6ST L¥ST | SEIG/LEIT 16ST GYST 998°G6ST | T
9/ (sZ)? ()1 (o®)?
dQ 18] [euwirydo-3sog 9/ (seoynZ)? (seogu®)? (cons)? 1z ‘9014

27

ST =A0T =P 0% =) ‘g 1es-eyep 10} symsdy F 9[qEL

%96 9z/L | 6e%6/99%c 9889 8789 | 6£¥S/989S <TOTL £6L9 €£71989 | 0T
%86 87/L | ¥6IF/¥61F 0G09 €209 | $61¥/L9TY L¥19 78L8 161°€L09 | 61
%26 9¢/L | 1682/019¢ 0€0¥ €00% | L6GG/LL9C LIT¥ 2968 SVI°GTO¥ | 81
%66 97/8 | TeeL/sevL 8¥16 9806 | TGEL/8THL 8F16 e506 £VP¥606 | LI
%66 62/8 | eqLe/eeLe TTTL GOTL | SGLG/€28S GLIL G0TL PLE'EITL | 9T
%E6 82/9 | 8QTH/ESTy GO¥S ¥6ES | 8SQTH/60SY ELLS 908G S6L'86€S | QT
%86 ¢z/9 | €162/916C €0¥F 09€v | £16G/G26C €SV e0Ty TLOLEFY | F1
%26 9z/L | 91€L/128L 60LL 00LL | 91EL/1LSL LO6L 189, TLT'9TLL | €1
%36 62/9 | 1,09/2609 009L L8GL | 1.L09/6929 T8LL LEVL 8GE0TIL | BT
%386 97/S | $L¥V/TLFY 0L6S 686G | BLYR/S8FF 6909 29S¢ 000°8509 | TT
%¥6 62/L | 62ce/L628 C86% TG6V | 67CE/18FE €6TS 69L7 92S°G867 | 0T
%66 07/8 | ©€9L/0¥9L 87€8 1978 | GEIL/OV9L 8TES 696L L1S1GEY | 6
%L6 12/c | 18€9/10%9 TgSL 68FL | L8£9/96G9 9TLL g8eL 009°6ESL | 8
%66 12/L | 06L%/86L% LT19 €119 | 06L%/€18% 6819 616¢ 2999919 | L
%16 87/L | GPSE/6¥SE 698 £FES | GPSE/199¢ €TSS 6L1C €QT'¥6€S | 9
%66 8c/L | 8¥6L/096L ¢T¥S8 1688 | 896L/€96L 1888 £898 £16°GL88 | ¢
%86 8z/L | €0L9/82L9 8998 9998 | £0.9/%969 V.88 9698 966,98 | ¥
%96 1%/L | 90TS/TGTS 2049 0L99 | 901S/0L8S 9969 1179 €80°00L9 | €
%96 8z/L | 198€/298¢ 9¥9¢ 68GS | 198¢/180% 1G8¢S Geys T6S°0L9S | T
%96 ¢z/9 | $923/89%¢ ¥09¢ 1c9€ | $92¢/6¥EC 19LE CPPE 9LL°099¢ | T
9/ (wx)? ()1 (onZ)?
AoeInooy 1091 [ewydo-1s0g Q/ (seouiZ)? (eeayui®)? (sessT)? a1y ‘qoig

28

T = AT =P ‘0T = Y ‘P 19s-eyep 10 synsay G 9[qR],

%86 0¢/L | 7¥681/8C681 8G81C L¥L1Z | ¥681/10661 G¥1Ce O¥PIC 806'CL8IC | 0C
%96 82/9 | LYE6T/7LG6T ¥GLGC €998 | LYE6T/¥PS0C ¥¥O9T T€¥GC ©G8'ELLST | 61
%E6 ze/L | co18/0128 20921 0Z¥¢i | ¢018/.968 66E€T 0G¥CT GST'LEVCT | 81
%36 12/9 | c0g8/0268 8¥9€T L0GET | S0S8/G188 TIGPL FLECT ELO'6IRET | LI
%96 18/L | 092€T/%926T 9LOLT €969T | 092ET/LELET TQILT L6EIT GSTOSTLT | 91
%26 0e/L | €99€1/6L98T TIS6T OTS6T | €99€1/02EHT 09102 0S¥6T O¥E'TI¥S6T | ST
%66 62/L | 8TPST/61¥81 612V 6€TFT | 8TFBT/THI8T 0G¥¥C 806EC ¥09'99¢¥e | ¥1
%86 62/9 | 17881/08881 ¢69€Z L6GE€T | 1GS81/18061 LLO¥C — 1LE€C 009°289€T | €1
%06 og/L | 9161/889, T186CT 16821 | 926./€998 61E€FT L88GT GLG'€G6CT | C1
%E6 92/9 | 646L/%128 ¥6TET TG0ET | 6.64/6898 TI¥OPT 899¢T ¥IV6VIET | 11
%L6 12/9 | $ELET/ShLET €529 TETIT | VELZT/E66C1 T899 €84T 8G6'8EVIL | O1
%96 18/L 1 LETET/LSTET SP6LT 0GSLT | LEIET/G99ET T0S8T 06691 €ST'ETO8T | 6
%001 62/8 | C6SLT/906LT 8SLTT 9S.3¢ | T6SLI/Tv6LT 8€8CC 69SGC VIL'G6LTT | 8
%86 ze/L | G6T81/G6T81T LTLET GT98T | G6GST/89€8T 800¥¢ 100€C GLG'GE6ET | L
%98 62/L | 0S0L/180L TEEIT EIETT | 0S0L/¥%S8 C6IET GSOTT 6LG'TI6EIT | 9
%06 gz/c | ecvL/66%, 6€ETT L0€TT | €9%L/%LG8 T89ET LTOTT LOE96€TT | €
%26 1z/¢ | 802T1/9¢2a1 99L9T TL99T | 80CT1/1¥GET ISTLT 86L8T GIL'6C89T | ¥
%66 62/L | T1921/8¥921 6081 186LT | 119GT/8¥9¢1 ¢608T L¥6LT 096°€S081 | €
%36 ee/9 | 99¢LT/L8ELT €9TCT TS0TT | 99ELT/CLOLT 89¥CT 8S8IC ¥8GELILT | ¢
%66 8z/L | 69LLT/008LT 0981 €1S1T | 69LL1/T86LT 98L1% 9360C T80°66STIC | 1
9/ (weZ)P ()1 (onZ)?
Kfoemdoy "19] rewjdo-1s0g Q/ (eopui)P (seogui®)? (seeiT)? aty ‘qoid

29

1.00

0.95

0.90

0.85

0.80

0.75

&
min O
X
% ave X
max &
X
o)
X
o
°
? | | |
1 2 3 4

Figure 7: Solution accuracy for the data-sets 1-4

30

A Proof of Theorem 4.2.3

In the appendix we give a proof for Theorem 4.2.3. We use the notation given in (10)
and the Tangential Approximation Algorithm. Let I = [uj,u;41) be the interval in
which @ lies. If p = 0, i.e., there is zero slope on I, then we have a local minimum at
i, and so, by convexity, @ = u*. This u* is clearly not unique, since any u € I can be
chosen as u*. This covers step 3 of the algorithm.

Let Iy, = [ui_1,u;) and Ip = [ug,ukrs1) be the intervals in which u, and ug lie,
respectively.

Claim: u; < u < ug
Proof: Since zpp(u;) = pyu; + t;, and pg is a subgradient of z1() at ug, we have

pLui + iy 2 paui + g

Thus,
I
U; &S = u.
Pr — DL
Similarly,
prUk + tr 2 pLuk + 1
yields
t, —1
U > - LT
Pr — DL
The claim is proven. [|

Because the slopes on the intervals are strictly increasing as we move to the right, we
have:
(1) if @ > u;, then za(#) > put + 1t

and
(2) if U < uk, then ZLR(’H') > pnﬂ + tR.

By (1), the termination criterion of step 4 in the Tangential Approximation Algorithm
is only satisfied when @ = u;. But, then, by (2) (and since ppt + i, = pati + tr), we
must also have @ = ug. Thus u; = uy, i.e., I and Ir are adjacent segments (and
I = Ig). But, since p, < 0 and pr > 0, we have a strict local minimum at @. Thus,
by convexity, # = u* and u* is unique. Also, uj = uy € [ui—1, i)

31

If we do not terminate at step 4, then step 5 maintains the condition that p, < 0 and
pa > 0. Also, since u; < % < ug, we have

u Luj < ujpy S Uk

In other words, I is a new interval disjoint from and between I, and Ir. When step
5 chooses % as either the new u, or the new wug, it is also choosing I as the new I,
or In. Thus, I, and Ir are “advancing” toward each other at every iteration (unless
7 = 0 at some stage) and, eventually, will be adjacent intervals, at which point the
termination criterion of step 4 will be met. Since there are at most n — 2 intervals,
we can have at most n — 2 iterations.

32

B Split-The-Difference Algorithm

Step 0: g = giea; g = it

Step 1: z™¢ := gtz 2”“

Step 2: z := floor(z™) /* Take the integer part (in each component) of z™¢ */
Step 3: If z = ', then stop.

Step 4: If a(z) < b, then 2" :=z, else 2" ;=

Step 5: Go to 1.

C Best-Ratio Algorithm

Step 0: g :=z'*; z" =1z

Step 1: I:={i: z¥+1<d; and a(z") + ai(z7 + 1) — ai(z}) < b}
Step 2: If I =0, then go to step 6.
. t;(zh —t;(z¥
Step 3: j := argmax (a:: +1) -t (:1:,‘)
ie{l,.K} ai(z? +1) — ai(z¥)

Step 4: z¥ =2 +1
Step 5: Go to 1.
Step 6: T:={i: 2 —1>0 and a(z") + ai(z} — 1) — ai(z}) = b}
Step 7: If I =0, then stop.
. ai(z}) — ai(a} ~ 1)
Step 8: j := argmax . -

ped ie{%,...,K} ti(zh) — ti(zh — 1)
Step 9: ¥ :=2¥ —1
Step 10: If ¢(z") < t(a"), then ¥ := z}¥ + 1; stop.
Step 11: Go to step 6.

infeas

33

