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Abstract. An efficient algorithm for training a feed-forward neural network with partially pre-assigned weights is pro-
posed. The algorithm is based on linear programming and has a number of advantages over back propagation such as: automatic
determination of the number of hidden units, 100% correctness on the training set, faster training, and elimination of parameters
from the algorithm. The proposed method is currently in use for breast cancer diagnosis.

1. Introduction

We propose a fast polynomial-time approach for training neural networks based on linear programming. The
principal idea is based on the Multisurface Method (MSM) for the separation of two disjoint pattern sets with inter-
secting convex hulls [Mang68]. The Multisurface Method which is currently in use for breast cancer diagnosis
[Mang89, Wolb90], can be modeled as a feed-forward neural network with a partially-fixed topology. Training

neural networks by MSM has the following advantages over the Back Propagation Algorithm (BP) [Rume86]:
(a)  Automatic determination of the number of hidden units.

(b) Achieving 100% correctness on the training set.

(¢) Faster training.

(d Elimination of parameters from the training algorithm.

We begin with a description of the MSM linear programming approach for training a neural network for the
binary classification of two disjoint point sets. Extension of MSM to discrimination between more than two sets can
be achieved by log,s binary classifications where s is the number of sets. For simplicity of presentation we confine

ourselves to classifying two sets only.

2. The MSM Classifier

Let the the finite pattern sets A and B be two given disjoint training sets in the n-dimension real feature space
R™. Let the cardinality of A and B be m and k respectively. The sets A and B are represented by the m X n and

k X n matrices A and B. If the convex hulls of the sets A and B do not intersect, or equivalently if they are linearly
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separable, a single linear program can generate a separating plane in polynomial time [Karm84, Khac79] by solving

the following problem {Mang65]:

maximize
B, w {a—B | Aw=eo, Bw<ep, -~e$w$e} 1)

where we R™ is the weight vector associated with the separating plane, %—-ﬁ is the threshold that locates the

separating plane, and e is a vector of ones in a real space of arbitrary finite dimension. Note that this linear program

generates the weight vector w and threshold %ﬁ- for a linear threshold unit which discriminates between two

linearly separable sets.

When the sets A and B are not linearly separable, w=0,0~B=0 is a solution to (1), and no useful information
is derived from the problem. Hence problem (1) must be modified to generate a sequence of different pairs of
separating planes which constitute the MSM classifier. Each pair of parallel planes distinguishes a subset of A

from a subset of B. Total separation is achieved by the piecewise-linear MSM classifier which we now describe.
The piecewise-linear surface consists of p pairs of planes with weight vectors w!,...,wPeR", and thres-
P P o
holds —a"...,—a"”l,g—;ﬁi, and B&....p7"1, 9‘—%@')— with of <B,i=1,.....p—1 and a?>P?. Classification is achieved

as follows:
MSM Classifier for xe R"
fori=1top-1
begin o
ifxw'>p thenxe€ A ; stop

if ~xw’>—a then x € B; stop
end

ifxwl’zg%ﬁi thenx € A
else xe B
Geometrically the MSM classifier corresponds to separation by a piecewise-linear surface as illustrated in
Figure 1 for a hypothetical case of two pairs of planes in two dimensions. Figure 2 depicts separation of the
Wisconsin Breast Cancer Data (WBCD), the actual clinical data described in Section 5 of this paper. This figure
shows which points are separated by a given pair of planes and which points remain to be separated by a succeeding
pair of planes. The top graph in Figure 2 is the projection of 369 nine-dimensional data points on the two-
dimensional space spanned by the normals, w' and w2, to the first two pairs of separating planes. Note that w! and

w? are not orthogonal to each other in general. In the bottom graph, the points which were not classified by the first




Piecewise-Linear Classifier

Fig 1: Geometric Depiction of MSM Classifier

two pairs of parallel planes (i.e. the points in the parallelogram formed in the top graph) are projected on the two-
dimensional space spanned by the normals, w and w*, to the last two pairs of separating planes. Complete separa-

tion of the points is achieved in the bottom graph.

3. MSM Classifier as a Neural Network

We give now a novel representation of the MSM classifier as a trained feed-forward neural network which is
depicted in Figure 3 and which can be trained efficiently by our linear programming approach. This network is
composed of n input units, 2p—1 hidden units, and 1 output unit. For i=1,...,p—1, w' and —w* are the incoming

weights to the (2i—1)* and the (2/)* hidden units with thresholds B‘ and —of respectively. For i=p—1, w? is the
. . . th 1 . N o +E. . .
incoming weight to the (2p—1)" hidden unit with threshold - The weights on the arcs connecting the 2p—1

hidden units to the output unit (see Figure 3) are predetermined such that the activation of the output unit is caused
by the firing hidden unit with the lowest index. The threshold of the output unit is 0. To reduce clutter in Figure 2,

the n arcs connecting the » input units to a hidden unit are consolidated into one arc.

Note that predetermined weights are used between the hidden units and the output unit. This may restrict the
representational power of the network for a fixed number of units. However this does not seem to degrade the per-
formance of the MSM neural network. MSM dynamically determines the number of hidden units required in order
to correctly classify all the training examples. The performance of MSM is comparable to unrestricted networks

trained with BP. In fact, the number of hidden units determined by MSM is a good estimate of the number required
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Fig 3. MSM Classifier as a Neural Network
for a given classification task by an unconstrained network using BP. For example, consider the n-bit parity func-
tion which takes an n-bit binary vector as its argument and returns a 1 if the number of one’s is odd, and 0 other-
wise. This problem requires n hidden units for a feed-forward network [Rume86]. In our tests the MSM topology
required n hidden units when n is odd, and n+1 units when n is even, and the network was trained in considerably
less time using MSM than with BP. Figure 4 plots the execution time of MSM and BP on several n-bit parity prob-

lems on a DECstation 3100.

We note that generating a trained feed-forward network to distinguish between the disjoint pattern sets A and

B can be posed as the following nonlinear nonconvex optimization problem which is solved exactly by MSM:

For some integer p:

4 . 4 :
rr#mllzr!y'm [Z —2p {(AWJ"-G B,’)t"("AW,"’re a,-).] + Vze] + [Z 2r [(BW,,-—e B,‘)*'("BW“"'*‘C (X,')m] + 1/26} =) 2)
ae]?"[se)i’ i=1 «ll1 i=l 1
B>ay, i=l,..,p~1,
B=a,
b (@) =1 i 2 5 vetor o oes, | denots the 1
whnere w)i = : , €18 a vector ol ones, || enotes the 1-norm,
@) =10 it d;<0

R™*? is the space of n X p real matrices, and W is the i * column of the matrix W.

The above function counts the number of misclassified points. The summation inside the first norm counts the
number of points in A that are misclassified. The summation within the second norm counts the number of the

misclassified points of B. To understand how the counting works, we examine the relationship between the above
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Fig 4: Execution Times for BP and MSM on n-Bit Parity Problems
function and the MSM classifier. The vector W; is the normal to the i pair of separating planes within the MSM
classifier, and oy, and B; locate these planes. Consider the j* point in A represented by the j * row A; of the matrix

A. LetA; be correctly classified by the I'* pair of planes, then the following is true:

e A; lies on or between the pairs of parallel planes xW y=0y and xW =B, for k=1,...,I-1 which implies that
0 SA;W <Py for k=<1,...,i -+ Thus:
1-1

¥ -2 [(A WiBi)—(-A qu;+01,~).] =0 3)

i=1

e A; is in the open halfspace {x | xW_,>B,>oc,}. Thus:

27 (AW e AW ) =27 @
e A; maybe "anywhere" in relation to the remaining pairs of parallel planes: xW =0, and xW ;=;, i=l+1,...,p.
The coefficients attached to the remaining planes in (2) are chosen such that the combined effect of these

planes will not cause A; to be counted as misclassified. More specifically:

S 2 {AWip)-CAW o) < 3 270-1) =271 )

i=l+1 i=l+1




Summing the above equalities implies that

5,271 AW - Be-(AW j10).] + < ©

i=1

and hence:

i=1 -

14 .
[E —p- [(AW..-—B.->~—<—AW..~+ai)-] +1/z] =0 Q)
Thus the first part of the function in (2) correctly returns 0 for 4;.

IfA;is misclassified at the /** plane, the equation (3) above remains the same. The right-hand side of (4)
becomes 27, Equation (5) becomes:

f: —r [(AjW‘,--B,-)*—-(-AjWﬁai).] > i —277(1-0) =-27"1+1 (5"

i=l+1 i=l+1

Adding equations (3), the modified equation (4), and (5°), we get:

i}i‘; i [(AW,,-—B,—).-—(—AW_,-+a,~).} +%> % (6)
Hence when A ; is misclassified, the expression in (7) equals 1, and the first part of (2) returns 1 for A;. Therefore
the first norm of (2) counts the number of misclassified points of the set A. Similarly the second norm in (2) counts
the number of misclassified points of the set B. The term Ye in (2) is added in order to eliminate the ambiguous
case of points of either set A or B lying on the final separating plane xW ,=0,=B,. Note that no points are

misclassified if and only if the right side of (2) equals 0. In addition, the solution of (2) is an MSM classifier, and a

solution for (2) such that all points are correctly classified ¢ &n always be found using MSM.

4. Training the MSM Neural Network

In order to generate the MSM classifier for the general case of linearly inseparable pattern sets, problem (1) is

modified as follows to ensure that w is nonzero:

mgxliim}ize{ o~ | Aw=en, Bw<ep, —esw<e, W*"} ®

Each problem (8) is solved by a finite sequence of linear programs. This sequence does not exceed 2n and is often
less depending on the way that the constraint w0 is implemented [Mang68, Mang89]. Each problem (8) separates
portions of the sets A and B from each other. The points thus separated are removed from A and B. This process is
repeated until no points remain. The algorithm with an antidegeneracy procedure ensures that total separation of

any two disjoint point sets can be achieved in polynomial time.



Note that unlike BP, there are no parameters in the learning algorithm that must be determined experimentally

in MSM. For example, the number of hidden units within the MSM neural net is determined automatically by the

program.

5. Computational Comparison of BP and MSM on Medical Diagnosis Problems

MSM is currently in active use at University of Wisconsin Hospitals for the diagnosis of breast cancer

[Wolb90, Mang89]. We briefly discuss this application first and give comparisons with BP.

The Wisconsin Breast Cancer Data (WBCD) set, developed by Dr. W. H. Wolberg, consists of nine measure-
ments taken from fine needle aspirates from human breast tissue. On this data set, MSM was trained originally on
369 samples and was tested subsequently on 70 newly acquired samples all of which were classified correctly
except one. At that time it was retrained and since then it has correctly classified all 48 subsequent samples. For
reliability in medical diagnosis applications, 100% correctness on the training and testing sets is very important.
Such levels of training set correctness were attained by MSM on this data set but not by other approaches such as
BP, statistical pattern separation and decision tree approaches [Wolb88]. It is important to emphasize that in medical
diagnosis, classification is performed on all available data and the classifier is then used on incoming data. Table 1
compares the best results obtained by BP as implemented in [McCl187] with the results from MSM on the WBCD. It
is interesting to note that BP does not achieve the correctness rate on either training or testing sets achieved by

MSM.

MSM | BP
Training Time (seconds) 108 469.5
Training Set Correctness (%) | 100.0 | 98.9
Testing Set Correctness (%) 98.3 94.9
Number of Hidden Units 7 6

Table 1: Comparison of MSM and BP on Wisconsin Breast Cancer Data
Training Set Size = 369 Testing Set Size = 118

Additional experiments have been conducted comparing the performance BP and MSM on the WBCD and
the Cleveland Heart Disease Data Set [Detr89]. The results of applying the methods to training and testing sets ran-
domly extracted from the total points were averaged over many trials. These results are depicted in Figures 5 and 6.

From these figures we draw the following conclusions:
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Wisconsin Breast Cancer Data
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(@) 100% correctness was always achieved by MSM on the training set but not by BP.

(b) On the testing sets, MSM achieved a correctness rates which are within 4% of the correctness rates of BP.

The higher discrepancies occurred on the relatively noisy Cleveland Heart Disease Data set.

(¢) The number of hidden units, which is determined automatically by MSM, is a good estimate for the number of
hidden units required using BP to achieve minimal training time, and optimal training and testing set correct-

Nness.

(d) The time to train MSM is consistently much less than for BP. If we take into account that BP requires experi-
mentation to determine the optimal values of learning parameters and the number of hidden units, the differ-

ence becomes more pronounced.

To sum up, MSM has the capability of quickly training a neural network and determining the optimal number
of hidden units while maintaining 100% correctness on the training sets. These are important properties not pos-

sessed by BP.
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