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Abstract

Serial and parallel implementations of the interior dual proximal
point algorithm for the solution of large linear programs are described.
A preconditioned conjugate gradient method is used to solve the linear
system of equations that arises at each interior point iteration. Nu-
merical results for a set of multicommodity network flow problems are
given. For larger problems preconditioned conjugate gradient method
outperforms direct methods of solution. In fact it is impossible to
handle very large problems by direct methods.

1 Introduction

The interior dual proximal point algorithm using preconditioned conjugate

gradient we are proposing here is based on the interior dual proximal point

(IDPP) algorithm for solving linear programs, which is described in detail in

[Setiono, 1989]. We begin by summarizing the IDPP algorithm briefly here.
We consider the linear program

mincz s.t. Az =0, 0<z <d (1)
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which is equivalent to
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This is a problem with m + n constraints in 2n variables. The dual of the
linear program (1) is
min bu + dv (3)
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The primal proximal point minimization problems corresponding to the pri-
mal linear program (2) is
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and its dual [Mangasarian, 1969] is

min %I‘Atu+v+wwc+eimill2+—;—‘\v—kz%—e’yilzweibu——e‘dv (5)

(w,z)>0,u,v

The barrier penalty minimization problem associated with the dual problem
(5) is
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where ' > 0 and 7' > 0.

We do not attempt to solve the above logarithmic penalty problem ex-
actly. To get the next iterate, one Newton step with an appropriate stepsize
to maintain the positivity of the variables is taken.

The optimality condition for the problem (6) is

G(u,v,w, 2)
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where W = diag(w) and Z = diag(z).

Let (u!,v',w', z*) be the current iterate. The linearization of the gradient
function VG (u,v,w,z) around the point (uf,v’,w*,z') yields the following
system of linear equations

AA* A A 0 u Ac+ €'b — ¢ Ax?
At 21 I I v | | e+éd—er—ey
At T T4 (WHE 0 w |~ | e+ 29 (WH e — €
0 I 0 I +n(ZH)? z M7 e — eyt
(7)
For ease of notation, define the diagonal matrices
oyl
Dy = (I++'(W)7?)
o -1
Dy = (I+7(2)7?)

and E = (21 — D, — Dy)™!

and vectors
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We can obtain the solution of the (m + 3n) dimensional system (7) by
first solving the m dimensional linear system

A(IM Dl) (1 - E(I - Dl))Atu =
hy — AD1hy — A(I — Dy) E (hy — D1hs — D,hy) (8)
for u. The other 3 unknowns can then be computed as follows
v = E (hy— Dihs — Dahy — (I - Dy) A'u)
w = —Di(A'u+v—hs)
z = —=Dy(v—hy)

If we let (@,%',@',7') be the solution of the linear system (7), the new
iterate is then determined as follows
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where ) is a stepsize that is computed to ensure the positivity of the variables
w and z. The algorithm is then repeated with decreased values of parameters
€, v and 7.

In [Setiono, 1989] we reported the numerical results from our implemen-
tation of the IDPP algorithm for small and medium sized linear programs.
For these problems, a direct pivotal method such as that provided by the
Yale Sparse Matrix Package (YSMP) [Eisenstat et al, 1977 & 1982] has been
proven to be a very effective method for solving (8) as our computational
results indicated. We recall that YSMP computes the lower unit triangular
matrix L and a positive diagonal matrix D such that PAGA'P* = LDL'.
The matrix P is a permutation matrix designed to reduce the number of
fill-ins in L. For linear problems with tens of thousands of constraints how-
ever, the number of fill-ins in the factor matrix L can be overwhelming even
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when matrix A is relatively sparse. For this reason, we propose an alter-
native approach for solving the linear system (8) for very large but sparse
problems. This approach is the iterative preconditioned conjugate gradient
method. We will describe the method and the preconditioning matrix that
we use in Section 2. Computational results for large multicommodity net-
work flow problems are presented for serial implementation in Section 3 and
for parallel implementation on the Sequent Symmetry S81 in Section 4. We
also describe in Section 4 how the structure of the constraint matrix of these
large multicommodity network flow problems allows us to solve these prob-
lems using parallel architecture and thereby obtaining a speedup efficiency
in the range of 75% to 96%. In Section 5 a brief summary of the paper is
given.

2 Preconditioned Conjugate Gradient Method

The conjugate gradient method is often used to compute the solution of the
linear system of equations

Mz =b (9)

where M is an m by m symmetric positive definite matrix. The conjugate
gradient method is better suited than the direct methods for solving the
linear system when M is large and/or dense, since the factorization done by
the direct method may produce a matrix that is much more dense than M.

When all computations are performed with exact arithmetic, it is well
known that the conjugate gradient method converges in k iterations, where
k < m is the number of distinct eigenvalues of M [Gill et al, 1981]. However,
in practice the method may take many more iterations to find the solution of
the linear system because of rounding errors. Our approach for reducing the
iteration number is to find a nonsingular symmetric matrix C such that the
matrix M = C MC' is better conditioned than M and to apply the conjugate
gradient method to the transformed linear system

~

Mz="h (10)
where £ = (C*)~'z and b = Cb. If we define the preconditioning matrix

W = (C*C)~!, we have the so-called Preconditioned Conjugate Gradient
Method [Ortega, 1988 page 179]
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Preconditioned Conjugate Gradient for solving linear systems:
Mx =b

e Choose z°

e Compute ° = b— Mz°
e Solve Wi#® =% for 7°

Let p® = #°

e Set k=0

(*) of = — < 7 rk > [ < pF, MpF >

_ Rl = gk g okph

kL ok g ok A

— If [P < ¢, stop

— Else Solve W#kt! = pk¥l

— BF = — < G PR s ) R R s
_ phtl kL g ghpk

- h=k41

- Go to (*)

In each iteration of the PCG method, we need to solve the linear system

for #. It is very crucial that this step be done efficiently. The simplest case
is when W is the identity matrix. In this case the PCG reduces to ordinary
conjugate gradient method and we have not done anything to improve the
condition of the matrix M. On the other hand if W is chosen such that
W = LL' where L is the Cholesky factor of M, then the PCG method will
converge in just one step and the method reduces to a direct method.

Our aim is to find a preconditioning matrix such that is the linear system
(11) is easy to solve and that the matrix M is better conditioned that M.
With these goals in mind, we decided to use the incomplete Cholesky factor
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of M for our preconditioning matrix. If we denote the incomplete Cholesky
factor of M by L, then the preconditioning matrix W is defined as W = Lit.
The matrix [, can be computed in a similar fashion as the complete Cholesky
factor of M, except that if M;; = 0, we force L ; = 0. More specifically, given
a symmetric positive definite matrix M the following algorithm overwrites
the lower half of M by its incomplete Cholesky factor.

e For:=1,2,...mdo

[STES

- M;; = (Mi,1 — iz Yy M? )
—~ Forj=1+1,...mdo
if .Mj,,' # 0 then
Mj»i = (M], Z 13, kMz k) /Mzz

The m square roots operations that are done above can be avoided if we
compute

W=ILDL' (12)
where L is a unit lower triangular matrix and D is a dlagonal matrix. The
modified algorithm is

e Fori=1,2,...mdo

~ Mi; = Mi; — Sz M2 My
— Forj=1¢4+1,...mdo
if ]\/fj,,' 74 0 then
MJ‘,,'Z (sz Z A/[]klechk) /A/[zz

The main advantage of using incomplete Cholesky factors for precondi-
tioning is that these factors preserve the sparsity structure of the original
matrix M. This is very crucial when M is large but relatively sparse. Such
matrices arise from our implementation of the interior point algorithms for
large multicommodity network flow problems. In the next section we shall
describe our computational experience with the Preconditioned Conjugate
Gradient method for solving these multicommodity network flow problems.



3 Numerical results

The Interior Dual Proximal Point (IDPP) algorithm using Preconditioned
Conjugate Gradient method was tested on the Patient Distribution System
(PDS) problems. These are multicommodity network flow problems that
were developed by the staff of the Military Airlift Command at Scott Air
Force Base. The sizes of these problems are listed in Table 1.

We recall that the linear system of equations that needs to be solved at
each interior point step is of the form

Mu = A(I — Dy)(I — E(I — D1)) Alu = z

The matrix M was reordered using the reversed Cuthill-McKee ordering [Duff
et al, 1986] to reduce its bandwidth before its incomplete Cholesky factor was
computed. Let us denote the reversed Cuthill-McKee reordering matrix by P.
This reordering was done once at the start of the IDPP. At each iteration of
the IDPP, the incomplete Cholesky factor of the matrix PM P* is computed
and the conjugate gradient iterations were executed until the norm of the
residual ||[Mu — z|| is less than 5.d — 08.

All computations were done on the Astronautics ZS-1 pipeline vector
machine [Smith, 1989]. The code was written in FORTRAN and all compu-
tations were done in double precision. Table 2 shows the objective values and
the primal infeasibility of the solutions obtained by IDPP using Precondi-
tioned Conjugate Gradient. The optimal objective values match to at least
8 digit for problems upto PDS-10 when compared to th- abjective values
obtained by the IDPP algorithm using YSMP [Setiono, 1989]. The primal

infeasibility of the solution was computed as follows.

Azy —b,(—2)4, (24 — d) ¢l o

where z, denotes the orthogonal projection of z onto the nonnegative or-
thant.

Using the PCG method, we were able to solve the PDS-20 problem that
we could not solve using the direct method. The solution times for the direct
(YSMP) and PCG methods are listed in Table 3. We observe that as the
problem dimensions increase, the PCG method actually outperforms YSMP.

The number of conjugate gradient iterations increases as the interior point
iterates converge to the solution of the linear program and the matrix M
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becomes increasingly ill-conditioned. The third column of Table 4 shows
the average number of conjugate gradient iterations PCG took to solve the
linear systems. The second column of the table shows the dimensions of these
linear systems which are the number of constraints of the linear programs.
Note that even as the problem dimension increases, the number of conjugate
gradient iterations are always between 2 to 3 % of the matrix dimension.

4 Parallel irﬁplementation of IDPP-PCG

Most of the steps in the Preconditioned Conjugate Gradient method for
solving linear systems of equations and in the Interior Dual Proximal Point
method for solving linear programs consist of vector-vector addition or matrix-
vector multiplication. Both of these operations are relatively easy to be exe-
cuted in parallel. To achieve good utilization of a parallel machine therefore,
it is very important that the following two steps:

1. the computations of the preconditioning matrix L and
2. the solutions of the system of equations f,_ljfty =d

can be done efficiently in parallel. The preconditioning matrlx L needs to be
computed at each [DPP iteration and the solutlons of IDT y = d needs to
be computed at each PCG iteration.

The structure of the matrix ADA! for the PDS problems (Figure 1) leads
us to 2 approaches for computing the preconditioning matrix L. The first
approach is the Block Diagonal Preconditioning. The preconditioning
matrix L is obtained by computing the incomplete Cholesky factors of the
block diagonal part of the matrix ADA?. Since the block diagonal part of this
matrix consists of 12 blocks, its incomplete Cholesky factors can be computed
in parallel using 2,3,4,6 or 12 processors.

If we divided the lower half of the matrix ADA! into 12 vertical blocks,
the Cholesky factors of the first 11 blocks can be computed simultaneously
using 11 processors. When this is completed, the processors can then work
on the remaining one block. This is our second approach, which we called
the Total Matrix Preconditioning.

Our computational experience using these two approaches are taken from
a shared memory multiprocessors, the Sequent Symmetry S81. Table 5 shows



the results for the solutions of the PDS problems using the IDPP algorithm
with the Block Diagonal Preconditioned Conjugate Gradient. The results
for these problems using the IDPP algorithm with the Total Matrix Precon-
ditioned Conjugate Gradient are shown in Table 6. In these 2 tables we list
the time to solve the problems, the average number of conjugate gradient
iterations and the efficiency when more than 1 processors are employed. The
efficiency for n processors F(n) is computed as follows:

E(n) = (T(1)/(n+T(n))* 100%

where T(1) and T(n) are the CPU times required by 1 processor and n
processors respectively.

5 Summary

We have presented numerical results from our serial and parallel implementa-
tion of the Interior Dual Proximal Point algorithm using the Preconditioned
Conjugate Gradient method. At each iteration of the IDPP algorithm, the
Newton direction was obtained by solving a system of linear equations of
the from ADA‘z = b..Solving this linear systems by the preconditioned
conjugate gradient has enabled us to solve large linear programs which we
could not solve by direct pivotal methods. For linear programs with block
structured constraints, such as the Patient Distribution System problems,
the solution of the linear system was obtained after relatively low number of
conjugate gradient iterations. The preconditioning matrix used to speedup
the conjugate gradient method was the incomplete Cholesky factor of the
matrix ADA®. This factor was easy to compute and did not introduce any
fill-in.

For the parallel implementation of the Interior Dual Proximal Point Al-
gorithm, we considered 2 different preconditioning approaches. The first was
the Block Diagonal Preconditioned Conjugate Gradient method. In this ap-
proach, we computed the incomplete Cholesky factor of the block diagonal
part of the matrix ADA*'. Using this approach, 2,3,4,6 and 12 processors
were used and the efficiencies that we obtained ranged from 82% to 96%.
The second approach was the Total Matrix Preconditioned Conjugate Gradi-
ent. With this approach the incomplete Cholesky factor of the entire matrix
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ADA?! was computed. When 11 processors were used, the efficiencies ob-
tained using this approach ranged from 75% for PDS-1 problem to 84% for
the PDS-6 problem. We note that although the efficiency of the paralleliza-
tion of the Block Diagonal PCG was better than that of the Total Matrix
PCGQG, the latter solved the problems in shorter times.
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Figure 1: Nonzero structure of ADA®

Problem Name : PDS-1
Matrix Dimension : 1473 by 1473
Nonzero Elements.: 11307

Density : 0.52 %
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Problem | Rows | Columns | Up. Bound | Non-Zeros
1 1473 3816 605 8139
2 2953 7716 2134 16571
3 4593 12590 3839 27099
4 6372 18615 5555 39944
5 8099 24192 7370 51978
6 9881 29351 9240 63220
10| 16558 49932 16148 107605
20 | 33798 108175 34888 232647

Table 1: Patient Distribution System (PDS) Problem Data

Problem | Objective Value | Primal Inf.
PDS-1. | 2.9083929918 e+10 8.2E-02
PDS-2 | 2.8857862390 e+10 1.0E-01
PDS-3 | 2.8597374836 e+10 1£.4E-01
PDS-4 | 2.8341928705 e+10 2.8E-01
PDS-5 | 2.8054052684 e+10 6.1E-02
PDS-6 | 2.7761037757 e+10 9.0E-02
PDS-10 | 2.6727094978 e+10 1.1E-01
PDS-20 | 2.3821660488 e-+10 3.6E-02

Table 2: PDS : PCG Results
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Problem YSMP PCG
PDS-1 30 sec. 1 min. 13 sec.
PDS-2 | 1 min. 43 sec. | 4 min. 10 sec.
PDS-3 | 4 min. 39 sec. | 8 min. 52 sec.
PDS-4 | 12 min. 35 sec. | 18 min. 15 sec.
PDS-5 | 35 min. 25 sec. | 40 min. 7 sec.
PDS-6 | 51 min. 56 sec. | 57 min. 43 sec.

PDS-10 | 4 hr. 41 min. 3 hr. 35 min.
PDS-20 n.a. 25 hr. 28 min.

Table 3: Solution times: YSMP vs PCG (Astronautics ZS-1)

Problem | Dimensions | CG iter.
PDS-1 1473 40
PDS-2 2953 69
PDS-3 4593 97
PDS-4 6372 118
PDS-5 8099 139
PDS-6 9881 224

PDS-10 16558 414
PDS-20 33798 984

Table 4: Average number of conjugate gradient iterations
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Proc. | PDS-1 | PDS-2| PDS-3| PDS-4| PDS-5| PDS-6
1 1485.83 | 5365.56 | 11887.44 | 27087.78 | 40175.13 | 79447.81
67 iter. | 113 iter. | 148 iter. | 204 iter. | 226 iter. | 373 iter.

2 774.98 | 2800.74 | 6222.30 | 14183.66 | 20976.07 | 41788.48
95.86 % | 95.79 % | 95.53 % | 95.49 % | 95.76 % | 95.06 %

3 526.15 | 1910.08 | 4213.21 | 9583.08 | 14169.17 | 28149.25
94.13 % | 93.63 % | 94.05 % | 94.22 % | 94.51 % | 94.08 %

4 400.46 | 1451.72 | 3211.90 | 7314.09 | 10804.08 | 21412.05
92.76 % | 92.40 % | 92.53 % | 92.59 % | 92.96 % | 92.76 %

6 274.90 991.90 | 2211.22 | 5071.91 | 7373.30 | 14653.03
90.08 % | 90.16 % | 89.60 % | 89.01 % | 90.82 % | 90.37 %

12 149.88 529.88 | 1175.05 | 2670.55 | 3966.54 | 7856.12
82.61 % | 84.38 % | 84.30 % | 84.51 % | 84.40 % | 84.27 %

Table 5: Time (seconds), iteration and efficiency of IDPP using
Block Diagonal PCG (Sequent S81)

Proc. | PDS-1 | PDS-2 | PDS-3 | PDS-4 | PDS-5 PDS-6
1 1064.17 | 3575.88 | 9059.76 | 20147.97 | 29227.59 | 52936.08
41 iter. | 67 iter. | 98 iter. | 133 iter. | 143 iter. | 266 iter.

11 128.90 399.44 | 1012.66 | 2181.79 | 3152.11 | 5709.33
75.05 % | 81.38% | 81.33% | 83.94% | 84.30% | 84.29 %

Table 6: Time (seconds), iteration and efficiency of IDPP using

Total Matrix PCG (Sequent S81)
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