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Abstract

Programmers frequently face the problem of integrating several variants of a base program. Semantics-
based program integration is a technique that attempts to create an integrated program that incorporates the
changed computations of the variants as well as the computations of the base program that are preserved in all
variants.

Horwitz, Prins, and Reps were the first to address the problem of semantics-based program integration.
They presented an integration algorithm that creates the integrated program by merging certain program slices
of the variants. Our study provides semantic foundations for their approach: we show that the integrated pro-
gram produced by their algorithm includes all required computations.

We also develop a new program-integration algorithm with the same semantic properties. In addition, the
new integration algorithm has two significant characteristics: (1) it is extendible in that it can incorporate any
techniques for detecting program components with equivalent behaviors and (2) it can accommodate
semantics-preserving transformations. The new integration algorithm improves on the integration algorithm
of Horwitz, Prins, and Reps in that there are classes of program modifications for which their algorithm
reports interference while the new integration algorithm produces satisfactory integrated programs.

One fundamental problem in program integration is to detect program components with equivalent
behaviors. For this purpose. we devised the Sequence-Congruence Algorithm, which divides program com-
ponents into equivalence classes by a partitioning scheme. We show that components in the same
equivalence classes have equivalent behaviors.

The new integration algorithm is actually a family of algorithms, parameterized by the techniques used to
detect equivalent components. Any equivalence-detection techniques can be used. Many techniques, such as
constant propagation and invariant code movement, can be combined with the Sequence-Congruence Algo-
rithm to detect larger classes of equivalent components.

The new integration algorithm is capable of accommodating semantics-preserving transformations. It
allows different stages of computations to be modified independently in different variants as long as the same
values are computed in each stage. Due to the use of a technique called limited slicing, these semantics-
preserving transformations can be accommodated by the new integration algorithm.




Table of Contents

ADSITACE o ivvrvreveieierieiaereeesirarernnrerseresens sennneeee

Chapter 1. Introduction .......cevevveeeevecneccinnnens
1.1. Program Integration ..........c.ccceees

1.2. Semantic Foundations of the HPR

Integration AIZOrithm .......ccooviinnnnrernnininnenneinecrians

1.3. A New Program-Integration AIGOMhIM ......ccoovvvniviii et

Chapter 2. Semantic Foundations for the HPR Integration Algorithm ........ccocvvriieinieinisicnnicnennes
2.1. Review of the HPR Integration AIZOTHhM ......cccccvvnrniiininiiniii et
2.1.1. Program Dependence GIaphs .........cccoceernrenminiiiiiiinene s scnsssessees

2.1.2. Program Slices ......c.......

2.1.3. The HPR Integration AIZOTIthM ......cccooivriiciiiiincvei et

2.2. The Slicing Theorem ........cccccune

.......................................................................................

2.2.1. Additional Terminology and ReSUIS ......ccccccvrrrerenrenmiiiiineseeesnnsreesnsinnes
2.2.2. The Subtree SHCINE LEMINA ..c.ceoeviormne vt inetaraenssresssssse s ssssnsnssnsens

2.2.3. The Slicing Theorem .....
2.3. The Termination Theorem ...........

........................................................................................

2.3.1. The Subtree Termination LEMMA ......cccovveeirvriiimeecrirsessnens s eresessessssnssssssssnssesens
2.3.2. The Termination TREOIEIM ...c..coovieeiire et ecir e e e e s ssror s see s sn s sse e sarssrnsenss

2.4. The Integration Theorem ............

Chapter 3. Program Representation Graphs ...
3.1. Program Representation Graphs ..

........................................................................................

3.2. Comparison with Static-Single-Assignment FOIM ...

3.3. Equivalence of PDGs and PRGs ..

3.4. Equivalence Theorem for Program Representation Graphs ...

Chapter 4. The Sequence-Congruence AIZOTHEM ....c.o.ovviiieincniiii e s

4.1. Equivalent Execution Behavior ...

4.2. The Sequence-Congruence AIZOMhIM ...t
4.3, The Sequence-Congruence THEOTEM .........ccoivviimeimiriireniincinins i are st s ssranenes

4.4, Enhancements ........cccccovveeerccnnecne

Chapter 5. A New Program Integration Algorithm That Accommodates

Semantics-Preserving Transformations

5.1. The New Integration Algorithm ...

........................................................................................

5.1.1. Detecting Equivalent COMPONENLS ......cccovvermeerrvnreemnerirneisrsssinsesvessesassssssssssmsasases

5.1.2. Classifying Components

........................................................................................

iv

LN Y e e

10
10
10
13
16
17
18
19
25
25
25
26
27

31
31
35
37
45

47
47
48
53
62

65

& &



5.1.3. Computing Changed and Preserved COMPULALIONS ....oeceeeiriecesinserscainraraniesnsssenans
5.1.4. Forming the Merged Graph ...
5.1.5. Removing Useless Pseudo-Assignment StatemMENLS ...ooeeveeiereernenemneeraciscnnicennes
5.1.6. Reconstituting a Program From the Merged Graph ...

5.2. Discussion of Classification Of VEITICES ....cicvvvvriierreieeerereeeseentnsseessesiessssessisse conseseeemecs

Chapter 6. Properties of the New Integration AIZOrithm ..........c.oiiiinieceiminc e
6.1. Preservation of Textual Changes ........ccococievimnernrcnninii st e st stae st e sssssasas
6.2. The Integration TREOTEM .........cociecriiriee ittt ettt s sssa e ra e srsenaesre st aeber b e ananne

Chapter 7. Comparison with the HPR AlZOTIthIM ..ottt e e
7.1. Feasibility Lemma for Program Representation Graphs ...
7.2. The Modified HPR Integration AlgOrithim ......c.c.covieiveeinicrniciiiisinscnssnescareen s

7.2.1. The Modified HPR AIZOTItNIN .....cccccrvrrirrrnenenmrienntensresenniierenssssseisesessesessssens
7.2.2. The Modified HPR Algorithm is Equivalent to the Original HPR
AIZOTIHRIM oo s e re st st e

7.3. CompariSOn TREOTEIM ......cccevirieetiveeiieiie sttt eves i e sae s sas s snsnn e sns sn s s sn s s aneses

Chapter 8. CONCIUSIONS ....evvevereerieirir ettt st rereere i srets s i s st b sa s shsan st sas st e sassanssasssnssrasssnsens
8.1, Work ACCOMPUSHEA ..oooviiiiriciiir ettt st ers e ss s s srssnnn
8.2, FUIIE WOTK ..ooeeieriieeteeereceirtte et reeetstsesnesae s e e s e bes e s se ssaemsesssessesstmssnssnnissnnsbsssssnsssasssnsans

.............................................................................................................................................

............................................................................................................................................

vi

69
70
70
71
76

77
77
78

89
89
93
94

95
100

107
107
108

110

111




Figure 1-1.
Figure 2-1.
Figure 2-2.
Figure 3-1.
Figure 3-2.
Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 5-1.
Figure 7-1.

List of Figures

Two example integration problems. ......

A program and its program dependence graph. .......ceciiiiniinienen e e e

Asslice of the PDG in Figure 2-1. .........

A program and its augmented control flow graph. ..o e

A program representation graph. ..........
The basic partitioning algorithm. ..........
The Sequence-Congruence Algorithm. ..

.....................................................................................

.....................................................................................

The sequence-congruence classes of tWo PIOZTAMS.  ...ovviiiimminnneniinit st atssesanne s

An integration example. ......coovvieniininns

A slice of the PRG shown in Figure 3-1.

....................................................................................

....................................................................................

vii

12
14
34
35
52
53
54
72
90






Chapter 1

Introduction

1.1. Program Integration

Programmers frequently face the problem of merging several slightly different variants of a base program. A
tool that analyzes the difference between these variants and the base program and creates an integrated ver-
sion that incorporates all the changes made in the variants is, thus, desirable. This thesis concerns the design
of such a tool to ease the task of integrating the variants and the base program.

It is easy to imagine the wide applications of such a program-integration tool. For instance, a group of peo-
ple may develop a software project together. Without a program-integration tool, their work must be care-
fully divided so that each individual can work independently. If the software project cannot be decomposed
in a modular, independent fashion, their work cannot proceed simultaneously due to the interdependences
among each individual’s share of work. An alternative is to let each person work with a separate copy of the
source program and then merge the different versions into a common version manually, which is obviously a
tedious and error-prone task. A program-integration tool is aimed at lessening this restriction; it allows paral-
lel development of software in the presence of interdependences among each person’s share of work.
Another application area is concerned with the maintenance of software. As software evolves, new features
are added and bugs are fixed, possibly by different groups of people whose work is hardly coordinated. A
program-integration tool is needed in order to merge such modifications.

A program-integration tool should identify the changes made in the variants as well as the preserved part
that is common to the base program and the variants. The changes and the preserved part are to be incor-
porated into the merged program when they do not “interfere” with one another (the notion of “interference”
will be defined later). The integration tool should either produce a merged program that incorporates the
changes and the preserved part or report that there is interference among the variants.

There already exist several integration tools such as the UNIX utility diff3 that are based on the idea of
merging program fext. These text-based tools are not safe for merging programs because they do not guaran-
tee how the execution behavior of the merged program produced by a successful integration relates to that of
the variants and the base program. Since programmers are interested in the execution behavior of programs
as well as the text of programs, the merged program produced by a texi-based integration tool might well be
far from reasonable when judged from the standpoint of execution behavior. For instance, consider the fol-
lowing three program fragments and the merged program fragment that might be produced by a text-based
integration tool:



Program Base Variant A Variant B Merged program M
a=1 a = 1000 a=1 a = 1000
b=2 b:=2 b = 2000 b :=2000
c=a+b c:=a+b c=a+b c:=a+b

Variant A changes the assignment to a; this change is included in the merged program M. Variant B changes
the assignment to b; this change is also included in M. The assignment to ¢ is untouched in both variants, and
hence is included in M. However, the assignment statement to ¢ in the merged program is meaningless since
the value computed there, 3000, is not computed anywhere in Base, A, or B. Text-based tools identify textual
changes of the variants and incorporate the textual changes into the merged program. Since changes in exe-
cution behavior are not necessarily indicated by changes in program text (in the above example, the assign-
ment statement to ¢ is not changed at all but different values are computed at this statement in the variants),
the merged program that incorporates all the textual changes does not necessarily incorporate all the
behavioral changes.

Berzins [Berzins86] addresses a part of the program-integration problem from the semantic perspective.
Given two programs, his method attempts to find a merged program that is the least (semantic) extension that
subsumnes both versions, that is, a merged program that incorporates the whole behavior of the two versions.
However, as software evolves, not only extensions but also modifications (such as bug-fixes) are made to the
base program. Modifications are not addressed by his method.

Horwitz, Prins, and Reps were the first to address the problem of semantics-based program-integration
[Horwitz88, Horwitz89]. They defined an integration algorithm (referred to hereafter as the HPR algorithm)

that takes as input three programs Base, A, and B,! where A and B are two variants of Base. The integrated
program is produced by (1) building graphs that represent Base, A, and B, (the graphs are called program

dependence graphs, which will be defined in Chapter 2), (2)combining program slices®
[Weiser84, Ottenstein84, Horwitz88] of the program dependence graphs of Base, A, and B to form a merged
graph, (3) testing the merged graph for certain interference criteria, and (4) reconstituting a program from the
merged graph.

Semantics-preserving transformations—transformations that change the way computations or stages of
computations are performed without changing the values computed-—have long been advocated as an alterna-
tive way to develop clear, efficient, reliable, and reusable software
[Gerhart75, Darlington76, Burstall77, Huet78, Feather82, Partsch83]. Using this methodology, programmers
may write clear and understandable programs without being concerned with the efficiency of the resulting
programs. The transformation systems will automatically or semiautomatically transform the clear but
inefficient programs into equivalent, efficient ones [Loveman77, Paige83]. The transformation systems help
in verifying software in that once the transformation rules have been validated, verification of the programs
can be performed on the clear and understandable versions rather than on the transformed versions, which are
presumably more complicated and harder to verify. Because programs are written in a clear and understand-

'Both the HPR algorithm and the new integration algorithm developed in this thesis (the algorithm is presented in Chapter 5) can accom-
modate any number of variants; for the sake of exposition, we consider the common case of two variants.

2The slice of a program with respect to a component ¢ consists of the set of program compoenents that might affect either directly or transi-
tively the values produced at ¢. Program slices can be easily extracted from the program dependence graph of a program.




able manner (probably at a more abstract level than the concrete implementation), software reusability
becomes a more attainable goal [Cheatham84].

Experience from several experimental transformation systems shows that the transformational program-
ming methodology, combined with recent advances in verification, syntax-directed editing systems [Reps84],
and high level languages, is very promising for software development [Paige83]. It is, thus, desirable to give
the integration algorithm the ability to accommodate semantics-preserving transformations so that program
integration tools can fit in gracefully with modern software development environments.

The research work reported in this thesis is concerned with semantics-based program integration; it consists
of two parts: The first part—Chapter 2—concerns the semantic criterion for program integration, and
develops the semantic foundations for the HPR integration algorithm (see also Section 1.2). In the second
part, starting in Chapter 3, we develop a new program-integration algorithm that also satisfies the semantic
criterion. The most significant improvements of the new integration algorithm are (1) it can accommodate
semantics-preserving transformations and (2) it is very flexible and extendible in that additional techniques
for detecting program components with equivalent behaviors® can be easily incorporated in the new integra-
tion algorithm (see Section 1.3). The new integration algorithm improves on the integration algorithm of
Horwitz, Prins, and Reps in that there are classes of program modifications for which their algorithm reports
interference while the new integration algorithm produces satisfactory integrated programs.

The new integration algorithm uses a new data structure, called program representation graphs, 10
represent programs. Program representation graphs are defined in Chapter 3. One of the steps in the new
program-integration algorithm is to detect program components that have equivalent execution behavior. Any
algorithm that can detect components with equivalent behavior can be used in the new integration algorithm.
In particular, we have developed the Sequence-Congruence Algorithm for this purpose, which is discussed in
Chapter 4. The new program-integration algorithm is presented in Chapter 5. Chapter 6 shows that the new
integration algorithm satisfies the semantic criterion for program integration. In Chapter 7, we demonstrate
that, by using Sequence-Congruence Algorithm to detect components with equivalent behavior, the new
integration algorithm is strictly better than the HPR integration algorithm. Chapter 8 concludes this thesis and
discusses future work.

The remainder of this chapter surveys these results in more detail.

1.2. Semantic Foundations of the HPR Integration Algorithm

The first issue addressed by this thesis is that of providing the semantic foundations for the HPR integration
algorithm. This is the subject of Chapter 2, which shows that the integrated program incorporates the changed
behaviors of A and B as well as the preserved behaviors common to Base, A, and B.

The integrated program produced by the HPR algorithm is composed of program slices of the base and the
variant programs. The slice of a program with respect to a component ¢ consists of the set of program com-
ponents that might affect either directly or transitively the values produced at c. For example, consider the
following two programs:

3For the time being, we say that two components have equivalent behaviors if they produce the same sequence of values when the pro-
grams containing them run and terminate normally on an initial state. A precise definition is given in Chapter 4.



program P program Q
sum =0 x:=1
x:=1 whilex < 11 do
whilex < 11 do x=x+1
sum = sum -+ x od
x:=x+1 end
od
result = result + sum
end

Program P sums the integers from 1 to 10 and adds the sum to the variable result; program @ is the slice of
program P with respect to the assignment statement x := x + 1. Because the assignment statements x := 1 and
x:=x+1, and the predicate x < 11 of the while loop can affect the values produced at the assignment
x '=x + 1, these three components are included in the slice Q; all other statements are discarded.

The semantic foundations for the HPR integration algorithm are established using two results about the
semantic properties of program slices. First, we show that program slices capture portions of the program
execution behavior in the following sense:

Suppose program ( is a slice of program P. Then for any initial state ¢ on which P terminates nor-

mally,? Q also terminates normally on ¢ and P and Q compute the same sequence of values at each
corresponding program component.

This property tells us that if the program terminates normally on an initial state then slices of the program also
terminate normally on the same initial state. Second, we demonstrate that if all the constituent slices of the
merged program terminate normally on an initial state o, then the merged program also terminates normally
on ¢. Based on the semantic properties of program slices, we are able to prove the following semantic pro-
perties about the HPR integration algorithm:

Suppose the HPR integration algorithm successfully integrates two variants A and B with respect to the
base program Base and produces an integrated program M. Then for any initial state ¢ on which Base, A, and
B all terminate normaily,

(1) M terminates normally on o.

(2)  For every variable x that is defined in the final state of A, if x’s final values after executing Base and A
are different, then x’s final value in M is the same as in A (that is, M agrees with A on x).

(3)  For every variable y that is defined in the final state of B, if y’s final values after executing Base and B
are different, then y’s final value in M is the same as in B (that is, M agrees with B on y).

(4)  For every variable z that is defined in the final state of Base, if z’s final values after executing Base, A,
and B are the same, then z’s final value in M is the same as in all three (that is, M agrees with all three
on z).

More informally: changes in the behavior of A and B with respect to Base are detected and preserved in the
integrated program, along with the unchanged behavior of all three.

“There are two ways in which a program may fail to terminate normally: (1) the program has a non-terminating loop, or (2) a fault such as
division by zero occurs.




Note that properties (1)-(4) can be taken as the semantic criterion for program integration. Any program
that satisfies (1)-(4) can be viewed as the integrated version of the two variants with respect to the base pro-
gram. If no such program exists, the changes made in the variants interfere. However, this criterion is not
decidable; consequently, any integration algorithm will fail on some examples for which a program satisfying
(1)-(4) exists.

The semantic criterion for program integration leaves a great deal of freedom for constructing the
integrated program, but would be plagued by the familiar undecidable problems of automated program
derivation if the integration system is allowed to make up new statements for the integrated program. There-
fore, we further require that the integrated program be composed of exactly the statements and control struc-
tures that appear as components of the two variants.

1.3. A New Program-Integration Algorithm

The HPR algorithm represents a fundamental advance over text-based program-integration algorithms and
provides the first step in the creation of a theoretical foundation for building a program-integration tool.
However, there is room for improvement. In particular, the HPR algorithm will report interference when one
or both variants change the way different stages of a computation are performed—without changing the
values computed— and new code is added that uses the result of the changed computation.

This situation is illustrated in Figure 1-1, which shows two sets of programs, each set containing a base pro-
gram and two variants. The HPR algorithm will report interference in both cases; however, there is actually
no interference according to the semantic criterion of the previous section, and a satisfactory integrated pro-
gram is shown in each case. In the first example, variant A adds an assignment to variable vol that uses the
value of area; variant B renames variable P to P/, and moves the assignment “rad := 2” inside the conditional.
In the second example, variant A adds new statements to compute sumAV and prodAV and changes the way
ratio is computed (but the value of ratio computed remains unchanged); variant B changes the initial assign-
ments to sum and x (but still computes the same final values for sum and prod) and adds a new statement to
compute percentage from ratio.

In the two examples, one or both variants perform semantics-preserving transformations to different stages
of the computation. These transformations change the program slices of some components but preserve the
values computed at these components. By recognizing these semantics-preserving transformations, we can
determine that these components in Base, A, and B actually compute the same values even though they have
different program slices.

There are two reasons why the HPR integration algorithm reports interfence for the examples in Figure 1-1:
The first is because the HPR algorithm conservatively determines whether two components have equivalent
behavior (by comparing program slices). Certain components that actually have equivalent behavior might be
pessimistically classified as having inequivalent behavior. The second is due to the way program fragments
are extracted from Base, A, and B to form the merged program (see Chapter 2); the extracted program frag-
ments may sometimes include unnecessary components. To create an integration algorithm that could handle
examples like the ones in Figure 1-1, it was necessary to develop a number of new concepts and techniques.
These are discussed below.



Program Base Variant A Variant B Integrated Program
program program program program
P:=3.14 P:=3.14 (PI:=3.14] Pl:=3.14
rad =2 rad:=12 If debug if debug
if debug if debug then rad =4 then rad :=4
then rad := 4 then rad := 4 else rad :=2
fi fi fi fi
area := P * (rad**2) area = P * (rad**2) area ;= ra area = Pl * (rad**2)
end(area) (height := 4] end(area) height := 4
vol := height*area vol := height*area
end(area, [vol]) end(area,vol)
program program program program
sum =0 sum:=0 sum = sum =1
prod =1 prod =1 prod =1 prod =1
x=1 x:=1 X = x:=2

while x < 11 do
sum = sum +x
prod = prod * x
x:=x+1

od

ratio := sum [ prod

end(ratio)

whilex< 11 do
sum = sum + x

prod :=prod * x
x=x+1
od

[sumAV = sum [ 10]
[prodAV = prod [ 10|
[ratio:=sumAV/prodAV|
end(ratio, [sumAV],
(prodAV)

whilex< 11 do
sum .= sum + Xx

prod =prod * x
x=x+1
od

ratio := sum [ prod
[percentage:=ratio* 1]

end perceriage)

whilex < 11 do
sum = sum +x
prod = prod * x
xm=x+1
od
sumAV :=sum (10
prodAV :=prod [ 10
ratio:=sumAV/{prodAV
percentage:=ratio*100
end(percentage,
sumAY,prodAV)

Figure 1-1. Two example integration problems that illustrate the limitation of the HPR algorithm with regard to
semantics-preserving transformations. Modifications in variants A and B are enclosed in boxes. In both examples, the
HPR algorithun will report interference even though there is no interference according to the semantic criterion for integra-

tion. The end statements will be explained in Chapter 2.

The Sequence-Congruence Algorithm

A fundamental problem in program integration is to determine, for all possible initial states, which com-
ponents of a variant will produce different values than the corresponding components of the base program.
(We call such components affected components.) However, it is an undecidable problem to find the exact set
of affected components. Any program-integration algorithm must conservatively determine the set of
affected components; that is, the set of affected components determined by a program-integration algorithm
must be a superset of the set of components that actually produce different values than the counterparts in the
base program on some initial states.




The HPR algorithm compares program slices to find affected components. If a component ¢’s slice in the
base program differs from its slice in a variant, then the way ¢’s values are computed differs in the base pro-
gram and the variant, and thus the values themselves might differ. Therefore, any component whose slice in a
variant differs from its slice in the base program is considered to be an affected component by the HPR algo-
rithm. Comparing program slices is a safe method in that two components must have equivalent execution
behaviors if the slices with respect to them are isomorphic and they are corresponding components under the
isomorphism. (This is a corollary of the Slicing Theorem in Chapter 2.) However, comparing program slices
is conservative in that two program components may have equivalent execution behavior even if the slices are
different.

In this thesis work, we have developed alternative techniques for detecting affected components-—
techniques that are strictly more powerful than comparing slices. These techniques make use of an idea first
introduced by Alpern, Wegman, and Zadeck [Alpern88], which is to first optimistically group possibly
equivalent components in an initial partition and then find the coarsest partition compatible with the initial
partition and dependences among program components.

However, the equivalence-testing algorithm of Alpern, Wegman, and Zadeck was not suitable for our pur-
poses; the property that holds for components in the same final “equivalence class” is that components of a
single program that are in the same final partition produce the same value at certain moments during program
execution. There are two reasons why this is not the appropriate property for our purposes: (1) for integra-
tion, it is necessary to be able to identify equivalent components in several programs simultaneously; (2) for
integration, we need a different notion of equivalence: components are equivalent only if they produce identi-
cal sequences of values.

Consequently, we developed a new algorithm, called the Sequence-Congruence Algorithm [Yang89], that
uses the partitioning idea to find components that have equivalent behaviors (in the stronger sense indicated
above). The affected components determined by the Sequence-Congruence Algorithm are a subset of the
affected components determined using program slicing (but are still a safe approximation to the exact set of
affected components), hence the technique is strictly more powerful than just comparing program slices.

The Sequence-Congruence Algorithm can be used to identify the semantic differences between several ver-
sions of a program [Yang89a, Horwitz90]. Although the Sequence-Congruence Algorithm is better than com-
paring program slices, it still produces a safe approximation to the exact set of affected components (i.e., a
superset of the exact set of affected components). For instance, the Sequence-Congruence Algorithm can
determine that Base, A, and B compute the same value for the variable area in the first example of Figure 1-1.
But, for the second example of Figure 1-1, the Sequence-Congruence Algorithm cannot determine that Base,
A, and B compute the same value for the variable ratio. In general, the Sequence-Congruence Algorithm can
recognize a limited set of semantics-preserving transformations, such as renaming variables, moving certain
statements intofout of conditional statements, and adding copy statements (i.e., statements of the form

“.x = y”).

Limited Slices

The second reason why the HPR algorithm reports interference for the two sets of examples in Figure 1-1 is
due to the way program fragments are extracted from Base, A, and B to form the merged program. In the
HPR algorithm, whenever a component is assumed to be an affected component, the whole slice with respect
to the component must be included in the merged graph since this is the only way to guarantee that the
changed behaviors of the affected components are incorporated in the merged program. For instance, con-



sider the first example of Figure 1-1. The slices with respect to the assignment to the variable area in A must
be included in the merged program because this slice is part of the slice with respect to the assignment to vol
(the assignment to vol is an affected component). Similarly, the slices with respect to the assignment to area
in B must be included in the merged program because this slice has been changed in B. However, since the
two slices with respect to the assignment to area in A and B are different, they cannot be combined together in
the merged program. Hence, the HPR algorithm will report interference. In the second example of Figure 1-
1, because the slices with respect to the assignment to ratio in A and B differ from the corresponding slice of
Base, and because both slices must be included in the merged program, the HPR algorithm will report
interference.

To address this limitation of the HPR algorithm, we propose a new integration algorithm that employs a
new operation, called /imited slicing, to extract program fragments from Base, A, and B to form a merged
graph. Instead of including the whole slices with respect to the affected components, the new integration
algorithm includes only the neighborhood of the affected components.

Because the new integration algorithm uses limited slicing to extract program fragments, it can accommo-
date semantics-preserving transformations. For instance, there are two stages in the first example in Figure
1-1: one is to compute area, the other is to compute vol. Variant B has applied a semantics-preserving
transformation to the former stage while variant A added the latter stage. Limited slicing allows the new
integration algorithm to extract the former stage from B and the latter stage from A. In the second example in
Figure 1-1, there are three stages: one is to compute sum and prod, the second to compute ratio, and the third
to compute percentage. Given an algorithm that can determine that the values of sum (and prod, respectively)
are identical after the loops in A and B, the new integration algorithm will extract the first stage from variant B
(B has performed semantics-preserving transformations to this stage). Similarly, the second stage is taken
from A, and the third stage is taken from B. In this way, a satisfactory integrated program is constructed.

Properties of the New Integration Algorithm

The new integration algorithm is actually a family of algorithms, parameterized by the techniques used to
detect components with equivalent behaviors. Any techniques, including the Sequence-Congruence Algo-
rithm, that can detect components with equivalent behaviors can be employed. In Chapter 6, we demonstrate
that the new integration algorithm also satisfies the semantic criterion given in Section 1.2. In Chapter 7, we
show that if the Sequence-Congruence Algorithm is used to detect components with equivalent behaviors, the
new integration algorithm improves on the HPR algorithm in the following sense:

(1) The new integration algorithm successfully integrates the two variants with respect to the base pro-
gram whenever the HPR algorithm succeeds.

(2)  There are classes of program modifications for which the new integration algorithm succeeds but the
HPR algorithm reports interference.

Although the new integration algorithm/Sequence-Congruence Algorithm combination improves on the
HPR algorithm, it does not succeed in integrating all examples for which a reasonable integrated program
exists. For instance, our techniques fail to handle the second example given in Figure 1-1: The Sequence-
Congruence Algorithm is not powerful enough to detect that the final values of the variables sum, prod, and
ratio are identical in A, B, and Base. As a result, certain components are pessimistically classified as affected
components, which causes the new integration algorithm to report interference.

However, all is not lost; the new integration algorithm can use any of a number of algorithms to detect
components with equivalent behaviors, not just the Sequence-Congruence Algorithm. Many techniques used




in compiler optimization [Allen72, Loveman77, Aho86], such as constant propagation, movement of invariant
code, and common subexpression elimination, can be combined with the Sequence-Congruence Algorithm to
detect larger classes of program components with equivalent behavior. Knowledge of semantics-preserving
transformations that have been applied to a program or certain parts of the program, either detected by an
equivalence-detection algorithm or obtained from the editor front-end of a program-transformation system,
can be exploited to detect larger classes of program components with equivalent behaviors. If such tech-
niques can be used to determine that the final values of sum, prod, and ratio are identical in A, B, and Base,
the new integration algorithm does succeed in integrating the second example in Figure 1-1.



Chapter 2

Semantic Foundations

for the HPR Integration Algorithm

This chapter reviews the HPR integration algorithm [Horwitz88, Horwitz89] and provides the semantic foun-

dations for that algorithm.> We prove that program slices capture a portion of a program’s execution
behavior. The results are formulated as the Slicing Theorem and the Termination Theorem. The semantic
foundations of the HPR integration algorithm are stated as the Integration Theorem, which follows as a corol-
lary of the slicing properties.

2.1. Review of the HPR Integration Algorithm

2.1.1. Program Dependence Graphs

While our goal is to design a semantics-based program-integration tool for a full-fledged programming
language, in the study of both the HPR integration algorithm and the new integration algorithm, we restrict
ourselves to a simplified programming language. This language possesses the essential features of the prob-
lem, and thus permits us to avoid inessential details while conducting our research.

The simplified programming language has the following characteristics: expressions contain only scalar
variables and constants; statements are assignments, conditionals, while-loops, or end statements. An end
statement, which can appear only as the last statement of a program, names zero or more of the variables used
in the program. When execution terminates normally, only those variables will have values in the final state;
intuitively, the variables named by the end statement are those whose final values are of interest to the pro-
grammer. Thus, a program is of the form

program
stmelist
end(idlist)

The language has no input statements, but a variable may be used before being assigned to, in which case the
variable receives the value provided for that variable in the initial state.

Our discussion of the language’s semantics is in terms of the following informal model of execution. We
assume a standard operational semantics for sequential execution of the corresponding flowchart (control flow
graph [Aho86]): at any moment there is a single locus of control together with a global execution state map-

*The material in this chapter has been previously published as a technical repont [Reps88] and in a conference proceedings [Reps89].
From now on, we will omit all references to the two papers.
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ping program variables to values; the execution of each assignment statement or predicate passes control to a
single successor; the execution of each assignment statement changes the global execution state. An execu-
tion of the program on some initial state also yields a (possibly infinite) sequence of values for each predicate
and assignment statement in the program; the i element in the sequence for program component e consists
of the value computed when e is executed for the i” time. The variables named in the end statement are
those whose final values are of interest to the programmer; when execution terminates normally, the final state
is defined on only those variables in the end statement.

The HPR integration algorithm operates on program dependence graphs. Different definitions of program
dependence graphs have been given; they are all variations on a theme introduced in {Kuck72]. The follow-
ing definiion of program dependence graphs for our restricted language is taken from
[Horwitz88, Horwitz89]. (From now on, PDGs refer specifically to the program dependence graphs defined
in [Horwitz88, Horwitz89].)

The program dependence graph (PDGs) for a program P, denoted by Gp, is a multigraph which consists of
vertices designating program components and edges designating control and data dependences among com-
ponents. There is a vertex for each assignment statement and for each predicate in the program. In addition,
PDGs include three other categories of vertices: there is a distinguished vertex called the Entry vertex; for
each variable x for which there is a path in the standard control-flow graph for P [Aho86] on which x is used
before being defined, there is a vertex called the initial definition of x (labeled “x := InitialState (x)”); and for
each variable x named in P’s end statement, there is a vertex called the final use of x (labeled “FinalUse (x)”).

The source of a control dependence edge, which is labeled true or faise, is always the Entry vertex or a
predicate vertex. A control dependence edge from vertex v, to vertex v,, denoted by v, — ,v,, means that
during execution, whenever the predicate represented by v, is evaluated and its value matches the label on the
edge from v, to v,, then the component represented by v, must be executed before the program terminates
normally; if the value does not match the label on the control dependence edge, the component v, may not be
executed.

Methods for determining control dependence edges for programs with unrestricted flow of control are given
in [Ferrante87, Cytron89]; however, for our restricted language, control dependence edges can be determined
in a simpler fashion: The control dependence edges merely reflect the nesting structure of the program.

. There is a control dependence edge from Entry to a vertex v if v represents a component that is not
nested within any control constructs; this control dependence edge is labeled true.

. There is a control dependence edge from a predicate vertex u to a vertex v if v represents a component
nested immediately within the control construct whose predicate is represented by u. If u is a predicate
for a while loop, this control dependence edge is labeled true. If u is a predicate for an if statement, this
control dependence edge is labeled by the truth value of the branch in which v occurs.

There are two kinds of data dependence edges: flow and def-order dependence edges. A flow dependence
edge from vertex v, to vertex v,, denoted by v, —,v,, means that during execution, the value produced at
the component v, might be used at the component v,. A flow dependence edge is loop-carried by a loop L,
denoted by v; — . ¢yV2, if the value produced at the component v, reaches the component v, via a back-
edge of the loop L in the standard control-flow graph and both v, and v, are enclosed in loop L; otherwise it
is loop-independent, denoted by v, —>j; v4.

There is a def-order edge from vertex v, to vertex v, if (1) both v, and v, assign values to a common vari-
able and there is a third vertex w that is flow-dependent on both vertices; (2) v, and v, are in the same branch
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(a) program Main

sum = ()

x:=1

whilex < 11 do
sum = sum+ x
x=x+1

od

result = result + sum

end(result)

result = InitiaiState (result)

Figure 2-1. (a) is an example program. This program sums the integers 1 to 10 and adds the sum to the variable result.
(b) is its program dependence graph. The boldface arrows represent control dependence edges, dashed arrows represent
def-order dependence edges, solid arrows represent loop-independent flow dependence edges, and solid arrows with a
hash mark represent loop-carried flow dependence edges.

of any conditional statement that encloses both vertices; and (3) the component v, occurs before the com-
ponent v, in a pre-order traversal of the program’s abstract syntax tree. A def-order edge from vertex vy 10
vertex v, witnessed by vertex w is denoted by v — 4, ) V2.

The data dependence edges can be computed using data flow analysis (Hecht77, Aho86]. For the restricted
language considered in this thesis, the necessary computations can be defined in a syntax-directed manner
(see [Horwitz87, Horwitz89] for details.)

Example. Figure 2-1(b) shows the program dependence graph of the example program in Figure 2-1(a).
The boldface arrows represent control dependence edges, dashed arrows represent def-order dependence
edges, solid arrows represent loop-independent flow dependence edges, and solid arrows with a hash mark
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represent loop-carried flow dependence edges.

2.1.2. Program Slices

A slice of a program with respect to a program component ¢ consists of all the statements and predicates in
the program that may affect the values computed at ¢ during program execution [Weiser84]. Program slicing
can be used to isolate individual computation threads within a program, which helps a programmer under-
stand complicated code. Weiser gave an algorithm (formulated as a sequence of data-flow analysis problems)
to extract program slices [Weiser84].

In [Ottenstein84], Ottenstein and Ottenstein developed a different method to extract program slices: first
create a dependence graph that represents dependences among program components, then traverse the graph
to find all vertices that can reach an initial set of vertices. In the HPR algorithm, program slices are extracted
from the program dependence graphs in the same way as the method developed by Ottenstein and Ottenstein.

Program slices are used in the HPR algorithm to compute a safe approximation to the computation threads
that have changed between a program and its variants, and to help determine whether two modifications to the
base program interfere.

For a vertex s of a PDG G, the slice of G with respect to s, denoted by G /s, is a graph containing all ver-
tices on which s has a transitive flow or control dependence (i.e., all vertices that can reach s via a path of
flow and control dependence edges): V(G /s)={w | weV({G) A w -* o f5}. We extend the definition to
a set of vertices § = k‘J 5; as follows: V(G /8)=V(G /(U s) = U V(G /s;). The edgés in the graph G /S are

essentially those in the subgraph of G induced by V(G/S), with the exception that a def-order edge
V = 4, W is only included if, in addition to v and w, V(G /§) also contains the vertex u that is directly flow
dependent on the definitions at v and w. In terms of the three types of edges in a PDG we have:

EGISy= [(v=pw) | (v—oyw)eEG)Av,weV(GI/S))
v{v=w) | (v, w)e E(GYA v, we V(G/S))
V{2 uwW) | (V0w w)eEG)A u,v,we V(G/S)}.

Example. The slice of the example PDG shown in Figure 2-1(b) with respect to the assignment statement
x :=x + 1 is shown in Figure 2-2(b). This slice corresponds to the program in Figure 2-2(a).

We say a graph is a feasible program dependence graph if and only if it is isomorphic® to the program
dependence graph of some program. Our first result concerns a syntactic property of program slices: we are
able to show that for any program P and vertex set S, the slice Gp /S is a feasible PDG. The proof proceeds
by showing that Gp /S is isomorphic to the PDG of the program whose components are the statements and
predicates in V(Gp /S) arranged in the same order as they occur in P.

Two multigraphs G, and G, are isomorphic, denoted by G =G 4, if and only if the following conditions are satisfied:

(1) Thereis a I-to-1, onto mapping f from the vertex set of Gy lo the vertex set of G5 and for every vertex vin G, v and f (v) have
the same text.

(2) Thereis a 1-to-1, onto mapping g from the edge set of G to the edge set of G, and for every edge e in Gy, ¢ and g (¢) are of the
same type (i.e., both are control dependence edges or both are flow dependence edges) and have the same label.

(3) Forevery edge u; —» vy in G and its image 4y —>v2in G, 4z is f () and vy is f (vy).

When G =G4 or when we are trying to prove G =G 5, for brevity, we will say v and f (v) are the same veriex and e and g (e) are the
same edge.
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(a) (b)

‘l while x < 11

Figure 2-2. (b) is the slice of the program dependence graph in Figure 2-1 with respect to the assignment statement
x ==x+1. It corresponds to the program shown in (a).

program Main
x:=1
while x < 11 do
xm=x+1
od
end

Lemma. (Feasibility Lemma for Program Dependence Graph). For any program P, if G is a slice of Gp
(with respect to some set of vertices), then Gy is a feasible PDG.

Proof. We construct a new program Q” from P and Gy, as follows: the components (statements and predi-
cates) of Q correspond to the vertices of Gp; each component of Q” is subordinate to the same component
that it is subordinate to in P; the components of Q” occur in the same relative order as they do in P. The vari-
ables that appear in the end statement of Q” are those variables whose final-use vertices are in Gy. We use
G to denote the program dependence graph of Q°. We want to show that G = G-

Because each component of Q’ is subordinate to the same component that it is subordinate to in P, and
because components of Q" occur in the same order as they occur in P, the control flow graph for program Q’
is the projection of the control flow graph for program P onto the components of Q°. That is, if a and b are
components of Q’, the projection of any path from a to b in the control flow graph of P onto the set of com-
ponents of Q’ is a path in the control flow graph of Q’. Furthermore, every path from a to b in the control
flow graph of @’ is the projection of some path from a to b (and possibly several such paths) in the control
flow graph of P.

From the construction of Q’, the only possible differences between the vertex sets of Gg and Gy is in their
initial-definition vertices. By the definition of the vertex set of a slice, if there is an initial-definition vertex a
for variable x in V(Gy), there must be a flow edge a —,b in E(Ggp), where b is not an initial-def vertex.
Since a —¢b € E(Gy), it must be that a —b € E(Gp). This means that there is a path from the beginning
of the control flow graph of P to b that is free of any definition to x. The projection of this path onto the com-
ponents of O’ is a path in Q from the beginning of the control flow graph of Q" to b and contains no
definition to x. Consequently, V (Gy) must contain an initial-definition vertex for x, which corresponds to
vertex a in V(Gp).
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Arguing in the other direction, suppose there is an initial-definition vertex a for variable x in V(Ggy) and a
flow edge a —¢ b that occurs in E(Gp) but not in £(Gg). Since be V(Gg) but a—,b & E(Gp), by the
definition of the edge set of a slice, a — b cannot be in E(Gp). Therefore, along each path from the Entry
vertex to b in P there must be a redefinition of x. Along each such path p, let ¢, be the last redefinition site.
Since ¢, — b is in E(Gp) and b is in V(Ggp), ¢, —¢b is in E(Gp); the vertex c, itself must be in V (Gg) and
hence in Q’. Because every path from the Entry vertex to b in the control flow graph of Q" is a projection of a
path p from the Entry vertex to b in the control flow graph of P, there must be a redefinition of x on each path
from the Entry vertex to b in Q°. This means that @ —,b cannot be in £ (Q"), which is a contradiction, hence
there does exist a flow edge a —;b in E (Gp) where a is the initial-definition vertex for x in P. Because
be V(Gg) and b itself is not an initial-definition vertex, by the construction of Q" it must be that b € V(Gy).
Consequently, by the definition of the vertex set of a slice, a € V(Gg) and a —¢b € E(Gp).

We have shown above that Gy and G- have the same vertex sets, what remains to be shown is that G, and
G- have the same edge sets.

Sub-proof 1. If the edge a = b is in Gy, thena — b is in Gy,

1) By the definition of the edge set of a slice, if a —, b is a control edge in E (Gy), then a —, b is a con-
trol edge in E (Gp), which means that b is subordinate to a in program P. Because a component in pro-
gram Q’ is subordinate to the same component that it is subordinate to in P, a —.b is in E (GQ') as
well.

2) By the definition of the edge set of a slice, if a —/b is a flow edge in E (Gp), then a —b is in E (Gp),
which means that there is a path in the control flow graph of P from a to b without any redefinition to
the target variable of a. The projection of this path onto the components of @’ is a path in Q that con-
tains no redefinition to the target variable of a; thus, a —b is in E(Gg).

3) By the definition of the edge set of a slice, if a — 4, ()b is a def-order edge in E(Ggp), then there are
flow edges a —;c and b —>;c in E(Gg). From the argument in (2), the edges a —c and b —>c also
occur in E (Gg-). Because a occurs before b in P, a occurs before b in Q’. Therefore, a —> 4,()b is in
E(Gg).

Sub-proof 2. 1f the edge a — b isin Gy, thena —> b is in Gg.

1)  Ifa—.bis acontrol edge in E (Gg-), then b is subordinate to a in Q’, hence b is subordinate to @ in P.
Therefore, a —, b is a control edge in E (Gp) and, by the definition of the edge set of a slice, the control
edge a —. b is a member of E(Gg).

2)  Suppose a—b is a flow edge that occurs in E(Gg) but not in E(Ggp). Since a, be V(Gg) but
a—b & E(Gg), by the definition of the edge set of a slice, a —;b cannot be in E(Gp). Therefore,
along each path from a to & in P there must be a redefinition of the target variable of a.

Along each such path p, let ¢, be the last redefinition site. Since ¢, —¢b is in E(Gp) and b is in
V(Gyp), ¢, —=¢b is in E(Gyp); the vertex c, itself must be in V(Gg) and hence in Q’. Because every
path from a to b in the control flow graph of Q' is a projection of a path p from a to b in the control flow
graph of P, there must be a redefinition of the target variable of a on each path from a to b in Q. This
means that a —,b cannot be in E (Q"), which is a contradiction; therefore, a —b is a flow edge in
E(Gp).

3)  Ifa—> g b is a def-order edge in E(Ggy), then a —,c and b —¢c are in E(Gy-). From the argument
in (2), the edges a —,c and b —> ¢ are in E (Gp) and E (Ggp) as well. Because a — 4, )b is in E (Gg)
a occurs before b in Q”, hence a occurs before of b in P and therefore a —> 4, )b is in E (Gp). Now q,
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b, and c are all in V (Gy); thus, by the definition of the edge set of a slice, a — 4, ()b is in E (Gg).

We have shown that G, is isomorphic to G- and hence corresponds to program Q’. Therefore, a slice of a
feasible PDG is always a feasible PDG. OJ

Since a stice of a PDG is a feasible PDG, “a slice of a program” is as meaningful as “a slice of a program
dependence graph.” We say program ( is a slice of program P with respect to a set of components § when
G is isomorphic to Gp /S, and write thisas P /§.

2.1.3. The HPR Integration Algorithm

A basic assumption of the HPR integration algorithm (and also of the new integration algorithm in Chapter 5)
is that the integrated program must be composed of only the statements and control structures that appear as
components of the variants. In conjunction with this assumption, we assume that there is a unique-naming
mechanism so that program components are identified consistently in all three versions. Each component that
occurs in a program is assigned a tag so that components that have the same tag are considered to be “the
same” component occurring in different versions of the programs. Components’ tags can be maintained by
the editor or they can be generated by an algorithm which, after analyzing the base and the variant programs,
can consistently identify the components. The exact source of tags is irrelevant to the integration algorithms.

We say that two graphs G| and G, are “the same graph,” denoted by G| = G, if they are isomorphic and
corresponding components under the isomorphism have the same tag.

The HPR integration algorithm takes as input a base program Base, and two variants A and B. Whenever
the changes made to Base to create A and B do not “interfere” (in the sense defined below), a merged program
M is produced that exhibits the changed execution behavior of A and B with respect to Base, as well as the
execution behavior preserved in all three versions. The integration algorithm consists of three steps. The first
step determines slices that represent a safe approximation to the changed computation threads of A and B and
the computation threads of Base preserved in both A and B; the second step combines these slices to form the
merged graph G,y; the third step tests G, for interference.

Step 1: Determining changed and preserved computation threads

If the slice of variant G, with respect to vertex v differs from the slice of Gg,, with respect to v, then G4 and
Gaase may compute different values at v. In other words, vertex v is a site that potentially exhibits changed
behavior in the two programs. Thus, we define the affected points of G, with respect 0 Ggg., denoted by
AP, pue, to be the subset of vertices of G, whose slices in Gg,, and Gy differ:
APy pase ={V I vE V(G4) A (Gpase V)2 (G4l v) ). We define APp g, similarly. It follows that the slices
Gal APy pase and G/ APg pa. capture the respective computation threads of A and B that differ from Base.

If the slice of Ggg, With respect to vertex v is identical to the slices of G, and Gy with respect to v, then all
three programs compute the same sequence of values at v (this assertion is a corollary of the Slicing Theorem,
which will be proved in Section 2.2). We define the preserved points, denoted by PPg,, 4,5, t be the subset
of wvertices of Gpg. Wwith identical slices in Gpue, Ga, and Gp: PPpaeas =
{(v|ve V(Gpae) A (Gpase /V)=(G4/v)=(Gg/v)}. Thus, the slice G, / PPpas., 4, g Captures the computa-
tion threads of Base that are preserved in both A and B.
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Step 2: Forming the merged graph

The merged graph, Gy, is formed by unioning the three slices that represent the changed and preserved com-
putation threads:

GM = (GA /APA, Bare) w (GB /APB,Base) LJ((-;Ba.\‘e /PPBa.s‘e. A,B)-

Step 3: Testing for interference

There are two possible ways by which the graph Gy, may fail to represent a satisfactory integrated program;
both types of failure are referred to as “interference.” The first interference criterion is based on a com-
parison of slices of G4, Gg, and Gy, The slices G, /AP, g4, and Gg/APg g, represent the changed com-
putation threads of programs A and B with respect to Base. A and B interfere if Gy, does not preserve these
slices; that is, there is no interference of this kind if Gy/AP4 pase = Ga/AP4 pase and
Gy ! APg ase = Gp | APp pose.

The final step of the HPR integration algorithm involves reconstituting a program from the merged graph.
However, it is possible that there is no program whose PDG is isomorphic to the merged graph. This is the
second kind of interference that may occur. (Determining whether a graph is a feasible program dependence
graph has been shown to be NP-complete [Horwitz88a]. The crux of the problem is to order each predicate’s
control-successors. A backtracking algorithm has been written and proved correct [BallS0].)

If neither kind of interference occurs, one of the programs that corresponds to the graph Gy, will be
returned as the result of the integration operation.

2.2. The Slicing Theorem

We now turn to the relationship between the execution behavior of a program and the execution behavior of a
slice of the program. Because of the way a program slice is derived from a program, it is not unreasonable to
expect that the program and the slice exhibit similar execution behavior. However, because a diverging com-
putation may be “sliced out,” a program and a slice of the program do not necessarily exhibit identical execu-
tion behaviors; in particular, a slice may produce a result on some initial states for which the original program
diverges. For example, the program shown below on the left always diverges, whereas the program on the
right, obtained by slicing the left-hand-side program with respect to variable x at the program’s end statement,
always converges:

program Main program Main
x =1 x:=0
while true do end(x)
x=x+1
od
x:=0
end(x)

The main result of this section is the Slicing Theorem, which asserts that a slice captures a portion of the
program’s behavior in the sense that, for any initial state on which the program terminates normally, the pro-
gram and the slice compute the same sequence of values at each component of the slice.

Theorem. (Slicing Theorem). Let Q be a slice of program P with respect to a set of program components.
If 6 is a state on which P terminates normally, then for any state & that agrees with & on all variables for
which there are initial-definition vertices in Gg: (1) Q terminates normally on o', (2) P and Q compute the
same sequence of values at each component of Q, and (3) the final states agree on all variables for which
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there are final-use vertices in Gg.

(The second clause means that the sequence of values produced at each component of Q is identical to that
produced at the corresponding component of P. The third clause of the theorem’s conclusion is implied by
the second clause; it is stated explicitly to emphasize what the theorem says about programs viewed as state-
transformers.)

The proof of the Slicing Theorem relies on a lemma, the Subtree Slicing Lemma, which is stated and pro-
ven in Section 2.2.2.

2.2.1. Additional Terminology and Results

The abstract syntax of the language is defined as the terms of the types id, exp, stmt, stmt_list, and program
constructed using the operators Assign, While, IfThenElse, StmtList, and Program. The five operators of the
abstract syntax have the following definitions:

Assign : id X exp — stmt

While : exp X stmt_list - stmt
IfThenElse : exp X stmt_list X stmt_list — stmt
StmulList:  stmt* > stme_list

Program:  id X stmt_list X id" — program

In operator Program, the initial id represents the program name, and the id” component represents the vari-
ables named in the end statement.

We also introduce an overloaded constant, Null, which is used to represent null trees of type id, exp, simt,
and semt_list:

Null: — id

Null : —> exp
Null —> stmt
Null : — stmt_list

Null is introduced solely for technical reasons, and is never an element of a program’s abstract syntax tree.

The subgraph induced by the control dependences of program dependence graph Gp forms a tree that is
closely related to the abstract syntax tree for program P. The control dependence subtree is rooted at the
Entry vertex of Gp, which corresponds to the Program node at the root of P’s abstract syntax tree. Each
predicate vertex v of Gp corresponds to an interior node of the abstract syntax tree; the node is a While node
or an IfThenElse node depending on whether v is labeled with while or if, respectively. Each assignment ver-
tex of Gp corresponds to an Assign node of the abstract syntax tree.

The control dependence subtree rooted at a vertex v of Gp corresponds to the subtree of the abstract syntax
tree that is rooted at the control construct that corresponds to v. Because of this correspondence, for brevity
we use phrases, such as “the flow edges whose source is in subtree T,” which are, strictly speaking, not
correct when T is a subtree of the abstract syntax tree. What “T” refers to is the subgraph induced by T in
Gp’s control dependence subgraph.

Imported and exported variables

Our goal is to show that a slice of a program exhibits a portion of the program’s behavior in the sense that the
slice always terminates normally on an initial state whenever the program terminates normally on a
sufficiently similar initial state and when they both terminate normally, they compute the same sequence of
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values at each corresponding program component; in particular, they are equivalent state transformers with
respect to certain variables when they both terminate normally. In making this argument, it is necessary to
discuss the state-transforming properties of individual statements, or equivalently, subtrees of the program’s
abstract syntax tree. The state-transforming properties of such subtrees are characterized in terms of the sub-
trees’ imported and exported variables.

Definition. The outgoing flow edges of a subtree T consist of all the loop-independent flow edges whose
source is in T but whose target is not in T, together with all the loop-carried flow edges for which the source is
in T and the edge is carried by a loop that encloses T. Note that the target of an outgoing loop-carried flow
edge may or may not be in T. The variables exported from a subtree T are the variables defined at the source
of an outgoing flow edge.

Definition. The incoming flow edges of a subtree T consist of all the loop-independent flow edges whose
target is in T but whose source is not in T, together with all the loop-carried flow edges for which the target is
in T and the edge is carried by a loop that encloses T. Note that the source of an incoming loop-carried flow
edge may or may not be in T. The incoming def-order edges of a subtree T consist of all the def-order edges
whose target is in T but whose source is not in 7. The variables imported by a subtree T are the variables
defined at the source of an incoming flow edge or at the source of an incoming def-order edge.

By definition, the imported variables of a program P consist of all the variables for which there are Initial-
State vertices in P’s PDG and the exported variables of a program P consist of all the variables for which
there are FinalUse vertices in P’s PDG.

Corresponding subtrees

Let Q be a slice of P with respect to a set of program components. There is a natural correspondence between
subtrees in P and subtrees in Q, defined as follows:

Definition. Let Q be a slice of P with respect to some set of program components. For each subtree U of Q
with root u, U corresponds to the subtree of P whose root is u. For each subtree T of P, if the root t of T
occurs in Q, T corresponds to the subtree of Q rooted at ; if ¢ does not occur in Q, T corresponds to the tree
Null.

Thus, for each subtree of Q, there is always a corresponding subtree of P, and vice versa, although for a
subtree of P the corresponding subtree of Q may be the tree Null.

Note that the “corresponds t0” relation respects the hierarchical structure of programs: children of roots of
corresponding subtrees are the roots of corresponding subtrees.

2.2.2. The Subtree Slicing Lemma

The Subtree Slicing Lemma characterizes the relationship between a subtree and a slice of the subtree in
terms of the slice’s imported and exported variables. The Lemma asserts that, for certain initial states,
corresponding subtrees of a program and a slice of the program compute the same sequence of values at com-
MON program components.

Lemma. (Subtree Slicing Lemma). Let Q be a slice of program P with respect to a set of program com-
ponents. Let T be a subtree of program P and U be the corresponding subtree of Q. If G is a state on which T
terminates normally, then for any state & that agrees with 6 on U’s imported variables (as defined in the con-
text given by Q): (1) U terminates normally on &', (2) T and U compute the same sequence of values at each
program component of U, and (3) the final states agree on U's exported variables (as defined in the context
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given by Q).

Proof. The proof is by structural induction; it splits into five cases. Throughout the proof, we use Impy
and Expy to denote the imported and exported variables of U; we use ¢, and G} “ to denote states that agree on
U’s imported variables, Impy. We use o; to denote a sequence of states in the execution of T initiated on Gy,
and we use o;’ to denote the corresponding sequence of states in the execution of U initiated on ;.

Case 1. The operator at the root of T is the Assign operator. Because T is a single assignment statement,
either U is the tree Null or U = T. If U is Null, then Impy = Expy = @. Hence U always terminates normally
and the final states agree on Exp;; (since Expy is empty).

Now suppose U =T and that U is of the form “x := exp” where exp is an expression that uses variables
(y;}. The set Impy is either {y;} or {y;}v{x}. Umpy is {yj} v (x} when U is the target of a def-order
edge.) Since the value of exp is a function of (y;} and (y;} </mpy, evaluating exp in both ¢, and o’ yields
the same value because they agree on Impy. Expy is either @ or {x}. For any combination of these possibili-
ties, o, and 0,” agree on x, and hence they agree on Expy.

Case 2. The operator at the root of T is the While operator. If the vertex corresponding to T°s exp com-
ponent is not in U, then U is the tree Null. If U is Null, then Impy = Expy = @. Hence U always terminates
normally and the final states agree on Expy.

We use Imp,,, to denote the imported variables of U’s exp component. IMP gy tise A0A EXPopmy st denote
the imported and exported variables of U’s stmt_list component, respectively. We use o; and ;" to denote the
execution states before executing the i iterations of the loops of T and U starting from two states, ¢; and 6;°,
that agree on Impy;.

Suppose the vertex corresponding to T”s exp component is in U. Since T terminates normally we may
assume the execution of T terminates normally after the j* iteration, for some j. It is sufficient to show that
(1) U also terminates normally after the j* iteration, (2) in each iteration, T and U compute the same
sequence of values at each program point of U, and (3) the final states, g;,; and G4,  agree on Expy.
Because for a loop Expy cImpy,’ it suffices to show that if o; and o;” agree on Impy; then either T and U ter-
minate normally in the states o; and o;’, respectively, or the i * jterations compute the same sequence of
values at each program point of U and result in the states o;,; and o, that agree on Impy.

First, we show that Impy = Imp ., © IMPym - It is clear that we could have written this with <, noting
that Impgm iis: can include a variable x that is used at the target ¢ of a loop-carried flow dependence edge
where the dependence is carried by U. However, there then has to exist an incoming loop-independent flow
edge to ¢, which implies that x € Impy.

Let o; and 0;” be states that agree on Impy. Therefore they agree on Imp.,,. Evaluating the predicate (the
exp component of U) in 6; and o;” yields the same value. Hence, T and U compute the same (sequence of)
values at the control predicate of the loop in the i* iteration. If the predicate evaluates to false, then both exe-
cutions terminate normally in the states o; and ¢;”, which agree on Expy.

Now suppose the predicate evaluates to true. Let o; and o;” be states that agree on Impy; therefore they
agree on Impgy . NOW Ty i and Uy i are corresponding subtrees. Since T terminates normally on

"If x e Expy, then U contains an assignment stalement a that assigns to x with an outgoing flow edge a —>7b. Because the loop may exe-
cute zero times, the assignment statement that assigns to x must be the target of a def-order edge . . . — 2,(5) @, hence x & Impy.
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Oy, Tyome_tise 8lSO terminates normally on ¢;. By the induction hypothesis, (1) Usm; iis: terminates normally on
o/, (2) during the i* iteration Ty s and Usime_is compute the same sequence of values at each program
point of Usym sisi» and (3) the final states, 6, and 6;,’, agree on EXpym jisr-

If 0;,; and o;,," do not also agree on Impy, then let x € Impy be a variable on which they disagree (so
x & EXPymt tise). NOW, by assumption, ¢; and o;” agree on Impy;; therefore, at least one of the two executions
Of Ty tise @A Uy i, TESPectively, executed an assignment statement a that assigned a value to x and
reached the end of the stmt_list. There are two cases to consider:

(1) One possibility is that x € Imp,; because x is used in a predicate or statement b that is the target of an
incoming flow edge ... —>;b in U. If this were the case, then there must be a loop-carried flow edge
a = b or a—> .y b, depending on whether Ty, iy OF Ugyms sise €xecuted a. However, in either
case, a is in U because b is in U; therefore, a is in Ugmy iy and x € Expyym iy, Which contradicts our
previous assumption. )

(2) The other possibility is that x e Impy because the Ugm i has an incoming def-order edge
...=> 4 d. However, this implies that there is an outgoing flow edge a —;c from Ty s OF
Usime_tiss» depending on whether Ty i OF Usypy i executed a. In either case, a must be in U because ¢
is in U; therefore, a is in Ugypm_iise and x € Expyyme e, which contradicts our previous assumption.

We conclude that 6;,; and o;,,” agree on Impy. Therefore U terminates normally after the j* iteration,
during each iteration T and U compute the same sequence of values at each program point of U, and ¢;,; and
o;.1 agree on Expy.

Case 3. The operator at the root of T is the IfThenElse operator. If the vertex corresponding to I”s exp
component is not in U, then U is the tree Null. If U is Null, Impy = Expy = . Therefore, U always ter-
minates normally and the final states agree on Expy.

Suppose the vertex corresponding to T°s exp component is in U. Evaluating the predicate (the exp com-
ponent of U) in ¢, and ¢,” yields the same value. Therefore, T and U compute the same (sequence of) values
at the control predicate of the IfThenElse statement.

Without loss of generality, assume that the predicate evaluates to true. We use Ty, Tpasses Utnie and Upgy,
to denote the respective branches of T and U. We use Impp.., IMPgase, EXPiue, and Expgas, to denote the
imported and exported variables of U, and Uy, , respectively.

When execution is initiated in state ¢,, T terminates normally in &,; consequenty T,,,, also terminates nor-
mally in 0,. Since ¢, and o,” agree on Impy and Imp,,,, <Impy, ¢, and o,” agree on Imp,,,,. Because T,
and U, are corresponding subtrees, the induction hypothesis tells us that, when execution is initiated in state
o,’, (1) U, terminates normally in state o,” (hence U terminates normally in 6,), (2) Ty, and U, com-
pute the same sequence of values at each program point of Uy, (hence T and U compute the same sequence
of values at each program point of U), and (3) o, and g,” agree on Exp ., .

Note that Expy = Expyy,, \» Expag, S0 what remains to be shown is that o, and o, agree on Exppy,. 1f 0,
and o,” do not also agree on Expp., then let x € Exppy, be a variable on which they disagree (so
x & Expy,,). Because x € Expyy,, there is an assignment statement g in the false branch of U that assigns to x
and is the source of an outgoing flow edge from that branch (say a —b).

We must consider whether it is possible that x ¢ Impy. By assumption, x € Exp,,,,. Consider an execution
path p, from the beginning of the program to the beginning of statement U, that does not include the back-
edges of any loops. Let ¢ be the last assignment statement that assigns to x along p, or, if no such statement
exists, let ¢ be the initial-definition vertex for x. Because we can extend path p to first follow the true branch
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of U and then continue from the join point of U via the path by which a reaches b, we deduce that there is a
dependence ¢ —;b. By construction, vertex ¢ occurs before a, hence ¢ — g p)a. We conclude that
xe Impy.

Since x € Impy, 6, and G,” agree on x. Because G, and 0,” disagree on x, at least one of the two execu-
tions of the true branches of T and U, respectively, executed an assignment statement d that assigned a value
to x and reached the end of the true branch. But this implies the existence of a flow edge d —;b in either T or
U, depending on whether T, or Uy, executed the assignment to x. In either case, the flow edge d —>¢b is
in Q since b is in Q, and hence d is in U,,,,. Therefore, x € Expy,,, which contradicts a previous assumption.
We conclude that 6, and G,” agree on Exp,,. This, together with the fact that o, and ¢," agree on Exp,,,
means that they agree on Expy.

Case 4. The operator at the root of T is the StmtList operator. Let T'y,T,, - -+, T, denote the immediate
subtrees of T in the order as they occur in program P. Note that all loop-independent flow edges and def-
order edges from one subtree to another go from left to right; that is, if there is a loop-independent flow edge
or a def-order edge from a vertex in a subtree T; to a vertex in a different subtree T; then i < j. Let
U,,Us,, *++,U, denote the immediate subtrees of U in the order as they occur in program Q. Each T;
corresponds to some subtree U ) and vice versa, where the mapping = is a permutation over the interval
1, -+ -, n. (Note that some of the U;s may be the tree Null. Since Nuil wees do not actually appear in pro-
gram Q, we may think of the Null trees as being placed in arbitrary (but fixed) positions in the sequence
U,,U,, -+, U,) Letnw™ denote the inverse permutation of 7.

We use o; and Opy” to denote the execution states before executing T; and U ), respectively; we use Imp;
and Exp; to denote the imported and exported variables, respectively, of Uyr). Since U is a slice of T, the
imported (or exported) variables of U ;, are a subset of the imported (or exported, respectively) variables of
T,.

The proof of this case is done in two steps. We first show, by induction over i, that for all i, 1 < i <n, if 6
and o, agree on Impy and T terminates normally on oy, then (1) o; and Oy, agree on Imp;, (2) T; and U »;
compute the same sequence of values at each corresponding program point, and (3) G;+ and Oy agree on
Exp;. Secondly, we show that the final states after executing T and U, 0, and G,41 » agree on the exported
variables of U.

Note that, by the induction hypothesis of the structural induction, if ¢; and Ory’ agree on Imp; then T; and
U either both diverge or both terminate normally and compute the same sequence of values at each
corresponding program point and G;,, and Gy, agree on Exp;. Thus, we will concentrate on proving that
o; and Oy;)” agree on Imp;, foralli, 1 <i <n,

Base case. i=1. First we show that ¢,” and Oy, agree on Imp,. (Note that Imp, is the set of the
imported variables of U).) Let x be any variable in Imp,. It suffices to show that there is no assignment
statement that assigns to x in the initial subsequence U, Uy, -, Ugqy-;. If there are assignment statements
that assign to x in the initial subsequence U, U3, - -+, U1y, then choose the largest kin 1,2, - - -, m(1)-1
such that U, contains an assignment statement that assigns to x. Since x is an imported variable of U,
U rqy has an incoming loop-independent flow edge or an incoming def-order edge whose source is in U,.
Since U is a slice of T, there is a corresponding loop-independent flow edge or a corresponding def-order edge
from a vertex in T, to a vertex in T;. Therefore, n"! (k) < 1, which is impossible because 7 is a permuta-
tion over the interval 1, - - -, n. We conclude that 6, and oy,” agree on /mp .
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Furthermore, because there are no statements in the initial subsequence Uy, U, - - -, Uy that assign to
any variables in Imp,, Imp, cImpy.

Because o, and G;” agree on Impy and Imp, cImpy, 6, and 6, agree on Imp ;. Because o, and o, agree
on Imp; and ;" and Oy, agree on Imp;, Gy and Gr,” agree on Imp,. By the induction hypothesis of the
structural induction, T and U ry compute the same sequence of values at each corresponding program point
on o} and Ory’, respectively, and 6, and o)., " agree on Exp,.

Induction step. The induction hypothesis is: if 6, and 6,” agree on Impy and T terminates normally on oy,
then, for 1 < j <, (1) o; and ;) agree on Imp;, (2) T; and U, compute the same sequence of values at
each corresponding program point, and (3) ¢;,; and G,U(,H agree on Exp;. Thus, if 0‘1 and cl are arbitrary
states that agree on /mpy and T terminates normally on ¢, we need to show that (1) c and Oyn;,” agree on
Imp;, (2) T; and U r;y compute the same sequence of values at each corresponding program point, and (3) c}m
and c;,c(‘-)ﬂ " agree on Exp;.

First we show that o; and Gy’ agree on /mp;. (Note that Imp; is the set of the imported variables of
Uni-) Let x be any variable in Imp;. It suffices to show that o; and Gy(;,” agree on x. There are now two
cases to consider:

(1)  Suppose there is no assignment statement that assigns to x in the initial subsequence T, T, - - -, T;_;.
We want to show that there is no assignment statment that assigns to x in the initial subsequence
Uy,Uy, *+, U1 If there are assignment statments that assign to x in the initial subsequence
Uy, Uy, +*, Unrgy-1, choose U, from the initial subsequence Uy, U5, * -, Upggy-y such that there is an
assignment statement a that assigns to x in U, and there is a loop-independent flow edge or a def-order
edge a — . .. from a vertex in Uy to a vertex in U . Since U is a slice of T, there is a corresponding
loop-independent flow edge or a corresponding def-order edge from a vertex in T to a vertex in T;.
Therefore, m' (k) <i. Because U, has an assignment statement that assigns to x, Tp gy has a
corresponding assignment statement that assigns to x, which contradicts the previous assumption that
there is no assignment statement that assigns to x in the initial subsequence Ty, T, - -, T;;. We con-
clude that there is no assignment statement that assigns to x in the initial subsequence
U, Uy, ”"Un:(i)-l-

Because x € Imp; and there is no assignment statement that assigns to x in the initial subsequence
U Uy, »+, Uggy-r, x € Impy. Since there is no assignment statement that assigns to x in the initial
subsequence Ty, To, ***, Ty, c}l and &,- agree on x. Similarly, since there is no assignment statement
that assigns to x in the initial subsequence Uy, Uy, **+, Uggy-1s 81 " and Gn(;)’ agree on x. Since 81 and
c}]’ agree on Impy, 8‘1 and &1' agree on x. Thus, 8,- and (A)',t(i)’ agree on x.

(2)  Suppose there are assignment statements that assign to x in the initial subsequence Ty, To, -, Ti.
Let m be the largest number in 1,2, ---,i—1 such that T, contains an assignment statement that
assigns to x. Because x is an imported variable of U it is an imported variable of T;; hence, T; has an
incoming loop-independent flow edge or an incoming def-order edge whose source is in T,,. Since U is
a slice of T and x is an imported variable of U, there is a corresponding loop-independent flow edge
or a corresponding def-order edge from a vertex in Uy, to a vertex in Uy, and hence m(m) < n(i).
Note that x € Exp,, because Uy has an outgoing loop-independent flow edge whose source is an
assignment statement that assigns to x.

Since m < i, by the induction hypothesis, &,,, and &,D(,,,)’ agree on Imp,,. Because 8m and &,D(,,.)' agree
on Imp,, and T,, and U, are corresponding subtrees, by the induction hypothesis of the structural
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induction, the execution states after executing T, and U p(m), Om+1 and Gpimys1 ', agree on Exp,,; in par-
ticular, they agree on x.

By the choice of m, we know that there is no assignment statement that assigns to x in the subsequence

Trmst> Tms2, =+ Tisy. We want to show that there is no assignment statement that assigns to x in the
subsequence U pimyi, Ungmysz> ** *» Ungy-1- If there is an assignment statement that assigns to x in the
subsequence Un(m)+1 s Un(,,,).‘.z, T, Un'(i)-l , let U, be one of U,;(m).ﬂ, Uﬂ:(m)+2r ERMN U?t(i)—l that con-

tains an assignment statement that assigns to x such that there is a loop-independent flow edge or a def-
order edge from a vertex in U, to a vertex in U r;, and a def-order edge from a vertex in U p(m) to a ver-
tex in U,. Since U is a slice of T, there is a comresponding flow dependence edge from a vertex in
Try to a vertex in T; and a def-order edge from T, to a vertex in Tr ). Therefore, m < k) < i
But this is impossible since there is no assignment statement that assigns to x in the subsequence
Tosts Tmszs ** > Tioy. We conclude that there is no assignment statement that assigns to x in the
subsequence U ,:(,,,)H, Urimyszr s Uniiy-1-

Note that o‘,,,ﬂ and Gl agree on x because there is no assxgnment statement that assigns to x in the
subsequence Ty, g, = Ti-1. Similarly, G,b(,,,)ﬂ " and oy;,” agree on x because there is no assign-
ment statement that 3351gns to x in the subsequence U rmy1» Unimys2s ** s Ungy-1- Because 0',,,,,1 and
O'n(,,,)ﬂ agree on x, o; and Gp;,” agree on x.

We conclude that 0’, and c,:(l) agree on /mp;. By the induction hypothesis of the structural mducuon T;
and U r;y compute the same sequence of values at each corresponding program point and and 0",,1 and G,r(t}ﬂ
agree on Exp;. This completes the induction.

The second step is to show that the final states after executing T and U, 6,4, and 0,.,, agree on Expy. Let
x be any variable in Expy. Since x € Expy (and hence x € Expy), there are assignment statements that assign
to x in T. Let m be the largest number in 1,2, - -, n such that T,, contains an assignment statement that
assigns to x. Since U is a slice of T and x € Expy, there are also assignment statements that assign to x in
U ngmy- Since T, and U rmy are corresponding subtrees, by the previous arguments, the states after executing
T, and U gimy» Opsq and Grimyer agree on the exported variables of U yyy; in particular, 6,4, and Or(my+l
agree on x.

Furthermore, we claim that there cannot be any assignment statements that assign to x in
Urmyst» Ungmysz, =+ > U, If there are assignment statements that assign 0 x in Ugmyts Ugmpzs "7 Uns
let k be the largest number in m(m)+1, ®(m)+2, -+ -, n such that U, contains a statment that assigns to x.
Because x € Expy, there is an outgoing flow edge from a vertex in U, to a vertex outside of U. Because
x € Expr and m is that largest number in 1, - - -, n such that T,, contains a statement that assigns to x, there is
an outgoing flow edge from a vertex in T, to a vertex outside of T. Since U is a slice of T, there is a
corresponding outgoing flow edge from a vertex in Uy, to a vertex outside of U. Because n(m) < k and
because there are flow edge from vertices of U, and of Uy to vertices outside of U, there is a def-order
edge from a vertex of Uy to a vertex of Uy. Since U is a slice of T, there is a corresponding def-order edge
from a vertex of T, to a vertex of Tr¢y. Therefore, m < w™' (k) and T, contains a statement that assigns
to x. But this is impossible due to the choice of m. We conclude that there cannot be any assignment state-
ments that assign t0 x in Uggmyer» Ungmpszs * > Une

Because there are no assignment statements that assign 0 x in Unmyet, Un(myrz, ***» Un, the states On(my1
and 0, ,,” agree on x. We have already shown that the states G,,,; and G,,; agree on x and G,y and Opmy;”
agree on x. Thus, the states ¢,,, and ¢,,,” agree on x.
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We conclude that T and U compute the same sequence of values at each corresponding program point and
the final states agrees on U’s exported variables (as defined in the context given by Q).

Case 5. The operator at the root of T is the Program operator. Because I/mpy =Impgm isx and
Expy = Expom;_ise Where stmt_list denotes the stmt_list component of U, we conclude from the induction
hypothesis that U terminates normally on ¢, T and U compute the same sequence of values at each program
point of U, and o, and o,” agree on Exp,. O

2.2.3. The Slicing Theorem

The Slicing Theorem follows as a corollary of the Subtree Slicing Lemma; it is simply the Subtree Slicing
Lemma specialized to the case when subtree T is the entire program P.

Theorem. (Slicing Theorem). Let Q be a slice of program P with respect to a set of program components.
If 6 is a state on which P terminates normally, then for any state & that agrees with & on all variables for
which there are initial-definition vertices in Gg: (1) Q terminates normally on &', (2) P and Q compute the
same sequence of values at each program component of Q, and (3) the final states agree on all variables for
which there are final-use vertices in Gg.

The Equivalence Theorem for program dependence graphs, proved in [Horwitz87a, Horwitz88b], asserts
that two programs with isomorphic program dependence graphs are strongly equivalent. Because a program
Q can be viewed as a slice of any program P whose program dependence graph is isomorphic to Q’s program
dependence graph, the Equivalence Theorem follows as a corollary of the Slicing Theorem. In fact, what
falls out of the Slicing Theorem is a stronger resuit than the result proved in [Horwitz87a, Horwitz88b], stated
below:

Theorem. (Strong Form of the Equivalence Theorem). Suppose that P and Q are programs for which
Gp=Gg. If G is a state on which P terminates normally, then for any state &’ that agrees with & on all vari-
ables for which there are initial-definition vertices in Gp: (1) Q terminates normally on o, (2) P and Q com-
pute the same sequence of values at each corresponding program component, and (3) the final states agree on
all variables for which there are final-use vertices in Gp.

2.3. The Termination Theorem

The Slicing Theorem tells us that if a program terminates normally on an initial state then the program’s slices
also terminate normally on a similar initial state. The Termination Theorem looks at this relationship from the
opposite point of view: it tells us that if a program is decomposed into two slices, the termination of both
slices on an initial state implies the termination of the program on that initial state. It is straightforward to
generalize the theorem to the case when the program is decomposed into more than two slices.

2.3.1. The Subtree Termination Lemma

As in the Slicing Theorem, the proof of the Termination Theorem relies on a lemma about subtrees. The Sub-
tree Termination Lemma states that if a program is decomposed into two slices, a subtree of the program will
terminate normally on a state when the corresponding subtrees of the two slices terminate normally on some
similar states.

Lemma. (Subtree Termination Lemma). Let P be a program. Suppose X and Y are sets of vertices such
that Gp=Gp/XuGp/Y. Let T be a subtree of program P and U and V be the corresponding subtrees of
P /X and P 1Y, respectively. Suppose Gy is a state on which U terminates normally, and Oy is a state on
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which V terminates normally. Then for any siate G, where © agrees with 6y on U's imported variables and ¢
agrees with Gy on V' s imported variables, T terminates normally on G.

Proof. By the Equivalence Theorem of PDGs, all programs with isomorphic program dependence graphs
are strongly equivalent. We choose P /X and P /Y to be the versions of the slices whose statemenis are in the
same order as in P.

The proof is by structural induction; it again splits into five cases as in the proof of the Subtree Slicing
Theorem. Since the argument is quite similar, we show only the second case — the case for a While loop.
Readers who want to see the details are referred to the technical report [Reps88].

Case 2. The operator at the root of T is the While operator. Since Gp =Gp/X uGp /Y, if U is a Null tree,
then T =V. Similarly, if V is a Null tree, then T = U. Without loss of generality, suppose T = U. Because &
and oy agree on U’s imported variables and U terminates normally on 6y, by the Equivalence Theorem, T
terminates normally on o.

Now suppose neither U nor V is a Null tree. Since U terminates normally on Gy, we may assume that the
execution of U terminates normally after the j iteration, for some j. We want to prove that T and V' ter-
minate normally on ¢ and Gy, respectively, after exactly j iterations.

Because for a loop Expy cImpy, it suffices to show that if o and oy agree on U’s imported variables and ¢
and oy agree on V’s imported variables, then either T, U, and V terminate normally in the states G, oy, and
Gy, respectively, or T, U, and V successfully finish one iteration and the execution states that result after one
iteration of the loops (¢, 6, and 6/, respectively) are ones such that ¢ and o;;” agree on U’s imported vari-
ables and ¢’ and o’ agree on Vs imported variables.

We use Tom tists Ustme tists A0 Vigme tise 1O denote the stmt_list components of T, U, and V, respectively.
Note that Toim tists Usime tist> 04 Vigmy_tise AT corresponding subtrees of P, P /X, and P /Y, respectively.

Because o and oy agree on U’s imported variables, evaluating the control predicates in ¢ and oy yields the
same value. Because o and oy agree on V’s imported variables, evaluating the control predicates in ¢ and oy
yields the same value. If the control predicate evaluates to false, then T, U, and V terminate normally in the
states @, Oy, and oy, respectively.

Now suppose the control predicate evaluates to true. Because ¢ and Gy agree on U’s imported variables
and the imported variables Of Ugpm, 5 are a subset of U’s imported variables, ¢ and 6, agree on the imported
variables Of Um 1is,- Similarly, ¢ and oy agree on the imported variables Of Vi jis,. NoOW@ that Topy sse
Ustme_tist» and Vmg i are corresponding subtrees of P, P/X, and P/Y, respectively. Because Usgm i and
Vitme_tise terminate normally on 6y and oy, respectively, by the induction hypothesis, Tome tist terminates nor-
mally on o. Therefore, T, U, and V successfully finish one iteration.

Let &, 6y, and 6 denote the execution states of 7, U, and V after one iteration of the loop, respectively.
By the Subtree Slicing Lemma, ¢’ and oy’ agree on U’s exported variables and o’ and oy’ agree on V's
exported variables. By the same argument as in the proof of the Subtree Slicing Lemma, Case 2, ¢’ and 6,
agree on U’s imported variables. Similarly, o’ and oy’ agree on V’s imported variables. We conclude that T,
U, and V terminate normally on o, Gy, and Oy, respectively, after the j * jteration. OJ

2.3.2. The Termination Theorem

The Termination Theorem follows as a corollary of the Subtree Termination Lemma; it is simply the Subtree
Termination Lemma specialized to the case when subtree T is the entire program P.
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Theorem. (Termination Theorem). Let P be a program. Suppose X and Y are sets of vertices such that
Gp=Gp!XvGpl/Y. If PIX and P /Y terminate normally on a state G, then P terminates normally on ¢ as
well.

Note that the Termination Theorem and clause (1) of the Slicing Theorem are complementary: clause (1) of
the Slicing Theorem asserts that if a program terminates normally then each slice also terminates normally;
the Termination Theorem asserts that when a program can be decomposed into two slices, if each slice ter-
minates normally then the program terminates normally. We can then apply clause (2) of the Slicing
Theorem to conclude that the two slices (collectively) compute the same sequence of values as the entire pro-
gram.

The following Corollary generalizes the Termination Theorem to the case when the program is decom-
posed into three slices. It is used in the proof of the Integration Theorem in the next section; the integrated
program that is the subject of the proof is formed by taking the union of three slices.

Corollary. Let P be a program. Suppose X, Y, and Z are sets of vertices such that
Gp=Gp/XuGpl/YWGplZ. IfPIX,P 1Y, and P |Z terminate normally on a state G, then P terminates nor-
mally on & as well.

Proof. From the definition of program slices, it is obvious that Gp/X v Gp/Y =Gp/(X Y ). Let
P/(XuY) denote a program whose program dependence graph is isomorphic to Gp /(X vY ). Since P/X
and P /Y terminate normally on @, by the Termination Theorem, P /( X vY ) terminates normally on ©. Simi-
larly, Gp=Gp/XwGp/YUGpl/Z=Gp/(X VY )uGp/Z. Since P/(XvwY) and P/Z terminate normally
on g, P terminates normally on ¢. []

2.4. The Integration Theorem

The HPR integration algorithm is justified by the Integration Theorem, which characterizes the execution
behavior of the merged program in terms of the behaviors of the base program and the two variants. Because
the merged program is composed of three slices, the Integration Theorem is a consequence of the Slicing
Theorem and the Termination Theorem.

Theorem. (Integration Theorem for the HPR Algorithm). If A and B are two variants of Base for which
integration succeeds (and produces program M), then for any initial state G on which A, B, and Base all ter-
minate normally,

(1) M terminates normally on G,

(2)  For any program component v, in A that produces a different sequence of values than the correspond-
ing component v, in Base during the executions of A and Base, there is a corresponding program
component v in M that produces the same sequence of values as v, during the executions of M and A.

(3)  For any program component vy in B that produces a different sequence of values than the correspond-
ing component vg,, in Base during the executions of B and Base, there is a corresponding program
component v in M that produces the same sequence of values as vy during the executions of M and B.

(4)  For any corresponding program components Vg, in Base, v4 in A, and vg in B that produce the same
sequence of values during the respective executions of Base, A, and B, there is a corresponding pro-
gram component v in M that produces the same sequence of values as vy, during the executions of M
and Base.
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Restated less formally, M preserves the changed behaviors of both A and B (with respect to Base) as well as
the unchanged behavior of all three.

The merged graph Gy is formed by unioning the three slices G4 /AP4 pases Gp/APpg, pase, and
Ggase ! PPpase, o, 3. Because the premise of the theorem is that integration succeeds, we know that
Gy ! APy, pase = Ga /AP g pase and Gpe/ APp pase = Gp !/ APp pas. One detail that must be shown is that, in
testing Gy, for interference, it is unnecessary to test whether Gp,, / PPpase a8 = Gy | PPpgge 4. 8-

This matter is addressed by the Preserved Behavior Lemma, which shows that, regardless of whether or not
the integration algorithm detects interference, the slice Gggg, / PPy, 4, 5 18 always preserved in Gy.

Lemma. If w € AP, pase, thenw & V (Gpase | PPBase, 4, 8)-

Proof. Using the symbol < to denote “is-a-slice-of”, from the definition of program slicing we have:

GBase/PPBase. AB = GBase / ( ve V(GBase) I (GBase/v)z(GA /V):(GB/V))

Q.:GBase / [ ve V(GBa.se) | (Gpase V)= (GA 1v) }

= U Gguse !V
VEV(Goa) | Gumi )= (Gulv) 25

But if we V(Gpa, /v) for some v, then Ggue, /W & Gpase ! v; because w € APy pase, Gpase ! W # G4 /w, and
hence Gpg /v # G4/ v. Therefore, w @ V(Gpage  PPpage 4, 5)- O

Lemma. (Preserved Behavior Lemma).
Let Gpp = (G4 /AP 4, Base) VW (G / AP pase) ' (Gpase / PPpase, 4, B)-
Then GBase /PPBase,A.B = GM/PPBase. A B

Proof. Let PRE = Gpuge | PPpase, 4, p and PRE’ = Gy / PPp,, 4 5. Suppose PRE # PRE’. Because Gy is
created by unioning PRE with G4 /AP s, and Gg/APjp pas,, and the slices that generate PRE and PRE’ are
both taken with respect to the same set, PPy, 4 g, it must be that PRE < PRE’.

Thus, there are three cases to consider: either PRE” contains an additional vertex, an additional control or
flow edge (in the latter case either loop independent or loop carried), or an additional def-order edge.

Case 1. PRE’ contains an additional vertex. Because the slices that generate PRE and PRE’ are both taken
with respect to the set, PPp,. 4, 5, PRE’ can only contain an additional vertex v if there is an additional con-
trol or flow edge v — ., w whose target w is a component of both PRE and PRE’. Thus, this case reduces to
the one that follows.

Case 2. PRE’ contains an additional control or flow edge. The slice operation is a backward traversal of a
dependence graph’s edges; because the slices that generate PRE and PRE’ are both taken with respect to the
same set, namely PPp,, 4 5, if PRE’ were to contain control or flow edges not in PRE, then there is at least
one such edge whose target vertex occurs in both PRE and PRE’. That is, there is at least one edge e: v —>w,
where e € E(PRE"), v, we V(PRE"), we V(PRE), and v ¢ V (PRE).

Because Gy is created by a graph union, e must occur in E(G4/AP4 pase). E(Gp!APp, pas), OF both.
Without loss of generality, assume that e € E (G4 /APy, pase), 50 that e € E(Gy).

The slice operation is a backward traversal of a dependence graph’s edges, so e ¢ E(PRE) and
we V(PRE) imply e ¢ E(Gg,,). Taking this together with the previous observation that e € E (G4), we con-
clude, from the definition of AP, g, that w e AP, pace.
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This yields a contradiction as follows: because w € AP, g, , by the previous lemma we conclude that
wée V(PRE).

Case 3. PRE’ contains an additional def-order edge. Suppose E(PRE”) contains a def-order edge
€1V —> 4 W that does not occur in E (PRE). By the definition of the edge set of a slice, there must exist
flow edges v —>,u and w —>,u in E (PRE”); by case (2), these edges must occur in both E (PRE) and E (PRE")
(implying that u, v, w € V(PRE), V(PRE")).

Because Gy was created by a graph union, e must occur in E(G4 /AP, pase), E(Gg/APg, pase), Or both.
Without loss of generality, assume that e € E(G4 /AP, ga.), so thate € E(Gy).

The slice operation is a backward traversal of a dependence graph’s edges, so e & E (PRE) and u € V(PRE)
imply e & E (Gpas.); by the definition of AP ga., we conclude that u € APy pac,.

This yields a contradiction analogous to the one that arose in case (2): because u € AP, g, by the previ-
ous lemma we conclude that u € V(PRE).

We conclude that PRE and PRE’ cannot differ; that is, even if variants A and B interfere with respect to
base program Base, the slice Gpgge / PPpase, a, 5 i8 preserved in Gy, O

The base program, the two variants, and the merged program share common slices; thus, the next matter to
address is the relationship between the execution behaviors of two programs when they share a common slice.
An immediate consequence of the Slicing Theorem is that two programs that share a slice compute the same
sequence of values at corresponding components of the slice.

Corollary. (Slicing Corollary). Let P and Q be two programs that share a slice with respect to a set of pro-
gram components S (i.e. (P /8)=(Q/S)). Then, for any initial state G on which both P and Q terminate nor-
mally, P and Q compute the same sequence of values at each component in S.

Using the Slicing Corollary, the definition of the merged graph Gy, and the Preserved Behavior Lemma,
we can prove the Integration Theorem for the HPR algorithm.

Proof of the Integration Theorem. We use A /AP, puser B/APg pa,, and Base | PPy, 4 g to denote pro-
grams whose program dependence graphs are G, /AP, pase» Gg!/APp pase, and Gpag, / PP gy, 4, 8, TESPEC-
tively.

Since the integration succeeds, G4 /AP, pase = Gy /APy pose and Gg/APp po, = Gy /APg g, By the
Preserved Behavior Lemma, Gpu/PPpase a8 = Gum/PPpase, a5 Therefore, Gy = Gao/AP4 pase ™V
Gp!APg pase? Gase! PPase, 4,8 = G /APy Base’’ Gu/APp pase® Gy ! PPpae, 4, 8-

Since A terminates normally on o, by the Slicing Theorem, A /AP, g, terminates normally on o as well.
Similarly, B/APg g.. and Base /PPpy, 4 p terminate normally on ¢ as well. Note that A/APj pas
B /APg ., and Base/PPgg, 4 p are programs whose program dependence graphs are Gy /APy pase,
Gpr /! APg, pase, and Gp/ PPpyg, 4 g, respectively. Since A /APy po, B/APp po., and Base / PPguse 4, g tEI-
minate normally on o, by the Corollary of the Termination Theorem, M terminates normally on ©.

Let v4 be a program component in A that produces a difference sequence of values than the corresponding
component Vg, in Base during the executions of A and Base. By the Slicing Theorem, Gggs, / VBase®Ga / Va-
Therefore, vy € AP pase- SINCe Va4 € APy pase and Go /APy pase = G/ APy pas., there is a corresponding
program component v in M such that G, /v4 = Gy /v. By the Slicing Corollary, v and v, produce the same
sequence of values during the executions of M and A. This proves clause (2). (Clause (3) holds by the same
argument.)
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Let vpae in Base, v4 in A, and v in B be corresponding program components that produce the same
sequence of values during the respective executions of Base, A, and B. If vy € APy pases since Gy / APy pase =
Gy ! APy pase, there is a corresponding program component v in M such that G, /v4 = Gy /v. By the Slicing
Corollary, v and v, produce the same sequence of values during the executions of M and A. Similarly, if
vg € APg pase, Since Gg/APp pase = Gy / APg, pase, there is a corresponding program component v in M such
that Gg/vg = Gy /v. By the Slicing Corollary, v and v, produce the same sequence of values during the exe-
cutions of M and B. If vy & AP pus, and vp & APg page, then vpag, € PPy, 4 p. Because Gpase / PPpase, a8 =
Ga ! PPpuse, 4, g- there is a corresponding program component v in M such that Ggase / VBase = Gy /v. By the
Slicing Corollary, v and vz, produce the same sequence of values during the executions of M and Base. In
any case, v, V4, Vg, and Vg, produce the same sequence of values during the respective executions of M, A,
B, and Base. OJ

It is easy to see that, from the Integration Theorem, the HPR integration algorithm satisfies the semantic
criterion of program integration discussed in Chapter 1. For example, if there is a variable x whose final value
after executing A on & differs from its final value after executing Base on o, then (1) there is a final-use vertex
for variable x in A, and (2) the (sequences of) values produced at the final-use vertices for x in M and in A are
identical. Thus, x’s final value after executing M on © is equal to the final value of x after executing A on G.




Chapter 3

Program Representation Graphs

Having provided the semantic foundations for the HPR integration algorithm, we will start developing the
new program-integration algorithm. In this chapter, we define the data structure used in the new integration
algorithm, which is called the program representation graph (PRG). Program representation graphs are simi-
lar to the program dependence graphs (PDGs) used in the HPR algorithm: in both PRGs and PDGs, vertices
designate program components and edges designate dependences among the components. However, the def-
order edges of PDGs are replaced by a new kind of pseudo-assignment vertex in PRGs. We show that PRGs
are an adequate representation for programs in the sense that there is a version of the Equivalence Theorem
for PRGs.

3.1. Program Representation Graphs

Program representation graphs combine features of  static-single-assignment forms
[Rosen88, Alpern88, Shapiro69] and program dependence graphs [Kuck81, Ferrante87], both of which have
been widely studied in vectorizing and optimizing compilers [Ottenstein78, Allen83, Padua86, Baxter89].

Shapiro and Saint [Shapiro69] first introduced pseudo assignments by inserting trivial assignments at
appropriate places in the program so that exactly one assignment to a variable x, either an assignment from
the original program or a pseudo assignment, can reach a programmer-specified use of x in the program. For
instance, consider the following example program fragments:

<Tl> x:=1 <Tl> x:=1
y:=10 y =10
if p then if p then
<T2> x=2 <T2> x:=2
y:=20 y:=20
fi fi
<TS> yw=x+3 <T3> px:=x
<T4> py=y
<T5> y=x+3

In the source program (on the left), both assignments to x at T1 and T2 can reach the use of x at T5; after the
insertion of the pseudo assignment “¢; x := x” at T3 (on the right), only the pseudo assignment to x can reach
the use of x at T5. The pseudo-assignment statements assign the value of a variable to itself; the importance
of pseudo assignments is that they summarize the reaching definitions [Kennedy78, Aho86] of a variable at
appropriate places in the programs. Data-flow information is more compactly represented by pseudo assign-
ments.

31
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In the static-single-assignment form of programs, pseudo assignments contain special ¢ functions. Using
such ¢ functions explicitly leads to simpler formulation of various algorithms, such as algorithms for constant
propagation [Wegman85] and code motion [Cytron86]. The value graph of Alpern, Wegman, and Zadeck
[Alpern88] is built from the static-assignment-form to represent the symbolic execution of the program.

PRGs employ somewhat fewer pseudo-assignment statements than static-single assignment forms—a
pseudo-assignment statement for a variable x is inserted at a point of the program only if x is live at that point.
For instance, in the above example the ¢; statement for variable y at T4 will not be included in a PRG
because y is not live at T4. Due to the exclusion of dead pseudo-assignment statements, there is a path from
every ¢ vertex to a non-¢ vertex in PRGs.

Program representation graphs contain /nitialState, FinalUse, and Entry vertices together with vertices
representing assignments and predicates (i.e., exactly the same vertices as those in PDGs as defined in
Chapter 2). In addition, program representation graphs include ¢ vertices for live variables, and edges
representing control and flow dependences among the vertices. The control and flow dependence edges of
program representation graphs are similar to those used in program dependence graphs defined in the previous
chapter, except that these edges are defined in terms of the augmented control flow graph of a program rather
than the original program (see below).

The program representation graph of a program P, denoted by Rp, is constructed in two steps. First an aug-
mented control flow graph is built and then the program representation graph is constructed from the aug-
mented control flow graph.

Step I:

The control flow graph® [Aho86, Allen70] of program P is augmented by adding InitialState, FinalUse, oy,
Oenter» and @,y vertices, as follows:

(1) A vertex labeled “x := InitialState (x)” is added at the beginning of the control flow graph for each vari-
able x that may be used before being defined in the program. If there are many InitialState vertices for
a program, their relative order is not important as long as they come immediately after the Entry vertex.

(2) A vertex labeled “FinalUse (x)” is added at the end of the control flow graph for each variable x that
appears in the end statement of the program. If there are many FinalUse vertices for a program, their
relative order is not important as long as they come immediately before the Exit vertex.

(3)  For every variable x that is defined within an if statement, and that may be used before being redefined
after the if statement, a vertex labeled “¢y: x := x” is added immediately after the if statement. If there
are many ¢, vertices for an if statement, their relative order is not important as long as they come
immediately after the if statement.

(4)  For every variable x that is defined inside a loop, and that may be used before being redefined inside the
loop or may be used before being redefined after the loop, a vertex labeled “Qeper: X := x” is added
immediately before the predicate of the loop. If there are many 0., vertices for a loop, their relative
order is not important as long as they come immediately before the loop predicate. After the insertion
Of (uner vertices, the first ¢, vertex of a loop becomes the entry point of the loop.

®In our control flow graphs, vertices represent assignment statements and predicates; in addition, there are two additional vertices, Entry
and Exit, which represent the beginning and the end of the program.
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(5) For every variable x that is defined inside a loop, and that may be used before being redefined after the
loop, a vertex labeled “¢,.,,: x = x” is added immediately after the loop. If there are many ¢,,; vertices
for a loop, their relative order is not important as iong as they come immediately after the loop.

Note that ¢,,., vertices are placed inside of loops, whereas ¢,,; vertices are placed outside of loops.

Step 2:

Next, the program representation graph is constructed from the augmented control flow graph. Vertices of the
program representation graph are those in the augmented control flow graph (except the Exit vertex). Edges
represent control and flow dependences among program componentis.

Control and flow dependence edges in PRGs are similar to those in PDGs, except that they are defined in
terms of the augmented control flow graphs:

. There is a control dependence edge from Entry to a vertex v if v occurs on every path from Entry to Exit
in the augmented controi flow graph. This control dependence edge is labeled true.

. There is a control dependence edge from a predicate vertex u to a vertex v if, in the augmented control
flow graph, v occurs on every path from u to Exit along one branch out of u but not the other. This con-
trol dependence edge is labeled by the truth value of the branch in which v always occurs.

. There is a flow dependence edge u —, v if there is a variable x that is assigned a value at 4 and used at
v, and there is a path from u to v in the augmented control flow graph along which no other (¢ or non-¢)
assignments to x occur. Note that there is a flow dependence edge incident on a non-¢ vertex v for each
use of a variable at v. For instance, if variable x is used twice at v, say v contains the expression x + x,
there are two flow dependence edges incident on v whose sources are the last (¢ or non-¢) assignment
to x.

Note that there is a control dependence edge from a while predicate to itself.” This is because the predicate
itself is on every path from the predicate, via the true branch of the predicate, to the Exit vertex on the aug-
mented control flow graph, but not on every path via the false branch. Note also that there are no def-order
edges in PRGs.

Methods for determining the placement of ¢ assignments and for determining control dependence edges for
programs with reducible or irreducible flow of conwrol are given in [Cytron89, Rosen88, Ferrante87, Reif82],
all of which take time effectively quadratic in the size of the program [Cytron89]; however, for our restricted
language, they can be determined in a simpler way. The placement of ¢ assignments can be determined by
computing the set of live variables at each program statement and by computing the set of variables that have
been assigned a value within the if and while siatements. These two sets of variables can be computed in a
syntax-directed manner. Except the control dependence edges that form self-loops on the while predicates
and the control dependence edges incident on the ¢ vertices, control dependence edges can be determined
from the nesting structure of the programs.

The flow dependence edges of a program representation graph are computed using data-flow analysis
[Hecht77, Aho86]. For the restricted language considered in this thesis, the necessary computations can be

°In the program dependence graphs of [Horwitz88, Horwitz89], the control dependence edge from a while predicate to itself is omitied.
However, such edges are needed for the Sequence-Congruence Algorithm (discussed in Chapter 4); so they are included in program
representation graphs.
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(a) program Main
sum =0
x =1
while x < 11 do
sum = sum+ x
xm=x+1
od
result = result + sum
end(result)

(b)

:

@t = InitialState (reD

Cvhiex<il <

T

O, xip: SUM = sum

FinalUse (result)

Figure 3-1. (a) is the same example program that appeared in Figure 2-1. (b) is the augmented control flow graph of the
program. Note the absence of InitialState and FinalUse vertices for variables sum and x and of a ¢,,; vertex for x.
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Example. An example program and its augmented control flow graph are shown in Figure 3-1. Its program
representation graph is shown in Figure 3-2. Note the absence of InitialState and FinalUse vertices for vari-
ables sum and x and of a ¢,,; vertex for x. Note also that there is a control dependence edge from the while
predicate x < 11 to itself. The boldface arrows represent control dependence edges; thin arrows represent
flow dependence edges. The label on each control dependence edge—true or false-—has been omitted.

3.2. Comparison with Static-Single-Assignment Form

Program representation graphs include some features of static-single-assignment forms. However, there are
three differences between our PRGs and (the value graphs of) static-single-assignment forms:

(1) PRGs contain control dependence edges, whereas the value graphs of static-single-assignment forms do
not. Control dependence edges were added so that the Sequence-Congruence Algorithm (to be dis-
cussed in Chapter 4) could take control dependences into account during partitioning.

(2) The ¢ statements in PRGs are slightly different from those in static-single-assignment forms. In the
static-single-assignment forms defined in [Alpern88, Rosen88, Cytron89] a ¢ operator in a ¢ statement
is a binary operator; that is, a ¢ statement is of the form “x; = ¢(x,, x3).” Variable occurrences are
renamed (by adding subscripts, for example) so that each variable is assigned to exactly once in the pro-

Entry

4\‘
@O f@ Qmmemteom >
—

. - ‘

—

Figure 3-2. The program representation graph of the program in Figure 3-1(a). Note that there is a control dependence
edge from the while predicate x < 11 to itself. The boldface arrows represent control dependence edges; thin arrows
represent flow dependence edges. The label on each conirol dependence edge—~true or false—has been omitted.



3

36

gram text (whence the name “static-single-assignment form”). Because variable renaming is not neces-
sary for our purposes, we chose a simpler form of ¢ statement.

Another difference between the ¢ statements in PRGs and those in static-single-assignment forms is
that PRGs include only ¢ statements whose left-hand side variable is live (i.e., there is a path from
every ¢ vertex to a non-¢ vertex). For instance, consider the following program fragment (which has
been augmented with those ¢ statements that are included in its PRG):

a:=0
<Tl> x:=1
if p then
x:=2
a:=x

fi

bpa=a
<T2> x=3+a
If the PRG were to include non-live ¢ statements, there would be a ¢ statement “¢; x :=x” immedi-
ately after the if statement; however, this ¢; statement is not included in the PRG because the variable x
is not live at this point.

The decision to exclude these exira ¢ statements from PRGs is motivated by the following concerns:

(1)

@

The exclusion of non-live ¢ statements permits larger sets of semantically equivalent programs to have
isomorphic PRGs. For example, the same PRG represents not only the program shown above, but also
a version of the program in which T1 comes after the if statement (but before T2). It will be shown in
the next section that PRGs and PDGs are equivalent program representations in the sense that two pro-
grams have isomorphic PRGs if and only if their PDGs are isomorphic. The two representations would

not be equivalent in this way if PRGs were to contain the additional ¢ statements of previous
definitions.

Program slices can also be extracted from PRGs. The slice of a PRG R with respect to a set of vertices
S is the subgraph of R induced by all vertices from which there is a path to an element of S in R. For
the Feasibility Lemma to hold for PRGs, the non-live ¢ statements must not be included in PRGs. For
instance, if non-live ¢ vertices were required in PRGs, the example given above would be

a:=0
<Tl> x:=1
if p then
x:=2
a:=x

fi

Oyt x =x

dpa=a
<T2> x:=3+a

its slice with respect to T2 would correspond to the fragment
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a:=0
if p then
x:=2
a:=x
fi
by a=a
<T2> x=3+a
However, the slice of the PRG does not correspond to any program; the fragment shown above is not
annotated properly with ¢ statements so as to correspond to any program. In particular, because it lacks

a (non-live) ¢ vertex ¢y x := x just after the if statement, it does not correspond to the program

a:=0

if p then
x:=2
a=x

fi
<T2> x:=3+a

By excluding non-live ¢ statements from PRGs, infeasible slices do not arise; every slice of a PRG
(with respect to a set of non-¢ vertices) is isomorphic to the PRG of some program (see Section 7.1).

3.3. Equivalence of PDGs and PRGs

PRGs are very similar to the PDGs defined in Chapter 2. Both graphs have explicit representations of control
and data dependences among program components. In this section, we will show that PDGs and PRGs are, in
fact, equivalent program representations in that the PDGs of two programs are isomorphic if and only if their
PRGs are isomorphic. Since PRGs and PDGs are equivalent program representations, many semantic proper-
ties of PDGs, in particular, the Equivalence Theorem, are aiso applicable to PRGs.

PDGs and PRGs differ in that PRGs do not include def-order edges; ¢ assignments are used instead. Both
PDGs and PRGs have explicit representations of control and flow dependences among program components,
but control and flow dependences cannot completely characterize programs’ execution behaviors. There are
inequivalent programs that have identical control and flow dependences among program components. PDGs

use the order of certain assignment statements, that is, def-order dependences,!® to supplement control and
flow dependences. In contrast, PRGs use ¢ statements to annotate the reaching definitions at join points of
(the control flow graphs of) the programs to distinguish inequivalent programs that have identical control and
flow dependences. In essence, the ¢ statements introduce extra flow dependence edges that substitute for
def-order edges.

Before we prove the theorem, we first clarify our notations. A definition to a variable x is a non-¢ assign-
ment statement that assigns a value to x. A ¢ assignment is not considered a definition to a variable. An x-
definition-free flow dependence path is a sequence of flow dependence edges a; —raj, a2 —ras, ...,
g1 —>fay, so that the variable x is assigned a value at @, and is used at a, and all vertices except @, and a;
are ¢ vertices. An x-definition-free flow dependence path in the PRG of program P corresponds to an x-
definition-free path in the control flow graph of P, which, in tum, corresponds to a flow dependence edge in

1Def-order dependences are similar to output dependences, which are widely discussed in the literature. By adopting def-order depen-
dences instead of output dependences, PDGs allow larger collections of strongly equivalent programs.
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the PDG of P.

A vertex a is a control ancestor of vertex b if there is a control dependence path from a to b (while predi-
cates are not considered to be control ancestors of themselves). A vertex a is the least common conirol ances-
tor of vertices b and c¢ if a is a common control ancestor of b and ¢ and all other common control ancestors of
b and ¢ are control ancestors of a.

Note that in PRGs but not in PDGs, each while predicate has a control dependence edge that forms a self-
loop on the predicate vertex. Since it is clear from the program texts of the vertices in PDGs and PRGs
whether a vertex represents a while predicate, we will ignore this control dependence edge in the proof of
Theorem 3.1.

The following lemma follows directly from the definitions of PDGs and PRGs. This lemma asserts that the
PDG and the PRG of a program have the same set of non-¢ vertices and the same set of control dependence
edges among the non-¢ vertices (ignoring the seif-loops on the while predicates).

Lemma. For any program P with PDG Gp and PRG Rp, Gp and Rp have the same set of non- vertices
and the control dependence subgraph of Gp is isomorphic to the control dependence subgraph of Rp with all
the ¢ vertices and the control dependence edges that form self-loops on while predicate vertices removed.

Theorem 3.1 is main result of this section. The theorem states that PDGs and PRGs are equivalent program
representations.

Theorem 3.1. The PDGs of two programs are isomorphic if and only if their PRGs are isomorphic.

Proof. Let P and Q be two programs and Gp, Gy, Rp, and Ry be their PDGs and PRGs, respectively. We
want to prove that Gp and G are isomorphic if and only if Rp and R are isomorphic. The proof is divided
into two parts, one for each direction.

Part1: szGQ impliest=RQ.

Suppose Gp =Gg. Because Gp =Gy, by the previous lemma, Rp and R have the same set of non-¢ vertices
and the same incoming control dependence edges for the non-¢ vertices. We need to show that (1) Rp and Ry
have the same ¢ vertices, (2) Rp and Ry have the same incoming control dependence edges for the ¢ vertices,
and (3) Rp and Ry have the same flow dependence edges. Note that there are no outgoing control dependence
edges from ¢ vertices in a program representation graph.

For any vertex ¢ in Rp labeled “¢y: x := x”, there must be a non-¢ vertex a inside the if statement that
assigns a value to x and a non-¢ vertex b that uses x and there is an x-definition-free flow dependence path
a—yc —; b in Rp, which means there is an x-definition-free path from a to 4 in the control flow graph of P.
Therefore, there is a flow dependence edge a —,b in Gp. Because Gp =Gy, this flow dependence edge
a —yb also exists in Gy. Therefore, there is an x-definition-free path from a to b in the control flow graph of
Q. If b is outside the if statement, then the variable x is live after the if statement; if b is inside the if state-
ment, then the flow edge a — b is carried by a loop that encloses the if statement, which means x is live after
the if statement. In either case, x is live after the if statement. Since a is a vertex inside the if statement that
assigns a value to x and x is live after the if statement, from the definition of PRGs, vertex ¢ is added to the
augmented control flow graph of Q; hence ¢ is in Ry. Conversely, for any vertex ¢’ in Ry labeled
“0y: x :==x", ¢’ is also in Rp. Therefore, Rp and Ry, have the same ¢ vertices.

For any pair of associated vertices ¢ and d in Rp labeled “§,,: x :=x" and “¢,y: x = x”, respectively,
there must be a non-¢ vertex a inside the loop that assigns a value to x and a non-¢ vertex b that uses x and
there is an x-definition-free flow dependence path a —; ¢ —;d —; b in Rp, which means there is an x-
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definition-free path from g, via the predicate of the loop, to b in the control flow graph of P. Therefore, there
is a flow dependence edge a —>¢b in Gp. Because Gp =Gy, this flow dependence edge a — b also exists in
Gg. Therefore, there is an x-definition-free path from a, via the predicate of the loop, to b in the control flow
graph of Q. If b is outside the loop, then the variable x is live after the loop of c; if b is inside the loop, then
the flow edge a — b is carried by a loop that encloses the loop of ¢, which means x is live after the loop. In
either case, x is live after the loop. Since a is a vertex inside the loop that assigns a value to x and x is live
after the loop, from the definition of PRGs, vertices ¢ and 4 are added to the augmented control flow graph of
Q; hence ¢ and d are in Ry. Conversely, for any pair of associated vertices ¢’ and d” in Ry labeled
“Donter: X = X" and “d,z: x = x", respectively, ¢” and d’ are also in Rp. Therefore, Rp and Ry have the same
pairs of ¢,,,, and ,,;, vertices.

For any vertex ¢ in Rp labeled “¢,pn.,: x = x” (without the associated “d,.;: x ;= x” vertex), there must be a
non-¢ vertex a inside the loop that assigns a value to x and a non-¢ vertex b inside the loop that uses x and
there is an x-definition-free flow dependence path a —-)} ¢ —-)} b in Rp, which means there is an x-definition-
free path from a, via the predicate of the loop, to b in the control flow graph of P. Therefore, there is a loop-
carried flow dependence edge a —;b in Gp. Because Gp= Gy, this loop-carried flow dependence edge
a —>¢b also exists in Gy. Therefore, there is an x-definition-free path from g, via the predicate of the loop, to
b in the control flow graph of Q. Since a is a vertex inside the loop that assigns a value to x and b is a vertex
inside the loop that uses x and there is an x-definition-free path from a, via the predicate of the loop, t0 b in
the control flow graph of Q, from the definition of PRGs, the vertex ¢ is added to the augmented control flow
graph of Q; hence vertex ¢ is in Rg. Conversely, for any vertex ¢’ in Rg labeled “0,p,: X == x” (without the
associated “ny,: X = x” vertex), ¢’ is also in Rp. Therefore, Rp and Ry have the same ¢,,,, vertices.

We have shown that Rp and R, have the same ¢ vertices. Next we want to prove that Rp and Ry, have the
same incoming control dependence edges for the ¢ vertices.

From the definition of PRGs, a ¢; vertex has the same control predecessor as the associated if-predicate in
Rp (or Rgy). By the previous lemma, the if-predicate has the same control predecessor in both Rp and Gp (or
in both Ry and Gg). Because Gp = Gy, the if-predicate has the same control predecessor in Gp and in Gg. So
a ¢ vertex has the same control predecessor in Rp and in Ry. Thus, Rp and Ry have the same incoming con-
trol dependence edges for the ¢ vertices.

From the definition of PRGs, a ¢,y vertex has the same control predecessor as the associated while-
predicate in Rp (or Rp). By the previous lemma, the while-predicate has the same control predecessor in both
Rp and Gp (or in both Ry and Gg). Because Gp = Gy, the while-predicate has the same control predecessor in
Gp and in Gg. So a ¢,,; vertex has the same control predecessor in Rp and in Ry. Thus, Rp and Ry have the
same incoming control dependence edges for the ¢,,;, vertices.

From the definition of PRGs, a ¢,,,, vertex has two control predecessors in Rp and in Ry: the associated
while-predicate and its control predecessor. By the same arguments as above, these two control predecessors
of a ¢, vertex in Rp are the same as the two control predecessors of the same ¢,y vertex in Rg. Thus, Rp
and R, have the same incoming control dependence edges for the ¢,,,, vertices.

We have shown that Rp and Ry have the same ¢ vertices and the same incoming control dependence edges
for the ¢ vertices. Finally, we need to show that Rp and Ry have the same flow dependence edges.

For any flow dependence edge a — /b in Rp, if b is a ¢ vertex, let b” be a non-¢ vertex in Rp such that there
is a flow dependence path b ——)} b’ in Rp and all vertices on this path, except b’, are ¢ vertices. If bisnota ¢
vertex, then let b’ be b.
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Let a — b be any flow dependence edge in Rp and b’ be defined as above. We want to show that the edge
a —'>f bisin RQ.

Because a and b may be ¢y, Oonier» Pexie» OF NON-G vertices, there are four cases, each with four subcases, to
consider:

Case 1. Suppose a is a vertex labeled “¢;: x := x.” Let S, be the if statement for a. There must be a non-¢
vertex ¢ inside S, such that x is assigned a value at ¢ and there is an x-definition-free flow dependence path
¢ —}a in Rp. Since there is an x-definition-free flow dependence path ¢ —7a —b—>; b in Rp, the
definition to x at ¢ can reach the use of x at »’. Thus, there is a flow dependence edge ¢ —b" in Gp.

4y
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Suppose b is a vertex labeled “¢: x := x.” Let S, be the if statement for b. Since there is a flow depen-
dence edge a — b in Rp, there are two possibilities: either S, occurs before S, or S, is nested within
S,. (It is not possible that S, occurs before S,, nor is it possible that S, is nested within §, due to the
existence of the flow dependence edge a —¢b in Rp.)

First consider the possibility that S, occurs before S, in Rp. There must be a non-¢ vertex 4 inside S,
such that x is assigned a value at 4 and there is an x-definition-free flow dependence path d ——-)} bin Rp.
Since there is an x-definition-free flow dependence path d —)} b -—9} b’ in Rp, the definition to x at d
can reach the use of x at b’. Thus, there is a flow dependence edge d —,b” in Gp. Because there is a
flow dependence edge ¢ —b” in Gp, and because S, occurs before S, there must be a def-order edge
¢ =>4y d in Gp. Because Gp =Gy, the flow dependence edges ¢ —,b" and d —b” and the def-
order edge ¢ — 4, d are also in Gg. Therefore, there is an x-definition-free flow dependence path
¢ —;a—;b —>; b’ in Ry. Under this condition, the only possibility that the edge a —b is not in Ry
(that is, there are other ¢ vertices on the flow dependence path from a to b) is that there is a while (or if)
statement S sitting in between S, and S, and there is a non-¢ vertex e inside S which assigns a value to x
and reaches the end of S. If this were the case, there would be two def-order edges ¢ — 4 ¢ € and
€ —> 45y d in Gy. Because Gp=Gyp, the two def-order edges ¢ —> 4 € and e — 4, n d would
occur in Gp as well, which would imply that the flow edge a — b was absent in Rp. This contradicts
our assumption, so we conclude that the flow dependence edge a — b is in Rg.

Next consider the possibility that S, is nested within S, in Rp. Because there is a flow dependence edge
¢ —b" in Gp and because Gp = Gy, the flow dependence edge ¢ —,b” is in Gy as well. Note that ¢ is
inside S,, which is nested within S,, and b’ is outside S, in Gy. Because there is a flow dependence
edge ¢ —;b’ in Gy, there must be an x-definition-free path ¢ —;a —>;b —>;b” in Ry. Under this
condition, the only possibility that the edge a —b is not in Ry (that is, there are other ¢ vertices on the
flow dependence path from a to b) is that there is a while (or if) statement S which is in the same branch
of S, as S, and which occurs after S, and there is a non-¢ vertex e inside S that assigns a value to x and
reaches the end of S. If this were the case, there would be a def-order edge ¢ — 451 € in Gg. Because
Gp =Gy, the def-order edge ¢ — 41 € would occur in Gp as well, which would imply that the flow
edge a —;b was absent in Rp. This contradicts our assumption, so we conclude that the flow depen-
dence edge a —b isin Ry.

Suppose b is a vertex labeled “§pn,: X = x.” Let S, be the while statement for b. Since there is a flow
dependence edge a —¢b in Rp, there are two possibilities: either S, occurs before §, or S, is nested
within S,. (It is not possible that S, occurs before S, nor is it possible that S, is nested within S, due to
the existence of the flow dependence edge a —,b in Rp.)
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First consider the possibility that S, occurs before S, in Rp. There must be a non-¢ vertex d inside S,
such that x is assigned a value at 4 and there is an x-definition-free flow dependence path d ——>} binRp.
Since there is an x-definition-free flow dependence path d —; b —; b’ in Rp, the definition to x at d
can reach the use of x at b’. Thus, there is a flow dependence edge d —,b” in Gp. Because there is a
flow dependence edge ¢ —b" in Gp, there must be a def-order edge ¢ — 41 d in Gp. Because
Gp =Gy, the flow dependence edges ¢ —;b" and d —>,b" and the def-order edge ¢ — 4 (5 d are also
in Gy. Therefore, there is an x-definition-free flow dependence path ¢ —ra—pb—pb’ in Ry.
Under this condition, the only possibility that the edge a — b is not in Ry (that is, there are other ¢ ver-
tices on the flow dependence path from a to b) is that there is a while (or if) statement § sitting in
between S, and S, and there is a non-¢ vertex e inside S that assigns a value to x and reaches the end of
S. If this were the case, there would be two def-order edges ¢ — 4,7 € and e —> 4,41 d in Gg.
Because Gp =Gy, the def-order edges ¢ — 4 () € and e —> 4 - d would occur in Gp as well, which
would imply that the flow edge a —;b was absent in Rp. This contradicts our assumption, so we con-
clude that the flow dependence edge a —> b isin Ry.

Next consider the possibility that S, is nested within S, in Rp. Because there is a flow dependence edge
¢ —b’ in Gp and because Gp =Gy, the flow dependence edge ¢ — b’ isin G as well. Note thatc is
inside S,, which is nested within S, and there is a flow dependence edge ¢ —;b" in Gg. If b’ is outside
Sy in G, then the x-definition-free path from ¢ to b’ must pass through the predicate of S, in the control
flow graph since the flow dependence edge ¢ —,b" is Gg. If b’ is inside S, in Gy, then ¢ —rb"is
loop-carried by S,; in this case, the x-definition-free path from ¢ to b” must also pass through the predi-
cate of S, in the control flow graph since the flow dependence edge ¢ —¢b’ is Gg. In either case, there
must be an x-definition-free flow dependence path ¢ ~—)} a ——)} b <—>} b” in Ry. Under this condition,
the only possibility that the edge a —;b is not in Ry (that is, there are other ¢ vertices on the flow
dependence path from a to b) is that there is a while (or if) statement § inside S, which occurs after S,
and there is a non-¢ vertex e inside S that assigns a value to x and reaches the end of S. If this were the
case, there would be a def-order edge ¢ — 44y € in Gp. Because Gp=Gy, the def-order edge
¢ — 4 @ € would occur in Gp as well, which would imply that the flow edge a — /b was absent in Rp.
This contradicts our assumption, so we conclude that the flow dependence edge a —¢b is in Rg.

Suppose b is a vertex labeled “¢,y;,: x := x.” This case is impossibie since there cannot be a flow depen-
dence edge from a ¢ vertex (0 a §,y;; vertex in Rp.

Suppose b is a non-¢ vertex. In this case b’ is the same vertex as b. Because Gp =Gy, the loop-
independent flow edge ¢ — b is also in Gy. Therefore, there is an x-definition-free flow dependence
path ¢ —}a —} b in Ry. Under this condition, the only possibility that the edge a —b is not in R
(that is, there are other ¢ vertices on the flow dependence path from a to b) is that there is a while (or if)
statement § sitting in between S, and b and there is a non-¢ vertex e in § that assigns a value to x and
reaches the end of S. If this were the case, there would be a def-order edge ¢ — 4 () € and a loop-
independent flow edge e —,b in Gy. Because Gp =Gy, the def-order edge ¢ — 4 () € and the flow
edge e —b would occur in Gp as well, which would imply that the flow edge a —>¢b was absent in
Rp. This contradicts our assumption, so we conclude that the flow dependence edge a —,b is in Ry.

Case 2. Suppose a is a vertex labeled “¢,,: x :=x.” This case is similar to Case I above; the only differ-
ence is that ¢ is contained in a while statement rather than in an if statement.

Case 3. Suppose a is a non-¢ vertex. This case is similar to Case I above; the only difference is that ¢ and
a are the same vertex.
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Case 4. Suppose a is a vertex labeled “O.p,: X == x.” Let §, be the while statement for a. There must be a
non-¢ vertex ¢ occurring before S, such that x is assigned a value at ¢ and there is an x-definition-free flow
dependence path ¢ —} a in Rp. Since there is an x-definition-free flow dependence path ¢ —; a —b =7 b’
in Rp, the definition to x at ¢ can reach the use of x at b”. Thus, there is a flow dependence edge ¢ —/b" in

Gp.
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Suppose b is a vertex labeled “¢;: x = x.” Let S, be the if statement for b. Since there is a flow depen-
dence edge a —¢b in Rp, S, is nested within §,. Because b is a vertex labeled “¢y: x :=x,” there must
be a non-¢ vertex 4 inside S, such that x is assigned a value at 4 and there is an x-definition-free flow
dependence path d —} b in Rp. Since there is an x-definition-free flow dependence path d —7 b — b’
in Rp, the definition to x at d can reach the use of x at b’. Thus, there is a flow dependence edge
d —;b’ in Gp. Because Gp =Gy, the flow dependence edges ¢ —b" and d —>;b" are also in Gg.
Therefore, there is an x-definition-free flow dependence path ¢ —;a —;b —>; b’ in Ry. Under this
condition, the only possibility that the edge a — b is not in Ry (that is, there are other ¢ vertices on the
flow dependence path from a to b) is that there is a while (or if) statement S inside S, which occurs
before S, and there is a non-¢ vertex e inside S that assigns a value to x and reaches the end of S. If this
were the case, there would be a def-order edge e — 4,5 d in Gy. Because Gp =Gy, the def-order
edge e — 4 1) d would occur in Gp as well, which would imply that the flow edge a —¢ b was absent
in Rp. This contradicts our assumption, so we conclude that the flow dependence edge a —¢b isin Rg.

Suppose b is a vertex labeled “9,n,,: x :=x.” Let S, be the while statement for b. Since there is a flow
dependence edge a —b in Rp, S, is nested within S,. Because b is a vertex labeled “&per: x = x,”
there must be a non-¢ vertex d inside S, such that x is assigned a value at d and there is an x-definition-
free flow dependence path d ——-)} b in Rp. Since there is an x-definition-free flow dependence path
d —;b—; b’ in Rp, the definition to x at d can reach the use of x at b". Thus, there is a flow depen-
dence edge d —;b’ in Gp. Because Gp =Gy, the flow dependence edges ¢ —,b” and d —,b" are also
in Gp. Therefore, there is an x-definition-free flow dependence path ¢ —;a—7b —;b" in Ry.
Under this condition, the only possibility that the edge a — /b is not in Ry (that is, there are other ¢ ver-
tices on the flow dependence path from a to b) is that there is a while (or if) statement § inside S, which
occurs before S, and there is a non-¢ vertex e in S that assigns a value to x and reaches the end of S. If
this were the case, there would be a def-order edge e — 4,5 d in Gg. Because Gp =Gy, the def-order
edge e — 4 3 d would occur in Gp as well, which would imply that the flow edge a — b was absent
in Rp. This contradicts our assumption, so we conclude that the flow dependence edge a —¢b is in Ry.

Suppose b is a vertex labeled “d,,;,: x :=x.” Note that Rp and R, have the same pairs Of §,pser and Oy
vertices and there is always a flow dependence edge from ¢,,,, vertex to the accompanying 9., vertex
in both Rp and Ryy. Thus, Rp and R both contains the flow dependence edge a —b.

Suppose b is a non-¢ vertex. In this case b’ is the same vertex as b. Because Gp =Gy, the loop-
independent flow edge ¢ —,b is also in Gg. Therefore, there is an x-definition-free flow dependence
path ¢ -—-)} a —)} b in Ry. Under this condition, the only possibility that the edge a — b is not in Ry
(that is, there are other ¢ vertices on the flow dependence path from a to b) is that there is a while (or if)
statement S inside S, which occurs before b and there is a non-¢ vertex ¢ in S that assigns a value to x
and reaches the end of S. If this were the case, there would be a def-order edge ¢ — 4 () € and a loop-
independent flow edge e —b in Gy. Because Gp = Gg, the def-order edge ¢ — 4 ) € and the flow
edge e —b would occur in Gp as well, which would imply that the flow edge a —¢b was absent in
Rp. This contradicts our assumption, so we conclude that the flow dependence edge a —¢b is in Rg.
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Therefore, in any of the above cases, the flow dependence edge a — b also appears in Ry. Conversely, all
flow dependence edges in Ry also appear in Rp. Therefore, Rp and Ry have the same flow dependence edges.

This completes the proof that Gp = Gy implies Rp =R,

PartIl: Rp zRQ implies Gp = GQ.

Suppose Rp =R. Note that all vertices in Gp and G are non-¢ vertices. From the previous lemma, Gp and
Gg have the same (non-¢) vertices and the same control dependence edges. We need to show that Gp and Gg
have the same flow dependence and def-order edges.

For any loop-independent flow dependence edge a — ;b in Gp, a must be either an /nitialState or an
assignment statement vertex. Let x be the variable that is assigned a value at a. Because a — ;b is a loop-
independent flow dependence edge in Gp, there is an x-definition-free path from a to b in the control flow
graph of P that does not include the back edge of any loop L that encloses both a and b. From the definition
of PRGs, there is an x-definition-free flow dependence path a —-)} b in Rp. Because the x-definition-free path
from a o b in the control flow graph of P does not include the back edge of any loop L that encloses both a
and b, the flow dependence path a —-)} b in Rp does not include the “0,..,: x = x" vertex for any loop L that
encloses both @ and b. Because Rp = Ry, there is an identical flow dependence path a —)} bin Ry. Therefore,
there is an x-definition-free path from a to b in the control flow graph of @ that does not include the back edge
of any loop L that encloses both a and b; hence there is a loop-independent flow dependence edge a — ;4 in
Go.

For any loop-carried flow dependence edge a — ;. )b in Gp, a must be an assignment statement vertex.
Let x be the variable that is assigned a value at a. From the definition of PDGs, both a and b are enclosed in
loop L in Gp. Because Gp and G have the same control dependence edges, both a and b are enclosed in loop
L in Gg. Because the loop-carried flow dependence edge @ — ;)b is carried by loop L in Gp, there is an x-
definition-free path from a to b in the control flow graph of P that includes the back edge of loop L. From the
definition of PRGs, there is an x-definition-free flow dependence path a —-)} b in Rp. Because the x-
definition-free path from a to b in the control fiow graph of P includes the back edge of loop L, the flow
dependence path a ——9} b in Rp includes the “O,n.,: x :=x" vertex for loop L. Because Rp =Ry, there is an
identical flow dependence path a —-)} b in Ry. Therefore, there is an x-definition-free path from a to 4 in the
control flow graph of Q that includes the back edge of loop L; hence there is a loop-carried flow dependence
edge a = )b in Gg.

We have shown that all flow dependence edges in Gp are in Gy. Similarly, all flow dependence edges in
Gg are in Gp. Therefore, Gp and G have the same flow dependence edges.

For any def-order edge a — 4 b in Gp, there are flow dependence edges a —;c and b —;c in Gp and a
and b are in the same branch of any if statement that encloses both of them and a occurs before b in P. We
have already shown that Gp and G have the same control and flow dependence edges. Thus, there are flow
dependence edges a —c and b —,c in Gy and g and b are in the same branch of any if statement that
encloses both of them. What remains to be shown is that a occurs before b in Q.

Since a occurs before b in P, there are three cases to consider, depending on the relative order of a, b, and ¢
inP.

Case 1. Suppose the relative order is a, ¢, and b in P. Since a occurs before ¢ and there is a flow depen-
dence edge a —sc in Gp, there must be a loop-independent flow dependence edge a — ;¢ in Gp. Since Gp
and Gg have the same flow dependence edges, there is an identical loop-independent flow dependence edge
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a— yc in Gy. Therefore, a occurs before ¢ in Q. Since b occurs after ¢ in P, there cannot be a loop-
independent flow dependence edge b — ;¢ in Gp. Since Gp and G have the same flow dependence edges,
there cannot be a loop-independent flow dependence edge b — ;¢ in Gy. The flow dependence edge b — ¢
in Go must be loop-carried; that is, b occurs after ¢ in Q. Because a occurs before ¢ and b occurs after ¢ in (J,
a occurs before b in Q.

Case 2. Suppose the order is a, b, and ¢ in P. In this case, the control predecessor of b cannot be a control
ancestor of a for otherwise there cannot be a flow dependence edge a —>,¢. Based on the control structure of
P, there are two subcases to consider:

(1)  The least common control ancestor of b and c is not a control ancestor of a. Let d be the least common
control ancestor of b and c. Since a occurs before ¢ and there is a flow dependence edge a —fc¢ in Gp,
there must be a loop-independent flow dependence edge a — ;¢ in Gp. Since Gp and Gy have the
same flow dependence edges, there is an identical loop-independent flow dependence edge a — ;¢ in
Ggp. Therefore, a occurs before ¢ in Q. Since d is a control ancestor of ¢ but is not a control ancestor of
a and a occurs before ¢, a occurs before d in Q. Since a occurs before d and d is a control ancestor of b
in @, a must occur before b in Q.

(2) The least common control ancestor of b and c is a control ancestor of a. Let x be the variable that is
assigned a value at a and b; let d be the highest control ancestor of b that is not a control ancestor of a.
Note that d cannot be b and that the control predecessor of 4 is a control ancestor of @ in Gp. If d is a
predicate of an if statement, let e be the associated “¢: x := x” vertex of the if statement. If d is a predi-
cate of a while statement, let e be the associated “¢,y,: x 1= x” vertex of the while statement. Since
a—c is a flow dependence edge in Gp and the relative order is a, b, and ¢, there must be an x-
definition-free flow dependence path a ———)} e in Rp that does not include the ¢,,,, vertices of any loop
that encloses both a and b. Because Rp = Ry, there is an identical flow dependence path a -—>} ein Rg.
Therefore, a must occur before d in Q. Since a occurs before d and d is a control ancestor of bin 0, a
occurs before b in Q.

Case 3. Suppose the order is ¢, @, and b in P. In this case, the control predecessor of b cannot be a control
ancestor of a for otherwise there cannot be a flow dependence edge a —c. Based on the control structure of
P, there are two subcases to consider:

(1) The least common control ancestor of a and ¢ is not an control ancestor of b. Let d be the least com-
mon conirol ancestor of a and ¢. Since b occurs after ¢, there cannot be a loop-independent flow depen-
dence edge b — ;¢ in Gp. Since Gp and G have the same flow dependence edges, there cannot be a
loop-independent flow dependence edge b — j;c in Gy. The flow dependence edge b —yc in Gg must
be loop-carried; that is, b occurs after ¢ in Q. Since d is a control ancestor of ¢ but is not a control
ancestor of b and b occurs after ¢, b occurs after 4 in Q. Since b occurs after d and 4 is a control ances-
tor of a in @, b must occur after a in Q.

(2) The least common control ancestor of a and ¢ is a control ancestor of b. Let x be the variable that is
assigned a value at a and b; let d be the highest control ancestor of b that is not a control ancestor of a.
Note that d cannot be b and that the control predecessor of d is a control ancestor of a in Gp. Ifdisa
predicate of an if statement, let e be the associated “¢y: x == x" vertex for the if statement. If d is a
predicate of a while statement, let ¢ be the associated “0,.,: x :=x" vertex for the while statement.
Since a —;c¢ is a flow dependence edge in Gp and the relative order is c, g, and b, there must be an x-
definition-free flow dependence path a —>} e in Rp that does not include the ¢, vertices of any loop
that encloses both a and b. Because Rp =Ry, there is an identical flow dependence path a —-)} einRg.




45

Therefore, a must occur before d in Q. Since a occurs before 4 and d is a control ancestor of b in Q, a
occurs before & in Q.

In all of the above three cases, a occurs before b in Q. Therefore, there is a def-order edge @ — 4, b in
Gg. Similarly, for an def-order edge a — 4 ) b in Gy, there is an identical def-order edge @ —> 4y b in Gp.
We conclude that Gp and G have the same def-order edges.

This completes the proof that Rp =Ry implies Gp = Gg. [

Though PRGs and PDGs are equivalent program representations, PRGs are, in general, smaller than PDGs.
This is because there are fewer ¢ vertices in a PRG than def-order edges in the equivalent PDG. For instance,
consider the following example.

<Tl> x:=1
if p, then
<T2> x =2
fi
ifp3 then
<T3> x:=3
fi

if p; then
<Tk> x:=k

fi

Yii=x

Yo i=x*2

Ym =X *m
In the PDG for this program fragment, for each use of x in the assignments to y;'s, there are def-order edges
from T1 to T2, T3, ..., Tk and from T2 to T3, ..., Tk, etc. In total, there are mk (k — 1)/2 def-order edges
and mk flow dependence edges. However, in the PRG for this program fragment, there are (k — 1) ¢ ver-
tices, (k — 1) control dependence edges for these ¢ vertices, and (2k — 2 + m) flow dependence edges. In the
worst case, the total number of edges and vertices in the PRG is O (dn), whereas it is O (n?) in the program’s
PDG, where n is the number of non-¢ components in the program and 4 is the maximum nesting depth.

3.4. Equivalence Theorem for Program Representation Graphs

Since PRGs and PDGs are equivalent program representations, many semantic properties of PDGs can be
directly adapted for PRGs; in particular, the Equivalence Theorem, which states that two programs that have
isomorphic PDGs have equivalent execution behavior, also holds for PRGs: two programs that have iso-
morphic PRGs have equivalent execution behavior.

Textually different programs may have isomorphic PRGs. The difference among these textually different
programs that have isomorphic PRGs is that certain independent statements are in different order in these pro-
grams. Because there is no dependence among these out-of-order statements, the execution behaviors of pro-
grams are not affected except that these out-of-order statements are executed in different order. This is
confirmed by the Equivalence Theorem for PRGs.

The following Equivalence Theorem for PRGs follows immediately from Theorem 3.1 and the Equivalence
Theorem for PDGs, which is proved as a corollary of the Slicing Theorem in Chapter 2.
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Theorem. (Equivalence Theorem for Program Representation Graphs). Suppose that P and Q are pro-
grams for which Rp=Rp. If © is a state on which P terminates normally, then for any state o’ that agrees
with & on all variables for which there are initial-definition vertices in Rp: (1) Q terminates normally on &,
(2) P and Q compute the same sequence of values at each corresponding program component, and (3) the
final states agree on all variables for which there are final-use vertices in Rp.




Chapter 4

The Sequence-Congruence Algorithm

Orne of the steps in the new program-integration algorithm is to determine whether two program components
have equivalent execution behavior. Any technique that can detect program components with equivalent
behaviors can be used in this step of the new program integration algorithm. In particular, we have developed
the Sequence-Congruence Algorithm for this purpose.

The Sequence-Congruence Algorithm is based on an idea of Alpern, Wegman and Zadeck [Alpern88] for
finding equivalence classes of program components by first optimistically grouping possibly equivalent com-
ponents in an initial partition of a value graph and then finding the coarsest partition of the graph compatible
with the initial partition and dependences among components. However, in refining the initial partition, the
algorithm of Alpern et al. considers only flow dependences among components. They showed that com-
ponents in the same final partition produce the same values at certain moments during execution. In contrast,
the Sequence-Congruence Algorithm given in this chapter considers control dependences as well as flow
dependences and can detect components with equivalent behaviors.

A further point of contrast between our work and that of Alpern et al. concerns the idea of applying parti-
tioning to more than one program simultaneously. This idea was not studied by Alpern et al. [Alpern88], and
the semantic property proved there concerning congruent vertices does not characterize the result of applying
the algorithm to multiple programs simultaneously. The algorithm of Alpem et al. is essentially the first
phase of our Sequence-Congruence Algorithm, and our first result (the Data-Congruence Lemma) establishes
a semantic property of components in the same equivalence class when the algorithm is applied to multiple
programs. We then go on to show that with an additional partitioning phase, it is possible to detect program
components with equivalent behaviors even though they occur in different programs.

This chapter defines the notion of equivalent behavior of program components, presents the Sequence-
Congruence Algorithm, and shows that the Sequence-Congruence Algorithm can detect program components
with equivalent behavior. Finally, Section 4.4 describes three simple enhancements to the Sequence-
Congruence Algorithm.

4.1. Equivalent Execution Behavior

A fundamental problem in program integration is to determine whether two program components have
equivalent execution behavior. It is useful first to define precisely the notion of equivalent execution
behavior. In Chapter 2, when the semantic foundations of the HPR algorithm were discussed, two program
components were said to have equivalent behavior if they produce the same sequences of values during pro-
gram execution. However, in that discussion, we were concemned only with those initial states on which the
programs terminate normally. In order to account for initial states on which programs do not terminate nor-
mally, the notion of equivalent behavior is generalized as follows.

47
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Definition. Two components ¢, and ¢, of programs P and P,, respectively, have equivalent behavior if
and only if all four of the following hold:

(1)  For all initial states o such that both P, and P, terminate normally when executed on o, the
sequences of values produced at ¢, and ¢, are identical.

(2)  For all initial states o such that neither P nor P, terminates normally when executed on o, either (a)
the sequences of values produced at ¢; and c, are identical infinite sequences, or (b) the sequence of
values produced at ¢, is a prefix of the sequence of values produced at ¢, or vice versa.

(3)  For all initial states ¢ such that P, terminates normally on o but P, fails to terminate normally on o,
the sequence of values produced at ¢, is a prefix of the sequence of values produced at ¢ ;.

(4)  For all initial states ¢ such that P, terminates normally on ¢ but P, fails to terminate normally on o,
the sequence of values produced at ¢ is a prefix of the sequence of values produced at ¢ ,.

By “the sequence of values produced at a component” we mean: For an assignment statement (including
initial-definition statements and ¢ statements), the sequence of values assigned to the left-hand-side variable;
for a predicate, the sequence of boolean values to which the predicate evaluates; and for a variable named in
the end statement, the final value of that variable. Note that a fault such as integer overflow is considered to
be a special “value” in the above definition. The program stops immediately after such a value is produced.

Our study of the semantic foundations for the HPR algorithm given in Chapter 2 considered only Case 1 of
the above definition; that is, the Slicing Theorem, the Termination Theorem, and the Integration Theorem are
concerned only with the case where both P, and P, terminate normally on an initial state. However, since
the Slicing Theorem can be viewed as a special case of the Sequence-Congruence Theorem given in this
chapter (this assertion will be obvious after the Sequence-Congruence Theorem is introduced), the semantic
foundations for the HPR algorithm can be generalized to cover all four cases of the definition of equivalent
behavior of program components given above.

4.2. The Sequence-Congruence Algorithm

1t is an undecidable problem to determine whether two components, which may possibly be located in dif-
ferent programs, have equivalent behavior. A safe method must be employed in the integration algorithm. A
method is safe if it never identifies two components as equivalent that are actuaily inequivalent. In the HPR
integration algorithm, this is done by comparing program slices; we have shown that two components with
isomorphic slices have equivalent behavior (namely, the Slicing Theorem in Chapter 2). The Sequence-
Congruence Algorithm can also detect components with equivalent behavior, and that algorithm is strictly
stronger than comparing program slicing in that all pairs of components with isomorphic program slices are
found by the Sequence-Congruence Algorithm as well, but not vice versa.

A component’s execution behavior depends on three factors: the operator in the component, the operands
available when the operator is applied, and the predicates that control the execution of the operation. It is safe
to assume that components with different operators, different operands, or different controlling predicates will
have different execution behaviors (although there do exist program components that have equivalent
behavior but have different operators, inequivalent operands, or inequivalent controlling predicates).

The Sequence-Congruence Algorithm is based on the above assumption. Given one or more programs, the
Algorithm partitions components of the programs that have different operators, different operands, or dif-
ferent controlling predicates into disjoint equivalence classes. Initially, components with the same operators
are put into the same partition. Flow dependences, which denote the operands of éomponems, and control
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dependences, which denote the controlling predicates of components, are used to refine the initial partition.
Components that are in the same final equivalence classes will have the same operators, equivalent operands,
and equivalent controlling predicates.

The initial partition is refined by a partitioning algorithm, which will be discused in detail later in this sec-
tion. The partitioning algorithm finds the coarsest partition consistent with the initial partition in which two
vertices are in the same class only if their predecessors are in the same class. The following figure illustrates
the partitioning process.

(1) Before partitioning. O

(2) After partitioning.

In the above figure, vertices s and ¢ are in the same initial class; u and v are in the same initial class; w, x, y,
and z are in the same initial class before partitioning. Because predecessors of w and x and predecessors of y
and z are in different classes, the class containing w, x, y, and z is split into two classes after partitioning: one
for w and x and the other for y and z.

Program representation graphs are particularly suitable for the Sequence-Congruence Algorithm. Program
components are represented as vertices in the graphs. The operators of components are readily identifiable
from the text in the vertices. Flow and control dependences are explicitly represented as edges in the graphs.

One way to find program components that have the same operators, equivalent operands, and equivalent
controlling predicates is by considering control and flow dependence edges during the same partitioning
phase; however, we can find larger equivalence classes by considering flow and control edges at different
phases. We are able to divide the partitioning process into two passes: During the first pass, we consider only
flow dependence edges (and some additional edges); during the second pass, we consider only control depen-
dence edges.

Given one or more PRGs, the Sequence-Congruence Algorithm consists of two partitioning passes. Ver-
tices (that is, program components) that have different operators are put into different initial partitions. Flow
dependence edges (and some additional edges) are used in the first pass to refine the initial partition. The
second pass starts with the final partition produced by the first pass; control dependence edges are used to
further refine this partition. Both passes use the same basic partitioning algorithm to refine the partition of the
graph’s vertices; only the starting partition and the edges considered in the two passes are different.
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First, we explain what the operator in a vertex is. The operator in a statement or a predicate vertex is deter-
mined from the expression part of the vertex. For instance, statement “x :=a + b * ¢” has the same operator
as statement “y :=d + e * f” but a different operator than statement ““z := g * 4”; that is, the structure of the
expression in the vertex defines the operator. The expression “a + b * ¢” uses the operator that takes three
arguments g, b, and ¢, and returns the value of “a + b * ¢”. (Note that the assignment sign := is not con-
sidered to be an operator in the Sequence-Congruence Algorithm since it does not compute a value. It is the
expression on the right-hand side of the assignment sign that computes a value.)

A predicate is simple if it consists of a single boolean variable; an assignment statement is simple if its
right-hand-side expression consists of a single variable. Vertices that represent either simple predicates or
simple assignments are called simple vertices. The operator in a simple vertex is the identity operator, that is,
an operator that takes one argument and returns the value of the argument. Examples of simple vertices
include: “if p” and “y = x.”

The operator in a vertex whose expression consists of a single constant is the constant operator that takes

no argument and always returns the value of the constant. There is a different operator for each different con-
stant in the program.

In PRGs, two vertices that are the same kind of ¢ vertex (i.e., Ounter» Pexis» OF Qy) OF that have the same
operators must have the same number of incoming control and flow dependence edges. Thus, we can speak
of the “analogous” flow (or control) predecessors of the two vertices. To be more precise, we assign types to
edges in the PRGs; the notion of analogous flow (or conirol) predecessors of two vertices is then defined in
terms of the types of edges.

Due to the presénce of ¢ vertices in PRGs, each use of a variable in a non-¢ vertex is reached by exactly
one assignment to the variable, either an original assignment statement, an [nitialState assignment, or a ¢
assignment. Therefore, if the operator in a non-¢ vertex is an n-ary operator, there are exactly n incoming
flow dependence edges for this vertex. These flow dependence edges are assigned types op 1, op2, ..., opn,
one for each operand.

A vertex u labeled “¢y: x :=x” has two incoming flow dependence edges: one represents the value that
flows to u from or via the true branch of the associated if statement; the other represents the value that flows
to u from or via the false branch. The flow dependence edges incident on a ¢; vertex are assigned types if-
true and if-false, respectively. For instance, consider the following program fragment:

<Tl> x:=1
if P then
<T2> x:=2
fi

<T3> ¢px=x

The definition at T1 reaches T3 via the false branch of the if statement; so the flow dependence edge from T1
to T3 has type if-false. The definition at T2 reaches T3 from the true branch; so the flow dependence edge
from T2 to T3 has type if-true.

A vertex u labeled “d,p.,: x := x” has two incoming flow dependence edges: one represents the value that
flows to u from outside the associated loop (due to an assignment to x before the loop); the other represents
the value that flows to « from inside the loop. These flow dependence edges are assigned types flow —enter
and flow —next, respectively.
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A vertex u labeled “¢,,: x :=x” has one incoming flow dependence edge; the source of this flow depen-
dence edge is the associated ¢,,,, vertex. The flow dependence edge incident on a ¢, vertex is assigned
type flow —exit.

Control dependence edges are assigned types as follows: All vertices except ¢, and while predicate ver-
tices have exactly one incoming control dependence edge. The control dependence edges that form self-loops
on while predicates are assigned type self ~loop. The incoming control dependence edge of a ¢,,,, vertex u
whose source is not the associated while predicate for u is assigned type enter-true or enter-false depending
on whether the label on the control dependence edge is true or false. All other control dependence edges are
assigned type control-true or control-false depending on whether the label on the control dependence edge is
true or false.

The analogous flow (or control) predecessors of two vertices u, and u, are two vertices v; and v, such that
the flow (or control, respectively) dependence edges u; — v, and u, —> v, have the same type. If v; and v,
are the analogous flow predecessors of 4, and u, and if v; and v, assign a value to variables @, and a,, then
we say variables a, and a, are analogous operands of vertices u, and u,, respectively.

Having explained the operator in a vertex and analogous flow (control) predecessors, we now proceed to
describe the basic partitioning algorithm. The basic partitioning algorithm in Figure 4-1 is adapted from
[Alpern88, Aho74], which is based on an algorithm of [Hopcroft71] for minimizing a finite state machine.
This algorithm finds the coarsest partition of a graph’s vertices that is compatible with a given initial partition
and the edges in the graph; it guarantees that two vertices v and v are in the same class after partitioning if
and only if they are in the same initial partition, and, for every predecessor u of v, there is an analogous prede-
cessor u’ of v’ such that u and u” are in the same class after partitioning, and vice versa. The m-successors of
a vertex u are the vertices v such that there is an edge u — v of type m. The size function returns the number
of elements in a class.

Figure 4-2 presents the Sequence-Congruence Algorithm, which operates on one or more program
representation graphs. When the algorithm operates on more than one PRG, the multiple PRGs are treated as
one graph; thus, when we refer below to “the graph,” we mean the collection of PRGs.

Pass 1:

For the first pass, some additional edges are added to the graph: an edge from every if predicate to each asso-
ciated ¢y vertex and an edge from every while predicate to each associated ¢,y vertex are added to the PRGs.
These added edges are assigned types flow-if and flow-while, respectively.

The initial partition is based on the operators in the vertices. Initially, there is a class for all the Entry ver-
tices; for each variable x there is a class for all the InitialState vertices for x; there is a class for all non-¢ ver-
tices that have the same operators; for each nesting level of while loops, there is a class for all the ¢,,,, ver-
tices at that nesting level; there is a class for all the ¢,,;, vertices; there is a class for all the ¢y vertices; there is
a class for all the FinalUse vertices.

This initial partition is refined by the basic partitioning algorithm; however, all control dependence edges
are ignored in the first pass. (The edges added in the beginning of the first pass-—those of types flow-if and
flow-while—are discarded at the end of the first pass.)
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The basic partitioning algorithm:

The initial partition is B[1], B[2], ..., B{p]
WAITING := { 1, 2,...,p }
q=p
while WAITING = @ do
select and delete an integer i from WAITING
for each edge type m do
FOLLOWER =@
for each vertex u in B[i] do
FOLLOWER := FOLLOWER v m-successor(u)
od
for each j such that B[j] » FOLLOWER # & and B[j] ¢ FOLLOWER do
q:=q+1
create a new class B{q]
Blq] := B[j] » FOLLOWER
B(j] :=B[j] - Blq]
if j e WAITING
then add g to WAITING
else if size(B[j]) < size(B[ql)
then add j to WAITING
else add q to WAITING
fi

od
od

Figure 4-1. The basic partitioning algorithm. This algorithm, which is adapted from [Alpemn88, Aho74, Hoperofi71],
finds the coarsest partition of a graph's vertices that is compatible with a given initial partition and the edges in the graph.

Pass 2:

The second pass considers only control dependence edges, and applies the basic partitioning algorithm again
to refine the partition obtained from the first pass.

Definition.!! Vertices are data-congruent if they are in the same class after the first partitioning pass. Ver-
tices are sequence-congruent if they are in the same class after the second partitioning pass.

The partitioning algorithm can determine the data-congruence classes in time O (E, log E,) where E, is
the number of flow dependence edges plus the number of ¢; and ¢, vertices. The sequence-congruence

10ur terminology differs from that of [Alpemn88]: our concept of data-congruence is similar to that of congruence in [Alpern88]; our
concept of sequence-congruence is a new concept that does not appear in [Alpern88].
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classes can be determined by the algorithm in time O (E log £, + E; log E;) where £, is as above and E is
the number of control dependence edges in the graph.

Example. Figure 4-3 shows an example of partitioning. The two assignments x := 1 and u := 1 are in the
same initial class and they stay in the same class after the first partitioning pass; however, they are separated
during the second pass. Thus, the two components are data-congruent but not sequence-congruent. The two
FinalUse vertices are sequence-congruent even though they are associated with different variables.

4.3. The Sequence-Congruence Theorem

Program components represented by sequence-congruent vertices (in short, sequence-congruent components)
have a nice semantic property on which the new program-integration algorithm relies: We are able to show
that sequence-congruent components—possibly in different programs—have equivalent execution behavior.
This is stated as the Sequence-Congruence Theorem. Thus, the Theorem relates the partitioning operation to
the execution behaviors of program components and establishes the ability of the Sequence-Congruence
Algorithm to detect program components with equivalent behavior. In this section, we give a proof of the
Sequence-Congruence Theorem.

Since the theorem concerns components’ run-time behaviors, we define explicitly the notion of a moment
immediately before (or after) an execution step. Assignment statements, predicates, and ¢ assignments of a
program P are executed in the order specified by the augmented control flow graph of P. The execution of an
assignment statement or a ¢ assignment and the evaluation of a predicate constitute a step of program execu-
tion. A moment immediately before (or after) the execution of a component u denotes the time when u is
about to start executing {or, respectively, has just finished). There is a subtle distinction between a moment
immediately after the execution of a vertex and a moment immediately before the execution of the following
one. For instance, consider the following program fragment:

The Sequence-Congruence Algorithm:

Pass I: Add a flow-if edge from every if predicate to each associated ¢; vertex.
Add a flow-while edge from every while predicate to each associated ¢, vertex.
Create an initial partition using the operators in the vertices.
Apply the basic partitioning algorithm to refine the initial partition,
ignoring all control dependence edges.
Remove all flow-if and flow-while edges.
Pass 2: Apply the basic partitioning algorithm to the partition obtained from the first pass,
using only control dependernce edges to further refine the partition.

Figure 4-2. The Sequence-Congruence Algorithm. The Sequence-Congruence Algorithm consists of two passes. Both
passes use the basic partitioning algorithm in Figure 4-1; only the starting partition and the edges considered in the two
passes are different.
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program A program B
=1 ifp
ifp thenu =2
thenx =2 else u =1
fi fi
G x =x Oy 4 = u
y=x vi=u
z:=y+3 wi=w+3
end(z) end(w)

The sequence-congruence classes of program components of the two programs:

Components from program A Components from program B

{ p = InitialState (p) p = InitialState (p)

— St

L T~ S g

—
Nt

Figure 4-3. The sequence-congruence classes of program components of programs A and B. The two assignments x := 1
and u =1 are in the same initial class and they stay in the same class after the first partitioning pass; however, they are
separated during the second pass. Thus, the two components are data-congruent but not sequence-congruent. The two
FinalUse vertices are sequence-congruent even though they are associated with different variables.
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<Tl> x:=0
<T2> whilepdo

od
Suppose there are no ¢.,,, vertices for the while loop. The locus of control is outside the loop at the moment
immediately after the execution of the assignment at T1, whereas the locus of control moves inside the loop at

the moment immediately before the execution of the while predicate T2. Note also that the locus of control
moves outside the loop at the moment immediately after the predicate T2 evaluates to false.

It is important to identify the loops that are executing at a moment during program execution. A loop L is
executing at a moment ¢ if the locus of control at ¢ is inside L. The current loop predicate at a moment ¢, writ-
ten as CLP(¢), is the predicate of the innermost loop that is executing at ¢. If there is no such loop, CLP(¢) is
the Entry vertex. In particular, if ¢ is the moment immediately before (or after) executing a Qg Statement,
the locus of control is inside the loop of the ¢.,., statement; hence CLP(¢) is the predicate of the associated
loop.

A loop encloses a vertex v (or, equivalently, v is enclosed in the loop) if there is a control-dependence path
from the predicate of the loop to v.

Since loops may be executed repeatedly, we distinguish executions and iterations of a loop. During pro-
gram execution, there may be several executions of a loop; during each execution of the loop, there may be
one or more iterations. There is at least one iteration during an execution of a loop:'? the ¢,,,, vertices and
the loop predicate must be executed at least once during an execution of the loop.

Since a vertex enclosed in a loop may be executed repeatedly, a vertex is active at a moment ¢ (defined
below) if the “appropriate” value produced at the vertex is available for use at t [Alpern§8].

Definition. A vertex u in a program representation graph is active at a moment ¢ during program execution
if (1) u is not enclosed in a loop and has already been executed at ¢, or (2) the innermost loop that encloses u
is executing at ¢ and u has been executed during the current iteration.

According to the definition, ¢.,,, vertices and while predicates are active only when the locus of control is
inside their loops.

In order to compare execution behaviors of components that may belong to different programs, it is neces-
sary 1o relate two moments, ¢, and ¢, during the respective executions of the two programs. We say ¢, and
t, are concurrent if the executions of P, and P, at ¢, and ¢, are synchronized in the sense defined below.

Definition. Let P and P, be two programs. Let ¢, and ¢, be two moments during the executions of P,
and P,, respectively. ¢, and ¢, are concurrent if (1) CLP(t;) and CLP(t,) are at the same loop nesting level,
(2) corresponding while predicates on the control-dependence paths from Entry to CLP(t) and CLP(¢,),
respectively, in the program representation graphs of P, and P, are data-congruent, and (3) corresponding
while predicates have executed the same number of iterations during the current executions of the loops at ¢,
and ¢,, respectively.

12The number of iterations during an execution of a loop defined here differs from the traditional point of view: With our definition, the
ileration count is one greater than normal. This convention makes the statement of the proof easier; it does not carry any semantic

significance.
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Note that if predicates are ignored in the above definition. For instance, in Figure 4-3, if ¢, is the moment
immediately after the statement “x := 1” executes and ¢, is the moment immediately after the statement
“u := 1" executes, ¢, and ¢, are concurrent.

Since sequence-congruence is a refinement of data-congruence, the Sequence-Congruence Theorem (for

sequence-congruence classes) is founded on the Data-Congruence Lemma (for data-congruence classes),

3

which states that active, data-congruent vertices have the same values'® at concurrent moments when the pro-

grams run on sufficiently similar initial states.

Lemma. (Data-Congruence Lemma). Let P, and P, be two programs with imported variables Imp and
Imp, respectively. Let 6, and &, be two states that agree on (Imp, NImp,). Let t| and t, be two moments
during the executions of P, and P, on initial states 6| and G,, respectively. Let x; and x, be two vertices in
P, and P,, respectively. If (1) t, and t, are concurrent, (2) x, is active at t|, (3) x, is active at t,, and
(4) x, and x, are data-congruent, then x, and x have the same values at t| and t,, respectively.

Proof. We prove this lemma by contradiction. In particular, we argue by considering the earliest coun-
terexample.

Suppose the lemma is not correct; then there exist x,, x», £;, and ¢, that satisfy (1), (2), (3), and (4) above
but x, and x, have different values at ¢, and ¢,, respectively. Let ¢, be the earliest moment during the execu-
tion of P, on initial state &, such that there is a moment ¢, during the execution of P, on initial state ¢, and
there are two vertices x; and x, of P, and P,, respectively, such that (1), (2), (3), and (4) hold but x, and x,
have different values at ¢, and ¢,, respectively. It is possible that, for a given ¢, there are many ¢, x,, and x,
that fit the above conditions. In this case, the ones with the earliest ¢, are chosen. It is also possible that,
given ¢, and ¢,, there are many x, and x, that fit the above conditions. In this case, the earliest x; (in terms
of appearance in the augmented control flow graph of P) in P, is chosen. It is also possible that, given ¢,,
t5, x,, there are many x, that fit the above conditions. In this case, the earliest x, in P, is chosen.

Since x; and x, are data-congruent, they must either be ¢ statements of the same kind or they must have
the same operators. Hence, they have the same incoming flow dependence edges. There are five cases
depending on the type of vertex x,. We will derive a contradiction in each case.

Case 1. Vertex x, is a FinalUse vertex, a non-¢ assignment statement vertex, or a predicate vertex. If x,
is a constant vertex (that is, the expression in x, is a constant), so is x, and they must be the same constant.
In this case, x, and x, always have same values whenever they are active. So assume x, and x, are not con-
stant vertices.

Since x, and x, have the same number of incoming flow dependence edges, let y; and y, be any analogous
flow predecessors of x, and x,, respectively. Since x, and x, are data-congruent, y, and y, are also data-
congruent. Because there is a flow edge y; —,x; and x, is not a ¢.;, vertex, any loop enclosing y; must
also enclose x; (due to the ¢, vertices in the graph, y; cannot be nested more deeply than x;). Because x,
is active at ¢,, the innermost loop enclosing y,, if any, must be executing at £, and x; must have been exe-
cuted during the current iteration of that loop.

The value of a vertex at a moment is the most recent value produced at the vertex at that moment. There is a subtle point here: if vertex
v assigns to variable a and v is active at moment /, the value of v and that of a in the current state at ¢ are not necessarily equal because a
might be assigned another value after v is executed.
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Note that flow dependence edges incident on any non-¢,,,, vertex run from left to right. Because x, has
been executed, y, must have already been executed during the current iteration of the innermost loop enclos-
ing y, (if any); therefore, y, is active at ¢,. Similarly, y, is active at ¢,.

Note that y; and y, come before x; and x, in P, and P,, respectively. Thus, y; and y, must have the
same values at t; and t,, respectively, for otherwise we would have chosen y, and y, instead of x, and x,.

Let a; and a, be the variables that are assigned a value at y,; and y,, respectively. Since y, and y, are
analogous flow predecessors of x; and x,, respectively, a, and a, are analogous operands of x; and x,,
respectively.

Note that variable a, has the same value as vertex y, immediately before the execution of x, at time ¢y;
that is, a, cannot be assinged a value again after the most recent execution of y, for otherwise there cannot be
the flow dependence edge y, —,x; (due to the properties of program representation graphs, x, and x, have
exactly one incoming flow dependence edge for each operand of x; and x,). Similarly, variable a, has the
same value as vertex y, immediately before the execution of x, at time ¢,. Since y, and y, have the same
values at ¢, and ¢,, respectively, a, and a, must have the same values immediately before the executions of
x; and x, at ¢, and ¢,, respectively.

Because analogous operands of x; and x, have the same values and because x, and x, have the same
operator, x; and x, must evaluate to the same values at times ¢, and ¢,, respectively, which contradicts the
previous assumption that x;, x,, {1, and ¢, violate the lemma.

Case 2. Vertex x, is a ¢; vertex. Let z, and z, be the if predicates for x; and x,, respectively. Since x,
and x, are data-congruent, z, and z, are also data-congruent. Because x, is active at ¢, z; is also active at
t,. Similarly, z, is active at ¢,. Note that z; and z, come before x; and x, in P; and P,, respectively. Thus,
z; and z, must have the same values at ¢, and ¢,, respectively, for otherwise we would have chosen z, and z,
instead of x, and x,. Without loss of generality, assume the values of z, and z, at ¢, and ¢,, respectively, are
true.

Lety; —>,x, and y, —>7x, be the incoming flow dependence edges of x; and x, from (or around) the 1rue
branches of z; and z,, respectively. Because there is a flow edge y; —x, and x, is active at ¢, by the same
arguments as in Case 1, y, is active at £,. Similarly, y, is active at #,. Because x, and x, are data-congruent,
y, and y, are also data-congruent. Thus, y, and y, must have the same values at ¢, and ¢,, respectively, for
otherwise we would have chosen y, and y, instead of x; and x,.

Note that at time ¢, x; has the same value as y; that is, the variable that is assigned a value at y, cannot
be assinged a value again after the most recent execution of y, for otherwise there cannot be the flow depen-
dence edge y; —>x; (due to the properties of program representation graphs, a ¢; vertex has exactly one
incoming flow dependence edge from or around the true branch). Similarly, at time ¢,, x, has the same value
as ys.

Since y; and y, have the same values at ¢, and ¢,, x, and x, must have the same values at ¢, and ¢,,
respectively, which contradicts the previous assumption that x,, x, ¢,, and ¢, violate the lemma.

Case 3. Vertex x; is a §...- vertex. Let z; and z, be the while predicates associated with x; and x,,
respectively. Note that a ¢,,,, vertex is active only when the locus of control is inside the associated loop.
Because ¢, and ¢, are concurrent, corresponding while predicates on the control-dependence paths from Entry
to CLP(t;) and CLP(t,) are data-congruent and have executed the same number of iterations during the
current executions of the loops at moments ¢, and ¢,, respectively. Since x; and x, are at the same nesting
level, z, and z, are corresponding while predicates on the control-dependence paths from Entry to CLP(ty)
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and CLP(t;). Hence z; and z, are data-congruent and have executed the same number of iterations during
the current executions of the loops, at moments ¢, and ¢,, respectively.

M
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Suppose, at ¢4, it is the first iteration of the loop of z; during the current execution of the loop. It is also
the first iteration of the loop of z, during the current execution of the loop at ¢,. Therefore, the values
of x| and x, at ¢; and ¢, come from outside the loops of z, and z,, respectively.

Lety; and y, be the flow predecessors of x; and x, from outside the loops of z, and z,, respectively.
Since x; and x, are data-congruent, y, and y, are also data-congruent. Since x; and x, are active at ¢,
and ¢,, respectively, y, and y, are also active at ¢; and ¢,, respectively. Thus, y, and y, must have the
same values at ¢; and ¢,, respectively, for otherwise we would have chosen y, and y- instead of x; and
X5,

Note that at time ¢, x, has the same value as y ; that is, the variable that is assigned a value at y, can-
not be assinged a value again after the most recent execution of y, for otherwise there cannot be the
flow dependence edge y, —7x; (due to the properties of program representation graphs, a ¢, vertex
has exactly one incoming flow dependence edge from outside the loop). Similarly, at time ¢,, x, has
the same value as y,.

Since y; and y, have the same values at ¢, and ¢,, x; and x, must have the same values at ¢; and ¢,,
respectively, which contradicts the previous assumption that x,, x,, ¢, and ¢, violate the lemma.

Suppose, at ¢, it is the k™ iteration of the loop of z, during the current execution of the loop, for some
k > 1. Itis also the k" iteration of the loop of z, during the current execution of the loop at t,. There-
fore, the values of x, and x, at ¢, and ¢, come from inside the loops of z, and z,, respectively (i.e., the
values are produced during the £ ~ 1* iterations).

Let y, and y, be the flow predecessors of x, and x, from inside the loops of z; and z,, respectively.
Since x; and x, are data-congruent, y; and y, are also data-congruent. Let ¢,” be the moment immedi-
ately before the end of the k—1* iteration of the loop of z, and t,” be the moment immediately before
the end of the k-1% iteration of the loop of z,. Note that y; and y, are active at ¢,” and ¢,’, respec-
tively. Note also that ¢;” and ¢," are earlier than ¢, and ¢,, respectively, and ¢,” and ¢,” are concurrent.
Thus, y, and y, must have the same values at ¢,” and ¢,’, respectively, for otherwise we would have
chosen¢,’, ¢, y1,and y, instead of ¢, £4, x{, and x,.

Note that the value of x, at r, is the same as that of y; at ¢,”; that is, the variable that is assigned a value
at y; cannot be assinged a value again after the most recent execution of y, for otherwise there cannot
be the flow dependence edge y; —,x; (due to the properties program representation graphs, a Qe
vertex has exactly one incoming flow dependence edge from inside the loop). Similarly, the value of x,
att, is the same as thatof y, at ¢,".

Because the value of x, at ¢, is the same as that of y, at ¢,” and the value of x, at ¢, is the same as that
of y, at ¢, and because the value of y, at¢,” is the same as that of y, at ¢,’, x, and x, must have the
same values at t; and ¢,, respectively, which contradicts the previous assumption that x, x5, ¢, and ¢,
violate the lemma.

Case 4. Vertex x, is a ¢, vertex. Let z; and z, be the while predicates associated with x, and x,, respec-
tively. Let y; and y, be the ¢,,., vertices associated with x; and x,, respectively. Since x, and x, are data-
congruent, z; and z, are data-congruent and y, and y, are data-congruent. Because y; and y, are data-
congruent, the respective loops of z; and z, are at the same nesting level.
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Because x; is a ¢y, vertex of the loop of z, and it is active at ¢,, the most recent execution of the loop of
z, must have finished. Similarly, since x, is active at ¢,, the most recent execution of the loop of z, must
have finished. Let n, be the number of iterations the most recent execution of the loop of z; iterated. Let n,
be the number of iterations the most recent execution of the loop of z, iterated.

We first show that n, = n,. Suppose n, # n,. First assume n, < n,. Let 5, be the moment immediately
before the n," evaluation of z, during the most recent execution of the loop of z,. Let s, be the moment
immediately before the n,™ evaluation of z, during the most recent execution of the loop of z,. Note that the
loops of z; and z, are executing the ny™ iteration during the most recent executions at s; and s,, respec-
tively. Therefore, s, and s, are concurrent. Since the n,"* value produced at z, is false but the n;* value
produced at z, is true, at least one pair of analogous operands of z, and z, must have different values at the
two moments s, and s, respectively.

However, because s, and s, are concurrent and analogous operands of z; and z, are data-congruent and
are active at s, and s, respectively, analogous operands must have the same values at s, and s,, respectively,
for otherwise we would have chosen s, and s, instead of ¢; and ¢,. Because analogous operands of z, and z,
have the same values at s, and s,, respectively, the n,"* values produced at z, and z,, respectively, must be
the same, which contradicts the assumption that n, < n,. Hence n, 2n,. By the same argument we know
ny 2 ny. Therefore, ny =n,. (Letnbe n, or, equivalentdy, n;.)

Recall that y, and y, are the d,,,, vertices associated with x, and x,, respectively. Let ¢, be the moment
immediately before the n** evaluation of z, during the most recent execution of the loop of z,. Let ¢,” be the
moment immediately before the n™ evaluation of z, during the most recent execution of the loop of z,. Note
that the loops of z, and z, are executing the n™ iteration during the most recent executions at ;" and t,’,
respectively. Therefore, ¢,” and ¢,” are concurrent. Since y, and y, are data-congruent, y, is active at ¢,", y,
is active at t,’, and ¢,” and ¢, are concurrent, y, and y, must have the same values at ¢,” and t,’, respectively,
for otherwise we would have chosen ¢,’,¢,’, y;, and y, instead of ¢,, {5, x;, and x,.

Note that the value of x, at ¢, is the same as that of y, at ¢;”; that is, the variable that is assigned a value at
y: cannot be assinged a value again after the most recent execution of y, for otherwise there cannot be the
flow dependence edge y, —,x; (due to the properties of program representation graphs, a ¢, vertex has
exactly one incoming flow dependence edge, whose source is the associated 9,,,, vertex). Similarly, the
value of x, at ¢, is the same as that of y, at ¢,

Because the value of x; at t; is the same as that of y, at ¢,” and the value of x, at t, is the same as that of
y, at t,” and because the value of y, at ¢,” is the same as that of y, at ¢,’, x, and x, must have the same
values at ¢ and ¢,, respectively, which contradicts the previous assumption that x;, x,, ¢;, and {, violate the
lemma.

Case 5. Vertex x, is an InitialState vertex. Since x, and x, are data-congruent, they must be the Initial-
State vertices for the same variable. Since x; and x, are not in any loops, they are executed exactly once.
Because o, and o, agree on Imp, NImp,, x; and x, must have the same values whenever they are active.
This contradicts the previous assumption that x, x,, ¢, and ¢, violate the lemma.

We have shown that each of the five cases leads to a contradiction. Therefore, it is impossible to find ¢4, ¢5,
Xy, and x, such that (1), (2), (3), and (4) are satisfied but x, and x, have different values at ¢, and ¢,. [J

The following theorem asserts that sequence-congruent program components produce similar or identical
sequence of values when their programs run on sufficiently similar initial states. This theorem is stated in a
slightly more general form than what is required in the definition of equivalent behavior given in Section 4.1
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in that the two programs need only be run on sufficiently similar, but not identical, initial states.

Theorem. Let P and P, be two programs with imported variables Imp and Imp,, respectively. Let G,
and o, be two states that agree on (Imp, NImp,). Let x, and x, be two vertices in Py and P ,, respectively,
that are sequence-congruent. Then
(1)If P, and P, terminate normally on &, and G,, respectively, then the sequences of values produced at x,
and x,, respectively, are the same.

(2} If P terminates normally on &, but P, does not terminate normally on G,, then the sequence of values
produced at x, is a prefix of the sequence of values produced at x ;.

(3) If P, does not terminate normally on &, but P, terminates normally on ,, then the sequence of values
produced at x, is a prefix of the sequence of values produced at x,.

(4) If neither Py nor P, terminates normally on &, and G,, respectively, then either (a) the sequences of
values produced at x| and x,, respectively, are identical infinite sequences, or (b) the sequence of values pro-
duced at x| is finite and is a prefix of the sequence of values produced at x,, or vice versa.

Proof. We prove the four assertions separately; in each case, we prove the assertion by contradiction.

Case 1. Suppose P, and P, terminate normally on ¢, and o,, respectively. If there exist two sequence-
congruent vertices x; and x, in P and P,, respectively, such that the sequences of values produced at x; and
x, are different, then either (1) there is a constant £ such that the k" values produced at x; and x, are dif-
ferent, or (2) the sequences of values produced at x, and x, are of different lengths and the shorter sequence
is a prefix of the longer one.

In the latter case, we may examine the sequences of values produced at corresponding control ancestors of
x; and x,. Note that corresponding control ancestors of x; and x, are sequence-congruent. Since the
sequences of values produced at x, and x, are of different lengths and the shorter sequence is a prefix of the
longer one, it is impossible that each pair of corresponding control ancestors of x, and x, have produced the
same sequence of values. Thus, there must be two corresponding control ancestors, x,” and x,’, of x| and x,,
respectively, and a constant  such that the £ value produced at x,” and x,” are different.

We conclude that if the first assertion of the Theorem is not correct, then we can always find sequence-
congruent vertices x; and x, in P, and P, respectively, and a constant & such that the k* values produced at
xy and x, are different. Next, we will show this leads to a contradiction.

We argue by considering the earliest counterexample: There may be many x;, x,, and & that satisfy the
above condition. In this case, the ones with the earliest ¢, are chosen where ¢, is the moment immediately
after the k™ value of x, is produced. In case there are still many x, x, and k with the same ¢, that satisfy
the above condition, the ones with the earliest ¢, are chosen where ¢, is the moment immediately after the k*
value of x, is produced.

Because a while predicate may not be active immediately after it is executed but all other vertices (that is,
assignments, if predicates, InitialState, FinalUse, and ¢ vertices) are always active immediately after execu-
tion, we need to distinguish different cases depending on whether x, and x, are while predicates.

Due to the control dependence edges that form self-loops on while predicate vertices, a while predicate can
only be sequence-congruent to other while predicates. Since x, and x, are sequence-congruent, either both
x, and x, are while predicates or neither is a while predicate. Thus, there are two cases to consider. We will
derive a contradiction in each case.

(1)  Suppose neither x; nor x, is a while predicate. Because x, and x, are sequence-congruent, CLP(¢;)
and CLP(z,) and each pair of their corresponding control ancestors are sequence-congruent. In particu-
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lar, CLP(t,) and CLP(t,) are at the same loop nesting levels. Because ¢; and ¢, are the earliest
moments when the first assertion fails, CLP(¢,) and CLP(¢,) and each pair of their corresponding con-
trol ancestors must have produced the same sequences of values during the executions of P, and 7,
from the beginning to ¢, and ¢,, respectively. In particular, all corresponding while predicates have
executed the same number of iterations during their current executions. Therefore, ¢, and ¢, are con-
current.

Because x, and x, are sequence-congruent, they are also data-congruent. Because x, and x, are not
while predicates, x, and x, are always active immediately after they are executed. That is, x, is active
at ¢, and x, is active at £,. Thus, from the Data-Congruence Lemma, x; and x, have the same value at
t, and ¢,, respectively, which contradicts the assumption that the k™ values of x, and x, (at £, and ¢5,
respectively) are different.

Suppose x, and x, are while predicates. Let ¢,” and t,’ be the moments immediately before the k*
evaluations of x; and x,, respectively. That is, ¢, and ¢,” are the moments just one step earlier than ¢,
and t,, respectively. Note that CLP(z,") is x; and CLP(t;") is x,. Because x; and x, are sequence-
congruent, each pair of corresponding control ancestors of x, and x, are sequence-congruent. In par-
ticular, x, and x, are at the same loop nesting levels. Because the theorem does not fail until moments
t, and t,, and because moments ¢,” and ¢, are earlier than ¢, and ¢, respectively, we know that x; and
x, and each pair of their corresponding control ancestors must have produced the same sequence of
values from the beginning to ¢,” and ¢,’, respectively. In particular, all corresponding while predicates
have executed the same number of iterations during their current executions. Therefore, ¢,” and ;" are
concurrent.

Let y, and y, be any analogous flow predecessors of x; and x,, respectively. Since x; and x, are
sequence-congruent, y; and y, are data-congruent. Furthermore, y; is active at ¢;” and y, is active at
t,”. From the Data-Congruence Lemma, y| and y, have the same value at ¢,” and t,’, respectively.

Let a, and a, be the variables that are assigned a value at y, and y,, respectively. Since y, and y, are
analogous flow predecessors of x, and x,, respectively, a; and a, are analogous operands of x; and
X9, respectively.

Note that at time ¢,’, variable a, has the same value as vertex y; that is, a; cannot be assinged a value
again after the most recent execution of y; for otherwise there cannot be the flow dependence edge
y1 —>¢x, (due to the properties of program representation graphs, x, and x, have exactly one incoming
flow dependence edge for each operand of x, and x,). Similarly, at time ¢,’, variable a, has the same
value as vertex y,. Since y, and y, have the same values at ¢, and ¢,’, respectively, a, and a, must
have the same values at ¢, and ¢,’, respectively.

Because analogous operands of x, and x, have the same values at ¢,” and ¢,’, respectively, and because
x, and x, have the same operators, x; and x, must evaluate to the same values at ¢, and ¢5, respec-
tively, which contradicts the assumption that the k™ values of x; and x, (at ¢, and ¢, respectively) are
different.

In both cases we have shown a contradiction. Thus, we have proved the first assertion.

Case 2. Suppose P, terminates normally on o; but P, does not terminate normally on o,. If there exist
two sequence-congruent vertices x, and x, in P, and P, respectively, such that the sequence of values pro-
duced at x5 is not a prefix of the sequence of values produced at x, then either (1) there is a constant £ such
that the k™ values produced at x, and x, are different, or (2) the sequence of values produced at x; is a
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proper prefix of the sequence of values produced at x,.

In the latter case, we may examine the sequences of values produced at corresponding control ancestors of
x; and x,. Note that corresponding control ancestors of x; and x, are sequence-congruent. Since the
sequence of values produced at x, is a proper prefix of the sequence of values produced at x,, it is impossible
that each pair of corresponding control ancestors of x; and x, have produced the same sequence of values.
Thus, there must be two corresponding control ancestors, x;” and x,’, of x, and x,, respectively, and a con-
stant & such that the k* value produced at x,” and x,’ are different.

We conclude that if the second assertiomr of the Theorem is not correct, then we can always find sequence-
congruent vertices x; and x in P, and P,, respectively, and a constant & such that the £* values produced at
x; and x, are different. However, by the same argument as in Case 1, this leads to a contradiction. Thus, we
have proved the second assertion.

Case 3. Suppose P, does not terminate normally on &, but P, terminates normally on o,. This case is
similar to Case 2.

Case 4. Suppose neither P| nor P, terminates normally on &, and @,, respectively. If there exist two
sequence-congruent vertices x; and x, that violate the fourth assertion of the Theorem, then, depending on
whether the sequences of values produced at x, and x, are infinite, there are two cases to consider.

(1)  Suppose the sequences of values produced at x, and x,, respectively, are infinite. If the two infinite
sequences are not identical, there must be a constant & such that the k* values produced at x; and x,
are different.

(2)  Suppose at least one of the sequences of values produced at x, and x, is finite. If the sequence of
values produced at x, is not a prefix of the sequence produced at x, or vice versa, there must be a con-
stant & such that the k* values produced at x, and x, are different.

We conclude that if the fourth assertion of the Theorem is not correct, then we can always find sequence-
congruent vertices x; and x, in P and P, respectively, and a constant k such that the k* values produced at
x; and x, are different. However, by the same argument as in Case 1, this leads to a contradiction. Thus, we
have proved the fourth assertion. [J -

The Sequence-Congruence Theorem follows as an immediate corollary to the above theorem. The
Theorem states that sequence-congruent program components have equivalent execution behavior.

Theorem. (Sequence-Congruence Theorem). Sequence-congruent program components have equivalent
execution behavior.

1

4.4. Enhancements

In this section we consider three simple enhancements to the Sequence-Congruence Algorithm. The first is
concerned with simple assignment statements and simple predicates. Due to the property of the identity
operator in a simple vertex, a simple vertex is, in fact, always data-congruent to its (sole) flow predecessor
although this would not be discovered by the Sequence-Congruence Algorithm as defined above. To permit
the computation of larger classes of data-congruent vertices, we can merge a simple vertex v with its flow
predecessor u before performing the first pass of partitioning. By “merging a vertex v with another vertex u”
we mean “replace every edge v — x with an edge u — x, remove edge u — v, and remove vertex v.” This
merge operation is undone before the second pass, but vertices u and v-are left in the same partition. Vertices
u and v may or may not be put in different partitions during the second pass. For instance, consider the fol-
lowing example:
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<Tl> a:=1 <T3> ¢=1
<T2> bi=a+2 <T4> d:=¢
<T5> e :=d+2

If we merge the simple assignment statement T4 with its flow predecessor T3 before performing the first pass
of partitioning, we can discover that T2 and T5 are sequence-congruent. The proofs in the previous section
can be directly adapted to account for this change by extending the notion of “analogous” flow predecessors
of two vertices to take simple vertices into account.

In the Sequence-Congruence Algorithm, we assume that statement “x :=a + b * ¢” has the same operator
as statement “y :=d + e * f” but a different operator than statement “z := g * A”; that is, the structure of the
right-hand-side expression defines the operator. The expression “a + b * ¢ uses the operator that takes three
arguments a, b, and ¢, and returns the value of “a + b * ¢”. Thus, in the following program fragment, T1 and
T2 are not sequence-congruent because they have different operators.

<Tl> x:=a+b*c

z:=b*¢
<T2> y=a+:z
We can detect more sequence-congruent components if the program is transformed to three-address code
before partitioning. For the above example, the assignment to x is replaced by two statements when the pro-
gram fragment is transformed to three-address code; consequently, T3 and T4 are found to be sequence-
congruent by the Sequence-Congruence Algorithm,

temp =b * ¢
<T3> x:=a+temp

z=b*¢
<T4> y:=a+:z

Similarly, a constant inside an expression is tightly coupled with the operator. The expression “a + 1” uses
the unary operator that takes an argument ¢ and returns the value of “a + 1”. Therefore, in the following pro-
gram fragment, TS and T6 are not sequence-congruent because they have different operators (and different
number of incoming flow dependence edges).

<T5> x:=a+1
z:=1

<T6> y:=a+z

As before, a simple transformation can improve the result of partitioning: for each constant ¢ that appears in
the program, (1) a new variable Const_c is created, (2) an assignment statement “Const_c = ¢” is added at the
very beginning of the program, and (3) all references to ¢ in the program are changed to references to
Const_c. This transformation does not change the execution behavior of a program; however, larger
sequence-congruence classes will result from partitioning.

We close this section with an observation about how some additional enhancements to the Sequence-
Congruence Algorithm can be made. Although the Sequence-Congruence Algorithm presented above uses
the same basic partitioning algorithm-—the one given in Figure 4-1—for both Pass 1 and Pass 2, this is not
strictly necessary. The proof of the Sequence-Congruence Theorem depends only on the condition that the
equivalence classes used at the start of Pass 2 have the properties listed in the Data-Congruence Lemma.
Thus, any techniques applied during Pass 1 that result in larger equivalence classes with these properties will
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not affect the arguments we have given to establish the properties of the equivalence classes computed by
Pass 2; the equivalence classes computed by Pass 2 will still have the properties listed in the Sequence-

Congruence Theorem.

One kind of enhancement that may be worthwhile incorporating into Pass 1 is one that takes into account
the mathematical properties of an expression’s operator. For instance, consider the following example:

<T1>
<T2>
<T3>
<T4>
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<T7>
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With the present algorithm for Pass 1, T3 and T7 are eventually placed in separate data-congruence classes,
and hence T4 and T8 are also placed in separate data-congruence classes. However, because addition is com-
mutative, T3 and T7 could be placed in a single equivalence class, which then also makes it possible for T4
and T8 to be members of a single equivalence class.

The benefits of finding larger equivalence classes during Pass 1 carry over to Pass 2; in this example, T3
and T7 would be members of one sequence-congruence class, and T4 and T8 would be members of another.




Chapter §

A New Program Integration Algorithm

That Accommodates Semantics-Preserving Transformations

Having defined the notion of equivalent execution behavior of program components and having presented the
Sequence-Congruence Algorithm, we now present the new program-integration algorithm. Recall that the
motivation for the new integration algorithm is that the HPR algorithm cannot accommodate semantics-
preserving transformations. The most significant characteristics of the new integration algorithm are (1) it can
accommodate semantics-preserving transformations and (2) it is very flexible and extendible in that additional
techniques for detecting program components with equivalent behaviors can be easily incorporated in the new
integration algorithm. In this chapter, we will describe the new integration algorithm. Chapter 6 proves that
the new algorithm satisfies the integration criterion and Chapter 7 shows that the new integration algorithm
improves on the integration algorithm of Horwitz, Prins, and Reps.

5.1. The New Integration Algorithm

Like the HPR integration algorithm, the new integration algorithm takes as input a base program and two
variants. The first step of the new integration algorithm detects components with equivalent behaviors. This
can be done by an equivalence-detection algorithm, such as the Sequence-Congruence Algorithm, or by infor-
mation gathered from other sources, or both. The result of the first step is a set of equivalence classes of pro-
gram components with equivalent behaviors. From the equivalence classes obtained from the first step, the
new integration algorithm identifies the changed and preserved computations of the variants, extracts the
necessary program components and dependences, combines the extracted components and dependences to
form a merged graph, removes “useless” ¢ vertices (explained in Section 5.1.5), and produces an integrated
program from the merged graph. The new integration algorithm reports that the changes made in the variants
interfere if it cannot produce a merged graph or if it cannot produce an integrated program from the merged
graph.

Given a base program Base and variant programs A and B, the new integration algorithm performs the fol-
lowing steps:

(1)  Detect program components with equivalent behaviors.
(2)  Use the equivalence classes produced in Step (1) to classify the vertices of each PRG.

(3)  Use the classification of Step (2) to extract subgraphs that represent the changed and preserved com-
putations of the variants with respect to the base program.

(4)  Combine the subgraphs to form a merged graph.

(5) Remove useless ¢ vertices from the merged graph.
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(6)  Determine whether the merged graph represents a program; if so, produce the program.

The algorithm may determine that the variant programs interfere in either Step (2), Step (3), or Step (6).

5.1.1. Detecting Equivalent Components

The first step of the new integration algorithm is to detect program components, possibly from different pro-
grams, with equivalent behaviors. Since this is an undecidable problem, the integration algorithm necessarily
employs some safe algorithm to detect program components with equivalent behaviors. Any algorithm that
can detect program components with equivalent behaviors can serve as the first step of the new integration
algorithm. For instance, comparing program slices can be used for this purpose; the Sequence-Congruence
Algorithm discussed in Chapter 4 can also be used as the first step of the new integration algorithm.

By using more exact equivalence-detection algorithms, the new integration algorithm can identify the
changed and preserved computations more accurately; hence the integrated program produced by the new
integration algorithm will be closer to what the programmers expect. The new integration algorithm is actu-
ally a family of algorithms, parameterized by the equivalence-detection algorithm used. This endows the new
integration algorithm with potential and flexibility.

One advantage of the new integration algorithm is that it can easily exploit additional facts about program
semantics. Many techniques used in compiler optimization [Allen72, L.oveman77, Aho86], such as constant
propagation, movement of invariant code, and common subexpression elimination, can be combined with the
Sequence-Congruence Algorithm to detect large classes of program components with equivalent behavior.
Alpem, Wegman, and Zadeck discussed two such extensions in [Alpern88]. Knowledge of semantics-
preserving program transformations that have been applied to a program or certain parts of the program
(either manually or by a transformation system) would also be helpful in detecting larger equivalence classes.

In the following discussion of the new integration algorithm, we do not assume any particular equivalence-
detection algorithm. All we need is an algorithm that can detect program components with equivalent
behaviors.

5.1.2. Classifying Components

There are two kinds of changes that can be introduced by a variant program: a change in a component’s exe-
cution behavior, or a change in a component’s text that does not affect its execution behavior. The new
integration algorithm attempts to preserve both kinds of changes in the integrated program. The vertices in
each of the PRGs of the three programs (Base, A, and B) are classified as defined below to reflect how the
behavior and text of the vertex in that program relates to the behavior and text of the “corresponding” vertices
in the other two programs.

The first problem is, given a vertex in one program, which are the cormresponding vertices in the other two
programs? The equivalence classes produced in Step (1) cannot always provide an answer, since one
equivalence class may include several vertices from each program (i.e., the partition does not define a one-to-
one correspondence). As in Section 2.1.3, we assume that there is a unique-naming mechanism so that pro-
gram components are identified consistently in all three versions—program components have tags.

First, we assume that components are tagged uniquely within a program. Tags may be provided by the edi-
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tor'* used to create A and B from Base, or may be generated by some other mechanism—the source of the
tags is not relevant to the algorithm itself.

Next we define that two components ¢, and ¢ , are comparable components if and only if all of the follow-
ing hold:
(1) ¢, and ¢, have equivalent behaviors;

(2) ¢, and ¢, are the same kinds of vertices, i.e., they both are Entry, FinalUse, if predicates, while predi-
cates, assignment statements, Oy, Quner» OF @,y Statements (this implies that ¢, and ¢, have the same
number of incoming control dependence edges);

(3)  corresponding incoming control dependence edges of ¢, and ¢, have the same true or false labels;

(4)  analogous control predecessors of ¢, and ¢, are comparable components. (Analogous control prede-
cessors are defined in Chapter 4.)

Note that all Entry vertices, which have no control predecessors, are always comparable components accord-
ing to this definition.

Given tags for the components, the correspondence between components of the three programs is esta-
blished as follows: Two components ¢; and ¢, correspond (or ¢, and ¢, are corresponding components) if
and only if all of the following hold:

(1) ¢, and ¢, are comparable components;

(2) ¢y and ¢, have the same tag;

(3) if ¢, and ¢, are assignment statements, they assign to the same variable.'®

Corresponding components are considered to be the same components in different programs. That is, we can
assign to each component an identity so that two components correspond if and only if they have the same
identity; hence corresponding components are considered to be the same component occurring in different
versions of a program.

Note that corresponding vertices may have different text. For assignment statements that correspond, we
only require that they assign to the same variables; the expression part may still differ.

Using this definition of correspondence, each vertex of Base, A, and B is classified as defined below.

Every vertex in A is classified into one of five sets: New,, Modifieds, Modifiedg, Unchanged, or
Intermediate,.

(1) A vertex is in New, if there is no corresponding vertex in Base. Vertices in New, represent program
components that have been added to Base to create A, or have been moved to a context that has
changed their execution behaviors.

(2) A vertex is in Modified, if there is a corresponding vertex in Base, but the vertex’s text in A differs
from the text of the corresponding vertex in Base. Vertices in Modified, represent components of A
whose texts have been changed but whose execution behaviors remain the same.

Since 0 statements are not part of the source program, they cannot be tagged by the editor. Their tags can, however, be generated sys-
tematically from the tags of the associated predicates and the names of the variables that are assigned to at the ¢ statements.

5We require that corresponding components assign to the same variables in order to avoid certain undesirable interferences. This will be
explained in Section 5.2.
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(3) A vertex is in Modifiedp if there are corresponding vertices in both Base and B, and the vertex’s text
in A is the same as the text of the corresponding vertex in Base, but differs from the text of the
corresponding vertex in B.

(4) A vertex Is in Intermediate, if there is a corresponding vertex in Base and the vertex’s text in A is the
same as the text of the corresponding vertex in Base, but there is no corresponding vertex in B (either
because the vertex was deleted from B, or because the vertex’s execution behavior was changed, or
because the vertex assigns to a different variable in B).

(5) A vertex is in Unchanged if there are corresponding vertices in both Base and B, and all three vertices
have the same text. Vertices in Unchanged represent components whose texts and behaviors are
identical in all three programs.

Vertices in B are similarly classified into the sets Newp, Modifiedy, Modified,, Unchanged, and
Intermediateg. Vertices in Base are similarly classified into the sets Modified,, Modifiedy, Intermediate,
Intermediateg, Unchanged, and Deleted. (A vertex in Base is in Deleted if neither A nor B contains a
corresponding vertex. Vertices in Deleted represent program components of Base that have been deleted or
whose left-hand-side variable or whose behavior have been changed in both A and B.)

Note that it is possible for a vertex in New, to have a corresponding vertex in B that is in Newp and for a
vertex in Modified, to have a corresponding vertex in B that is in Modifieds. For instance, consider the fol-
lowing three programs (the tags are shown explicitly on the left of each component):

Program Base Variant A Variant B

<Tl> x:=0 <Tl> x:=0 <Tl> x:=0
<T2> y=x <T2> y:=0 <T2> y:=0
<T3> z:=x <T4> x:=1 <Td> x =1
<T4> x:=1 <T3> z :=x <T3> z:=1

The assignment T3 in A is in New, because the value assigned to z at T3 in A differs from that assigned to z at
T3 in Base; Similarly, the assignment 13 in B is in Newg. However, the two assignment statements T3 in A
and B correspond. The assignment T2 in A is in Modified, because the two assignment statements T2 in A
and Base produce the same value, have the same tag, and they assign to the same variable y but their texts
differ. Similarly, the assignment T2 in B is in Modifiedz. The assignment T2 in Base is in both Modified,
and Modifiedg. The three assignment statements T2 in A4, B, and Base correspond.

The classification process may discover that A and B interfere with respect to Base by identifying
corresponding vertices v, and vp in A and B, respectively, such that the text of v, differs from the text of vy
and, if there is a corresponding vertex va,,, in Base, the texts of v4, vg, and v, are pairwise unequal. Since
a vertex in the merged graph can have only one text, it is not possible to preserve the changed text of this
component from both A and B. This can occur either for a vertex in New, (with a corresponding vertex in
Newp), or for a vertex in Modified, (with a corresponding vertex in Modifiedg). In the example given above,
the fact that the two assignments tagged T3 in A and B are corresponding New vertices but have different text
causes interference.
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5.1.3. Computing Changed and Preserved Computations

The merged program produced by a successful integration must include the changed computations introduced
by the variants as well as the computations of the base program that are preserved in both variants. The
extraction of changed and preserved computations is done differently in the HPR algorithm and in the new
integration algorithm.

Limited Slices

In the HPR algorithm, two program components are assumed to have different execution behaviors if their
slices are different. To ensure that an affected component retains its behavior in the integrated program, the
HPR algorithm includes the entire slice with respect to the affected component.

In contrast, when more exact equivalence-detection techniques are used, such as the Sequence-Congruence
Algorithm, it is sometimes possible to identify behaviorally equivalent vertices that have unequal program
slices. Therefore, an affected component’s behavior can be retained in the integrated program without includ-
ing its entire slice; only a part of the entire slice is needed. Limited slices provide the mechanism for extract-
ing the necessary subgraph of the entire slice.

Definition. Let R be the program representation graph of Base, A, or B, and let § be a set of vertices in R.
The limited slice of R with respect to S, denoted by R//S, is the smallest subgraph of R such that, if there is a
path from a vertex u to a vertex of § and all vertices along this path, excluding the two endpoints, belong to
Intermediate, or Intermediateg, then all vertices and edges on this path are included in R//S.

The limited slice with respect to a set of vertices is equivalent to the union of the limited slices with respect
to the individual vertices. Also note that the limited slice is a subgraph of the entire slice.

Changed and Preserved Computations

The affected components of a variant are the components that have different text than the corresponding com-
ponents of Base, or that have no corresponding component in Base. A graph that represents the changed com-
putations of a variant is computed by taking a limited slice of the variant with respect to its affected com-
ponents (R4 denotes A’s PRG):

Affected, = New, w Modified,
ChangedCompsa = Ry /] Affected,
Affectedg and ChangedCompsg are defined similarly.
The preserved computations of Base, A, and B are computed by examining the limited slices of the three

programs with respect to each vertex u in the set Unchanged. Note that these limited slices may not be

equal;'® although u itself has identical text and behavior in Base, A, and B, the values of the variables used at
u may be computed differently in the three programs. Interference is reported at this point if there is some
vertex u in Unchanged such that the limited slices with respect to u in Base, A, and B, are pairwise unequal.
In summary, for each vertex u € Unchanged, the preserved limited slice with respect to u, Preserved (u), is
determined as follows:

1¥Two limited slices are equal if the vertex-comrespondence relation induces an isomorphism between them.
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Relationship of limited slices Preserved (u)
Ry/lu=Rgllu R4//u(or Rg/lu)
(Ry/lu=Rgs//u)and (Rg//u#Rpy,//u) Rgllu
(Ral/lu#Rpyse! /u) and (Rp//u= Ry, ! 118) Ry/lu
Rpase/ /U, Rallu, and Rp//u are pairwise unequal interference

The graph that represents the preserved computations, Preserved, is the union of Preserved(u) for all
u € Unchanged.

Preserved = ) Preserved (u)
u & Unchanged

5.1.4. Forming the Merged Graph

The merged graph Ry, is formed by taking the union of the graphs that represent the changed computations of
A and B, and the graph that represent the preserved computations of Base, A, and B:

Ry = ChangedComps, w ChangedCompsg U Preserved.

For the purposes of this union, two vertices are “the same” (i.e., only one copy of the vertex is included in the
merged graph) if and only if the two vertices correspond. It is possible that both ChangedComps, and
ChangedCompsg will include corresponding vertices that have different text. This can only happen, however,
if the two vertices are both classified Modified, or both classified Modifiedg. In the former case, the text of
the vertex incorporated in the merged graph is the text from A; in the latter case, it is the text from B. If ver-
tices from the sets New, and Newy are corresponding vertices, these vertices must have the same text, or else
interference would have been reported during vertex classification; if vertices from the sets Modified, and
Modifiedy are corresponding vertices, these vertices must have the same text, or else interference would have
been reported during vertex classification; vertices from the set /ntermediate,, cannot have corresponding ver-
tices from B (and similarly for vertices from Intermediateg); vertices from the set Unchanged have the same
text in both A and B; corresponding ¢ vertices must have the same text.

5.1.5. Removing Useless Pseudo-Assignment Statements

In a program representation graph, there is always a path from every ¢ vertex to a non-¢ vertex. However,
some *‘useless” ¢ vertices—ones without such paths——can occur in the merged graph created in the previous
step due to deletion or modification of code in the variants. For instance, consider the following program
fragments.
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Program Base Variant A Variant B merged fragment M
if P if P if P if P

thenx =0 then x =0 then x =0 then x =0

else x := 1 elsex =1 elsex =1 else x :=1
by x=x by x=x by x=x byt x=x
y=x+2 y=x+2 z=x*3
z=x%3

Variant A deleted the assignment to z and variant B deleted the assignment to y. Hence in the merged frag-
ment M, there are no assignments to y or z. Since the ¢ statement is an Unchanged component, it will be
included in M. Note the ¢ statement is useless because it has no flow successors.

If these useless ¢ vertices were not removed, the merged graph would not be the program representation
graph of any program and the integration algorithm would report interference just because of these useless ¢
vertices. Since we want to avoid such insignificant interference, all useless ¢ vertices are removed before the
integration algorithm attempts to reconstitute a program from the merged graph.

5.1.6. Reconstituting a Program From the Merged Graph

The final step of the new integration algorithm is to determine whether the merged graph is the program
representation graph of some program, and if so, to produce the program. If the merged graph is not the pro-
gram representation graph of any program, the new integration algorithm reports that the two variants inter-
fere.

Determining whether a program dependence graph is feasible has been shown to be NP-complete
[Horwitz88al; a similar result can be shown for program representation graphs. The crux of the problem is to
order each predicate’s control successors. A backtracking algorithm that operates on program dependence
graphs has been wriiten and proved correct [Ball90]; that algorithm can be adapted to work on program
representation graphs. Although the algorithm is, in the worst case, exponential in the number of pairs of
assignments to the same variable, it is possible to reduce the search space using the techniques described in
[Horwitz89, Ball90]. It is our belief that a backtracking method for solving the remaining search will be satis-
factory in practice.

Example. Figure 5-1 illustrates the new integration algorithm using the first set of example programs from
Figure 1-1, which is shown below.

Program Base Variant A Varian B
program program program
<Tl> P:=3.14 <Tl> P:=3.14 <Tl> Pl:=3.14
<T2> rad =2 <T2> rad =2 <T3> if debug
<T3> if debug <T3> if debug <T4> thenrad =4
<T4> thenrad =4 <T4> thenrad =4 <T2> elserad =2
fi fi fi
<T5> area =P * (rad ** 2) <T5> area :=P * (rad ** 2) <T5> area =PI * (rad ** 2)
<T6> end(area) <T7> height =4 <T6> end(area)

<T8> vol = height * area
<T9> end(vol,
<T6> area)
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The equivalence classes of program components with equivalent behaviors are determined by the Sequence-
Congruence Algorithm. This example shows both textual and behavioral changes made in the variants. The
tags of components are shown explicitly on the left of the components. Variant A adds two statements o
compute the volume of the cylinder. In variant B, variable P is renamed PI and the assignment rad :=2 is
moved into the if statement. The classification of components is shown in Figure 5-1(a); Figure 5-1(b) shows
the limited slices of ChangedComps, and ChangedCompsg, that is, the limited slices with respect to vertices
in Affected, and Affectedy; Figure 5-1(c) shows the limited slices of Preserved. The merged graph in Figure

Classification of components.

Components of Base Components of A Components of B
Unchanged Entry Entry Entry
Unchanged debug :=I[nitSt (debug ) debug :=InitSt (debug) debug =[nitSt (debug )
Newy PI:=3.14
Intermediate, P:=3.14 P:=3.14
Intermediate, rad:=2 rad:=2
Unchanged if debug if debug if debug
Unchanged rad:=4 rad :=4 rad :=4
Newg rad:=2
Unchanged Oy rad =rad Oy rad :=rad Oy rad =rad
Modifiedy area :=P* (rad**2) area :=P* (rad** 2) area :=PI* (rad**2)
New, height ;=4
New, vol :=height*area
New, FinalUse (vol)
Unchanged FinalUse(area) FinalUse (area) FinalUse(area)

Figure 5-1(a). An integration example. Part I. Classification of components. Components on the same row are
corresponding vertices.
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ChangedComps,

ChangedCompsg

if debug

Oy rad:=rad

area :=PI* (rad**2)

Figure 5-1(b). An integration example. Part I1. ChangedComps, and ChangedCompsg.
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Preserved

Qbug =InitialState (debuD \E_I}ED

& debug:=InitialState (debuD

FinalUse (area)

Entry

Qa =PI* (rad** 2)

Figure 5-1(c). An integration example. Part III. Preserved.
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5-1(d) is the union of ChangedComps,, ChangedCompsg, and Preserved. It is not difficult to see the merged
graph is a feasible PRG. One of the programs that correspond to the merged graph is also shown in Figure 5-

1(d).

5.2. Discussion of Classification of Vertices

In Section 5.1.2, we require that corresponding assignment statements assign to the same variables otherwise
they are not corresponding components. This is because vertices with the same tag can have different texts.
Without such a restriction, certain new kinds of interference conditions can occur. To sidestep this problem,
we have imposed the requirement. For instance, consider the following integration example:

Program Base Variant A Variant B Program M 1 Program M2
program program program program program
<Tl> x:=1 <Tl> =x:=1 <Tl> u:w=1 <Tl> M7:=1 <Tl> =x:=1
end <T2> y=x+1 <T3> z:=u+2 <T2> yw=x+1 <T2> yw=x+1
end end <T3> z=u+2 <Tl> wu:=1
end <T3> z:=u+2
end

If corresponding assignment statements could assign to different variables, the merged program would be as
in M 1. Note that in M 1 there is a conflict in the name of the variable that should be used in the statement
tagged T1. Because the new integration algorithm requires that corresponding assignment statements assign
to the same variable, the merged program produced by the new integration algorithm is as in M2. This is
because the statements tagged T1 in variants A and B are not corresponding vertices (even though they satisfy
all other requirements of correspondence). Hence they both are included in the merged program; there is no
conflict.




Chapter 6

Properties of the New Integration Algorithm

In this chapter, we prove some properties of the new integration algorithm. The properties are summarized in
two theorems: the first theorem asserts that the new integration algorithm preserves textual changes of the
variants; the second theorem asserts that the new integration algorithm satisfies the semantic criterion of pro-
gram integration.

Before we state the theorems, we define one new term.
Definition. Two program components are analogous if they have the same tag.

Note that corresponding components must be analogous, but not vice versa. (It is useful to compare this
definition with that of analogous flow (control) predecessors, which is given in Section 4.2, and correspond-
ing components, which is given in Section 5.2.)

6.1. Preservation of Textual Changes

There are two kinds of changes that can be made in the variants: the behavior of a component may be
changed or the text of the component may be changed. The new integration algorithm was designed so that
both kinds of changes will be preserved in the merged program in a successful integration.

The preservation of textual changes in the merged program is shown by considering the construction of the
merged graph. In the new integration algorithm, texwal changes are captured by the sets Affected, and
Affectedy, which include, among other components, those components whose text has been changed. The
limited slices with respect to components in Affected, and Affectedy are always included in the merged graph.
Thus, textual changes made in A and B are preserved in the merged program in a successful integration. The
preservation of textual changes is summarized in the following Theorem.

Theorem. Suppose the new integration algorithm successfully integrates two variants A and B with respect
to the base program Base and produces a merged program M. Then

(1)  For any program component v, in A, if v4's text differs from that of the analogous component in Base,
then there is a component v in M that has the same text as vy.

(2)  For any program component vg in B, if vg's text differs from that of the analogous component in Base,
then there is a component v in M that has the same text as vg.

(3)  For any program component Vp, in Base, if vpas has the same text as the analogous components in
both A and B, then there is a component v in M that has the same text as Vg, .

Proof. Suppose v, is a component of A whose text differs from that of the analogous component in Base.
Then v4 € Modified, or v4 € New, depending on whether v, is put in the same equivalence class as the analo-
gous component in Base in the first step of the new integration algorithm. In either case, since the limited
slices with respect to components in Modified, and New, are included in the merged graph, there is a com-
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ponent v in M that has the same text as v,. This proves the first clause. The second clause is proved simi-
larly.

Suppose vp.s. is a component of Base whose text is the same as that of the analogous components, v, and
vg, in A and B, respectively. Then either vg,, € Unchanged or v, € New, or vg € Newg depending on
whether vga., V4, and vg are put in the same equivalence classes in the first step of the new integration algo-
rithm. If v, € Unchanged, there is a component v in M that has the same text as vg,,. If v, € New,, there
is a component v in M that has the same text as v,4. If vg € Newp, there is a component v in M that has the
same text as vg. In any case, there is a component v in M that has the same text as vg,,. This proves the third
clause. O

6.2. The Integration Theorem

As with the HPR algorithm, we can prove a theorem for the new integration algorithm about how the execu-
tion behavior of the merged program relates to the execution behaviors of the base and the variant programs.
The Integration Theorem, which we will prove in this section, asserts that the new integration algorithm
satisfies the semantic criterion of program integration discussed in Chapter 1.

Theorem. (Integration Theorem for the New Integration Algorithm). Suppose the new integration algo-
rithm successfully integrates two variants A and B with respect to the base program Base and produces a
merged program M. Then for any initial state & on which A, B, and Base all terminate normally:

(1) M terminates normally on G.

(2) For any program component v, in A, if v, produces a different sequence of values than the analogous
component in Base, then there is a component v in M that produces the same sequence of values as v,.

(3) For any program component vg in B, if vg produces a different sequence of values than the analogous
component in Base, then there is a component v in M that produces the same sequence of values as vg.

(4) For any program component vg,,, in Base, if vp,,, produces the same sequence of values as the analo-
gous components in both A and B, then there is a component v in M that produces the same sequence of
values as vggge..

Note that this theorem meets (and generalizes) the semantic integration criterion stated in Chapter 1. For
example, if there is a variable x whose final value after executing A on o differs from its final value after exe-
cuting Base on o, then (1) there is a final-use vertex for variable x in A, and (2) the (sequences of) values pro-
duced at the final-use vertices for x in M and in A are identical. Thus, x's final value after executing M on ' is
equal to the final value of x after executing A on ©.

In what follows, we use R4, Rg, Rga,., and Ry, to denote the respective program representation graphs of A,
B, Base, and M.

By the construction of Ry, every vertex v of Ry is taken from either R, or R or both (it is possible that v
appears in Ry, as well); this vertex in R4 or R is called an originating vertex of v. A vertex v of Ry, inherits
an “identity” from its originating vertices.

A vertex v in Ry, may have a different text from one of its originating vertices, but the text of v must match
one of its originating vertices. Modulo their having different texts, v and its originating vertices can be con-
sidered to be the same vertex in different graphs. Note that, by the construction of Ry, if both v, and v, are
originating vertices of v, then v, and v, must be corresponding vertices; in particular, v, and v, have
equivalent behavior.
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Every edge u — v of Ry, is taken from either R, or Rg or both. (It is possible that the edge u — v appears
in Rga. as well.) Since each control or flow dependence edge is identified by its two end-points, if an edge
u —> v of Ry is taken from R, (or Rj), then there are originating vertices 4 and v’ of u and v, respectively,
and an identical control or flow dependence edge 4’ —> v’ in Ry (or Rp, respectively). In addition, it can be
shown (by cases on the classification of v") that v’ and v have the same text.

We first prove an auxiliary lemma that will be used in the proofs of the lemmas in this section.

Lemma 6.1. Suppose s, and s, are two sequences of boolean values. If (1) either s, is a prefix of s, or
vice versa, (2) the last values of s, and s, are true, and (3) s, and s, have the same number of true values,
then s, and s, are identical sequences.

Proof. Suppose s, and s, are not identical. Without loss of generality, we may assume s, is a proper
prefix of s,. If 5, has k true values, then s, can have at most k£ — 1 true values since the last value of s,
which is true, does not appear in s,. But this contradicts the assumption that s, and s, have the same number
of true values. Therefore, s, and s, are identical sequences. []

The proof of the Integration Theorem proceeds by first showing that every vertex of Ry, produces the same
sequence of values as its originating vertices when the merged program M is run on an initial state ¢ on which
A, B, and Base all terminate normally. Then we show that the merged program M must also terminate nor-
mally on an initial state ¢ when A, B, and Base all terminate normally on . Finally, we prove the existence
of vertices with the changed and preserved behaviors in M.

Lemma 6.2. Suppose A and B are two variants of Base for which the new integration algorithm succeeds
and produces a merged program M. When M is run on an initial state ¢ on which A, B, and Base all ter-
minate normally, every program component of M produces the same sequence of values as its originating
component in A or B.

Proof. We prove this lemma by contradiction. Suppose it is not the case that every vertex of R, produces
the same sequence of values as its originating vertex. We choose a vertex uy in M such that uy, produces a
different sequence of values than its originating vertex and each of uy’s control predecessor, vy, produces the
same sequence of values as vy, ’s originating vertex. Note that it is always possible to choose such a uy
because there is a control dependence path from Entry to every vertex in the PRG and all Entry vertices
always produce the same (sequence of) values. If there are many vertices satisfying the above conditions,
choose uy to be the “first” such component (in terms of appearance in program M).

There are two ways in which 1, and its originating vertex could produce different sequences of values: (1)
there is a constant k such that the k* values produced at uy and its originating vertex differ, and (2) the two
sequences of values are of different length and the shorter one is a prefix of the longer one. However, the
latter case cannot happen because uy,’s control predecessor, vy, produces the same sequence of values as
vy's originating vertex and because uy is the “first” such component in M satisfying the above conditions.
Note that there cannot be a non-terminating computation wy between vy, and uy for otherwise wy would
have produced a different sequence of values than its originating vertex. If this were the case, because wy
occurs before uyy, we would have chosen wy, instead of uy. Therefore, we can always find a vertex uy in M
and a constant & such that the k* value produced at uy, differs from the k™ value produced at its originating
vertex.

Let f,; be the moment just after uy executes for the k time. If there are many uy, in M and & such that the
k™ value produced at uy, differs from that produced at its originating vertex, choose the ones with the earliest

I
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If ups has no flow predecessor, that is, uy is a constant vertex, then at least one of its originating vertices,
say u, in A, must be an identical constant vertex. Because uy and u, are identical constant vertices, they can-
not produce different values. Thus, uy cannot be a constant vertex.

Let vy be a flow predecessor of wuy. Without loss of generality, assume the flow edge vy — uyy is taken
from A; that is, there is a corresponding flow edge v4 —>fu, in A and v, and u, are originating vertices of vy
and uy,, respectively. Let ¢4 be the moment just after u, executes for the k™ time.

Since up and u, produce different values at £y, and ¢4, respectively, we may assume the values of vy, and
v, at ty and t,, respectively, are different (for if all corresponding flow predecessors of uy and u, have the
same value at t;; and ¢, respectively, then the values of uy, and u, at ty; and ¢, must be the same). However,
since ty is the earliest time when the lemma fails and v4 is an originating vertex of vy, the only way that the
values of vy and v4 at #y and ¢, could be different is that vy, and v4 have executed a different number of
times by the times ¢, and #,. In what follows, we will show that this cannot happen.

Let wy be the least common control ancestor of uy and v in M; i.e., wy is a common control ancestor of
uy and vy in M, and all other common control ancestors of uy, and vy are control ancestors of wy (while
predicates are not considered to be control ancestors of themselves). Let w, be the least common control
ancestor of u, and v4 in A. Note that w, might not be the originating vertex of wy. Depending on whether
the whole control dependence path wy, —>. uy is taken from A we have two cases.

Case 1. The whole control dependence path w,, —> uy, is taken from A.

We have the situation as shown in Figure 6-1.

Figure 6-1.

Note that at times f,, and #,, both uy and u, have produced k values; all but the £ values produced are pair-
wise identical. We want to show that wy, and w, have produced the same sequence of values by the times 1y
and ¢, respectively.

° First assume that uy, and u, are neither ¢,,,, vertices nor while predicate vertices; thus, uy and u, have
exactly one incoming control edge. Let xy and x, be the control predecessors of uy and u,, respec-
tively, and assume that the control edges xy —. uy and x4 —>. u, are both labeled true. Since x4 is an
originating vertex of x, and the lemma does not fail until time 1, either the sequence of values pro-
duced by x,; by the time # is a prefix of the sequence of values produced by x4 by the time ¢4, or vice
versa.
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At time £, uy has executed k times and the control edge xy —>. uy is labeled true; thus, by the time
1y, Xy has produced a sequence of (boolean) values, k of which are rrue and the last value in the
sequence is true. Similarly, by the time 14, x, has produced a sequence of (boolean) values, k of which
are true and the last value in the sequence is true. By Lemma 6.1, we conclude that by the times t,; and
ta,xa and x4 have produced the same sequence of values.

Next assume that uy, and u, are while predicate vertices; thus, uy and u, have one incoming control
edge in addition to the self-loops . Let xy and x, be the control predecessors of uy and u4, respec-
tively, along the control edges that are not the self-loops and assume the control dependence edges
Xy =, Uy and x, —>, u, are both labeled true. Since x, is an originating vertex of x, and the lemma
does not fail until time ¢y, either the sequence of values produced by xs by the time 1y is a prefix of the
sequence of values produced by x4 by the time ¢4, Or vice versa.

By the times #y; and t,, uy and u, have produced k values, of which all but the last ones are pairwise
identical. Thus, the loops of uy and u, must have performed the same number of times by the times £y
and t,. Therefore, xj and x4 must have produced the same number of true values, and the most recent
values produced at both x3; and x4 are true. By Lemma 6.1, xp, and x, must have produced identical
sequence of values by the times 1, and ¢4, respectively.

Next assume that uy and u, are ¢,,,, vertices and the flow dependence edge vy —> Uy is from outside
the loop; thus, uy, and u, have two incoming control dependence edges. Let xy, and x, be the associ-
ated while predicates of uy and u,, respectively. Let yy and y, be the other control predecessors of uy
and u,, respectively, and assume that the control edges yy —, uy and y4 — . u4 are both labeled true.
We have the situation as shown in Figure 6-2.

(4’!’"2?)

Figure 6-2.

Note that x4 and y, are originating vertices of xy; and yyy, respectively. Since the lemma does not fail
until the time ¢, either the sequence of values produced by yy by the time ¢y is a prefix of that pro-
duced by y, by the time t,, or vice versa. Also note that, by the times ) and ¢,, the last values pro-
duced at yy and y, are true since the control edges yy —>. uy and y, —. u, are labeled true.
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Because x, is an originating vertex of x;, and because the lemma does not fail until the time #, either
the sequence of values produced by xj by the time #y is a prefix of that produced by x, by the time t4,
or vice versa. Note that y,, and y, are also control predecessors of xy and x,.

Since Uy iS a O, vertex, the number of times uy, has executed equals the number of rue values pro-
duced at yu plus the number of true values produced at xy. Similarly, the number of times u, has exe-
cuted equals the number of true values produced at y, plus the number of true values produced at x,.

Suppose the sequences of values produced at yy and y4 by the times #, and 4 are not identical. The
sequence of values produced at yy, is a proper prefix of that produced at y,, or vice versa. If the
sequence of values produced at yy, is a proper prefix of that produced at y4, then the sequence of values
produced at x4 is also a proper prefix of that produced at x4. On the other hand, if the sequence of
values produced at y, is a proper prefix of that produced at y, then the sequence of values produced at
X4 is also a proper prefix of that produced at x),;. In either case, since the last values produced at y,, and
y4 are true, the total number of true values produced at yp and x, cannot be equal to that produced at
ya and x4. Therefore, uy and uy could not have executed the same number of times by # and 1.
However, this contradicts the assumption that, by the times f,; and ¢4, both uy, and u, have executed &
times. We conclude that y,, and y, must have produced identical sequence of values by the times ¢y
and t,.

Because yy and y, have produced the same sequence of values by the times # and ¢,, and because uy
and u, have executed the same number of times, x); and x, must have also produced identical sequence
of values by the times t; and ¢,.

Lastly, assume that u,, and u, are ¢,,,,, vertices and the flow dependence edge vy —>fuy is from inside
the loop. Let xy and x4 are the associated while predicates. Note that in this case, wy and xy are the
same vertex; w, and x, are the same vertex. We have the situation as shown in Figure 6-3.

Xy (while P) x, (while P)

Figure 6-3.

Note that ty, is the moment immediately after uy, executes for the k™ time. Thus, by the time t3;, xy has
executed k£ — 1 times. Similarly, ¢4 is the moment immediately after u, executes for the k™ time. By
the time ¢4, x4 has executed k — 1 times. Therefore, xy, and x, have executed the same number of
times.

Since x, is an originating vertex of xj and the lemma does not fail until the time #, xy and x4 must
have produced the same sequence of values by the times f; and ¢, , respectively.
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We conclude that by the times ) and t4, xa and x4, which are control predecessors of uy and u,4, have pro-
duced the same sequence of values.

By repeating the above arguments for each pair of corresponding control ancestors of 1y and u4, we know
that wy, and w, have produced the same sequence of values by the times fy and ¢,.

Next we will do a case analysis on uy, and u,. In each subcase, we will show that vy and v, have produced
the same sequence of values by the times 3, and 1, (because wy and w4 have produced the same sequence of
values).

Subcase 1. uy and u, are non-¢ vertices. In this case, there are control edges wy, —>, vy and wy —, v4.
We have the situation as shown in Figure 6-4.

Figure 6-4.

Since wy and w, have produced the same sequence of values by the times fy, and ¢4, vy, and v4 must have
executed the same number of times. Since v, is an originating vertex of vy, and the lemma does not fail until
the time t,4, it must be that, by the times #,; and ¢4, vy and v4 have produced the same sequence of values.

Subcase 2. wy and u, are ¢ vertices and there is a control edge wy —> vy. Since v, is an originating ver-
tex of vy, there is a control edge w4 —, v4. We have the situation as shown in Figure 6-4. By the same argu-
ment as in Subcase I above, we know that, by the times fy; and t4, vy and v, have produced the same
sequence of values.

Subcase 3. uy and u, are ¢ vertices and there is an if predicate Py on the control dependence path such
that wy —, Py —>. vi. Since v4 is an originating vertex of vy, there must be an if predicate P, on the con-
trol dependence path such that wy —, P4 —>,v4. We have the situation as shown in Figure 6-5.
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if Py

Figure 6-5.

There are two possibilities depending on whether P, is an originating vertex of Py,.

Suppose P, is an originating vertex of Py. Since wy and w, have produced the same sequence of
values by the times ¢, and ¢,, Py and P, must have executed the same number of times. Furthermore,
since P4 is an originating vertex of Py, and the lemma does not fail until the time ¢4, Py and P4 must
have produced the same sequence of values by the times f; and ¢4. Similarly, vy, and v4 must have
produced the same sequence of values by the times £y, and 4.

Suppose P, is not an originating vertex of Py,. Then there must be originating vertices wg, Pg, and vg
in B for wyy, Py, and vy, respectively. Because both v, and vg are originating vertices of vy, v4 and vg
are corresponding vertices. Therefore, since P, and Py are control predecessors of corresponding ver-
tices, P, and Py are comparable vertices (see the definition in Section 5.1.2). Because both w4 and wp
are originating vertices of wy,, w4 and wp are corresponding vertices. We have the situation as shown
in Figure 6-6.

if Py

Figure 6-6.

Let t3 be the point of time during the execution of B such that vg has executed the same number of
times as vy at £y (We are able to choose such a t5 for otherwise either (1) Py and Py would have pro-
duced different values earlier than fy, and ¢; or (2) wy and wg would have produced different values
earlier than ty; and fg. In either case, the lemma would have failed earlier than #;.) Because vp is an
originating vertex of vy, vy and v have produced the same sequence of values by the times ¢ and £3;
otherwise the lemma would have failed earlier than ¢,.




85

By the times #, and f3, vy and vy have executed the same number of times; Thus, by the same argu-
ment as in Subcase 1 (where it is shown that when uy, and u, have executed the same number of times,
their control ancestors, wy, and wy, also have produced the same sequence of values), Py, and Py have
produced the same sequence of values and wy and wp have produced the same sequence of values.

Because wy, and w, have produced the same sequence of values by the times £y and ¢4 and wy, and wg
have produced the same sequence of values by the times #,, and ¢z, w, and wy have produced the same
sequence of values by the times ¢4 and 1. Because wy and wp have produced the same sequence of
values by the times #4 and tp, the two if predicates P, and Pg must have executed the same number of
times by the times #4 and ¢g. Because P, and Py are comparable vertices and they have executed the
same number of times, P4 and Py must have produced the same sequence of values by the times #4 and
tg.

Because P, and Py have produced the same sequence of values by the times ¢4 and 3, v, and vy must
have executed the same number of times by the times ¢4 and tz. Because v, and vg are corresponding
vertices and they have executed the same number of times, v4 and vz must have produced the same
sequence of values by the times 7, and t3. Because vy, and vz have produced the same sequence of
values by the times 4 and ¢, and because v4 and vy have produced the same sequence of values by the
times ¢4 and ¢, vy, and v4 have produced the same sequence of values by the times #y; and #4.

Subcase 4. uyy and u, are 9,,,, vertices and vy, and v, are flow predecessors of uy, and u, from outside the
loops, respectively. This case is similar to Subcase I above.

Subcase 5. uy and u, are o,,,, vertices and vy, and v, are flow predecessors of uy and u, from inside the
loops, respectively. We have the situation as shown in Figure 6-7.

wy (while P) wy (while P)

Figure 6-7.

Because by the times fy; and ¢4, wys and w, have produced the same sequence of values, vy and v4 must have
executed the same number of times. Furthermore, since v, is an originating vertex of vy, vy and v4 must
have produced the same sequence of values by the times 1, and 1, for otherwise the lemma would have failed
earlier than ty.

Subcase 6. uy and u, are ¢,y vertices. In this case, vy and v, are ¢,,,, vertices. The situation is shown
in Figure 6-8.
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Figure 6-8.

This case is similar to Subcase 3 above. There are two cases depending on whether P, is an originating ver-
tex of Py. By the same argument as in Subcase 3 above, vy and v, have produced the same sequence of
values by the times #, and ¢,.

In each of the above six subcases, vy and v, have produced the same sequence of values by the times £y
and ¢4. Thus, at times #3; and ¢4, uy and u, must produce the same values, which contradicts the previous
assumption that uy, and u, produce different values at times #, and ¢,.

Case 2. Some of the edges on the control dependence path wy —>_ uy, are taken from A; others are
taken from B.

We can decompose the control dependence path wy, —>. uy into fragments such that fragments are taken
from A and B alternately. The situation is shown in Figure 6-9.

M A B
Figure 6-9.

In Figure 6-9, the control dependence path yy; —_ uy is taken from A; the control dependence path zy — M
is taken from B, etc. Note that these fragments overlap at common predicate vertices and the predicates at
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which fragments overlap have originating vertices in both A and B. In Figure 6-9, yy and zj, are predicates at
which fragments overlap and they have originating vertices y,, ¥g, 24, and zg, respectively.

Because at times fy; and t4, uy and u, have executed the same number of times, and because the control
dependence path yy —> uy is taken from A, by the same arguments as in Case 1 above, by the times 3 and
t4, yu and y, have produced the same sequence of values.

Let ¢z be a point of time during the execution of B such that by the times ¢4 and ¢z, y4 and yz have pro-
duced the same sequence of values. (It is always possible to find such a time ¢z since y, and yp are
corresponding vertices and both A and B terminate normally on the initial state ¢.) Thus, at times #y, /4, and
!, Yu» Ya, and yp have produced the same sequence of values.

Since y4 and yp are corresponding vertices, each pair of corresponding control ancestors of y4 and yp must
have produced the same sequence of values by the times ¢, and #. In particular, z, and zz have produced the
same sequence of values and w, and wp have produced the same sequence of values by the times #4 and 3.

On the other hand, at the times £y and ¢3, yp and yg have produced the same sequence of values. Since the
control dependence path z), —>. v, is taken from B, by the same arguments as in Case 1, corresponding con-
trol ancestors of yy and yg on the paths zy —> yu and zz —> yz must have produced the same sequence of
values. In particular, z); and zz have produced the same sequence of values by the times # and ¢3. Thus, by
the times ty, 14, and ¢z, 25, 24, and zghave produced the same sequence of values.

By repeating the argument in the previous paragraph for each fragment on the control dependence path
wy —>» Uy, we know that if wy is in a fragment taken from A, then wy and w, have produced the same
sequence of values by the times 1, and ¢,; if wy, is in a fragment taken from B, then wy and wp have pro-
duced the same sequence of values by the times t, and tg. In the latter case, since w, and wy have produced
the same sequence of values by the times #4 and {3, wy and w, have produced the same sequence of values by
the times t and ¢4. Thus, regardless of whether wy, is taken from A or B, wy and w, must have produced the
same sequence of values by the times t,; and ¢,.

Since wy and w, have produced the same sequence of values by the times £y, and ¢4, by the same argument
as in Case 1, we know that vy, and v, have produced the same sequence of values at times £, and ¢4. Conse-
quently, uy and u4 cannot produce different values at times ¢ and 4. That is, the lemma cannot fail at .

From Case 1 and Case 2, we know uy, and u, cannot produce different values at times £y and ¢4, respec-
tively. This completes the proof of the lemma. [

Lemma 6.3. Suppose the new integration algorithm successfully integrates two variants A and B with
respect to the base program Base and produces a merged program M. Then for any initial state G on which
A, B, and Base all terminate normally: M terminates normaily on G.

Proof. We prove this lemma by contradiction. Suppose M does not terminate normally on ¢. Then either
there is a non-terminating loop or a fault such as division by zero occurs during the execution of M.

First suppose a fault occurs during the execution of M. Let u be the component where the fault occurs. By
the construction of M, u must have an originating vertex in either R, or Rz. Without loss of generality,
assume u has an originating vertex u, in R,. By Lemma 6.2, u and u, produce the same sequence of values.
The same fault must also occur at u,. Thus, A cannot terminate normally on the initial state ¢, which contrad-
icts the assumption that A terminates normally. Therefore, no fault can occur during the execution of M.

Next suppose there is a non-terminating loop during the execution of M. Let u be the predicate of the non-
terminating loop. Without loss of generality assume u is taken from R,; that is, u has an originating veriex u,
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in R4. By Lemma 6.2, u and u, produce the same sequence of values. Because A terminates normally, the
sequence of values produced at u, is finite. Therefore, the sequence of values produced at u is also finite.
The loop of 4 cannot execute an infinite number of iterations, which contradicts the assumption that u is the
predicate of a non-terminating loop. Therefore, there cannot be a non-terminating loop in M.

Because no fault can occur during the execution of M and because there cannot be a non-terminating loop
in M, M terminates normally on the initial state 6. [l

Lemma 6.4. Suppose the new integration algorithm successfully integrates two variants A and B with
respect to the base program Base and produces a merged program M. Then for any initial state G on which
A, B, and Base all terminate normally:

(1)  For any program component v, in A, if v4 produces a different sequence of values than the analogous
component in Base, then there is a component v in M that produces the same sequence of values as v,.

(2)  For any program component vy in B, if vy produces a different sequence of values than the analogous
component in Base, then there is a component v in M that produces the same sequence of values as vg.

(3)  For any program component vp,, in Base, if vpu. produces the same sequence of values as the analo-
gous components in both A and B, then there is a component v in M that produces the same sequence of
values as v, .

Proof. Suppose v, is a component of A that produces a different sequence of value than the analogous
component in Base. Then v, € New,. By the construction of M, v, is an originating vertex of a vertex v in
M. By lLemma 6.2, since A, B, and Base all terminate normally, v and v, produce the same sequence of
values. This proves the first clause. The second clause can be proved by the same argument.

Suppose vgg. is 2 component of Base that produces the same sequence of values as the analogous com-
ponents, v4 and vy, in A and B, respectively. Then either vg,, € Unchanged or v, € Affected, or
vg € Affectedy depending on whether vg,,,, v4, and vy are put in the same equivalence classes in the first step
of the new integration algorithm and depending on whether they have the same text. If vg,,, € Unchanged,
then v, and vy are originating vertices of a vertex v in M. By Lemma 6.2, since A, B, and Base all terminate
normally, v produces the same sequence of values as v4 and vg. Because vg,, also produces the same
sequence of values as v, and vg, the sequences of values produced at v and v, must be identical.

If v, € Affected,, then v, is an originating vertex of a vertex v in M. By Lemma 6.2, since A, B, and Base
terminate normally, v produces the same sequence of values as v,. Because vg,, also produces the same
sequence of values as v,, the sequences of values produced at v and vg,,, are identical.

By the same argument, we know if vy € Affectedy, then there is a component v in M that produces the same
sequence of values as vg,,,. This proves the last clause. O

The Integration Theorem follows immediately from Lemmas 6.3 and 6.4.




Chapter 7

Comparison with the HPR Algorithm

It is interesting to compare the new program-integration algorithm with the HPR algorithm
[Horwitz88, Horwitz89]. The new integration algorithm is actually a family of algorithms, parameterized by
the equivalence-detection algorithms employed. To compare it with the HPR algorithm, we must settle on a
fixed equivalence-detection algorithm. In this chapter, we show that the new integration algorithm combined
with the Sequence-Congruence Algorithm improves on the HPR algorithm in the following sense:

(1)  The new integration algorithm successfully integrates!’ the two variants with respect to the base pro-
gram whenever the HPR algorithm succeeds.

(2)  There are classes of program modifications for which the new integration algorithm succeeds but the
HPR algorithm reports interference.

However, we cannot compare the two integration algorithms directly since the HPR integration algorithm
operates on program dependence graphs (PDGs) while the new integration algorithm operates on program
representation graphs (PRGs)—we first need to modify the HPR algorithm to operate on PRGs. The new
integration algorithm is, then, compared with the modified HPR algorithm.

In this chapter, we first modify the HPR algorithm to operate on PRGs. Because the HPR algorithm makes
use of program slices, Section 7.1 demonstrates how slices can be extracted from PRGs and gives the Feasi-
bility Lemma for program slices of PRGs. The modified HPR algorithm, presented in Section 7.2, is a
straightforward translation of the original HPR algorithm; the difference is that it uses PRGs instead of PDGs.
We show that the modified HPR algorithm is equivalent to the original HPR algorithm in that the modified
HPR algorithm successfully integrates the two variants with respect to the base program if and only if the ori-
ginal HPR algorithm does, and when both algorithms succeed, they produce the same set of merged programs.
In Section 7.3, we compare the new program-integration algorithm with the (modified) HPR algorithm. We
are able to show that, given the same set of component tags, the new integration algorithm successfully
integrates the two variants with respect to the base program whenever the HPR algorithm succeeds.

7.1. Feasibility Lemma for Program Representation Graphs

The HPR integration algorithm makes use of slices of program dependence graphs. In order to modify the
HPR algorithm to work on program representation graphs, we first define slices of program representation
graphs.

Y"The phrase “an integration algorithm successfilly integrates the variants” means that no interference is detected and a merged program
satisfying the semantic criterion is created.

89
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A slice of a program representation graph can be extracted in the same way as a slice of a program depen-
dence graph, except that we do not need to consider def-order edges. A slice of a PRG R with respect to a
component ¢ is the subgraph of R induced by all components that can reach ¢ via a path of dependence edges
inR.

Definition. A slice of a program representation graph R with respect to a set of (¢ and non-¢) vertices S,
denoted by R/S, is the subgraph of R induced by all vertices that can reach an element of § via a path of
dependence edges.

Note that a slice of R with respect to a vertex that does not appear in R is, by definition, the empty graph. A
slice of the example PRG in Figure 3-2 is shown in Figure 7-1. The slice is taken with respect to the state-
ment “x =x+ 1.7

We say a graph is a feasible PRG if it is isomorphic to the PRG of some program. It has been shown in
Chapter 2 that slices of a feasible PDG are always feasible. For the same result to hold for PRGs, it is neces-
sary to impose the further restriction that the slice be taken with respect to a set of non-¢ vertices.

Lemma. (Decomposition Lemma). Letr R be a program representation graph and S| and S , be two sets of
(0 or non-¢) vertices. RI(S1wS82)=R/S{UR/S,.

Proof. Because any vertex or edge in R/(S; v §,) must be on a path from Entry to a vertex in §; or §,, the
vertex or edge must be in either R/S, or R/S,. Therefore, R/(S| v S,) is a subgraph of R/S | WR/S,. On the

(b)
program Main
x:=1
while x < 11 do
x:=x+1
od
end

Figure 7-1. (a) is a slice of the example program representation graph shown in Figure 3-2. The slice is taken with
respect to the statement x :=x + 1. (b) is a program whose PRG is isomorphic to the slice shown in (a).
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other hand, both R/S, and R/S, are subgraphs of R/(S,;uS,). Therefore, R/S, wR/S, is a subgraph of
R/I(S§;vS,). Weconclude that R/ (S, S3)=R/S VRIS, O

Lemma. (Feasibility Lemma for Program Representation Graphs). For any program P, if R is the slice of
P's program representation graph with respect to a set of non-¢ vertices, then Ry is a feasible program
representation graph.

Proof. We prove this lemma by constructing a program from the program P and the slice Ry, and by show-
ing that the PRG of the constructed program is isomorphic 10 Rg.

We construct a new program Q” from P and R, as follows: The components (statements and predicates) of
Q' correspond to the vertices of Ry (except the ¢ vertices); each component of Q” is subordinate to the same
component that it is subordinate to in P; the components of Q” occur in the same relative order as they do in
P. The variables that appear in the end statement of Q' are those variables whose FinalUse vertices are in Rg.
We use Ry to denote the program representation graph of Q’. We want to show that Ry and Ry are iso-
morphic.

Because each component of Q’ is subordinate to the same component that it is subordinate to in P, and
because components of Q” occur in the same order as they occur in P, the control flow graph for program Q°
is the projection of the control flow graph for program P (without the ¢ vertices) onto the components of Q.
That is, if a and b are components of @', the projection of any path from a to b in the control flow graph of P
onto the set of components of Q” is a path in the control flow graph of Q’. Furthermore, every path from a to
b in the control flow graph of Q" is the projection of some path from a to b (and possibly several such paths)
in the control flow graph of P.

We add Oy, Ouner» and ¢,;, vertices to the control flow graph of Q* as explained in the definition of program
representation graphs to create the augmented control flow graph of Q. We now want to show that the ¢ ver-
tices added to the control flow graph of Q" are exactly those appearing Ry.

First we show that all ¢ vertices added to the control flow graph of Q” also exist in Ry. If a vertex ¢ labeled
“(y: x =x" is added to the control flow graph of Q’, then there must exist a non-¢ vertex a inside the if state-
ment that assigns a value to x and a non-¢ vertex b that uses x and the definition'® to x at a can reach the use
of x at b via a path that passes through the end of the if statement, that is, there is an x-definition-free path
from a to b that passes through the end of the if statement in the control flow graph of Q°. There must exist a
corresponding x-definition-free path from a to b in the control flow graph of P because all definitions to x that
can reach b in program P are included in Q’. Thus, vertex ¢ also exists in Rp and there is an x-definition-free

flow dependence path'® a —f ¢ — bin Rp. Because b isin Ry, c is in the slice Ry, as well.

If a pair of vertices ¢ and d labeled “§pper: X = x” and “d;: x = x”, respectively, are added to the control
flow graph of Q’, then there must exist a non-¢ vertex a inside the loop that assigns a value to x and a non-¢
vertex b that uses x and the definition to x at a can reach the use of x at b via a path that passes through the
end of the loop of ¢. That is, there is an x-definition-free path from a 0 b in the control flow graph of Q" that
exits the loop of ¢ at least once. There must exist a corresponding x-definition-free path from a to b in the con-

18 definition to a variable x is a non-¢ assignment statement that assigns a value to x. A ¢ assignment is not considered a definition to a
variable. (See Section 3.3.)

An x-definition-free flow dependence path is a sequence of flow dependence edges uy —>u3, Uz ~>su3, ..., dp-] —>rU so that the
variable x is assigned a value at 4, and is used at u, and all vertices except #; and uy are ¢ vertices. (See Section 3.3.)
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trol flow graph of P because all definitions to x that can reach b in program P are included in Q°. Thus, ver-
tices ¢ and d also exist in Rp and there is an x-definition-free flow dependence path a —rc—>d ——>} binRp.
Because b is in Ry, ¢ and d are in the slice R as well.

If a vertex ¢ labeled “@uner: x = x” is added to the control flow graph of @ and there is no associated ¢
vertex, then there must exist a non-¢ vertex a inside the loop that assigns a value to x and a non-¢ vertex b
inside the loop that uses x and the definition to x at a can reach, via the predicate of the loop, the use of x at b.
That is, there is an x-definition-free path from a, via the predicate of the loop, to b in the control flow graph of
Q’. There must exist a corresponding x-definition-free path from a to b in the control flow graph of P because
all definitions to x that can reach b in program P are included in Q. Thus, vertex c also exists in Rp and there
is an x-definition-free flow dependence path a ——)} ¢ —)} b in Rp. Because bisin Ry, ¢ is included in the slice
Ry as well.

Next, we show that all ¢ vertices in R, are added to the control flow graph of Q”. For any vertex ¢ labeled
“Oy: x :==x" in Ry, there must be a non-¢ vertex a inside the if statement that assigns a value to x and a non-¢
vertex b that uses x and there is an x-definition-free flow dependence path @ —f ¢ — b in Rg (and hence in
Rp). Since a and b are in Ry, a and b are included in the control flow graph of Q’. Because there is an x-
definition-free flow dependence path a —>f c —-)} b in Rp, there is an x-definition-free path from a to b that
passes through the end of the if statement in the control flow graph of P; hence there is a corresponding x-
definition-free path from a to b that passes through the end of the if statement in the control fiow graph of Q.
From the definition of program representation graphs, the vertex ¢ is added to the control flow graph of Q”;
hence ¢ is in Ry

For any pair of vertices ¢ and d labeled “@,p,: x := x” and “¢,,: x := x”, respectively, in Ry, there must be
a non- vertex a inside the while loop that assigns a value to x and a non-¢ vertex b that uses x and there is an
x-definition-free flow dependence path a ——)} c—yd —-\} b in Ry (and hence in Rp). Since a and b are in Ry,
a and b are included in the control flow graph of Q’. Because there is an x-definition-free flow dependence
path a —; ¢ —>;d —} b in Rp, there is an x-definition-free path from a to b in the control flow graph of P
that exits the loop of ¢ at least once; hence there is a corresponding x-definition-free path from a to b in the
control flow graph of Q’. From the definition of program representation graphs, the vertices ¢ and d are added
to the control flow graph of Q”; hence c and d are in Ry

If a vertex ¢ labeled “@un,: x :=x" is in Ry and there is no associated ¢, vertex, then there must be a
non-¢ vertex a inside the while loop that assigns a value to x and a non-¢ vertex b inside the the while loop
that uses x and there is an x-definition-free flow dependence path a —; ¢ —>; b in Ry (and hence in Rp).
Since a and b are in Ry, a and b are included in the control flow graph of Q. Because there is an x-
definition-free flow dependence path a —-)} ¢ = b in Rp, there is an x-definition-free path from a via the
predicate of the loop to b in the control flow graph of P; hence there is a corresponding x-definition-free path
from a via the predicate of the loop to b in the control flow graph of Q°. From the definition of program
representation graphs, the vertex ¢ is added to the augmented control flow graph of Q' hence cisin Ry

Now we have shown that R, and R have the same ¢ vertices. From the construction of Q’, the only other
possible differences between the vertex sets of Ry and Ry is in their InitialState vertices. By the definition of
a slice, if there is an InitialState (x) vertex a for variable x in Ry, there must be a flow edge a —rb in Ry;
hence the flow dependence edge a — ;b is in Rp. This means that there is a path from the beginning of the
control flow graph of P to b that is free of any definition to x. The projection of this path onto the components
of Q’ corresponds to a path in the control flow graph of Q’. The projected path runs from the beginning of the
control flow graph of Q' to b and is free of any definition to x; consequently, there must be an InitialState (x)
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vertex for x in Ry, which corresponds to vertex a in Ry.

Arguing in the other direction, if there is an [nitialState (x) vertex a for variable x in Ry, there must be a
flow dependence edge a —b in Ry, which corresponds to an x-definition-free path from the beginning of
the program to b in the control flow graph of Q’. This means that there is a corresponding x-definition-free
path from the beginning of the program to b in the control flow graph of P. By the construction of Q’,
because the vertex b is in Q’, the vertex b must be in Ry. Consequently, by the definition of a slice, the vertex
aisin Rgp.

We have shown above that Ry and R+ have the same vertex sets, what remains to be shown is that Ry and
Ry have the same edge sets.

Sub-proof 1. 1f the edgea — b is in Ry, thena —> b isin Ry

(1) By the definition of a slice, if @ — b is a control dependence edge in Ry, then a — b is a control
dependence edge in Rp, which means that b is subordinate to g in program P. Because a component in
program Q is subordinate to the same component that it is subordinate to in P, @ —, b is in Ry- as well.

(2) By the definition of a slice, if a —;b is a flow dependence edge in Ry, then a —b is in Rp, which
means that there is a path in the augmented control flow graph of P from a to b without any ¢ or non-¢
assignments to the target variable of a. The projection of this path onto the components of Q" is a path
in Q’ that contains no redefinition to the target variable of a; thus, the flow dependence edge a —b is
iIl RQ’.

Sub-proof 2. 1f theedgea —> b isin Ry, thena — b isinRy.

(1) Ifa—>.bis a control dependence edge in Ry, then b is subordinate to a in Q'; hence b is subordinate
to a in P. Therefore, a —, b is a control dependence edge in Rp and, by the definition of a slice,
a —>. b is a control dependence edge in Ry.

(2) Suppose a —b is a flow dependence edge in Ry but not in Ry. Since the vertices a and b are in Ry
but the flow dependence edge a — b is not in Ry, by the definition of a slice, a —¢ b cannot be in Rp.
Therefore, along every path from a to b in the augmented control flow graph of P there must be a ¢ or
non-¢ assignment of the target variable of a.

Along each such path p, let ¢, be the last (¢ or non-¢) assignment of the target variable of a. Since the
vertex b is in Ry, the flow dependence edge ¢, —,b is in Rp (and hence is in Rp); the vertex ¢, itself
must be in Ry and hence is in Ry. Because every path from a to b in the control flow graph of Q" is a
projection of a path p from a to b in the control flow graph of P, there must be a ¢ or non-¢ assignment
to the target variable of a on each path from a to b in the augmented control flow graph of Q’. This
means that the flow dependence edge a — ;b can not be in Ry, which is a contradiction; therefore, the
flow dependence edge a — b is in Rg.

We have shown that Ry, is isomorphic to R Therefore, a slice of a feasible program representation graph
with respect to a set of non-¢ vertices is always a feasible program representation graph. [

7.2. The Modified HPR Integration Algorithm

The modified HPR integration algorithm is a straightforward translation of the original HPR algorithm dis-
cussed in Chapter 2. It takes as input a base program Base, and two variant programs A and B. Whenever the
changes made to Base to create A and B do not “interfere” (as defined below), the modified algorithm pro-
“duces a merged program M that incorporates the changed computations of A and B as well as the preserved
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computations common to all three. In this section, we show that the modified integration algorithm is
equivalent to the HPR algorithm in the sense that, given the same Base, A, and B programs, they produce
equivalent merged programs or they both report interference.

7.2.1. The Modified HPR Algorithm

There are three steps in the modified HPR algorithm. The first step determines slices that represent safe
approximations to the changed computations of A and B and the computations of Base preserved in both A
and B; the second step combines these slices to form the merged graph Ry; the third step tests Ry for interfer-
ence.

Step 1: Determining changed and preserved computations

If the slice of variant R, at vertex v differs from the slice of Rg,,, at v, then R, and Rg,,, may compute dif-
ferent values at v. In other words, vertex v is a site that potentially exhibits changed behavior in the two pro-
grams. Thus, we define the affected points of R, with respect to Rp,,, denoted by AR, pu.; t0 be the subset
of non-¢ vertices of Ry whose slices in Rpase and Ry differ
ARy Base = (V| vis a non—¢ vertex in Ry A (Rpase /V)#(Ra/v) ). We define ARp g, similarly. It follows
that the slices R, /ARy pa;. and Rg/ARp p,;, capture the respective computations of A and B that differ from
Base.

If the slice of Rp,,. With respect to vertex v is identical to the slices of R, and Rg with respect to v, then all
three programs compute the same sequence of values at v. We define the preserved points PRy, 4 g as the
subset of non-¢ vertices of Rp,, with identical slices in Rpa., R4, and Ry: PRpue an =
{v|visanon—¢vertex in Rpzee A (Rpase /V)=(Ra/v)=(Rp/v)}. Thus, the slice Rps./PRpase a5 cap-
tures the computations of Base that are preserved in both A and B.

Step 2: Forming the merged graph

The merged graph, Ry, is formed by unioning the three slices that represent the changed and preserved com-
putations:

RM = (RA /ARA. Base) v (RB /A-RB, Base) o (RBa.se /PRBase, A, B)'

Step 3: Testing for interference

There are two possible ways by which the graph R,, may fail to represent a satisfactory integrated program;
both types of failure are referred to as “interference.” The first interference criterion is based on a comparison
of slices of R4, Rg, and Ry. The slices Ry /AR, gase and Rg/ARp pas. represent the changed computations of
programs A and B with respect to Base. A and B interfere if Ry does not preserve these slices; that is, the
merged graph Ry must satisfy the following two equations: Ry /ARy pase =Ra/ARy gose and
Ry /1 ARp, pase =Rp !/ ARp page-

The second interference criterion arises because the merged graph may not be feasible; if the graph is
infeasible, A and B interfere.

If neither kind of interference occurs, one of the programs whose PRGs are isomorphic to the merged graph
Ry, is returned as the result of the integration operation.
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7.2.2. The Modified HPR Algorithm is Equivalent to the Original HPR Algorithm

Having modified the original HPR integration algorithm, we need to show that the modified HPR algorithm,
which works on program representation graphs, is equivalent to the original algorithm, which works on pro-
gram dependence graphs. To be more specific, we need to show that, for a base program Base and two vari-
ants A and B, the original algorithm successfully integrates A, B, and Base (and produces a merged program
whose program dependence graph is G,,) if and only if the modified algorithm successfully integrates 4, B,
and Base (and produces a merged program whose program representation graph is R,;;), and G,y and R,y
represent “equivalent” merged programs.

By the Equivalence Theorem for PDGs, which is proved in Chapter 2, a PDG G represents a set of strongly
equivalent programs whose PDGs are isomorphic to G. Similarly, by the Equivalence Theorem for PRGs,
which is proved in Section 3.4, a PRG R represents a set of strongly equivalent programs whose PRGs are iso-
morphic to R. Furthermore, as we have shown in Chapter 3, the PDGs of two programs are isomorphic if and
only if their PRGs are isomorphic. Thus, either G and R represent the same set of programs or they do not
represent any common program. This leads to the following definition.

Definition. et G be a program dependence graph and R be a program representation graph. G and R
represent the same set of programs, denoted by G =R, if the set of programs represented by G is the same as
that represented by R.

It is immediate from the above discussion that, for any program P with PDG Gp and PRG Rp, Gp =Rp.

Because the original HPR algorithm (the modified HPR algorithm) may produce any one of the programs
that G,y (R4, respectively) represents, it is more reasonable to show that the merged graphs G,;; and Ry
represent the same set of programs rather than to show that the two algorithms produce exactly the same pro-
gram. That is, to show that the modified HPR algorithm is equivalent to the original HPR algorithm, we
really want to show that G,y =R 4.

In this subsection, we use a series of lemmas to prove that the modified HPR algorithm is equivalent to the
original HPR algorithm. We use G4, Gg, Gpase, Ra, R, and Ry, to denote the PDGs and PRGs of the three
programs A, B, and Base, respectively. We use G,,; and R, to denote the respective merged graphs pro-
duced by the original HPR algorithm and by the modified HPR algorithm. Note that we do not assume that
either of the two integration algorithms succeeds unless it is stated so explicitly.

In the following proofs, A_ﬁA' Base denotes the complement of AP, paet
A_PA' Base = | vertices in Go} — APy pa.. We define A_I;B, Base Similarly. A“EA. Base denotes the complement of
AR, pase: A“_I_?_A, Base = [ non— vertices in Ry } — ARy pas.. We define A_EB, Base Similarly. Note that
PPpese, 8 =AP 4, pase VAP s, and PRy, 4 5 = ARy s MVARp, g

Lemma 1.1. Let G be a PDG and R be a PRG. If there is a program P with PDG Gp and PRG Rp such that
G =GpandR =Rp, then G =R,

Proof. Suppose that there is a program P with PDG Gp and PRG Rp such that G = Gp and R = Rp. Since
Gp=Rp, we conclude that G =R. O

Lemma 7.2. Let G be a feasible PDG and R be a feasible PRG such that G =R. For any non-¢ vertex u,
Glu=R/u.

Proof. Because G =R, there is a program P with PDG G, and PRG Rp such that G =Gp and R =Rp.
Therefore, G/u =Gp/u and R/u =Rp/u. As shown in the proof of the Feasibility Lemma for PDGs, Gp/u
represents the program P’ obtained by restricting the abstract syntax tree of P to just the statements and predi-
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cates included in Gp/u. As shown in the proof of the Feasibility Lemma for PRGs, Rp/u represents the pro-
gram P” obtained by restricting the abstract syntax tree of P to just the statements and predicates included in
Rp/u. Note that Gp/u and Rp/u have the same set of non-¢ vertices. Therefore, the two programs P’ and P”
are identical. Because there is a program P’ (or, equivalently, P”) that is represented by both Gp/u and Rp/u,
by Lemma 7.1, Gp/u =Rp/u. Because G/u =Gp/u=Rp/u=R/u, we conclude that G/u=R/u. O

Lemma  73.  ARp pase =APp sae.  ARp pase = APp pase.  Similarly,  ARp, pase = APp, pase.
ARB. Base & APB. Base- PRBa.re. A B~ PPBase. A B-

Proof. Letue A_FA' Base- BY the definition of A_FA, Base» Galth = Gpge,/u. By Lemma 7.2, G4 /u=R,/u and
Gpase /4 = Rpag. lu; therefore, Ry /u = Rpag /. SO U € ARy pag.; hence APy pog, g_:ZRA’ Base-

On the other hand, suppose u € A_EA' Base- BY the definition of A—EA, Base» Ra/tt =Rpgg,/u. By Lemma 7.2,
Galu=Ry/uand Gpg./th=Rpg,, /u; therefore, Ga/u = Gpaye/t. SO U € AP, pas.; hence AR g pase SAP4, Base-

Because APA, Base gARA, Base and ARA‘ Base QAPA’ Bases ARA‘ Base = A.PA_ Base* Since A.RA, Base = APA' Base and
R, and G, have the same non-¢ vertices, their complements are equal, that is, ARy gase = APy, pase-

By the same argument, we know that ARy .. = APp, g and A—R-'B' Base = A?B. Base-

Since PRBase, A B~ (A_—EA Base mA_-f‘;l’i. Base) and PPBase, A B = (EA, Base mA—FB. Base)r PRBase, A.B= PPBa.re, A, B+
Q

Lemma 7.4. G,z and R ,; always contain the same set of non-¢ vertices.

Proof. Note that Gota = (GalAPy, pase) O (G/APg, pace) ” (Gpase! PPpase, 4, 8) and
Rold = (RA /ARA, Base) Y (RB /ARB. Base) v (RBase/PRBase. A, B)' By Lemma 737 ARA, Base = APA. Base- Note that
for each u € AR g, (or, equivalently, u € AP, ga.), Ra/u and G,/u have the same set of non-¢ vertices.
Because (1) R,/AR4 pase = ueALl{ Ralu, (2) GulAP, pase = EAL}{ Gu/u, and (3) AR4 pace = AP, Bases

A, Bare u® ADere

R4/AR, pase and G4/AP, pas. have the same set of non-¢ vertices. By the same arguments, we know that
Rp/ARp, pase and Gp/APp g, have the same set of non-¢ vertices and Rpace/PRpase, 4, 8 and Ggase /! PPBase, A, B
also have the same set of non-¢ vertices. Since G,y =(GA/APy pase)(Gp/APg, ase) W (Gpase! PPBase, 4, B)
and R,ig = (R4/AR 4, pase)” (Rg/ARp pase) " (Rpase /PRpase, 4, 8), We know that R, and G,i4 have the same set
of non-¢ vertices. [

From the construction of G, in the original HPR algorithm, every vertex must be taken from G4 or Gg, or
both. Thatis, V(G,u) < V(G4) vV (Gg). This can be rewritten as

V(Goid) S AP4 Base Y APy Base 2 APp Base Y APB Base

(APA, Base ~ (A_—P‘A. Base _APB, Ba.re)) b (APB. Base (A_};B, Base _APA. Base))'

In the proofs given below, it turns out to be convenient to use this for case analysis on the vertices of G,y
(i.e., for every vertex u in G,y, either ue AP, pae VY (A”I;A_ Base=APB Base)  OF
ue APg pase Y (A—PB, Base—APA, Base)). Similarly, with the modified HPR algorithm, for every non-¢ vertex u in
R, either u € AR, pase (AR, pase—ARB, pase) OT U € ARp pase '/ (ARp, pase=AR A, Base)-

Lemma 71.5. Suppose the original HPR algorithm successfully integrates G, Gg, and Ggg,, and produces
Gow. Let u be any (non-) vertex in Goq. If u€ AP pase W (AP4, pase=APp pase)s then Goyl =Gylu. If
U€ APg pase W (AP pase—AP4, Base), then Goalu = Gplu.
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Proof. Suppose u€ AP4 pos.. Then Ga/u =G,y/u for otherwise there will be interference. On the other
hand, if ue (APA Base—APp pase), then either ue PPBm AB OF UE (APA Base—APg, Bm—APB Base)- 1f

U € PPpase a5 then Goy/u=Gpa/t=Galu. If ue (APA Base—APp, Bm~APB Base), then there must be a
vertex v € APy pase Such that u is a vertex in G4/v. Since G4/v =G,yy/v (from the interference criterion of
the original HPR algorithm), G4 /u = (G4/v)/u = (Goa/v)u = Goglu.

By the same argument, if u € APyp pg, Y (A_I;B' Base~APA, Base), then G/ =Gglu. [

Lemma 71.6. Suppose the modified HPR algorithm successfully integrates Ry, Rg, and Rp,,, and produces
R,u. Let u be any non-¢ vertex in R,y If u€ ARy gaseV (AR, ase—ARp, Base), then Roglu=Rplu. If
u€ ARg pase "V (ARp, pase—ARA, Base), then Ryiq/u =Rglu.

Proof. Suppose u€ AR, pas.- Then Ry/u =R,y/u for otherwise there will be interference. On the other
hand, if ue (ARA Base—ARpB, pase), then either ue PRB,,,, AB OF UE (ARA Base—ARE, Base ARB Base) 1If
u€ PRpy, 4 p then Ryy/uu =Rpge, /u=Rylu. lfue (ARA Base—ARp pase ARE Base) then there must be a ver-
tex v € ARy pas. Such that u is a vertex in R,/v. Since R4/v =R, 4/v (from the interference criterion of the
modified HPR algorithm), R4 /u = (Rq/v)/u = (Rou/v)/u = Ryalu.

By the same argument, if # € AR p,q, Y (ATB, Base—ARA, Base)> then Ryy/u = Rg/u. O

Lemma 7.7. Suppose the original HPR algorithm successfully integrates G, Gg, and Gggs, and produces
Goa. Let R4 be the merged graph produced by the modified HPR algorithm on input R4, Rg, and Ry, and
let u be any (non-¢) vertex in G,y If ue AP, g U(ZP?A‘ Base—APB Base), then Rylu=R,lu. If
U E AP pase O (APg, pase—AP4, pase), then Ry /i = Royqlu.

Note that we do not assume R, is feasible in this lemma.

Proof. Let u be any (non-¢) vertex in G4 such that u € AP, s, v (A?A' Base—APp, pase). By Lemma 7.5,
Galu=Gyylu. Since u € AP puse V(AP p pase=APp, pas.), One of the following three conditions must be true:
(1) ue PPBase. AB~T (APA, Base mAPB, Ba.ye)a (2) ue APA. Bases OF (3) ue APA. Baye"'APB. Ba.ve"APB. Base- We
consider each in turn.

(1) Suppose u€ PPg,, 4 5. Then G4/u=Gg/u. By Lemma 7.2, Gy/u=R,/u and Gg/u=Rp/u. Thus,
Ru/u =Rp/u. By the construction of R, and the fact that u € PPy, 4 3 = PRpase, 4, 8> Rota/U is @ sub-
graph of (R,/uwRg/u); furthermore, since Ra/u =Rp/u, Ryqylu is a subgraph of R4/u. On the other
hand, since u € PPy, 4 8 =PRpase, 4, > Ralté = Rpas, /1, which, by the construction of Ry, is a sub-
graph ofR,,,d/u. Thus, RA/u =R,ulu.

(2) Suppose u€ AP4 pa.. If, for all vertices u’€ ARp pu. and all (¢ and non-¢) vertices w in
(Ry/unRg/u’), Ry/w=Rg/w, then Ry/u =R,4/u. So assume there is a vertex u'€ ARp pu and a
vertex w in (Ra/unRp/u?) such that Ry/w#Rg/w. Let u’ and w be any vertices such that
u'€ ARp pa., wisavertex in (Ry/u NRp/u’), and Ry/w #Rp/w.

We claim that w must be a ¢ vertex. Suppose w is a non-¢ veriex. Since Ry/w #Rg/w, G4/w #Gglw.
Because Ga/wCGalucGoy® and Gy/wcGp/u' ©Goa, (GalwvGplw)SGoa/w. Therefore,

GA/W¢GOM/W and GB/W ¢G014/W. Because GA/W ¢GB/W, either we APA,Ba.u orwe APB'B“”. If
W € AP pase then G4/w = Goy/w; if w € APg paq, then Gg/w = G,q/w. Either case leads to a contrad-

BFor two graphs G and H, G ¢ H denotes that G is a subgraph of H.
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iction. Therefore, w must be a ¢ vertex.

Next we want to shaw that all definition sites® for w in R, are definition sites for w in Rp and vice
versa. Note that w is a ¢ vertex. Let x be the variable that is assigned to at w. Let v be a definition site
for win R,. So there is an x-definition-free flow dependence path v —-—)} win R, /u.

Since G,y is a feasible program dependence graph, let R be the program representation graph such that
R=Ggy. Since Gog/u=Galu,R/u=Ry/u. Since G,giu’ =Gglu',R/u’=Rglu’.

Because there is an x-definition-free flow dependence path v —)} w in R, /u and because R,/u =R /u,
the flow dependence path v—-)}w is in R/u and hence in R. Since w is a vertex in Rg/u’ and
Rg/u’=R/u’,wis a vertex in R /u’. Therefore, the flow dependence path v — w is in R/u’. Because
Rg/u’=R/u’, the flow dependence path v —; w is in Rp/u’. Therefore, v is a definition site for w in
Rg. By the same argument, for any definition site v’ for w in Rp, v’ is a definition site for w in R,.
Therefore, all definition sites for w in R, are definition sites for w in Rz and vice versa.

Let v be any definition site for w in R, (or, equivalently, Rg). Note that v is a non-¢ vertex in
Ry/unRg/u’. As we have shown above, the assumption R, /v #Rg/v leads to a contradiction. There-
fore, it must be that R,/v =Rp/v. Because R, /w#Rg/w and, for all definition sites v for w,
R, /v =Rglv, there must exist two definition sites v; and v, for w such that there is a def-order edge
Vi —>g4 vy in Ga/u and a def-order edge vy,—>4 v, in Gp/u'. Because G,u/u=Gplu and
Goa/u’ = Gglu’, both def-order edges vy — 4, v, and vo —> 4, v, are included in G, which makes
G, infeasible. This is a contradiction.

We conclude that there cannot be two vertices u’ and w such that u’ € ARg g, W iS a vertex in
(Ry/unRg/u’),and Ry/w#Rg/w. Thus, Rq/u =R 4/u.

(3) Suppose ue A_ﬁA, Base—APg. Bm—A_ISB, Base- Then there must be a vertex v e AP, g, such that u is a
vertex in G,/v. Because v is a vertex in G,y and v € AP pa., We have already proved in (2) above
that Ry/v =R y/v. Thus,Rs/u =R 4/u.

This completes the proof that for any (non-¢) vertex u in Gy, if u € AP, poge v (A—FA, Base—APB Base), then
Ralu=R,qlu. By the same argument, for any (non-¢) vertex u in Gy, if
ue APB. Base ™ (A-PB, Base"APA, Base): then RB lu = Rald/u- a

Lemma 7.8. Suppose the modified HPR algorithm successfully integrates Ry, Rg, and Rg,;, and produces
R,iu. Let G4 be the merged graph produced by the original HPR algorithm on input G4, Gy, and Gpgy,, and
let u be any non-¢ vertex in R,y If ue ARy pguse v (ZRTA' Base—ARB ace), then Gplu=Gyylu. If
ue€ ARp pase Y (A—EB, Base—AR 4, Base)» then Gglu = Goylu.

Note that we do not assume that G, is feasible in this lemma.

Proof. Let u be any non-¢ vertex in R,;, such that u € AR, Bmu(A“EA Base—ARp pase). By Lemma 7.6,
Ry/u=R, lu. Since u € AR, pase Y (ARA Bm—-ARB Base)» One of the followmg three conditions must be true:
(1) ue PRpase, 4, 8, () € ARy poes Or ) u e ARA Base—ARp. am-ARa Base- We consider each in tumn.

A definition site for a vertex w is a non-¢ vertex v that assigned a value to a variable x and x may be used at w before being redefined. In
a program representation graph, a non-¢ vertex v is a definition site for w if and only if there is an x-definition-free flow dependence path
v ~—->} w, where x is the variable that is assigned a value at v. In a program dependence graph, v is a definition site for w if and only if
there is a flow dependence edge v —>,w.
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(1) Suppose u € PRpue 4 5. Then Ry/u=Rpg/u. By Lemma 7.2, Ga/u=R,/u and Gg/u=Rg/u. Thus,
Galu=Gglu. Since ue PRpy, a5, Gow/t is a subgraph of (G4/uvwGg/u); furthermore, since
Gulu=Gglu, G,a/u is a subgraph of G,/u. On the other hand, since u€ PRy, 4 5 = PPpase 4 3>
Galu = Gpag/u, which is a subgraph of G,;g/u. Thus, G4/u = Gyq/u.

(2) Suppose u € ARy pase. If, for all vertices u’e APp p,, and all vertices w in (Ga/unGglu'),
Galw=Gplw, then G4/u=G,4/u. So assume there is a vertex u’€ APp p,, and a vertex w in
(Galu Gg/u') such that G4 /w #Gg/w. Let u” and w be any vertices such that u” € APp pa., W iS @
vertex in (Ga/u N Gg/u"), and G4/w #Gglw.

We claim that there cannot be such vertices as 4’ and w. Since G4/w #Gg/w, Rq/w #Rg/w. Because
RylwcRiluc R,y and Rg/w cRplu’ ©R g, (Ralw W RgIwW)C R, 1q/w. Therefore, Ry/w #R,4/w and
Rp/w#R,4/w. Because R,/w#Rg/w, either w € AR, pae OF W E ARp page. If W€ ARy o, then
Rylw =R, /w; if we ARp g, then Rg/w =R,;/w. Either case leads to a contradiction.

We conclude that there cannot be two vertices u’ and w such that u”e APp p,., w is a vertex in
(GA/ur\Gg/u'), and G4/w #Gg/w. Thus, G4/u = Galu.

(3) Supposeue A_IEA, Base—ARp, Bm—-ATB, Base- Then there must be a (non-¢) vertex v € AR, paq such that
u is a vertex in R, /v. Because v is a non-¢ vertex in R,;; and v € AR, g, we have already proved in
(2) above that G, /v = G u/v. Thus, G4/u =G, ylu.

This completes the proof that for any non-¢ vertex u in Ry, if u € ARy, g4 u(A-I_?—A‘ Base—ARB, pase), then
Galu =G,y/u. By the same argument, for any non-¢ vertex u in Ry, if 4 € ARp pas, Y (ARp pase—ARY4, Base)»
then Gg/u = G,,,d/u. O

Lemma 7.9. Suppose (1) G is a feasible program dependence graph, (2) R is a (not necessarily feasible)

program representation graph, (3) G and R have the same set of non-¢ vertices, and (4) R = ) Riu.
u : non~d vertices

If, for all non-¢ vertices u, G/lu=R/u, then G =R and hence R is also a feasible program representation
graph.

Proof. Since G is feasible, let P be any program represented by G and let Gp and Rp be the program
dependence graph and the program representation graph of P, respectively. Thus, G = Gp. We want to show
thatR =Rp.

By the definition of =, Gp=Rp. Note that G, R, Gp and Rp have the same set of non-¢ vertices. Let u be
any non-¢ vertex. By Lemma 7.2, Gp/u=Rp/u. Since G =Gp, G/u=Gp/u. Because
Rlu=Glu=Gplu=Rplu, we know R/u =Rp/u. Furthermore, R = U Riu= U Rplu.

u : non—9 vertices u : non— vertices

From the definition of PRGs, we know o Rp/u=Rp. Thus,R =Rp.

u : non—0 vertices

Since G =Gp=Rp =R, we conclude that G =R. O

Lemma 7.10. Suppose (1) R is a feasible program representation graph, (2) G is a (not necessarily feasi-
ble) program dependence graph, and (3) G and R have the same set of non-¢ vertices. If, for all non-¢ ver-
tices u, Glu=R/u, then G =R and hence G is also a feasible program dependence graph.

Proof. Since R is feasible, let P be any program represented by R and let Gp and Rp be the program depen-
dence graph and the program representation graph for P, respectively. Thus, R =Rp. We want to show that
G = Gp.

By the definition of =, Gp =Rp. Note that G, R, Gp and Rp have the same set of non-¢ vertices. Let u be
any non-¢ vertex. By Lemma 7.2, Gp/u=Rp/u. Since R=Rp, R/u=Rp/u. Because
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Glu=R/u=Rplu=Gplu, we know G/u =Gp/u. Furthermore, G= ) Glu= W) Gplu.

u : non—¢ vertices u : non—0 vertices

From the definition of PDGs, we know U Gpl/u=Gp. Thus, G =Gp.

u : non—¢ vertices
Since G = Gp=Rp =R, we conclude that G =R. U

Theorem. The original HPR algorithm successfully integrates Gy, Gg. and Gpg,, (and produces Goia) if
and only if the modified HPR algorithm successfully integrates R4, Ry, and Ry, (and produces R,4). F urth-
ermore, when the integrations succeed, G 4 =R,

Proof. First suppose the original HPR algorithm successfully integrates G, Gg, and Gpg,. For any (non-
) vertex u in Gy, either u € AP4 pase v (ZFA_ Base—APR, Base) OT U € AP pase ™V (A?B' Base—APA, Base). Suppose
ue APy pase ™ (A?A. Base—APp, pase). By Lemma 7.5, Ga/u = G,u/u. By Lemma 7.7, Ry/u = Roalu. By the
definition of =, Gy =R4. By Lemma 7.2, G4/u=R4/u. Thus, Goq/u = Galu=Ry/u=R,q4/u. By the same
argument, if u € APg puse (A'—FB‘ ase—APA Base) then G/t =Gplu=Rplu=Rylu. Therefore, for any
(non-) vertex u in Gy, Gorg/th =R p1q/tt. By Lemma 7.4, G,,; and R ;4 contain the same set of non-¢ vertices.
Because R,y = (Ro/AR, pase) ™ (Rp/ARp, gase) Y (Rpase/ PRpase, 4, 3), fOr €very ¢ vertex v in R4, there must be
a non-¢ vertex u in R,q such that v is in Rgy/u. Therefore, R,y = U R,iq/u. By Lemma 7.9,

u : non—9 vertices
Goa=Roia-

We have already shown that if u € AR, ga. then Ra/u =Ryalu and if u € ARp pac then Rg/u=Rgqlu.
Therefore, Ry preserves the two slices R4/AR4, pas. and R 8/ARp pase. This, together with the previous result
that R, 4 is feasible, proves that the modified HPR algorithm also succeeds.

Next suppose the modified HPR algorithm successfully integrates R4, Rg, and Rp,,. For any non-¢ vertex
i in R,y either 1€ ARy pase' (AR4 gase—AR5, Base) OF U € ARp pase (AR, Base—AR A, Base)-  SUppOse
U E AR paseV (AR, pase—ARs, pase). By Lemma 7.6, R/ =R,y/u. By Lemma 7.8, Gp/u = G,a/u. By the
definition of =, Gy =R4. By Lemma 7.2, Ga/u=R,/u. Thus, Goalti = Galu=R4/u=R,q4lu. By the same
argument, if # € ARp. pase (ARp, pase—ARR, pase) then Goia/t =Gp/u=Rg/u =Roalu. Therefore, for any
non-¢ vertex u'in Ry, Goa/t =Ryq/u. By Lemma 74, G,y and R, contain the same set of non-¢ vertices.
By Lemma 7.10, Gya =Roua-

We have already shown that if u € APy g then G/u =Goalu and if u € APp pa,, then Gglu =Goylu.
Therefore, Gy preserves the two slices G4/AP4, pase and Gg IAPg_ a5 This, together with the previous result
that G, is feasible, proves that the original HPR algorithm also succeeds. [J

7.3. Comparison Theorem

In this section, we compare the new integration algorithm with the HPR algorithm. Since the new integration
algorithm is a family of integration algorithms, each parameterized by the equivalence-detection algorithm
used, the “new integration algorithm” in this section refers to the one that uses the Sequence-Congruence
Algorithm for detecting program components with equivalent behavior. In addition, the HPR algorithm acw-
ally refers to the modified HPR algorithm discussed in the previous section since the original HPR algorithm,
which works on PDGs, is not directly comparable with the new integration algorithm.

As discussed in Chapter 2, when the HPR algorithm successfully integrates a base program and a set of
variants, the execution behavior of the integrated program can be characterized in terms of the behaviors of
the base program and the variants. As discussed below, given the same set of component (ags, the new
integration algorithm also succeeds, and produces a program whose execution behavior has the same charac-
terization.
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However, it is important to understand that for the same base and variant programs it is possible for the two
algorithms to produce different sets of integrated programs. This situation is illustrated by the following
integration example.

Program Base Variant A Variant B Program M 1 Program M 2
program program program program program
x:=1 x:=1 x:=1 x:=1 x:=1
yi=x+2 wi=x+2 yi=x+2 wi=x+2 wi=x+2
yi=w yi=w yi=w
z:=y+3 z:=y+3 z:=y+3
end(x, y) end(x, y) end(x, y) end(x, y) end(x, y)

Program M 1 is the integrated program produced by the HPR algorithm; Program M 2 is the integrated pro-
gram produced by the new integration algorithm. The discrepancy between the two integrated programs is
due to the assignment to z in variant A. The assignment to z in 4 is considered to be an affected component
by the HPR algorithm hecause the slice with respect to this assignment in A is not equal to its counterpart in
Base. Therefore, the assignment is included in the integrated program by the HPR algorithm. However, the
Sequence-Congruence Algorithm discovers that the execution behaviors of the respective assignments (o z in
A and Base are, in fact, equivalent. This assignment is, therefore, not considered to be an affected component
of A. Furthermore, this assignment statement is not a preserved component because it has been deleted in B.
Since no affected components depend on this assignment to z in A, this assignment is not included in the
integrated program produced by the new integration algorithm.

Although the two integration algorithms may produce different results even in cases where both succeed, it
can be shown that the program produced by the new integration algorithm is always a slice of the program
produced by the HPR algorithm. This is stated as the Comparison Theorem.

Theorem. (Comparison Theorem). When the HPR algorithm successfully integrates A, B, and Base, the
new integration algorithm also succeeds and the integrated program produced by the new integration algo-
rithm is a slice of the integrated program produced by the HPR algorithm.

In this section, we use R4, Ry, and Rg,,, to denote the respective program representation graphs of A, B,
and Base. We use R,4 and R,,,,, to denote the respective merged graphs produced by the modified HPR algo-
rithm and by the new integration algorithm.

The HPR algorithm assumes that there is a tagging mechanism that can consistently identify program com-
ponents in different versions of the program. The tagging mechanism guarantees that (1) tags are unique
within a given version and (2) if components in different versions of a program have the same tag, then they
also have the same texts. Since the two integration algorithms should be compared under the same condi-
tions, both conditions will also be assumed in our discussion of the new integration algorithm in this section.
In particular, vertices with the same tag will always have the same text; hence the sets Modified, and
Modifiedy in the new integration algorithm are always empty. From now on, issues about the text in a vertex
will be ignored.

The two integration algorithms use different methods for establishing a correspondence among program
components. In particular, components that have the same tag but are not sequence-congruent are
corresponding components under the HPR algorithm, but they do not correspond under the new integration
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algorithm. In order to clarify this difference, we first prove Lemma 7.11, which shows that when A, B, and
Base can be integrated by the HPR algorithm, there can be at most one vertex in R, with a given tag. Again
under the assumption that A, B, and Base can be integrated by the HPR algorithm, Lemma 7.12 shows that
R, is a subgraph of R,;; and Lemma 7.13 shows that R,,,, is a slice of R,;;. The proof of the Comparison
Theorem follows from Lemma 7.13 and the Feasibility Lemma for PRGs.

Lemma 7.11. Suppose A, B, and Base can be integrated by the HPR algorithm. Then there is at most one
vertex with a given tag in R,,,.

Proof. First we have to show that when A, B, and Base can be integrated by the HPR algorithm, the new
integration algorithm will produce a merged graph. That is, the new integration algorithm will not report
interference in step (2) or in step (3) (see Chapter 3).

Interference in step (2) is due to conflicting text in corresponding components. However, we have already
assumed, for the purposes of this section, that components with the same tag always have the same text.
Thus, interference due to conflicting text will not happen.

Interference in step (3) can happen only when there is a component 4 € Unchanged such that R,/ /u, Rg//u,
and Rp,s, //u are pairwise unequal. However, if R4//u, Rg//u, and Rp,, / /u are pairwise unequal, then R, /u,
Rg/u, and Rpg,/u are pairwise unequal. Thus, the HPR algorithm will also report interference, which con-
tradicts the assumption that A, B, and Base can be integrated by the HPR algorithm. Thus, interference in step
(3) cannot happen.

Since no interference can occur in either step (2) or step (3), the new integration algorithm will produce a
merged graph R,

We are assuming that two vertices with the same tag have identical text. Thus, when R, is created—by
the union of three subgraphs—any two vertices in these different subgraphs that have the same tag and are
sequence-congruent are corresponding vertices. Such vertices will be identified as the “same vertex” in per-
forming the graph union and hence will not lead to multiple vertices with the same tag in R, Thus, what
remains to be shown is that there cannot be two non-sequence-congruent vertices in R, with the same tag.

We prove this by contradiction. Suppose A, B, and Base can be integrated by the HPR algorithm. Let v,
and v, be two vertices in R,,,, that have the same tag but are not sequence-congruent. Without loss of gen-
erality, assume that v, is taken from A and v, from B.

First assume that there is no vertex in Rp,,, that has the same tag as v and v,. Hence, R,y/v | #Rpa. /vy
and Rg /v, # Rpase /v, (note that, by definition, Rpae, /vy and Rpgg. /v are empty graphs).

If v, is a non-¢ vertex then v, € AP, p,,. Because the HPR algorithm successfully integrates A, B, and
Base, it must be that R /v, =R,;4/v,. On the other hand, if v is a ¢ vertex then there must be a non-¢ vertex
vi'€ AP, pas. Such that vy is in the slice Ry/v,". Since v, € APy pae, R4/vy’ =R,4/v," and therefore,
Rulvy =R,u/v,. Thus, regardless of whether v, is a ¢ vertex or a non-¢ vertex, we have Ry /v, =Ryualv;.
By the same argument, Rg/v, =R, 14/ V4.

Note that the HPR algorithm considers v, and v, to be the “same vertex” in performing graph union
because they have the same tag. Thus, R4/v, =R,,/v, =Rp/v,, However, since we assume v, and v, are
not sequence-congruent, R,/v; #Rp/v,. This is a contradiction. Therefore, there cannot be two non-
sequence-congruent vertices v, and v, in R,,,,, with the same tag.

Next assume that there is a vertex in Rp,,, that has the same tag as v; and v,. Let vg,,, be such a vertex in
Rpase. Because v, and v, are not sequence-congruent, R,/v, #Rg/v,. Hence, Ru/vi #Rpase!VBase OF
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Ry!vy #Rpase/ Vaase. Without loss of generality, we may assume that R4 /v #Rpas. /VBage-

Because R4/v, #Rpae/Vgase, Dy the same argument as above, R,/vy =R, /v;. There are two cases
depending on whether or not Rg /vy = Rpa, /Vpage-

Case 1. Suppose Rp/vy #Rpace/Vpase. Because Rg/vy #Rpa. /Vaase, Dy the same arguments as above, the
slice Ry/v, must be included in R, and Rg/v, =R,4/v, for otherwise the HPR algorithm would report
interference. We conclude that R, /v, =R,;4/v; =Rp/v,, but this contradicts the assumption that v; and v,
are not sequence-congruent.

Case 2. Suppose Rp/vy =Rp,../Vpa.. By assumption, v, is included in R,,,. There are two ways in
which v, can be included in R,,,.

(1) There is a vertex wp € Affectedg such that v, is included in Rp//wp. Since wy € Affectedy and
Modifiedp is an empty set, wg € Newpg; hence wg € APp p,,, in the HPR algorithm. Because the HPR
algorithm successfully integrates A, B, and Base, R,,;/wg =Rg/wg. Therefore, R,y/v, =Rp/v,. We
conclude that Ry/v, =R,4/v{ =Rg/v,, but this contradicts the assumption that v, and v, are not
sequence-congruent.

(2) There is a vertex we Unchanged such that v, is in the limited slice Preserved(w). Therefore,
Preserved (w) is Rg//w. Because Preserved (w) is Rg//w, either Rg//w #Rpys.//w Or Rg//w =Ryl iw.

If Rg//w #Rpys./ /W, Rg/w #Rpas. /w; hence w € APy p,.,. Because (1) the HPR algorithm successfully
integrates A, B, and Base and (2) w e APg ., Roa/w =Rp/w. Because v, is a vertex in Rg//w,
R,4/v, =Rglv,. We conclude that R,/v, =R, /v, =Rg/v,, but this contradicts the assumption that
v; and v, are not sequence-congruent.

Suppose Rg//w =R4//w. Because v, is in Rg//w, by the definition of equality of limited slices, v,
must be in R, /w and must correspond to v,. In particular, v, and v, must be in the same sequence-
congruence class. This contradicts the assumption that v, and v, are not sequence-congruent.

There is a contradiction in either case. Therefore, there cannot be two vertices v, and v, in R,,,, with the
same tag. [J

Lemma 7.12. Suppése A, B, and Base can be integrated by the HPR algorithm. Then R,,,,, is a subgraph of
Roa-

Proof. By Lemma 7.11, if A, B, and Base can be integrated by the HPR algorithm, there is at most one ver-
tex with a given tag in R,,,,,. Thus, tags provide a means for identifying vertices of R ,,..

Since R,,,, = Preserved w ChangedComps,  ChangedCompsy, it suffices to show the following three pro-
positions: (1) Preserved is a subgraph of R,y (2) ChangedComps, is a subgraph of R,y and
(3) ChangedCompsg is a subgraph of R .

Proposition 1. Preserved is a subgraph of R ;.

Since Preserved = ) Preserved (u), it suffices to show Preserved (u) is a subgraph of R,y for
wue Unchanged

each u € Unchanged. For any vertex u in Unchanged, u is in both R, and Rz. There are four possibilities:
(1) ue APA,Ba.rz and ue APB,Ba.ye’ (2) ue APA,Ba.u and u e APB,Ba.s'e, (3) ue A-PA,Base and u e APB,Base: or
4) u€ AP, pase and u € AP, p,,,. We consider each case in turn.

Case 1. Suppose ue A_PA' Bawse and ue A_ﬁB‘ Base- Because R /u=Rg/u=Rp,,/u,
Ruy/lu=Rgllu=Rg.!lu. So Preserved(u) = Rp,,//u(or, equivalenty, R, //u or Rg//u). Because Rpg..//u
is a subgraph of Rpgg /u and Rpu, /u is a subgraph of Rp,s./PPpgs. 4. g, Which, in tum, is a subgraph of R,
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Preserved (1) is a subgraph of R,;4.

Case 2. Suppose ue A?A' Base and u € APp p,,. Because Ry/u =Rpy,/u, Ryllu=Rpy,/lu. So
Preserved (u) = Rg//u. Because Rg//u is a subgraph of Rg/u and Rp/u is a subgraph of Rg/APg g4, Which,
in turn, is a subgraph of R4, Preserved {u) is a subgraph of R 4.

Case 3. Suppose u € AP 4 gae and u € ﬁg‘ Base- This case is similar to Case 2.

Case 4. Suppose u € AP, pase and U € APp pase. Since u € AP4 pa., Ra/u is a subgraph of Ry /APy pase,
which, in turn, is a subgraph of R,,;. Since u € APg p,.,., Rg/u is a subgraph of Rz/APg, ,,,, Which, in turn,
is a subgraph of R,;;. Note that Preserved (u) must be either R4 //u or Rg//u, which are subgraphs of R4 /u
and Rp/u, respectively. Therefore, Preserved (u) is a subgraph of R 4.

In any of the above four cases, Preserved (1) is a subgraph of R, for each u € Unchanged. Therefore,
Preserved is a subgraph of R,4.

Proposition 2. ChangedComps, is a subgraph of R,,.

ChangedComps, is the union of R4/ /wy for all vertices wy € Affected,. 1t suffices to show that Ry//w, is
a subgraph of R, for each vertex wy € Affected,. Let wy be a vertex in Affected,. Because wy € Affected,
and Modified, is an empty set, w, € New,. If there is no vertex wg,,, in Rp,,, that has the same tag as w,, by
definition, w, € AP 4 pg.. On the other hand, if there is a vertex wp,, in Rpg,, that has the same tag as w,, we
have R4 /wy #Rpase [ Waase Since wy € New,. Therefore, wy € APy, gage-

In either case, wy € AP4 pa;.. Because R,//wy is a subgraph of R4/w, and R,/w, is a subgraph of
RAo/AP4 pase and Ra/AP, pase is a subgraph of R,y, Ra//ws is a subgraph of R,y Therefore,
ChangedComps, is a subgraph of R4

Proposition 3. ChangedCompsg is a subgraph of R,,;,.

This proposition is similar to Proposition 2.

From the above three propositions, R, is a subgraph of R ;5. O

Lzmma 7.13. Suppose A, B, and Base can be integrated by the HPR algorithm. Then R, is a slice of R 4.

Proof. Since the HPR algorithm successfully integrates A, B, and Base, R, is a feasible PRG. Note that
every vertex in a feasible PRG has a fixed number of incoming edges of a given type. We prove Lemma 7.13
by considering the incoming edges of each vertex in R ..

By Lemma 7.12, R,,,, is a subgraph of R,;. The proposition that R ,,,, is a slice of R4 is equivalent to the
following proposition: if v is a vertex in R, and there is a dependence edge u — v in Ry, then the edge
u—>visinR,,, as well.

Let v be a vertex in R,,,,. Suppose there is a dependence edge u —v in R,;;. We want to show that the
edge u — v is in R,,,, as well. Depending on the classification of v, there are four cases to consider:

Case 1. Suppose v € Affected,. Because v € Affected,, the limited slice R,//v is included in R,,. Note
that every vertex in a PRG has a fixed number of edges of a given type. From the definition of limited slices,
the limited slice R,//v must have included for v the correct number of incoming edges of each type. There-
fore, R .., must have included the correct number of incoming edges for vertex v. Since R,,, is a subgraph of
R4 (by Lemma 7.12), every incoming edge of v in R,,,, is also in R,;4. If the edge u — v is in R,;; but not in
R ..., then v has an extra incoming edge in R, 4, which makes R, infeasible. This contradicts the observation
that R, is feasible. Therefore, the edge u — v must also be in R,,,,..
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Case 2. Suppose v € Affectedy. This case is similar to Case 1.

Case 3. Suppose v & Unchanged. Because v € Unchanged, either R,//v is included in R, or Rg//v is
included in R,,,. In either case, by the same argument as in Case 1, the edge u — v must also be in R,,,.

Case 4. Suppose v € Intermediate, or v € Intermediateg. Because

R,.. =Ryl lAffected ) v (Rg/IAffectedg) v ( Uum y Preserved (u)), v is included in the limited slice
u & Unchange
Rullw, for some wye€ (Affected, wUnchanged) or the lLimited slice Rg//wp for some

wg € (Affectedy © Unchanged). In either case, by the same argument as in Case 1, the edge u — v must also
be in R .., .

From the above four cases, we conclude that if v is a vertex in R,,,, and there is a control or flow depen-
dence edge u — v in R,y then the edge u — v is in R, as well. If R,,,, were not a slice of R,4, then there
would be some vertex v in R, such that at least one incoming edge of v in R,y was not in R,,,,,. However,
we just argued that this cannot happen; therefore, R,,,, is aslice of R;. O

Theorem. (Comparison Theorem). When the HPR algorithm successfully integrates A, B, and Base, the
new integration algorithm also succeeds and the integrated program produced by the new integration algo-
rithm is a slice of the integrated program produced by the HPR algorithm.

Proof. Because the HPR algorithm successfully integrates A, B, and Base, R, is a feasible PRG. From
Lemma 7.13, R,,.,, is a slice of R,,;. Because all the useless ¢ statements are removed from the merged graph
in the fifth step of the new integration algorithm, by the Feasibility Lemma for PRGs, R, is a feasible slice
of R,,;. We conclude that the new integration algorithm also produces a feasible merged program representa-
tion graph. J

Extra components included in the integrated program by the HPR algorithm are the result of that
algorithm’s less precise computation of affected components; the fact that the Integration Theorem holds for
the new integration algorithm (see Chapter 6) assures us that the programs produced by the new integration
algorithm are reasonable ones.

It is interesting to consider the kinds of changes that cause the HPR algorithm to report interference, while
the new integration algorithm succeeds in producing an integrated program. The first example in Figure 1-1
illustrates that the new integration algorithm allows variables to be renamed and certain statements o be
moved into or out of conditional statements. Furthermore, the new integration algorithm also allows insertion
or deletion of trivial assignments (i.e. assignments of the form x :=y) in the program.

There is another class of integration problems on which the HPR algorithm reports interference while the
new integration algorithm succeeds. These are problems in which both variants change a component’s execu-
tion behavior (in different ways). In this case, the HPR algorithm reports interference because its definition of
corresponding vertices relies only on tags; there can be only one copy of the changed component in the
integrated program, and it cannot simultaneously have both changed behaviors. In contrast, the new integra-
tion algorithm considers a component of a variant to be a new component whenever its execution behavior
has been changed. Thus, even if there is a component in the other variant that has the same tag this does not
cause any interference since the two components are considered distinct new components by the new integra-
tion algorithm. The programs shown below illustrate this situation.
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Program Base Variant A Variant B Program M
program program program program
<Tl> =x:=1 <Tl> x:=1 <Tl> x:=1 <Tl> x:=1
<T2> x:=2 <Td> y:=x+4 <T2> x:=2 <T4> y:=x+4
<T3> x:=3 <T2> x:=2 <T4> y:=x+4 <T2> x:=2
<T4> y=x+4 <T3> x:=3 <T3> x:=3 <T4> y:=x+4
<T5> end(x) <T5> end(x) <T5> end(x) <T3> =3

<T5> end(x)

Program M is the merged program produced by the new integration algorithm. Component tags are shown
explicitly on the left. The statements tagged T4 in A, B, and Base have different execution behaviors. Since
the statements tagged T4 in A, B, and Base are considered to be the same components in the HPR algorithm,
there is interference due to conflicting execution behaviors; however, in the new integration algorithm, the
two statements tagged T4 in A and B are considered to be distinct new components; they both are included in
the integrated program, as shown on the right.

The four kinds of changes are not the only capabilities of the new integration algorithm. Since the new
integration algorithm is actually a family of algorithms, given more powerful equivalence-detection tech-
niques, the new integration algorithm can accommodate more classes of semantics-preserving transforma-
tions.

The new integration algorithm allows different stages of a computation to be modified in different variants
and is still able to merge these changes. For instance, consider the second example in Figure 1-1. That exam-
ple consists of three stages: one to compute the sum and product of the integers from 1 to 10, the other to
compute ratio, and the final to compute percentage. The first stage has been changed in variant B (but the
same values are computed for the variables sum and prod) whereas the second stage has been changed in vari-
ant A (the same value for ratio is computed anyway), The third stage (the assignment to percentage) Consists
of code added by B. Given an equivalence-detection algorithm that can discover these semantics-preserving
transformation in the first two stages, the new integration algorithm can produce a merged program as shown
in Figure 1-1.

Note that the integrated program produced by the new integration algorithm includes two components with
the same tag. This can cause problems if the integrated program is itself used as an argument in future
program-integration problems. The ideal solution to this problem would be to find a mechanism for generat-
ing tags (for example, based on the sequence-congruence classes produced by the Sequence-Congruence
Algorithm), rather than relying on editor-supplied tags. In this case, the tags generated for one instance of
program integration would not be reused by future integrations, so that the integrated program shown above
would no longer be problematical. How best to generate tags for use by the program-integration algorithm is
currently an open problem.

A final point of comparison with the HPR algorithm is that the algebraic properties of the HPR algorithm
have been characterized using Brouwerian algebra [Reps89a]. Unfortunately, the new integration algorithm
does not seem to fit this model; some progress towards an algebraic characterization of the new integration
algorithm has been made by G. Ramalingam [Ramalingam90}.




Chapter 8

Conclusions

8.1. Work Accomplished

In this thesis, we have provided semantic foundations for the HPR program-integration algorithm, discussed
the semantic criterion for program integration, presented a new data structure (program representation graphs)
for representing programs, described the Sequence-Congruence Algorithm for detecting program components
that have equivalent execution behavior, and proposed a new semantics-based program-integration algorithm
that can accommodate semantics-preserving transformations. The advantages of the new program-integration
algorithm and a comparison with the HPR integration algorithm have also been presented.

Given a base program and two variants, the HPR integration algorithm creates an integrated program by
merging certain program slices. The Feasibility Lemma and the Slicing Theorem provide the necessary syn-
tactic and semantic justifications for extracting slices from a dependence graph. The Termination Theorem,
on the other hand, states a sufficient condition for a composite program (e.g., the merged program) to ter-
minate normally. Using these results, we showed in Chapter 2 that the HPR integration algorithm satisfies the
following semantic criterion for program integration:

Suppose the integration algorithm successfully integrates two variants A and B with respect to the base pro-
gram Base and produces an integrated program M. Then for any initial state ¢ on which Base, A, and B all
terminate normally,

(1) M terminates normally on G.

(2)  For every variable x that is defined in the final state of A, if x’s final values after executing Base and A
are different, then x’s final value in M is the same as in A (that is, M agrees with A on x).

(3)  For every variable y that is defined in the final state of B, if y’s final values after executing Base and B
are different, then y’s final value in M is the same as in B (that is, M agrees with B on y).

(4)  For every variable z that is defined in the final state of Base, if z’s final values after executing Base, A,
and B are the same, then z’s final value in M is the same as in all three (that is, M agrees with all three
on z).

Any program that satisfies (1)-(4) can be viewed as the integrated version of the two variants with respect
to the base program. If no such program exists, the changes made in the variants interfere. Note that this cri-
terion is not decidable; consequently, any integration algorithm will fail on some examples for which a pro-
gram satisfying (1)-(4) exists.

The HPR integration algorithm represents a fundamental advance over text-based integration algorithms in
that the HPR algorithm attempts to merge the changed and preserved computations of the variants. This pro-
perty distinguishes the HPR integration algorithm from text-based integration algorithms. However, there is
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room for improvements.

We developed a new integration algorithm that extends the capabilities of the HPR integration algorithm in
two respects: (1) it is flexible and extendible in that additional techniques for detecting program components
with equivalent behaviors can be easily incorporated in the new integration algorithm and (2) it can accom-
modate semantics-preserving transformations.

To determine whether a component’s behavior has been changed is a fundamental problem for a program-
integration tool. Although any program-integration algorithm must conservatively determine the set of
affected components (because program equivalence is an undecidable problem), when more exact
equivalence-detection techniques are employed, it is possible to avoid certain cases of spurious interference
due to inexact determination of the set of affected components.

For this purpose, we developed the Sequence-Congruence Algorithm that partitions program components
of several programs into disjoint equivalence classes so that two components are in the same class only if they
have equivalent execution behavior. The Sequence-Congruence Algorithm can be employed by the new
integration algorithm.

The new program-integration algorithm uses program representation graphs as the intermediate form for
programs. Program representation graphs are equivalent to the program dependence graphs used in the HPR
algorithm. A nice property of PRGs (and PDGs) is that programs with isomorphic PRGs (or, equivalently,
PDGs) have equivalent execution behavior. This property is essential (both for the new integration algorithm
as well as the HPR algorithm) because the result of integration may be any program whose PRG (or PDG,
respectively) is isomorphic to a merged graph. This property is also essential to every semantics-based
program-integration algorithm because the execution behavior of a program must be completely captured by
whatever intermediate form is used by the integration systems.

The new integration algorithm is actually a family of algorithms, parameterized by the the equivalence-
detection techniques used. Any equivalence-detection techniques can be employed as the first step of the new
integration algorithm. Many techniques used in compiler optimization, such as constant propagation, invari-
ant code movement, and common subexpression elimination, can be combined with the Sequence-
Congruence Algorithm to detect larger classes of program components with equivalent behavior. Alpern,
Wegman, and Zadeck [Alpern88] discussed two such extensions. It should also be possible to use knowledge
of semantics-preserving transformations that have been applied to a program or certain parts of the program
to detect larger classes of program components with equivalent behaviors. This knowledge can either be
recovered by an equivalence-detection algorithm or supplied directly by a program transformation system.

One of the main characteristics of the new integration algorithm is concerned with the ability to accommo-
date semantics-preserving transformations. Given a sufficiently powerful algorithm to detect components
with equivalent behaviors, the new integration algorithm allows semantics-preserving transformations to be
applied to different stages of a computation in different variants and is still able to merge these changes.
Since the new integration algorithm employs limited slicing to extract the affected and the preserved compu-
tations, such semantics-preserving transformations can be easily accommodated in the new integration algo-
rithm.

8.2. Future Work

In this work, we studied program integration in a much simplified setting. It is our plan to extend our work to
realistic languages and to apply it to solve real world problems. Some related research topics are outlined
below.
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Detecting components with equivalent behaviors

One of the fundamental problems in program integration is to detect program components with equivalent
behaviors. Although this is an undecidable problem, research in this direction is well worth pursuing because
the results obtained from research in this direction can also be applied in many other areas such as compilers.

On the other hand, many existing techniques used in compiler optimization, such as constant propagation,
could detect equality of variables at certain moments during program execution. Adapting these existing
techniques to detect components with equivalent behaviors requires further research.

Algebraic properties of operators are another source of information that an equivalence-detection algorithm
could exploit. In the Sequence-Congruence Algorithm, all operators are treated as uninterpreted function
symbols. This limits the capability of the equivalence-detection algorithm. By making use of properties of the
operators, larger equivalence classes could be found. For instance, the Sequence-Congruence Algorithm can
find larger equivalence classes when it knows some operators, such as addition, are commutative. The tech-
nique works as follows: the two incoming flow dependence edges of a vertex that contains a commutative
operator are assigned the same type, rather than distinct types. The Sequence-Congruence Algorithm
proceeds as before, except that the basic partitioning algorithm needs to be replaced by the naive partitioning

algorithm.?? (Alpern et al. in [Alpern88] uses hyperedges to handle commutative operators, which is very
similar to the above approach.) Other algebraic properties, such as associativity and distributivity, might also
be useful in detecting equivalent components.

It is obvious that the equivalence-detection algorithm could also benefit from additional information from
the programmers. Such information could be supplied as pragmas or could be obtained through interaction
+ with the programmers. For instance, if it is asserted that two components have equivalent behavior, a tech-
nique called congruence closure [Downey80, Nelson80] can merge the equivalence classes which the two
components belong to and propagate the effects to combine other equivalence classes.

Extending to realistic languages

Our ultimate goal is to build a practical integration system that assists programmers to develop and maintain
software. To achieve this goal, it is necessary to extend the integration algorithm to realistic languages.
Additional language constructs involve new problems. For instance, in the presence of pointer variables,
detection of components with equivalent behaviors is harder than it is for the simplified language we have
worked with. Although some progress has been made toward extending the Sequence-Congruence Algorithm
to handle certain kinds of generalized loops and procedures, it requires further study to extend the integration
algorithm to handle these and other language constructs.

Relaxing the requirements of program integration

We feel that some requirements of program integration stated in Chapter 1 might be relaxed in order to make
integration succeed more often. For example, if the integration system is allowed to rename variables or to
make up new statements and predicates, an infeasible merged graph can sometimes be converted to a feasible
one allowing integration to succeed. It would be useful to investigate alternative integration requirements.

2By the “naive partitioning algorithm,” we mean the worklist algorithm that maintains a worklist of potentially partitionable classes; it re-
peated selects a class from the worklist, partitions the class, and augment the worklist (if necessary) until the worklist is empty.



Glossary

This glossary contains definitions of some important terms used in the thesis. The chapters in the
parentheses denote the places where the terms are defined.

Analogous components. Two components are analogous if they have the same tag (Chapter 6).

Analogous flow (or control) predecessors. The analogous flow (or control) predecessors of two vertices u;
and u, are two vertices v; and v, such that the flow (or control, respectively) dependence edges
uy; — vy and uq —> v, have the same type (Chapter 4).

Analogous operands. If v, and v, are the analogous flow predecessors of x4 and u, and if v, and v, assign
a value to variables a; and a,, then we say variables a, and a, are analogous operands of vertices
u, and u4, respectively (Chapter 4).

Comparable components. Two components ¢, and ¢, are comparable components if and only if (1) ¢, and
¢, have equivalent behaviors, (2) ¢, and c, are the same kinds of vertices, (3) corresponding incom-
ing control dependence edges of ¢, and c, have the same true or false labels, and (4) analogous con-
trol predecessors of ¢ and ¢, are comparable components (Chapter 5).

Corresponding components. In the new integration algorithm, two components ¢, and c, are correspond-
ing components if and only if (1) ¢, and ¢, are comparable components, (2) ¢; and ¢, have the
same tag, and (3) if ¢, and ¢, are assignment statements, they assign to the same variable (Chapter
5). In the HPR algorithm, two components are corresponding components when they have the same
tag (Chapter 2).

Definition. A definition to a variable x is a non-¢ assignment statement that assigns a value to x. A ¢ assign-
ment is not considered a definition to a variable (Chapter 3).

Definition-free flow dependence path. An x-definition-free flow dependence path is a sequence of flow
dependence edges a; —>¢a,, az —sdas, ..., G-y —>;a; SO that the variable x is assigned a value at
a; and is used at a;, and all vertices except a, and aj are ¢ vertices. An x-definition-free flow
dependence path in the PRG of program P corresponds to an x-definition-free path in the control
flow graph of P, which, in turn, corresponds to a flow dependence edge in the PDG of P (Chapter 3).

Originating vertex. In the new integration algorithm, every vertex v of Ry is taken from either R4 or Rg or
both (it is possible that v appears in Rp,, as well); this vertex in R4 or Rp is called an originating
vertex of v (Chapter 6).
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