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ABSTRACT

The performance of single queues with independent interarrival intervals and ser-
vice demands is well understood, and often analytically tractable. In particular, the
M/M/1 queue has been thoroughly studied, due to its analytical tractability. Little is
known, though, when autocorrelation is introduced into interarrival times or service
demands, resulting in loss of analytical tractability. Even the simple case of an M/M/1
queue with autocorrelations does not appear to be well understood. Such correlations do,
in fact, abound in real-life systems, and worse, simplifying independence assumptions
can lead to very poor estimates of performance measures. This paper reports the results
of a simulation study of the impact of autocorrelation on performance in a FIFO queue.
Two computer methods for generating correlated variates, with different autocorrelation
characteristics, were used in the study. The simulation results show that the injection of
autocorrelation into interarrival times, and to a lesser extent into service demands, can
have a dramatic impact on performance measures. From a performance viewpoint, these
effects are generally deleterious, and their magnitude depends on the method used to gen-
erate the autocorrelated process. The paper discusses these empirical results and makes

some recommendations to performance analysis practitioners of queueing systems.
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1. INTRODUCTION

Most queuing models assume that customer interarrival times, service demands, and routing proba-
bilities are independent, each being modeled as a renewal process (see, e.g., [Kell79]). These assumptions
lead to models that are easy to simulate and under suitable restrictions are analytically tractable. Unfor-
tunately, these models are often poor representations of real-life systems where correlations do, in fact,
abound. A case in point is the emerging technology of broadband ISDN (Integrated Services Digital Net-
works) which promise to be an important application domain for analysis of correlated traffic. In particular,
emerging transport mechanisms such as ATM (Asynchronous Transfer Mode) are slated to carry a broad
mix of packet (cell) traffic, ranging from data to voice and video. File transfers and full motion video
frames are known to be extremely bursty, and consequently the induced correlations in arrival streams cou-
pled with the enormous speeds of transmission are going to aggravate problems of congestion control at the

nodes and bandwidth allocation on the links.

Various studies have found that models that do not take autocorrelation into account can predict
overly optimistic performance measures, such as line lengths and waiting times. Some representative refer-
ences are [Heff86], where the autocorrelations are generated by a Markov Modulated Poisson Process;
[Fend89), where heavy traffic performance measures are derived for a single queue with correlated and
cross-correlated arrivals and services; and [Patu89], where traffic is generated by a Markov Renewal Pro-
cess. A recurrent theme in these papers is the dramatic degradation of performance induced by increasing

correlations.
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In this paper we report the results of a study in which we investigate the impact of autocorrelated
arrivals and autocorrelated service demands on the performance of a single queue single server system.
The study was motivated by two objectives: to profile the sensitivity of queuing models to the assumption
that interarrival times and service demands are independent random variables, and to understand the power
of correlated variates as a modeling ol that can capture the behavior of a broader range of systems includ-
ing bursty arrival streams (see [Heff73] and [Heff80]). Since analytical methods can only handle the
analysis of quite restricted classes of correlated time series, we used simulation to generate the results
presented in this paper. We implemented two different methods for generating correlated variates: the TES
(Transfer-Expand-Sample) method and the Minification method, both of which were integrated with the
DeNet simulation environment (see [Livn88]). This enabled us to generate correlated variates with a wide

variety of marginal distributions and autocorrelation structure, and to use them in simulation experiments.

The rest of this paper is organized as follows: Section 2 overviews the notions of correlation and
autocorrelation. A qualitative description of autocorrelation in the arrival process and in the service
demands process is presented in sections 3 and 4 respectively. The results of a simulation study of the
impact autocorrelation has on the waiting times of a FIFO server are summarized in section 5. Section 6

contains our conclusions and a brief discussion of our ongoing work in the area of autocorrelated variates.

2. THE NOTIONS OF CORRELATION AND AUTOCORRELATION

The central theme of this paper is the effect of correlation on performance measures in a queuing
context. We, therefore, begin with a brief explanation of correlation and related concepts mostly at an

intuitive level.

Correlation is a measure of linear dependence between random variables (variates). The correlation

coefficient py y of real variates X and Y is defined by:

E[XY]1-E[X]E[Y]
‘GxO'y

Px.y =
where oy and Oy are the standard deviations of X and Y respectively (we assume, of course, that the stan-
dard deviations and expectations are finite). Note that px,y = py,x and that py x = 1, whereas px,-x =~1.

It can be shown that ~1 < px y < 1. Furthermore, for the extremal cases (py,y = £1), X and Y are related by
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a linear equation:

Y=aX+b

for some real constants @ # 0 and b; for a > 0, we have py,y = 1 and for @ < 0, we have py,y = -1.

Intuitively, the presence of correlation (py,y # 0) means that X and Y tend to vary in the same linear
direction (px,y > 0), or in the opposite linear direction (py,y < 0); the magnitude |px,y|is a measure of
how strong the tendency is. This tendency is guaranteed for py,y =1, but weakens progressively as
|px, v | decreases to zero, until finally, this tendency disappears altogether. Note, though, that lack of corre-
lation and independence are distinct concepts. It is possible for X and Y to be uncorrelated (px,y =0) and
yet be dependent. However, independence always implies lack of correlation. For this reason one can

think of correlation as linear dependence i.e. a restricted notion of dependence.

Operationally, suppose we sample pairs ( x,, ¥, ) from the joint distribution of X and Y. Uﬁder posi-
tive correlation, large values of x, will tend to occur with large values of y,, and small x, with small y,
(variation in the same direction). When the pairs ( x,, y, ) are plotted in two dimensions, the human eye
can discern a linear ascending pattern in the resulting picture (called scattergram). Conversely, under
negative correlation, large values of x, will tend to occur with small values of y,, and small x, with large
y,; the resulting scattergram will then show a descending linear pattern. In the absence of correlation, any

linear pattern vanishes and the scattergram looks like a random cloud or blob.

Consider now a stationary, real-valued time series (X, },n =0,...,% in discrete time. By sta-
tionarity, the pairs ( X,, X« ) have the same distribution as ( X4, X ). The autocorreiation function

px( 1) is the correlation coefficient of X o and X, that is,

E(Xo, X1 -1}
Px(T)=prox, = —— ~ =01,
X

where |1y is the common mean and 6% the common variance of the X,. The argument 1 is called the lag,
since it denotes the time separation between the variates X and X.. Each number px( 1) is referred to as

the lag-t autocorrelation. In particular, py( 0) = 1, always.

The notion of autocorrelation can help describe visual properties of time series. For example, if X,, is

the n-th interarrival time in an arrival process, then positive autocorrelations will tend to create alternating
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runs of short interarrival times and long interarrival times. Visually, the former would correspond to

arrival bursts, whereas the latter would appear as light traffic periods.

3. METHODS FOR GENERATING CORRELATED VARIATES

Since analytical methods can only handle the analysis of quite restricted classes of correlated time
series, the need arises to supplement analytical methods with simulation. This in turn calls for devising
computer methods for generating correlated variates with a wide variety of marginal distributions and auto-
correlation structure. In this section we briefly review two methods for generating correlated variates with
exponential marginals. Both methods are quite general in that they give rise to uniform variates which are
then transformed to other distributions (in our case to exponentials) using the inversion method (see
[Devr86] and [Brat87]). The methods surveyed are TES (Transform-Expand-Sample) methods, and
Minification/Maxification methods. The reader is referred to [Mela90] and [Jage90] and references

therein for a survey on recent work in this area.

Throughout this section, { Z, } will denote a sequence of i.i.d. (independent identically distributed)
Uniform(0,1) variates, i.e., a stream of pseudo-random numbers available on most computers. The
sequence { U, ) will denote a c.i.d (correlated identically distributed) Uniform(0,1) sequence obtained

from { Z, ) via suitable transformations. Finally, the target exponential variates are denoted by { X,, }.

3.1, TES Methods

For any real number x, let | x| =max{n integer: n<x} be the integral part of x, and
{x}=x-|x] be the fractional part of x. Notice that we use bold braces to denote the fractional part
operator in order to distinguish it from its syntactic counterpart.

TES methods are introduced in [Mela90] and investigated in detail in [Jage90]. A TES method is
parametrized by a real pair (L,R ) such that 0SL,R <1 and 0<L +R < 1. TES methods come in two
flavors: TES*( L, R ) giving rise to a sequence { Uy }, and TES(L.R ) giving rise to a sequence { U7 }.
The reason for devising two parametrized sets of methods is the need to achieve coverage of the full range
of feasible lag-1 autocorrelations (correlation coefficients); in fact, the TES*( L, R ) methods cover the

positive range [0,1] while the TES™( L, R ) methods cover the negative range [-1,0]. In retrospect, this fact
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motivates the superscript notation of TES, its attendant sequences, and other associated mathematical

objects such as the autocorrelation functions p*( 7 )and p™( T ), where 1 is the lag argument.

The definition of { U}, } is given recursively by
Zy if n=0
Ui = .
" (U, -L+(R+L)Z,} f n>0

The sequence { U; } is defined in terms of { Uy } by

~ [Ux  if n even
Us=\ 1-u* if n odd

Notice that p™( T ) = ( =1 )* p*( T ), s0 p™( T ) has alternating sign if p*( T ) is always positive.

Since both { Ut } and { Uy } have uniform marginals, they can be transformed to a wide variety of
other marginal distributions via the inversion method. More specifically, let D (x) be a mapping from [0,1]}
to the reals, referred to as a distortion. In particular, to obtain Exponential( A ) marginals (where A is the
reciprocal of the mean), the proper distortion is D(x) =(-1/A ) In(x). Thus, if (U, ]} is Uniform(0,1),
then the sequence ( X, }, where X, = D( U, ) will be Exponential( A ). The Laplace Stieltjes Transform of
D (x) will be denoted by D (s).

For representing the autocorrelation functons, it is more convenient to switch from the (L,R)

parametrization to the equivalent parametrization ( o, ¢ ) where

a=R+L

and

-L
v

R
¢ =
Let now { X ) be defined by X} = D( U3 ) and { X3 } by X5 = D( U ). The common variance of
the X; and X is denoted by c%. It can be shown that the autocorrelation function of { X } has the

representation

XV:I

pr(t) == z[i‘-‘lﬁ—’%ﬂl} cos( rvadt )| D i2nv)|*, ©=0,1,2,..

and for { X } we have the representation

p'(T)"—z—Z {gn_(__n;\;gl} cos(nvaM)Re[ﬁ(iZuv)z], 1=012,..

OX val
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(see [Jage90] for details).

Both autocorrelation representations, as well as the generation algorithms of { Uy } and { U3 )}, are
amenable to fast numerical computation on a computer. One advantage of TES methods is that they give
rise to autocorrelation functions with various shapes. In particular, whenever ¢ = 0, the resultant auto-
correlation function is monotone decreasing in 7 to zero; however, for ¢ #0, one gets an oscillatory auto-

correlation function in T with envelopes that converge to zero.

3.2. Minification/Maxification Methods

The class of Minification and Maxification methods is described in [Lewi88]. These methods derive
their name from the mathematical operations of obtaining the minimum (or maximum) of a set of real
numbers. Minification/maxification methods are parametrized by a single parameter C, where C > 1. The

corresponding sequences, denoted respectively by { U™ } and { U™** }, are both Uniform(0,1).

The Minification sequence { U™ } is defined recursively by

Zs if n=0

Uye =
C-min[U‘,{‘i", c Zne

-1+ Zu-—l
Its autocorrelation function has a particularly simple form

ming g ) _1_1
—

The maxification sequence { UR** } is defined recursively by

} if n>0

Zs ifn=0

Ums = c

max{(Uﬁ‘_‘? ).z } if n>0

with a somewhat more complicated autocorrelation function

3
max 1) =
(T 2C*+1
Observe that Minification and Maxification methods give rise to autocorrelation functions which are strictly
monotone decreasing in the lag 1. Minification/Maxification methods are easily implemented on a com-

puter, but they have a considerably higher time complexity than TES methods. This is due to the division
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and power operations required in their recursive definition.

In our study we used Minification because it is faster than Maxification. The Uniform(0,1) sequence
(U™= ) was then transformed to an exponential sequence through the appropriate distortion D (x) as
described in the previous section. However, in the absence of formulas for the autocorrelation function of

transformed Minification sequences, their autocorrelations can only be engineered by trial and error.

3.3, Methoed Comparison

The TES method and the Minification method can generate time series with exponential and other
marginals and a predefined lag-1 autocorrelation. Apart from these common properties, each time series
will have different temporal characteristics as a consequence of the generation method. Specifically,
although both methods give rise to autocorrelation functions with magnitudes decaying to zero, the decay
rate may differ considerably. Note that a time series with a rapid decay isolates the effect of p(1) on per-
formance measures, while a time series with slow decay incorporates the effect of the higher lag autocorre-
lations on those measures. Figure 3.1 clearly displays these differences. The decay of the autocorrelation
function of the sample paths generated by a TES method is much slower than the decay attendant to the
Minification method. The decay rate of p(t) in the positive case ( p(t) = p*( t ) ) determines the decay rate
in the negative case (p(t)=p~( 7)) as well. Asis demonstrated by the results presented in figure 3.2, the
absolute value of p(t) in the negative case decays as in the positive case, even though p(t) oscillates

between negative and positive values.

4. CORRELATED ARRIVALS

In this section we use three sample paths generated by TES methods to present a qualitative descrip-
tion of the impact autocorrelated interarrivals have on the arrival process. Using TES methods with ¢ =0,
we generated sample paths for arrival processes with positive and negative p, (1)!. Interarrivals times in
all cases follow a marginal exponential distribution with rate A. TES was also used to generate sample
paths for a Poisson process by selecting p, (1) = 0.0. We point out that for o. = 0, TES generates indepen-

dent variates (p( T ) = 0, for all 7). From this point on we will use the term correlated to mean p(1) = 0.0.

1 gll the presented results for the TES method use ¢ = 0.
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Figure 3.1: Measured autocorrelation versus lag number for the TES and the minification
methods. Positive lag-1 autocorrelation.
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Figure 3.2: Measured autocorrelation versus lag number for the TES and the minification
methods. Negative lag-1 autocorrelation.

Figure 4.1 presents a graphical realization of the three sample paths: the first with p, (1) = 0.8, the

second with p, (1) =0.0, and the third with p, (1) = -0.5. For each path, the arrivals in the interval
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[0, 100] and [500, 600] are displayed. An arrival of a job is represented by a vertical line at the arrival
epoch of the job, so the separation between lines represents interarrival intervals. For p, (1) = 0.8, we
observe that the arrival pattern within an interval has a more regular appearance than the independent case.
As expected, positive correlation increases the likehood that successive interarrival times will have similar
durations. There is, however, a significant difference between the first and second interval. Whereas in the
case of independent arrivals the two intervals have about the same number of arrivals, for p, (1) = 0.8 the
first interval has almost twice as many arrivals as the second interval. Note that the number of arrivals in
both intervals is much smaller than 100, which is the expected number of arrivals in 100 time units. One

can thus expect that for p, (1) = 0.8, the number of arrivals in some intervals to be much larger than 100.

p,(1)=08,(63 arrivals )

_ I

p,(1)=08,(33 arrivals )

I

0 00
Time
P, (1) =0.0,(107 arrivals ) P, (1)=00,(116 arrivais )
| | I 1 {
0 50 100 500 550 600
Time Time
P, (1)=-05,(114 arrivals ) Pa (1) =-05,( 92 arrivals )

QUL - |

|
550 600
Time Time
Figure 4.1: Sample Path Arrivals ( A=1.0).

Before we shift our attention to the case where p, (1) = —0.5 we would like to point out that the
smallest attainable p, (1) for an exponentially distributed variable is about —0.62. Therefore, p, (1) = 0.0

can be viewed as located about midway between p, (1) =-0.5 and p, (1) = 0.8. As in the case of positive
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correlation, for p, (1) =-0.5, the arrival pattern has a more regular appearance than in the independent
case. Here the pattern involves consecutive interarrival times of alternating length: long, short, long,
short ... As can be seen from Figure 4.2 (where we present a detailed view of the interval [0, 15]), most of
the vertical lines in the case of negative correlation actually represent two arrivals. Negative correlation
also entails a regular appearance across intervals. As in the independent case, the number of arrivals in

each interval is close to 100.

p, (1) =-0.5, ( 18 arrivals )

AL

Time
Figure 4.2: Sample Path Arrivals in the interval [0, 15].

The three sample paths depicted in Figure 4.1 indicate that changes in p, (1) entail changes in the
amount of work that enters the system over small time intervals. In order to demonstrate this, we measured
the workload that enters the system during 500 intervals of length 30 for each sample path. It was assumed
that each arrival generates a service demand which is independently drawn from an exponential distribu-
tion with mean 1.0. Figure 4.3 displays the results of these measurements. Each measurement was normal-

ized by the interval length, and thus the figure displays the rate of work arrival for each interval.

Figure 4.3 is a clear display of how positive correlation in interarrival times changes the system
workload. When interarrival times are independent, the workload in each interval fluctuates in a narrow
band straddling the average. On the other hand, for p, (1) = 0.8, the workload is punctuated with bursty
arrivals. From Figure 4.1 one would expect that for p, (1) < 0.0, the workload will be less bursty than the
independent case. We do not, in fact, observe such a difference in Figure 4.3. Although we note a larger
number of consecutive intervals with above/below average workload for p, (1) = 0.5 as compared to the
independent case, the workload remains in the same narrow band straddling the average. In order to cap-
ture the impact of negative correlation workload burstiness, smaller intervals have to be considered. Figure

4.4 depicts the workload for intervals of length 5 for p, (1) =-0.5 and p, (1) = 0.0. As expected, we

-
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Figure 4.3: Workload entering the system during a time interval. TES method, p, (1) = 0.0,
A = 0.5, interval length = 30 time units.
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Figure 4.4: Workload entering the system during a time interval. TES method, p, (1) = 0.0,
A = 0.5, interval length = 5 time units.

observe a smaller number of high traffic intervals when p, (1) is negative than in the case of independent

arrivals.
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5. CORRELATED SERVICE DEMANDS

The trends identified in the previous section regarding the impact of correlations on the arrival pro-
cess are also valid for the service demand process. We would expect, however, to see a qualitative differ-
ence in the impact that positive correlation in service demands has on the workload. A sequence of small
(large) interarrival times has an opposite effect on the workload than a sequence of small (large) values of
service demands. Small interarrival times increase the rate of workload arrival, whereas small service
demands increase the rate of workload disposal. Since the median of an exponential distribution is
significantly smaller than the average, sequences of small values are likely to have a more profound impact

on the workload than sequences of large values.

Service
Time

mean

Service
Time

mean

mean

Service
Time

i I I
0 500 1000

Samples
Figure 5.1: Service sample paths. TES method, mean = 1.0.

Figure 5.1 shows three sample paths of service demands with different lag-1 autocorrelations p; (1)-
For p, (1) = 0.8 (the upper part of Figure 5.1), three phases can be discerned in the sample path. At first

service demands are low; then comes a subsequence of high service demands which is followed by another
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subsequence of low service demands. Such a pattern is not present in the other two sample paths. Nega-

tive correlation does, however, introduce phases in the envelope bounding the service demands.

1.5 —
ps (1) =-0.5
| [ S - A A & b 4 4 M 41 4 H4 14 AR JHA ARSI - e o 9= = § - = < [NIE€AN
Service
0.5 Time
i i ] 1 | |
500 525 550 575 600 625

Samples
Figure 5.2: Service sample paths for interval: [ 500, 625 ].

Figure 5.2 presents a portion of the sample path of p, (1) = -0.5 and demonstrates more clearly the

alternations between high and low values. This portion is enclosed in a rectangle in Figure 5.1.

4 .
3 - - - - average interval workload p,(1)=08
2
1—
ot"
| | 1 [ i |
0 100 200 300 400 500
Interval Number

Figure 5.3: Workload entering the system during a time interval. TES method, p, (1) = 0.0,
A =0.5, interval length = 30 time units.

Figures 5.3 and 5.4 depict sample paths of the normalized workload over equal length consecutive
time intervals. To compute the workload we assumed that interarrival times were independently drawn

from an exponential distribution with rate 0.5.

When compared to the sample paths presented in Figure 4.3, the sample path of the positively corre-
lated service demands is more bursty than the independent sample path. It is, however, less bursty than the
workload generated by an arrival process with p, (1) = 0.8. We observe shorter periods of heavy workload

and smaller amplitudes in the case of positively correlated service demands.

Having gained a measure of qualitative understanding of how autocorrelation in interarrivals or ser-

vice demands affects the workload in the system, we now proceed to consider the case where both the
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Figure 5.4: Workload entering the system during a time interval. TES method, p, (1) = 0.0,
A = 0.5, interval length = 5 time units.
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Figure 5.5: Workload entering the system during a time interval. TES method, A = 0.5, inter-
val length = 30 time units.

interarrival and the service demand processes are autocorrelated. Since the processes are mutually
independent, when p, (1) > 0 and p, (1) > 0, we expect half of the heavy workload periods to consist of
jobs with high service demands. This leads to periods of very heavy workloads as can be seen in figure 5.5
which displays a sample path of the workload for p, (1) = p, (1) = 0.8. Some of the periods in figure 5.5

generate almost three times the workload in the sample path displayed in figure 5.3.

These short but very intense periods have a dramatic impact on the sojourn time? in a queuing sys-
tem. Figure 5.6 depicts the impact of positive correlation on the mean sojourn time of a FIFO server for
the following three cases: (a) positively correlated service demands and independent interarrival times,
(b) independent service demands and positively correlated interarrival times, and (c) positively correlated
service demands and positively correlated interarrival times. For each interval, the mean sojourn time of
the jobs that arrived during that interval are displayed. By comparing the first two graphs, one can see how
the positive correlation in the job interarrival times affects the mean job sojourn times more than the posi-

tive correlation in the job service times. When we introduce positive correlation in both the job interarrival

2 sojoumn time is the total time spent in the system by a transaction, from amrival to departure.
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Figure 5.6: Mean Sojourn Times. TES method, FIFO server discipline, A =0.5, interval
length = 30 time units.

and service times, the mean sojourn times increase dramatically to a range of 1000% of the mean sojourn
time per interval. The reason for this behavior is mainly the cumulative effect of the workload entering the

system.

6. SIMULATION STUDY

To study the effect of correlation on the mean waiting time? in a queuing system, we used the DeNet
simulation language (see[Livn88]) to build a simulator of a First In First Out (FIFO) server. In addition to
the server module the simulator includes a source module that generates a sequence of jobs with exponen-
tial interarrival times and exponential service demands. The source can use a TES or the Minification

method to introduce autocorrelation into the arrival and/or service demand processes. Each simulation

3 waiting time is defined as sojoum time minus service time(s).
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experiment is characterized by the following parameters:

1. Autocorrelation generation method for the job interarrival times.

2. Arrival rate (A).

3. lag-1 autocorrelation coefficient ( p, (1) ) for the job interarrival time series.
4.  Autocorrelation Generation method for service demands.

5.  Mean service demand ( 1/t).

6. lag-1 autocorrelation coefficient ( p, (1)) for the job service time series.

In each experiment the same method was used to generate both the interarrival and the service
demand variates. The lag-1 autocorrelation coefficients for the interarrival and the service time processes
were drawn from the set P=(-0.55, -040, -025, 0.00, 0.25, 0.50, 0.75, 0.85}
((pa (1), ps (1)) € P x P). The asymmetry between the positive and negative values of p is due to the fact _
that the srﬁallest attainable negative p(1) autocorrelation for exponentially distributed variates is about
-0.62, while positive p(1) can approach 1.00. For all experiments that use a TES method we used the
TES* method to generate variates with positive correlation coefficients and the TES™ method to generate

variates with negative correlation coefficients.

Mean job service time was kept constant at one time unit. For the mean interarrival times we used
the following values: 4.0, 2.0, 1.5 and 1.25, resulting in server utilizations of 0.25, 0.50, 0.66 and 0.80,

respectively. All experiments were simulated for 20,000,000 time units.

Tables 6.1 - 6.8 summarize the simulation results for the FIFO server. For each set of simulation
parameters we measured the mean waiting time. Entries corresponding to (p, (1), p; (1)) display the per-
centage of relative discrepancy from the measured mean waiting time at p, (1) = p, (1) = 0.0; recall that
entries indexed by (0.0, 0.0) correspond to the mean waiting times for uncorrelated (actually independent)
arrivals and services. The first four tables are for the TES method whereas the other four are for the

Minification method.

Table 6.2 shows results of simulation experiments for the TES method corresponding to a 50% sys-

tem utilization. The theoretical value for a FIFO queue with p, (1) = p, (1) = 0.0 is 1.0 time units which is
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o Mean Distribution
Interarrival Time 4.0 Exponential, TES method
Service Time 1.0 Exponential, TES method
Utilization 0250
Interarrival Service Time CF
Time
CF 0.55 -0.40 -0.25 0.00 0.25 0.50 075 | 085
-0.55 ST0% | 2 3% | 308% | 35.6% | -33.3% | -266% | 29.8% | 258.5%
-0.40 19.4% | -23.1% | -268% | -31.5% | -29.3% | -22.2% | 29.8% | 188.8%
-0.25 129% | -162% | -19.4% | -24.6% | -21.8% | -14.0% | 28.5% | 115.8%
0.00 6.2% 3.9% 3.1% 03317 | 12.5% | 352% | 838.3% | 148.1%
0.25 863% | 12.7% | 65.1% | 61.2% | 90.7% | 149.7% | 274.6% | 390.2%
0.50 241.5% | 344.0% | 287.9% | 260.9% | 333.3% | 519.4% | 979.5% | 1364%
0.75 3737% | 2507% | 2177% | 2047% | 2220% | 2816% | 5497% 8604 %
0.85 12214% | 10235% | 9235% | 9156% | 9368% | 10333% | 16066% | 25374%

Table 6.1: Waiting times for a single queue, single server system. FIFO server discipline.

Utilization 25%.
e
Mean ———— Dstribution |
Interarrival Time 2.0 Exponential, TES method
Service Time 1.0 Exponential, TES method
Utilization 0.500
Interarrival Service Time Correlation Coefficient
Time
cC .55 040 | -0.25 0.00 0.25 0.50 0.75 0.85
-0.55 SToR% | 1383% | 13% | 322% | 122% | 265.4% | 2/84% | 11216%
040 79.2% | 94.7% 46% | 31.0% | 107% | 222.3% | 1626% | 5419%
025 375.3% | 429% | -1.6% | -288% | 7.1% | 150.8% | 1054% 4191%
0.00 332.2% | 47.6% | 15.9% | 1.0013 | 313% | 138.7% | 933.1% 4019%
0.25 504.8% | 164.5% | 101.9% | 79.3% | 126.4% | 284.6% | 1181% 4378%
0.50 1266% | 648.8% | 511.1% | 466.1% | 539.1% | 782.6% | 2058% 5628%
0.75 7376% | 4934% | 4430% | 4332% | 4422% | 4998% | 8081% 14954%
0.85 26708% | 21123% | 20781% | 20410% | 20810% | 21721% | 26180% 39816%

Table 6.2; Waiting times for a single queue, single server system. FIFO server discipline.
Utilization 50%.

very close to the measured value. The entries in the column labeled (0.00) show how a FIFO server with
independent exponential service times behaves when autocorrelation is introduced into the interarrival pro-
cess. The first three negative entries in the column indicate that negative correlation in the arrival process

reduces mean waiting times. For p, (1) = -0.55, we observe a reduction of 32%. The effect of positive
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Wﬁ——
. Mean Distribution
Interarrival Time 1.5 Exponential, TES method
Service Time 1.0 Exponential, TES method
Utilization 0.667
Interarrival Service Time CF
Time
CF 0.55 -0.40 -0.25 0.00 0.25 0.50 0.75 0.85
-0.55 10219% | 1212% | 249.9% | 63.6% 250.7% | 1131% | 7441% |21649%
-0.40 3505% | 437.7% | 112.7% | 218% | 127.8% | 541.2% | 3281% | 12580%
-0.25 2724% | 203.6% | 38.8% -6.8% 58.0% | 313.6% | 2612% | 11675%
0.00 2638% | 165.5% | 32.6% | 19986 | 46.1% | 260.2% | 2491% | 11568%
0.28 2833% | 281.9% | 119.4% | 80.8% | 135.1% | 370.3% | 2664% | 11805%
0.50 3807% | 805.4% | 545.7% | 490.3% | 560.8% | 864.9% | 3381% | 12510%
0.75 10549% | 5804% | 5281% | 5201% | 5277% | 5770% | 9312% | 19594%
0.85 33021% | 24115% | 23209% | 23041% | 23248% | 24029% | 27888% | 41205%

Table 6.3: Waiting times for a single queue, single server system. FIFO server disciplifne.

Utilization 66.6%.
—Mean | Dostribution |
Interarrival Time | 1.25 Exponential, TES method
Service Time 1.0 Exponential, TES method
Utilization 0.800
Interarrival Service Time CF
Time
CF .55 -0.40 -025 0.00 0.25 0.50 0.75 0.85
-0.55 17026% | 5993% | 4699% | 4450% | 4795% | 5797% | 13316% | 29360%
0.40 7782% | 193.3% | 343.4% | 246.0% | 366.1% | 816.3% | 4495% | 17629%
-0.25 6800% | 407.2% | 83.8% | 27.0% | 101.4% | 431.8% | 3924% | 16818%
0.00 6820% | 351.4% | 50.7% | 3.9974 | 58.4% | 363.5% | 3823% | 16665%
0.28 6066% | 454.9% | 133.2% | 78.5% | 142.6% | 456.6% | 3938% | 16948%
0.50 7850% | 946.9% | 561.9% | 503.0% | 573.9% | 916.9% | 4499% | 17317%
0.75 14015% | 6026% | 5387% | 5315% | 5395% | 5895% | 9782% | 23740%
0.85 34893% | 24614% | 23656% | 23463% | 23642% | 24683% | 29170% 42364%

Table 6.4: Waiting times for a single queue, single server system. FIFO server discipline.
Utilization 80%.

correlation in the interarrival times is much more pronounced. The smallest positive autocorrelation simu-
lated already caused an increase of almost 80%. For p, (1) = 0.85, we measured a mean waiting time that

was more than 200 times larger than for p, (1) = p; (1) = 0.0.
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The results displayed in the row labeled (0.00) in Table 6.2 convey a different message. Here we
observe that when negative correlation is introduced into interarrivals in a system with independent service
demands, mean waiting times can increase rather then decrease. The first three entries of the row display a
monotonic increase in waiting times as p, (1) decreases. This observation depends, however, on the
method employed to generate the autocorrelated variates. As the values in the corresponding row in Table
6.6 indicate, negative autocorrelation in service demands can lead to a reduction in mean waiting times.
Thus, the sign of p; (1) is not a sufficient predictor of the impact of autocorrelated service on mean waiting
times. Evidently, higher autocorrelations must be taken into account. The columns labeled (0.00) in
Tables 6.4 and 6.8 support this conclusion when considering p, (1). As we move to higher utilizations,
negatively correlated interarrival times generated by the TES method lead to an increase rather than a
decrease in mean waiting times.

The results displayed in the eight tables clearly indicate that positive correlation in either the arrival
process or the service demand process leads to increased mean waiting times. The extent to which such a
correlation affects the performance of the system depends on the method and the utilization of the server.
Positively correlated variates generated by the TES method have a significantly larger impact on mean
waiting times than positively correlated variates generated by the Minification method. The impact of posi-
tively correlated variates seems to be monotonically increasing as a function of system utilization. For both

methods, the effect increases nonlinearly in p, (1) and p, (1).

The impact of negatively correlated variates on the performance of a FIFO server is more complex.
When the Minification method was used, a decrease in either p, (1) or p, (1) led to a decrease in mean
waiting times. The higher the utilization, the larger the decrease. For TES the situation is more complex;
for negatively correlated variates, the direction of change in mean waiting times depends on the utilization
and whether it is used to drive the arrival process or the service demand process. For low utilization, mean
waiting times decrease (Table 6.1). As utilization increases, we eventually observe an increase in mean
waiting times (Table 6.4). In all cases, however, p, (1) precipitates an increase in mean waiting times. As
in the case of Minification, the increase is monotonic in the server utilization; the higher the utilization, the

larger the increase.




The Impact of Autocorrelation on Queuing Systems Page 20

Mean Distribution
Interarrival Time 4.0 Exponential, Minification method
Service Time 1.0 Exponential, Minification method
Utilization 0.250
Interarrival Service Time CF
Time
CF -0.55 040 | -0.25 0.00 0.25 0.50 0.75 0.88
055 336% | 33.5% | -32.5% | -28.1% | -18.3% | -2.2% | 37.6% | 84.6%
-0.40 256% | -25.0% | -232% | -17.2% | -59% | 114% | 52.3% | 98.6%
025 .192% | -18.7% | -16.1% | -84% 48% | 246% | 69.9% | 120.0%
0.00 13.1% | -12.6% | -9.5% | 03339 | 155% | 39.0% | 91.7% | 147.9%
0.28 83% | -79% | 4.6% 6.2% 238% | 50.7% | 1112% | 174.2%
0.50 43% 47% 8.9% 26% | 44.1% | 77.0% | 150.9% | 226.5%
0.758 268% | 46.5% | 53.2% | 73.7% | 104.4% | 150.6% | 253.5% | 357.5%
0.80 686% | 67.8% | 75.6% | 98.9% | 133.0% '184.3% | 298.1% | 413.1%
Table 6.5: Waiting times for a single queue, single server system. FIFO server discipline.
Utilization 25%.
| Mean Distribution
Interarrival Time 20 Exponential, Minification Method
Service Time 10 Exponential, Minification Method
Utilization 0.500
Interarrival Service Time CF
Time
CF 055 | -040 -0.25 0.00 0.25 0.50 0.78 0388
0.58 303% | 51.1% | 48.7% | -35.2% | -11.6% | 30.1% | 153.3% | 3214%
-0.40 21.1% | 414% | 384% | -26.1% | -3.8% | 364% | 158.1% | 324.9%
0.28 313% | 31.5% | 27.1% | -149% | 1.6% | 484% | 1724% | 339.1%
0.00 193% | -19.7% | -150% | 1.0002 | 242% | 61.7% | 198.3% | 366.8%
0.28 3.7% | 95% | 4.0% | 13.1% | 399% | 86.9% | 226.8% | 400.0%
0.50 180% | 169% | 23.7% | 44.1% | 74.3% | 130.3% | 286.2% | 460.3%
0.75 102.9% | 101.1% | 111.7% | 141.6% | 182.3% | 252.4% | 421.6% | 613.8%
0.80 337.1% | 225.3% | 2314% | 275.9% | 324.7% | 397.3% | 579.6% | 790.2%

Table 6.6: Waiting times for a single queue, single server system. FIFO server discipline.

Utilization 50%.

When we compare the values of the ( x, y ) entry and the ( y, x ) entry in each of the TES tables (see

Tables 6.1 - 6.4), we notice that positively correlated arrivals have a stronger impact on waiting times than

positively correlated service demands. In other words, the entry ( x,y ) is smaller than (y, x ) for x 2 0.0

and y 20.0. This is not, however, the case for the Minfication tables (see Tables 6.5 - 6.8). Here we

observe that entry ( x,y ) is larger than entry (y, x ) for x 20.0 and y 20.0. We conclude that the two

methods differ considerably in the relative impact of correlation in the arrival and service processes,

on the
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Mean
Interarrival Time 1.5 Exponential, Minification Method
Service Time 1.0 Exponential, Minification Method
Utilization 0.667
Interarrival Service Time CF
Time
CF -0.55 -0.40 0.25 ! 0.00 0.28 0.50 0.75 0.85
20.55 559 | 556% | 504% | 32.1% | 49% | 460% | 193.6% | 389.2%
-0.40 A71% | 48.1% | 44.3% | -28.1% | -14% | 48.2% | 1944% | 3894%
-0.25 37.1% | -38.6% | -33.9% | -17.8% | 8.8% | 58.5% | 205.1% | 4000%
0.00 315% | -232% | -17.6% | 1.9991 | 27.6% | 78.9% | 228.0% | 424.7%
0.25 0% | -19% | -14% | 182% | 483% | 102.8% | 257.9% | 460.1%
0.50 305% | 28.5% | 36.2% | 58.3% | 912% | 149.6% | 3122% 520.7%
0.75 142.8% | 1404% | 150.0% | 176.4% | 215.5% | 282.0% | 460.3% 682.8%
0.830 293.0% | 2903% | 301.3% | 331.0% | 375.8% | 449.1% | 642.3% 878.7% |
Table 6.7: Waiting times for a single queue, single server system. FIFO server discipline.
Utilization 66%.
Mean Distribution
Interarrival Time 1.25 Exponential, Minification Method
Service Time 1.0 Exponential, Minification Method
Utilization 0.800
Interarrival Service Time CF
Time
CF 0.55 -0.40 -0.25 0.00 0.25 0.50 0.75 0.85
-0.55 5320 | -55.6% | 489% | -29.5% | 00% | 55.6% | 218.5% 435.1%
-0.40 503% | -53.0% | 472% | -288% | 0.0% S49% | 2164% | 432.1%
028 21.0% | 43.7% | -319% | -194% | 89% | 63.5% | 225.1% 4412%
0.00 231% | -25.7% | -19.3% | 3.9974 | 28.7% | 84.1% | 247.0% 463.9%
0.28 -19% | -5.1% 23% | 229% | 54.5% | 112.5% | 280.1% | 500.8%
0.50 233% | 39.8% | 48.0% | 702% | 103.9% | 164.7% | 3372% 561.9%
0.78 180.2% | 1764% | 185.9% | 210.8% | 247.9% | 313.7% | 497.1% 731.3%
0.88 363.6% | 359.3% | 369.7% | 396.5% | 435.5% | 504.6% 697.7% | 941.2%

Table 6.8: Waiting times for a single queue, single server system. FIFO server discipline.
Utilization 80%.

mean waiting times.

7. CONCLUSIONS

In this paper we studied the impact of autocorrelated interarrival times and service demands on per-

formance measures of a FIFO server. The general dramatic effects on mean sojourn times that were

demonstrated by the simulation results lead us to make a number of recommendations to

practitioners of
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queuing-oriented performance analysis. Specifically, we strongly recommend that analysts add routine
sensitivity analysis of system performance with respect to autocorrelation. Furthermore, we recommend
that autocorrelation structure be included in the workload profile of a system. When a conservative bench-
mark is needed for both positive and negative (alternating signs) correlation coefficient, we suggest a TES
method. We found both TES and Minification methods to be easy to implement and very fast to compute.
The advantage of the TES methods is that they are quite versatile as they can generate both menotone and
oscillating autocorrelation functions. They also provide a more conservative benchmark in that its higher

autocorrelations do not decay too fast in the lag.

This study of the FIFO server is part of an ongoing effort to develop computer methods for generat-
ing correlated variates and to understand the power of correlated variates as a practical modeling tool of
real-life systems. The impact of correlated variates on other queuing disciplines and queuing networks is
the focus of our current work. In the future we plan to address the question of how to model a real-life

bursty workload as a computer-generated autocorrelated time series.
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