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Abstract

The need to integrate several versions of a program into a common one arises frequently, but it is a tedious and time
consuming task to merge programs by hand. The program-integration algorithm proposed by Horwitz, Prins, and Reps
provides a way to create a semantics-based tool for integrating a base program with two or more variants. The integra-
tion algorithm is based on the assumption that any change in the behaviour, rather than the text, of a program variant is
significant and must be preserved in the merged program. An integration system based on this algorithm will deter-
mine whether the variants incorporate interfering changes, and, if they do not, create an infegrated program that
includes all changes as well as all features of the base program that are preserved in all variants.

This paper studies the algebraic properties of the program-integration operation, such as whether there is a law of
associativity. (For example, in this context associativity means: “If three variants of a given base are to be integrated
by a pair of two-variant integrations, the same result is produced no matter which two variants are integrated first.”)
Whereas an earlier work that studied the algebraic properties of program integration formalized the Horwitz-Prins-Reps
integration algorithm as an operation in a Brouwerian algebra, this paper introduces a new algebraic structure in which
integration can be formalized, called fin-algebra. In fin-algebra, the notion of integration derives from the concepts of a
program modification and an operation for combining modifications. (Thus, while earlier work concerned an algebra of
programs, this paper concerns an algebra of program modifications.) A novelty of fm-algebra is that program
modifications are formalized as functions—more specifically, as a set of functions from programs to programs that
obey a particular set of axioms.

The potential benefits of an algebraic theory of integration, such as the one developed in this paper, are actually
three-fold:

(1) It allows one to understand the fundamental algebraic properties of integration—Ilaws that express the “esserce of
integration.” Such laws allow one to reason formally about the integration operation.

(2) It provides knowledge that is useful for designing alternative integration algorithms whose power and scope are
beyond the capabilities of current algorithms.

(3) Because such a theory formalizes certain operations that are more primitive than the integration operation, an
implementation of these primitive operations can form the basis for a more powerful program-manipulation sys-
tem than one based on just the integration operation.

1. Introduction

The need to integrate several versions of a program into a common one arises frequently: when a system is
“customized” by a user and simultaneously upgraded by a maintainer, and the user desires a customized,
upgraded version; when a system is being developed by multiple programmers who may simultaneously
work with separate copies of the source files; when several versions of a program exist and the same
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enhancement or bug-fix is to be made to all of them. A tool that provides automatic assistance in tackling
such problems would obviously be useful.

The program-integration algorithm proposed by Horwitz, Prins, and Reps [Horwitz89]—referred to
hereafter as the HPR algorithm—provides a way to create a semantics-based tool for integrating two or
more variants of a base program. The HPR algorithm is based on the assumption that any change in the
behaviour, rather than the text, of program components in a variant is significant and must be preserved in
the merged program. By the “behaviour” of a program component on some initial state ¢, we mean the
sequence of values produced at the component when the program is executed on ¢. By the “sequence of
values produced at a component,” we mean: for a predicate, the sequence of boolean values to which the
predicate evaluates; for an assignment statement, the sequence of values assigned to the target variable.

Given variants A and B of base program Base, the HPR algorithm first determines whether the changes
made to Base to produce A and B interfere; for example, one condition that causes interference is when
there is a component of Base, A, and B that has different behaviours in the three different programs. If there
is no interference the algorithm produces a merged program M that incorporates the changed behaviour of
A with respect to Base, the changed behaviour of B with respect to Base, and the unchanged behaviour
common to Base, A, and B. To achieve this, the HPR algorithm employs a program representation that is
similar to the program dependence graphs that have been used previously in vectorizing and parallelizing
compilers [Kuck81,Ferrante87]. The algorithm also makes use of Weiser’s notion of a program slice
[Weiser84, Ottenstein84] to find the statements of a program that determine the behaviour of potentially
affected program components.

One of the main features of the HPR algorithm that distinguishes it from text-based integration tools,

such as the UNIX' utility diff3, is its semantic property described above. One has no guarantees about the
way the program that results from a purely textual merge behaves in relation to the behaviour of the pro-
grams that are the arguments to the merge. The HPR algorithm, on the other hand, provides exactly such a
semantic guarantee. This obviates the need to check the integrated program for conflicts that might have
been introduced by the integration algorithm,

Though not as apparent, the algebraic properties of an integration algorithm play an equally important
role in justifying various of its uses, particularly those that involve compositions of integrations. A (wo-
variant program-integration algorithm defines a ternary (partial) function, denoted by [ ] , on the set of
programs. (A [Base 1B denotes the result of integrating variants A-and B with respect to program Base.) An
obvious use of [ 1 isin integrating three variants, say A, B, and C, of a program Base, by a pair of two-
variant integrations. This may be done in various ways; for instance, (A [Base]B)Base]C and
A[Base](B [Base ]C) are two of the possible solutions. This raises the obvious question: is [ ] “associa-
tive™? That is, if three variants of a given base program are to be integrated by a pair of two-variant
integrations, does it matter which two variants are integrated first? Other questions about the algebraic pro-
perties of integration arise similarly from various other applications of integration.

Reps[Reps90] addressed a variety of such questions about the HPR algorithm by reformulating the HPR
algorithm as an operation in a Brouwerian algebra constructed from sets of dependence graphs. (A

'UNix is a trademark of AT&T Bell Laboratories.



Brouwerian algebra is a distributive lattice with an additional binary operation, denoted by =, which is a
kind of difference operation [McKinsey46]) . In this algebra, the program-integration operation can be
defined solely in terms of LI, M, and ~. By making use of the rich set of algebraic laws that hold in
Brouwerian algebras, a number of algebraic properties of the integration operation were established. For
instance, it was possible to show that the integration operation is associative.

One of the advantages of such an abstract approach is its potential applicability to other integration algo-
rithms. Thus, for instance, showing that a given algorithm can be formulated as an integration operation in
some Brouwerian algebra is sufficient to show that the properties proved in [Reps90] hold for the given
algorithm too. Such abstract approaches are necessitated by the development of extensions and
modifications to the basic HPR algorithm (intended to extend the set of language constructs to which the
integration algorithms apply [Horwitz90, Horwitz89a] and to incorporate some alternative techniques
[Yang90]). Unfortunately, the integration algorithm proposed in [Yang90] is not associative (and is thus
not covered by the Brouwerian-algebraic framework).

This brings out another potential benefit of an algebraic theory of integration. Some properties of
integration, such as associativity, are so important that they must be considered as an algebraic criterion the
integration algorithms are required to satisfy. An algebraic theory of integration should not be considered
as merely a tool to analyse proposed integration algorithms to discover their algebraic properties. Rather, it
should provide knowledge that is of use in the design of new integration algorithms, knowledge that can
ensure that these algorithms have certain algebraic properties.

Yet another of the benefits of a theory like the one developed in this paper is that it formalizes certain
operators that are more primitive than the integration operation. These operators can form the basis for a
more powerful program-manipulation system than one based on just the integration operation.

In this paper, we present a new approach to studying program-integration algorithms. In particular, we
introduce a new algebraic structure, fm-algebra. Here, the concept of program integration derives from
the concept of program modifications and the idea of combining program modifications. If each variant is
thought of as having been obtained by performing a certain modification to the base program, an integra-
tion algorithm creates a merged program by first combining all the modifications and then applying the
resultant modification to the base program. Thus, while the work reported in [Reps90] is based on an alge-
bra of programs, the work reported here is based on an algebra of program modifications.

These ideas are formalized in Section 2, by treating “program modifications” as functional elements, by
introducing an operator that combines two modifications, and by defining the integration operator in terms
of these more primitive concepts. This provides us with a framework for studying the algebraic properties
of integration. Section 3 lists some simple properties of the basic operators as axioms. In Section 4, some
properties of the integration operator are derived from the axioms satisfied by the basic operators. Section
5 shows that this approach to integration is very general. More specifically, it is shown there that any
integration operator satisfying some simple properties can be constructed in the suggested fashion from
appropriately defined “program-modification” elements and a “modification-combination” operator that
satisfies the proposed axioms. The construction of models of the axioms also demonstrates their con-
sistency. We illustrate our approach with an example in Section 6. Section 7 discusses a problem related
to program integration, that of separating consecutive edits on some base program into individual edits on
the base program. Section 8 compares our approach with related work.



2. Functional-modification algebras

Our theory of program modifications is formalized through the concept of a functional-modification alge-
bra, which is defined as follows:

Definition. A functional-modification algebra (abbreviated fm-algebra) is an algebra with two sets of ele-
ments, P and M, where M is a subset of P —> P. There are three operations: A, #, and function applica-
tion, where A and * have the following functionalities:

A:PXP—->M

1 MXM— M.
In the next section, we define two varieties of fin-algebra — S-algebra and W-algebra (for strong and weak
fm-algebra, respectively) — which have somewhat different axioms for A and *.

This definition is motivated by the following ideas about programs and program modifications that we
wish to formalize with fin-algebra: P represents the set of all programs; M represents the set of all
program-modifications, where program modifications are formalized as functions from programs to pro-
grams that obey the axioms listed below (axioms S1-S7 in the case of S-algebra and axioms W1-W7 in the
case of W-algebra). The process of performing a modification on some program base is formalized as the
application of a modification function m to base (i.e., m (base) denotes the program obtained by performing
modification m on program base). Operation A (a, base) produces a modification function that takes base
to a (i.e., A(a, base) yields a modification that, when applied to base, produces a). Operation mq * n,
combines two modification functions m, and m, to give a new modification function. (The models of fin-
algebra given in Sections 5 and 6 are based on these ideas about programs and program modifications.)

We define the ternary integration operator [ 1 : P X P x P —> P of a functional-modification alge-
bra as follows:
Definition. a[lbasellb & (A(a,base) * A (b,base)) (base).

Remark: More generally, we can let A and * be partial functions - not every pair of modifications might
be meaningfully combined into a single modification; similarly, it might be impossible to talk of A (a,base)
for every pair of programs a and base. However, these problems can be handled by adding error elements
infeasibleProgram and infeasibleModification to P and M, respectively, and extending A and * to be total
functions.

3. Axiomatisation of functional-modification algebras

The above definition formalises our intuitive explanation of program integration. In this section we look at
properties that we might reasonably expect of A and *, given our interpretation of these operations.
These properties are listed as axioms below. I denotes the identity function from P to P. (Thus, it may be
interpreted as the empty or null modification.)

Definition. An S-algebra is a functional-modification algebra that satisfies the following axioms:
S1. A(a,a)=1
S2. A(a,base)(base) = a

53-S6. <M, *> is a join-semi-lattice with I as the least element. This expands into the following four
axioms:



S3. * is commutative.
S4. # is idempotent.
S5. Iis the identity element with respect to * .
S6. * is associative.
S7. A(allbasellb,base) = A (a,base)* A(b,base)

Axioms S1-S6 can be justified intuitively. Axiom S7 is a formalisation of our intuitive expectation of the
integrated program (e.g., the axiom can be read as: a[[base]]b is the element x such that A (x,base) is the
combination of A (a,base) and A (b,base)). Axiom S7 is discussed again later.

In Section 4 we derive some simple properties of the integration operator of an S-algebra. We first con-
sider a weaker form of axioms S3-S7 that is sufficient to derive these various properties. This weaker set of
axioms is motivated by the following observation: as the definition of _[[ ]| indicates, we are not
interested in “combining” arbitrary elements of M, but only modifications to the same base program. More
formally, define

My & { Ala,base):ac P},
We are interested in combining two modifications only if both are elements of some M,,,. Hence, the
axioms S3-S7 above may be weakened as follows.

Definition. A W-algebra is a functional-modification algebra that satisfies the following axioms:

WI1. Aa,a) =1
W2. A(a,baseXbase)=a
W3-W7. For every base € P, <M., * > is a join-semi-lattice with I as the least element. This expands
into the following five axioms:
W3. A(a,base)* A(b,base)= A(b,base) * A(a,base).
W4. A(a,base)* A(a,base) = A(a,base).
W5. I+ A(a,base) = A(a,base)= A{a,base)*1.
W6. (A(a,base)* A(b,base))* A(c,base) = Aa,base)* (A(b,base)* A(c,base)).
W7. A(a,base)* A(b,base)e My,,.

We now show that axiom S2 (= W2) implies that the axioms S7 and W7 are equivalent.

Proposition. If an fm-algebra satisfies axiom S2, then it satisfies axiom S7 iff it satisfies axiom W7, (i.e.,
if S2 holds, then A (allbase]lb,base)= A(a,base)* A(b,base) < Al(a.base)* A(b,base) € My,,).
Proof.

=> Thisis trivial since A (a[[basellb,base) € My, by definition.

<= We have A(a,base)* A(b,base)= A(c,base), for some c.
(A(a,base) * A(b,base))(base) = A(c,base)(base)
allbasellb =c¢
|
In particular, every W-algebra satisfies axiom S7, and every S-algebra satisfies axiom W7; thus, every
S-algebra is also a W-algebra.



4. Propertiesof [ T _

The _[[_1_ operator of a W-algebra satisfies the following properties.
Proposition. a[[baselb = b[[base]la.

Proof.
allbase]b = (A(a,base) * A(b,base))(base)
= (A(b,base) * A(a,base))(base) (axiom W3)
= b[[basella
O
Proposition. a[[basella = a.
Proof.
al[basella = (A(a,base) * A(a,base))(base)
= (A(a,base))(base) (axiom W4)
=q (axiom W2)
O
Proposition. a[[base]lbase = a.
Proof.
al[basellbase = (A(a,base) * A (base,base))(base)
= (A(a,base) * I)(base) (axiom W1)
= (A(a,base))(base) (axiom W5)
=qa (axiom W2)
O

Definition. The simultaneous integration of elements x,,x,,...,x, with respect to element base is the ele-
ment (x; [basellx,,...,x,) defined by

(x1[baselxs,....x,) & (A(xy,base)* A(xy,base)* - -+ * A(x,,base))(base)

Note: The above definition makes sense as long as * is associative, at least when restricted to M.
Proposition. (a,[[basella,,...,a,) is symmetric in a,...,a,,.
Proof. Follows directly from axioms W3 and W6.

O

Proposition. (x[base]y)[basellz = (x[basely,z).

Proof.

(x[baselly)[basellz = (A{x[[basely,base) * A(z,base))(base)
=(A(x,base)* A(y,base)* A(z,base))(base) (axiom S7)
= (x[[baselly,z).

a

As an immediate consequence, we get the following associativity theorem.
Theorem. (x[[baselly)l[basellz = x[[baseI(yl[base]lz) = (x[baseliz)[baselly = x[base]ly,z.

Note that _[[_T_ is a ternary operator. By saying that [[_T_ is associative we mean that for any base
the curried binary operator _[[base]l_ is associative. We intuitively expect program integration to be asso-
ciative: associativity justifies integrating multiple variants of a base program by performing a succession of
two-variant integrations (in any order).



5. From integration to fm-algebras

The previous sections outline one possible way of constructing integration operators satisfying some simple
properties from binary operators A and # that form an S-algebra or W-algebra. A natural question that
arises is: how general is this approach? Is it reasonable to assume that integration operators may always be
constructed in such a fashion? In this section we show the generality of this approach by showing that any
integration operator satisfying certain simple properties can be constructed in such a fashion. Assume that
_[1:(P x P x P) —> Pis a ternary operator on P satisfying the following properties (we expect most
integration operators to satisfy these properties):

L1. a[baselb = b[base]a.

L2. base [basela = a.

L3. a[basela = a.

LA. (albase1b)[base ]c = a[base 1(b[base Ic).

Define A:(P x P) —> (P — P) by currying _[_]_as below:

A(a,base) & \b.(a[base1b)
In the following subsections we consider two different definitions of *, the operator for combining
modifications. In each case the corresponding _[[_I]_ operator is shown to be the same as _[ ] . We show
that A and the first version of * yield a W-algebra. We then show that A and the second version of *
yield an S-algebra, assuming that [ ] _satisfies one additional property (stated below as L5).

5.1. Definition 1
Define # to be function composition. Let M be the range of A closed under function composition.

Theorem. a[lbase]b = a[baselb
Proof.
allbasellb = (A(a,base)* A (b,base))(base)
= A(a,base) (A (b,base) (base))

= a [base }(b [base Jbase)
= a[base b
O
Theorem. <P,M,A,* > is a W-algebra.
Proof.
WI1. A(a,a)=Ab.(alalb)
=Ab.b
=]
W2. A(a,base)(base) = a[base Jbase

=q
W3. A(a.base) * A(b,base) = (\c. albase]c)* (hc. bbase]c)
=Ac. a[base 1(b[base 1c)
= Ac. (a[base 1b)[base]c
= Ac. (b[base a)[basec
= A(b,base) * A{a,base)



W4. A(a,base)* A(a,base) = (Ab. albase1b) * (\b. a[base1b)
= Ab. a[base )(a[baseb)
= Ab. (a[basea)[baseb
=Ab. albase b
= A(a,base)
W5. I is the identity with respect to function composition.
W6. Function composition is associative.
S7. A(allbase]lb,base) = A{abaselb,base)
= Ac. (albase 1b)[base]c
= Ac. a[base](b[base]c)
= (Ac. a[base]c)* (hc. bbase]c)
= A(a,base) * A(b,base)
W7. This follows directly from S7 above.
|

5.2. Definition 2

We assume in this subsection that [ ] satisfies the following property, in addition to the properties 1.1-L4
listed at the beginning of this section:

LS. (albase]c) [c] (c [base 1b) = (a[base 1b)[base]c.

Property L5 says that (a [base]c) [c] (c [base 1b) is another correct way of integrating three variants a, b,
and ¢ with respect to base. Define # as follows.
my*my & Ap. my(p) [p1my(p).
Let M be the range of A closed under *.
Theorem. af[basellb = albaselb
Proof.
allbase]lb = (A(a,base) * A(b,base)) (base)
= (A(a,base)(base)) [base] (A (b,base)(base))
= (a [base Jbase) [base] (b [base Ibase)

= a[base b
O
Theorem. <P,M,A,* > is an S-algebra.
Proof.
S1. Aa,a)=1 (as in the previous subsection)
S2. A(a,base)(base)=a (as in the previous subsection)

S3.my *my=Ap. my(p) [p] ma(p)
=Ap. ma(p) [p1 m1(p)
=my,*m,

S4. m*m=Ap. m(p) [p]l m(p)

=Ap. m(p)
=m

SS.m*I=kp. m(p)[pll(p)



=Ap. m(p) [p1p
=Ap. m(p)
=m
S6. (my*my)*ms="Ap. (m1(p) [pIma(p)) (p]1 ms(p)
=Ap. mi(p) [p1 (m2(p) [p1 m3(p))
=my *(my *ms)
S7. A(allbasellb,base) = A(a[baselb,base)
=Ac. (a[baseb)[base]c
=Ac. (a[baselc) [c] (c [base]b) (using property L5)
=Ac. Ala,base)(c) [c] A(b,base)(c)
= A(a,base) * A (b,base)
O

Reps [Reps90] defines an integration operator [ ] and shows that it satisfies properties L1-L5 listed in
this section. (The definition of [ ] from [Reps90] is briefly summarised at the beginning of the next sec-
tion.) Hence, the construction above shows the consistency of the axioms of S-algebra and W-algebra.

6. An example

In this section, we look at an example of constructing an integration algorithm from an fin-algebra. We
develop the integration algorithm first proposed by Horwitz, Prins and Reps [Horwitz89] (the HPR algo-
rithm) and later expressed in an algebraic framework by Reps [Reps90]. The algorithm makes use of a
program representation called a program dependence graph[Kuck81, Ferrante87]. Let s be a vertex of a
program dependence graph G. The slice of G with respect to s, denoted by G/s, is a graph containing all
vertices on which s has a transitive flow or control dependence. A dependence graph is a single-point slice
iff it is the slice of some dependence graph with respect to some vertex (i.e., equivalently, iff G = G/v for
some vertex v in G). The algebraic framework is based a partial order < on single-point slices that
denotes the relation “is-a-subslice-of”. Thus, if @ and b are single-point slices, b < a iff b is a slice of a with
respect to some vertex in a (i.e., iff b = a/v for some vertex v in a). Given a set 4 of single-point slices, the
downwards—closure of A, DC (A), is defined as

DC(A) & {b:JacA.(b<a)).
It can be seen that DC (A uB)=DC(A)oDC(B). A setA is said to be downwards—closed if DC (A) = A.
The operation of upwards —closure is similarly defined as

UC(A) & {b:3acA.(as<h)).
In this framework, a program is represented by the set of all single-point slices of the program. P, the
domain of program representations, is taken to be the set of all downwards-closed sets of single-point
slices. Let T denote the set of all single-point slices, and | the empty set. Let v, n, and ~ denote the
set-theoretic union, intersection and difference operators. P is closed with respect 10 v and ~. P is not
closed under —, but is closed under the pseudo-difference operator ~ defined as follows:

X+Y=DCX-Y)
P is also closed under a similar (dual) operator < defined as follows, where ~ denotes the set-theoretic
complement with respect to T.

X+Y=UCT-X)
Reps [Reps90] shows that (P,w, ~, =, <+, T) is a double Brouwerian algebra and that the HPR integra-
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tion algorithm can be represented by the ternary operator [ ] defined by:
albaselb & (a =~ base)u(anbase nb)u (b - base)

Here we see how the approach outlined in Section 2 can be used to arrive at the same definition.

The HPR algorithm considers the following two types of modifications: addition of slices and deletion of
slices. Consider the modification of base to a. The set difference (a—base) represents the slices that have
been added to the base program. This suggests the possibility of representing this “addition of (a—base)”
by the function Ap.p L (a—base). Unfortunately, this function does not necessarily map downwards-closed
sets to downwards-closed sets and hence may not be an element of (P —> P). Similarly, (base—a)
represents the set of slices that have been deleted and we would like to represent this deletion by the func-
tion Ap.p—(base—a). This function too may not be an element of (P —> P). In what follows, we look at
two different ways of changing these functions so that they do map downwards-closed sets to downwards-
closed sets.

6.1. Definition 1

(Note that in what follows a, base and p are downwards-closed sets.) The addition of (a—base) can be
represented by the function Ap.DC (p u (a—base)) = Ap.p wDC (a—b) = hp.p v (a = base). Thus, the addi-
tion of (a—base) is interpreted as the addition of DC (a—base). The deletion of (base—a) can be
represented by the function Ap.DC (p—(base—a)) = Ap.DC (p n(base ~@)) = Ap.DC (p ~(base ua)) =
Ap.DC ((p nbase) v (p na)) = Ap.DC (p—base)u(p na) = Ap.(p ~ base)u (p ~na). The combination of
the addition and deletion can be represented by the composition of the above two functions. (By applying
the laws that relate v, n, and ~ in Brouwerian algebra, it can be shown that these two functions com-
mute with each other with respect to 0.) Thus, we arrive at the following definition of A:
A(a,base) & (\p.pu(a = base)) o (A\p.(p = base)u (p na)).
We define * to be function composition. Let M be the closure of the range of A under o. Then, it can be
shown that <P,M, A, *> is a W-algebra whose integration operator [ ] is the same as the integration
operator in Brouwerian algebra. A short way of demonstrating this is to see that the above definition of A
simplifies to
A(a,base) = Ap.(a = base)v (pna)v (p = base)
=Ap.(a ~ base)u (p nanbase)w ((p na) = base) v (p = base)
(since x = (x = y)u(xny))
= Ap.(a = base) v (p nbase na)u(p = base)
{(since (p na) -~ base < (p = base)

= Ap.a[baselp

Hence, the desired result follows from the results of Section 5.

6.2. Definition 2

In Section 6.1, the addition of (a—base) was interpreted as the addition of DC (a—base), giving us the func-
tion Ap.pu(a = base). Analogously, the deletion of (base—a) can be interpreted as the deletion of
UC (base~a), since the absence of (base—a) in any program automatically implies the absence of
UC (base—a). Hence, this deletion can be represented by the function Ap.p-UC (base—a) =
Ap.p nUC (base~a) = Ap.p n(a + base). Any modification can be considered to be a combination of addi-
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tions and deletions. This suggests the following definitions. The pair <x,y> will be used to denote the func-
tion Az.(zwx) o Az.(zny). Note that <x,y> = <x,yux> A unique representation for the function
Az.(zux) o Az.(zny) is obtained by restricting our attention to pairs of the form <x,y> where x Cy.
Thus, let M denote { <x,y>:x, y € P, x < y}. (Any pair <x,y> where x ¢y is assumed to be an abbrevi-
ation for <x,x vy>) A is defined as follows:

A(a,base) & <a = base,a = base >.
The operator # is defined as follows:

<ELY1> *<X2,)2> & <X UX2,y10Y2>.
The motivation for the above definition is as follows. Consider the modification <x;,y,>. The addition
component of this modification is the function <x;, T>, while the deletion component is the function
<1,y;>. The two additions <x;, T> and <x,,T> composed (in either order) yield <x;vx,, T>. Simi-
larly, the two deletions <.1,y;> and <l,y,> composed yield <.Ll,y;ny,>. It can be verified that
whenever<x;,y;> and <x,,y»> commute with respect to o, <x;,¥y;>0<X3,y2> 18 <x¥; Uxy,y1 NYy,>. If
the two do not commute with respect to o, then the “addition” performed by one of them conflicts with the
“deletion” performed by the other. (i.e., some slices get added by one of them, while the same slices get
deleted by the other.) The above definition of * resolves the conflict in favour of the “addition.” This fol-
lows from the interpretation of the pair <x,y >: the deletion is done first, followed by the addition. (Note
that fo g denotes the function Ax.f (g (x)).)

The definition of _[[ 1 gives us the following:
allbasellb = (A (a,base) * A(b,base))(base)
= (<a ~ base,a + base > * <b ~ base,b + base >)(base)
= <(a + base)v (b ~ base),(a + base) ~ (b + base)>(base)
= (a + base)w ((a + base) nbase n (b + base))u (b ~ base)
= (a = base)u (a nbase nb)w (b ~ base) (since (x +y)ny=xnYy)
= q [base b

Though this definition of A and * yields the same integration operator as the definitions in Section 6.1,
the A and * themselves do not satisfy the same set of axioms: although operators A and * satisfy axioms
S1-56, they do not satisfy axiom S7. (This suggests that studying sets of axioms weaker than S1-S7 might
be potentially useful.)

7. Separating consecutive edits

Program integration deals with the problem of reconciling “competing” modifications 10 a base program. A
different, but related, problem is that of separating consecutive edits to a base program into individual edits
on the base program. Consider the case of two consecutive edits to a program base; let a be obtained by
modifying base, and ¢ be obtained by modifying a. By “separating consecutive edits,” we mean creating a
program b that includes the second modification but not the first.

One approach to separating consecutive edits, suggested in [Reps90], is based on the assumption that the
desired program b should satisfy the equation allbase]lb = c. Thus, the problem is related to solving an
equation of the form a[[base]lx = ¢ for x. In what follows, we look at solutions of this equation in W-
algebra.
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Lemma. x is a solution to a[[base]lx = ¢ iff x = m (base) where m € M, is a solution to the equation
A(a,base)* m = A(c,base).

Proof. Note that x = m (base) for some m € My, iff A(x,base)=m.
=> Letallbasellx =c.
Then, A(allbase]lx,base) = A(c,base).
Hence A(a,base)* A(x,base)= A(c,base), using axiom S7.

<= Af(a,base)* A(x,base)= A(c,base).
A{al[basellx,base) = A (c,base), using axiom S7.
al[basellx = c, applying both sides to base and using axiom W2.
a

The above lemma shows that solving the equation a[[base]lx = ¢ can be reduced to solving an equation
of the form p * y = ¢ in the join-semi-lattice My, of modifications to base. The following result concerns
equations of the latter form.

Theorem. Let <M, *> be a join-semi-lattice. Let [ denote the corresponding partial order on M. Let
p.q € M. Then,

1. The equation p * x = g has a solution iff g itself is a solution iff p " g.

2.1f xy and x, are solutions of p * x = g and x; [y [C x4, then y is a solution 100.

3.If x, and x, are solutions of p * x = g, then x; * x5 is a solution t00.

4. The solutions to p * x = g form a sub-semi-lattice of M with ¢ as the maximum element (assuming that
a solution exists).

Proof.
1. Let x satisfy p *x = ¢. Then,
prq=p*p*x)=(@p*p)*x=p*x=4q

Hence, q is a solution to p * x = g. By the definition of [, this is equivalent to p " g.

2.x1CyCx,. Hence,p*xCp*yCp*x,. ie., ¢q T p*y [C g. Hence, y is a solution.

3. Since p *x, =g, x{Zq. Similarly, x,["q. Hence, x; C(x; *x,)Cq. It follows from 1 and 2 that
X1 * X, is a solution,

4. Follows from 3.

Theorem.,
1. a[[basellx = ¢ has a solution iff ¢ itself is a solution.
2. If x; and x, are solutions to a[[base]lx = ¢ then, x; [base]lx, is also a solution.

Proof

1. This follows directly from the previous results.

2. This follows from the previous results as below. Since x; and x, are solutions of al[base]lx = ¢, it
follows from the first lemma that A(x;,base)and A (x,,base) are solutions of the equation
A(a,base) * m = A(c,base). From the second lemma, it follows that A (x;,base) * A (x,,base) is also a
solution to the latter equation. Hence, (A (x;,base) * A (x2,base))(base),i.e., x;[base]x, is a solution to
al[base]lx = ¢ (from the first lemma). [J

From the construction in the Section 5, it can be seen that the above theorem holds for any [ ] satisfy-
ing the properties L1-14 (listed at the beginning of Section 5).
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8. Relation to previous work

This paper has presented new techniques for studying program-integration algorithms. We introduced a
new formalism for expressing integration, based on the following ideas:

(1)  Program modifications are formalized as functions from programs to programs that obey a certain set
of axioms (S1-S7 in the case of S-algebra and W1-W7 in the case of W-algebra).

(2)  The process of performing a modification on some program base is formalized as the application of a
madification function m to base.

(3) There is an operation A(a, base) that produces a modification function that maps base o a.

(4) There is an operation m, * moy that combines two modification functions m, and mo to ive a new
P 1 1 g
modification function.

The discussions in Section 4 concerning the associativity of integration and in Section 7 concerning the
problem of separating consecutive edits show that fim-algebra is a useful abstraction for studying the alge-
braic properties of program integration.

The work most closely related to the work presented in this paper is [Reps90], which also uses algebra o
study program integration. There, the set of downwards-closed sets of single-point slices is shown (o form
a Brouwerian algebra; an integration operation is defined for Brouwerian algebra; and the integration
operation for the Brouwerian algebra of downwards-closed sets of single-point slices is shown to
correspond to the HPR integration algorithm.

This paper makes use of the results of [Reps90] in two ways: first, Section 5 establishes the consistency
of the axioms of W-algebra and S-algebra by constructing models for them based on Brouwerian algebra
and its integration operation; second, the constructions in Sections 5 and 6 show that the integration opera-
tion in a Brouwerian algebra—and hence, by the correspondence established in [Reps90], the HPR integra-
tion algorithm as well—corresponds to the integration operation in appropriately defined fim-algebras.

However, the S- and W-algebras studied in this paper are substantially different from Brouwerian alge-
bra. Brouwerian algebra deals with one kind of element (which in [Reps90] formalizes the space of pro-
gram representations). In contrast, fin-algebra has two kinds of elements; in our context, the two kinds of
elements formalize the space of program representations and the space of program modifications. In other
words, fim-algebra explicitly formalizes the notion of a modification, for which there is no corresponding
notion in Brouwerian algebra. (A novelty of fin-algebra is that modifications are treated as functions.)
Finally, Brouwerian algebra and fm-algebra deal with different sets of operators—L |, I, and = in the case
of Brouwerian algebra versus A and * in the case of fm-algebra.
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