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Abstract

Generally, the only way to test and experiment with a new compiler
optimization or execution strategy for parallel programs is to implement the
idea. Unfortunately, the large cost of modifying a compiler and runtime
system is a strong deterrent to experimentation and thorough evaluation
of new optimizations and their interactions with computer architectures.
This paper describes an alternative technique for evaluating the benefits of
a change to a parallel compiler. In this approach, a simple program, driven
by detailed program traces, simulates the effect of a new optimization or
execution strategy.

The paper contains measurements from applying a wide variety of op-
timizations to six C programs. The results identify the optimizations that
are effective for each program. More generally, they indicate that programs
contain more parallelism than is currently exploited, non-numeric programs
have less parallelism and are more difficult to optimize than numeric pro-
grams, and that optimizations are far more effective in combination than
individually.
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1 Introduction

Parallel computers require compilers capable of detecting and exploiting the
parallelism inherent in programs. These compilers are necessary both for
compiling languages designed for parallel programming as well as for ex-
isting languages. Typically, a compiler analyzes a program to find control
and data dependences that constrain parallel execution, then transforms the
program to remove or alleviate these constraints, and finally produces code
suited to execute on a parallel computer. Optimizations are transformations
that reduce a program’s execution cost. Conventional optimization elimi-
nates redundant computations and replaces operations with less expensive
ones. Parallel optimization also restructures and reorders a computation
so it better conforms to a parallel computer. An ezecution strategy identi-
fies program fragments that can run concurrently and provides a framework
in which they execute. Optimization enhance execution by enlarging the
concurrent region and removing execution constraints.

Designing new optimizations and execution strategies is an empirical
process [12, 17]. Typically, a new idea is implemented in a compiler and
evaluated on a few examples. These experiments are expensive since a par-
allelizing compiler is a large, complex program that requires considerable
time and expertise to modify and extend [1, 18]. The high cost of imple-
menting and testing a new idea discourages experimentation with new op-
timizations, approaches to parallel execution, and computer architectures.
This problem is particularly acute for architectural studies, which frequently
are based on traces from existing systems that do not attempt to account
for the interaction of optimization and hardware changes.

This paper presents a simple, effective technique for evaluating compiler
optimizations and parallel execution strategies and for studying program
characteristics. The pp system traces, in greater detail than previous work,
an execution of a sequential C program. The other part of the system, a
simulator (opp) reads the trace and uses details of the program’s structure
and memory reference pattern to simulate the program’s execution on a
parallel computer. By ignoring or rearranging events in a trace, opp models
the effect of optimization. In turn, by modifying opp (a 3,000 line pro-
gram), a compiler writer or computer architect can test new optimizations
or execution models.

The primary benefit of this technique is that a new idea can be quickly
evaluated on many programs without a large effort. The simulator is easily
modified because of its small size and simplicity. Because tracing and sim-



ulation are mechanical processes, an enhancement can be tested on a wide
range of programs in a short time. opp’s measurements identify programs
for which an optimization is ineffective and explain why it failed. It is able to
quantify the performance of small portions of a program and hence identify
bottlenecks.

This paper demonstrates the utility of simulating optimizations by pre-
senting measurements from applying optimizations and execution strategies
to six programs. Two programs are traditional, array-manipulating numeric
programs. Three are non-numeric programs, and the other is a hybrid.

The next section briefly discusses related work (Section 2), the following
section outlines a different view of compiler optimization (Section 3), and
Section 4 describes the workings of opp. The final section illustrates opp’s
operation by examining several program optimizations (Section 5.1) and
execution strategies (Section 5.2).

2 Related Work

Trace-driven simulation is widely used to study parallel hardware but rarely
used to study software. Computer architecture studies frequently depend
on a simulator driven by traces of programs’ executions. In general, these
studies do not manipulate the contents of traces and hence do not take into
account program optimization.

For example, TRAPEDS is a system that traces the memory reference
pattern of programs running on a parallel computer [20]. These traces are
used to model the performance of cache memory systems. The Rice Parallel
Processing Testbed (RPPT) traces a parallel program and uses the resulting
trace to drive a simulation of a parallel computer [7]. Its goal is to permit
investigations of changes to a computer’s architecture and to the assignment
of processes and data to processors. Unlike opp, RPPT requires the original
program to be written for a parallel machine. RPPT also does not allow
modifications of the trace to investigate the effect of optimization.

Kumar used his COMET system to study the effectiveness of one op-
timization on Fortran programs [13]. The optimization eliminated anti-
and output data dependences by splitting a single memory location used
by multiple statements into several locations. COMET’s approach to simu-
lating a program’s parallel execution differs from the one described in this
paper, although both dynamically detect data dependences. COMET also
assumes a fine-grained, statement-level parallelism in considering this single



optimization. opp simulates a wider variety of optimizations and execution
models.

Chen et al. used a Kumar’s technique to study the effectiveness of differ-
ent execution strategies on Fortran programs [6]. They simulated a variety
of scheduling strategies and varied the cost and type of synchronization.
However, they did not try to predict the effect of compiler optimizations.

3 What is an Optimization?

In this paper, we need to change perspective and view compiler optimizations
not in terms of their prerequisite analysis or their transformational effect on
a program’s statements, but rather as transformers of a program’s data
reference pattern. Parallel program optimizations are valuable because they
reduce the number or severity of data dependences by altering a program’s
behavior.

Data dependences constrain parallel execution. These dependences have
three forms. Flow dependences arise when a statement produces a value
that is subsequently consumed by another statement. Anti-dependences
occur when an earlier statement reads a memory location that is subse-
quently rewritten by another statement. Quiput dependences happen when
two statements write to the same location. Two statements conflict if they
share a data dependence. A dependence is loop-carried if the conflicting
statements execute in different iterations of a loop. The dependence is loop-
independent otherwise. Data dependences are important because changing
the execution order of conflicting statements can cause a program to produce
a different result.

Depending on the programming language, the responsibility of ensuring
that conflicts are not violated belongs either to a programmer or a com-
piler. In either case, conflicts reduce a program’s parallelism in two ways.
The most immediate effect is that certain statements cannot execute con-
currently, which reduces the quantity of parallel tasks. In addition, the
synchronization necessary to ensure that conflicting statements execute in
the proper order introduces delays and increases the program’s cost.

Optimization attempts to reduce these costs and to improve a program’s
performance by rearranging or eliminating conflicting data references. For
example, loop interchange rearranges the order in which a statement accesses
an array, so loop-carried dependences interfere less with parallel execution
[2]. Consider the loops:
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for i — 1 to N do
for j « 1 to N do
Alg,i+1] < Alj, 1] * Blj,1]

The inner loop can execute concurrently since it contains no loop-carried de-
pendences. However, on many multiprocessors, it would be more profitable
to run the outer loop concurrently so fewer tasks perform larger computa-
tions. Interchanging loops produces an equivalent fragment that traverses
the array perpendicularly to the original direction:

for j — 1to N do
for:—1to N do
Alj, i+ 1] « A[j,1]* B[,1]

Other optimizations eliminate conflicts entirely. For example, in the
loop:

for i~ 1 to N do

t «— A[7] * Bli]

if t > 0 then C[i] — t else C[i] — —t
od

the variable ¢ causes loop-carried output dependences, all of which can be
eliminated by renaming distinct uses of the variable [8]:

for : — 1 to N do

t[7] « A[7] * Bli]

if ¢[¢] > 0 then C[i] « t[i] else C[i] — —t[]
od

4 Operation of opp

opp simulates the parallel execution of a C program by examining a detailed
trace of the program’s sequential execution. A trace describes the cost
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Figure 1: opp’s loop nest and conflict table data structures. The loop nest keeps track
of loop nesting and iterations. The table maps a2 memory address to a conflict descriptor,

which records when the address was last read and written.

of instructions, the data dependences between them, and identifies higher-
level program constructs such as function entry and loop iterations. By
rearranging or ignoring events, opp can predict the effect of optimization on
a program. In addition, by changing the details of the simulator, alternative
execution models can be examined. opp is based on a simpler tool, 11pp,
which is described in detail elsewhere [15]. Since the operation of both tools
is similar, the description below only outlines the technique for simulating
programs.

The program traces come from AE, which is a compiler-based system
that economically collects detailed traces of a program’s execution [14]. opp
reads a stream of events from a trace. These events indicate: an instruction
executed (with its address and cost in cycles); a read or write of a memory
location (with its address and information about the containing statement
and referenced object); the initiation, iteration, and termination of a loop
(with a unique loop identifier); or entry and exit of a function (with its
address).

opp simulates the parallel execution of a program’s loops with the aid of
two data structures: the loop nest and conflict table. The loop nest is a stack
of loop descriptors (top half of Figure 1). This stack contains a descriptor
for every uncompleted loop. When a loop begins, a new descriptor is pushed



onto the nest. When a loop terminates, its descriptor is popped. Each loop
descriptor points to a stack of iteration descriptors. When the top loop
begins a new iteration, a new iteration descriptor is pushed on its stack.
When the loop terminates, its iteration descriptors may not be deallocated
since the conflict table can contain references to them. Iteration descriptors
record the nesting of loops by maintaining a pointer to the iteration of the
surrounding loop.

opp’s other data structure is the conflict table, which is a hash table that
maps a memory address into a conflict descriptor (bottom half of Figure 1).
These descriptors record when a memory location was last read and written.
They contain both the time of the access and the iteration descriptor of the
innermost loop surrounding the statement that referenced the location. On
each access to a memory location, opp compares the values stored in the
location’s descriptor against the current time and loop to detect loop-carried
data dependences.

The algorithm for finding loop-carried data dependences is:

On a read of memory location M:
1. Record read time and iteration.
2. Find the loop in the nest, I, that is the least-common ancestor
of the current iteration and the last write iteration.
3. If the read and write occur in different iterations of L,
then record a Flow Dependence.

On a write to memory location M:

1. Record write time and iteration.

2. Find the loop, L, that is the least-common ancestor of
current iteration and last read iteration.

3. If the read and write occur in different iterations of L,
then record an Anti-Dependence.

4. Find the loop, L, that is the least-common ancestor of
current iteration and last write iteration.

5. If the writes occur in different iterations of I,
then record an Qutput Dependence.

6. Remove record of read of location.

For example, consider detecting loop-carried flow dependences. On a
read of a memory location, opp examines the loop iterations in which the



location was last modified. If the location was written in a different iteration
than the one currently executing, the loop containing both iterations has a
loop-carried flow dependence. When a conflict occurs, opp uses the access
times to calculate the delay necessary to ensure that the location is not read
until after it is written.

This technique detects all loop-carried flow and output data depen-
dences, but only a subset of the anti-dependences. Conflict descriptors
record only the last read of a location, not all reads since the last modifi-
cation. Therefore, they cannot detect anti-dependences between the earlier
reads and a write. Another problem is that opp does not detect depen-
dences carried by variables stored in registers since references to them do
not appear in the address trace.

opp uses the cycle count of the executed instructions as a measure of
time. Most instructions take 1 tick, except loads, which require 2 ticks, and
some floating point operations, which require up to 20 ticks. The times are
from the MIPS R2000 and are similar for most RISC computers. However,
these numbers ignore the effect of cache misses on loads and stores.

When a loop terminates, opp examines each iteration descriptor to find
the iteration that finished last. In addition, opp records a wealth of infor-
mation about the loop, such as how many times it executed, the cost of each
iteration, and the number and distance of the loop-carried dependences.

A loop’s speedup is the ratio of its sequential to parallel execution time.
This definition has a unusual aspect. If an inner loop has a large speedup, it
will reduce the parallel execution time of every iteration of the surrounding
loop, thereby permitting that loop’s speedup to exceed the number of its
iterations.

5 Measurements

This section presents some measurements of real programs that demonstrate
the utility of opp and illustrate the existence of and differences between
classes of programs. Numeric programs manipulate arrays of numbers and
are the traditional subjects of optimizing parallel compilers. Symbolic pro-
grams are more difficult to characterize. Generally, they manipulate struc-
tured data in which the relations between items may be as important as
the values themselves. However, the data may be numeric, as in the case of
sparse-matrix or network-flow computations.

This paper uses six programs as examples. Three are symbolic applica-



| Program || Purpose | Size (lines) | Time (ticks) |

gee C compiler 87,838 24,522,714
zlisp Lisp interpreter 7,741 20,220,999
espresso PLA minimization 14,838 30,794,533
sgefa Gaussian elimination 1,219 18,255,659
dege Conjugate gradient 1,060 19,295,194
costScale || Feasible flows in networks 2,128 79,998,720

Table 1: Characteristics of the test programs.

tions that perform few floating-point operations: gce, zlisp, and espresso.
gee is the GNU C compiler optimizing and compiling a 775-line file. zlisp
is a lisp interpreter running a program that solves the 5-queens problem.
espresso is a PLA minimization program running on a 7-input, 10-output
PLA. These programs form most of the integer portion of the SPEC bench-
mark suite [19]. The other three programs perform arithmetic computations:
sgefa, dege, costScale. sgefa is a gaussian elimination program running a
variety of test cases. dcge is a preconditioned conjugate gradient package
running a variety of test cases. costScale finds a feasible flow in a net-
work that minimizes a linear cost function. Although it performs many
floating-point operations, it uses data structures similar to those used in
the symbolic programs. The programs range in size from a thousand to a
hundred thousand lines.

The primary execution model used by opp assumes a unbounded number
of parallel processors that communicate and synchronize at no cost through
a shared memory. Each loop iteration runs on a separate processor. A
loop’s iterations begin simultaneously when the loop starts executing. Syn-
chronization introduces delays to serialize loop-carried data dependences. If
statement 5, conflicts with statement S; in a later iteration, synchroniza-
tion delays the memory reference in 95 until S; reads or writes the common
memory location. A loop terminates when all iterations complete, so its
parallel speedup is the ratio of time to execute the loop sequentially to the
time spent in the iteration with the longest combined delay and execution
time. Figure 2 illustrates this model, which is Cytron’s doacross scheduling
[9]. Later sections discuss other execution models.

The simulations below assume a unbounded number of processors and
zero-cost task creation and synchronization. These quantities are parame-
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Figure 2: Doacross scheduling of parallel loop execution. All iterations of a loop begin
execution simultaneously. Loop-carried data dependences are synchronized by delaying
a conflicting statement in a later iteration until an earlier statement accesses a common

memory location. The loop finishes when the iteration with the longest combined delay
and execution time completes.

Program H Speedup ]

gee 2.4
zlisp 14
espresso 4.5
sgefa 108.3
dege 308.5
costScale 5.8

Table 2: Speedups of test programs with doacross scheduling.

ters. For this study, they were assigned extreme values that produce max-
imal parallelism, which permitted examination of optimizations and strate-
gies independent of a particular computer. If given values typical of a com-
puter, opp could simulate the effect of optimization on a particular machine.

5.1 Optimizations

Optimization improves the performance of doacross loops by reducing
the number of loop-carried data dependences. This change reduces the delay
necessary to serialize conflicts and hence the time to complete the loop. As
a first step in developing these optimizations, it is worth determining the



Program || Speedup Improvement |

gee 219.1 91.3x
zlisp 3.7 2.6 x
espresso 17.3 3.8 x
sgefa 6419.2 59.2 x
dege 3386.5 11.0x
costScale 39043.0 6708.4 x

Table 3: Speedups if all loop-carried dependences were eliminated. The second column

(Improvement) contains the ratio of the resulting speedups to the speedups in Table 2.

potential benefits of different optimizations. Table 2 contains the baseline
parallel performance of the programs, namely the speed improvement over
sequential execution when loops execute with doacross scheduling. These
speedups include delays that serialize all loop-carried conflicts. Only the
two numeric programs produced a significant speedup, despite the optimistic
assumptions about available parallelism and low machine overhead. Reasons
for the programs’ performance are discussed elsewhere [15].

5.1.1 Eliminating Dependences

To obtain a upper bound on the benefits of doacross optimization, opp
can ignore all loop-carried data dependences. Table 3 contains the resulting
speedups. The second column is the improvement over the unoptimized,
doacross-scheduled programs. This measure is the ratio of the optimized to
unoptimized speedups, which is the inverse ratio of the two execution times.
The programs can be divided into three categories. The first group (gec and
costScale) benefited significantly from eliminating dependences. Compiler
optimizations that eliminate loop-carried dependences have the potential to
improve significantly the execution of these programs. Optimization need
not be effective for all loops since the improvements were due to changes in a
handful of loops. The next group’s (sgefa and dege) performance was already
good, but they also benefited from elimination of dependences. However,
much of the improvement came from executing several test cases simulta-
neously. The final group’s (2lisp and espresso) performance was not signifi-
cantly improved from its low level by these optimizations. The parallelism
in these two programs is not expressed at the loop level. Note, however,
the responses cannot be categorized along the numeric/symbolic dichotomy
since gcc belongs in the first group.
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Program Flow Anti- Output
Speedup Improvement | Speedup Improvement | Speedup Improvement
gce 2.9 1.2 x 3.0 1.3 x 2.5 1.0x
zlisp 1.6 1.1x 1.4 1.0 x 1.4 1.0 x
espresso 5.0 1.1 x 5.0 1.1x 4.6 1.0 x
sgefa 227.3 2.1 x 109.4 1.0 x 119.9 1.1 x
dege 322.0 1.0 x 308.5 1.0 x 312.4 1.0 x
costScale 98.1 16.9 x 5.8 1.0 x 5.8 1.0 x

Table 4: Speedups if flow, anti-, and output loop-carried dependences are eliminated.

The utility of these numbers is that they form a upper bound on the
benefits that could result from optimizing the programs. In reality, a com-
piler cannot eliminate all dependences because of a variety of constraints:
some dependences carry information between iterations; compiler analyses
are never precise; and the resulting program may be too expensive to exe-
cute. Nevertheless, these measurements demonstrate that no optimization
will significantly improve the doacross scheduling of zlisp and espresso. Im-
provements in their parallel performance must come from other sources.
The measurements help a compiler writer identify and characterize loops for
which optimization can produce a substantial performance improvement.

Reasons for the program’s different responses can be inferred from other
data collected by opp [15]. zlisp and espresso execute very few iterations
per loop invocation (fewer than 10 iterations for 95.6% of espresso’s and
99.8% of alisp loop invocations). In addition, each iteration executed in a
short time (less than 100 ticks for over 80% of the iterations). By contrast,
the numeric programs executed loops many more times and had a higher
proportion of loops that constituted a substantial fraction of the program’s
cost.

To isolate further the effect of different types of dependences, we can
eliminate particular loop-carried dependences. Table 4 shows the speedups
that result when flow, anti-, or output dependences are eliminated. In gen-
eral, eliminating a single type of dependence did not produce a large im-
provement in any program’s performance. A typical loop is constrained by a
variety of dependences, all of which need to be removed before it can freely
execute in parallel. The exception was costScale, whose performance in-
creased markedly without flow dependences. These measurements illustrate
that optimizations specific to a particular type of dependence are valuable
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Proéram | Speedup  Improvement |

gec 4.0 1.7x
zlisp 1.4 1.0 x
espresso 5.5 1.2x
sgefa 646.1 6.0 x
dege 354.6 1.1x
costScale 5.8 1.0x

Table 5: Speedups if anti- and output loop-carried dependences are eliminated.

only when combined with similar optimizations for other dependences.

Table 5 illustrates the point further by showing the speedup when all
anti- and output dependences are eliminated, which is the effect of renam-
ing [8]. Only sgefa’s performance noticeably improved. The remaining flow
dependences still constrain other programs’ loops. Kumar found that a
similar optimization greatly increased the statement-level parallelism in sci-
entific programs [13]. The two results are difficult to compare because of
the different execution models. However, with a finer-grain execution model
(Section 5.2.2), this optimization also produced a much larger speed im-
provement.

5.1.2 Classifying References

Another way to examine the potential for optimization is to classify con-
flicts by the type of statements involved and by the type of object refer-
enced by the conflicting statements. This classification provides a simple
measure of the difficulty of performing the program analysis that is a neces-
sary prerequisite to correct optimization. Detecting and analyzing conflicts
between statements that manipulate scalar variables is equivalent to the
well-understood technique of reaching-definition dataflow analysis. Con-
flicts between array-manipulating statements are more difficult to analyze
precisely because the exact locations accessed by a statement may be diffi-
cult to determine. Techniques such as Banerjee’s test can eliminate many
spurious dependences by inferring that two statements do not reference a
common array element [4]. Conflicts between pointer variables are the most
difficult to analyze precisely [5, 10, 11, 16]. Only the simplest cases (e.g.,
pointers into an array or a tree) can be accurately analyzed. The complexity
of the analyses means that a compiler will detect more and eliminate fewer

12



Program Variable/Pointer Array/Struct
Speedup Improvement | Speedup Improvement
gee 3.6 1.5 x 2.8 1.2 x
zlisp 2.4 1.6 x 14 1.0x
espresso 5.0 1.lx 5.8 13 x
sgefa 277.0 2.6 x 132.9 1.2 x
dege 2362.1 7.7x 308.5 1.0 x
costScale 5.8 1.0x | 171783 2951.6 x

Table 6: Speedups that result if conflicts to pointers and structures (also arrays) are
eliminated.

array conflicts than scalar variable conflicts and will be almost unable to
alleviate conflicts caused by pointers.

Table 6 shows the speedups that result from eliminating all conflicts
in which the second statement directly accesses the common location as a
variable or through a pointer (Variable/Pointer) or in which the second
statement accesses the location as an array or data structure element (Ar-
ray/Struct). In most programs (except costScale), eliminating one type of
conflict did not produce a large improvement in the program’s speed. The
style in which the programs were written is partially responsible for this
result. For example, sgefa and dege use the curious mixture of array sub-
scripting and pointer reference permitted by the C programming language.
Careful analysis can find array pointers that can be translated to array
references [3], in which case eliminating array references would be more
effective. costScale, on the other hand, although it manipulates a graph,
accesses graph nodes as elements in an array of structures. Rewriting these
programs with another notation would not change their functionality or
memory reference pattern, but could increase the precision of the analysis.

5.1.3 Object Lifetimes

Another way to classify dependences is by the dynamic extent of the ob-
ject manipulated by the conflicting statements. Dynamically-allocated ob-
jects are more difficult to analyze precisely than statically-allocated objects
because the lifetime of a dynamic object is unknown and must be deter-
mined by analysis before conflicts are identified. A static object persists for

13



Program Dynamic Static

Speedup Improvement | Speedup Improvement
gee 3.8 1.6 x 2.8 1.2 x
zlisp 1.5 1.1x 1.6 1.1x
espresso 8.1 1.8x 4.7 1.0x
sgefa 6419.2 59.2 x 108.3 1.0 x
dege 3386.5 11.0x 308.5 1.0 x
costScale 39043.0 6708.4 x 5.8 1.0x

Table 7: Speedups if conflicts over dynamically- and statically-allocated objects are

eliminated.

a program’s execution and has a distinguishable name.! AE identifies mem-
ory references to statically-allocated objects and provides this information
in the trace supplied to opp. Other memory references, to both heap and
stack, refer to dynamic objects.

Table 7 contains the speedups that result when conflicts in which the
second statement references a dynamic or static object are eliminated. Elim-
inating conflicts over static objects produces almost no improvement in the
programs’ performance because these programs allocate most data struc-
tures dynamically to accommodate different-sized problems. FEliminating
dynamic conflicts produces maximal speedups (equal to those in which all
dependences are eliminated) in the last three programs. However, speedups
in the symbolic programs, particularly gcc, are lower. These programs must
reference static data in inner loops. These results demonstrate that compil-
ers cannot base optimization on the presumption that ob jects have unlimited
extent and an easily determinable name.

5.1.4 Loop Interchange

opp can simulate loop-interchange optimization by reordering the memory
references produced by AE. Consider the two loops:

*The name may not be unique because of aliasing. However, efficient interprocedural
techniques for computing aliases exist.

14
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Figure 3: Memory references visible after loop interchange. After interchange the ¢
and j loop, memory references from the deferred iterations are visible and those from the

ignored iterations are not seen.

for i — 1to N do
for j — 1 to M do

At an arbitrary iteration, ¢ = I,j = J, AE will have produced memory
references from the iterations for which i < I,j < Jand i = I, < J (see
Figure 3). It will not have generated references from the iterations for which
i > 1,5 < J (deferred refs). Finally, opp will have seen, but can discount
references from the iterations for which ¢ < I,5 > J (ignored refs) because
these accesses occur after the current iteration in the interchanged program.

Because of the deferred refs, opp cannot compute the delay for iteration
J, I (unless it is the first iteration) when AE produces the memory references.
The immediate solution is to save the memory references (and the time at
which they occurred) for each iteration until its deferred iterations execute.
References from M (N —1)—1 iterations must be saved until the final iteration
of the outer loop, at which point the delays can be properly calculated.

An alternative is to modify AE to produce the memory references in the
order in which the interchanged loops would have executed. This modifica-
tion is not difficult but would greatly increase the file system traffic as AE

15



randomly read pieces of the trace file. It is not yet clear which approach is
faster or more practical.

5.2 [Execution Strategies

An execution strategy is a technique for exploiting a particular form of par-
allelism in programs. For example, the model discussed above is doacross
scheduling. A strategy has two components. The first is a conception where
parallelism is likely to be found in programs. doacross scheduling assumes
that loop iterations can execute concurrently and that doing so will reduce
a program’s execution time because loops account for most of a program’s
cost. The second component is a technique for exploiting the perceived
parallelism on an actual computer. We cannot discuss this aspect in detail
because a successful strategy requires careful attention to the peculiarity of
a computer. opp is well-suited to finding potential sources of parallelism in
programs and illustrating areas that should be exploited by language de-
sign, compiler transformations, and hardware support. With more realistic
parameters, opp can also approximate the performance of a strategy on a
particular computer.

5.2.1 Recursive Functions

Recursive functions form loops that can potentially execute concurrently.
The Lisp community is particularly interested in executing this type of loop
since recursion is a common iterative construct in Lisp programs. opp can
identify simple recursive loops and simulate their parallel execution with the
doacross mechanism used for program loops. A recursive function forms a
simple recursive loop if the function does not execute a conventional loop
around the recursive call. This restriction ensures that the recursive loop
appears to be properly nested.

opp identifies these loops by maintaining a count of the number of ex-
ecuting invocations of each function. When this count is greater than one,
the function is recursive. opp treats each recursive function invocation like
a loop iteration. The invocations start executing concurrently with the first
one and are delayed by “loop-carried” data dependences between statements
in different invocations. The speedups produced by this model are optimistic
since opp does not detect dependences carried in registers (for example, a
function’s arguments or result). However, this oversight is irrelevant for the
test cases since the speedups are insignificant.
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Program || Speedup Improvement |

gee 2.4 1.0x
zlisp 1.4 1.0x
espresso 4.6 1.0x
sgefa 108.3 1.0 x
dege 308.5 1.0x
costScale 5.8 1.0x

Table 8: Speedups if recursive loops execute in addition to conventional program loops.

Table 8 illustrates the speedup of the six programs when conventional
and recursive loops execute concurrently. No program benefited from this
model. In part, this poor performance is due to the absence of recursion
in C programs: espresso contains 8, gcc contains 22, and zlisp contains 1
simple recursive loop. The other programs contained no recursive functions.
In addition, the few recursive loops did not consume much execution time
or result in large speedups when executed in parallel.

5.2.2 Dataflow Loop Execution

Another, more profitable, execution strategy is to initiate nested loops con-
currently with the start of their surrounding loop. This model was developed
for symbolic programs, which contain loops whose body encloses more than
one loop. However, it is also a profitable optimization for numeric programs.
For example, in the collection of loops:

for 7 — 1 to 100 do
for j «—~ 1to 100do ... od
fork +— 1to 100 do ... od

for/ — 1to 100 do ... od
od

this strategy would start the j, k, and ! loops concurrently with the ini-
tiation of each iteration of the i loop, which also executes its iterations
simultaneously.
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Program || Speedup Improvement |

gee 3.9 16x
zlisp 8.3 5.8 x
espresso 8.8 1.9x
sgefa 988.4 9.1x
dege 1104.0 3.6x
costScale 10.9 1.9x

Table 9: Speedups resulting from dataflow loop scheduling.

The advantage of this technique is that inner loops overlap execution
rather than execute sequentially. This reduces the cost of each iteration of
the outer loop. This strategy is called dataflow loop scheduling since loop
iterations execute as early as possible, subject to their data dependences.

opp simulates this model by starting an inner loop at the same time as
the surrounding loop’s iteration. Concurrent loop iterations are still sched-
uled with doacross scheduling. The statements within a loop are delayed
by both loop-carried dependences, as in doacross scheduling, and by loop-
independent dependences from earlier statements in the surrounding loop’s
body. Unfortunately, opp misses dependences carried in registers, so the
numbers in the table may overstate the available parallelism.

This strategy improved the programs’ parallel performance (see Table 9).
The improvement was not uniformly distributed since this technique depends
on the program’s structure. Notably, this model improved the performance
of zlisp, a program that was difficult to optimize in any other manner. The
strategy was also profitable for sgefa.

5.2.3 Parallel Calls

The final strategy executes ordinary function calls asynchronously, subject
to data dependences. The purpose of this strategy is to find large-grained
parallelism in a program by executing function invocations concurrently.
opp simulates this model by dividing the instruction stream into segments
and attempting to overlap these code sequences as much as possible.

A segment is a sequence of instructions that begins with a call or re-
turn instruction and terminates immediately before the next call or return
instruction. Upon entry to a function, all segments within the body of the
function begin executing simultaneously. Data dependences between seg-
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Segments: Execution Overlap:

X 1= a * pb;
1
1 push x;

2 [Ccall g;: 2 C 3
3 [Cpush x; _ 4 C
4 [Ccall h;

[pop result;
beqz result L1; 5

push a;

return;

Ll: push b;

|_return;

Figure 4: Example of overlapped execution of segments.

ments introduce delays that serialize the segments’ execution. For example,
consider the function:

function f (integer a, b)
integer x := a * b;
g (x);
if (h(x)) then return a; else return b;

It contains five segments (see Figure 4). The first extends from function
entry to the call on g. The second (which may contain other segments)
encompasses the call on g. The third extends from the return to the call on
h. The next includes the call on k. And the fifth extends from the return
from h to the return from f.

Table 10 illustrates the benefits of this optimization. Note that the fig-
ures in this table, unlike those in other tables, are speedups without doacross
loop execution. zlisp, in particular, benefited dramatically from this model.
opp’s inattention to register-carried dependences has a significant impact
on these numbers since most function arguments and results are passed in
registers. Nevertheless, these results indicate that some programs have sig-
nificant course-grain parallelism that can be exploited at the function call
level.
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| Program || Speedup |

gee 5.6
zlisp 590.8
espresso 3.5
sgefa 15.4
dege 1.2
costScale 1.0

Table 10: Speedups resulting from parallel call scheduling. Numbers do not include
doacross loop scheduling.

6 Conclusion

Simulation will never supplant compilation, if only because programmers
want their programs to produce answers and are rarely satisfied to know
how fast the results could have been computed. Fortunately, compiler writ-
ers and computer architects have a different perspective. They are often
more concerned with a program’s performance than its results. Simulat-
ing a program’s execution provides more information about the causes of
poor performance than does executing it. In addition, simulation is often
less expensive in time and effort, which permits ideas to be examined more
quickly.

A future extension is to relate directly the speedup and dependence
information to sections of the program. A tool of this type would help a
programmer find portions of a program that are bottlenecks, both before and
after optimization. The information for this mapping is already produced
by AE. Its use awaits tools to manipulate large quantities of data and to
identify the critical sections.

This paper describes a technique for simulating the effect of optimiza-
tion on parallel programs. The essential prerequisite is a detailed trace of a
program’s execution. From this trace, opp simulates the program’s parallel
execution. By varying the details of the simulation and selectively ignoring
portions of the trace, this system can predict the effect of different optimiza-
tions and execution strategies. Because this process is entirely mechanical,
it can be applied rapidly to a large collection of programs.

The approach’s drawback is that its results may not correspond to the
program’s behavior on a particular computer because the simulation is too
abstract. This problem has two aspects. The first is that program traces
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may not identify enough events to model all aspects of an optimization. In
addition, execution simulation only provides a small amount of information
about the analysis that is a prerequisite for safely applying an optimiza-
tion. The second problem is that a simulation may omit relevant details,
either to reduce complexity or because the details are mistakenly deemed
unimportant. These problems are common to all simulation and can be par-
tially alleviated by making explicit the assumptions on which a simulation
is based.
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