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Abstract

The impact of the departure process from a priority queue, on the response time in a subsequent tandem queue is
not well understood. In this paper, a model of a priority queue feeding a FI FO queue is used to analyze the response
time of both high and low priority jobs in the second queue. For both preemptive and non-preemptive priority, we
show that the response time of each class in the FIFQ queue is a function of the first two moments of the service
times of both queues and the idle time in the FIFO queue. These results depict that having priority scheduling
in the first queue, can cause high priority jobs to gain in the second queue as well. We also show that when the
scheduling discipline in the first queue is non-preemptive, conservation of response time holds in the second queune.
We thereby derive bounds for the response times of both high and low priority jobs in the FIFO queue. Knowledge
of first and second moments of service times in each queue, is sufficient to bound the response time in the FIFO

queue.

1 Introduction

In computer networks messages often have to pass through a number of nodes in sequence. Similarly, in
assembly systems, jobs sequentially go through a number of stages. When all jobs are of the same kind,
they usually get served in a first-in-first-out (FIFO) order, in each stage or layer. Sometimes however, jobs
may belong to different classes and thus have different response time constraints. For example in real-time
systems, like communication networks, deadlines have to be met for voice packets but not for data packets.

In order to meet these deadlines, classes with more stringent timing constraints are given higher priority.



Introduction of priority increases the complexity of analyzing the performance of such ‘layered’ systems.
Priority scheduling in the upper layers or stages may affect the response time of jobs in subsequent layers
too. Hence the problem that we address is : what are the response times of high and low priority jobs in the
stage just below the layer with priority scheduling?

In this paper we consider a F'IFO queue that is fed by a priority queue. Previous works dealing with
a FIFO queue being fed by an upper level queue, consider the feeder queue to be FIFO [4] [5]. For some
special cases of service time distributions in the feeder queue to which the arrival process is a general renewal
process, [4] derives bounds on the response time in the second queue. [5] gives useful orderings for response
times in the second queue under general service time distributions in the feeder. In this paper, we focus
on a FIFQ queue being fed by a priority queue, and derive expressions for the response time of high and
low priority classes in the FIFO queue. The service time distributions of the servers in both queues are
general, and the arrival process to the priority feeder is a Poisson process. On the basis of results from [4],
an upper bound for the response time in the FIFQ queue is derived, for the case where the feeder has
non-preemptive priority scheduling. We also see that response time is ‘conserved’ in both queues when there
is non-preemptive priority in the first, just like the conservation of response time in a single G/G/1 queue
with non-preemptive priority scheduling [3].

We now lay out the organization of this paper. Section 2 lists the assumptions and notation. In section 3
we derive equations for the response time in the second queue, for both preemptive and non-preemptive
scheduling in the first queue. Section 4 presents bounds for high and low priority jobs, when there is non-
preemptive priority in the feeder queue. Finally section § summarizes this work, and presents the conclusions

drawn from it.

2 Assumptions and Notation

All the results in this paper are for a queueing system that consists of a priority queue, @, feeding a FIFO
queue, @@2. The system and its environment are completely specified by the arrival process to the first
queue, the distribution of service times in each queue, and the priority queueing discipline in the first queue.
Two classes of customers arrive to the priority queue, viz. high priority customers denoted by ‘h’, and low
priority customers denoted by ‘I’. Both these classes arrive according to an independent Poisson process [2];

the arrival rate of high priority jobs being A, and that of low priority jobs being A'. The service time



distribution in both queues can be any general distribution; the mean service times in ¢ and in ()2 are /71-1-

and l_}f respectively. The queueing discipline in @; is head-of-the-line (HOL) priority [3]; scheduling can be
either non-preemptive (N P) or preemptive-resume (PR).

We make three major assumptions. First, the total arrival rate to the system, A = A" + A!| is less than
the service rate of either queue, uy and ps. Second, we assume no dependency in the service times of jobs
in the two queues. Thus, a job makes independent samples for its service time in both queues. Third, it is

assumed that each queue is work-conserving [3] (i.e. there is no creation or destruction of work).

Notation | Description l

HOL Head-of-the-line queueing discipline

NP Non-preemptive HOL

PR Preemptive Resume HOL

FIFO First In First Out queueing discipline

z—y Queueing discipline z in Q;. Queueing discipline y in Q2

@ The i*" queue in the system (where i is either 1 or 2)

Cyx, Coefficient of variation of the service times in Q;

A Total arrival rate to the system

i Service rate of server i

Pi Utilization of @

T; Response time of a job in @; (averaged over all classes)

Wi Waiting time of a job in @;

Ny Number of customers in J; seen by an arrival

No Number of customers in )2 seen by a customer arriving to @1
Yo Work remaining to be done in Q2 when there is an arrival of a job,J, to 1
Va Total work in @» of the jobs ahead of J, in ()

I Total idle time in @2 during J’s system time in @1

il Service time in @; of the i* job ahead of J in @

Table 2.1 Notation

The notation used throughout this paper, is given in Table 2.1. All variables corresponding to high and
low priority classes have a superscript ‘h’ and ¢’ respectively. For example, T¥ is the response time of a high
priority job in Q. Similarly p# is the utilization of high priority jobs in the second queue. (the priority

queueing discipline in the first queue will be clear from the context)
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Figure 1. System of Tandem Queues

3 Response Time Equations

31 NP - FIFO

Here we consider the NP — FIFQ case, where a priority queue with non-preemptive head-of-the-line priority
(NP) feeds a FIFO queue. We derive an expression for the mean response time in the FIFO queue for
both high and low priority classes. Consider a high priority job, J, which has just arrived to the NP queue.
Upon arrival, J sees NJ' jobs ahead of it in the NP queue, @1, and Y> as the total work remaining in the
FIFO queue, ! Q3 (see Figure 1). These N} jobs will join Q2 before J. Let their total work in @2 (sum of
service times) be denoted by V3.

We now look at the service time completions in both queues from the instant that J arrives at €. As
far as @y is concerned, it will remain busy at least upto the point when J departs from it. In other words,
as soon as one job completes in @3, that job will be immediately followed by the service of another job, as
shown in Figure 2. This need not be the case with Q2 however. When J arrives, it sees that there is a
total work of Y5 in Q5. After Yy amount of work is done in @ there may or may not be a service of a job

immediately thereafter, since that depends on the residual service time of the job currently in service in @;.

1Since both high and low priority jobs take a random look at ()2 upon arrival, Y2 does not have any ‘h’ or ‘I’ superscript.
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Figure 2 depicts the situation where @, is idle after Y» amount of work completes, and Figure 3 depicts the
situation where it is not. Once the Y3 amount of work completes, the FIFO queue will have to serve Vit
amount of work (note that there may be idle periods in between, as shown in the above figures). Job J can
be served in the FIFO queue, only after this V3* amount of work completes in that queue.

When J arrives to Qs, it sees a waiting time of WL, Let I? denote the total idle time in Q2 during Th,
that is the time that J spends in Qi; then we can derive the following equation for T}, by equating the

horizontal and vertical time components in Figure 2 or Figure 3:
T =Y Vi 4 1 - W
From this we get :
Wi =Yy + I} + V) - T¢ (1)
which we can write as
E[W3] = E[Y2] + B[]+ E[VS'] - E[T}] (2)
Thus far the only known term is E[T}!] since @ is an M/G/1 queue. So we try to determine the remaining

unknown terms.

Let us first try to eliminate Y3. Since the arrivals to the system follow a Poisson process, they take a
random look at the system [2]. Hence, they take a random look not only at (1, but also at Q2. If J sees Ny

jobs in @2, the moment it arrives at @1, then it follows from Little’s Law [2] that

E[Ny] = AE[T3] (3)



where E[T3] is the mean response time of a job in Q2. We now relate E[Y3] with E[No]. From the smoothing

property of conditional expectation [1] we know that
E[Yy] = E[E[Y2|No]]

If r is the residual service time of the job in service, and z; is the service time of job i in @3 where
i=2,...,Ng, then

Y2|N2:7’+CI}2+:L'3+...+.’EN2

which yields

1+ Cﬁg 4 No — 1{N2>0}

EY5|Ny) = 1,
[YalMa) = 150y 5. ;

where 1{y,50y is the indicator function [1] of at least one job being present in (J;. Hence it follows that

1+Ca?) | BN _p

B _ A
E[Yg] - E[E[YZ’NZJ] - 2# M M

Combining the above equation with equation (3) we get the following relation between E[Y3] and E[T3]

<

p(Cm"zz - 1)

E[Ys) = pE[Ts) + »

(4)

The next step would be to evaluate the term E[VJ] — E[T}}] in equation (2). Customer J sees N{* jobs
ahead of it in @;. Vi is the total work of these N} jobs when they join the FIFO queue (i.e. the sum of

their service times in the FIFO queue). If the service times of these jobs in Qg are s;2, 1 =1,.. ., NP, then

h
Nl

Vzthlh = Z 859
i=1

which yields

E[V}] = E[E[V}|INM = E [Nfl] _ EINT]

B2

H2

Let thl be the high priority jobs wailing in @1 ahead of J, when J arrives to that queue. Therefore,

NP = N:l + 1N, >03



where 1{n, 50} is the indicator function of atleast one job in Q. Hence E[N}] = E[N}]+ p1. Using this in
the above expression for E[VJ],

E[N}]+p

E[Vzh] - 11

We next use Little’s Law for E[N ;‘1] to obtain
E[Nj] = X E[W}] = X E[TY] - pf

Substituting this expression in that for E[VJ}],

1
E[V}) = ph E[TF) + fgz— (5)

This expresses E[V}}] in terms of E[T}]. The expression for E[T}] is given in [3]

_1- + pl(1 +Cfb‘12)

ETh —_
H= 2m(1 - o)

(6)

Now most of our equations are set up, and all we need is to substitute them appropriately and rearrange

terms. Substituting equations (4), (5), (6) into equation (2},

p2(1+Ca,®) 1=p2  pa pi(1+4Ca,*)(1 ~ ph)
2p0 #1 2 2u1(1 — p})

E[W}] = p2 B[] + E[I3] + (7)

where E[T3] is the average response time over high and low priority classes in the FIF(Q queue. Since

E[T}] = E[W}]+ 1,

1+C%) 11— 1— 1+ Cp,2)(1 ~ ph
E{Tzh] :ng[Tg]*i-E[I:];]—l— pz( +Cz,”) _ P2 + P2 Pl( + Cy, )( . P3) (8)
2p2 1 H2 2p1(1 = py)
A similar analysis can be conducted to derive the response time of low priority jobs in the FIFO queue,
E[T!]. The main difference here is that instead of the number of jobs in front of an arriving low priority job,

we also have to consider the number of jobs that pass it while it is waiting in ;. We thereby obtain

14Cp,?) 1—ps  1—py pi(1+Cs?) 1—ph
E[T}] = p2 E[T» +EI’+p2( S + + 1 - 2 9
(T3] = p2 E[T3] (2] s " 12 21 (L= p1) 2 1 ph (9)



where E[I}] is the mean of the idle time in the FIF'O queue, during the response time of a low priority job

in Q1. Since E[T3] is the average response time of high and low priority jobs in @5,

Py E[TF] + ph E[T3)
P2

E[Ty] =

Combining this equation with equations (8) and (9) above, E[T3] can be expressed as

_ ElD] 1 p(1+GCs?) [r pi(1+Co,)
E[T2] T 1- P2 + {#2 + 2pa(1 "Pz) } {M + 2M1(1 “/11) } (10)

where E[I] is the mean of I} and I}, i.e.

PEEIZ] + pLE(L)]
P2

E[lL] =

Note that the last two terms in the expression for E[T3] correspond to the mean response time in an M/G/1

queue.

Using the expression for E[T3] in equations (8) and (9), we obtain

- (1=p2) B2 2p2(l = p2) p o 2m(l—pr) 2p1(1 = 1)

E[L)] 1, p2(1+Cay®) 1, p(L+GCe”) (P8 - 1h
E[T)] = £ +EI!,+{—+————~——'—— +{=+ : 1 12
7] (1-p2) Izl pa o 2p2(1 = p2) pro 2p(l—p1) \ 1-p} (12

To compare the mean response time of high priority jobs and low priority jobs, we take the difference of the

above two equations,

; 1 B pi(1+Ce?) (p2— ;i
i) - El}] = b1t - £+ AU Cd (2= 01) (13)

Equation (13) provides us with insight to the impact that priority in the feeder queue has on the response
times in the second queue. First, since both high and low priority jobs have the same service time distribution
in the feeder queue, and high priority jobs have a smaller response time there, we can conclude that E[I}] >
E[I%’] Hence, the mean idle period in the FTFO queue during the time that a job spends in the feeder
queue is smaller for a high priority job than for a low priority job. Second, as long as p > p1, the last term

in equation (13) is non-negative. This implies that for py > p1, E[T5] > E[T2]; in other words high priority



jobs gain éver low priority jobs in the second queue even though there is no explicit priority in Q2! When
p2 < py the last term in equation (13) is negative. Since E[Ij] and E[I}] are unknown, it is not known
whether high priority jobs gain over low priority jobs when p, < p;. We intuitively expect them to- gain
even in this case, because by decreasing p; for a given A, the arrival process to the FIFO queue does not
change. Just changing the mean of the service time distribution in the FIFO queue, (i.e. decreasing p2)
should therefore affect only the quantitative behavior and not the qualitative behavior of the system. We
have seen that high priority jobs can benefit over low priority jobs in 2, w.r.t. response times, even though
Q, is FIFO. The next question to address is whether introducing priority in the feeder queue causes the
high priority jobs to benefit over the case where the feeder is a FIFO queue. For this purpose we now move

on to examine whether response times are conserved in 2.

3.1.1 Conservation of response times in Q3

In this section we show that having non-preemptive priority (N P) in the feeder queue does not affect the
average response time in @2 over high and low priority classes as compared to the case where the feeder is a
FIFO server. Consider a priority-blind gremlin observing the N P queue feeding the FIFO queue. Since the
gremlin is priority blind, to him the entire system behaves like two FIFO queues in tandem (the departure
process of jobs from the N P queue appears the same to him as if the queue were a FIFO queue). Therefore,
E[Y:] seen by him at arrival instants to @y, will be the same as in the FIFO case. Since equation (4) holds
for the FIFO case too, it implies that if E[Yz] is the same for NP — FIFO and FIFO — FIFO cases,

then so should E[T%]. Therefore we have the following conservation of response times in Q3 :

PAETY] + A E(T] _ o

2 [TallFiFo—FiFo (14)

We showed earlier that when p, > p;, high priority jobs have a smaller response time in Q2 than low priority
jobs. Hence by the conservation property, whenever p» > p1, high priority jobs in the NP — FIFO case
perform better in Q4 than in the FIFQ — FIFQ case. From our results, however, the existence of a similar

benefit when p2 < py cannot be derived conclusively.



3.2 PR FIFO

In the previous subsection response time equations in @, were derived for the case where there was non-
preemptive priority in the feeder queue. Since these equations were in terms of the first two moments of
the service times and the idle times in @2, a natural question to ask is whether this result extends to the
preemptive-case as well. In this section we show that this is indeed the case. To obtain equations for the
response times in (J» in the preemptive case, the procedure is similar to the non-preemptive case. As far as
high priority jobs are concerned, the only difference from the non-preemptive case is that they see only high
priority jobs in front of them, including the one in service. Keeping this in mind, the rest of the analysis
proceeds just like in section 3.1. Similarly for the low priority jobs, the high priority jobs that preempt them

will also have to be considered. We thereby state the following response time equations without proof :

L—py  pa(14+Cs) 1 (14 Cp?)
E[Ty] = pEB[D +E1h+{ + Lo b T (1l 15
(73] p2E[T3] (1] 12 2t " 20 (1 — ) ( P3) (15)

and for low priority jobs

1—ps  pa(l+Cy,?) 1 "1+ G
E[T] = poE[Ty] + E[I +{ + AR QU I i el £ WA U IO

_p)iz,l'"plzL _pll(l"}'cxlz) P1(1+C’x,2)

e an(= D) w1 T (16)

where as before E[T3] is the average response time in ()» over both classes. In the above two equations
we note that the first few terms are almost identical except for the terms E[I}] and E[I}]. Just as in the
non-preemptive case, we can argue that E[I}] < E[I}]. Therefore, over a certain range of p; and ps, as
specified by the last three terms of equation (16), we can conclusively state that high priority jobs gain over
low priority jobs. Although from the above equations we cannot infer that this result holds for all values of
p1 and pg, we intuitively expect this to be the case because varying p; w.r.t. p; does not change the arrival
process to the FIFO queue, but merely changes the mean of the service time distribution in Q2. Hence,
just the quantitative behavior should be affected and not the qualititative behavior of the system. Unlike
the NP — FIFQ case, conservation does not hold here, since the arrival process to 5 will not be the same
as the FIFO — FIFQ case. The variance of the arrival process, however, will be reduced on account of

preemption in the feeder (when Cy, > 1), thereby reducing the average response time in @2, as shown in [5)].

10
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4 Response time bounds

In the previous section response time equations were presented for high and low priority classes. These
equations contained idle times in @2 as unknown factors. In this section we derive upper bounds for these
idle times in the case where the feeder queue has non-preemptive priority (N P). These upper bounds can
then be used to obtain upper bounds for response times in the FIF O queue.

Let us return to the NP — FIFQ case. Focussing our attention on equation (8), we notice E[I5] and
E[I}] as unknown factors. The derivation of upper bounds for each of these follows a similar approach; thus
we present only the derivation for an upper bound for E[I}]. Consider the instant at which a high priority
job, J, arrives to (J;. Let r1 be the residual service time of the job in service in @1, at that instant of time.

We compare r; with the unfinished work in @2, Ya, to see if there is any idle time in Q5 during ;. Let
A= (7‘1 —_ Y2)+ = maa:{O, ry — Yz}

Note that by definition, A > 0. Figures 4 and 5 depict situations in which A > 0 and A = 0 respectively.
Let I; ;41 be the idle time between the service of jobs ¢ and 7+ 1, in the FIFO queue. Since job J sees
N} jobs ahead of it in the priority queue, these NP jobs will also be served before J in the FIFO queue.

Therefore as can be seen from Figure 4,

Ny
NP =A + ) Lip
i=1

11



From [4] we find that E[I; ;41] = (1 — p2)/A. Using this in the above equation

E{IN}] = B[A]+ N} -2 a7

Since @, is an M/G/1 queue with non-preemptive priority,

plllpl(l + 01'12)

B[Nl =p1 +
' 2(1- pb)

Therefore,

hl — RnhT — 1 — py ~ plll(l—"c-??lz)(l"pz)
BlI3] = E[E[L|NY]] = B[A]+ PR W rw—s (18)

As A < ry by definition,

= pl(l + 0312)

E[A] £ E[r] %

which can be used in equation (18) to yield an upper bound for E[I¥]

L=pz  pa(1+Ce®) (1 + Gy ”)(L = i)

E[IN <
12 < H1 2 2u1(1 - o)

(19)

Now that we have derived an upper bound for E[I}] we are still left with the task of deriving an upper
bound for E[I;]. From equations (10), (11), and (12) in section 3.1, and by using the conservation property

for the response times in ()2, it can be shown that

ELlrrro~riro = E[L]|Np—Firo

The derivation of an upper bound for E[l5] in the FIFOQ — FIFO case proceeds in the same fashion as the

derivation of the upper bound for E[I}], thus yielding,

l—py  p(1+Cs,?) ( 1-P2>
ElL] < + 14 20
(L] < 2p 2p1 l-p (20)

This bound for E[I;] yields an upper bound for the response time in @2 for the FIFQO — FIFO case (see

equation (10)). In combination with the lower bound for E[T3] in the FIFO — FIFO case given in [5],

___1_+ p1(1+0$12) p2(1+01’22)

1 pZ(l + Cxwz)
2] < p2 o 2p(l—p2)  2pa(l - p2)

2 2pa(l—p2)

(21)

12



We are now in a position to present an upper bound for E[T}]. Substituting the two bounds for E[I}]

and E[I] given by equations (19) and (20), in the expression for E[T}] (equation (8), section 3.1), we obtain

p2(1+C$22) pl(l—I—Cle) N p11(1+C€L‘12)

1
E[T}) < —
171 p2 o 2pa(L—p2)  2m(l—p2)  2pm(1— p})

(22)

Observe that this bound differs from the upper bound for E[T3] (equation (21)) in only the last term.
Proceeding in a similar fashion for low priority jobs, we obtain an upper bound for E[T%]. The main
difference in the derivation of this bound is that we must take into account the number of high priority jobs

that pass a low priority job, while it is waiting in Q1. Thus we state without proof,

p1(1+c~%‘12) + p1(1+C$12) pfll(l—l'c’ﬂlz)

1
BT < —
S ot S =p) T 2ml=ps) " 2m( =)

(23)

Comparing this bound with that for high priority jobs given in equation (22), we observe that the only
difference is a sign change in the last term weighted by the utilization of the other class. This shows us how
sensitive is the response time in @2 to Cp,. Due to conservation of response times, it does not come as a
surprise to see that the average of the bounds for the high and low priority jobs is the same as the upper
bound for the response times in @ for the FIFO — FIFO case (equation (21)).

To see what can be analyzed from these bounds, we first look at the bounds for E[T5] (equation (21)).
As Oy, increases w.r.t. Cy, the lower bound approaches the upper bound. In other words the mean response
time in Q2 over both classes approaches that of an M/G/1 queue in isolation. At the same time the upper
bounds for E[T#] and E[T}] also reflect the same behavior. This results in two observations : first, priority
in the feeder queue does not have much of an impact on response times in Q2 when C,, > C,,. Second,
the response time of both high and low priority classes in Q3 can be taken as the mean response time of a
M/G/1 FIFO queue in isolation, when Cj, > C;,, because as stated above the average response time over
both classes approaches that of a M/G/1 FIFO queue, and the upper bound for each class also approaches

the mean response time of a M/G/1 FIFO.

5 Conclusion

This paper examined how priority in a feeder queue, @i, affects response times in a subsequent FIFO

queue, (2. Equations for the response time of both high and low priority jobs in Q2 were derived for

13



the non-preemptive case. From these equations it could be conclusively shown that when po > p1, high
priority jobs gain over low priority jobs in the FIFQ queue. In the case when p; = ps, the difference in the
response times for both classes, is the amount of time that Q2 goes idle during the time spent by a job of
a corresponding class in ;. Thus, the high priority class can benefit in @3, even without explicitly having
priority there. We expect this result to hold even when p; > ps, but could not derive it from the equations
for the response time in the FIF(Q queue. We next showed that conservation of response times holds in (J2
under non-preemptive priority in the first queue, just like in a single queue. This helped in obtaining an
expression for the response time in @)y for the FIFO — FIFQ case. All these expressions contained idle
times in @3 as unknown factors. After deriving these results for non-preemptive priority in the feeder queue,
preemptive priority in the feeder queue was considered, and similar equations were presented. Conservation
of response times, however, does not hold in the PR — FIFO case just as it does not hold in a single queue
with preemptive priority.

Since these equations contained terms involving idle times in Q2 which could not be expressed further,
upper bounds were derived for the response times in Q2 for both high and low priority classes in the
NP — FIFO case. As a by-product, bounds for the FIFO — FIFQO case were also obtained, but no
bounds could be derived for the PR — FIFQ case. The average of the upper bounds for high and low
priority classes matched the upper bound for the FIFO — FIFQO case. These bounds helped us gain

insight into the performance of the FIFO queue fed by a NP feeder, when Cy, > Cy,.
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